]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Copyright (c) 2000-2010 Apple Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * This file contains Original Code and/or Modifications of Original Code | |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
14 | * | |
15 | * Please obtain a copy of the License at | |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
25 | * | |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ | |
27 | */ | |
28 | #include <mach/mach_types.h> | |
29 | #include <mach/machine/vm_param.h> | |
30 | #include <mach/task.h> | |
31 | ||
32 | #include <kern/kern_types.h> | |
33 | #include <kern/ledger.h> | |
34 | #include <kern/processor.h> | |
35 | #include <kern/thread.h> | |
36 | #include <kern/task.h> | |
37 | #include <kern/spl.h> | |
38 | #include <kern/ast.h> | |
39 | #include <ipc/ipc_port.h> | |
40 | #include <ipc/ipc_object.h> | |
41 | #include <vm/vm_map.h> | |
42 | #include <vm/vm_kern.h> | |
43 | #include <vm/pmap.h> | |
44 | #include <vm/vm_protos.h> /* last */ | |
45 | #include <sys/resource.h> | |
46 | #include <sys/signal.h> | |
47 | ||
48 | #undef thread_should_halt | |
49 | ||
50 | /* BSD KERN COMPONENT INTERFACE */ | |
51 | ||
52 | extern unsigned int not_in_kdp; /* Skip acquiring locks if we're in kdp */ | |
53 | ||
54 | thread_t get_firstthread(task_t); | |
55 | int get_task_userstop(task_t); | |
56 | int get_thread_userstop(thread_t); | |
57 | boolean_t current_thread_aborted(void); | |
58 | void task_act_iterate_wth_args(task_t, void(*)(thread_t, void *), void *); | |
59 | kern_return_t get_signalact(task_t , thread_t *, int); | |
60 | int fill_task_rusage(task_t task, rusage_info_current *ri); | |
61 | int fill_task_io_rusage(task_t task, rusage_info_current *ri); | |
62 | int fill_task_qos_rusage(task_t task, rusage_info_current *ri); | |
63 | void fill_task_billed_usage(task_t task, rusage_info_current *ri); | |
64 | void task_bsdtask_kill(task_t); | |
65 | ||
66 | extern uint64_t get_dispatchqueue_serialno_offset_from_proc(void *p); | |
67 | extern uint64_t proc_uniqueid(void *p); | |
68 | ||
69 | #if MACH_BSD | |
70 | extern void psignal(void *, int); | |
71 | #endif | |
72 | ||
73 | /* | |
74 | * | |
75 | */ | |
76 | void *get_bsdtask_info(task_t t) | |
77 | { | |
78 | return(t->bsd_info); | |
79 | } | |
80 | ||
81 | void task_bsdtask_kill(task_t t) | |
82 | { | |
83 | void * bsd_info = get_bsdtask_info(t); | |
84 | if (bsd_info != NULL) { | |
85 | psignal(bsd_info, SIGKILL); | |
86 | } | |
87 | } | |
88 | /* | |
89 | * | |
90 | */ | |
91 | void *get_bsdthreadtask_info(thread_t th) | |
92 | { | |
93 | return(th->task != TASK_NULL ? th->task->bsd_info : NULL); | |
94 | } | |
95 | ||
96 | /* | |
97 | * | |
98 | */ | |
99 | void set_bsdtask_info(task_t t,void * v) | |
100 | { | |
101 | t->bsd_info=v; | |
102 | } | |
103 | ||
104 | /* | |
105 | * | |
106 | */ | |
107 | void *get_bsdthread_info(thread_t th) | |
108 | { | |
109 | return(th->uthread); | |
110 | } | |
111 | ||
112 | /* | |
113 | * XXX | |
114 | */ | |
115 | int get_thread_lock_count(thread_t th); /* forced forward */ | |
116 | int get_thread_lock_count(thread_t th) | |
117 | { | |
118 | return(th->mutex_count); | |
119 | } | |
120 | ||
121 | /* | |
122 | * XXX: wait for BSD to fix signal code | |
123 | * Until then, we cannot block here. We know the task | |
124 | * can't go away, so we make sure it is still active after | |
125 | * retrieving the first thread for extra safety. | |
126 | */ | |
127 | thread_t get_firstthread(task_t task) | |
128 | { | |
129 | thread_t thread = (thread_t)(void *)queue_first(&task->threads); | |
130 | ||
131 | if (queue_end(&task->threads, (queue_entry_t)thread)) | |
132 | thread = THREAD_NULL; | |
133 | ||
134 | if (!task->active) | |
135 | return (THREAD_NULL); | |
136 | ||
137 | return (thread); | |
138 | } | |
139 | ||
140 | kern_return_t | |
