]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Copyright (c) 2000-2009 Apple Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * This file contains Original Code and/or Modifications of Original Code | |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
14 | * | |
15 | * Please obtain a copy of the License at | |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
25 | * | |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ | |
27 | */ | |
28 | /* | |
29 | * @OSF_COPYRIGHT@ | |
30 | */ | |
31 | /* | |
32 | * Mach Operating System | |
33 | * Copyright (c) 1991 Carnegie Mellon University | |
34 | * All Rights Reserved. | |
35 | * | |
36 | * Permission to use, copy, modify and distribute this software and its | |
37 | * documentation is hereby granted, provided that both the copyright | |
38 | * notice and this permission notice appear in all copies of the | |
39 | * software, derivative works or modified versions, and any portions | |
40 | * thereof, and that both notices appear in supporting documentation. | |
41 | * | |
42 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" | |
43 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR | |
44 | * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. | |
45 | * | |
46 | * Carnegie Mellon requests users of this software to return to | |
47 | * | |
48 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU | |
49 | * School of Computer Science | |
50 | * Carnegie Mellon University | |
51 | * Pittsburgh PA 15213-3890 | |
52 | * | |
53 | * any improvements or extensions that they make and grant Carnegie Mellon | |
54 | * the rights to redistribute these changes. | |
55 | */ | |
56 | ||
57 | /* | |
58 | */ | |
59 | ||
60 | /* | |
61 | * User LDT management. | |
62 | * Each task may have its own LDT. | |
63 | */ | |
64 | ||
65 | #include <kern/kalloc.h> | |
66 | #include <kern/thread.h> | |
67 | #include <kern/misc_protos.h> | |
68 | ||
69 | #include <vm/vm_kern.h> | |
70 | ||
71 | #include <i386/machdep_call.h> | |
72 | #include <i386/user_ldt.h> | |
73 | #include <i386/mp.h> | |
74 | #include <i386/machine_routines.h> | |
75 | #include <i386/proc_reg.h> | |
76 | #include <i386/mp_desc.h> | |
77 | #include <i386/seg.h> | |
78 | #include <i386/thread.h> | |
79 | ||
80 | #include <sys/errno.h> | |
81 | ||
82 | static void user_ldt_set_action(void *); | |
83 | ||
84 | /* | |
85 | * Add the descriptors to the LDT, starting with | |
86 | * the descriptor for 'first_selector'. | |
87 | */ | |
88 | ||
89 | int | |
90 | i386_set_ldt( | |
91 | uint32_t *retval, | |
92 | uint32_t start_sel, | |
93 | uint32_t descs, /* out */ | |
94 | uint32_t num_sels) | |
95 | { | |
96 | user_ldt_t new_ldt, old_ldt; | |
97 | struct real_descriptor *dp; | |
98 | unsigned int i; | |
99 | unsigned int min_selector = LDTSZ_MIN; /* do not allow the system selectors to be changed */ | |
100 | task_t task = current_task(); | |
101 | unsigned int ldt_count; | |
102 | kern_return_t err; | |
103 | ||
104 | if (start_sel != LDT_AUTO_ALLOC | |
105 | && (start_sel != 0 || num_sels != 0) | |
106 | && (start_sel < min_selector || start_sel >= LDTSZ)) | |
