]> git.saurik.com Git - apple/xnu.git/blame_incremental - bsd/netinet6/udp6_usrreq.c
xnu-4570.41.2.tar.gz
[apple/xnu.git] / bsd / netinet6 / udp6_usrreq.c
... / ...
CommitLineData
1/*
2 * Copyright (c) 2000-2017 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28
29/* $FreeBSD: src/sys/netinet6/udp6_usrreq.c,v 1.6.2.6 2001/07/29 19:32:40 ume Exp $ */
30/* $KAME: udp6_usrreq.c,v 1.27 2001/05/21 05:45:10 jinmei Exp $ */
31
32/*
33 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the project nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 */
60
61/*
62 * Copyright (c) 1982, 1986, 1989, 1993
63 * The Regents of the University of California. All rights reserved.
64 *
65 * Redistribution and use in source and binary forms, with or without
66 * modification, are permitted provided that the following conditions
67 * are met:
68 * 1. Redistributions of source code must retain the above copyright
69 * notice, this list of conditions and the following disclaimer.
70 * 2. Redistributions in binary form must reproduce the above copyright
71 * notice, this list of conditions and the following disclaimer in the
72 * documentation and/or other materials provided with the distribution.
73 * 3. All advertising materials mentioning features or use of this software
74 * must display the following acknowledgement:
75 * This product includes software developed by the University of
76 * California, Berkeley and its contributors.
77 * 4. Neither the name of the University nor the names of its contributors
78 * may be used to endorse or promote products derived from this software
79 * without specific prior written permission.
80 *
81 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
82 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
83 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
84 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
85 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
86 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
87 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
88 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
89 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
90 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
91 * SUCH DAMAGE.
92 *
93 * @(#)udp_var.h 8.1 (Berkeley) 6/10/93
94 */
95#include <sys/kernel.h>
96#include <sys/malloc.h>
97#include <sys/mbuf.h>
98#include <sys/param.h>
99#include <sys/protosw.h>
100#include <sys/socket.h>
101#include <sys/socketvar.h>
102#include <sys/sysctl.h>
103#include <sys/errno.h>
104#include <sys/stat.h>
105#include <sys/systm.h>
106#include <sys/syslog.h>
107#include <sys/proc.h>
108#include <sys/kauth.h>
109
110#include <net/if.h>
111#include <net/route.h>
112#include <net/if_types.h>
113#include <net/ntstat.h>
114#include <net/dlil.h>
115#include <net/net_api_stats.h>
116
117#include <netinet/in.h>
118#include <netinet/in_systm.h>
119#include <netinet/ip.h>
120#include <netinet/in_pcb.h>
121#include <netinet/in_var.h>
122#include <netinet/ip_var.h>
123#include <netinet/udp.h>
124#include <netinet/udp_var.h>
125#include <netinet/ip6.h>
126#include <netinet6/ip6_var.h>
127#include <netinet6/in6_pcb.h>
128#include <netinet/icmp6.h>
129#include <netinet6/udp6_var.h>
130#include <netinet6/ip6protosw.h>
131
132#if IPSEC
133#include <netinet6/ipsec.h>
134#include <netinet6/ipsec6.h>
135#include <netinet6/esp6.h>
136extern int ipsec_bypass;
137extern int esp_udp_encap_port;
138#endif /* IPSEC */
139
140#if NECP
141#include <net/necp.h>
142#endif /* NECP */
143
144#if FLOW_DIVERT
145#include <netinet/flow_divert.h>
146#endif /* FLOW_DIVERT */
147
148/*
149 * UDP protocol inplementation.
150 * Per RFC 768, August, 1980.
151 */
152
153static int udp6_abort(struct socket *);
154static int udp6_attach(struct socket *, int, struct proc *);
155static int udp6_bind(struct socket *, struct sockaddr *, struct proc *);
156static int udp6_connectx(struct socket *, struct sockaddr *,
157 struct sockaddr *, struct proc *, uint32_t, sae_associd_t,
158 sae_connid_t *, uint32_t, void *, uint32_t, struct uio *, user_ssize_t *);
159static int udp6_detach(struct socket *);
160static int udp6_disconnect(struct socket *);
161static int udp6_disconnectx(struct socket *, sae_associd_t, sae_connid_t);
162static int udp6_send(struct socket *, int, struct mbuf *, struct sockaddr *,
163 struct mbuf *, struct proc *);
164static void udp6_append(struct inpcb *, struct ip6_hdr *,
165 struct sockaddr_in6 *, struct mbuf *, int, struct ifnet *);
166static int udp6_input_checksum(struct mbuf *, struct udphdr *, int, int);
167
168struct pr_usrreqs udp6_usrreqs = {
169 .pru_abort = udp6_abort,
170 .pru_attach = udp6_attach,
171 .pru_bind = udp6_bind,
172 .pru_connect = udp6_connect,
173 .pru_connectx = udp6_connectx,
174 .pru_control = in6_control,
175 .pru_detach = udp6_detach,
176 .pru_disconnect = udp6_disconnect,
177 .pru_disconnectx = udp6_disconnectx,
178 .pru_peeraddr = in6_mapped_peeraddr,
179 .pru_send = udp6_send,
180 .pru_shutdown = udp_shutdown,
181 .pru_sockaddr = in6_mapped_sockaddr,
182 .pru_sosend = sosend,
183 .pru_soreceive = soreceive,
184 .pru_soreceive_list = soreceive_list,
185};
186
187/*
188 * subroutine of udp6_input(), mainly for source code readability.