141 | get_signalact( | |
142 | task_t task, | |
143 | thread_t *result_out, | |
144 | int setast) | |
145 | { | |
146 | kern_return_t result = KERN_SUCCESS; | |
147 | thread_t inc, thread = THREAD_NULL; | |
148 | ||
149 | task_lock(task); | |
150 | ||
151 | if (!task->active) { | |
152 | task_unlock(task); | |
153 | ||
154 | return (KERN_FAILURE); | |
155 | } | |
156 | ||
157 | for (inc = (thread_t)(void *)queue_first(&task->threads); | |
158 | !queue_end(&task->threads, (queue_entry_t)inc); ) { | |
159 | thread_mtx_lock(inc); | |
160 | if (inc->active && | |
161 | (inc->sched_flags & TH_SFLAG_ABORTED_MASK) != TH_SFLAG_ABORT) { | |
162 | thread = inc; | |
163 | break; | |
164 | } | |
165 | thread_mtx_unlock(inc); | |
166 | ||
167 | inc = (thread_t)(void *)queue_next(&inc->task_threads); | |
168 | } | |
169 | ||
170 | if (result_out) | |
171 | *result_out = thread; | |
172 | ||
173 | if (thread) { | |
174 | if (setast) | |
175 | act_set_astbsd(thread); | |
176 | ||
177 | thread_mtx_unlock(thread); | |
178 | } | |
179 | else | |
180 | result = KERN_FAILURE; | |
181 | ||
182 | task_unlock(task); | |
183 | ||
184 | return (result); | |
185 | } | |
186 | ||
187 | ||
188 | kern_return_t | |
189 | check_actforsig( | |
190 | task_t task, | |
191 | thread_t thread, | |
192 | int setast) | |
193 | { | |
194 | kern_return_t result = KERN_FAILURE; | |
195 | thread_t inc; | |
196 | ||
197 | task_lock(task); | |
198 | ||
199 | if (!task->active) { | |
200 | task_unlock(task); | |
201 | ||
202 | return (KERN_FAILURE); | |
203 | } | |
204 | ||
205 | for (inc = (thread_t)(void *)queue_first(&task->threads); | |
206 | !queue_end(&task->threads, (queue_entry_t)inc); ) { | |
207 | if (inc == thread) { | |
208 | thread_mtx_lock(inc); | |
209 | ||
210 | if (inc->active && | |
211 | (inc->sched_flags & TH_SFLAG_ABORTED_MASK) != TH_SFLAG_ABORT) { | |
212 | result = KERN_SUCCESS; | |
213 | break; | |
214 | } | |
215 | ||
216 | thread_mtx_unlock(inc); | |
217 | break; | |
218 | } | |
219 | ||
220 | inc = (thread_t)(void *)queue_next(&inc->task_threads); | |
221 | } | |
222 | ||
223 | if (result == KERN_SUCCESS) { | |
224 | if (setast) | |
225 | act_set_astbsd(thread); | |
226 | ||
227 | thread_mtx_unlock(thread); | |
228 | } | |
229 | ||
230 | task_unlock(task); | |
231 | ||
232 | return (result); | |
233 | } | |
234 | ||
235 | ledger_t get_task_ledger(task_t t) | |
236 | { | |
237 | return(t->ledger); | |
238 | } | |
239 | ||
240 | /* | |
241 | * This is only safe to call from a thread executing in | |
242 | * in the task's context or if the task is locked. Otherwise, | |
243 | * the map could be switched for the task (and freed) before | |
244 | * we go to return it here. | |
245 | */ | |
246 | vm_map_t get_task_map(task_t t) | |
247 | { | |
248 | return(t->map); | |
249 | } | |
250 | ||
251 | vm_map_t get_task_map_reference(task_t t) | |
252 | { | |
253 | vm_map_t m; | |
254 | ||
255 | if (t == NULL) | |
256 | return VM_MAP_NULL; | |
257 | ||
258 | task_lock(t); | |
259 | if (!t->active) { | |
260 | task_unlock(t); | |
261 | return VM_MAP_NULL; | |
262 | } | |
263 | m = t->map; | |
264 | vm_map_reference_swap(m); | |
265 | task_unlock(t); | |
266 | return m; | |
267 | } | |
268 | ||
269 | /* | |
270 | * | |
271 | */ | |
272 | ipc_space_t get_task_ipcspace(task_t t) | |
273 | { | |
274 | return(t->itk_space); | |
275 | } | |
276 | ||
277 | int get_task_numactivethreads(task_t task) | |
278 | { | |
279 | thread_t inc; | |
280 | int num_active_thr=0; | |
281 | task_lock(task); | |
282 | ||
283 | for (inc = (thread_t)(void *)queue_first(&task->threads); | |
284 | !queue_end(&task->threads, (queue_entry_t)inc); inc = (thread_t)(void *)queue_next(&inc->task_threads)) | |
285 | { | |
286 | if(inc->active) | |
287 | num_active_thr++; | |
288 | } | |
289 | task_unlock(task); | |
290 | return num_active_thr; | |
291 | } | |
292 | ||
293 | int get_task_numacts(task_t t) | |