107 | return EINVAL; | |
108 | if (start_sel != LDT_AUTO_ALLOC | |
109 | && (uint64_t)start_sel + (uint64_t)num_sels > LDTSZ) /* cast to uint64_t to detect wrap-around */ | |
110 | return EINVAL; | |
111 | ||
112 | task_lock(task); | |
113 | ||
114 | old_ldt = task->i386_ldt; | |
115 | ||
116 | if (start_sel == LDT_AUTO_ALLOC) { | |
117 | if (old_ldt) { | |
118 | unsigned int null_count; | |
119 | struct real_descriptor null_ldt; | |
120 | ||
121 | bzero(&null_ldt, sizeof(null_ldt)); | |
122 | ||
123 | /* | |
124 | * Look for null selectors among the already-allocated | |
125 | * entries. | |
126 | */ | |
127 | null_count = 0; | |
128 | i = 0; | |
129 | while (i < old_ldt->count) | |
130 | { | |
131 | if (!memcmp(&old_ldt->ldt[i++], &null_ldt, sizeof(null_ldt))) { | |
132 | null_count++; | |
133 | if (null_count == num_sels) | |
134 | break; /* break out of while loop */ | |
135 | } else { | |
136 | null_count = 0; | |
137 | } | |
138 | } | |
139 | ||
140 | /* | |
141 | * If we broke out of the while loop, i points to the selector | |
142 | * after num_sels null selectors. Otherwise it points to the end | |
143 | * of the old LDTs, and null_count is the number of null selectors | |
144 | * at the end. | |
145 | * | |
146 | * Either way, there are null_count null selectors just prior to | |
147 | * the i-indexed selector, and either null_count >= num_sels, | |
148 | * or we're at the end, so we can extend. | |
149 | */ | |
150 | start_sel = old_ldt->start + i - null_count; | |
151 | } else { | |
152 | start_sel = LDTSZ_MIN; | |
153 | } | |
154 | ||
155 | if ((uint64_t)start_sel + (uint64_t)num_sels > LDTSZ) { | |
156 | task_unlock(task); | |
157 | return ENOMEM; | |
158 | } | |
159 | } | |
160 | ||
161 | if (start_sel == 0 && num_sels == 0) { | |
162 | new_ldt = NULL; | |
163 | } else { | |
164 | /* | |
165 | * Allocate new LDT | |
166 | */ | |
167 | ||
168 | unsigned int begin_sel = start_sel; | |
169 | unsigned int end_sel = begin_sel + num_sels; | |
170 | ||
171 | if (old_ldt != NULL) { | |
172 | if (old_ldt->start < begin_sel) | |
173 | begin_sel = old_ldt->start; | |
174 | if (old_ldt->start + old_ldt->count > end_sel) | |
175 | end_sel = old_ldt->start + old_ldt->count; | |
176 | } | |
177 | ||
178 | ldt_count = end_sel - begin_sel; | |
179 | /* XXX allocation under task lock */ | |
180 | new_ldt = (user_ldt_t)kalloc(sizeof(struct user_ldt) + (ldt_count * sizeof(struct real_descriptor))); | |
181 | if (new_ldt == NULL) { | |
182 | task_unlock(task); | |
183 | return ENOMEM; | |
184 | } | |
185 | ||
186 | new_ldt->start = begin_sel; | |
187 | new_ldt->count = ldt_count; | |
188 | ||
189 | /* | |
190 | * Have new LDT. If there was a an old ldt, copy descriptors | |
191 | * from old to new. | |
192 | */ | |
193 | if (old_ldt) { | |
194 | bcopy(&old_ldt->ldt[0], | |
195 | &new_ldt->ldt[old_ldt->start - begin_sel], | |
196 | old_ldt->count * sizeof(struct real_descriptor)); | |
197 | ||
198 | /* | |
199 | * If the old and new LDTs are non-overlapping, fill the | |
200 | * center in with null selectors. | |
201 | */ | |
