]> git.saurik.com Git - apple/xnu.git/blame_incremental - bsd/vfs/vfs_cluster.c
xnu-3789.70.16.tar.gz
[apple/xnu.git] / bsd / vfs / vfs_cluster.c
... / ...
CommitLineData
1/*
2 * Copyright (c) 2000-2014 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28/* Copyright (c) 1995 NeXT Computer, Inc. All Rights Reserved */
29/*
30 * Copyright (c) 1993
31 * The Regents of the University of California. All rights reserved.
32 *
33 * Redistribution and use in source and binary forms, with or without
34 * modification, are permitted provided that the following conditions
35 * are met:
36 * 1. Redistributions of source code must retain the above copyright
37 * notice, this list of conditions and the following disclaimer.
38 * 2. Redistributions in binary form must reproduce the above copyright
39 * notice, this list of conditions and the following disclaimer in the
40 * documentation and/or other materials provided with the distribution.
41 * 3. All advertising materials mentioning features or use of this software
42 * must display the following acknowledgement:
43 * This product includes software developed by the University of
44 * California, Berkeley and its contributors.
45 * 4. Neither the name of the University nor the names of its contributors
46 * may be used to endorse or promote products derived from this software
47 * without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * SUCH DAMAGE.
60 *
61 * @(#)vfs_cluster.c 8.10 (Berkeley) 3/28/95
62 */
63
64#include <sys/param.h>
65#include <sys/proc_internal.h>
66#include <sys/buf_internal.h>
67#include <sys/mount_internal.h>
68#include <sys/vnode_internal.h>
69#include <sys/trace.h>
70#include <sys/malloc.h>
71#include <sys/time.h>
72#include <sys/kernel.h>
73#include <sys/resourcevar.h>
74#include <miscfs/specfs/specdev.h>
75#include <sys/uio_internal.h>
76#include <libkern/libkern.h>
77#include <machine/machine_routines.h>
78
79#include <sys/ubc_internal.h>
80#include <vm/vnode_pager.h>
81
82#include <mach/mach_types.h>
83#include <mach/memory_object_types.h>
84#include <mach/vm_map.h>
85#include <mach/upl.h>
86#include <kern/task.h>
87#include <kern/policy_internal.h>
88
89#include <vm/vm_kern.h>
90#include <vm/vm_map.h>
91#include <vm/vm_pageout.h>
92#include <vm/vm_fault.h>
93
94#include <sys/kdebug.h>
95#include <libkern/OSAtomic.h>
96
97#include <sys/sdt.h>
98
99#include <stdbool.h>
100
101#if 0
102#undef KERNEL_DEBUG
103#define KERNEL_DEBUG KERNEL_DEBUG_CONSTANT
104#endif
105
106
107#define CL_READ 0x01
108#define CL_WRITE 0x02
109#define CL_ASYNC 0x04
110#define CL_COMMIT 0x08
111#define CL_PAGEOUT 0x10
112#define CL_AGE 0x20
113#define CL_NOZERO 0x40
114#define CL_PAGEIN 0x80
115#define CL_DEV_MEMORY 0x100
116#define CL_PRESERVE 0x200
117#define CL_THROTTLE 0x400
118#define CL_KEEPCACHED 0x800
119#define CL_DIRECT_IO 0x1000
120#define CL_PASSIVE 0x2000
121#define CL_IOSTREAMING 0x4000
122#define CL_CLOSE 0x8000
123#define CL_ENCRYPTED 0x10000
124#define CL_RAW_ENCRYPTED 0x20000
125#define CL_NOCACHE 0x40000
126
127#define MAX_VECTOR_UPL_ELEMENTS 8
128#define MAX_VECTOR_UPL_SIZE (2 * MAX_UPL_SIZE_BYTES)
129
130#define CLUSTER_IO_WAITING ((buf_t)1)
131
132extern upl_t vector_upl_create(vm_offset_t);
133extern boolean_t vector_upl_is_valid(upl_t);
134extern boolean_t vector_upl_set_subupl(upl_t,upl_t, u_int32_t);
135extern void vector_upl_set_pagelist(upl_t);
136extern void vector_upl_set_iostate(upl_t, upl_t, vm_offset_t, u_int32_t);
137
138struct clios {
139 lck_mtx_t io_mtxp;
140 u_int io_completed; /* amount of io that has currently completed */
141 u_int io_issued; /* amount of io that was successfully issued */
142 int io_error; /* error code of first error encountered */
143 int io_wanted; /* someone is sleeping waiting for a change in state */
144};
145
146struct cl_direct_read_lock {
147 LIST_ENTRY(cl_direct_read_lock) chain;
148 int32_t ref_count;
149 vnode_t vp;
150 lck_rw_t rw_lock;
151};
152
153#define CL_DIRECT_READ_LOCK_BUCKETS 61
154
155static LIST_HEAD(cl_direct_read_locks, cl_direct_read_lock)
156 cl_direct_read_locks[CL_DIRECT_READ_LOCK_BUCKETS];
157
158static lck_spin_t cl_direct_read_spin_lock;
159
160static lck_grp_t *cl_mtx_grp;
161static lck_attr_t *cl_mtx_attr;
162static lck_grp_attr_t *cl_mtx_grp_attr;
163static lck_mtx_t *cl_transaction_mtxp;
164
165#define IO_UNKNOWN 0
166#define IO_DIRECT 1
167#define IO_CONTIG 2
168#define IO_COPY 3
169
170#define PUSH_DELAY 0x01
171#define PUSH_ALL 0x02
172#define PUSH_SYNC 0x04
173
174
175static void cluster_EOT(buf_t cbp_head, buf_t cbp_tail, int zero_offset);
176static void cluster_wait_IO(buf_t cbp_head, int async);
177static void cluster_complete_transaction(buf_t *cbp_head, void *callback_arg, int *retval, int flags, int needwait);
178
179static int cluster_io_type(struct uio *uio, int *io_type, u_int32_t *io_length, u_int32_t min_length);
180
181static int cluster_io(vnode_t vp, upl_t upl, vm_offset_t upl_offset, off_t f_offset, int non_rounded_size,
182 int flags, buf_t real_bp, struct clios *iostate, int (*)(buf_t, void *), void *callback_arg);
183static int cluster_iodone(buf_t bp, void *callback_arg);
184static int cluster_ioerror(upl_t upl, int upl_offset, int abort_size, int error, int io_flags, vnode_t vp);
185static int cluster_is_throttled(vnode_t vp);
186
187static void cluster_iostate_wait(struct clios *iostate, u_int target, const char *wait_name);
188
189static void cluster_syncup(vnode_t vp, off_t newEOF, int (*)(buf_t, void *), void *callback_arg, int flags);
190
191static void cluster_read_upl_release(upl_t upl, int start_pg, int last_pg, int take_reference);
192static int cluster_copy_ubc_data_internal(vnode_t vp, struct uio *uio, int *io_resid, int mark_dirty, int take_reference);
193
194static int cluster_read_copy(vnode_t vp, struct uio *uio, u_int32_t io_req_size, off_t filesize, int flags,
195 int (*)(buf_t, void *), void *callback_arg);
196static int cluster_read_direct(vnode_t vp, struct uio *uio, off_t filesize, int *read_type, u_int32_t *read_length,
197 int flags, int (*)(buf_t, void *), void *callback_arg);
198static int cluster_read_contig(vnode_t vp, struct uio *uio, off_t filesize, int *read_type, u_int32_t *read_length,
199 int (*)(buf_t, void *), void *callback_arg, int flags);
200
201static int cluster_write_copy(vnode_t vp, struct uio *uio, u_int32_t io_req_size, off_t oldEOF, off_t newEOF,
202 off_t headOff, off_t tailOff, int flags, int (*)(buf_t, void *), void *callback_arg);
203static int cluster_write_direct(vnode_t vp, struct uio *uio, off_t oldEOF, off_t newEOF,
204 int *write_type, u_int32_t *write_length, int flags, int (*)(buf_t, void *), void *callback_arg);
205static int cluster_write_contig(vnode_t vp, struct uio *uio, off_t newEOF,
206 int *write_type, u_int32_t *write_length, int (*)(buf_t, void *), void *callback_arg, int bflag);
207
208static int cluster_align_phys_io(vnode_t vp, struct uio *uio, addr64_t usr_paddr, u_int32_t xsize, int flags, int (*)(buf_t, void *), void *callback_arg);
209
210static int cluster_read_prefetch(vnode_t vp, off_t f_offset, u_int size, off_t filesize, int (*callback)(buf_t, void *), void *callback_arg, int bflag);
211static void cluster_read_ahead(vnode_t vp, struct cl_extent *extent, off_t filesize, struct cl_readahead *ra, int (*callback)(buf_t, void *), void *callback_arg, int bflag);
212
213static int cluster_push_now(vnode_t vp, struct cl_extent *, off_t EOF, int flags, int (*)(buf_t, void *), void *callback_arg);
214
215static int cluster_try_push(struct cl_writebehind *, vnode_t vp, off_t EOF, int push_flag, int flags, int (*)(buf_t, void *), void *callback_arg, int *err);
216
217static void sparse_cluster_switch(struct cl_writebehind *, vnode_t vp, off_t EOF, int (*)(buf_t, void *), void *callback_arg);
218static int sparse_cluster_push(void **cmapp, vnode_t vp, off_t EOF, int push_flag, int io_flags, int (*)(buf_t, void *), void *callback_arg);
219static void sparse_cluster_add(void **cmapp, vnode_t vp, struct cl_extent *, off_t EOF, int (*)(buf_t, void *), void *callback_arg);
220
221static kern_return_t vfs_drt_mark_pages(void **cmapp, off_t offset, u_int length, u_int *setcountp);
222static kern_return_t vfs_drt_get_cluster(void **cmapp, off_t *offsetp, u_int *lengthp);
223static kern_return_t vfs_drt_control(void **cmapp, int op_type);
224
225
226/*
227 * For throttled IO to check whether
228 * a block is cached by the boot cache
229 * and thus it can avoid delaying the IO.
230 *
231 * bootcache_contains_block is initially
232 * NULL. The BootCache will set it while
233 * the cache is active and clear it when
234 * the cache is jettisoned.
235 *
236 * Returns 0 if the block is not
237 * contained in the cache, 1 if it is
238 * contained.
239 *
240 * The function pointer remains valid
241 * after the cache has been evicted even
242 * if bootcache_contains_block has been
243 * cleared.
244 *
245 * See rdar://9974130 The new throttling mechanism breaks the boot cache for throttled IOs
246 */
247int (*bootcache_contains_block)(dev_t device, u_int64_t blkno) = NULL;
248
249
250/*
251 * limit the internal I/O size so that we
252 * can represent it in a 32 bit int
253 */
254#define MAX_IO_REQUEST_SIZE (1024 * 1024 * 512)
255#define MAX_IO_CONTIG_SIZE MAX_UPL_SIZE_BYTES
256#define MAX_VECTS 16
257/*
258 * The MIN_DIRECT_WRITE_SIZE governs how much I/O should be issued before we consider
259 * allowing the caller to bypass the buffer cache. For small I/Os (less than 16k),
260 * we have not historically allowed the write to bypass the UBC.
261 */
262#define MIN_DIRECT_WRITE_SIZE (16384)
263
264#define WRITE_THROTTLE 6
265#define WRITE_THROTTLE_SSD 2
266#define WRITE_BEHIND 1
267#define WRITE_BEHIND_SSD 1
268
269#define PREFETCH 3
270#define PREFETCH_SSD 2
271uint32_t speculative_prefetch_max = (MAX_UPL_SIZE_BYTES * 3); /* maximum bytes in a specluative read-ahead */
272uint32_t speculative_prefetch_max_iosize = (512 * 1024); /* maximum I/O size to use in a specluative read-ahead on SSDs*/
273
274
275#define IO_SCALE(vp, base) (vp->v_mount->mnt_ioscale * (base))
276#define MAX_CLUSTER_SIZE(vp) (cluster_max_io_size(vp->v_mount, CL_WRITE))
277#define MAX_PREFETCH(vp, size, is_ssd) (size * IO_SCALE(vp, ((is_ssd && !ignore_is_ssd) ? PREFETCH_SSD : PREFETCH)))
278
279int ignore_is_ssd = 0;
280int speculative_reads_disabled = 0;
281
282/*
283 * throttle the number of async writes that
284 * can be outstanding on a single vnode
285 * before we issue a synchronous write
286 */
287#define THROTTLE_MAXCNT 0
288
289uint32_t throttle_max_iosize = (128 * 1024);
290
291#define THROTTLE_MAX_IOSIZE (throttle_max_iosize)
292
293SYSCTL_INT(_debug, OID_AUTO, lowpri_throttle_max_iosize, CTLFLAG_RW | CTLFLAG_LOCKED, &throttle_max_iosize, 0, "");
294
295
296void
297cluster_init(void) {
298 /*
299 * allocate lock group attribute and group
300 */
301 cl_mtx_grp_attr = lck_grp_attr_alloc_init();
302 cl_mtx_grp = lck_grp_alloc_init("cluster I/O", cl_mtx_grp_attr);
303
304 /*
305 * allocate the lock attribute
306 */
307 cl_mtx_attr = lck_attr_alloc_init();
308
309 cl_transaction_mtxp = lck_mtx_alloc_init(cl_mtx_grp, cl_mtx_attr);
310
311 if (cl_transaction_mtxp == NULL)
312 panic("cluster_init: failed to allocate cl_transaction_mtxp");
313
314 lck_spin_init(&cl_direct_read_spin_lock, cl_mtx_grp, cl_mtx_attr);
315
316 for (int i = 0; i < CL_DIRECT_READ_LOCK_BUCKETS; ++i)
317 LIST_INIT(&cl_direct_read_locks[i]);
318}
319
320
321uint32_t
322cluster_max_io_size(mount_t mp, int type)
323{
324 uint32_t max_io_size;
325 uint32_t segcnt;
326 uint32_t maxcnt;
327
328 switch(type) {
329
330 case CL_READ:
331 segcnt = mp->mnt_segreadcnt;
332 maxcnt = mp->mnt_maxreadcnt;
333 break;
334 case CL_WRITE:
335 segcnt = mp->mnt_segwritecnt;
336 maxcnt = mp->mnt_maxwritecnt;
337 break;
338 default:
339 segcnt = min(mp->mnt_segreadcnt, mp->mnt_segwritecnt);
340 maxcnt = min(mp->mnt_maxreadcnt, mp->mnt_maxwritecnt);
341 break;
342 }
343 if (segcnt > (MAX_UPL_SIZE_BYTES >> PAGE_SHIFT)) {
344 /*
345 * don't allow a size beyond the max UPL size we can create
346 */
347 segcnt = MAX_UPL_SIZE_BYTES >> PAGE_SHIFT;
348 }
349 max_io_size = min((segcnt * PAGE_SIZE), maxcnt);
350
351 if (max_io_size < MAX_UPL_TRANSFER_BYTES) {
352 /*
353 * don't allow a size smaller than the old fixed limit
354 */
355 max_io_size = MAX_UPL_TRANSFER_BYTES;
356 } else {
357 /*
358 * make sure the size specified is a multiple of PAGE_SIZE
359 */
360 max_io_size &= ~PAGE_MASK;
361 }
362 return (max_io_size);
363}
364
365
366
367
368#define CLW_ALLOCATE 0x01
369#define CLW_RETURNLOCKED 0x02
370#define CLW_IONOCACHE 0x04
371#define CLW_IOPASSIVE 0x08
372
373/*
374 * if the read ahead context doesn't yet exist,
375 * allocate and initialize it...
376 * the vnode lock serializes multiple callers
377 * during the actual assignment... first one
378 * to grab the lock wins... the other callers
379 * will release the now unnecessary storage
380 *
381 * once the context is present, try to grab (but don't block on)
382 * the lock associated with it... if someone
383 * else currently owns it, than the read
384 * will run without read-ahead. this allows
385 * multiple readers to run in parallel and
386 * since there's only 1 read ahead context,
387 * there's no real loss in only allowing 1
388 * reader to have read-ahead enabled.
389 */
390static struct cl_readahead *
391cluster_get_rap(vnode_t vp)
392{
393 struct ubc_info *ubc;
394 struct cl_readahead *rap;
395
396 ubc = vp->v_ubcinfo;
397
398 if ((rap = ubc->cl_rahead) == NULL) {
399 MALLOC_ZONE(rap, struct cl_readahead *, sizeof *rap, M_CLRDAHEAD, M_WAITOK);
400
401 bzero(rap, sizeof *rap);
402 rap->cl_lastr = -1;
403 lck_mtx_init(&rap->cl_lockr, cl_mtx_grp, cl_mtx_attr);
404
405 vnode_lock(vp);
406
407 if (ubc->cl_rahead == NULL)
408 ubc->cl_rahead = rap;
409 else {
410 lck_mtx_destroy(&rap->cl_lockr, cl_mtx_grp);
411 FREE_ZONE((void *)rap, sizeof *rap, M_CLRDAHEAD);
412 rap = ubc->cl_rahead;
413 }
414 vnode_unlock(vp);
415 }
416 if (lck_mtx_try_lock(&rap->cl_lockr) == TRUE)
417 return(rap);
418
419 return ((struct cl_readahead *)NULL);
420}
421
422
423/*
424 * if the write behind context doesn't yet exist,
425 * and CLW_ALLOCATE is specified, allocate and initialize it...
426 * the vnode lock serializes multiple callers
427 * during the actual assignment... first one
428 * to grab the lock wins... the other callers
429 * will release the now unnecessary storage
430 *
431 * if CLW_RETURNLOCKED is set, grab (blocking if necessary)
432 * the lock associated with the write behind context before
433 * returning
434 */
435
436static struct cl_writebehind *
437cluster_get_wbp(vnode_t vp, int flags)
438{
439 struct ubc_info *ubc;
440 struct cl_writebehind *wbp;
441
442 ubc = vp->v_ubcinfo;
443
444 if ((wbp = ubc->cl_wbehind) == NULL) {
445
446 if ( !(flags & CLW_ALLOCATE))
447 return ((struct cl_writebehind *)NULL);
448
449 MALLOC_ZONE(wbp, struct cl_writebehind *, sizeof *wbp, M_CLWRBEHIND, M_WAITOK);
450
451 bzero(wbp, sizeof *wbp);
452 lck_mtx_init(&wbp->cl_lockw, cl_mtx_grp, cl_mtx_attr);
453
454 vnode_lock(vp);
455
456 if (ubc->cl_wbehind == NULL)
457 ubc->cl_wbehind = wbp;
458 else {
459 lck_mtx_destroy(&wbp->cl_lockw, cl_mtx_grp);
460 FREE_ZONE((void *)wbp, sizeof *wbp, M_CLWRBEHIND);
461 wbp = ubc->cl_wbehind;
462 }
463 vnode_unlock(vp);
464 }
465 if (flags & CLW_RETURNLOCKED)
466 lck_mtx_lock(&wbp->cl_lockw);
467
468 return (wbp);
469}
470
471
472static void
473cluster_syncup(vnode_t vp, off_t newEOF, int (*callback)(buf_t, void *), void *callback_arg, int flags)
474{
475 struct cl_writebehind *wbp;
476
477 if ((wbp = cluster_get_wbp(vp, 0)) != NULL) {
478
479 if (wbp->cl_number) {
480 lck_mtx_lock(&wbp->cl_lockw);
481
482 cluster_try_push(wbp, vp, newEOF, PUSH_ALL | flags, 0, callback, callback_arg, NULL);
483
484 lck_mtx_unlock(&wbp->cl_lockw);
485 }
486 }
487}
488
489
490static int
491cluster_io_present_in_BC(vnode_t vp, off_t f_offset)
492{
493 daddr64_t blkno;
494 size_t io_size;
495 int (*bootcache_check_fn)(dev_t device, u_int64_t blkno) = bootcache_contains_block;
496
497 if (bootcache_check_fn) {
498 if (VNOP_BLOCKMAP(vp, f_offset, PAGE_SIZE, &blkno, &io_size, NULL, VNODE_READ, NULL))
499 return(0);
500
501 if (io_size == 0)
502 return (0);
503
504 if (bootcache_check_fn(vp->v_mount->mnt_devvp->v_rdev, blkno))
505 return(1);
506 }
507 return(0);
508}
509
510
511static int
512cluster_is_throttled(vnode_t vp)
513{
514 return (throttle_io_will_be_throttled(-1, vp->v_mount));
515}
516
517
518static void
519cluster_iostate_wait(struct clios *iostate, u_int target, const char *wait_name)
520{
521
522 lck_mtx_lock(&iostate->io_mtxp);
523
524 while ((iostate->io_issued - iostate->io_completed) > target) {
525
526 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 95)) | DBG_FUNC_START,
527 iostate->io_issued, iostate->io_completed, target, 0, 0);
528
529 iostate->io_wanted = 1;
530 msleep((caddr_t)&iostate->io_wanted, &iostate->io_mtxp, PRIBIO + 1, wait_name, NULL);
531
532 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 95)) | DBG_FUNC_END,
533 iostate->io_issued, iostate->io_completed, target, 0, 0);
534 }
535 lck_mtx_unlock(&iostate->io_mtxp);
536}
537
538static void cluster_handle_associated_upl(struct clios *iostate, upl_t upl,
539 upl_offset_t upl_offset, upl_size_t size)
540{
541 if (!size)
542 return;
543
544 upl_t associated_upl = upl_associated_upl(upl);
545
546 if (!associated_upl)
547 return;
548
549#if 0
550 printf("1: %d %d\n", upl_offset, upl_offset + size);
551#endif
552
553 /*
554 * The associated UPL is page aligned to file offsets whereas the
555 * UPL it's attached to has different alignment requirements. The
556 * upl_offset that we have refers to @upl. The code that follows
557 * has to deal with the first and last pages in this transaction
558 * which might straddle pages in the associated UPL. To keep
559 * track of these pages, we use the mark bits: if the mark bit is
560 * set, we know another transaction has completed its part of that
561 * page and so we can unlock that page here.
562 *
563 * The following illustrates what we have to deal with:
564 *
565 * MEM u <------------ 1 PAGE ------------> e
566 * +-------------+----------------------+-----------------
567 * | |######################|#################
568 * +-------------+----------------------+-----------------
569 * FILE | <--- a ---> o <------------ 1 PAGE ------------>
570 *
571 * So here we show a write to offset @o. The data that is to be
572 * written is in a buffer that is not page aligned; it has offset
573 * @a in the page. The upl that carries the data starts in memory
574 * at @u. The associated upl starts in the file at offset @o. A
575 * transaction will always end on a page boundary (like @e above)
576 * except for the very last transaction in the group. We cannot
577 * unlock the page at @o in the associated upl until both the
578 * transaction ending at @e and the following transaction (that
579 * starts at @e) has completed.
580 */
581
582 /*
583 * We record whether or not the two UPLs are aligned as the mark
584 * bit in the first page of @upl.
585 */
586 upl_page_info_t *pl = UPL_GET_INTERNAL_PAGE_LIST(upl);
587 bool is_unaligned = upl_page_get_mark(pl, 0);
588
589 if (is_unaligned) {
590 upl_page_info_t *assoc_pl = UPL_GET_INTERNAL_PAGE_LIST(associated_upl);
591
592 upl_offset_t upl_end = upl_offset + size;
593 assert(upl_end >= PAGE_SIZE);
594
595 upl_size_t assoc_upl_size = upl_get_size(associated_upl);
596
597 /*
598 * In the very first transaction in the group, upl_offset will
599 * not be page aligned, but after that it will be and in that
600 * case we want the preceding page in the associated UPL hence
601 * the minus one.
602 */
603 assert(upl_offset);
604 if (upl_offset)
605 upl_offset = trunc_page_32(upl_offset - 1);
606
607 lck_mtx_lock_spin(&iostate->io_mtxp);
608
609 // Look at the first page...