189 */
190static void
191udp6_append(struct inpcb *last, struct ip6_hdr *ip6,
192 struct sockaddr_in6 *udp_in6, struct mbuf *n, int off, struct ifnet *ifp)
193{
194#pragma unused(ip6)
195 struct mbuf *opts = NULL;
196 int ret = 0;
197 boolean_t cell = IFNET_IS_CELLULAR(ifp);
198 boolean_t wifi = (!cell && IFNET_IS_WIFI(ifp));
199 boolean_t wired = (!wifi && IFNET_IS_WIRED(ifp));
200
201#if CONFIG_MACF_NET
202 if (mac_inpcb_check_deliver(last, n, AF_INET6, SOCK_DGRAM) != 0) {
203 m_freem(n);
204 return;
205 }
206#endif /* CONFIG_MACF_NET */
207 if ((last->in6p_flags & INP_CONTROLOPTS) != 0 ||
208 (last->in6p_socket->so_options & SO_TIMESTAMP) != 0 ||
209 (last->in6p_socket->so_options & SO_TIMESTAMP_MONOTONIC) != 0) {
210 ret = ip6_savecontrol(last, n, &opts);
211 if (ret != 0) {
212 m_freem(n);
213 m_freem(opts);
214 return;
215 }
216 }
217 m_adj(n, off);
218 if (nstat_collect) {
219 INP_ADD_STAT(last, cell, wifi, wired, rxpackets, 1);
220 INP_ADD_STAT(last, cell, wifi, wired, rxbytes, n->m_pkthdr.len);
221 inp_set_activity_bitmap(last);
222 }
223 so_recv_data_stat(last->in6p_socket, n, 0);
224 if (sbappendaddr(&last->in6p_socket->so_rcv,
225 (struct sockaddr *)udp_in6, n, opts, NULL) == 0)
226 udpstat.udps_fullsock++;
227 else
228 sorwakeup(last->in6p_socket);
229}
230
231int
232udp6_input(struct mbuf **mp, int *offp, int proto)
233{
234#pragma unused(proto)
235 struct mbuf *m = *mp;
236 struct ifnet *ifp;
237 struct ip6_hdr *ip6;
238 struct udphdr *uh;
239 struct inpcb *in6p;
240 struct mbuf *opts = NULL;
241 int off = *offp;
242 int plen, ulen, ret = 0;
243 boolean_t cell, wifi, wired;
244 struct sockaddr_in6 udp_in6;
245 struct inpcbinfo *pcbinfo = &udbinfo;
246 struct sockaddr_in6 fromsa;
247
248 IP6_EXTHDR_CHECK(m, off, sizeof (struct udphdr), return IPPROTO_DONE);
249
250 /* Expect 32-bit aligned data pointer on strict-align platforms */
251 MBUF_STRICT_DATA_ALIGNMENT_CHECK_32(m);
252
253 ifp = m->m_pkthdr.rcvif;
254 ip6 = mtod(m, struct ip6_hdr *);
255 cell = IFNET_IS_CELLULAR(ifp);
256 wifi = (!cell && IFNET_IS_WIFI(ifp));
257 wired = (!wifi && IFNET_IS_WIRED(ifp));
258
259 udpstat.udps_ipackets++;
260
261 plen = ntohs(ip6->ip6_plen) - off + sizeof (*ip6);
262 uh = (struct udphdr *)(void *)((caddr_t)ip6 + off);
263 ulen = ntohs((u_short)uh->uh_ulen);
264
265 if (plen != ulen) {
266 udpstat.udps_badlen++;
267 IF_UDP_STATINC(ifp, badlength);
268 goto bad;
269 }
270
271 /* destination port of 0 is illegal, based on RFC768. */
272 if (uh->uh_dport == 0) {
273 IF_UDP_STATINC(ifp, port0);
274 goto bad;
275 }
276
277 /*
278 * Checksum extended UDP header and data.
279 */
280 if (udp6_input_checksum(m, uh, off, ulen))
281 goto bad;
282
283 /*
284 * Construct sockaddr format source address.
285 */
286 init_sin6(&fromsa, m);
287 fromsa.sin6_port = uh->uh_sport;
288
289 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
290 int reuse_sock = 0, mcast_delivered = 0;
291 struct ip6_moptions *imo;
292
293 /*
294 * Deliver a multicast datagram to all sockets
295 * for which the local and remote addresses and ports match
296 * those of the incoming datagram. This allows more than
297 * one process to receive multicasts on the same port.
298 * (This really ought to be done for unicast datagrams as
299 * well, but that would cause problems with existing
300 * applications that open both address-specific sockets and
301 * a wildcard socket listening to the same port -- they would
302 * end up receiving duplicates of every unicast datagram.
303 * Those applications open the multiple sockets to overcome an
304 * inadequacy of the UDP socket interface, but for backwards
305 * compatibility we avoid the problem here rather than
306 * fixing the interface. Maybe 4.5BSD will remedy this?)