294 | { | |
295 | return(t->thread_count); | |
296 | } | |
297 | ||
298 | /* does this machine need 64bit register set for signal handler */ | |
299 | int is_64signalregset(void) | |
300 | { | |
301 | if (task_has_64BitData(current_task())) { | |
302 | return(1); | |
303 | } | |
304 | ||
305 | return(0); | |
306 | } | |
307 | ||
308 | /* | |
309 | * Swap in a new map for the task/thread pair; the old map reference is | |
310 | * returned. Also does a pmap switch if thread provided is current thread. | |
311 | */ | |
312 | vm_map_t | |
313 | swap_task_map(task_t task, thread_t thread, vm_map_t map) | |
314 | { | |
315 | vm_map_t old_map; | |
316 | boolean_t doswitch = (thread == current_thread()) ? TRUE : FALSE; | |
317 | ||
318 | if (task != thread->task) | |
319 | panic("swap_task_map"); | |
320 | ||
321 | task_lock(task); | |
322 | mp_disable_preemption(); | |
323 | ||
324 | old_map = task->map; | |
325 | thread->map = task->map = map; | |
326 | vm_commit_pagezero_status(map); | |
327 | ||
328 | if (doswitch) { | |
329 | pmap_switch(map->pmap); | |
330 | } | |
331 | mp_enable_preemption(); | |
332 | task_unlock(task); | |
333 | ||
334 | #if (defined(__i386__) || defined(__x86_64__)) && NCOPY_WINDOWS > 0 | |
335 | inval_copy_windows(thread); | |
336 | #endif | |
337 | ||
338 | return old_map; | |
339 | } | |
340 | ||
341 | /* | |
342 | * | |
343 | * This is only safe to call from a thread executing in | |
344 | * in the task's context or if the task is locked. Otherwise, | |
345 | * the map could be switched for the task (and freed) before | |
346 | * we go to return it here. | |
347 | */ | |
348 | pmap_t get_task_pmap(task_t t) | |
349 | { | |
350 | return(t->map->pmap); | |
351 | } | |
352 | ||
353 | /* | |
354 | * | |
355 | */ | |
356 | uint64_t get_task_resident_size(task_t task) | |
357 | { | |
358 | vm_map_t map; | |
359 | ||
360 | map = (task == kernel_task) ? kernel_map: task->map; | |
361 | return((uint64_t)pmap_resident_count(map->pmap) * PAGE_SIZE_64); | |
362 | } | |
363 | ||
364 | uint64_t get_task_compressed(task_t task) | |
365 | { | |
366 | vm_map_t map; | |
367 | ||
368 | map = (task == kernel_task) ? kernel_map: task->map; | |
369 | return((uint64_t)pmap_compressed(map->pmap) * PAGE_SIZE_64); | |
370 | } | |
371 | ||
372 | uint64_t get_task_resident_max(task_t task) | |
373 | { | |
374 | vm_map_t map; | |
375 | ||
376 | map = (task == kernel_task) ? kernel_map: task->map; | |
377 | return((uint64_t)pmap_resident_max(map->pmap) * PAGE_SIZE_64); | |
378 | } | |
379 | ||
380 | uint64_t get_task_purgeable_size(task_t task) | |
381 | { | |
382 | kern_return_t ret; | |
383 | ledger_amount_t credit, debit; | |
384 | uint64_t volatile_size = 0; | |
385 | ||
386 | ret = ledger_get_entries(task->ledger, task_ledgers.purgeable_volatile, &credit, &debit); | |
387 | if (ret != KERN_SUCCESS) { | |
388 | return 0; | |
389 | } | |
390 | ||
391 | volatile_size += (credit - debit); | |
392 | ||
393 | ret = ledger_get_entries(task->ledger, task_ledgers.purgeable_volatile_compressed, &credit, &debit); | |
394 | if (ret != KERN_SUCCESS) { | |
395 | return 0; | |
396 | } | |
397 | ||
398 | volatile_size += (credit - debit); | |
399 | ||
400 | return volatile_size; | |
401 | } | |
402 | ||
403 | /* | |
404 | * | |
405 | */ | |
406 | uint64_t get_task_phys_footprint(task_t task) | |
407 | { | |
408 | kern_return_t ret; | |
409 | ledger_amount_t credit, debit; | |
410 | ||
411 | ret = ledger_get_entries(task->ledger, task_ledgers.phys_footprint, &credit, &debit); | |
412 | if (KERN_SUCCESS == ret) { | |
413 | return (credit - debit); | |
414 | } | |
415 | ||
416 | return 0; | |
417 | } | |
418 | ||
419 | /* | |
420 | * | |
421 | */ | |
422 | uint64_t get_task_phys_footprint_max(task_t task) | |
423 | { | |
424 | kern_return_t ret; | |
425 | ledger_amount_t max; | |
426 | ||