610 if (upl_offset
611 && !upl_page_get_mark(assoc_pl, upl_offset >> PAGE_SHIFT)) {
612 /*
613 * The first page isn't marked so let another transaction
614 * completion handle it.
615 */
616 upl_page_set_mark(assoc_pl, upl_offset >> PAGE_SHIFT, true);
617 upl_offset += PAGE_SIZE;
618 }
619
620 // And now the last page...
621
622 /*
623 * This needs to be > rather than >= because if it's equal, it
624 * means there's another transaction that is sharing the last
625 * page.
626 */
627 if (upl_end > assoc_upl_size)
628 upl_end = assoc_upl_size;
629 else {
630 upl_end = trunc_page_32(upl_end);
631 const int last_pg = (upl_end >> PAGE_SHIFT) - 1;
632
633 if (!upl_page_get_mark(assoc_pl, last_pg)) {
634 /*
635 * The last page isn't marked so mark the page and let another
636 * transaction completion handle it.
637 */
638 upl_page_set_mark(assoc_pl, last_pg, true);
639 upl_end -= PAGE_SIZE;
640 }
641 }
642
643 lck_mtx_unlock(&iostate->io_mtxp);
644
645#if 0
646 printf("2: %d %d\n", upl_offset, upl_end);
647#endif
648
649 if (upl_end <= upl_offset)
650 return;
651
652 size = upl_end - upl_offset;
653 } else {
654 assert(!(upl_offset & PAGE_MASK));
655 assert(!(size & PAGE_MASK));
656 }
657
658 boolean_t empty;
659
660 /*
661 * We can unlock these pages now and as this is for a
662 * direct/uncached write, we want to dump the pages too.
663 */
664 kern_return_t kr = upl_abort_range(associated_upl, upl_offset, size,
665 UPL_ABORT_DUMP_PAGES, &empty);
666
667 assert(!kr);
668
669 if (!kr && empty) {
670 upl_set_associated_upl(upl, NULL);
671 upl_deallocate(associated_upl);
672 }
673}
674
675static int
676cluster_ioerror(upl_t upl, int upl_offset, int abort_size, int error, int io_flags, vnode_t vp)
677{
678 int upl_abort_code = 0;
679 int page_in = 0;
680 int page_out = 0;
681
682 if ((io_flags & (B_PHYS | B_CACHE)) == (B_PHYS | B_CACHE))
683 /*
684 * direct write of any flavor, or a direct read that wasn't aligned
685 */
686 ubc_upl_commit_range(upl, upl_offset, abort_size, UPL_COMMIT_FREE_ON_EMPTY);
687 else {
688 if (io_flags & B_PAGEIO) {
689 if (io_flags & B_READ)
690 page_in = 1;
691 else
692 page_out = 1;
693 }
694 if (io_flags & B_CACHE)
695 /*
696 * leave pages in the cache unchanged on error
697 */
698 upl_abort_code = UPL_ABORT_FREE_ON_EMPTY;
699 else if (page_out && ((error != ENXIO) || vnode_isswap(vp)))
700 /*
701 * transient error... leave pages unchanged
702 */
703 upl_abort_code = UPL_ABORT_FREE_ON_EMPTY;
704 else if (page_in)
705 upl_abort_code = UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_ERROR;
706 else
707 upl_abort_code = UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_DUMP_PAGES;
708
709 ubc_upl_abort_range(upl, upl_offset, abort_size, upl_abort_code);
710 }
711 return (upl_abort_code);
712}
713
714
715static int
716cluster_iodone(buf_t bp, void *callback_arg)
717{
718 int b_flags;
719 int error;
720 int total_size;
721 int total_resid;
722 int upl_offset;
723 int zero_offset;
724 int pg_offset = 0;
725 int commit_size = 0;
726 int upl_flags = 0;
727 int transaction_size = 0;
728 upl_t upl;
729 buf_t cbp;
730 buf_t cbp_head;
731 buf_t cbp_next;
732 buf_t real_bp;
733 vnode_t vp;
734 struct clios *iostate;
735 boolean_t transaction_complete = FALSE;
736
737 __IGNORE_WCASTALIGN(cbp_head = (buf_t)(bp->b_trans_head));
738
739 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 20)) | DBG_FUNC_START,
740 cbp_head, bp->b_lblkno, bp->b_bcount, bp->b_flags, 0);
741
742 if (cbp_head->b_trans_next || !(cbp_head->b_flags & B_EOT)) {
743 lck_mtx_lock_spin(cl_transaction_mtxp);
744
745 bp->b_flags |= B_TDONE;
746
747 for (cbp = cbp_head; cbp; cbp = cbp->b_trans_next) {
748 /*
749 * all I/O requests that are part of this transaction
750 * have to complete before we can process it
751 */
752 if ( !(cbp->b_flags & B_TDONE)) {
753
754 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 20)) | DBG_FUNC_END,
755 cbp_head, cbp, cbp->b_bcount, cbp->b_flags, 0);
756
757 lck_mtx_unlock(cl_transaction_mtxp);
758
759 return 0;
760 }
761
762 if (cbp->b_trans_next == CLUSTER_IO_WAITING) {
763 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 20)) | DBG_FUNC_END,
764 cbp_head, cbp, cbp->b_bcount, cbp->b_flags, 0);
765
766 lck_mtx_unlock(cl_transaction_mtxp);
767 wakeup(cbp);
768
769 return 0;
770 }
771
772 if (cbp->b_flags & B_EOT)
773 transaction_complete = TRUE;
774 }
775 lck_mtx_unlock(cl_transaction_mtxp);
776
777 if (transaction_complete == FALSE) {
778 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 20)) | DBG_FUNC_END,
779 cbp_head, 0, 0, 0, 0);
780 return 0;
781 }
782 }
783 error = 0;
784 total_size = 0;
785 total_resid = 0;
786
787 cbp = cbp_head;
788 vp = cbp->b_vp;
789 upl_offset = cbp->b_uploffset;
790 upl = cbp->b_upl;
791 b_flags = cbp->b_flags;
792 real_bp = cbp->b_real_bp;
793 zero_offset= cbp->b_validend;
794 iostate = (struct clios *)cbp->b_iostate;
795
796 if (real_bp)
797 real_bp->b_dev = cbp->b_dev;
798
799 while (cbp) {
800 if ((cbp->b_flags & B_ERROR) && error == 0)
801 error = cbp->b_error;
802
803 total_resid += cbp->b_resid;
804 total_size += cbp->b_bcount;
805
806 cbp_next = cbp->b_trans_next;
807
808 if (cbp_next == NULL)
809 /*
810 * compute the overall size of the transaction
811 * in case we created one that has 'holes' in it
812 * 'total_size' represents the amount of I/O we
813 * did, not the span of the transaction w/r to the UPL
814 */
815 transaction_size = cbp->b_uploffset + cbp->b_bcount - upl_offset;
816
817 if (cbp != cbp_head)
818 free_io_buf(cbp);
819
820 cbp = cbp_next;
821 }
822
823 if (ISSET(b_flags, B_COMMIT_UPL)) {
824 cluster_handle_associated_upl(iostate,
825 cbp_head->b_upl,
826 upl_offset,
827 transaction_size);
828 }
829
830 if (error == 0 && total_resid)
831 error = EIO;
832
833 if (error == 0) {
834 int (*cliodone_func)(buf_t, void *) = (int (*)(buf_t, void *))(cbp_head->b_cliodone);
835
836 if (cliodone_func != NULL) {
837 cbp_head->b_bcount = transaction_size;
838
839 error = (*cliodone_func)(cbp_head, callback_arg);
840 }
841 }
842 if (zero_offset)
843 cluster_zero(upl, zero_offset, PAGE_SIZE - (zero_offset & PAGE_MASK), real_bp);
844
845 free_io_buf(cbp_head);
846
847 if (iostate) {
848 int need_wakeup = 0;
849
850 /*
851 * someone has issued multiple I/Os asynchrounsly
852 * and is waiting for them to complete (streaming)
853 */
854 lck_mtx_lock_spin(&iostate->io_mtxp);
855
856 if (error && iostate->io_error == 0)
857 iostate->io_error = error;
858
859 iostate->io_completed += total_size;
860
861 if (iostate->io_wanted) {
862 /*
863 * someone is waiting for the state of
864 * this io stream to change
865 */
866 iostate->io_wanted = 0;
867 need_wakeup = 1;
868 }
869 lck_mtx_unlock(&iostate->io_mtxp);
870
871 if (need_wakeup)
872 wakeup((caddr_t)&iostate->io_wanted);
873 }
874
875 if (b_flags & B_COMMIT_UPL) {
876 pg_offset = upl_offset & PAGE_MASK;
877 commit_size = (pg_offset + transaction_size + (PAGE_SIZE - 1)) & ~PAGE_MASK;
878
879 if (error)
880 upl_flags = cluster_ioerror(upl, upl_offset - pg_offset, commit_size, error, b_flags, vp);
881 else {
882 upl_flags = UPL_COMMIT_FREE_ON_EMPTY;
883
884 if ((b_flags & B_PHYS) && (b_flags & B_READ))
885 upl_flags |= UPL_COMMIT_SET_DIRTY;
886
887 if (b_flags & B_AGE)
888 upl_flags |= UPL_COMMIT_INACTIVATE;
889
890 ubc_upl_commit_range(upl, upl_offset - pg_offset, commit_size, upl_flags);
891 }
892 }
893 if (real_bp) {
894 if (error) {
895 real_bp->b_flags |= B_ERROR;
896 real_bp->b_error = error;
897 }
898 real_bp->b_resid = total_resid;
899
900 buf_biodone(real_bp);
901 }
902 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 20)) | DBG_FUNC_END,
903 upl, upl_offset - pg_offset, commit_size, (error << 24) | upl_flags, 0);
904
905 return (error);
906}
907
908
909uint32_t
910cluster_throttle_io_limit(vnode_t vp, uint32_t *limit)
911{
912 if (cluster_is_throttled(vp)) {
913 *limit = THROTTLE_MAX_IOSIZE;
914 return 1;
915 }
916 return 0;
917}
918
919
920void
921cluster_zero(upl_t upl, upl_offset_t upl_offset, int size, buf_t bp)
922{
923
924 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 23)) | DBG_FUNC_START,
925 upl_offset, size, bp, 0, 0);
926
927 if (bp == NULL || bp->b_datap == 0) {
928 upl_page_info_t *pl;
929 addr64_t zero_addr;
930
931 pl = ubc_upl_pageinfo(upl);
932
933 if (upl_device_page(pl) == TRUE) {
934 zero_addr = ((addr64_t)upl_phys_page(pl, 0) << PAGE_SHIFT) + upl_offset;
935
936 bzero_phys_nc(zero_addr, size);
937 } else {
938 while (size) {
939 int page_offset;
940 int page_index;
941 int zero_cnt;
942
943 page_index = upl_offset / PAGE_SIZE;
944 page_offset = upl_offset & PAGE_MASK;
945
946 zero_addr = ((addr64_t)upl_phys_page(pl, page_index) << PAGE_SHIFT) + page_offset;
947 zero_cnt = min(PAGE_SIZE - page_offset, size);
948
949 bzero_phys(zero_addr, zero_cnt);
950
951 size -= zero_cnt;
952 upl_offset += zero_cnt;
953 }
954 }
955 } else
956 bzero((caddr_t)((vm_offset_t)bp->b_datap + upl_offset), size);
957
958 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 23)) | DBG_FUNC_END,
959 upl_offset, size, 0, 0, 0);
960}
961
962
963static void
964cluster_EOT(buf_t cbp_head, buf_t cbp_tail, int zero_offset)
965{
966 cbp_head->b_validend = zero_offset;
967 cbp_tail->b_flags |= B_EOT;
968}
969
970static void
971cluster_wait_IO(buf_t cbp_head, int async)
972{
973 buf_t cbp;
974
975 if (async) {
976 /*
977 * Async callback completion will not normally generate a
978 * wakeup upon I/O completion. To get woken up, we set
979 * b_trans_next (which is safe for us to modify) on the last
980 * buffer to CLUSTER_IO_WAITING so that cluster_iodone knows
981 * to wake us up when all buffers as part of this transaction
982 * are completed. This is done under the umbrella of
983 * cl_transaction_mtxp which is also taken in cluster_iodone.
984 */
985 bool done = true;
986 buf_t last = NULL;
987
988 lck_mtx_lock_spin(cl_transaction_mtxp);
989
990 for (cbp = cbp_head; cbp; last = cbp, cbp = cbp->b_trans_next) {
991 if (!ISSET(cbp->b_flags, B_TDONE))
992 done = false;
993 }
994
995 if (!done) {
996 last->b_trans_next = CLUSTER_IO_WAITING;
997
998 DTRACE_IO1(wait__start, buf_t, last);
999 do {
1000 msleep(last, cl_transaction_mtxp, PSPIN | (PRIBIO+1), "cluster_wait_IO", NULL);
1001
1002 /*
1003 * We should only have been woken up if all the
1004 * buffers are completed, but just in case...
1005 */
1006 done = true;
1007 for (cbp = cbp_head; cbp != CLUSTER_IO_WAITING; cbp = cbp->b_trans_next) {
1008 if (!ISSET(cbp->b_flags, B_TDONE)) {
1009 done = false;
1010 break;
1011 }
1012 }
1013 } while (!done);
1014 DTRACE_IO1(wait__done, buf_t, last);
1015
1016 last->b_trans_next = NULL;
1017 }
1018
1019 lck_mtx_unlock(cl_transaction_mtxp);
1020 } else { // !async
1021 for (cbp = cbp_head; cbp; cbp = cbp->b_trans_next)
1022 buf_biowait(cbp);
1023 }
1024}
1025
1026static void
1027cluster_complete_transaction(buf_t *cbp_head, void *callback_arg, int *retval, int flags, int needwait)
1028{
1029 buf_t cbp;
1030 int error;
1031 boolean_t isswapout = FALSE;
1032
1033 /*
1034 * cluster_complete_transaction will
1035 * only be called if we've issued a complete chain in synchronous mode
1036 * or, we've already done a cluster_wait_IO on an incomplete chain
1037 */
1038 if (needwait) {
1039 for (cbp = *cbp_head; cbp; cbp = cbp->b_trans_next)
1040 buf_biowait(cbp);
1041 }
1042 /*
1043 * we've already waited on all of the I/Os in this transaction,
1044 * so mark all of the buf_t's in this transaction as B_TDONE
1045 * so that cluster_iodone sees the transaction as completed
1046 */
1047 for (cbp = *cbp_head; cbp; cbp = cbp->b_trans_next)
1048 cbp->b_flags |= B_TDONE;
1049 cbp = *cbp_head;
1050
1051 if ((flags & (CL_ASYNC | CL_PAGEOUT)) == CL_PAGEOUT && vnode_isswap(cbp->b_vp))
1052 isswapout = TRUE;
1053
1054 error = cluster_iodone(cbp, callback_arg);
1055
1056 if ( !(flags & CL_ASYNC) && error && *retval == 0) {
1057 if (((flags & (CL_PAGEOUT | CL_KEEPCACHED)) != CL_PAGEOUT) || (error != ENXIO))
1058 *retval = error;
1059 else if (isswapout == TRUE)
1060 *retval = error;
1061 }
1062 *cbp_head = (buf_t)NULL;
1063}
1064
1065
1066static int
1067cluster_io(vnode_t vp, upl_t upl, vm_offset_t upl_offset, off_t f_offset, int non_rounded_size,
1068 int flags, buf_t real_bp, struct clios *iostate, int (*callback)(buf_t, void *), void *callback_arg)
1069{
1070 buf_t cbp;
1071 u_int size;
1072 u_int io_size;
1073 int io_flags;
1074 int bmap_flags;
1075 int error = 0;
1076 int retval = 0;
1077 buf_t cbp_head = NULL;
1078 buf_t cbp_tail = NULL;
1079 int trans_count = 0;
1080 int max_trans_count;
1081 u_int pg_count;
1082 int pg_offset;
1083 u_int max_iosize;
1084 u_int max_vectors;
1085 int priv;
1086 int zero_offset = 0;
1087 int async_throttle = 0;
1088 mount_t mp;
1089 vm_offset_t upl_end_offset;
1090 boolean_t need_EOT = FALSE;
1091
1092 /*
1093 * we currently don't support buffers larger than a page
1094 */
1095 if (real_bp && non_rounded_size > PAGE_SIZE)
1096 panic("%s(): Called with real buffer of size %d bytes which "
1097 "is greater than the maximum allowed size of "
1098 "%d bytes (the system PAGE_SIZE).\n",
1099 __FUNCTION__, non_rounded_size, PAGE_SIZE);
1100
1101 mp = vp->v_mount;
1102
1103 /*
1104 * we don't want to do any funny rounding of the size for IO requests
1105 * coming through the DIRECT or CONTIGUOUS paths... those pages don't
1106 * belong to us... we can't extend (nor do we need to) the I/O to fill
1107 * out a page
1108 */
1109 if (mp->mnt_devblocksize > 1 && !(flags & (CL_DEV_MEMORY | CL_DIRECT_IO))) {
1110 /*
1111 * round the requested size up so that this I/O ends on a
1112 * page boundary in case this is a 'write'... if the filesystem
1113 * has blocks allocated to back the page beyond the EOF, we want to
1114 * make sure to write out the zero's that are sitting beyond the EOF
1115 * so that in case the filesystem doesn't explicitly zero this area
1116 * if a hole is created via a lseek/write beyond the current EOF,
1117 * it will return zeros when it's read back from the disk. If the
1118 * physical allocation doesn't extend for the whole page, we'll
1119 * only write/read from the disk up to the end of this allocation
1120 * via the extent info returned from the VNOP_BLOCKMAP call.
1121 */
1122 pg_offset = upl_offset & PAGE_MASK;
1123
1124 size = (((non_rounded_size + pg_offset) + (PAGE_SIZE - 1)) & ~PAGE_MASK) - pg_offset;
1125 } else {
1126 /*
1127 * anyone advertising a blocksize of 1 byte probably
1128 * can't deal with us rounding up the request size
1129 * AFP is one such filesystem/device
1130 */
1131 size = non_rounded_size;
1132 }
1133 upl_end_offset = upl_offset + size;
1134
1135 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 22)) | DBG_FUNC_START, (int)f_offset, size, upl_offset, flags, 0);
1136
1137 /*
1138 * Set the maximum transaction size to the maximum desired number of
1139 * buffers.
1140 */
1141 max_trans_count = 8;
1142 if (flags & CL_DEV_MEMORY)
1143 max_trans_count = 16;
1144
1145 if (flags & CL_READ) {
1146 io_flags = B_READ;
1147 bmap_flags = VNODE_READ;
1148
1149 max_iosize = mp->mnt_maxreadcnt;
1150 max_vectors = mp->mnt_segreadcnt;
1151 } else {
1152 io_flags = B_WRITE;
1153 bmap_flags = VNODE_WRITE;
1154
1155 max_iosize = mp->mnt_maxwritecnt;
1156 max_vectors = mp->mnt_segwritecnt;
1157 }
1158 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 22)) | DBG_FUNC_NONE, max_iosize, max_vectors, mp->mnt_devblocksize, 0, 0);
1159
1160 /*
1161 * make sure the maximum iosize is a
1162 * multiple of the page size
1163 */
1164 max_iosize &= ~PAGE_MASK;
1165
1166 /*
1167 * Ensure the maximum iosize is sensible.
1168 */
1169 if (!max_iosize)
1170 max_iosize = PAGE_SIZE;
1171
1172 if (flags & CL_THROTTLE) {
1173 if ( !(flags & CL_PAGEOUT) && cluster_is_throttled(vp)) {
1174 if (max_iosize > THROTTLE_MAX_IOSIZE)
1175 max_iosize = THROTTLE_MAX_IOSIZE;
1176 async_throttle = THROTTLE_MAXCNT;
1177 } else {
1178 if ( (flags & CL_DEV_MEMORY) )
1179 async_throttle = IO_SCALE(vp, VNODE_ASYNC_THROTTLE);
1180 else {
1181 u_int max_cluster;
1182 u_int max_cluster_size;
1183 u_int scale;
1184
1185 if (vp->v_mount->mnt_minsaturationbytecount) {
1186 max_cluster_size = vp->v_mount->mnt_minsaturationbytecount;
1187
1188 scale = 1;
1189 } else {
1190 max_cluster_size = MAX_CLUSTER_SIZE(vp);
1191
1192 if ((vp->v_mount->mnt_kern_flag & MNTK_SSD) && !ignore_is_ssd)
1193 scale = WRITE_THROTTLE_SSD;
1194 else
1195 scale = WRITE_THROTTLE;
1196 }
1197 if (max_iosize > max_cluster_size)
1198 max_cluster = max_cluster_size;
1199 else
1200 max_cluster = max_iosize;
1201
1202 if (size < max_cluster)
1203 max_cluster = size;
1204
1205 if (flags & CL_CLOSE)
1206 scale += MAX_CLUSTERS;
1207
1208 async_throttle = min(IO_SCALE(vp, VNODE_ASYNC_THROTTLE), ((scale * max_cluster_size) / max_cluster) - 1);
1209 }
1210 }
1211 }
1212 if (flags & CL_AGE)
1213 io_flags |= B_AGE;
1214 if (flags & (CL_PAGEIN | CL_PAGEOUT))
1215 io_flags |= B_PAGEIO;
1216 if (flags & (CL_IOSTREAMING))
1217 io_flags |= B_IOSTREAMING;
1218 if (flags & CL_COMMIT)
1219 io_flags |= B_COMMIT_UPL;
1220 if (flags & CL_DIRECT_IO)
1221 io_flags |= B_PHYS;
1222 if (flags & (CL_PRESERVE | CL_KEEPCACHED))
1223 io_flags |= B_CACHE;
1224 if (flags & CL_PASSIVE)
1225 io_flags |= B_PASSIVE;
1226 if (flags & CL_ENCRYPTED)
1227 io_flags |= B_ENCRYPTED_IO;
1228
1229 if (vp->v_flag & VSYSTEM)
1230 io_flags |= B_META;
1231
1232 if ((flags & CL_READ) && ((upl_offset + non_rounded_size) & PAGE_MASK) && (!(flags & CL_NOZERO))) {
1233 /*
1234 * then we are going to end up
1235 * with a page that we can't complete (the file size wasn't a multiple
1236 * of PAGE_SIZE and we're trying to read to the end of the file
1237 * so we'll go ahead and zero out the portion of the page we can't
1238 * read in from the file
1239 */
1240 zero_offset = upl_offset + non_rounded_size;
1241 } else if (!ISSET(flags, CL_READ) && ISSET(flags, CL_DIRECT_IO)) {
1242 assert(ISSET(flags, CL_COMMIT));
1243
1244 // For a direct/uncached write, we need to lock pages...
1245
1246 upl_t cached_upl;
1247
1248 /*
1249 * Create a UPL to lock the pages in the cache whilst the
1250 * write is in progress.
1251 */
1252 ubc_create_upl(vp, f_offset, non_rounded_size, &cached_upl,
1253 NULL, UPL_SET_LITE);
1254
1255 /*
1256 * Attach this UPL to the other UPL so that we can find it
1257 * later.
1258 */
1259 upl_set_associated_upl(upl, cached_upl);
1260
1261 if (upl_offset & PAGE_MASK) {
1262 /*
1263 * The two UPLs are not aligned, so mark the first page in
1264 * @upl so that cluster_handle_associated_upl can handle
1265 * it accordingly.