307 */
308
309 /*
310 * In a case that laddr should be set to the link-local
311 * address (this happens in RIPng), the multicast address
312 * specified in the received packet does not match with
313 * laddr. To cure this situation, the matching is relaxed
314 * if the receiving interface is the same as one specified
315 * in the socket and if the destination multicast address
316 * matches one of the multicast groups specified in the socket.
317 */
318
319 /*
320 * Construct sockaddr format source address.
321 */
322 init_sin6(&udp_in6, m); /* general init */
323 udp_in6.sin6_port = uh->uh_sport;
324 /*
325 * KAME note: usually we drop udphdr from mbuf here.
326 * We need udphdr for IPsec processing so we do that later.
327 */
328
329 /*
330 * Locate pcb(s) for datagram.
331 * (Algorithm copied from raw_intr().)
332 */
333 lck_rw_lock_shared(pcbinfo->ipi_lock);
334
335 LIST_FOREACH(in6p, &udb, inp_list) {
336#if IPSEC
337 int skipit;
338#endif /* IPSEC */
339
340 if ((in6p->inp_vflag & INP_IPV6) == 0)
341 continue;
342
343 if (inp_restricted_recv(in6p, ifp))
344 continue;
345
346 if (in_pcb_checkstate(in6p, WNT_ACQUIRE, 0) ==
347 WNT_STOPUSING)
348 continue;
349
350 udp_lock(in6p->in6p_socket, 1, 0);
351
352 if (in_pcb_checkstate(in6p, WNT_RELEASE, 1) ==
353 WNT_STOPUSING) {
354 udp_unlock(in6p->in6p_socket, 1, 0);
355 continue;
356 }
357 if (in6p->in6p_lport != uh->uh_dport) {
358 udp_unlock(in6p->in6p_socket, 1, 0);
359 continue;
360 }
361
362 /*
363 * Handle socket delivery policy for any-source
364 * and source-specific multicast. [RFC3678]
365 */
366 imo = in6p->in6p_moptions;
367 if (imo && IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
368 struct sockaddr_in6 mcaddr;
369 int blocked;
370
371 IM6O_LOCK(imo);
372 bzero(&mcaddr, sizeof (struct sockaddr_in6));
373 mcaddr.sin6_len = sizeof (struct sockaddr_in6);
374 mcaddr.sin6_family = AF_INET6;
375 mcaddr.sin6_addr = ip6->ip6_dst;
376
377 blocked = im6o_mc_filter(imo, ifp,
378 &mcaddr, &fromsa);
379 IM6O_UNLOCK(imo);
380 if (blocked != MCAST_PASS) {
381 udp_unlock(in6p->in6p_socket, 1, 0);
382 if (blocked == MCAST_NOTSMEMBER ||
383 blocked == MCAST_MUTED)
384 udpstat.udps_filtermcast++;
385 continue;
386 }
387 }
388 if (!IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_faddr) &&
389 (!IN6_ARE_ADDR_EQUAL(&in6p->in6p_faddr,
390 &ip6->ip6_src) ||
391 in6p->in6p_fport != uh->uh_sport)) {
392 udp_unlock(in6p->in6p_socket, 1, 0);
393 continue;
394 }
395
396 reuse_sock = in6p->inp_socket->so_options &
397 (SO_REUSEPORT | SO_REUSEADDR);
398
399#if NECP
400 skipit = 0;
401 if (!necp_socket_is_allowed_to_send_recv_v6(in6p,
402 uh->uh_dport, uh->uh_sport, &ip6->ip6_dst,
403 &ip6->ip6_src, ifp, NULL, NULL)) {
404 /* do not inject data to pcb */
405 skipit = 1;
406 }
407 if (skipit == 0)
408#endif /* NECP */
409 {
410 struct mbuf *n = NULL;
411 /*
412 * KAME NOTE: do not
413 * m_copy(m, offset, ...) below.
414 * sbappendaddr() expects M_PKTHDR,
415 * and m_copy() will copy M_PKTHDR
416 * only if offset is 0.
417 */
418 if (reuse_sock)
419 n = m_copy(m, 0, M_COPYALL);
420 udp6_append(in6p, ip6, &udp_in6, m,
421 off + sizeof (struct udphdr), ifp);
422 mcast_delivered++;
423 m = n;
424 }
425 udp_unlock(in6p->in6p_socket, 1, 0);
426
427 /*
428 * Don't look for additional matches if this one does
429 * not have either the SO_REUSEPORT or SO_REUSEADDR
430 * socket options set. This heuristic avoids searching
431 * through all pcbs in the common case of a non-shared
432 * port. It assumes that an application will never
433 * clear these options after setting them.
434 */
435 if (reuse_sock == 0 || m == NULL)
436 break;
437
438 /*
439 * Expect 32-bit aligned data pointer on strict-align
440 * platforms.
441 */
442 MBUF_STRICT_DATA_ALIGNMENT_CHECK_32(m);
443
444 /*
445 * Recompute IP and UDP header pointers for new mbuf
446 */
447 ip6 = mtod(m, struct ip6_hdr *);
448 uh = (struct udphdr *)(void *)((caddr_t)ip6 + off);
449 }
450 lck_rw_done(pcbinfo->ipi_lock);
451
452 if (mcast_delivered == 0) {
453 /*
454 * No matching pcb found; discard datagram.