427 | ret = ledger_get_maximum(task->ledger, task_ledgers.phys_footprint, &max); | |
428 | if (KERN_SUCCESS == ret) { | |
429 | return max; | |
430 | } | |
431 | ||
432 | return 0; | |
433 | } | |
434 | ||
435 | /* | |
436 | * | |
437 | */ | |
438 | uint64_t get_task_phys_footprint_limit(task_t task) | |
439 | { | |
440 | kern_return_t ret; | |
441 | ledger_amount_t max; | |
442 | ||
443 | ret = ledger_get_limit(task->ledger, task_ledgers.phys_footprint, &max); | |
444 | if (KERN_SUCCESS == ret) { | |
445 | return max; | |
446 | } | |
447 | ||
448 | return 0; | |
449 | } | |
450 | ||
451 | uint64_t get_task_internal(task_t task) | |
452 | { | |
453 | kern_return_t ret; | |
454 | ledger_amount_t credit, debit; | |
455 | ||
456 | ret = ledger_get_entries(task->ledger, task_ledgers.internal, &credit, &debit); | |
457 | if (KERN_SUCCESS == ret) { | |
458 | return (credit - debit); | |
459 | } | |
460 | ||
461 | return 0; | |
462 | } | |
463 | ||
464 | uint64_t get_task_internal_compressed(task_t task) | |
465 | { | |
466 | kern_return_t ret; | |
467 | ledger_amount_t credit, debit; | |
468 | ||
469 | ret = ledger_get_entries(task->ledger, task_ledgers.internal_compressed, &credit, &debit); | |
470 | if (KERN_SUCCESS == ret) { | |
471 | return (credit - debit); | |
472 | } | |
473 | ||
474 | return 0; | |
475 | } | |
476 | ||
477 | uint64_t get_task_purgeable_nonvolatile(task_t task) | |
478 | { | |
479 | kern_return_t ret; | |
480 | ledger_amount_t credit, debit; | |
481 | ||
482 | ret = ledger_get_entries(task->ledger, task_ledgers.purgeable_nonvolatile, &credit, &debit); | |
483 | if (KERN_SUCCESS == ret) { | |
484 | return (credit - debit); | |
485 | } | |
486 | ||
487 | return 0; | |
488 | } | |
489 | ||
490 | uint64_t get_task_purgeable_nonvolatile_compressed(task_t task) | |
491 | { | |
492 | kern_return_t ret; | |
493 | ledger_amount_t credit, debit; | |
494 | ||
495 | ret = ledger_get_entries(task->ledger, task_ledgers.purgeable_nonvolatile_compressed, &credit, &debit); | |
496 | if (KERN_SUCCESS == ret) { | |
497 | return (credit - debit); | |
498 | } | |
499 | ||
500 | return 0; | |
501 | } | |
502 | ||
503 | uint64_t get_task_alternate_accounting(task_t task) | |
504 | { | |
505 | kern_return_t ret; | |
506 | ledger_amount_t credit, debit; | |
507 | ||
508 | ret = ledger_get_entries(task->ledger, task_ledgers.alternate_accounting, &credit, &debit); | |
509 | if (KERN_SUCCESS == ret) { | |
510 | return (credit - debit); | |
511 | } | |
512 | ||
513 | return 0; | |
514 | } | |
515 | ||
516 | uint64_t get_task_alternate_accounting_compressed(task_t task) | |
517 | { | |
518 | kern_return_t ret; | |
519 | ledger_amount_t credit, debit; | |
520 | ||
521 | ret = ledger_get_entries(task->ledger, task_ledgers.alternate_accounting_compressed, &credit, &debit); | |
522 | if (KERN_SUCCESS == ret) { | |
523 | return (credit - debit); | |
524 | } | |
525 | ||
526 | return 0; | |
527 | } | |
528 | ||
529 | uint64_t get_task_page_table(task_t task) | |
530 | { | |
531 | kern_return_t ret; | |
532 | ledger_amount_t credit, debit; | |
533 | ||
534 | ret = ledger_get_entries(task->ledger, task_ledgers.page_table, &credit, &debit); | |
535 | if (KERN_SUCCESS == ret) { | |
536 | return (credit - debit); | |
537 | } | |
538 | ||
539 | return 0; | |
540 | } | |
541 | ||
542 | uint64_t get_task_iokit_mapped(task_t task) | |
543 | { | |
544 | kern_return_t ret; | |
545 | ledger_amount_t credit, debit; | |
546 | ||
547 | ret = ledger_get_entries(task->ledger, task_ledgers.iokit_mapped, &credit, &debit); | |
548 | if (KERN_SUCCESS == ret) { | |
549 | return (credit - debit); | |
550 | } | |
551 | ||
552 | return 0; | |
553 | } | |
554 | ||
555 | uint64_t get_task_cpu_time(task_t task) | |
556 | { | |
557 | kern_return_t ret; | |
558 | ledger_amount_t credit, debit; | |
559 | ||
560 | ret = ledger_get_entries(task->ledger, task_ledgers.cpu_time, &credit, &debit); | |