1266 */
1267 upl_page_info_t *pl = UPL_GET_INTERNAL_PAGE_LIST(upl);
1268 upl_page_set_mark(pl, 0, true);
1269 }
1270 }
1271
1272 while (size) {
1273 daddr64_t blkno;
1274 daddr64_t lblkno;
1275 u_int io_size_wanted;
1276 size_t io_size_tmp;
1277
1278 if (size > max_iosize)
1279 io_size = max_iosize;
1280 else
1281 io_size = size;
1282
1283 io_size_wanted = io_size;
1284 io_size_tmp = (size_t)io_size;
1285
1286 if ((error = VNOP_BLOCKMAP(vp, f_offset, io_size, &blkno, &io_size_tmp, NULL, bmap_flags, NULL)))
1287 break;
1288
1289 if (io_size_tmp > io_size_wanted)
1290 io_size = io_size_wanted;
1291 else
1292 io_size = (u_int)io_size_tmp;
1293
1294 if (real_bp && (real_bp->b_blkno == real_bp->b_lblkno))
1295 real_bp->b_blkno = blkno;
1296
1297 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 24)) | DBG_FUNC_NONE,
1298 (int)f_offset, (int)(blkno>>32), (int)blkno, io_size, 0);
1299
1300 if (io_size == 0) {
1301 /*
1302 * vnop_blockmap didn't return an error... however, it did
1303 * return an extent size of 0 which means we can't
1304 * make forward progress on this I/O... a hole in the
1305 * file would be returned as a blkno of -1 with a non-zero io_size
1306 * a real extent is returned with a blkno != -1 and a non-zero io_size
1307 */
1308 error = EINVAL;
1309 break;
1310 }
1311 if ( !(flags & CL_READ) && blkno == -1) {
1312 off_t e_offset;
1313 int pageout_flags;
1314
1315 if (upl_get_internal_vectorupl(upl))
1316 panic("Vector UPLs should not take this code-path\n");
1317 /*
1318 * we're writing into a 'hole'
1319 */
1320 if (flags & CL_PAGEOUT) {
1321 /*
1322 * if we got here via cluster_pageout
1323 * then just error the request and return
1324 * the 'hole' should already have been covered
1325 */
1326 error = EINVAL;
1327 break;
1328 }
1329 /*
1330 * we can get here if the cluster code happens to
1331 * pick up a page that was dirtied via mmap vs
1332 * a 'write' and the page targets a 'hole'...
1333 * i.e. the writes to the cluster were sparse
1334 * and the file was being written for the first time
1335 *
1336 * we can also get here if the filesystem supports
1337 * 'holes' that are less than PAGE_SIZE.... because
1338 * we can't know if the range in the page that covers
1339 * the 'hole' has been dirtied via an mmap or not,
1340 * we have to assume the worst and try to push the
1341 * entire page to storage.
1342 *
1343 * Try paging out the page individually before
1344 * giving up entirely and dumping it (the pageout
1345 * path will insure that the zero extent accounting
1346 * has been taken care of before we get back into cluster_io)
1347 *
1348 * go direct to vnode_pageout so that we don't have to
1349 * unbusy the page from the UPL... we used to do this
1350 * so that we could call ubc_msync, but that results
1351 * in a potential deadlock if someone else races us to acquire
1352 * that page and wins and in addition needs one of the pages
1353 * we're continuing to hold in the UPL
1354 */
1355 pageout_flags = UPL_MSYNC | UPL_VNODE_PAGER | UPL_NESTED_PAGEOUT;
1356
1357 if ( !(flags & CL_ASYNC))
1358 pageout_flags |= UPL_IOSYNC;
1359 if ( !(flags & CL_COMMIT))
1360 pageout_flags |= UPL_NOCOMMIT;
1361
1362 if (cbp_head) {
1363 buf_t prev_cbp;
1364 int bytes_in_last_page;
1365
1366 /*
1367 * first we have to wait for the the current outstanding I/Os
1368 * to complete... EOT hasn't been set yet on this transaction
1369 * so the pages won't be released
1370 */
1371 cluster_wait_IO(cbp_head, (flags & CL_ASYNC));
1372
1373 bytes_in_last_page = cbp_head->b_uploffset & PAGE_MASK;
1374 for (cbp = cbp_head; cbp; cbp = cbp->b_trans_next)
1375 bytes_in_last_page += cbp->b_bcount;
1376 bytes_in_last_page &= PAGE_MASK;
1377
1378 while (bytes_in_last_page) {
1379 /*
1380 * we've got a transcation that
1381 * includes the page we're about to push out through vnode_pageout...
1382 * find the bp's in the list which intersect this page and either
1383 * remove them entirely from the transaction (there could be multiple bp's), or
1384 * round it's iosize down to the page boundary (there can only be one)...
1385 *
1386 * find the last bp in the list and act on it
1387 */
1388 for (prev_cbp = cbp = cbp_head; cbp->b_trans_next; cbp = cbp->b_trans_next)
1389 prev_cbp = cbp;
1390
1391 if (bytes_in_last_page >= cbp->b_bcount) {
1392 /*
1393 * this buf no longer has any I/O associated with it
1394 */
1395 bytes_in_last_page -= cbp->b_bcount;
1396 cbp->b_bcount = 0;
1397
1398 free_io_buf(cbp);
1399
1400 if (cbp == cbp_head) {
1401 assert(bytes_in_last_page == 0);
1402 /*
1403 * the buf we just freed was the only buf in
1404 * this transaction... so there's no I/O to do
1405 */
1406 cbp_head = NULL;
1407 cbp_tail = NULL;
1408 } else {
1409 /*
1410 * remove the buf we just freed from
1411 * the transaction list
1412 */
1413 prev_cbp->b_trans_next = NULL;
1414 cbp_tail = prev_cbp;
1415 }
1416 } else {
1417 /*
1418 * this is the last bp that has I/O
1419 * intersecting the page of interest
1420 * only some of the I/O is in the intersection
1421 * so clip the size but keep it in the transaction list
1422 */
1423 cbp->b_bcount -= bytes_in_last_page;
1424 cbp_tail = cbp;
1425 bytes_in_last_page = 0;
1426 }
1427 }
1428 if (cbp_head) {
1429 /*
1430 * there was more to the current transaction
1431 * than just the page we are pushing out via vnode_pageout...
1432 * mark it as finished and complete it... we've already
1433 * waited for the I/Os to complete above in the call to cluster_wait_IO
1434 */
1435 cluster_EOT(cbp_head, cbp_tail, 0);
1436
1437 cluster_complete_transaction(&cbp_head, callback_arg, &retval, flags, 0);
1438
1439 trans_count = 0;
1440 }
1441 }
1442 if (vnode_pageout(vp, upl, trunc_page(upl_offset), trunc_page_64(f_offset), PAGE_SIZE, pageout_flags, NULL) != PAGER_SUCCESS) {
1443 error = EINVAL;
1444 }
1445 e_offset = round_page_64(f_offset + 1);
1446 io_size = e_offset - f_offset;
1447
1448 f_offset += io_size;
1449 upl_offset += io_size;
1450
1451 if (size >= io_size)
1452 size -= io_size;
1453 else
1454 size = 0;
1455 /*
1456 * keep track of how much of the original request
1457 * that we've actually completed... non_rounded_size
1458 * may go negative due to us rounding the request
1459 * to a page size multiple (i.e. size > non_rounded_size)
1460 */
1461 non_rounded_size -= io_size;
1462
1463 if (non_rounded_size <= 0) {
1464 /*
1465 * we've transferred all of the data in the original
1466 * request, but we were unable to complete the tail
1467 * of the last page because the file didn't have
1468 * an allocation to back that portion... this is ok.
1469 */
1470 size = 0;
1471 }
1472 if (error) {
1473 if (size == 0)
1474 flags &= ~CL_COMMIT;
1475 break;
1476 }
1477 continue;
1478 }
1479 lblkno = (daddr64_t)(f_offset / 0x1000);
1480 /*
1481 * we have now figured out how much I/O we can do - this is in 'io_size'
1482 * pg_offset is the starting point in the first page for the I/O
1483 * pg_count is the number of full and partial pages that 'io_size' encompasses
1484 */
1485 pg_offset = upl_offset & PAGE_MASK;
1486
1487 if (flags & CL_DEV_MEMORY) {
1488 /*
1489 * treat physical requests as one 'giant' page
1490 */
1491 pg_count = 1;
1492 } else
1493 pg_count = (io_size + pg_offset + (PAGE_SIZE - 1)) / PAGE_SIZE;
1494
1495 if ((flags & CL_READ) && blkno == -1) {
1496 vm_offset_t commit_offset;
1497 int bytes_to_zero;
1498 int complete_transaction_now = 0;
1499
1500 /*
1501 * if we're reading and blkno == -1, then we've got a
1502 * 'hole' in the file that we need to deal with by zeroing
1503 * out the affected area in the upl
1504 */
1505 if (io_size >= (u_int)non_rounded_size) {
1506 /*
1507 * if this upl contains the EOF and it is not a multiple of PAGE_SIZE
1508 * than 'zero_offset' will be non-zero
1509 * if the 'hole' returned by vnop_blockmap extends all the way to the eof
1510 * (indicated by the io_size finishing off the I/O request for this UPL)
1511 * than we're not going to issue an I/O for the
1512 * last page in this upl... we need to zero both the hole and the tail
1513 * of the page beyond the EOF, since the delayed zero-fill won't kick in
1514 */
1515 bytes_to_zero = non_rounded_size;
1516 if (!(flags & CL_NOZERO))
1517 bytes_to_zero = (((upl_offset + io_size) + (PAGE_SIZE - 1)) & ~PAGE_MASK) - upl_offset;
1518
1519 zero_offset = 0;
1520 } else
1521 bytes_to_zero = io_size;
1522
1523 pg_count = 0;
1524
1525 cluster_zero(upl, upl_offset, bytes_to_zero, real_bp);
1526
1527 if (cbp_head) {
1528 int pg_resid;
1529
1530 /*
1531 * if there is a current I/O chain pending
1532 * then the first page of the group we just zero'd
1533 * will be handled by the I/O completion if the zero
1534 * fill started in the middle of the page
1535 */
1536 commit_offset = (upl_offset + (PAGE_SIZE - 1)) & ~PAGE_MASK;
1537
1538 pg_resid = commit_offset - upl_offset;
1539
1540 if (bytes_to_zero >= pg_resid) {
1541 /*
1542 * the last page of the current I/O
1543 * has been completed...
1544 * compute the number of fully zero'd
1545 * pages that are beyond it
1546 * plus the last page if its partial
1547 * and we have no more I/O to issue...
1548 * otherwise a partial page is left
1549 * to begin the next I/O
1550 */
1551 if ((int)io_size >= non_rounded_size)
1552 pg_count = (bytes_to_zero - pg_resid + (PAGE_SIZE - 1)) / PAGE_SIZE;
1553 else
1554 pg_count = (bytes_to_zero - pg_resid) / PAGE_SIZE;
1555
1556 complete_transaction_now = 1;
1557 }
1558 } else {
1559 /*
1560 * no pending I/O to deal with
1561 * so, commit all of the fully zero'd pages
1562 * plus the last page if its partial
1563 * and we have no more I/O to issue...
1564 * otherwise a partial page is left
1565 * to begin the next I/O
1566 */
1567 if ((int)io_size >= non_rounded_size)
1568 pg_count = (pg_offset + bytes_to_zero + (PAGE_SIZE - 1)) / PAGE_SIZE;
1569 else
1570 pg_count = (pg_offset + bytes_to_zero) / PAGE_SIZE;
1571
1572 commit_offset = upl_offset & ~PAGE_MASK;
1573 }
1574
1575 // Associated UPL is currently only used in the direct write path
1576 assert(!upl_associated_upl(upl));
1577
1578 if ( (flags & CL_COMMIT) && pg_count) {
1579 ubc_upl_commit_range(upl, commit_offset, pg_count * PAGE_SIZE,
1580 UPL_COMMIT_CLEAR_DIRTY | UPL_COMMIT_FREE_ON_EMPTY);
1581 }
1582 upl_offset += io_size;
1583 f_offset += io_size;
1584 size -= io_size;
1585
1586 /*
1587 * keep track of how much of the original request
1588 * that we've actually completed... non_rounded_size
1589 * may go negative due to us rounding the request
1590 * to a page size multiple (i.e. size > non_rounded_size)
1591 */
1592 non_rounded_size -= io_size;
1593
1594 if (non_rounded_size <= 0) {
1595 /*
1596 * we've transferred all of the data in the original
1597 * request, but we were unable to complete the tail
1598 * of the last page because the file didn't have
1599 * an allocation to back that portion... this is ok.
1600 */
1601 size = 0;
1602 }
1603 if (cbp_head && (complete_transaction_now || size == 0)) {
1604 cluster_wait_IO(cbp_head, (flags & CL_ASYNC));
1605
1606 cluster_EOT(cbp_head, cbp_tail, size == 0 ? zero_offset : 0);
1607
1608 cluster_complete_transaction(&cbp_head, callback_arg, &retval, flags, 0);
1609
1610 trans_count = 0;
1611 }
1612 continue;
1613 }
1614 if (pg_count > max_vectors) {
1615 if (((pg_count - max_vectors) * PAGE_SIZE) > io_size) {
1616 io_size = PAGE_SIZE - pg_offset;
1617 pg_count = 1;
1618 } else {
1619 io_size -= (pg_count - max_vectors) * PAGE_SIZE;
1620 pg_count = max_vectors;
1621 }
1622 }
1623 /*
1624 * If the transaction is going to reach the maximum number of
1625 * desired elements, truncate the i/o to the nearest page so
1626 * that the actual i/o is initiated after this buffer is
1627 * created and added to the i/o chain.
1628 *
1629 * I/O directed to physically contiguous memory
1630 * doesn't have a requirement to make sure we 'fill' a page
1631 */
1632 if ( !(flags & CL_DEV_MEMORY) && trans_count >= max_trans_count &&
1633 ((upl_offset + io_size) & PAGE_MASK)) {
1634 vm_offset_t aligned_ofs;
1635
1636 aligned_ofs = (upl_offset + io_size) & ~PAGE_MASK;
1637 /*
1638 * If the io_size does not actually finish off even a
1639 * single page we have to keep adding buffers to the
1640 * transaction despite having reached the desired limit.
1641 *
1642 * Eventually we get here with the page being finished
1643 * off (and exceeded) and then we truncate the size of
1644 * this i/o request so that it is page aligned so that
1645 * we can finally issue the i/o on the transaction.
1646 */
1647 if (aligned_ofs > upl_offset) {
1648 io_size = aligned_ofs - upl_offset;
1649 pg_count--;
1650 }
1651 }
1652
1653 if ( !(mp->mnt_kern_flag & MNTK_VIRTUALDEV))
1654 /*
1655 * if we're not targeting a virtual device i.e. a disk image
1656 * it's safe to dip into the reserve pool since real devices
1657 * can complete this I/O request without requiring additional
1658 * bufs from the alloc_io_buf pool
1659 */
1660 priv = 1;
1661 else if ((flags & CL_ASYNC) && !(flags & CL_PAGEOUT))
1662 /*
1663 * Throttle the speculative IO
1664 */
1665 priv = 0;
1666 else
1667 priv = 1;
1668
1669 cbp = alloc_io_buf(vp, priv);
1670
1671 if (flags & CL_PAGEOUT) {
1672 u_int i;
1673
1674 /*
1675 * since blocks are in offsets of 0x1000, scale
1676 * iteration to (PAGE_SIZE * pg_count) of blks.
1677 */
1678 for (i = 0; i < (PAGE_SIZE * pg_count)/0x1000; i++) {
1679 if (buf_invalblkno(vp, lblkno + i, 0) == EBUSY)
1680 panic("BUSY bp found in cluster_io");
1681 }
1682 }
1683 if (flags & CL_ASYNC) {
1684 if (buf_setcallback(cbp, (void *)cluster_iodone, callback_arg))
1685 panic("buf_setcallback failed\n");
1686 }
1687 cbp->b_cliodone = (void *)callback;
1688 cbp->b_flags |= io_flags;
1689 if (flags & CL_NOCACHE)
1690 cbp->b_attr.ba_flags |= BA_NOCACHE;
1691
1692 cbp->b_lblkno = lblkno;
1693 cbp->b_blkno = blkno;
1694 cbp->b_bcount = io_size;
1695
1696 if (buf_setupl(cbp, upl, upl_offset))
1697 panic("buf_setupl failed\n");
1698#if CONFIG_IOSCHED
1699 upl_set_blkno(upl, upl_offset, io_size, blkno);
1700#endif
1701 cbp->b_trans_next = (buf_t)NULL;
1702
1703 if ((cbp->b_iostate = (void *)iostate))
1704 /*
1705 * caller wants to track the state of this
1706 * io... bump the amount issued against this stream
1707 */
1708 iostate->io_issued += io_size;
1709
1710 if (flags & CL_READ) {
1711 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 26)) | DBG_FUNC_NONE,
1712 (int)cbp->b_lblkno, (int)cbp->b_blkno, upl_offset, io_size, 0);
1713 }
1714 else {
1715 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 27)) | DBG_FUNC_NONE,
1716 (int)cbp->b_lblkno, (int)cbp->b_blkno, upl_offset, io_size, 0);
1717 }
1718
1719 if (cbp_head) {
1720 cbp_tail->b_trans_next = cbp;
1721 cbp_tail = cbp;
1722 } else {
1723 cbp_head = cbp;
1724 cbp_tail = cbp;
1725
1726 if ( (cbp_head->b_real_bp = real_bp) )
1727 real_bp = (buf_t)NULL;
1728 }
1729 *(buf_t *)(&cbp->b_trans_head) = cbp_head;
1730
1731 trans_count++;
1732
1733 upl_offset += io_size;
1734 f_offset += io_size;
1735 size -= io_size;
1736 /*
1737 * keep track of how much of the original request
1738 * that we've actually completed... non_rounded_size
1739 * may go negative due to us rounding the request
1740 * to a page size multiple (i.e. size > non_rounded_size)
1741 */
1742 non_rounded_size -= io_size;
1743
1744 if (non_rounded_size <= 0) {
1745 /*
1746 * we've transferred all of the data in the original
1747 * request, but we were unable to complete the tail
1748 * of the last page because the file didn't have
1749 * an allocation to back that portion... this is ok.
1750 */
1751 size = 0;
1752 }
1753 if (size == 0) {
1754 /*
1755 * we have no more I/O to issue, so go
1756 * finish the final transaction
1757 */
1758 need_EOT = TRUE;
1759 } else if ( ((flags & CL_DEV_MEMORY) || (upl_offset & PAGE_MASK) == 0) &&
1760 ((flags & CL_ASYNC) || trans_count > max_trans_count) ) {
1761 /*
1762 * I/O directed to physically contiguous memory...
1763 * which doesn't have a requirement to make sure we 'fill' a page
1764 * or...
1765 * the current I/O we've prepared fully
1766 * completes the last page in this request
1767 * and ...
1768 * it's either an ASYNC request or
1769 * we've already accumulated more than 8 I/O's into
1770 * this transaction so mark it as complete so that
1771 * it can finish asynchronously or via the cluster_complete_transaction
1772 * below if the request is synchronous
1773 */
1774 need_EOT = TRUE;
1775 }
1776 if (need_EOT == TRUE)
1777 cluster_EOT(cbp_head, cbp_tail, size == 0 ? zero_offset : 0);
1778
1779 if (flags & CL_THROTTLE)
1780 (void)vnode_waitforwrites(vp, async_throttle, 0, 0, "cluster_io");
1781
1782 if ( !(io_flags & B_READ))
1783 vnode_startwrite(vp);
1784
1785 if (flags & CL_RAW_ENCRYPTED) {
1786 /*
1787 * User requested raw encrypted bytes.
1788 * Twiddle the bit in the ba_flags for the buffer
1789 */
1790 cbp->b_attr.ba_flags |= BA_RAW_ENCRYPTED_IO;
1791 }
1792
1793 (void) VNOP_STRATEGY(cbp);
1794
1795 if (need_EOT == TRUE) {
1796 if ( !(flags & CL_ASYNC))
1797 cluster_complete_transaction(&cbp_head, callback_arg, &retval, flags, 1);
1798
1799 need_EOT = FALSE;
1800 trans_count = 0;
1801 cbp_head = NULL;
1802 }
1803 }
1804 if (error) {
1805 int abort_size;
1806
1807 io_size = 0;
1808
1809 if (cbp_head) {
1810 /*
1811 * Wait until all of the outstanding I/O
1812 * for this partial transaction has completed
1813 */
1814 cluster_wait_IO(cbp_head, (flags & CL_ASYNC));
1815
1816 /*
1817 * Rewind the upl offset to the beginning of the
1818 * transaction.