455 * (No need to send an ICMP Port Unreachable
456 * for a broadcast or multicast datgram.)
457 */
458 udpstat.udps_noport++;
459 udpstat.udps_noportmcast++;
460 IF_UDP_STATINC(ifp, port_unreach);
461 goto bad;
462 }
463
464 /* free the extra copy of mbuf or skipped by NECP */
465 if (m != NULL)
466 m_freem(m);
467 return (IPPROTO_DONE);
468 }
469
470#if IPSEC
471 /*
472 * UDP to port 4500 with a payload where the first four bytes are
473 * not zero is a UDP encapsulated IPSec packet. Packets where
474 * the payload is one byte and that byte is 0xFF are NAT keepalive
475 * packets. Decapsulate the ESP packet and carry on with IPSec input
476 * or discard the NAT keep-alive.
477 */
478 if (ipsec_bypass == 0 && (esp_udp_encap_port & 0xFFFF) != 0 &&
479 uh->uh_dport == ntohs((u_short)esp_udp_encap_port)) {
480 int payload_len = ulen - sizeof (struct udphdr) > 4 ? 4 :
481 ulen - sizeof (struct udphdr);
482
483 if (m->m_len < off + sizeof (struct udphdr) + payload_len) {
484 if ((m = m_pullup(m, off + sizeof (struct udphdr) +
485 payload_len)) == NULL) {
486 udpstat.udps_hdrops++;
487 goto bad;
488 }
489 /*
490 * Expect 32-bit aligned data pointer on strict-align
491 * platforms.
492 */
493 MBUF_STRICT_DATA_ALIGNMENT_CHECK_32(m);
494
495 ip6 = mtod(m, struct ip6_hdr *);
496 uh = (struct udphdr *)(void *)((caddr_t)ip6 + off);
497 }
498 /* Check for NAT keepalive packet */
499 if (payload_len == 1 && *(u_int8_t*)
500 ((caddr_t)uh + sizeof (struct udphdr)) == 0xFF) {
501 goto bad;
502 } else if (payload_len == 4 && *(u_int32_t*)(void *)
503 ((caddr_t)uh + sizeof (struct udphdr)) != 0) {
504 /* UDP encapsulated IPSec packet to pass through NAT */
505 /* preserve the udp header */
506 *offp = off + sizeof (struct udphdr);
507 return (esp6_input(mp, offp, IPPROTO_UDP));
508 }
509 }
510#endif /* IPSEC */
511
512 /*
513 * Locate pcb for datagram.
514 */
515 in6p = in6_pcblookup_hash(&udbinfo, &ip6->ip6_src, uh->uh_sport,
516 &ip6->ip6_dst, uh->uh_dport, 1, m->m_pkthdr.rcvif);
517 if (in6p == NULL) {
518 IF_UDP_STATINC(ifp, port_unreach);
519
520 if (udp_log_in_vain) {
521 char buf[INET6_ADDRSTRLEN];
522
523 strlcpy(buf, ip6_sprintf(&ip6->ip6_dst), sizeof (buf));
524 if (udp_log_in_vain < 3) {
525 log(LOG_INFO, "Connection attempt to UDP "
526 "%s:%d from %s:%d\n", buf,
527 ntohs(uh->uh_dport),
528 ip6_sprintf(&ip6->ip6_src),
529 ntohs(uh->uh_sport));
530 } else if (!(m->m_flags & (M_BCAST | M_MCAST)) &&
531 !IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst, &ip6->ip6_src)) {
532 log(LOG_INFO, "Connection attempt "
533 "to UDP %s:%d from %s:%d\n", buf,
534 ntohs(uh->uh_dport),
535 ip6_sprintf(&ip6->ip6_src),
536 ntohs(uh->uh_sport));
537 }
538 }
539 udpstat.udps_noport++;
540 if (m->m_flags & M_MCAST) {
541 printf("UDP6: M_MCAST is set in a unicast packet.\n");
542 udpstat.udps_noportmcast++;
543 IF_UDP_STATINC(ifp, badmcast);
544 goto bad;
545 }
546 icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_NOPORT, 0);
547 return (IPPROTO_DONE);
548 }
549#if NECP
550 if (!necp_socket_is_allowed_to_send_recv_v6(in6p, uh->uh_dport,
551 uh->uh_sport, &ip6->ip6_dst, &ip6->ip6_src, ifp, NULL, NULL)) {
552 in_pcb_checkstate(in6p, WNT_RELEASE, 0);
553 IF_UDP_STATINC(ifp, badipsec);
554 goto bad;
555 }
556#endif /* NECP */
557
558 /*
559 * Construct sockaddr format source address.
560 * Stuff source address and datagram in user buffer.