561 | if (KERN_SUCCESS == ret) { | |
562 | return (credit - debit); | |
563 | } | |
564 | ||
565 | return 0; | |
566 | } | |
567 | ||
568 | /* | |
569 | * | |
570 | */ | |
571 | task_t get_threadtask(thread_t th) | |
572 | { | |
573 | return(th->task); | |
574 | } | |
575 | ||
576 | /* | |
577 | * | |
578 | */ | |
579 | vm_map_offset_t | |
580 | get_map_min( | |
581 | vm_map_t map) | |
582 | { | |
583 | return(vm_map_min(map)); | |
584 | } | |
585 | ||
586 | /* | |
587 | * | |
588 | */ | |
589 | vm_map_offset_t | |
590 | get_map_max( | |
591 | vm_map_t map) | |
592 | { | |
593 | return(vm_map_max(map)); | |
594 | } | |
595 | vm_map_size_t | |
596 | get_vmmap_size( | |
597 | vm_map_t map) | |
598 | { | |
599 | return(map->size); | |
600 | } | |
601 | ||
602 | #if CONFIG_COREDUMP | |
603 | ||
604 | static int | |
605 | get_vmsubmap_entries( | |
606 | vm_map_t map, | |
607 | vm_object_offset_t start, | |
608 | vm_object_offset_t end) | |
609 | { | |
610 | int total_entries = 0; | |
611 | vm_map_entry_t entry; | |
612 | ||
613 | if (not_in_kdp) | |
614 | vm_map_lock(map); | |
615 | entry = vm_map_first_entry(map); | |
616 | while((entry != vm_map_to_entry(map)) && (entry->vme_start < start)) { | |
617 | entry = entry->vme_next; | |
618 | } | |
619 | ||
620 | while((entry != vm_map_to_entry(map)) && (entry->vme_start < end)) { | |
621 | if(entry->is_sub_map) { | |
622 | total_entries += | |
623 | get_vmsubmap_entries(VME_SUBMAP(entry), | |
624 | VME_OFFSET(entry), | |
625 | (VME_OFFSET(entry) + | |
626 | entry->vme_end - | |
627 | entry->vme_start)); | |
628 | } else { | |
629 | total_entries += 1; | |
630 | } | |
631 | entry = entry->vme_next; | |
632 | } | |
633 | if (not_in_kdp) | |
634 | vm_map_unlock(map); | |
635 | return(total_entries); | |
636 | } | |
637 | ||
638 | int | |
639 | get_vmmap_entries( | |
640 | vm_map_t map) | |
641 | { | |
642 | int total_entries = 0; | |
643 | vm_map_entry_t entry; | |
644 | ||
645 | if (not_in_kdp) | |
646 | vm_map_lock(map); | |
647 | entry = vm_map_first_entry(map); | |
648 | ||
649 | while(entry != vm_map_to_entry(map)) { | |
650 | if(entry->is_sub_map) { | |
651 | total_entries += | |
652 | get_vmsubmap_entries(VME_SUBMAP(entry), | |
653 | VME_OFFSET(entry), | |
654 | (VME_OFFSET(entry) + | |
655 | entry->vme_end - | |
656 | entry->vme_start)); | |
657 | } else { | |
658 | total_entries += 1; | |
659 | } | |
660 | entry = entry->vme_next; | |
661 | } | |
662 | if (not_in_kdp) | |
663 | vm_map_unlock(map); | |
664 | return(total_entries); | |
665 | } | |
666 | #endif /* CONFIG_COREDUMP */ | |
667 | ||
668 | /* | |
669 | * | |
670 | */ | |
671 | /* | |
672 | * | |
673 | */ | |
674 | int | |
675 | get_task_userstop( | |
676 | task_t task) | |
677 | { | |
678 | return(task->user_stop_count); | |
679 | } | |
680 | ||
681 | /* | |
682 | * | |
683 | */ | |
684 | int | |
685 | get_thread_userstop( | |
686 | thread_t th) | |
687 | { | |
688 | return(th->user_stop_count); | |
689 | } | |
690 | ||
691 | /* | |
692 | * | |
693 | */ | |
694 | boolean_t | |
695 | get_task_pidsuspended( | |
696 | task_t task) | |
697 | { | |
698 | return (task->pidsuspended); | |
699 | } | |
700 | ||
701 | /* | |
702 | * | |
703 | */ | |
704 | boolean_t | |
705 | get_task_frozen( | |
706 | task_t task) | |
707 | { | |
708 | return (task->frozen); | |
709 | } | |
710 | ||
711 | /* | |
712 | * | |
713 | */ | |
714 | boolean_t | |
715 | thread_should_abort( | |
716 | thread_t th) | |
717 | { | |
718 | return ((th->sched_flags & TH_SFLAG_ABORTED_MASK) == TH_SFLAG_ABORT); | |
719 | } | |
720 | ||
721 | /* | |
722 | * This routine is like thread_should_abort() above. It checks to | |
723 | * see if the current thread is aborted. But unlike above, it also | |
724 | * checks to see if thread is safely aborted. If so, it returns | |
725 | * that fact, and clears the condition (safe aborts only should | |