1819 */
1820 upl_offset = cbp_head->b_uploffset;
1821 }
1822
1823 if (ISSET(flags, CL_COMMIT)) {
1824 cluster_handle_associated_upl(iostate, upl, upl_offset,
1825 upl_end_offset - upl_offset);
1826 }
1827
1828 // Free all the IO buffers in this transaction
1829 for (cbp = cbp_head; cbp;) {
1830 buf_t cbp_next;
1831
1832 size += cbp->b_bcount;
1833 io_size += cbp->b_bcount;
1834
1835 cbp_next = cbp->b_trans_next;
1836 free_io_buf(cbp);
1837 cbp = cbp_next;
1838 }
1839
1840 if (iostate) {
1841 int need_wakeup = 0;
1842
1843 /*
1844 * update the error condition for this stream
1845 * since we never really issued the io
1846 * just go ahead and adjust it back
1847 */
1848 lck_mtx_lock_spin(&iostate->io_mtxp);
1849
1850 if (iostate->io_error == 0)
1851 iostate->io_error = error;
1852 iostate->io_issued -= io_size;
1853
1854 if (iostate->io_wanted) {
1855 /*
1856 * someone is waiting for the state of
1857 * this io stream to change
1858 */
1859 iostate->io_wanted = 0;
1860 need_wakeup = 1;
1861 }
1862 lck_mtx_unlock(&iostate->io_mtxp);
1863
1864 if (need_wakeup)
1865 wakeup((caddr_t)&iostate->io_wanted);
1866 }
1867
1868 if (flags & CL_COMMIT) {
1869 int upl_flags;
1870
1871 pg_offset = upl_offset & PAGE_MASK;
1872 abort_size = (upl_end_offset - upl_offset + PAGE_MASK) & ~PAGE_MASK;
1873
1874 upl_flags = cluster_ioerror(upl, upl_offset - pg_offset, abort_size, error, io_flags, vp);
1875
1876 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 28)) | DBG_FUNC_NONE,
1877 upl, upl_offset - pg_offset, abort_size, (error << 24) | upl_flags, 0);
1878 }
1879 if (retval == 0)
1880 retval = error;
1881 } else if (cbp_head)
1882 panic("%s(): cbp_head is not NULL.\n", __FUNCTION__);
1883
1884 if (real_bp) {
1885 /*
1886 * can get here if we either encountered an error
1887 * or we completely zero-filled the request and
1888 * no I/O was issued
1889 */
1890 if (error) {
1891 real_bp->b_flags |= B_ERROR;
1892 real_bp->b_error = error;
1893 }
1894 buf_biodone(real_bp);
1895 }
1896 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 22)) | DBG_FUNC_END, (int)f_offset, size, upl_offset, retval, 0);
1897
1898 return (retval);
1899}
1900
1901#define reset_vector_run_state() \
1902 issueVectorUPL = vector_upl_offset = vector_upl_index = vector_upl_iosize = vector_upl_size = 0;
1903
1904static int
1905vector_cluster_io(vnode_t vp, upl_t vector_upl, vm_offset_t vector_upl_offset, off_t v_upl_uio_offset, int vector_upl_iosize,
1906 int io_flag, buf_t real_bp, struct clios *iostate, int (*callback)(buf_t, void *), void *callback_arg)
1907{
1908 vector_upl_set_pagelist(vector_upl);
1909
1910 if(io_flag & CL_READ) {
1911 if(vector_upl_offset == 0 && ((vector_upl_iosize & PAGE_MASK)==0))
1912 io_flag &= ~CL_PRESERVE; /*don't zero fill*/
1913 else
1914 io_flag |= CL_PRESERVE; /*zero fill*/
1915 }
1916 return (cluster_io(vp, vector_upl, vector_upl_offset, v_upl_uio_offset, vector_upl_iosize, io_flag, real_bp, iostate, callback, callback_arg));
1917
1918}
1919
1920static int
1921cluster_read_prefetch(vnode_t vp, off_t f_offset, u_int size, off_t filesize, int (*callback)(buf_t, void *), void *callback_arg, int bflag)
1922{
1923 int pages_in_prefetch;
1924
1925 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 49)) | DBG_FUNC_START,
1926 (int)f_offset, size, (int)filesize, 0, 0);
1927
1928 if (f_offset >= filesize) {
1929 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 49)) | DBG_FUNC_END,
1930 (int)f_offset, 0, 0, 0, 0);
1931 return(0);
1932 }
1933 if ((off_t)size > (filesize - f_offset))
1934 size = filesize - f_offset;
1935 pages_in_prefetch = (size + (PAGE_SIZE - 1)) / PAGE_SIZE;
1936
1937 advisory_read_ext(vp, filesize, f_offset, size, callback, callback_arg, bflag);
1938
1939 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 49)) | DBG_FUNC_END,
1940 (int)f_offset + size, pages_in_prefetch, 0, 1, 0);
1941
1942 return (pages_in_prefetch);
1943}
1944
1945
1946
1947static void
1948cluster_read_ahead(vnode_t vp, struct cl_extent *extent, off_t filesize, struct cl_readahead *rap, int (*callback)(buf_t, void *), void *callback_arg,
1949 int bflag)
1950{
1951 daddr64_t r_addr;
1952 off_t f_offset;
1953 int size_of_prefetch;
1954 u_int max_prefetch;
1955
1956
1957 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_START,
1958 (int)extent->b_addr, (int)extent->e_addr, (int)rap->cl_lastr, 0, 0);
1959
1960 if (extent->b_addr == rap->cl_lastr && extent->b_addr == extent->e_addr) {
1961 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END,
1962 rap->cl_ralen, (int)rap->cl_maxra, (int)rap->cl_lastr, 0, 0);
1963 return;
1964 }
1965 if (rap->cl_lastr == -1 || (extent->b_addr != rap->cl_lastr && extent->b_addr != (rap->cl_lastr + 1))) {
1966 rap->cl_ralen = 0;
1967 rap->cl_maxra = 0;
1968
1969 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END,
1970 rap->cl_ralen, (int)rap->cl_maxra, (int)rap->cl_lastr, 1, 0);
1971
1972 return;
1973 }
1974 max_prefetch = MAX_PREFETCH(vp, cluster_max_io_size(vp->v_mount, CL_READ), (vp->v_mount->mnt_kern_flag & MNTK_SSD));
1975
1976 if (max_prefetch > speculative_prefetch_max)
1977 max_prefetch = speculative_prefetch_max;
1978
1979 if (max_prefetch <= PAGE_SIZE) {
1980 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END,
1981 rap->cl_ralen, (int)rap->cl_maxra, (int)rap->cl_lastr, 6, 0);
1982 return;
1983 }
1984 if (extent->e_addr < rap->cl_maxra && rap->cl_ralen >= 4) {
1985 if ((rap->cl_maxra - extent->e_addr) > (rap->cl_ralen / 4)) {
1986
1987 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END,
1988 rap->cl_ralen, (int)rap->cl_maxra, (int)rap->cl_lastr, 2, 0);
1989 return;
1990 }
1991 }
1992 r_addr = max(extent->e_addr, rap->cl_maxra) + 1;
1993 f_offset = (off_t)(r_addr * PAGE_SIZE_64);
1994
1995 size_of_prefetch = 0;
1996
1997 ubc_range_op(vp, f_offset, f_offset + PAGE_SIZE_64, UPL_ROP_PRESENT, &size_of_prefetch);
1998
1999 if (size_of_prefetch) {
2000 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END,
2001 rap->cl_ralen, (int)rap->cl_maxra, (int)rap->cl_lastr, 3, 0);
2002 return;
2003 }
2004 if (f_offset < filesize) {
2005 daddr64_t read_size;
2006
2007 rap->cl_ralen = rap->cl_ralen ? min(max_prefetch / PAGE_SIZE, rap->cl_ralen << 1) : 1;
2008
2009 read_size = (extent->e_addr + 1) - extent->b_addr;
2010
2011 if (read_size > rap->cl_ralen) {
2012 if (read_size > max_prefetch / PAGE_SIZE)
2013 rap->cl_ralen = max_prefetch / PAGE_SIZE;
2014 else
2015 rap->cl_ralen = read_size;
2016 }
2017 size_of_prefetch = cluster_read_prefetch(vp, f_offset, rap->cl_ralen * PAGE_SIZE, filesize, callback, callback_arg, bflag);
2018
2019 if (size_of_prefetch)
2020 rap->cl_maxra = (r_addr + size_of_prefetch) - 1;
2021 }
2022 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END,
2023 rap->cl_ralen, (int)rap->cl_maxra, (int)rap->cl_lastr, 4, 0);
2024}
2025
2026
2027int
2028cluster_pageout(vnode_t vp, upl_t upl, upl_offset_t upl_offset, off_t f_offset,
2029 int size, off_t filesize, int flags)
2030{
2031 return cluster_pageout_ext(vp, upl, upl_offset, f_offset, size, filesize, flags, NULL, NULL);
2032
2033}
2034
2035
2036int
2037cluster_pageout_ext(vnode_t vp, upl_t upl, upl_offset_t upl_offset, off_t f_offset,
2038 int size, off_t filesize, int flags, int (*callback)(buf_t, void *), void *callback_arg)
2039{
2040 int io_size;
2041 int rounded_size;
2042 off_t max_size;
2043 int local_flags;
2044
2045 local_flags = CL_PAGEOUT | CL_THROTTLE;
2046
2047 if ((flags & UPL_IOSYNC) == 0)
2048 local_flags |= CL_ASYNC;
2049 if ((flags & UPL_NOCOMMIT) == 0)
2050 local_flags |= CL_COMMIT;
2051 if ((flags & UPL_KEEPCACHED))
2052 local_flags |= CL_KEEPCACHED;
2053 if (flags & UPL_PAGING_ENCRYPTED)
2054 local_flags |= CL_ENCRYPTED;
2055
2056
2057 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 52)) | DBG_FUNC_NONE,
2058 (int)f_offset, size, (int)filesize, local_flags, 0);
2059
2060 /*
2061 * If they didn't specify any I/O, then we are done...
2062 * we can't issue an abort because we don't know how
2063 * big the upl really is
2064 */
2065 if (size <= 0)
2066 return (EINVAL);
2067
2068 if (vp->v_mount->mnt_flag & MNT_RDONLY) {
2069 if (local_flags & CL_COMMIT)
2070 ubc_upl_abort_range(upl, upl_offset, size, UPL_ABORT_FREE_ON_EMPTY);
2071 return (EROFS);
2072 }
2073 /*
2074 * can't page-in from a negative offset
2075 * or if we're starting beyond the EOF
2076 * or if the file offset isn't page aligned
2077 * or the size requested isn't a multiple of PAGE_SIZE
2078 */
2079 if (f_offset < 0 || f_offset >= filesize ||
2080 (f_offset & PAGE_MASK_64) || (size & PAGE_MASK)) {
2081 if (local_flags & CL_COMMIT)
2082 ubc_upl_abort_range(upl, upl_offset, size, UPL_ABORT_FREE_ON_EMPTY);
2083 return (EINVAL);
2084 }
2085 max_size = filesize - f_offset;
2086
2087 if (size < max_size)
2088 io_size = size;
2089 else
2090 io_size = max_size;
2091
2092 rounded_size = (io_size + (PAGE_SIZE - 1)) & ~PAGE_MASK;
2093
2094 if (size > rounded_size) {
2095 if (local_flags & CL_COMMIT)
2096 ubc_upl_abort_range(upl, upl_offset + rounded_size, size - rounded_size,
2097 UPL_ABORT_FREE_ON_EMPTY);
2098 }
2099 return (cluster_io(vp, upl, upl_offset, f_offset, io_size,
2100 local_flags, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg));
2101}
2102
2103
2104int
2105cluster_pagein(vnode_t vp, upl_t upl, upl_offset_t upl_offset, off_t f_offset,
2106 int size, off_t filesize, int flags)
2107{
2108 return cluster_pagein_ext(vp, upl, upl_offset, f_offset, size, filesize, flags, NULL, NULL);
2109}
2110
2111
2112int
2113cluster_pagein_ext(vnode_t vp, upl_t upl, upl_offset_t upl_offset, off_t f_offset,
2114 int size, off_t filesize, int flags, int (*callback)(buf_t, void *), void *callback_arg)
2115{
2116 u_int io_size;
2117 int rounded_size;
2118 off_t max_size;
2119 int retval;
2120 int local_flags = 0;
2121
2122 if (upl == NULL || size < 0)
2123 panic("cluster_pagein: NULL upl passed in");
2124
2125 if ((flags & UPL_IOSYNC) == 0)
2126 local_flags |= CL_ASYNC;
2127 if ((flags & UPL_NOCOMMIT) == 0)
2128 local_flags |= CL_COMMIT;
2129 if (flags & UPL_IOSTREAMING)
2130 local_flags |= CL_IOSTREAMING;
2131 if (flags & UPL_PAGING_ENCRYPTED)
2132 local_flags |= CL_ENCRYPTED;
2133
2134
2135 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 56)) | DBG_FUNC_NONE,
2136 (int)f_offset, size, (int)filesize, local_flags, 0);
2137
2138 /*
2139 * can't page-in from a negative offset
2140 * or if we're starting beyond the EOF
2141 * or if the file offset isn't page aligned
2142 * or the size requested isn't a multiple of PAGE_SIZE
2143 */
2144 if (f_offset < 0 || f_offset >= filesize ||
2145 (f_offset & PAGE_MASK_64) || (size & PAGE_MASK) || (upl_offset & PAGE_MASK)) {
2146 if (local_flags & CL_COMMIT)
2147 ubc_upl_abort_range(upl, upl_offset, size, UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_ERROR);
2148 return (EINVAL);
2149 }
2150 max_size = filesize - f_offset;
2151
2152 if (size < max_size)
2153 io_size = size;
2154 else
2155 io_size = max_size;
2156
2157 rounded_size = (io_size + (PAGE_SIZE - 1)) & ~PAGE_MASK;
2158
2159 if (size > rounded_size && (local_flags & CL_COMMIT))
2160 ubc_upl_abort_range(upl, upl_offset + rounded_size,
2161 size - rounded_size, UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_ERROR);
2162
2163 retval = cluster_io(vp, upl, upl_offset, f_offset, io_size,
2164 local_flags | CL_READ | CL_PAGEIN, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg);
2165
2166 return (retval);
2167}
2168
2169
2170int
2171cluster_bp(buf_t bp)
2172{
2173 return cluster_bp_ext(bp, NULL, NULL);
2174}
2175
2176
2177int
2178cluster_bp_ext(buf_t bp, int (*callback)(buf_t, void *), void *callback_arg)
2179{
2180 off_t f_offset;
2181 int flags;
2182
2183 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 19)) | DBG_FUNC_START,
2184 bp, (int)bp->b_lblkno, bp->b_bcount, bp->b_flags, 0);
2185
2186 if (bp->b_flags & B_READ)
2187 flags = CL_ASYNC | CL_READ;
2188 else
2189 flags = CL_ASYNC;
2190 if (bp->b_flags & B_PASSIVE)
2191 flags |= CL_PASSIVE;
2192
2193 f_offset = ubc_blktooff(bp->b_vp, bp->b_lblkno);
2194
2195 return (cluster_io(bp->b_vp, bp->b_upl, 0, f_offset, bp->b_bcount, flags, bp, (struct clios *)NULL, callback, callback_arg));
2196}
2197
2198
2199
2200int
2201cluster_write(vnode_t vp, struct uio *uio, off_t oldEOF, off_t newEOF, off_t headOff, off_t tailOff, int xflags)
2202{
2203 return cluster_write_ext(vp, uio, oldEOF, newEOF, headOff, tailOff, xflags, NULL, NULL);
2204}
2205
2206
2207int
2208cluster_write_ext(vnode_t vp, struct uio *uio, off_t oldEOF, off_t newEOF, off_t headOff, off_t tailOff,
2209 int xflags, int (*callback)(buf_t, void *), void *callback_arg)
2210{
2211 user_ssize_t cur_resid;
2212 int retval = 0;
2213 int flags;
2214 int zflags;
2215 int bflag;
2216 int write_type = IO_COPY;
2217 u_int32_t write_length;
2218
2219 flags = xflags;
2220
2221 if (flags & IO_PASSIVE)
2222 bflag = CL_PASSIVE;
2223 else
2224 bflag = 0;
2225
2226 if (vp->v_flag & VNOCACHE_DATA){
2227 flags |= IO_NOCACHE;
2228 bflag |= CL_NOCACHE;
2229 }
2230 if (uio == NULL) {
2231 /*
2232 * no user data...
2233 * this call is being made to zero-fill some range in the file
2234 */
2235 retval = cluster_write_copy(vp, NULL, (u_int32_t)0, oldEOF, newEOF, headOff, tailOff, flags, callback, callback_arg);
2236
2237 return(retval);
2238 }
2239 /*
2240 * do a write through the cache if one of the following is true....
2241 * NOCACHE is not true or NODIRECT is true
2242 * the uio request doesn't target USERSPACE
2243 * otherwise, find out if we want the direct or contig variant for
2244 * the first vector in the uio request
2245 */
2246 if ( ((flags & (IO_NOCACHE | IO_NODIRECT)) == IO_NOCACHE) && UIO_SEG_IS_USER_SPACE(uio->uio_segflg) )
2247 retval = cluster_io_type(uio, &write_type, &write_length, MIN_DIRECT_WRITE_SIZE);
2248
2249 if ( (flags & (IO_TAILZEROFILL | IO_HEADZEROFILL)) && write_type == IO_DIRECT)
2250 /*
2251 * must go through the cached variant in this case
2252 */
2253 write_type = IO_COPY;
2254
2255 while ((cur_resid = uio_resid(uio)) && uio->uio_offset < newEOF && retval == 0) {
2256
2257 switch (write_type) {
2258
2259 case IO_COPY:
2260 /*
2261 * make sure the uio_resid isn't too big...
2262 * internally, we want to handle all of the I/O in
2263 * chunk sizes that fit in a 32 bit int
2264 */
2265 if (cur_resid > (user_ssize_t)(MAX_IO_REQUEST_SIZE)) {
2266 /*
2267 * we're going to have to call cluster_write_copy
2268 * more than once...
2269 *
2270 * only want the last call to cluster_write_copy to
2271 * have the IO_TAILZEROFILL flag set and only the
2272 * first call should have IO_HEADZEROFILL
2273 */
2274 zflags = flags & ~IO_TAILZEROFILL;
2275 flags &= ~IO_HEADZEROFILL;
2276
2277 write_length = MAX_IO_REQUEST_SIZE;
2278 } else {
2279 /*
2280 * last call to cluster_write_copy
2281 */
2282 zflags = flags;
2283
2284 write_length = (u_int32_t)cur_resid;
2285 }
2286 retval = cluster_write_copy(vp, uio, write_length, oldEOF, newEOF, headOff, tailOff, zflags, callback, callback_arg);
2287 break;
2288
2289 case IO_CONTIG:
2290 zflags = flags & ~(IO_TAILZEROFILL | IO_HEADZEROFILL);
2291
2292 if (flags & IO_HEADZEROFILL) {
2293 /*
2294 * only do this once per request
2295 */
2296 flags &= ~IO_HEADZEROFILL;
2297
2298 retval = cluster_write_copy(vp, (struct uio *)0, (u_int32_t)0, (off_t)0, uio->uio_offset,
2299 headOff, (off_t)0, zflags | IO_HEADZEROFILL | IO_SYNC, callback, callback_arg);
2300 if (retval)
2301 break;
2302 }
2303 retval = cluster_write_contig(vp, uio, newEOF, &write_type, &write_length, callback, callback_arg, bflag);
2304
2305 if (retval == 0 && (flags & IO_TAILZEROFILL) && uio_resid(uio) == 0) {
2306 /*
2307 * we're done with the data from the user specified buffer(s)
2308 * and we've been requested to zero fill at the tail
2309 * treat this as an IO_HEADZEROFILL which doesn't require a uio
2310 * by rearranging the args and passing in IO_HEADZEROFILL
2311 */
2312 retval = cluster_write_copy(vp, (struct uio *)0, (u_int32_t)0, (off_t)0, tailOff, uio->uio_offset,
2313 (off_t)0, zflags | IO_HEADZEROFILL | IO_SYNC, callback, callback_arg);
2314 }
2315 break;
2316
2317 case IO_DIRECT:
2318 /*
2319 * cluster_write_direct is never called with IO_TAILZEROFILL || IO_HEADZEROFILL
2320 */
2321 retval = cluster_write_direct(vp, uio, oldEOF, newEOF, &write_type, &write_length, flags, callback, callback_arg);
2322 break;
2323
2324 case IO_UNKNOWN:
2325 retval = cluster_io_type(uio, &write_type, &write_length, MIN_DIRECT_WRITE_SIZE);
2326 break;
2327 }
2328 /*
2329 * in case we end up calling cluster_write_copy (from cluster_write_direct)
2330 * multiple times to service a multi-vector request that is not aligned properly
2331 * we need to update the oldEOF so that we
2332 * don't zero-fill the head of a page if we've successfully written
2333 * data to that area... 'cluster_write_copy' will zero-fill the head of a
2334 * page that is beyond the oldEOF if the write is unaligned... we only
2335 * want that to happen for the very first page of the cluster_write,
2336 * NOT the first page of each vector making up a multi-vector write.
2337 */
2338 if (uio->uio_offset > oldEOF)
2339 oldEOF = uio->uio_offset;
2340 }
2341 return (retval);
2342}
2343
2344
2345static int
2346cluster_write_direct(vnode_t vp, struct uio *uio, off_t oldEOF, off_t newEOF, int *write_type, u_int32_t *write_length,
2347 int flags, int (*callback)(buf_t, void *), void *callback_arg)
2348{
2349 upl_t upl;
2350 upl_page_info_t *pl;
2351 vm_offset_t upl_offset;
2352 vm_offset_t vector_upl_offset = 0;
2353 u_int32_t io_req_size;
2354 u_int32_t offset_in_file;
2355 u_int32_t offset_in_iovbase;
2356 u_int32_t io_size;
2357 int io_flag = 0;
2358 upl_size_t upl_size, vector_upl_size = 0;
2359 vm_size_t upl_needed_size;
2360 mach_msg_type_number_t pages_in_pl;
2361 upl_control_flags_t upl_flags;
2362 kern_return_t kret;
2363 mach_msg_type_number_t i;
2364 int force_data_sync;
2365 int retval = 0;
2366 int first_IO = 1;
2367 struct clios iostate;
2368 user_addr_t iov_base;
2369 u_int32_t mem_alignment_mask;
2370 u_int32_t devblocksize;
2371 u_int32_t max_io_size;
2372 u_int32_t max_upl_size;
2373 u_int32_t max_vector_size;
2374 u_int32_t bytes_outstanding_limit;
2375 boolean_t io_throttled = FALSE;
2376
2377 u_int32_t vector_upl_iosize = 0;
2378 int issueVectorUPL = 0,useVectorUPL = (uio->uio_iovcnt > 1);
2379 off_t v_upl_uio_offset = 0;
2380 int vector_upl_index=0;
2381 upl_t vector_upl = NULL;
2382
2383
2384 /*
2385 * When we enter this routine, we know
2386 * -- the resid will not exceed iov_len
2387 */
2388 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 75)) | DBG_FUNC_START,
2389 (int)uio->uio_offset, *write_length, (int)newEOF, 0, 0);
2390
2391 max_upl_size = cluster_max_io_size(vp->v_mount, CL_WRITE);
2392
2393 io_flag = CL_ASYNC | CL_PRESERVE | CL_COMMIT | CL_THROTTLE | CL_DIRECT_IO;
2394
2395 if (flags & IO_PASSIVE)
2396 io_flag |= CL_PASSIVE;
2397
2398 if (flags & IO_NOCACHE)
2399 io_flag |= CL_NOCACHE;
2400
2401 if (flags & IO_SKIP_ENCRYPTION)
2402 io_flag |= CL_ENCRYPTED;
2403
2404 iostate.io_completed = 0;
2405 iostate.io_issued = 0;
2406 iostate.io_error = 0;
2407 iostate.io_wanted = 0;
2408
2409 lck_mtx_init(&iostate.io_mtxp, cl_mtx_grp, cl_mtx_attr);
2410
2411 mem_alignment_mask = (u_int32_t)vp->v_mount->mnt_alignmentmask;
2412 devblocksize = (u_int32_t)vp->v_mount->mnt_devblocksize;
2413
2414 if (devblocksize == 1) {
2415 /*
2416 * the AFP client advertises a devblocksize of 1
2417 * however, its BLOCKMAP routine maps to physical
2418 * blocks that are PAGE_SIZE in size...
2419 * therefore we can't ask for I/Os that aren't page aligned
2420 * or aren't multiples of PAGE_SIZE in size
2421 * by setting devblocksize to PAGE_SIZE, we re-instate
2422 * the old behavior we had before the mem_alignment_mask
2423 * changes went in...
2424 */
2425 devblocksize = PAGE_SIZE;
2426 }
2427
2428next_dwrite:
2429 io_req_size = *write_length;
2430 iov_base = uio_curriovbase(uio);
2431
2432 offset_in_file = (u_int32_t)uio->uio_offset & PAGE_MASK;
2433 offset_in_iovbase = (u_int32_t)iov_base & mem_alignment_mask;
2434
2435 if (offset_in_file || offset_in_iovbase) {
2436 /*
2437 * one of the 2 important offsets is misaligned
2438 * so fire an I/O through the cache for this entire vector
2439 */
2440 goto wait_for_dwrites;
2441 }
2442 if (iov_base & (devblocksize - 1)) {
2443 /*
2444 * the offset in memory must be on a device block boundary
2445 * so that we can guarantee that we can generate an
2446 * I/O that ends on a page boundary in cluster_io
2447 */
2448 goto wait_for_dwrites;
2449 }
2450
2451 task_update_logical_writes(current_task(), (io_req_size & ~PAGE_MASK), TASK_WRITE_IMMEDIATE, vp);
2452 while (io_req_size >= PAGE_SIZE && uio->uio_offset < newEOF && retval == 0) {
2453 int throttle_type;
2454
2455 if ( (throttle_type = cluster_is_throttled(vp)) ) {
2456 /*
2457 * we're in the throttle window, at the very least
2458 * we want to limit the size of the I/O we're about
2459 * to issue
2460 */
2461 if ( (flags & IO_RETURN_ON_THROTTLE) && throttle_type == THROTTLE_NOW) {
2462 /*
2463 * we're in the throttle window and at least 1 I/O
2464 * has already been issued by a throttleable thread
2465 * in this window, so return with EAGAIN to indicate
2466 * to the FS issuing the cluster_write call that it
2467 * should now throttle after dropping any locks
2468 */
2469 throttle_info_update_by_mount(vp->v_mount);
2470
2471 io_throttled = TRUE;
2472 goto wait_for_dwrites;
2473 }
2474 max_vector_size = THROTTLE_MAX_IOSIZE;
2475 max_io_size = THROTTLE_MAX_IOSIZE;
2476 } else {
2477 max_vector_size = MAX_VECTOR_UPL_SIZE;
2478 max_io_size = max_upl_size;
2479 }
2480
2481 if (first_IO) {
2482 cluster_syncup(vp, newEOF, callback, callback_arg, callback ? PUSH_SYNC : 0);
2483 first_IO = 0;
2484 }
2485 io_size = io_req_size & ~PAGE_MASK;
2486 iov_base = uio_curriovbase(uio);
2487
2488 if (io_size > max_io_size)
2489 io_size = max_io_size;
2490
2491 if(useVectorUPL && (iov_base & PAGE_MASK)) {
2492 /*
2493 * We have an iov_base that's not page-aligned.