561 */
562 udp_lock(in6p->in6p_socket, 1, 0);
563
564 if (in_pcb_checkstate(in6p, WNT_RELEASE, 1) == WNT_STOPUSING) {
565 udp_unlock(in6p->in6p_socket, 1, 0);
566 IF_UDP_STATINC(ifp, cleanup);
567 goto bad;
568 }
569
570 init_sin6(&udp_in6, m); /* general init */
571 udp_in6.sin6_port = uh->uh_sport;
572 if ((in6p->in6p_flags & INP_CONTROLOPTS) != 0 ||
573 (in6p->in6p_socket->so_options & SO_TIMESTAMP) != 0 ||
574 (in6p->in6p_socket->so_options & SO_TIMESTAMP_MONOTONIC) != 0) {
575 ret = ip6_savecontrol(in6p, m, &opts);
576 if (ret != 0) {
577 udp_unlock(in6p->in6p_socket, 1, 0);
578 goto bad;
579 }
580 }
581 m_adj(m, off + sizeof (struct udphdr));
582 if (nstat_collect) {
583 INP_ADD_STAT(in6p, cell, wifi, wired, rxpackets, 1);
584 INP_ADD_STAT(in6p, cell, wifi, wired, rxbytes, m->m_pkthdr.len);
585 inp_set_activity_bitmap(in6p);
586 }
587 so_recv_data_stat(in6p->in6p_socket, m, 0);
588 if (sbappendaddr(&in6p->in6p_socket->so_rcv,
589 (struct sockaddr *)&udp_in6, m, opts, NULL) == 0) {
590 m = NULL;
591 opts = NULL;
592 udpstat.udps_fullsock++;
593 udp_unlock(in6p->in6p_socket, 1, 0);
594 goto bad;
595 }
596 sorwakeup(in6p->in6p_socket);
597 udp_unlock(in6p->in6p_socket, 1, 0);
598 return (IPPROTO_DONE);
599bad:
600 if (m != NULL)
601 m_freem(m);
602 if (opts != NULL)
603 m_freem(opts);
604 return (IPPROTO_DONE);
605}
606
607void
608udp6_ctlinput(int cmd, struct sockaddr *sa, void *d, __unused struct ifnet *ifp)
609{
610 struct udphdr uh;
611 struct ip6_hdr *ip6;
612 struct mbuf *m;
613 int off = 0;
614 struct ip6ctlparam *ip6cp = NULL;
615 struct icmp6_hdr *icmp6 = NULL;
616 const struct sockaddr_in6 *sa6_src = NULL;
617 void (*notify)(struct inpcb *, int) = udp_notify;
618 struct udp_portonly {
619 u_int16_t uh_sport;
620 u_int16_t uh_dport;
621 } *uhp;
622
623 if (sa->sa_family != AF_INET6 ||
624 sa->sa_len != sizeof (struct sockaddr_in6))
625 return;
626
627 if ((unsigned)cmd >= PRC_NCMDS)
628 return;
629 if (PRC_IS_REDIRECT(cmd)) {
630 notify = in6_rtchange;
631 d = NULL;
632 } else if (cmd == PRC_HOSTDEAD)
633 d = NULL;
634 else if (inet6ctlerrmap[cmd] == 0)
635 return;
636
637 /* if the parameter is from icmp6, decode it. */
638 if (d != NULL) {
639 ip6cp = (struct ip6ctlparam *)d;
640 icmp6 = ip6cp->ip6c_icmp6;
641 m = ip6cp->ip6c_m;
642 ip6 = ip6cp->ip6c_ip6;
643 off = ip6cp->ip6c_off;
644 sa6_src = ip6cp->ip6c_src;
645 } else {
646 m = NULL;
647 ip6 = NULL;
648 sa6_src = &sa6_any;
649 }
650
651 if (ip6 != NULL) {
652 /*
653 * XXX: We assume that when IPV6 is non NULL,
654 * M and OFF are valid.
655 */
656 /* check if we can safely examine src and dst ports */
657 if (m->m_pkthdr.len < off + sizeof (*uhp))
658 return;
659
660 bzero(&uh, sizeof (uh));
661 m_copydata(m, off, sizeof (*uhp), (caddr_t)&uh);
662
663 (void) in6_pcbnotify(&udbinfo, sa, uh.uh_dport,
664 (struct sockaddr*)ip6cp->ip6c_src, uh.uh_sport,
665 cmd, NULL, notify);
666 } else {
667 (void) in6_pcbnotify(&udbinfo, sa, 0,
668 (struct sockaddr *)&sa6_src, 0, cmd, NULL, notify);
669 }
670}
671
672static int
673udp6_abort(struct socket *so)
674{
675 struct inpcb *inp;
676
677 inp = sotoinpcb(so);
678 if (inp == NULL) {
679 panic("%s: so=%p null inp\n", __func__, so);
680 /* NOTREACHED */
681 }
682 soisdisconnected(so);
683 in6_pcbdetach(inp);
684 return (0);
685}
686
687static int
688udp6_attach(struct socket *so, int proto, struct proc *p)
689{
690#pragma unused(proto)
691 struct inpcb *inp;
692 int error;
693
694 inp = sotoinpcb(so);
695 if (inp != NULL)
696 return (EINVAL);
697
698 error = in_pcballoc(so, &udbinfo, p);
699 if (error)
700 return (error);
701
702 if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
703 error = soreserve(so, udp_sendspace, udp_recvspace);
704 if (error)
705 return (error);
706 }
707 inp = (struct inpcb *)so->so_pcb;
708 inp->inp_vflag |= INP_IPV6;
709 if (ip6_mapped_addr_on)
710 inp->inp_vflag |= INP_IPV4;
711 inp->in6p_hops = -1; /* use kernel default */
712 inp->in6p_cksum = -1; /* just to be sure */
713 /*
714 * XXX: ugly!!