202 | ||
203 | if (old_ldt->start + old_ldt->count < start_sel) | |
204 | bzero(&new_ldt->ldt[old_ldt->count], | |
205 | (start_sel - (old_ldt->start + old_ldt->count)) * sizeof(struct real_descriptor)); | |
206 | else if (old_ldt->start > start_sel + num_sels) | |
207 | bzero(&new_ldt->ldt[num_sels], | |
208 | (old_ldt->start - (start_sel + num_sels)) * sizeof(struct real_descriptor)); | |
209 | } | |
210 | ||
211 | /* | |
212 | * Install new descriptors. | |
213 | */ | |
214 | if (descs != 0) { | |
215 | /* XXX copyin under task lock */ | |
216 | err = copyin(descs, (char *)&new_ldt->ldt[start_sel - begin_sel], | |
217 | num_sels * sizeof(struct real_descriptor)); | |
218 | if (err != 0) | |
219 | { | |
220 | task_unlock(task); | |
221 | user_ldt_free(new_ldt); | |
222 | return err; | |
223 | } | |
224 | } else { | |
225 | bzero(&new_ldt->ldt[start_sel - begin_sel], num_sels * sizeof(struct real_descriptor)); | |
226 | } | |
227 | /* | |
228 | * Validate descriptors. | |
229 | * Only allow descriptors with user privileges. | |
230 | */ | |
231 | for (i = 0, dp = (struct real_descriptor *) &new_ldt->ldt[start_sel - begin_sel]; | |
232 | i < num_sels; | |
233 | i++, dp++) | |
234 | { | |
235 | switch (dp->access & ~ACC_A) { | |
236 | case 0: | |
237 | case ACC_P: | |
238 | /* valid empty descriptor, clear Present preemptively */ | |
239 | dp->access &= (~ACC_P & 0xff); | |
240 | break; | |
241 | case ACC_P | ACC_PL_U | ACC_DATA: | |
242 | case ACC_P | ACC_PL_U | ACC_DATA_W: | |
243 | case ACC_P | ACC_PL_U | ACC_DATA_E: | |
244 | case ACC_P | ACC_PL_U | ACC_DATA_EW: | |
245 | case ACC_P | ACC_PL_U | ACC_CODE: | |
246 | case ACC_P | ACC_PL_U | ACC_CODE_R: | |
247 | case ACC_P | ACC_PL_U | ACC_CODE_C: | |
248 | case ACC_P | ACC_PL_U | ACC_CODE_CR: | |
249 | break; | |
250 | default: | |
251 | task_unlock(task); | |
252 | user_ldt_free(new_ldt); | |
253 | return EACCES; | |
254 | } | |
255 | /* Reject attempts to create segments with 64-bit granules */ | |
256 | if (dp->granularity & SZ_64) { | |
257 | task_unlock(task); | |
258 | user_ldt_free(new_ldt); | |
259 | return EACCES; | |
260 | } | |
261 | } | |
262 | } | |
263 | ||
264 | task->i386_ldt = new_ldt; /* new LDT for task */ | |
265 | ||
266 | /* | |
267 | * Switch to new LDT. We need to do this on all CPUs, since | |
268 | * another thread in this same task may be currently running, | |
269 | * and we need to make sure the new LDT is in place | |
270 | * throughout the task before returning to the user. | |
271 | */ | |
272 | mp_broadcast(user_ldt_set_action, task); | |
273 | ||
274 | task_unlock(task); | |
275 | ||
276 | /* free old LDT. We can't do this until after we've | |
277 | * rendezvoused with all CPUs, in case another thread | |
278 | * in this task was in the process of context switching. | |
279 | */ | |
280 | if (old_ldt) | |
281 | user_ldt_free(old_ldt); | |
282 | ||
283 | *retval = start_sel; | |
284 | ||
285 | return 0; | |
286 | } | |
287 | ||
288 | int | |
289 | i386_get_ldt( | |
290 | uint32_t *retval, | |
291 | uint32_t start_sel, | |
292 | uint32_t descs, /* out */ | |