2494 * Issue all I/O's that have been collected within
2495 * this Vectored UPL.
2496 */
2497 if(vector_upl_index) {
2498 retval = vector_cluster_io(vp, vector_upl, vector_upl_offset, v_upl_uio_offset, vector_upl_iosize, io_flag, (buf_t)NULL, &iostate, callback, callback_arg);
2499 reset_vector_run_state();
2500 }
2501
2502 /*
2503 * After this point, if we are using the Vector UPL path and the base is
2504 * not page-aligned then the UPL with that base will be the first in the vector UPL.
2505 */
2506 }
2507
2508 upl_offset = (vm_offset_t)((u_int32_t)iov_base & PAGE_MASK);
2509 upl_needed_size = (upl_offset + io_size + (PAGE_SIZE -1)) & ~PAGE_MASK;
2510
2511 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 76)) | DBG_FUNC_START,
2512 (int)upl_offset, upl_needed_size, (int)iov_base, io_size, 0);
2513
2514 vm_map_t map = UIO_SEG_IS_USER_SPACE(uio->uio_segflg) ? current_map() : kernel_map;
2515 for (force_data_sync = 0; force_data_sync < 3; force_data_sync++) {
2516 pages_in_pl = 0;
2517 upl_size = upl_needed_size;
2518 upl_flags = UPL_FILE_IO | UPL_COPYOUT_FROM | UPL_NO_SYNC |
2519 UPL_CLEAN_IN_PLACE | UPL_SET_INTERNAL | UPL_SET_LITE | UPL_SET_IO_WIRE
2520 | UPL_MEMORY_TAG_MAKE(VM_KERN_MEMORY_FILE);
2521
2522 kret = vm_map_get_upl(map,
2523 (vm_map_offset_t)(iov_base & ~((user_addr_t)PAGE_MASK)),
2524 &upl_size,
2525 &upl,
2526 NULL,
2527 &pages_in_pl,
2528 &upl_flags,
2529 force_data_sync);
2530
2531 if (kret != KERN_SUCCESS) {
2532 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 76)) | DBG_FUNC_END,
2533 0, 0, 0, kret, 0);
2534 /*
2535 * failed to get pagelist
2536 *
2537 * we may have already spun some portion of this request
2538 * off as async requests... we need to wait for the I/O
2539 * to complete before returning
2540 */
2541 goto wait_for_dwrites;
2542 }
2543 pl = UPL_GET_INTERNAL_PAGE_LIST(upl);
2544 pages_in_pl = upl_size / PAGE_SIZE;
2545
2546 for (i = 0; i < pages_in_pl; i++) {
2547 if (!upl_valid_page(pl, i))
2548 break;
2549 }
2550 if (i == pages_in_pl)
2551 break;
2552
2553 /*
2554 * didn't get all the pages back that we
2555 * needed... release this upl and try again
2556 */
2557 ubc_upl_abort(upl, 0);
2558 }
2559 if (force_data_sync >= 3) {
2560 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 76)) | DBG_FUNC_END,
2561 i, pages_in_pl, upl_size, kret, 0);
2562 /*
2563 * for some reason, we couldn't acquire a hold on all
2564 * the pages needed in the user's address space
2565 *
2566 * we may have already spun some portion of this request
2567 * off as async requests... we need to wait for the I/O
2568 * to complete before returning
2569 */
2570 goto wait_for_dwrites;
2571 }
2572
2573 /*
2574 * Consider the possibility that upl_size wasn't satisfied.
2575 */
2576 if (upl_size < upl_needed_size) {
2577 if (upl_size && upl_offset == 0)
2578 io_size = upl_size;
2579 else
2580 io_size = 0;
2581 }
2582 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 76)) | DBG_FUNC_END,
2583 (int)upl_offset, upl_size, (int)iov_base, io_size, 0);
2584
2585 if (io_size == 0) {
2586 ubc_upl_abort(upl, 0);
2587 /*
2588 * we may have already spun some portion of this request
2589 * off as async requests... we need to wait for the I/O
2590 * to complete before returning
2591 */
2592 goto wait_for_dwrites;
2593 }
2594
2595 if(useVectorUPL) {
2596 vm_offset_t end_off = ((iov_base + io_size) & PAGE_MASK);
2597 if(end_off)
2598 issueVectorUPL = 1;
2599 /*
2600 * After this point, if we are using a vector UPL, then
2601 * either all the UPL elements end on a page boundary OR
2602 * this UPL is the last element because it does not end
2603 * on a page boundary.
2604 */
2605 }
2606
2607 /*
2608 * we want push out these writes asynchronously so that we can overlap
2609 * the preparation of the next I/O
2610 * if there are already too many outstanding writes
2611 * wait until some complete before issuing the next
2612 */
2613 if (vp->v_mount->mnt_minsaturationbytecount)
2614 bytes_outstanding_limit = vp->v_mount->mnt_minsaturationbytecount;
2615 else
2616 bytes_outstanding_limit = max_upl_size * IO_SCALE(vp, 2);
2617
2618 cluster_iostate_wait(&iostate, bytes_outstanding_limit, "cluster_write_direct");
2619
2620 if (iostate.io_error) {
2621 /*
2622 * one of the earlier writes we issued ran into a hard error
2623 * don't issue any more writes, cleanup the UPL
2624 * that was just created but not used, then
2625 * go wait for all writes that are part of this stream
2626 * to complete before returning the error to the caller
2627 */
2628 ubc_upl_abort(upl, 0);
2629
2630 goto wait_for_dwrites;
2631 }
2632
2633 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 77)) | DBG_FUNC_START,
2634 (int)upl_offset, (int)uio->uio_offset, io_size, io_flag, 0);
2635
2636 if(!useVectorUPL)
2637 retval = cluster_io(vp, upl, upl_offset, uio->uio_offset,
2638 io_size, io_flag, (buf_t)NULL, &iostate, callback, callback_arg);
2639
2640 else {
2641 if(!vector_upl_index) {
2642 vector_upl = vector_upl_create(upl_offset);
2643 v_upl_uio_offset = uio->uio_offset;
2644 vector_upl_offset = upl_offset;
2645 }
2646
2647 vector_upl_set_subupl(vector_upl,upl,upl_size);
2648 vector_upl_set_iostate(vector_upl, upl, vector_upl_size, upl_size);
2649 vector_upl_index++;
2650 vector_upl_iosize += io_size;
2651 vector_upl_size += upl_size;
2652
2653 if(issueVectorUPL || vector_upl_index == MAX_VECTOR_UPL_ELEMENTS || vector_upl_size >= max_vector_size) {
2654 retval = vector_cluster_io(vp, vector_upl, vector_upl_offset, v_upl_uio_offset, vector_upl_iosize, io_flag, (buf_t)NULL, &iostate, callback, callback_arg);
2655 reset_vector_run_state();
2656 }
2657 }
2658
2659 /*
2660 * update the uio structure to
2661 * reflect the I/O that we just issued
2662 */
2663 uio_update(uio, (user_size_t)io_size);
2664
2665 /*
2666 * in case we end up calling through to cluster_write_copy to finish
2667 * the tail of this request, we need to update the oldEOF so that we
2668 * don't zero-fill the head of a page if we've successfully written
2669 * data to that area... 'cluster_write_copy' will zero-fill the head of a
2670 * page that is beyond the oldEOF if the write is unaligned... we only
2671 * want that to happen for the very first page of the cluster_write,
2672 * NOT the first page of each vector making up a multi-vector write.
2673 */
2674 if (uio->uio_offset > oldEOF)
2675 oldEOF = uio->uio_offset;
2676
2677 io_req_size -= io_size;
2678
2679 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 77)) | DBG_FUNC_END,
2680 (int)upl_offset, (int)uio->uio_offset, io_req_size, retval, 0);
2681
2682 } /* end while */
2683
2684 if (retval == 0 && iostate.io_error == 0 && io_req_size == 0) {
2685
2686 retval = cluster_io_type(uio, write_type, write_length, MIN_DIRECT_WRITE_SIZE);
2687
2688 if (retval == 0 && *write_type == IO_DIRECT) {
2689
2690 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 75)) | DBG_FUNC_NONE,
2691 (int)uio->uio_offset, *write_length, (int)newEOF, 0, 0);
2692
2693 goto next_dwrite;
2694 }
2695 }
2696
2697wait_for_dwrites:
2698
2699 if (retval == 0 && iostate.io_error == 0 && useVectorUPL && vector_upl_index) {
2700 retval = vector_cluster_io(vp, vector_upl, vector_upl_offset, v_upl_uio_offset, vector_upl_iosize, io_flag, (buf_t)NULL, &iostate, callback, callback_arg);
2701 reset_vector_run_state();
2702 }
2703 /*
2704 * make sure all async writes issued as part of this stream
2705 * have completed before we return
2706 */
2707 cluster_iostate_wait(&iostate, 0, "cluster_write_direct");
2708
2709 if (iostate.io_error)
2710 retval = iostate.io_error;
2711
2712 lck_mtx_destroy(&iostate.io_mtxp, cl_mtx_grp);
2713
2714 if (io_throttled == TRUE && retval == 0)
2715 retval = EAGAIN;
2716
2717 if (io_req_size && retval == 0) {
2718 /*
2719 * we couldn't handle the tail of this request in DIRECT mode
2720 * so fire it through the copy path
2721 *
2722 * note that flags will never have IO_HEADZEROFILL or IO_TAILZEROFILL set
2723 * so we can just pass 0 in for the headOff and tailOff
2724 */
2725 if (uio->uio_offset > oldEOF)
2726 oldEOF = uio->uio_offset;
2727
2728 retval = cluster_write_copy(vp, uio, io_req_size, oldEOF, newEOF, (off_t)0, (off_t)0, flags, callback, callback_arg);
2729
2730 *write_type = IO_UNKNOWN;
2731 }
2732 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 75)) | DBG_FUNC_END,
2733 (int)uio->uio_offset, io_req_size, retval, 4, 0);
2734
2735 return (retval);
2736}
2737
2738
2739static int
2740cluster_write_contig(vnode_t vp, struct uio *uio, off_t newEOF, int *write_type, u_int32_t *write_length,
2741 int (*callback)(buf_t, void *), void *callback_arg, int bflag)
2742{
2743 upl_page_info_t *pl;
2744 addr64_t src_paddr = 0;
2745 upl_t upl[MAX_VECTS];
2746 vm_offset_t upl_offset;
2747 u_int32_t tail_size = 0;
2748 u_int32_t io_size;
2749 u_int32_t xsize;
2750 upl_size_t upl_size;
2751 vm_size_t upl_needed_size;
2752 mach_msg_type_number_t pages_in_pl;
2753 upl_control_flags_t upl_flags;
2754 kern_return_t kret;
2755 struct clios iostate;
2756 int error = 0;
2757 int cur_upl = 0;
2758 int num_upl = 0;
2759 int n;
2760 user_addr_t iov_base;
2761 u_int32_t devblocksize;
2762 u_int32_t mem_alignment_mask;
2763
2764 /*
2765 * When we enter this routine, we know
2766 * -- the io_req_size will not exceed iov_len
2767 * -- the target address is physically contiguous
2768 */
2769 cluster_syncup(vp, newEOF, callback, callback_arg, callback ? PUSH_SYNC : 0);
2770
2771 devblocksize = (u_int32_t)vp->v_mount->mnt_devblocksize;
2772 mem_alignment_mask = (u_int32_t)vp->v_mount->mnt_alignmentmask;
2773
2774 iostate.io_completed = 0;
2775 iostate.io_issued = 0;
2776 iostate.io_error = 0;
2777 iostate.io_wanted = 0;
2778
2779 lck_mtx_init(&iostate.io_mtxp, cl_mtx_grp, cl_mtx_attr);
2780
2781next_cwrite:
2782 io_size = *write_length;
2783
2784 iov_base = uio_curriovbase(uio);
2785
2786 upl_offset = (vm_offset_t)((u_int32_t)iov_base & PAGE_MASK);
2787 upl_needed_size = upl_offset + io_size;
2788
2789 pages_in_pl = 0;
2790 upl_size = upl_needed_size;
2791 upl_flags = UPL_FILE_IO | UPL_COPYOUT_FROM | UPL_NO_SYNC |
2792 UPL_CLEAN_IN_PLACE | UPL_SET_INTERNAL | UPL_SET_LITE | UPL_SET_IO_WIRE
2793 | UPL_MEMORY_TAG_MAKE(VM_KERN_MEMORY_FILE);
2794
2795 vm_map_t map = UIO_SEG_IS_USER_SPACE(uio->uio_segflg) ? current_map() : kernel_map;
2796 kret = vm_map_get_upl(map,
2797 (vm_map_offset_t)(iov_base & ~((user_addr_t)PAGE_MASK)),
2798 &upl_size, &upl[cur_upl], NULL, &pages_in_pl, &upl_flags, 0);
2799
2800 if (kret != KERN_SUCCESS) {
2801 /*
2802 * failed to get pagelist
2803 */
2804 error = EINVAL;
2805 goto wait_for_cwrites;
2806 }
2807 num_upl++;
2808
2809 /*
2810 * Consider the possibility that upl_size wasn't satisfied.
2811 */
2812 if (upl_size < upl_needed_size) {
2813 /*
2814 * This is a failure in the physical memory case.
2815 */
2816 error = EINVAL;
2817 goto wait_for_cwrites;
2818 }
2819 pl = ubc_upl_pageinfo(upl[cur_upl]);
2820
2821 src_paddr = ((addr64_t)upl_phys_page(pl, 0) << PAGE_SHIFT) + (addr64_t)upl_offset;
2822
2823 while (((uio->uio_offset & (devblocksize - 1)) || io_size < devblocksize) && io_size) {
2824 u_int32_t head_size;
2825
2826 head_size = devblocksize - (u_int32_t)(uio->uio_offset & (devblocksize - 1));
2827
2828 if (head_size > io_size)
2829 head_size = io_size;
2830
2831 error = cluster_align_phys_io(vp, uio, src_paddr, head_size, 0, callback, callback_arg);
2832
2833 if (error)
2834 goto wait_for_cwrites;
2835
2836 upl_offset += head_size;
2837 src_paddr += head_size;
2838 io_size -= head_size;
2839
2840 iov_base += head_size;
2841 }
2842 if ((u_int32_t)iov_base & mem_alignment_mask) {
2843 /*
2844 * request doesn't set up on a memory boundary
2845 * the underlying DMA engine can handle...
2846 * return an error instead of going through
2847 * the slow copy path since the intent of this
2848 * path is direct I/O from device memory
2849 */
2850 error = EINVAL;
2851 goto wait_for_cwrites;
2852 }
2853
2854 tail_size = io_size & (devblocksize - 1);
2855 io_size -= tail_size;
2856
2857 while (io_size && error == 0) {
2858
2859 if (io_size > MAX_IO_CONTIG_SIZE)
2860 xsize = MAX_IO_CONTIG_SIZE;
2861 else
2862 xsize = io_size;
2863 /*
2864 * request asynchronously so that we can overlap
2865 * the preparation of the next I/O... we'll do
2866 * the commit after all the I/O has completed
2867 * since its all issued against the same UPL
2868 * if there are already too many outstanding writes
2869 * wait until some have completed before issuing the next
2870 */
2871 cluster_iostate_wait(&iostate, MAX_IO_CONTIG_SIZE * IO_SCALE(vp, 2), "cluster_write_contig");
2872
2873 if (iostate.io_error) {
2874 /*
2875 * one of the earlier writes we issued ran into a hard error
2876 * don't issue any more writes...
2877 * go wait for all writes that are part of this stream
2878 * to complete before returning the error to the caller
2879 */
2880 goto wait_for_cwrites;
2881 }
2882 /*
2883 * issue an asynchronous write to cluster_io
2884 */
2885 error = cluster_io(vp, upl[cur_upl], upl_offset, uio->uio_offset,
2886 xsize, CL_DEV_MEMORY | CL_ASYNC | bflag, (buf_t)NULL, (struct clios *)&iostate, callback, callback_arg);
2887
2888 if (error == 0) {
2889 /*
2890 * The cluster_io write completed successfully,
2891 * update the uio structure
2892 */
2893 uio_update(uio, (user_size_t)xsize);
2894
2895 upl_offset += xsize;
2896 src_paddr += xsize;
2897 io_size -= xsize;
2898 }
2899 }
2900 if (error == 0 && iostate.io_error == 0 && tail_size == 0 && num_upl < MAX_VECTS) {
2901
2902 error = cluster_io_type(uio, write_type, write_length, 0);
2903
2904 if (error == 0 && *write_type == IO_CONTIG) {
2905 cur_upl++;
2906 goto next_cwrite;
2907 }
2908 } else
2909 *write_type = IO_UNKNOWN;
2910
2911wait_for_cwrites:
2912 /*
2913 * make sure all async writes that are part of this stream
2914 * have completed before we proceed
2915 */
2916 cluster_iostate_wait(&iostate, 0, "cluster_write_contig");
2917
2918 if (iostate.io_error)
2919 error = iostate.io_error;
2920
2921 lck_mtx_destroy(&iostate.io_mtxp, cl_mtx_grp);
2922
2923 if (error == 0 && tail_size)
2924 error = cluster_align_phys_io(vp, uio, src_paddr, tail_size, 0, callback, callback_arg);
2925
2926 for (n = 0; n < num_upl; n++)
2927 /*
2928 * just release our hold on each physically contiguous
2929 * region without changing any state
2930 */
2931 ubc_upl_abort(upl[n], 0);
2932
2933 return (error);
2934}
2935
2936
2937/*
2938 * need to avoid a race between an msync of a range of pages dirtied via mmap
2939 * vs a filesystem such as HFS deciding to write a 'hole' to disk via cluster_write's
2940 * zerofill mechanism before it has seen the VNOP_PAGEOUTs for the pages being msync'd
2941 *
2942 * we should never force-zero-fill pages that are already valid in the cache...
2943 * the entire page contains valid data (either from disk, zero-filled or dirtied
2944 * via an mmap) so we can only do damage by trying to zero-fill
2945 *
2946 */
2947static int
2948cluster_zero_range(upl_t upl, upl_page_info_t *pl, int flags, int io_offset, off_t zero_off, off_t upl_f_offset, int bytes_to_zero)
2949{
2950 int zero_pg_index;
2951 boolean_t need_cluster_zero = TRUE;
2952
2953 if ((flags & (IO_NOZEROVALID | IO_NOZERODIRTY))) {
2954
2955 bytes_to_zero = min(bytes_to_zero, PAGE_SIZE - (int)(zero_off & PAGE_MASK_64));
2956 zero_pg_index = (int)((zero_off - upl_f_offset) / PAGE_SIZE_64);
2957
2958 if (upl_valid_page(pl, zero_pg_index)) {
2959 /*
2960 * never force zero valid pages - dirty or clean
2961 * we'll leave these in the UPL for cluster_write_copy to deal with
2962 */
2963 need_cluster_zero = FALSE;
2964 }
2965 }
2966 if (need_cluster_zero == TRUE)
2967 cluster_zero(upl, io_offset, bytes_to_zero, NULL);
2968
2969 return (bytes_to_zero);
2970}
2971
2972
2973static int
2974cluster_write_copy(vnode_t vp, struct uio *uio, u_int32_t io_req_size, off_t oldEOF, off_t newEOF, off_t headOff,
2975 off_t tailOff, int flags, int (*callback)(buf_t, void *), void *callback_arg)
2976{
2977 upl_page_info_t *pl;
2978 upl_t upl;
2979 vm_offset_t upl_offset = 0;
2980 vm_size_t upl_size;
2981 off_t upl_f_offset;
2982 int pages_in_upl;
2983 int start_offset;
2984 int xfer_resid;
2985 int io_size;
2986 int io_offset;
2987 int bytes_to_zero;
2988 int bytes_to_move;
2989 kern_return_t kret;
2990 int retval = 0;
2991 int io_resid;
2992 long long total_size;
2993 long long zero_cnt;
2994 off_t zero_off;
2995 long long zero_cnt1;
2996 off_t zero_off1;
2997 off_t write_off = 0;
2998 int write_cnt = 0;
2999 boolean_t first_pass = FALSE;
3000 struct cl_extent cl;
3001 struct cl_writebehind *wbp;
3002 int bflag;
3003 u_int max_cluster_pgcount;
3004 u_int max_io_size;
3005
3006 if (uio) {
3007 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 40)) | DBG_FUNC_START,
3008 (int)uio->uio_offset, io_req_size, (int)oldEOF, (int)newEOF, 0);
3009
3010 io_resid = io_req_size;
3011 } else {
3012 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 40)) | DBG_FUNC_START,
3013 0, 0, (int)oldEOF, (int)newEOF, 0);
3014
3015 io_resid = 0;
3016 }
3017 if (flags & IO_PASSIVE)
3018 bflag = CL_PASSIVE;
3019 else
3020 bflag = 0;
3021 if (flags & IO_NOCACHE)
3022 bflag |= CL_NOCACHE;
3023
3024 if (flags & IO_SKIP_ENCRYPTION)
3025 bflag |= CL_ENCRYPTED;
3026
3027 zero_cnt = 0;
3028 zero_cnt1 = 0;
3029 zero_off = 0;
3030 zero_off1 = 0;
3031
3032 max_cluster_pgcount = MAX_CLUSTER_SIZE(vp) / PAGE_SIZE;
3033 max_io_size = cluster_max_io_size(vp->v_mount, CL_WRITE);
3034
3035 if (flags & IO_HEADZEROFILL) {
3036 /*
3037 * some filesystems (HFS is one) don't support unallocated holes within a file...