715 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
716 * because the socket may be bound to an IPv6 wildcard address,
717 * which may match an IPv4-mapped IPv6 address.
718 */
719 inp->inp_ip_ttl = ip_defttl;
720 if (nstat_collect)
721 nstat_udp_new_pcb(inp);
722 return (0);
723}
724
725static int
726udp6_bind(struct socket *so, struct sockaddr *nam, struct proc *p)
727{
728 struct inpcb *inp;
729 int error;
730
731 inp = sotoinpcb(so);
732 if (inp == NULL)
733 return (EINVAL);
734
735 inp->inp_vflag &= ~INP_IPV4;
736 inp->inp_vflag |= INP_IPV6;
737 if ((inp->inp_flags & IN6P_IPV6_V6ONLY) == 0) {
738 struct sockaddr_in6 *sin6_p;
739
740 sin6_p = (struct sockaddr_in6 *)(void *)nam;
741
742 if (IN6_IS_ADDR_UNSPECIFIED(&sin6_p->sin6_addr)) {
743 inp->inp_vflag |= INP_IPV4;
744 } else if (IN6_IS_ADDR_V4MAPPED(&sin6_p->sin6_addr)) {
745 struct sockaddr_in sin;
746
747 in6_sin6_2_sin(&sin, sin6_p);
748 inp->inp_vflag |= INP_IPV4;
749 inp->inp_vflag &= ~INP_IPV6;
750 error = in_pcbbind(inp, (struct sockaddr *)&sin, p);
751 return (error);
752 }
753 }
754
755 error = in6_pcbbind(inp, nam, p);
756 return (error);
757}
758
759int
760udp6_connect(struct socket *so, struct sockaddr *nam, struct proc *p)
761{
762 struct inpcb *inp;
763 int error;
764#if defined(NECP) && defined(FLOW_DIVERT)
765 int should_use_flow_divert = 0;
766#endif /* defined(NECP) && defined(FLOW_DIVERT) */
767
768 inp = sotoinpcb(so);
769 if (inp == NULL)
770 return (EINVAL);
771
772#if defined(NECP) && defined(FLOW_DIVERT)
773 should_use_flow_divert = necp_socket_should_use_flow_divert(inp);
774#endif /* defined(NECP) && defined(FLOW_DIVERT) */
775
776 if ((inp->inp_flags & IN6P_IPV6_V6ONLY) == 0) {
777 struct sockaddr_in6 *sin6_p;
778
779 sin6_p = (struct sockaddr_in6 *)(void *)nam;
780 if (IN6_IS_ADDR_V4MAPPED(&sin6_p->sin6_addr)) {
781 struct sockaddr_in sin;
782
783 if (inp->inp_faddr.s_addr != INADDR_ANY)
784 return (EISCONN);
785
786 if (!(so->so_flags1 & SOF1_CONNECT_COUNTED)) {
787 so->so_flags1 |= SOF1_CONNECT_COUNTED;
788 INC_ATOMIC_INT64_LIM(net_api_stats.nas_socket_inet_dgram_connected);
789 }
790
791 in6_sin6_2_sin(&sin, sin6_p);
792#if defined(NECP) && defined(FLOW_DIVERT)
793 if (should_use_flow_divert) {
794 goto do_flow_divert;
795 }
796#endif /* defined(NECP) && defined(FLOW_DIVERT) */
797 error = in_pcbconnect(inp, (struct sockaddr *)&sin,
798 p, IFSCOPE_NONE, NULL);
799 if (error == 0) {
800#if NECP
801 /* Update NECP client with connected five-tuple */
802 if (!uuid_is_null(inp->necp_client_uuid)) {
803 socket_unlock(so, 0);
804 necp_client_assign_from_socket(so->last_pid, inp->necp_client_uuid, inp);
805 socket_lock(so, 0);
806 }
807#endif /* NECP */
808 inp->inp_vflag |= INP_IPV4;
809 inp->inp_vflag &= ~INP_IPV6;
810 soisconnected(so);
811 }
812 return (error);
813 }
814 }
815
816 if (!IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr))
817 return (EISCONN);
818
819 if (!(so->so_flags1 & SOF1_CONNECT_COUNTED)) {
820 so->so_flags1 |= SOF1_CONNECT_COUNTED;
821 INC_ATOMIC_INT64_LIM(net_api_stats.nas_socket_inet6_dgram_connected);
822 }
823
824#if defined(NECP) && defined(FLOW_DIVERT)
825do_flow_divert:
826 if (should_use_flow_divert) {
827 uint32_t fd_ctl_unit = necp_socket_get_flow_divert_control_unit(inp);
828 if (fd_ctl_unit > 0) {
829 error = flow_divert_pcb_init(so, fd_ctl_unit);
830 if (error == 0) {
831 error = flow_divert_connect_out(so, nam, p);
832 }
833 } else {
834 error = ENETDOWN;
835 }
836 return (error);
837 }
838#endif /* defined(NECP) && defined(FLOW_DIVERT) */
839
840 error = in6_pcbconnect(inp, nam, p);
841 if (error == 0) {
842 /* should be non mapped addr */
843 if (ip6_mapped_addr_on ||
844 (inp->inp_flags & IN6P_IPV6_V6ONLY) == 0) {
845 inp->inp_vflag &= ~INP_IPV4;
846 inp->inp_vflag |= INP_IPV6;
847 }
848#if NECP
849 /* Update NECP client with connected five-tuple */
850 if (!uuid_is_null(inp->necp_client_uuid)) {
851 socket_unlock(so, 0);
852 necp_client_assign_from_socket(so->last_pid, inp->necp_client_uuid, inp);
853 socket_lock(so, 0);
854 }
855#endif /* NECP */
856 soisconnected(so);
857 if (inp->inp_flowhash == 0)