293 | uint32_t num_sels) | |
294 | { | |
295 | user_ldt_t user_ldt; | |
296 | task_t task = current_task(); | |
297 | unsigned int ldt_count; | |
298 | kern_return_t err; | |
299 | ||
300 | if (start_sel >= LDTSZ) | |
301 | return EINVAL; | |
302 | if ((uint64_t)start_sel + (uint64_t)num_sels > LDTSZ) | |
303 | return EINVAL; | |
304 | if (descs == 0) | |
305 | return EINVAL; | |
306 | ||
307 | task_lock(task); | |
308 | ||
309 | user_ldt = task->i386_ldt; | |
310 | err = 0; | |
311 | ||
312 | /* | |
313 | * copy out the descriptors | |
314 | */ | |
315 | ||
316 | if (user_ldt != 0) | |
317 | ldt_count = user_ldt->start + user_ldt->count; | |
318 | else | |
319 | ldt_count = LDTSZ_MIN; | |
320 | ||
321 | ||
322 | if (start_sel < ldt_count) | |
323 | { | |
324 | unsigned int copy_sels = num_sels; | |
325 | ||
326 | if (start_sel + num_sels > ldt_count) | |
327 | copy_sels = ldt_count - start_sel; | |
328 | ||
329 | err = copyout((char *)(current_ldt() + start_sel), | |
330 | descs, copy_sels * sizeof(struct real_descriptor)); | |
331 | } | |
332 | ||
333 | task_unlock(task); | |
334 | ||
335 | *retval = ldt_count; | |
336 | ||
337 | return err; | |
338 | } | |
339 | ||
340 | void | |
341 | user_ldt_free( | |
342 | user_ldt_t user_ldt) | |
343 | { | |
344 | kfree(user_ldt, sizeof(struct user_ldt) + (user_ldt->count * sizeof(struct real_descriptor))); | |
345 | } | |
346 | ||
347 | user_ldt_t | |
348 | user_ldt_copy( | |
349 | user_ldt_t user_ldt) | |
350 | { | |
351 | if (user_ldt != NULL) { | |
352 | size_t size = sizeof(struct user_ldt) + (user_ldt->count * sizeof(struct real_descriptor)); | |
353 | user_ldt_t new_ldt = (user_ldt_t)kalloc(size); | |
354 | if (new_ldt != NULL) | |
355 | bcopy(user_ldt, new_ldt, size); | |
356 | return new_ldt; | |
357 | } | |
358 | ||
359 | return 0; | |
360 | } | |
361 | ||
362 | void | |
363 | user_ldt_set_action( | |
364 | void *arg) | |
365 | { | |
366 | task_t arg_task = (task_t)arg; | |
367 | ||
368 | if (arg_task == current_task()) { | |
369 | user_ldt_set(current_thread()); | |
370 | } | |
371 | } | |
372 | ||
373 | /* | |
374 | * Set the LDT for the given thread on the current CPU. Should be invoked | |
375 | * with interrupts disabled. | |
376 | */ | |
377 | void | |
378 | user_ldt_set( | |
379 | thread_t thread) | |
380 | { | |
381 | task_t task = thread->task; | |
382 | user_ldt_t user_ldt; | |
383 | ||
384 | user_ldt = task->i386_ldt; | |
385 | ||
386 | if (user_ldt != 0) { | |
387 | struct real_descriptor *ldtp = (struct real_descriptor *)current_ldt(); | |
388 | ||
389 | if (user_ldt->start > LDTSZ_MIN) { | |
390 | bzero(&ldtp[LDTSZ_MIN], | |
391 | sizeof(struct real_descriptor) * (user_ldt->start - LDTSZ_MIN)); | |
392 | } | |
393 | ||
394 | bcopy(user_ldt->ldt, &ldtp[user_ldt->start], | |
395 | sizeof(struct real_descriptor) * (user_ldt->count)); | |
396 | ||
397 | gdt_desc_p(USER_LDT)->limit_low = (uint16_t)((sizeof(struct real_descriptor) * (user_ldt->start + user_ldt->count)) - 1); | |
398 | ||
399 | ml_cpu_set_ldt(USER_LDT); | |
400 | } else { | |
401 | ml_cpu_set_ldt(KERNEL_LDT); | |
402 | } | |
403 | } |