3038 * so we zero fill the intervening space between the old EOF and the offset
3039 * where the next chunk of real data begins.... ftruncate will also use this
3040 * routine to zero fill to the new EOF when growing a file... in this case, the
3041 * uio structure will not be provided
3042 */
3043 if (uio) {
3044 if (headOff < uio->uio_offset) {
3045 zero_cnt = uio->uio_offset - headOff;
3046 zero_off = headOff;
3047 }
3048 } else if (headOff < newEOF) {
3049 zero_cnt = newEOF - headOff;
3050 zero_off = headOff;
3051 }
3052 } else {
3053 if (uio && uio->uio_offset > oldEOF) {
3054 zero_off = uio->uio_offset & ~PAGE_MASK_64;
3055
3056 if (zero_off >= oldEOF) {
3057 zero_cnt = uio->uio_offset - zero_off;
3058
3059 flags |= IO_HEADZEROFILL;
3060 }
3061 }
3062 }
3063 if (flags & IO_TAILZEROFILL) {
3064 if (uio) {
3065 zero_off1 = uio->uio_offset + io_req_size;
3066
3067 if (zero_off1 < tailOff)
3068 zero_cnt1 = tailOff - zero_off1;
3069 }
3070 } else {
3071 if (uio && newEOF > oldEOF) {
3072 zero_off1 = uio->uio_offset + io_req_size;
3073
3074 if (zero_off1 == newEOF && (zero_off1 & PAGE_MASK_64)) {
3075 zero_cnt1 = PAGE_SIZE_64 - (zero_off1 & PAGE_MASK_64);
3076
3077 flags |= IO_TAILZEROFILL;
3078 }
3079 }
3080 }
3081 if (zero_cnt == 0 && uio == (struct uio *) 0) {
3082 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 40)) | DBG_FUNC_END,
3083 retval, 0, 0, 0, 0);
3084 return (0);
3085 }
3086 if (uio) {
3087 write_off = uio->uio_offset;
3088 write_cnt = uio_resid(uio);
3089 /*
3090 * delay updating the sequential write info
3091 * in the control block until we've obtained
3092 * the lock for it
3093 */
3094 first_pass = TRUE;
3095 }
3096 while ((total_size = (io_resid + zero_cnt + zero_cnt1)) && retval == 0) {
3097 /*
3098 * for this iteration of the loop, figure out where our starting point is
3099 */
3100 if (zero_cnt) {
3101 start_offset = (int)(zero_off & PAGE_MASK_64);
3102 upl_f_offset = zero_off - start_offset;
3103 } else if (io_resid) {
3104 start_offset = (int)(uio->uio_offset & PAGE_MASK_64);
3105 upl_f_offset = uio->uio_offset - start_offset;
3106 } else {
3107 start_offset = (int)(zero_off1 & PAGE_MASK_64);
3108 upl_f_offset = zero_off1 - start_offset;
3109 }
3110 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 46)) | DBG_FUNC_NONE,
3111 (int)zero_off, (int)zero_cnt, (int)zero_off1, (int)zero_cnt1, 0);
3112
3113 if (total_size > max_io_size)
3114 total_size = max_io_size;
3115
3116 cl.b_addr = (daddr64_t)(upl_f_offset / PAGE_SIZE_64);
3117
3118 if (uio && ((flags & (IO_SYNC | IO_HEADZEROFILL | IO_TAILZEROFILL)) == 0)) {
3119 /*
3120 * assumption... total_size <= io_resid
3121 * because IO_HEADZEROFILL and IO_TAILZEROFILL not set
3122 */
3123 if ((start_offset + total_size) > max_io_size)
3124 total_size = max_io_size - start_offset;
3125 xfer_resid = total_size;
3126
3127 retval = cluster_copy_ubc_data_internal(vp, uio, &xfer_resid, 1, 1);
3128
3129 if (retval)
3130 break;
3131
3132 io_resid -= (total_size - xfer_resid);
3133 total_size = xfer_resid;
3134 start_offset = (int)(uio->uio_offset & PAGE_MASK_64);
3135 upl_f_offset = uio->uio_offset - start_offset;
3136
3137 if (total_size == 0) {
3138 if (start_offset) {
3139 /*
3140 * the write did not finish on a page boundary
3141 * which will leave upl_f_offset pointing to the
3142 * beginning of the last page written instead of
3143 * the page beyond it... bump it in this case
3144 * so that the cluster code records the last page
3145 * written as dirty
3146 */
3147 upl_f_offset += PAGE_SIZE_64;
3148 }
3149 upl_size = 0;
3150
3151 goto check_cluster;
3152 }
3153 }
3154 /*
3155 * compute the size of the upl needed to encompass
3156 * the requested write... limit each call to cluster_io
3157 * to the maximum UPL size... cluster_io will clip if
3158 * this exceeds the maximum io_size for the device,
3159 * make sure to account for
3160 * a starting offset that's not page aligned
3161 */
3162 upl_size = (start_offset + total_size + (PAGE_SIZE - 1)) & ~PAGE_MASK;
3163
3164 if (upl_size > max_io_size)
3165 upl_size = max_io_size;
3166
3167 pages_in_upl = upl_size / PAGE_SIZE;
3168 io_size = upl_size - start_offset;
3169
3170 if ((long long)io_size > total_size)
3171 io_size = total_size;
3172
3173 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 41)) | DBG_FUNC_START, upl_size, io_size, total_size, 0, 0);
3174
3175
3176 /*
3177 * Gather the pages from the buffer cache.
3178 * The UPL_WILL_MODIFY flag lets the UPL subsystem know
3179 * that we intend to modify these pages.
3180 */
3181 kret = ubc_create_upl(vp,
3182 upl_f_offset,
3183 upl_size,
3184 &upl,
3185 &pl,
3186 UPL_SET_LITE | (( uio!=NULL && (uio->uio_flags & UIO_FLAGS_IS_COMPRESSED_FILE)) ? 0 : UPL_WILL_MODIFY));
3187 if (kret != KERN_SUCCESS)
3188 panic("cluster_write_copy: failed to get pagelist");
3189
3190 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 41)) | DBG_FUNC_END,
3191 upl, (int)upl_f_offset, start_offset, 0, 0);
3192
3193 if (start_offset && upl_f_offset < oldEOF && !upl_valid_page(pl, 0)) {
3194 int read_size;
3195
3196 /*
3197 * we're starting in the middle of the first page of the upl
3198 * and the page isn't currently valid, so we're going to have
3199 * to read it in first... this is a synchronous operation
3200 */
3201 read_size = PAGE_SIZE;
3202
3203 if ((upl_f_offset + read_size) > oldEOF)
3204 read_size = oldEOF - upl_f_offset;
3205
3206 retval = cluster_io(vp, upl, 0, upl_f_offset, read_size,
3207 CL_READ | bflag, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg);
3208 if (retval) {
3209 /*
3210 * we had an error during the read which causes us to abort
3211 * the current cluster_write request... before we do, we need
3212 * to release the rest of the pages in the upl without modifying
3213 * there state and mark the failed page in error
3214 */
3215 ubc_upl_abort_range(upl, 0, PAGE_SIZE, UPL_ABORT_DUMP_PAGES|UPL_ABORT_FREE_ON_EMPTY);
3216
3217 if (upl_size > PAGE_SIZE)
3218 ubc_upl_abort_range(upl, 0, upl_size, UPL_ABORT_FREE_ON_EMPTY);
3219
3220 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 45)) | DBG_FUNC_NONE,
3221 upl, 0, 0, retval, 0);
3222 break;
3223 }
3224 }
3225 if ((start_offset == 0 || upl_size > PAGE_SIZE) && ((start_offset + io_size) & PAGE_MASK)) {
3226 /*
3227 * the last offset we're writing to in this upl does not end on a page
3228 * boundary... if it's not beyond the old EOF, then we'll also need to
3229 * pre-read this page in if it isn't already valid
3230 */
3231 upl_offset = upl_size - PAGE_SIZE;
3232
3233 if ((upl_f_offset + start_offset + io_size) < oldEOF &&
3234 !upl_valid_page(pl, upl_offset / PAGE_SIZE)) {
3235 int read_size;
3236
3237 read_size = PAGE_SIZE;
3238
3239 if ((off_t)(upl_f_offset + upl_offset + read_size) > oldEOF)
3240 read_size = oldEOF - (upl_f_offset + upl_offset);
3241
3242 retval = cluster_io(vp, upl, upl_offset, upl_f_offset + upl_offset, read_size,
3243 CL_READ | bflag, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg);
3244 if (retval) {
3245 /*
3246 * we had an error during the read which causes us to abort
3247 * the current cluster_write request... before we do, we
3248 * need to release the rest of the pages in the upl without
3249 * modifying there state and mark the failed page in error
3250 */
3251 ubc_upl_abort_range(upl, upl_offset, PAGE_SIZE, UPL_ABORT_DUMP_PAGES|UPL_ABORT_FREE_ON_EMPTY);
3252
3253 if (upl_size > PAGE_SIZE)
3254 ubc_upl_abort_range(upl, 0, upl_size, UPL_ABORT_FREE_ON_EMPTY);
3255
3256 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 45)) | DBG_FUNC_NONE,
3257 upl, 0, 0, retval, 0);
3258 break;
3259 }
3260 }
3261 }
3262 xfer_resid = io_size;
3263 io_offset = start_offset;
3264
3265 while (zero_cnt && xfer_resid) {
3266
3267 if (zero_cnt < (long long)xfer_resid)
3268 bytes_to_zero = zero_cnt;
3269 else
3270 bytes_to_zero = xfer_resid;
3271
3272 bytes_to_zero = cluster_zero_range(upl, pl, flags, io_offset, zero_off, upl_f_offset, bytes_to_zero);
3273
3274 xfer_resid -= bytes_to_zero;
3275 zero_cnt -= bytes_to_zero;
3276 zero_off += bytes_to_zero;
3277 io_offset += bytes_to_zero;
3278 }
3279 if (xfer_resid && io_resid) {
3280 u_int32_t io_requested;
3281
3282 bytes_to_move = min(io_resid, xfer_resid);
3283 io_requested = bytes_to_move;
3284
3285 retval = cluster_copy_upl_data(uio, upl, io_offset, (int *)&io_requested);
3286
3287 if (retval) {
3288 ubc_upl_abort_range(upl, 0, upl_size, UPL_ABORT_DUMP_PAGES | UPL_ABORT_FREE_ON_EMPTY);
3289
3290 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 45)) | DBG_FUNC_NONE,
3291 upl, 0, 0, retval, 0);
3292 } else {
3293 io_resid -= bytes_to_move;
3294 xfer_resid -= bytes_to_move;
3295 io_offset += bytes_to_move;
3296 }
3297 }
3298 while (xfer_resid && zero_cnt1 && retval == 0) {
3299
3300 if (zero_cnt1 < (long long)xfer_resid)
3301 bytes_to_zero = zero_cnt1;
3302 else
3303 bytes_to_zero = xfer_resid;
3304
3305 bytes_to_zero = cluster_zero_range(upl, pl, flags, io_offset, zero_off1, upl_f_offset, bytes_to_zero);
3306
3307 xfer_resid -= bytes_to_zero;
3308 zero_cnt1 -= bytes_to_zero;
3309 zero_off1 += bytes_to_zero;
3310 io_offset += bytes_to_zero;
3311 }
3312 if (retval == 0) {
3313 int cl_index;
3314 int ret_cluster_try_push;
3315
3316 io_size += start_offset;
3317
3318 if ((upl_f_offset + io_size) >= newEOF && (u_int)io_size < upl_size) {
3319 /*
3320 * if we're extending the file with this write
3321 * we'll zero fill the rest of the page so that
3322 * if the file gets extended again in such a way as to leave a
3323 * hole starting at this EOF, we'll have zero's in the correct spot
3324 */
3325 cluster_zero(upl, io_size, upl_size - io_size, NULL);
3326 }
3327 /*
3328 * release the upl now if we hold one since...
3329 * 1) pages in it may be present in the sparse cluster map
3330 * and may span 2 separate buckets there... if they do and
3331 * we happen to have to flush a bucket to make room and it intersects
3332 * this upl, a deadlock may result on page BUSY
3333 * 2) we're delaying the I/O... from this point forward we're just updating
3334 * the cluster state... no need to hold the pages, so commit them
3335 * 3) IO_SYNC is set...
3336 * because we had to ask for a UPL that provides currenty non-present pages, the
3337 * UPL has been automatically set to clear the dirty flags (both software and hardware)
3338 * upon committing it... this is not the behavior we want since it's possible for
3339 * pages currently present as part of a mapped file to be dirtied while the I/O is in flight.
3340 * we'll pick these pages back up later with the correct behavior specified.
3341 * 4) we don't want to hold pages busy in a UPL and then block on the cluster lock... if a flush
3342 * of this vnode is in progress, we will deadlock if the pages being flushed intersect the pages
3343 * we hold since the flushing context is holding the cluster lock.
3344 */
3345 ubc_upl_commit_range(upl, 0, upl_size,
3346 UPL_COMMIT_SET_DIRTY | UPL_COMMIT_INACTIVATE | UPL_COMMIT_FREE_ON_EMPTY);
3347check_cluster:
3348 /*
3349 * calculate the last logical block number
3350 * that this delayed I/O encompassed
3351 */
3352 cl.e_addr = (daddr64_t)((upl_f_offset + (off_t)upl_size) / PAGE_SIZE_64);
3353
3354 if (flags & IO_SYNC) {
3355 /*
3356 * if the IO_SYNC flag is set than we need to
3357 * bypass any clusters and immediately issue
3358 * the I/O
3359 */
3360 goto issue_io;
3361 }
3362 /*
3363 * take the lock to protect our accesses
3364 * of the writebehind and sparse cluster state
3365 */
3366 wbp = cluster_get_wbp(vp, CLW_ALLOCATE | CLW_RETURNLOCKED);
3367
3368 if (wbp->cl_scmap) {
3369
3370 if ( !(flags & IO_NOCACHE)) {
3371 /*
3372 * we've fallen into the sparse
3373 * cluster method of delaying dirty pages
3374 */
3375 sparse_cluster_add(&(wbp->cl_scmap), vp, &cl, newEOF, callback, callback_arg);
3376
3377 lck_mtx_unlock(&wbp->cl_lockw);
3378
3379 continue;
3380 }
3381 /*
3382 * must have done cached writes that fell into
3383 * the sparse cluster mechanism... we've switched
3384 * to uncached writes on the file, so go ahead
3385 * and push whatever's in the sparse map
3386 * and switch back to normal clustering
3387 */
3388 wbp->cl_number = 0;
3389
3390 sparse_cluster_push(&(wbp->cl_scmap), vp, newEOF, PUSH_ALL, 0, callback, callback_arg);
3391 /*
3392 * no clusters of either type present at this point
3393 * so just go directly to start_new_cluster since
3394 * we know we need to delay this I/O since we've
3395 * already released the pages back into the cache
3396 * to avoid the deadlock with sparse_cluster_push
3397 */
3398 goto start_new_cluster;
3399 }
3400 if (first_pass) {
3401 if (write_off == wbp->cl_last_write)
3402 wbp->cl_seq_written += write_cnt;
3403 else
3404 wbp->cl_seq_written = write_cnt;
3405
3406 wbp->cl_last_write = write_off + write_cnt;
3407
3408 first_pass = FALSE;
3409 }
3410 if (wbp->cl_number == 0)
3411 /*
3412 * no clusters currently present
3413 */
3414 goto start_new_cluster;
3415
3416 for (cl_index = 0; cl_index < wbp->cl_number; cl_index++) {
3417 /*
3418 * check each cluster that we currently hold
3419 * try to merge some or all of this write into
3420 * one or more of the existing clusters... if
3421 * any portion of the write remains, start a
3422 * new cluster
3423 */
3424 if (cl.b_addr >= wbp->cl_clusters[cl_index].b_addr) {
3425 /*
3426 * the current write starts at or after the current cluster
3427 */
3428 if (cl.e_addr <= (wbp->cl_clusters[cl_index].b_addr + max_cluster_pgcount)) {
3429 /*
3430 * we have a write that fits entirely
3431 * within the existing cluster limits
3432 */
3433 if (cl.e_addr > wbp->cl_clusters[cl_index].e_addr)
3434 /*
3435 * update our idea of where the cluster ends
3436 */
3437 wbp->cl_clusters[cl_index].e_addr = cl.e_addr;
3438 break;
3439 }
3440 if (cl.b_addr < (wbp->cl_clusters[cl_index].b_addr + max_cluster_pgcount)) {
3441 /*
3442 * we have a write that starts in the middle of the current cluster
3443 * but extends beyond the cluster's limit... we know this because
3444 * of the previous checks
3445 * we'll extend the current cluster to the max
3446 * and update the b_addr for the current write to reflect that
3447 * the head of it was absorbed into this cluster...
3448 * note that we'll always have a leftover tail in this case since
3449 * full absorbtion would have occurred in the clause above
3450 */
3451 wbp->cl_clusters[cl_index].e_addr = wbp->cl_clusters[cl_index].b_addr + max_cluster_pgcount;
3452
3453 cl.b_addr = wbp->cl_clusters[cl_index].e_addr;
3454 }
3455 /*
3456 * we come here for the case where the current write starts
3457 * beyond the limit of the existing cluster or we have a leftover
3458 * tail after a partial absorbtion
3459 *
3460 * in either case, we'll check the remaining clusters before
3461 * starting a new one
3462 */
3463 } else {
3464 /*
3465 * the current write starts in front of the cluster we're currently considering
3466 */
3467 if ((wbp->cl_clusters[cl_index].e_addr - cl.b_addr) <= max_cluster_pgcount) {
3468 /*
3469 * we can just merge the new request into
3470 * this cluster and leave it in the cache
3471 * since the resulting cluster is still
3472 * less than the maximum allowable size
3473 */
3474 wbp->cl_clusters[cl_index].b_addr = cl.b_addr;
3475
3476 if (cl.e_addr > wbp->cl_clusters[cl_index].e_addr) {
3477 /*
3478 * the current write completely
3479 * envelops the existing cluster and since
3480 * each write is limited to at most max_cluster_pgcount pages
3481 * we can just use the start and last blocknos of the write
3482 * to generate the cluster limits
3483 */
3484 wbp->cl_clusters[cl_index].e_addr = cl.e_addr;
3485 }
3486 break;
3487 }
3488
3489 /*
3490 * if we were to combine this write with the current cluster
3491 * we would exceed the cluster size limit.... so,
3492 * let's see if there's any overlap of the new I/O with
3493 * the cluster we're currently considering... in fact, we'll
3494 * stretch the cluster out to it's full limit and see if we
3495 * get an intersection with the current write
3496 *
3497 */
3498 if (cl.e_addr > wbp->cl_clusters[cl_index].e_addr - max_cluster_pgcount) {
3499 /*
3500 * the current write extends into the proposed cluster
3501 * clip the length of the current write after first combining it's
3502 * tail with the newly shaped cluster
3503 */
3504 wbp->cl_clusters[cl_index].b_addr = wbp->cl_clusters[cl_index].e_addr - max_cluster_pgcount;
3505
3506 cl.e_addr = wbp->cl_clusters[cl_index].b_addr;
3507 }
3508 /*
3509 * if we get here, there was no way to merge
3510 * any portion of this write with this cluster
3511 * or we could only merge part of it which
3512 * will leave a tail...
3513 * we'll check the remaining clusters before starting a new one
3514 */
3515 }
3516 }
3517 if (cl_index < wbp->cl_number)
3518 /*
3519 * we found an existing cluster(s) that we
3520 * could entirely merge this I/O into
3521 */
3522 goto delay_io;
3523
3524 if (!((unsigned int)vfs_flags(vp->v_mount) & MNT_DEFWRITE) &&
3525 wbp->cl_number == MAX_CLUSTERS &&
3526 wbp->cl_seq_written >= (MAX_CLUSTERS * (max_cluster_pgcount * PAGE_SIZE))) {
3527 uint32_t n;
3528
3529 if (vp->v_mount->mnt_minsaturationbytecount) {
3530 n = vp->v_mount->mnt_minsaturationbytecount / MAX_CLUSTER_SIZE(vp);
3531
3532 if (n > MAX_CLUSTERS)
3533 n = MAX_CLUSTERS;
3534 } else
3535 n = 0;
3536
3537 if (n == 0) {
3538 if (vp->v_mount->mnt_kern_flag & MNTK_SSD)
3539 n = WRITE_BEHIND_SSD;
3540 else
3541 n = WRITE_BEHIND;
3542 }
3543 while (n--)
3544 cluster_try_push(wbp, vp, newEOF, 0, 0, callback, callback_arg, NULL);
3545 }
3546 if (wbp->cl_number < MAX_CLUSTERS) {
3547 /*
3548 * we didn't find an existing cluster to
3549 * merge into, but there's room to start
3550 * a new one
3551 */
3552 goto start_new_cluster;
3553 }
3554 /*
3555 * no exisitng cluster to merge with and no
3556 * room to start a new one... we'll try
3557 * pushing one of the existing ones... if none of
3558 * them are able to be pushed, we'll switch
3559 * to the sparse cluster mechanism
3560 * cluster_try_push updates cl_number to the
3561 * number of remaining clusters... and
3562 * returns the number of currently unused clusters
3563 */
3564 ret_cluster_try_push = 0;
3565
3566 /*
3567 * if writes are not deferred, call cluster push immediately
3568 */
3569 if (!((unsigned int)vfs_flags(vp->v_mount) & MNT_DEFWRITE)) {
3570
3571 ret_cluster_try_push = cluster_try_push(wbp, vp, newEOF, (flags & IO_NOCACHE) ? 0 : PUSH_DELAY, 0, callback, callback_arg, NULL);
3572 }
3573
3574 /*
3575 * execute following regardless of writes being deferred or not
3576 */
3577 if (ret_cluster_try_push == 0) {
3578 /*
3579 * no more room in the normal cluster mechanism
3580 * so let's switch to the more expansive but expensive
3581 * sparse mechanism....
3582 */
3583 sparse_cluster_switch(wbp, vp, newEOF, callback, callback_arg);
3584 sparse_cluster_add(&(wbp->cl_scmap), vp, &cl, newEOF, callback, callback_arg);
3585
3586 lck_mtx_unlock(&wbp->cl_lockw);
3587
3588 continue;
3589 }
3590start_new_cluster:
3591 wbp->cl_clusters[wbp->cl_number].b_addr = cl.b_addr;
3592 wbp->cl_clusters[wbp->cl_number].e_addr = cl.e_addr;
3593
3594 wbp->cl_clusters[wbp->cl_number].io_flags = 0;
3595
3596 if (flags & IO_NOCACHE)
3597 wbp->cl_clusters[wbp->cl_number].io_flags |= CLW_IONOCACHE;
3598
3599 if (bflag & CL_PASSIVE)
3600 wbp->cl_clusters[wbp->cl_number].io_flags |= CLW_IOPASSIVE;
3601
3602 wbp->cl_number++;
3603delay_io:
3604 lck_mtx_unlock(&wbp->cl_lockw);
3605
3606 continue;
3607issue_io:
3608 /*
3609 * we don't hold the lock at this point
3610 *
3611 * we've already dropped the current upl, so pick it back up with COPYOUT_FROM set
3612 * so that we correctly deal with a change in state of the hardware modify bit...
3613 * we do this via cluster_push_now... by passing along the IO_SYNC flag, we force
3614 * cluster_push_now to wait until all the I/Os have completed... cluster_push_now is also
3615 * responsible for generating the correct sized I/O(s)
3616 */
3617 retval = cluster_push_now(vp, &cl, newEOF, flags, callback, callback_arg);
3618 }
3619 }
3620 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 40)) | DBG_FUNC_END, retval, 0, io_resid, 0, 0);
3621
3622 return (retval);
3623}
3624
3625
3626
3627int
3628cluster_read(vnode_t vp, struct uio *uio, off_t filesize, int xflags)
3629{
3630 return cluster_read_ext(vp, uio, filesize, xflags, NULL, NULL);
3631}
3632
3633
3634int
3635cluster_read_ext(vnode_t vp, struct uio *uio, off_t filesize, int xflags, int (*callback)(buf_t, void *), void *callback_arg)
3636{
3637 int retval = 0;
3638 int flags;
3639 user_ssize_t cur_resid;
3640 u_int32_t io_size;
3641 u_int32_t read_length = 0;
3642 int read_type = IO_COPY;
3643
3644 flags = xflags;
3645
3646 if (vp->v_flag & VNOCACHE_DATA)
3647 flags |= IO_NOCACHE;
3648 if ((vp->v_flag & VRAOFF) || speculative_reads_disabled)
3649 flags |= IO_RAOFF;
3650
3651 if (flags & IO_SKIP_ENCRYPTION)
3652 flags |= IO_ENCRYPTED;
3653
3654 /*
3655 * do a read through the cache if one of the following is true....
3656 * NOCACHE is not true
3657 * the uio request doesn't target USERSPACE
3658 * Alternatively, if IO_ENCRYPTED is set, then we want to bypass the cache as well.
3659 * Reading encrypted data from a CP filesystem should never result in the data touching
3660 * the UBC.
3661 *
3662 * otherwise, find out if we want the direct or contig variant for
3663 * the first vector in the uio request
3664 */
3665 if ( ((flags & IO_NOCACHE) && UIO_SEG_IS_USER_SPACE(uio->uio_segflg)) || (flags & IO_ENCRYPTED) ) {
3666
3667 retval = cluster_io_type(uio, &read_type, &read_length, 0);
3668 }
3669
3670 while ((cur_resid = uio_resid(uio)) && uio->uio_offset < filesize && retval == 0) {
3671
3672 switch (read_type) {
3673
3674 case IO_COPY:
3675 /*
3676 * make sure the uio_resid isn't too big...