858 inp->inp_flowhash = inp_calc_flowhash(inp);
859 /* update flowinfo - RFC 6437 */
860 if (inp->inp_flow == 0 &&
861 inp->in6p_flags & IN6P_AUTOFLOWLABEL) {
862 inp->inp_flow &= ~IPV6_FLOWLABEL_MASK;
863 inp->inp_flow |=
864 (htonl(inp->inp_flowhash) & IPV6_FLOWLABEL_MASK);
865 }
866 }
867 return (error);
868}
869
870static int
871udp6_connectx(struct socket *so, struct sockaddr *src,
872 struct sockaddr *dst, struct proc *p, uint32_t ifscope,
873 sae_associd_t aid, sae_connid_t *pcid, uint32_t flags, void *arg,
874 uint32_t arglen, struct uio *uio, user_ssize_t *bytes_written)
875{
876 return (udp_connectx_common(so, AF_INET6, src, dst,
877 p, ifscope, aid, pcid, flags, arg, arglen, uio, bytes_written));
878}
879
880static int
881udp6_detach(struct socket *so)
882{
883 struct inpcb *inp;
884
885 inp = sotoinpcb(so);
886 if (inp == NULL)
887 return (EINVAL);
888 in6_pcbdetach(inp);
889 return (0);
890}
891
892static int
893udp6_disconnect(struct socket *so)
894{
895 struct inpcb *inp;
896
897 inp = sotoinpcb(so);
898 if (inp == NULL
899#if NECP
900 || (necp_socket_should_use_flow_divert(inp))
901#endif /* NECP */
902 )
903 return (inp == NULL ? EINVAL : EPROTOTYPE);
904
905 if (inp->inp_vflag & INP_IPV4) {
906 struct pr_usrreqs *pru;
907
908 pru = ip_protox[IPPROTO_UDP]->pr_usrreqs;
909 return ((*pru->pru_disconnect)(so));
910 }
911
912 if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr))
913 return (ENOTCONN);
914
915 in6_pcbdisconnect(inp);
916
917 /* reset flow-controlled state, just in case */
918 inp_reset_fc_state(inp);
919
920 inp->in6p_laddr = in6addr_any;
921 inp->in6p_last_outifp = NULL;
922
923 so->so_state &= ~SS_ISCONNECTED; /* XXX */
924 return (0);
925}
926
927static int
928udp6_disconnectx(struct socket *so, sae_associd_t aid, sae_connid_t cid)
929{
930#pragma unused(cid)
931 if (aid != SAE_ASSOCID_ANY && aid != SAE_ASSOCID_ALL)
932 return (EINVAL);
933
934 return (udp6_disconnect(so));
935}
936
937static int
938udp6_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *addr,
939 struct mbuf *control, struct proc *p)
940{
941 struct inpcb *inp;
942 int error = 0;
943#if defined(NECP) && defined(FLOW_DIVERT)
944 int should_use_flow_divert = 0;
945#endif /* defined(NECP) && defined(FLOW_DIVERT) */
946
947 inp = sotoinpcb(so);
948 if (inp == NULL) {
949 error = EINVAL;
950 goto bad;
951 }
952
953#if defined(NECP) && defined(FLOW_DIVERT)
954 should_use_flow_divert = necp_socket_should_use_flow_divert(inp);
955#endif /* defined(NECP) && defined(FLOW_DIVERT) */
956
957 if (addr != NULL) {
958 if (addr->sa_len != sizeof (struct sockaddr_in6)) {
959 error = EINVAL;
960 goto bad;
961 }
962 if (addr->sa_family != AF_INET6) {
963 error = EAFNOSUPPORT;
964 goto bad;
965 }
966 }
967
968 if (ip6_mapped_addr_on || (inp->inp_flags & IN6P_IPV6_V6ONLY) == 0) {
969 int hasv4addr;
970 struct sockaddr_in6 *sin6 = NULL;
971
972 if (addr == NULL) {
973 hasv4addr = (inp->inp_vflag & INP_IPV4);
974 } else {
975 sin6 = (struct sockaddr_in6 *)(void *)addr;
976 hasv4addr =
977 IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr) ? 1 : 0;
978 }
979 if (hasv4addr) {
980 struct pr_usrreqs *pru;
981
982 if (sin6 != NULL)
983 in6_sin6_2_sin_in_sock(addr);
984#if defined(NECP) && defined(FLOW_DIVERT)
985 if (should_use_flow_divert) {
986 goto do_flow_divert;
987 }
988#endif /* defined(NECP) && defined(FLOW_DIVERT) */
989 pru = ip_protox[IPPROTO_UDP]->pr_usrreqs;
990 error = ((*pru->pru_send)(so, flags, m, addr,
991 control, p));
992 /* addr will just be freed in sendit(). */
993 return (error);
994 }
995 }
996
997#if defined(NECP) && defined(FLOW_DIVERT)
998do_flow_divert:
999 if (should_use_flow_divert) {
1000 /* Implicit connect */
1001 return (flow_divert_implicit_data_out(so, flags, m, addr, control, p));
1002 }
1003#endif /* defined(NECP) && defined(FLOW_DIVERT) */
1004
1005 return (udp6_output(inp, m, addr, control, p));
1006
1007bad:
1008 VERIFY(error != 0);
1009
1010 if (m != NULL)
1011 m_freem(m);
1012 if (control != NULL)
1013 m_freem(control);
1014
1015 return (error);
1016}
1017
1018/*
1019 * Checksum extended UDP header and data.