726 | * have a single effect, and a poll of the abort status | |
727 | * qualifies. | |
728 | */ | |
729 | boolean_t | |
730 | current_thread_aborted ( | |
731 | void) | |
732 | { | |
733 | thread_t th = current_thread(); | |
734 | spl_t s; | |
735 | ||
736 | if ((th->sched_flags & TH_SFLAG_ABORTED_MASK) == TH_SFLAG_ABORT && | |
737 | (th->options & TH_OPT_INTMASK) != THREAD_UNINT) | |
738 | return (TRUE); | |
739 | if (th->sched_flags & TH_SFLAG_ABORTSAFELY) { | |
740 | s = splsched(); | |
741 | thread_lock(th); | |
742 | if (th->sched_flags & TH_SFLAG_ABORTSAFELY) | |
743 | th->sched_flags &= ~TH_SFLAG_ABORTED_MASK; | |
744 | thread_unlock(th); | |
745 | splx(s); | |
746 | } | |
747 | return FALSE; | |
748 | } | |
749 | ||
750 | /* | |
751 | * | |
752 | */ | |
753 | void | |
754 | task_act_iterate_wth_args( | |
755 | task_t task, | |
756 | void (*func_callback)(thread_t, void *), | |
757 | void *func_arg) | |
758 | { | |
759 | thread_t inc; | |
760 | ||
761 | task_lock(task); | |
762 | ||
763 | for (inc = (thread_t)(void *)queue_first(&task->threads); | |
764 | !queue_end(&task->threads, (queue_entry_t)inc); ) { | |
765 | (void) (*func_callback)(inc, func_arg); | |
766 | inc = (thread_t)(void *)queue_next(&inc->task_threads); | |
767 | } | |
768 | ||
769 | task_unlock(task); | |
770 | } | |
771 | ||
772 | ||
773 | #include <sys/bsdtask_info.h> | |
774 | ||
775 | void | |
776 | fill_taskprocinfo(task_t task, struct proc_taskinfo_internal * ptinfo) | |
777 | { | |
778 | vm_map_t map; | |
779 | task_absolutetime_info_data_t tinfo; | |
780 | thread_t thread; | |
781 | uint32_t cswitch = 0, numrunning = 0; | |
782 | uint32_t syscalls_unix = 0; | |
783 | uint32_t syscalls_mach = 0; | |
784 | ||
785 | task_lock(task); | |
786 | ||
787 | map = (task == kernel_task)? kernel_map: task->map; | |
788 | ||
789 | ptinfo->pti_virtual_size = map->size; | |
790 | ptinfo->pti_resident_size = | |
791 | (mach_vm_size_t)(pmap_resident_count(map->pmap)) | |
792 | * PAGE_SIZE_64; | |
793 | ||
794 | ptinfo->pti_policy = ((task != kernel_task)? | |
795 | POLICY_TIMESHARE: POLICY_RR); | |
796 | ||
797 | tinfo.threads_user = tinfo.threads_system = 0; | |
798 | tinfo.total_user = task->total_user_time; | |
799 | tinfo.total_system = task->total_system_time; | |
800 | ||
801 | queue_iterate(&task->threads, thread, thread_t, task_threads) { | |
802 | uint64_t tval; | |
803 | spl_t x; | |
804 | ||
805 | if (thread->options & TH_OPT_IDLE_THREAD) | |
806 | continue; | |
807 | ||
808 | x = splsched(); | |
809 | thread_lock(thread); | |
810 | ||
811 | if ((thread->state & TH_RUN) == TH_RUN) | |
812 | numrunning++; | |
813 | cswitch += thread->c_switch; | |
814 | tval = timer_grab(&thread->user_timer); | |
815 | tinfo.threads_user += tval; | |
816 | tinfo.total_user += tval; | |
817 | ||
818 | tval = timer_grab(&thread->system_timer); | |
819 | ||
820 | if (thread->precise_user_kernel_time) { | |
821 | tinfo.threads_system += tval; | |
822 | tinfo.total_system += tval; | |
823 | } else { | |
824 | /* system_timer may represent either sys or user */ | |
825 | tinfo.threads_user += tval; | |
826 | tinfo.total_user += tval; | |
827 | } | |
828 | ||
829 | syscalls_unix += thread->syscalls_unix; | |
830 | syscalls_mach += thread->syscalls_mach; | |
831 | ||
832 | thread_unlock(thread); | |
833 | splx(x); | |
834 | } | |
835 | ||
836 | ptinfo->pti_total_system = tinfo.total_system; | |
837 | ptinfo->pti_total_user = tinfo.total_user; | |
838 | ptinfo->pti_threads_system = tinfo.threads_system; | |
839 | ptinfo->pti_threads_user = tinfo.threads_user; | |
840 | ||
841 | ptinfo->pti_faults = task->faults; | |
842 | ptinfo->pti_pageins = task->pageins; | |
843 | ptinfo->pti_cow_faults = task->cow_faults; | |
844 | ptinfo->pti_messages_sent = task->messages_sent; | |
845 | ptinfo->pti_messages_received = task->messages_received; | |