3677 * internally, we want to handle all of the I/O in
3678 * chunk sizes that fit in a 32 bit int
3679 */
3680 if (cur_resid > (user_ssize_t)(MAX_IO_REQUEST_SIZE))
3681 io_size = MAX_IO_REQUEST_SIZE;
3682 else
3683 io_size = (u_int32_t)cur_resid;
3684
3685 retval = cluster_read_copy(vp, uio, io_size, filesize, flags, callback, callback_arg);
3686 break;
3687
3688 case IO_DIRECT:
3689 retval = cluster_read_direct(vp, uio, filesize, &read_type, &read_length, flags, callback, callback_arg);
3690 break;
3691
3692 case IO_CONTIG:
3693 retval = cluster_read_contig(vp, uio, filesize, &read_type, &read_length, callback, callback_arg, flags);
3694 break;
3695
3696 case IO_UNKNOWN:
3697 retval = cluster_io_type(uio, &read_type, &read_length, 0);
3698 break;
3699 }
3700 }
3701 return (retval);
3702}
3703
3704
3705
3706static void
3707cluster_read_upl_release(upl_t upl, int start_pg, int last_pg, int take_reference)
3708{
3709 int range;
3710 int abort_flags = UPL_ABORT_FREE_ON_EMPTY;
3711
3712 if ((range = last_pg - start_pg)) {
3713 if (take_reference)
3714 abort_flags |= UPL_ABORT_REFERENCE;
3715
3716 ubc_upl_abort_range(upl, start_pg * PAGE_SIZE, range * PAGE_SIZE, abort_flags);
3717 }
3718}
3719
3720
3721static int
3722cluster_read_copy(vnode_t vp, struct uio *uio, u_int32_t io_req_size, off_t filesize, int flags, int (*callback)(buf_t, void *), void *callback_arg)
3723{
3724 upl_page_info_t *pl;
3725 upl_t upl;
3726 vm_offset_t upl_offset;
3727 u_int32_t upl_size;
3728 off_t upl_f_offset;
3729 int start_offset;
3730 int start_pg;
3731 int last_pg;
3732 int uio_last = 0;
3733 int pages_in_upl;
3734 off_t max_size;
3735 off_t last_ioread_offset;
3736 off_t last_request_offset;
3737 kern_return_t kret;
3738 int error = 0;
3739 int retval = 0;
3740 u_int32_t size_of_prefetch;
3741 u_int32_t xsize;
3742 u_int32_t io_size;
3743 u_int32_t max_rd_size;
3744 u_int32_t max_io_size;
3745 u_int32_t max_prefetch;
3746 u_int rd_ahead_enabled = 1;
3747 u_int prefetch_enabled = 1;
3748 struct cl_readahead * rap;
3749 struct clios iostate;
3750 struct cl_extent extent;
3751 int bflag;
3752 int take_reference = 1;
3753 int policy = IOPOL_DEFAULT;
3754 boolean_t iolock_inited = FALSE;
3755
3756 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 32)) | DBG_FUNC_START,
3757 (int)uio->uio_offset, io_req_size, (int)filesize, flags, 0);
3758
3759 if (flags & IO_ENCRYPTED) {
3760 panic ("encrypted blocks will hit UBC!");
3761 }
3762
3763 policy = throttle_get_io_policy(NULL);
3764
3765 if (policy == THROTTLE_LEVEL_TIER3 || policy == THROTTLE_LEVEL_TIER2 || (flags & IO_NOCACHE))
3766 take_reference = 0;
3767
3768 if (flags & IO_PASSIVE)
3769 bflag = CL_PASSIVE;
3770 else
3771 bflag = 0;
3772
3773 if (flags & IO_NOCACHE)
3774 bflag |= CL_NOCACHE;
3775
3776 if (flags & IO_SKIP_ENCRYPTION)
3777 bflag |= CL_ENCRYPTED;
3778
3779 max_io_size = cluster_max_io_size(vp->v_mount, CL_READ);
3780 max_prefetch = MAX_PREFETCH(vp, max_io_size, (vp->v_mount->mnt_kern_flag & MNTK_SSD));
3781 max_rd_size = max_prefetch;
3782
3783 last_request_offset = uio->uio_offset + io_req_size;
3784
3785 if (last_request_offset > filesize)
3786 last_request_offset = filesize;
3787
3788 if ((flags & (IO_RAOFF|IO_NOCACHE)) || ((last_request_offset & ~PAGE_MASK_64) == (uio->uio_offset & ~PAGE_MASK_64))) {
3789 rd_ahead_enabled = 0;
3790 rap = NULL;
3791 } else {
3792 if (cluster_is_throttled(vp)) {
3793 /*
3794 * we're in the throttle window, at the very least
3795 * we want to limit the size of the I/O we're about
3796 * to issue
3797 */
3798 rd_ahead_enabled = 0;
3799 prefetch_enabled = 0;
3800
3801 max_rd_size = THROTTLE_MAX_IOSIZE;
3802 }
3803 if ((rap = cluster_get_rap(vp)) == NULL)
3804 rd_ahead_enabled = 0;
3805 else {
3806 extent.b_addr = uio->uio_offset / PAGE_SIZE_64;
3807 extent.e_addr = (last_request_offset - 1) / PAGE_SIZE_64;
3808 }
3809 }
3810 if (rap != NULL && rap->cl_ralen && (rap->cl_lastr == extent.b_addr || (rap->cl_lastr + 1) == extent.b_addr)) {
3811 /*
3812 * determine if we already have a read-ahead in the pipe courtesy of the
3813 * last read systemcall that was issued...
3814 * if so, pick up it's extent to determine where we should start
3815 * with respect to any read-ahead that might be necessary to
3816 * garner all the data needed to complete this read systemcall
3817 */
3818 last_ioread_offset = (rap->cl_maxra * PAGE_SIZE_64) + PAGE_SIZE_64;
3819
3820 if (last_ioread_offset < uio->uio_offset)
3821 last_ioread_offset = (off_t)0;
3822 else if (last_ioread_offset > last_request_offset)
3823 last_ioread_offset = last_request_offset;
3824 } else
3825 last_ioread_offset = (off_t)0;
3826
3827 while (io_req_size && uio->uio_offset < filesize && retval == 0) {
3828
3829 max_size = filesize - uio->uio_offset;
3830
3831 if ((off_t)(io_req_size) < max_size)
3832 io_size = io_req_size;
3833 else
3834 io_size = max_size;
3835
3836 if (!(flags & IO_NOCACHE)) {
3837
3838 while (io_size) {
3839 u_int32_t io_resid;
3840 u_int32_t io_requested;
3841
3842 /*
3843 * if we keep finding the pages we need already in the cache, then
3844 * don't bother to call cluster_read_prefetch since it costs CPU cycles
3845 * to determine that we have all the pages we need... once we miss in
3846 * the cache and have issued an I/O, than we'll assume that we're likely
3847 * to continue to miss in the cache and it's to our advantage to try and prefetch
3848 */
3849 if (last_request_offset && last_ioread_offset && (size_of_prefetch = (last_request_offset - last_ioread_offset))) {
3850 if ((last_ioread_offset - uio->uio_offset) <= max_rd_size && prefetch_enabled) {
3851 /*
3852 * we've already issued I/O for this request and
3853 * there's still work to do and
3854 * our prefetch stream is running dry, so issue a
3855 * pre-fetch I/O... the I/O latency will overlap
3856 * with the copying of the data
3857 */
3858 if (size_of_prefetch > max_rd_size)
3859 size_of_prefetch = max_rd_size;
3860
3861 size_of_prefetch = cluster_read_prefetch(vp, last_ioread_offset, size_of_prefetch, filesize, callback, callback_arg, bflag);
3862
3863 last_ioread_offset += (off_t)(size_of_prefetch * PAGE_SIZE);
3864
3865 if (last_ioread_offset > last_request_offset)
3866 last_ioread_offset = last_request_offset;
3867 }
3868 }
3869 /*
3870 * limit the size of the copy we're about to do so that
3871 * we can notice that our I/O pipe is running dry and
3872 * get the next I/O issued before it does go dry
3873 */
3874 if (last_ioread_offset && io_size > (max_io_size / 4))
3875 io_resid = (max_io_size / 4);
3876 else
3877 io_resid = io_size;
3878
3879 io_requested = io_resid;
3880
3881 retval = cluster_copy_ubc_data_internal(vp, uio, (int *)&io_resid, 0, take_reference);
3882
3883 xsize = io_requested - io_resid;
3884
3885 io_size -= xsize;
3886 io_req_size -= xsize;
3887
3888 if (retval || io_resid)
3889 /*
3890 * if we run into a real error or
3891 * a page that is not in the cache
3892 * we need to leave streaming mode
3893 */
3894 break;
3895
3896 if (rd_ahead_enabled && (io_size == 0 || last_ioread_offset == last_request_offset)) {
3897 /*
3898 * we're already finished the I/O for this read request
3899 * let's see if we should do a read-ahead
3900 */
3901 cluster_read_ahead(vp, &extent, filesize, rap, callback, callback_arg, bflag);
3902 }
3903 }
3904 if (retval)
3905 break;
3906 if (io_size == 0) {
3907 if (rap != NULL) {
3908 if (extent.e_addr < rap->cl_lastr)
3909 rap->cl_maxra = 0;
3910 rap->cl_lastr = extent.e_addr;
3911 }
3912 break;
3913 }
3914 /*
3915 * recompute max_size since cluster_copy_ubc_data_internal
3916 * may have advanced uio->uio_offset
3917 */
3918 max_size = filesize - uio->uio_offset;
3919 }
3920
3921 iostate.io_completed = 0;
3922 iostate.io_issued = 0;
3923 iostate.io_error = 0;
3924 iostate.io_wanted = 0;
3925
3926 if ( (flags & IO_RETURN_ON_THROTTLE) ) {
3927 if (cluster_is_throttled(vp) == THROTTLE_NOW) {
3928 if ( !cluster_io_present_in_BC(vp, uio->uio_offset)) {
3929 /*
3930 * we're in the throttle window and at least 1 I/O
3931 * has already been issued by a throttleable thread
3932 * in this window, so return with EAGAIN to indicate
3933 * to the FS issuing the cluster_read call that it
3934 * should now throttle after dropping any locks
3935 */
3936 throttle_info_update_by_mount(vp->v_mount);
3937
3938 retval = EAGAIN;
3939 break;
3940 }
3941 }
3942 }
3943
3944 /*
3945 * compute the size of the upl needed to encompass
3946 * the requested read... limit each call to cluster_io
3947 * to the maximum UPL size... cluster_io will clip if
3948 * this exceeds the maximum io_size for the device,
3949 * make sure to account for
3950 * a starting offset that's not page aligned
3951 */
3952 start_offset = (int)(uio->uio_offset & PAGE_MASK_64);
3953 upl_f_offset = uio->uio_offset - (off_t)start_offset;
3954
3955 if (io_size > max_rd_size)
3956 io_size = max_rd_size;
3957
3958 upl_size = (start_offset + io_size + (PAGE_SIZE - 1)) & ~PAGE_MASK;
3959
3960 if (flags & IO_NOCACHE) {
3961 if (upl_size > max_io_size)
3962 upl_size = max_io_size;
3963 } else {
3964 if (upl_size > max_io_size / 4) {
3965 upl_size = max_io_size / 4;
3966 upl_size &= ~PAGE_MASK;
3967
3968 if (upl_size == 0)
3969 upl_size = PAGE_SIZE;
3970 }
3971 }
3972 pages_in_upl = upl_size / PAGE_SIZE;
3973
3974 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 33)) | DBG_FUNC_START,
3975 upl, (int)upl_f_offset, upl_size, start_offset, 0);
3976
3977 kret = ubc_create_upl(vp,
3978 upl_f_offset,
3979 upl_size,
3980 &upl,
3981 &pl,
3982 UPL_FILE_IO | UPL_SET_LITE);
3983 if (kret != KERN_SUCCESS)
3984 panic("cluster_read_copy: failed to get pagelist");
3985
3986 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 33)) | DBG_FUNC_END,
3987 upl, (int)upl_f_offset, upl_size, start_offset, 0);
3988
3989 /*
3990 * scan from the beginning of the upl looking for the first
3991 * non-valid page.... this will become the first page in
3992 * the request we're going to make to 'cluster_io'... if all
3993 * of the pages are valid, we won't call through to 'cluster_io'
3994 */
3995 for (start_pg = 0; start_pg < pages_in_upl; start_pg++) {
3996 if (!upl_valid_page(pl, start_pg))
3997 break;
3998 }
3999
4000 /*
4001 * scan from the starting invalid page looking for a valid
4002 * page before the end of the upl is reached, if we
4003 * find one, then it will be the last page of the request to
4004 * 'cluster_io'
4005 */
4006 for (last_pg = start_pg; last_pg < pages_in_upl; last_pg++) {
4007 if (upl_valid_page(pl, last_pg))
4008 break;
4009 }
4010
4011 if (start_pg < last_pg) {
4012 /*
4013 * we found a range of 'invalid' pages that must be filled
4014 * if the last page in this range is the last page of the file
4015 * we may have to clip the size of it to keep from reading past
4016 * the end of the last physical block associated with the file
4017 */
4018 if (iolock_inited == FALSE) {
4019 lck_mtx_init(&iostate.io_mtxp, cl_mtx_grp, cl_mtx_attr);
4020
4021 iolock_inited = TRUE;
4022 }
4023 upl_offset = start_pg * PAGE_SIZE;
4024 io_size = (last_pg - start_pg) * PAGE_SIZE;
4025
4026 if ((off_t)(upl_f_offset + upl_offset + io_size) > filesize)
4027 io_size = filesize - (upl_f_offset + upl_offset);
4028
4029 /*
4030 * issue an asynchronous read to cluster_io
4031 */
4032
4033 error = cluster_io(vp, upl, upl_offset, upl_f_offset + upl_offset,
4034 io_size, CL_READ | CL_ASYNC | bflag, (buf_t)NULL, &iostate, callback, callback_arg);
4035
4036 if (rap) {
4037 if (extent.e_addr < rap->cl_maxra) {
4038 /*
4039 * we've just issued a read for a block that should have been
4040 * in the cache courtesy of the read-ahead engine... something
4041 * has gone wrong with the pipeline, so reset the read-ahead
4042 * logic which will cause us to restart from scratch
4043 */
4044 rap->cl_maxra = 0;
4045 }
4046 }
4047 }
4048 if (error == 0) {
4049 /*
4050 * if the read completed successfully, or there was no I/O request
4051 * issued, than copy the data into user land via 'cluster_upl_copy_data'
4052 * we'll first add on any 'valid'
4053 * pages that were present in the upl when we acquired it.
4054 */
4055 u_int val_size;
4056
4057 for (uio_last = last_pg; uio_last < pages_in_upl; uio_last++) {
4058 if (!upl_valid_page(pl, uio_last))
4059 break;
4060 }
4061 if (uio_last < pages_in_upl) {
4062 /*
4063 * there were some invalid pages beyond the valid pages
4064 * that we didn't issue an I/O for, just release them
4065 * unchanged now, so that any prefetch/readahed can
4066 * include them
4067 */
4068 ubc_upl_abort_range(upl, uio_last * PAGE_SIZE,
4069 (pages_in_upl - uio_last) * PAGE_SIZE, UPL_ABORT_FREE_ON_EMPTY);
4070 }
4071
4072 /*
4073 * compute size to transfer this round, if io_req_size is
4074 * still non-zero after this attempt, we'll loop around and
4075 * set up for another I/O.
4076 */
4077 val_size = (uio_last * PAGE_SIZE) - start_offset;
4078
4079 if (val_size > max_size)
4080 val_size = max_size;
4081
4082 if (val_size > io_req_size)
4083 val_size = io_req_size;
4084
4085 if ((uio->uio_offset + val_size) > last_ioread_offset)
4086 last_ioread_offset = uio->uio_offset + val_size;
4087
4088 if ((size_of_prefetch = (last_request_offset - last_ioread_offset)) && prefetch_enabled) {
4089
4090 if ((last_ioread_offset - (uio->uio_offset + val_size)) <= upl_size) {
4091 /*
4092 * if there's still I/O left to do for this request, and...
4093 * we're not in hard throttle mode, and...
4094 * we're close to using up the previous prefetch, then issue a
4095 * new pre-fetch I/O... the I/O latency will overlap
4096 * with the copying of the data
4097 */
4098 if (size_of_prefetch > max_rd_size)
4099 size_of_prefetch = max_rd_size;
4100
4101 size_of_prefetch = cluster_read_prefetch(vp, last_ioread_offset, size_of_prefetch, filesize, callback, callback_arg, bflag);
4102
4103 last_ioread_offset += (off_t)(size_of_prefetch * PAGE_SIZE);
4104
4105 if (last_ioread_offset > last_request_offset)
4106 last_ioread_offset = last_request_offset;
4107 }
4108
4109 } else if ((uio->uio_offset + val_size) == last_request_offset) {
4110 /*
4111 * this transfer will finish this request, so...
4112 * let's try to read ahead if we're in
4113 * a sequential access pattern and we haven't
4114 * explicitly disabled it
4115 */
4116 if (rd_ahead_enabled)
4117 cluster_read_ahead(vp, &extent, filesize, rap, callback, callback_arg, bflag);
4118
4119 if (rap != NULL) {
4120 if (extent.e_addr < rap->cl_lastr)
4121 rap->cl_maxra = 0;
4122 rap->cl_lastr = extent.e_addr;
4123 }
4124 }
4125 if (iolock_inited == TRUE)
4126 cluster_iostate_wait(&iostate, 0, "cluster_read_copy");
4127
4128 if (iostate.io_error)
4129 error = iostate.io_error;
4130 else {
4131 u_int32_t io_requested;
4132
4133 io_requested = val_size;
4134
4135 retval = cluster_copy_upl_data(uio, upl, start_offset, (int *)&io_requested);
4136
4137 io_req_size -= (val_size - io_requested);
4138 }
4139 } else {
4140 if (iolock_inited == TRUE)
4141 cluster_iostate_wait(&iostate, 0, "cluster_read_copy");
4142 }
4143 if (start_pg < last_pg) {
4144 /*
4145 * compute the range of pages that we actually issued an I/O for
4146 * and either commit them as valid if the I/O succeeded
4147 * or abort them if the I/O failed or we're not supposed to
4148 * keep them in the cache
4149 */
4150 io_size = (last_pg - start_pg) * PAGE_SIZE;
4151
4152 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 35)) | DBG_FUNC_START, upl, start_pg * PAGE_SIZE, io_size, error, 0);
4153
4154 if (error || (flags & IO_NOCACHE))
4155 ubc_upl_abort_range(upl, start_pg * PAGE_SIZE, io_size,
4156 UPL_ABORT_DUMP_PAGES | UPL_ABORT_FREE_ON_EMPTY);
4157 else {
4158 int commit_flags = UPL_COMMIT_CLEAR_DIRTY | UPL_COMMIT_FREE_ON_EMPTY;
4159
4160 if (take_reference)
4161 commit_flags |= UPL_COMMIT_INACTIVATE;
4162 else
4163 commit_flags |= UPL_COMMIT_SPECULATE;
4164
4165 ubc_upl_commit_range(upl, start_pg * PAGE_SIZE, io_size, commit_flags);
4166 }
4167 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 35)) | DBG_FUNC_END, upl, start_pg * PAGE_SIZE, io_size, error, 0);
4168 }
4169 if ((last_pg - start_pg) < pages_in_upl) {
4170 /*
4171 * the set of pages that we issued an I/O for did not encompass
4172 * the entire upl... so just release these without modifying
4173 * their state
4174 */
4175 if (error)
4176 ubc_upl_abort_range(upl, 0, upl_size, UPL_ABORT_FREE_ON_EMPTY);
4177 else {
4178
4179 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 35)) | DBG_FUNC_START,
4180 upl, -1, pages_in_upl - (last_pg - start_pg), 0, 0);
4181
4182 /*
4183 * handle any valid pages at the beginning of
4184 * the upl... release these appropriately
4185 */
4186 cluster_read_upl_release(upl, 0, start_pg, take_reference);
4187
4188 /*
4189 * handle any valid pages immediately after the
4190 * pages we issued I/O for... ... release these appropriately
4191 */
4192 cluster_read_upl_release(upl, last_pg, uio_last, take_reference);
4193
4194 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 35)) | DBG_FUNC_END, upl, -1, -1, 0, 0);
4195 }
4196 }
4197 if (retval == 0)
4198 retval = error;
4199
4200 if (io_req_size) {
4201 if (cluster_is_throttled(vp)) {
4202 /*
4203 * we're in the throttle window, at the very least
4204 * we want to limit the size of the I/O we're about
4205 * to issue
4206 */
4207 rd_ahead_enabled = 0;
4208 prefetch_enabled = 0;
4209 max_rd_size = THROTTLE_MAX_IOSIZE;
4210 } else {
4211 if (max_rd_size == THROTTLE_MAX_IOSIZE) {
4212 /*
4213 * coming out of throttled state
4214 */
4215 if (policy != THROTTLE_LEVEL_TIER3 && policy != THROTTLE_LEVEL_TIER2) {
4216 if (rap != NULL)
4217 rd_ahead_enabled = 1;
4218 prefetch_enabled = 1;
4219 }
4220 max_rd_size = max_prefetch;
4221 last_ioread_offset = 0;
4222 }
4223 }
4224 }
4225 }
4226 if (iolock_inited == TRUE) {
4227 /*
4228 * cluster_io returned an error after it
4229 * had already issued some I/O. we need
4230 * to wait for that I/O to complete before
4231 * we can destroy the iostate mutex...
4232 * 'retval' already contains the early error
4233 * so no need to pick it up from iostate.io_error
4234 */
4235 cluster_iostate_wait(&iostate, 0, "cluster_read_copy");
4236
4237 lck_mtx_destroy(&iostate.io_mtxp, cl_mtx_grp);
4238 }
4239 if (rap != NULL) {
4240 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 32)) | DBG_FUNC_END,
4241 (int)uio->uio_offset, io_req_size, rap->cl_lastr, retval, 0);
4242
4243 lck_mtx_unlock(&rap->cl_lockr);
4244 } else {
4245 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 32)) | DBG_FUNC_END,
4246 (int)uio->uio_offset, io_req_size, 0, retval, 0);
4247 }
4248
4249 return (retval);
4250}
4251
4252/*
4253 * We don't want another read/write lock for every vnode in the system
4254 * so we keep a hash of them here. There should never be very many of
4255 * these around at any point in time.