1020 */
1021static int
1022udp6_input_checksum(struct mbuf *m, struct udphdr *uh, int off, int ulen)
1023{
1024 struct ifnet *ifp = m->m_pkthdr.rcvif;
1025 struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *);
1026
1027 if (!(m->m_pkthdr.csum_flags & CSUM_DATA_VALID) &&
1028 uh->uh_sum == 0) {
1029 /* UDP/IPv6 checksum is mandatory (RFC2460) */
1030
1031 /*
1032 * If checksum was already validated, ignore this check.
1033 * This is necessary for transport-mode ESP, which may be
1034 * getting UDP payloads without checksums when the network
1035 * has a NAT64.
1036 */
1037 udpstat.udps_nosum++;
1038 goto badsum;
1039 }
1040
1041 if ((hwcksum_rx || (ifp->if_flags & IFF_LOOPBACK) ||
1042 (m->m_pkthdr.pkt_flags & PKTF_LOOP)) &&
1043 (m->m_pkthdr.csum_flags & CSUM_DATA_VALID)) {
1044 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) {
1045 uh->uh_sum = m->m_pkthdr.csum_rx_val;
1046 } else {
1047 uint32_t sum = m->m_pkthdr.csum_rx_val;
1048 uint32_t start = m->m_pkthdr.csum_rx_start;
1049 int32_t trailer = (m_pktlen(m) - (off + ulen));
1050
1051 /*
1052 * Perform 1's complement adjustment of octets
1053 * that got included/excluded in the hardware-
1054 * calculated checksum value. Also take care
1055 * of any trailing bytes and subtract out
1056 * their partial sum.
1057 */
1058 ASSERT(trailer >= 0);
1059 if ((m->m_pkthdr.csum_flags & CSUM_PARTIAL) &&
1060 (start != off || trailer != 0)) {
1061 uint32_t swbytes = (uint32_t)trailer;
1062 uint16_t s = 0, d = 0;
1063
1064 if (IN6_IS_SCOPE_EMBED(&ip6->ip6_src)) {
1065 s = ip6->ip6_src.s6_addr16[1];
1066 ip6->ip6_src.s6_addr16[1] = 0 ;
1067 }
1068 if (IN6_IS_SCOPE_EMBED(&ip6->ip6_dst)) {
1069 d = ip6->ip6_dst.s6_addr16[1];
1070 ip6->ip6_dst.s6_addr16[1] = 0;
1071 }
1072
1073 /* callee folds in sum */
1074 sum = m_adj_sum16(m, start, off, ulen, sum);
1075 if (off > start)
1076 swbytes += (off - start);
1077 else
1078 swbytes += (start - off);
1079
1080 if (IN6_IS_SCOPE_EMBED(&ip6->ip6_src))
1081 ip6->ip6_src.s6_addr16[1] = s;
1082 if (IN6_IS_SCOPE_EMBED(&ip6->ip6_dst))
1083 ip6->ip6_dst.s6_addr16[1] = d;
1084
1085 if (swbytes != 0)
1086 udp_in_cksum_stats(swbytes);
1087 if (trailer != 0)
1088 m_adj(m, -trailer);
1089 }
1090
1091 uh->uh_sum = in6_pseudo(&ip6->ip6_src, &ip6->ip6_dst,
1092 sum + htonl(ulen + IPPROTO_UDP));
1093 }
1094 uh->uh_sum ^= 0xffff;
1095 } else {
1096 udp_in6_cksum_stats(ulen);
1097 uh->uh_sum = in6_cksum(m, IPPROTO_UDP, off, ulen);
1098 }
1099
1100 if (uh->uh_sum != 0) {
1101badsum:
1102 udpstat.udps_badsum++;
1103 IF_UDP_STATINC(ifp, badchksum);
1104 return (-1);
1105 }
1106
1107 return (0);
1108}