846 | ptinfo->pti_syscalls_mach = task->syscalls_mach + syscalls_mach; | |
847 | ptinfo->pti_syscalls_unix = task->syscalls_unix + syscalls_unix; | |
848 | ptinfo->pti_csw = task->c_switch + cswitch; | |
849 | ptinfo->pti_threadnum = task->thread_count; | |
850 | ptinfo->pti_numrunning = numrunning; | |
851 | ptinfo->pti_priority = task->priority; | |
852 | ||
853 | task_unlock(task); | |
854 | } | |
855 | ||
856 | int | |
857 | fill_taskthreadinfo(task_t task, uint64_t thaddr, int thuniqueid, struct proc_threadinfo_internal * ptinfo, void * vpp, int *vidp) | |
858 | { | |
859 | thread_t thact; | |
860 | int err=0; | |
861 | mach_msg_type_number_t count; | |
862 | thread_basic_info_data_t basic_info; | |
863 | kern_return_t kret; | |
864 | uint64_t addr = 0; | |
865 | ||
866 | task_lock(task); | |
867 | ||
868 | for (thact = (thread_t)(void *)queue_first(&task->threads); | |
869 | !queue_end(&task->threads, (queue_entry_t)thact); ) { | |
870 | addr = (thuniqueid==0)?thact->machine.cthread_self: thact->thread_id; | |
871 | if (addr == thaddr) | |
872 | { | |
873 | ||
874 | count = THREAD_BASIC_INFO_COUNT; | |
875 | if ((kret = thread_info_internal(thact, THREAD_BASIC_INFO, (thread_info_t)&basic_info, &count)) != KERN_SUCCESS) { | |
876 | err = 1; | |
877 | goto out; | |
878 | } | |
879 | ptinfo->pth_user_time = ((basic_info.user_time.seconds * (integer_t)NSEC_PER_SEC) + (basic_info.user_time.microseconds * (integer_t)NSEC_PER_USEC)); | |
880 | ptinfo->pth_system_time = ((basic_info.system_time.seconds * (integer_t)NSEC_PER_SEC) + (basic_info.system_time.microseconds * (integer_t)NSEC_PER_USEC)); | |
881 | ||
882 | ptinfo->pth_cpu_usage = basic_info.cpu_usage; | |
883 | ptinfo->pth_policy = basic_info.policy; | |
884 | ptinfo->pth_run_state = basic_info.run_state; | |
885 | ptinfo->pth_flags = basic_info.flags; | |
886 | ptinfo->pth_sleep_time = basic_info.sleep_time; | |
887 | ptinfo->pth_curpri = thact->sched_pri; | |
888 | ptinfo->pth_priority = thact->base_pri; | |
889 | ptinfo->pth_maxpriority = thact->max_priority; | |
890 | ||
891 | if ((vpp != NULL) && (thact->uthread != NULL)) | |
892 | bsd_threadcdir(thact->uthread, vpp, vidp); | |
893 | bsd_getthreadname(thact->uthread,ptinfo->pth_name); | |
894 | err = 0; | |
895 | goto out; | |
896 | } | |
897 | thact = (thread_t)(void *)queue_next(&thact->task_threads); | |
898 | } | |
899 | err = 1; | |
900 | ||
901 | out: | |
902 | task_unlock(task); | |
903 | return(err); | |
904 | } | |
905 | ||
906 | int | |
907 | fill_taskthreadlist(task_t task, void * buffer, int thcount) | |
908 | { | |
909 | int numthr=0; | |
910 | thread_t thact; | |
911 | uint64_t * uptr; | |
912 | uint64_t thaddr; | |
913 | ||
914 | uptr = (uint64_t *)buffer; | |
915 | ||
916 | task_lock(task); | |
917 | ||
918 | for (thact = (thread_t)(void *)queue_first(&task->threads); | |
919 | !queue_end(&task->threads, (queue_entry_t)thact); ) { | |
920 | thaddr = thact->machine.cthread_self; | |
921 | *uptr++ = thaddr; | |
922 | numthr++; | |
923 | if (numthr >= thcount) | |
924 | goto out; | |
925 | thact = (thread_t)(void *)queue_next(&thact->task_threads); | |
926 | } | |
927 | ||
928 | out: | |
929 | task_unlock(task); | |
930 | return (int)(numthr * sizeof(uint64_t)); | |
931 | ||
932 | } | |
933 | ||
934 | int | |
935 | get_numthreads(task_t task) | |
936 | { | |
937 | return(task->thread_count); | |
938 | } | |
939 | ||
940 | /* | |
941 | * Gather the various pieces of info about the designated task, | |
942 | * and collect it all into a single rusage_info. | |
943 | */ | |
944 | int | |
945 | fill_task_rusage(task_t task, rusage_info_current *ri) | |
946 | { | |
947 | struct task_power_info powerinfo; | |
948 | ||
949 | assert(task != TASK_NULL); | |
950 | task_lock(task); | |
951 | ||
952 | task_power_info_locked(task, &powerinfo, NULL, NULL); | |
953 | ri->ri_pkg_idle_wkups = powerinfo.task_platform_idle_wakeups; | |
954 | ri->ri_interrupt_wkups = powerinfo.task_interrupt_wakeups; | |
955 | ri->ri_user_time = powerinfo.total_user; | |
956 | ri->ri_system_time = powerinfo.total_system; | |
957 | ||
958 | ledger_get_balance(task->ledger, task_ledgers.phys_footprint, | |
959 | (ledger_amount_t *)&ri->ri_phys_footprint); | |
960 | ledger_get_balance(task->ledger, task_ledgers.phys_mem, | |
961 | (ledger_amount_t *)&ri->ri_resident_size); | |
962 | ledger_get_balance(task->ledger, task_ledgers.wired_mem, | |
963 | (ledger_amount_t *)&ri->ri_wired_size); | |
964 | ||
965 | ri->ri_pageins = task->pageins; | |
966 | ||
967 | task_unlock(task); | |
968 | return (0); | |
969 | } | |
970 | ||
971 | void | |
972 | fill_task_billed_usage(task_t task __unused, rusage_info_current *ri) | |
973 | { | |
974 | #if CONFIG_BANK | |
975 | ri->ri_billed_system_time = bank_billed_time_safe(task); | |
976 | ri->ri_serviced_system_time = bank_serviced_time_safe(task); | |
977 | #else | |
978 | ri->ri_billed_system_time = 0; | |
979 | ri->ri_serviced_system_time = 0; | |
980 | #endif | |
981 | } | |
982 | ||
983 | int | |
984 | fill_task_io_rusage(task_t task, rusage_info_current *ri) | |
985 | { | |
986 | assert(task != TASK_NULL); | |
987 | task_lock(task); | |
988 | ||
989 | if (task->task_io_stats) { | |
990 | ri->ri_diskio_bytesread = task->task_io_stats->disk_reads.size; | |
991 | ri->ri_diskio_byteswritten = (task->task_io_stats->total_io.size - task->task_io_stats->disk_reads.size); | |
992 | } else { | |
993 | /* I/O Stats unavailable */ | |
994 | ri->ri_diskio_bytesread = 0; | |
995 | ri->ri_diskio_byteswritten = 0; | |
996 | } | |
997 | task_unlock(task); | |
998 | return (0); | |
999 | } | |
1000 | ||
1001 | int | |
1002 | fill_task_qos_rusage(task_t task, rusage_info_current *ri) | |
1003 | { | |
1004 | thread_t thread; | |
1005 | ||
1006 | assert(task != TASK_NULL); | |
1007 | task_lock(task); | |
1008 | ||
1009 | /* Rollup Qos time of all the threads to task */ | |
1010 | queue_iterate(&task->threads, thread, thread_t, task_threads) { | |
1011 | if (thread->options & TH_OPT_IDLE_THREAD) | |
1012 | continue; | |
1013 | ||
1014 | thread_update_qos_cpu_time(thread); | |
1015 | } | |
1016 | ri->ri_cpu_time_qos_default = task->cpu_time_qos_stats.cpu_time_qos_default; | |
1017 | ri->ri_cpu_time_qos_maintenance = task->cpu_time_qos_stats.cpu_time_qos_maintenance; | |
1018 | ri->ri_cpu_time_qos_background = task->cpu_time_qos_stats.cpu_time_qos_background; | |
1019 | ri->ri_cpu_time_qos_utility = task->cpu_time_qos_stats.cpu_time_qos_utility; | |
1020 | ri->ri_cpu_time_qos_legacy = task->cpu_time_qos_stats.cpu_time_qos_legacy; | |
1021 | ri->ri_cpu_time_qos_user_initiated = task->cpu_time_qos_stats.cpu_time_qos_user_initiated; | |
1022 | ri->ri_cpu_time_qos_user_interactive = task->cpu_time_qos_stats.cpu_time_qos_user_interactive; | |
1023 | ||
1024 | task_unlock(task); | |
1025 | return (0); | |
1026 | } | |
1027 | ||
1028 | uint64_t | |
1029 | get_task_dispatchqueue_serialno_offset(task_t task) | |
1030 | { | |
1031 | uint64_t dq_serialno_offset = 0; | |
1032 | ||
1033 | if (task->bsd_info) { | |
1034 | dq_serialno_offset = get_dispatchqueue_serialno_offset_from_proc(task->bsd_info); | |
1035 | } | |
1036 | ||
1037 | return dq_serialno_offset; | |
1038 | } | |
1039 | ||
1040 | uint64_t | |
1041 | get_task_uniqueid(task_t task) | |
1042 | { | |
1043 | if (task->bsd_info) { | |
1044 | return proc_uniqueid(task->bsd_info); | |
1045 | } else { | |
1046 | return UINT64_MAX; | |
1047 | } | |
1048 | } | |
1049 | ||
1050 | #if CONFIG_MACF | |
1051 | struct label * | |
1052 | get_task_crash_label(task_t task) | |
1053 | { | |
1054 | return task->crash_label; | |
1055 | } | |
1056 | ||
1057 | void | |
1058 | set_task_crash_label(task_t task, struct label *label) | |
1059 | { | |
1060 | task->crash_label = label; | |
1061 | } | |
1062 | #endif |