4256 */
4257cl_direct_read_lock_t *cluster_lock_direct_read(vnode_t vp, lck_rw_type_t type)
4258{
4259 struct cl_direct_read_locks *head
4260 = &cl_direct_read_locks[(uintptr_t)vp / sizeof(*vp)
4261 % CL_DIRECT_READ_LOCK_BUCKETS];
4262
4263 struct cl_direct_read_lock *lck, *new_lck = NULL;
4264
4265 for (;;) {
4266 lck_spin_lock(&cl_direct_read_spin_lock);
4267
4268 LIST_FOREACH(lck, head, chain) {
4269 if (lck->vp == vp) {
4270 ++lck->ref_count;
4271 lck_spin_unlock(&cl_direct_read_spin_lock);
4272 if (new_lck) {
4273 // Someone beat us to it, ditch the allocation
4274 lck_rw_destroy(&new_lck->rw_lock, cl_mtx_grp);
4275 FREE(new_lck, M_TEMP);
4276 }
4277 lck_rw_lock(&lck->rw_lock, type);
4278 return lck;
4279 }
4280 }
4281
4282 if (new_lck) {
4283 // Use the lock we allocated
4284 LIST_INSERT_HEAD(head, new_lck, chain);
4285 lck_spin_unlock(&cl_direct_read_spin_lock);
4286 lck_rw_lock(&new_lck->rw_lock, type);
4287 return new_lck;
4288 }
4289
4290 lck_spin_unlock(&cl_direct_read_spin_lock);
4291
4292 // Allocate a new lock
4293 MALLOC(new_lck, cl_direct_read_lock_t *, sizeof(*new_lck),
4294 M_TEMP, M_WAITOK);
4295 lck_rw_init(&new_lck->rw_lock, cl_mtx_grp, cl_mtx_attr);
4296 new_lck->vp = vp;
4297 new_lck->ref_count = 1;
4298
4299 // Got to go round again
4300 }
4301}
4302
4303void cluster_unlock_direct_read(cl_direct_read_lock_t *lck)
4304{
4305 lck_rw_done(&lck->rw_lock);
4306
4307 lck_spin_lock(&cl_direct_read_spin_lock);
4308 if (lck->ref_count == 1) {
4309 LIST_REMOVE(lck, chain);
4310 lck_spin_unlock(&cl_direct_read_spin_lock);
4311 lck_rw_destroy(&lck->rw_lock, cl_mtx_grp);
4312 FREE(lck, M_TEMP);
4313 } else {
4314 --lck->ref_count;
4315 lck_spin_unlock(&cl_direct_read_spin_lock);
4316 }
4317}
4318
4319static int
4320cluster_read_direct(vnode_t vp, struct uio *uio, off_t filesize, int *read_type, u_int32_t *read_length,
4321 int flags, int (*callback)(buf_t, void *), void *callback_arg)
4322{
4323 upl_t upl;
4324 upl_page_info_t *pl;
4325 off_t max_io_size;
4326 vm_offset_t upl_offset, vector_upl_offset = 0;
4327 upl_size_t upl_size, vector_upl_size = 0;
4328 vm_size_t upl_needed_size;
4329 unsigned int pages_in_pl;
4330 upl_control_flags_t upl_flags;
4331 kern_return_t kret;
4332 unsigned int i;
4333 int force_data_sync;
4334 int retval = 0;
4335 int no_zero_fill = 0;
4336 int io_flag = 0;
4337 int misaligned = 0;
4338 struct clios iostate;
4339 user_addr_t iov_base;
4340 u_int32_t io_req_size;
4341 u_int32_t offset_in_file;
4342 u_int32_t offset_in_iovbase;
4343 u_int32_t io_size;
4344 u_int32_t io_min;
4345 u_int32_t xsize;
4346 u_int32_t devblocksize;
4347 u_int32_t mem_alignment_mask;
4348 u_int32_t max_upl_size;
4349 u_int32_t max_rd_size;
4350 u_int32_t max_rd_ahead;
4351 u_int32_t max_vector_size;
4352 boolean_t strict_uncached_IO = FALSE;
4353 boolean_t io_throttled = FALSE;
4354
4355 u_int32_t vector_upl_iosize = 0;
4356 int issueVectorUPL = 0,useVectorUPL = (uio->uio_iovcnt > 1);
4357 off_t v_upl_uio_offset = 0;
4358 int vector_upl_index=0;
4359 upl_t vector_upl = NULL;
4360 cl_direct_read_lock_t *lock = NULL;
4361
4362 user_addr_t orig_iov_base = 0;
4363 user_addr_t last_iov_base = 0;
4364 user_addr_t next_iov_base = 0;
4365
4366 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 70)) | DBG_FUNC_START,
4367 (int)uio->uio_offset, (int)filesize, *read_type, *read_length, 0);
4368
4369 max_upl_size = cluster_max_io_size(vp->v_mount, CL_READ);
4370
4371 max_rd_size = max_upl_size;
4372 max_rd_ahead = max_rd_size * IO_SCALE(vp, 2);
4373
4374 io_flag = CL_COMMIT | CL_READ | CL_ASYNC | CL_NOZERO | CL_DIRECT_IO;
4375
4376 if (flags & IO_PASSIVE)
4377 io_flag |= CL_PASSIVE;
4378
4379 if (flags & IO_ENCRYPTED) {
4380 io_flag |= CL_RAW_ENCRYPTED;
4381 }
4382
4383 if (flags & IO_NOCACHE) {
4384 io_flag |= CL_NOCACHE;
4385 }
4386
4387 if (flags & IO_SKIP_ENCRYPTION)
4388 io_flag |= CL_ENCRYPTED;
4389
4390 iostate.io_completed = 0;
4391 iostate.io_issued = 0;
4392 iostate.io_error = 0;
4393 iostate.io_wanted = 0;
4394
4395 lck_mtx_init(&iostate.io_mtxp, cl_mtx_grp, cl_mtx_attr);
4396
4397 devblocksize = (u_int32_t)vp->v_mount->mnt_devblocksize;
4398 mem_alignment_mask = (u_int32_t)vp->v_mount->mnt_alignmentmask;
4399
4400 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 70)) | DBG_FUNC_NONE,
4401 (int)devblocksize, (int)mem_alignment_mask, 0, 0, 0);
4402
4403 if (devblocksize == 1) {
4404 /*
4405 * the AFP client advertises a devblocksize of 1
4406 * however, its BLOCKMAP routine maps to physical
4407 * blocks that are PAGE_SIZE in size...
4408 * therefore we can't ask for I/Os that aren't page aligned
4409 * or aren't multiples of PAGE_SIZE in size
4410 * by setting devblocksize to PAGE_SIZE, we re-instate
4411 * the old behavior we had before the mem_alignment_mask
4412 * changes went in...
4413 */
4414 devblocksize = PAGE_SIZE;
4415 }
4416
4417 strict_uncached_IO = ubc_strict_uncached_IO(vp);
4418
4419 orig_iov_base = uio_curriovbase(uio);
4420 last_iov_base = orig_iov_base;
4421
4422next_dread:
4423 io_req_size = *read_length;
4424 iov_base = uio_curriovbase(uio);
4425
4426 offset_in_file = (u_int32_t)uio->uio_offset & (devblocksize - 1);
4427 offset_in_iovbase = (u_int32_t)iov_base & mem_alignment_mask;
4428
4429 if (offset_in_file || offset_in_iovbase) {
4430 /*
4431 * one of the 2 important offsets is misaligned
4432 * so fire an I/O through the cache for this entire vector
4433 */
4434 misaligned = 1;
4435 }
4436 if (iov_base & (devblocksize - 1)) {
4437 /*
4438 * the offset in memory must be on a device block boundary
4439 * so that we can guarantee that we can generate an
4440 * I/O that ends on a page boundary in cluster_io
4441 */
4442 misaligned = 1;
4443 }
4444
4445 max_io_size = filesize - uio->uio_offset;
4446
4447 /*
4448 * The user must request IO in aligned chunks. If the
4449 * offset into the file is bad, or the userland pointer
4450 * is non-aligned, then we cannot service the encrypted IO request.
4451 */
4452 if (flags & IO_ENCRYPTED) {
4453 if (misaligned || (io_req_size & (devblocksize - 1)))
4454 retval = EINVAL;
4455
4456 max_io_size = roundup(max_io_size, devblocksize);
4457 }
4458
4459 if ((off_t)io_req_size > max_io_size)
4460 io_req_size = max_io_size;
4461
4462 /*
4463 * When we get to this point, we know...
4464 * -- the offset into the file is on a devblocksize boundary
4465 */
4466
4467 while (io_req_size && retval == 0) {
4468 u_int32_t io_start;
4469
4470 if (cluster_is_throttled(vp)) {
4471 /*
4472 * we're in the throttle window, at the very least
4473 * we want to limit the size of the I/O we're about
4474 * to issue
4475 */
4476 max_rd_size = THROTTLE_MAX_IOSIZE;
4477 max_rd_ahead = THROTTLE_MAX_IOSIZE - 1;
4478 max_vector_size = THROTTLE_MAX_IOSIZE;
4479 } else {
4480 max_rd_size = max_upl_size;
4481 max_rd_ahead = max_rd_size * IO_SCALE(vp, 2);
4482 max_vector_size = MAX_VECTOR_UPL_SIZE;
4483 }
4484 io_start = io_size = io_req_size;
4485
4486 /*
4487 * First look for pages already in the cache
4488 * and move them to user space. But only do this
4489 * check if we are not retrieving encrypted data directly
4490 * from the filesystem; those blocks should never
4491 * be in the UBC.
4492 *
4493 * cluster_copy_ubc_data returns the resid
4494 * in io_size
4495 */
4496 if ((strict_uncached_IO == FALSE) && ((flags & IO_ENCRYPTED) == 0)) {
4497 retval = cluster_copy_ubc_data_internal(vp, uio, (int *)&io_size, 0, 0);
4498 }
4499 /*
4500 * calculate the number of bytes actually copied
4501 * starting size - residual
4502 */
4503 xsize = io_start - io_size;
4504
4505 io_req_size -= xsize;
4506
4507 if(useVectorUPL && (xsize || (iov_base & PAGE_MASK))) {
4508 /*
4509 * We found something in the cache or we have an iov_base that's not
4510 * page-aligned.
4511 *
4512 * Issue all I/O's that have been collected within this Vectored UPL.
4513 */
4514 if(vector_upl_index) {
4515 retval = vector_cluster_io(vp, vector_upl, vector_upl_offset, v_upl_uio_offset, vector_upl_iosize, io_flag, (buf_t)NULL, &iostate, callback, callback_arg);
4516 reset_vector_run_state();
4517 }
4518
4519 if(xsize)
4520 useVectorUPL = 0;
4521
4522 /*
4523 * After this point, if we are using the Vector UPL path and the base is
4524 * not page-aligned then the UPL with that base will be the first in the vector UPL.
4525 */
4526 }
4527
4528 /*
4529 * check to see if we are finished with this request.
4530 *
4531 * If we satisfied this IO already, then io_req_size will be 0.
4532 * Otherwise, see if the IO was mis-aligned and needs to go through
4533 * the UBC to deal with the 'tail'.
4534 *
4535 */
4536 if (io_req_size == 0 || (misaligned)) {
4537 /*
4538 * see if there's another uio vector to
4539 * process that's of type IO_DIRECT
4540 *
4541 * break out of while loop to get there
4542 */
4543 break;
4544 }
4545 /*
4546 * assume the request ends on a device block boundary
4547 */
4548 io_min = devblocksize;
4549
4550 /*
4551 * we can handle I/O's in multiples of the device block size
4552 * however, if io_size isn't a multiple of devblocksize we
4553 * want to clip it back to the nearest page boundary since
4554 * we are going to have to go through cluster_read_copy to
4555 * deal with the 'overhang'... by clipping it to a PAGE_SIZE
4556 * multiple, we avoid asking the drive for the same physical
4557 * blocks twice.. once for the partial page at the end of the
4558 * request and a 2nd time for the page we read into the cache
4559 * (which overlaps the end of the direct read) in order to
4560 * get at the overhang bytes
4561 */
4562 if (io_size & (devblocksize - 1)) {
4563 assert(!(flags & IO_ENCRYPTED));
4564 /*
4565 * Clip the request to the previous page size boundary
4566 * since request does NOT end on a device block boundary
4567 */
4568 io_size &= ~PAGE_MASK;
4569 io_min = PAGE_SIZE;
4570 }
4571 if (retval || io_size < io_min) {
4572 /*
4573 * either an error or we only have the tail left to
4574 * complete via the copy path...
4575 * we may have already spun some portion of this request
4576 * off as async requests... we need to wait for the I/O
4577 * to complete before returning
4578 */
4579 goto wait_for_dreads;
4580 }
4581
4582 /*
4583 * Don't re-check the UBC data if we are looking for uncached IO
4584 * or asking for encrypted blocks.
4585 */
4586 if ((strict_uncached_IO == FALSE) && ((flags & IO_ENCRYPTED) == 0)) {
4587
4588 if ((xsize = io_size) > max_rd_size)
4589 xsize = max_rd_size;
4590
4591 io_size = 0;
4592
4593 if (!lock) {
4594 /*
4595 * We hold a lock here between the time we check the
4596 * cache and the time we issue I/O. This saves us
4597 * from having to lock the pages in the cache. Not
4598 * all clients will care about this lock but some
4599 * clients may want to guarantee stability between
4600 * here and when the I/O is issued in which case they
4601 * will take the lock exclusively.
4602 */
4603 lock = cluster_lock_direct_read(vp, LCK_RW_TYPE_SHARED);
4604 }
4605
4606 ubc_range_op(vp, uio->uio_offset, uio->uio_offset + xsize, UPL_ROP_ABSENT, (int *)&io_size);
4607
4608 if (io_size == 0) {
4609 /*
4610 * a page must have just come into the cache
4611 * since the first page in this range is no
4612 * longer absent, go back and re-evaluate
4613 */
4614 continue;
4615 }
4616 }
4617 if ( (flags & IO_RETURN_ON_THROTTLE) ) {
4618 if (cluster_is_throttled(vp) == THROTTLE_NOW) {
4619 if ( !cluster_io_present_in_BC(vp, uio->uio_offset)) {
4620 /*
4621 * we're in the throttle window and at least 1 I/O
4622 * has already been issued by a throttleable thread
4623 * in this window, so return with EAGAIN to indicate
4624 * to the FS issuing the cluster_read call that it
4625 * should now throttle after dropping any locks
4626 */
4627 throttle_info_update_by_mount(vp->v_mount);
4628
4629 io_throttled = TRUE;
4630 goto wait_for_dreads;
4631 }
4632 }
4633 }
4634 if (io_size > max_rd_size)
4635 io_size = max_rd_size;
4636
4637 iov_base = uio_curriovbase(uio);
4638
4639 upl_offset = (vm_offset_t)((u_int32_t)iov_base & PAGE_MASK);
4640 upl_needed_size = (upl_offset + io_size + (PAGE_SIZE -1)) & ~PAGE_MASK;
4641
4642 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 72)) | DBG_FUNC_START,
4643 (int)upl_offset, upl_needed_size, (int)iov_base, io_size, 0);
4644
4645 if (upl_offset == 0 && ((io_size & PAGE_MASK) == 0))
4646 no_zero_fill = 1;
4647 else
4648 no_zero_fill = 0;
4649
4650 vm_map_t map = UIO_SEG_IS_USER_SPACE(uio->uio_segflg) ? current_map() : kernel_map;
4651 for (force_data_sync = 0; force_data_sync < 3; force_data_sync++) {
4652 pages_in_pl = 0;
4653 upl_size = upl_needed_size;
4654 upl_flags = UPL_FILE_IO | UPL_NO_SYNC | UPL_SET_INTERNAL | UPL_SET_LITE | UPL_SET_IO_WIRE
4655 | UPL_MEMORY_TAG_MAKE(VM_KERN_MEMORY_FILE);
4656 if (no_zero_fill)
4657 upl_flags |= UPL_NOZEROFILL;
4658 if (force_data_sync)
4659 upl_flags |= UPL_FORCE_DATA_SYNC;
4660
4661 kret = vm_map_create_upl(map,
4662 (vm_map_offset_t)(iov_base & ~((user_addr_t)PAGE_MASK)),
4663 &upl_size, &upl, NULL, &pages_in_pl, &upl_flags);
4664
4665 if (kret != KERN_SUCCESS) {
4666 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 72)) | DBG_FUNC_END,
4667 (int)upl_offset, upl_size, io_size, kret, 0);
4668 /*
4669 * failed to get pagelist
4670 *
4671 * we may have already spun some portion of this request
4672 * off as async requests... we need to wait for the I/O
4673 * to complete before returning
4674 */
4675 goto wait_for_dreads;
4676 }
4677 pages_in_pl = upl_size / PAGE_SIZE;
4678 pl = UPL_GET_INTERNAL_PAGE_LIST(upl);
4679
4680 for (i = 0; i < pages_in_pl; i++) {
4681 if (!upl_page_present(pl, i))
4682 break;
4683 }
4684 if (i == pages_in_pl)
4685 break;
4686
4687 ubc_upl_abort(upl, 0);
4688 }
4689 if (force_data_sync >= 3) {
4690 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 72)) | DBG_FUNC_END,
4691 (int)upl_offset, upl_size, io_size, kret, 0);
4692
4693 goto wait_for_dreads;
4694 }
4695 /*
4696 * Consider the possibility that upl_size wasn't satisfied.
4697 */
4698 if (upl_size < upl_needed_size) {
4699 if (upl_size && upl_offset == 0)
4700 io_size = upl_size;
4701 else
4702 io_size = 0;
4703 }
4704 if (io_size == 0) {
4705 ubc_upl_abort(upl, 0);
4706 goto wait_for_dreads;
4707 }
4708 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 72)) | DBG_FUNC_END,
4709 (int)upl_offset, upl_size, io_size, kret, 0);
4710
4711 if(useVectorUPL) {
4712 vm_offset_t end_off = ((iov_base + io_size) & PAGE_MASK);
4713 if(end_off)
4714 issueVectorUPL = 1;
4715 /*
4716 * After this point, if we are using a vector UPL, then
4717 * either all the UPL elements end on a page boundary OR
4718 * this UPL is the last element because it does not end
4719 * on a page boundary.
4720 */
4721 }
4722
4723 /*
4724 * request asynchronously so that we can overlap
4725 * the preparation of the next I/O
4726 * if there are already too many outstanding reads
4727 * wait until some have completed before issuing the next read
4728 */
4729 cluster_iostate_wait(&iostate, max_rd_ahead, "cluster_read_direct");
4730
4731 if (iostate.io_error) {
4732 /*
4733 * one of the earlier reads we issued ran into a hard error
4734 * don't issue any more reads, cleanup the UPL
4735 * that was just created but not used, then
4736 * go wait for any other reads to complete before
4737 * returning the error to the caller
4738 */
4739 ubc_upl_abort(upl, 0);
4740
4741 goto wait_for_dreads;
4742 }
4743 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 73)) | DBG_FUNC_START,
4744 upl, (int)upl_offset, (int)uio->uio_offset, io_size, 0);
4745
4746 if(!useVectorUPL) {
4747 if (no_zero_fill)
4748 io_flag &= ~CL_PRESERVE;
4749 else
4750 io_flag |= CL_PRESERVE;
4751
4752 retval = cluster_io(vp, upl, upl_offset, uio->uio_offset, io_size, io_flag, (buf_t)NULL, &iostate, callback, callback_arg);
4753
4754 } else {
4755
4756 if(!vector_upl_index) {
4757 vector_upl = vector_upl_create(upl_offset);
4758 v_upl_uio_offset = uio->uio_offset;
4759 vector_upl_offset = upl_offset;
4760 }
4761
4762 vector_upl_set_subupl(vector_upl,upl, upl_size);
4763 vector_upl_set_iostate(vector_upl, upl, vector_upl_size, upl_size);
4764 vector_upl_index++;
4765 vector_upl_size += upl_size;
4766 vector_upl_iosize += io_size;
4767
4768 if(issueVectorUPL || vector_upl_index == MAX_VECTOR_UPL_ELEMENTS || vector_upl_size >= max_vector_size) {
4769 retval = vector_cluster_io(vp, vector_upl, vector_upl_offset, v_upl_uio_offset, vector_upl_iosize, io_flag, (buf_t)NULL, &iostate, callback, callback_arg);
4770 reset_vector_run_state();
4771 }
4772 }
4773 last_iov_base = iov_base + io_size;
4774
4775 if (lock) {
4776 // We don't need to wait for the I/O to complete
4777 cluster_unlock_direct_read(lock);
4778 lock = NULL;
4779 }
4780
4781 /*
4782 * update the uio structure
4783 */
4784 if ((flags & IO_ENCRYPTED) && (max_io_size < io_size)) {
4785 uio_update(uio, (user_size_t)max_io_size);
4786 }
4787 else {
4788 uio_update(uio, (user_size_t)io_size);
4789 }
4790
4791 io_req_size -= io_size;
4792
4793 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 73)) | DBG_FUNC_END,
4794 upl, (int)uio->uio_offset, io_req_size, retval, 0);
4795
4796 } /* end while */
4797
4798 if (retval == 0 && iostate.io_error == 0 && io_req_size == 0 && uio->uio_offset < filesize) {
4799
4800 retval = cluster_io_type(uio, read_type, read_length, 0);
4801
4802 if (retval == 0 && *read_type == IO_DIRECT) {
4803
4804 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 70)) | DBG_FUNC_NONE,
4805 (int)uio->uio_offset, (int)filesize, *read_type, *read_length, 0);
4806
4807 goto next_dread;
4808 }
4809 }
4810
4811wait_for_dreads:
4812
4813 if(retval == 0 && iostate.io_error == 0 && useVectorUPL && vector_upl_index) {
4814 retval = vector_cluster_io(vp, vector_upl, vector_upl_offset, v_upl_uio_offset, vector_upl_iosize, io_flag, (buf_t)NULL, &iostate, callback, callback_arg);
4815 reset_vector_run_state();
4816 }
4817
4818 // We don't need to wait for the I/O to complete
4819 if (lock)
4820 cluster_unlock_direct_read(lock);
4821
4822 /*
4823 * make sure all async reads that are part of this stream
4824 * have completed before we return
4825 */
4826 cluster_iostate_wait(&iostate, 0, "cluster_read_direct");
4827
4828 if (iostate.io_error)
4829 retval = iostate.io_error;
4830
4831 lck_mtx_destroy(&iostate.io_mtxp, cl_mtx_grp);
4832
4833 if (io_throttled == TRUE && retval == 0)
4834 retval = EAGAIN;
4835
4836 for (next_iov_base = orig_iov_base; next_iov_base < last_iov_base; next_iov_base += PAGE_SIZE) {
4837 /*
4838 * This is specifically done for pmap accounting purposes.
4839 * vm_pre_fault() will call vm_fault() to enter the page into
4840 * the pmap if there isn't _a_ physical page for that VA already.
4841 */
4842 vm_pre_fault(vm_map_trunc_page(next_iov_base, PAGE_MASK));
4843 }
4844
4845 if (io_req_size && retval == 0) {
4846 /*
4847 * we couldn't handle the tail of this request in DIRECT mode
4848 * so fire it through the copy path
4849 */
4850 retval = cluster_read_copy(vp, uio, io_req_size, filesize, flags, callback, callback_arg);
4851
4852 *read_type = IO_UNKNOWN;
4853 }
4854 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 70)) | DBG_FUNC_END,
4855 (int)uio->uio_offset, (int)uio_resid(uio), io_req_size, retval, 0);
4856
4857 return (retval);
4858}
4859
4860
4861static int
4862cluster_read_contig(vnode_t vp, struct uio *uio, off_t filesize, int *read_type, u_int32_t *read_length,
4863 int (*callback)(buf_t, void *), void *callback_arg, int flags)
4864{
4865 upl_page_info_t *pl;
4866 upl_t upl[MAX_VECTS];
4867 vm_offset_t upl_offset;
4868 addr64_t dst_paddr = 0;
4869 user_addr_t iov_base;
4870 off_t max_size;
4871 upl_size_t upl_size;
4872 vm_size_t upl_needed_size;
4873 mach_msg_type_number_t pages_in_pl;
4874 upl_control_flags_t upl_flags;
4875 kern_return_t kret;
4876 struct clios iostate;
4877 int error= 0;
4878 int cur_upl = 0;
4879 int num_upl = 0;
4880 int n;
4881 u_int32_t xsize;
4882 u_int32_t io_size;
4883 u_int32_t devblocksize;
4884 u_int32_t mem_alignment_mask;
4885 u_int32_t tail_size = 0;
4886 int bflag;
4887
4888 if (flags & IO_PASSIVE)
4889 bflag = CL_PASSIVE;
4890 else
4891 bflag = 0;
4892
4893 if (flags & IO_NOCACHE)
4894 bflag |= CL_NOCACHE;
4895
4896 /*
4897 * When we enter this routine, we know
4898 * -- the read_length will not exceed the current iov_len
4899 * -- the target address is physically contiguous for read_length
4900 */
4901 cluster_syncup(vp, filesize, callback, callback_arg, PUSH_SYNC);
4902
4903 devblocksize = (u_int32_t)vp->v_mount->mnt_devblocksize;
4904 mem_alignment_mask = (u_int32_t)vp->v_mount->mnt_alignmentmask;
4905
4906 iostate.io_completed = 0;
4907 iostate.io_issued = 0;
4908 iostate.io_error = 0;
4909 iostate.io_wanted = 0;
4910
4911 lck_mtx_init(&iostate.io_mtxp, cl_mtx_grp, cl_mtx_attr);
4912
4913next_cread:
4914 io_size = *read_length;
4915
4916 max_size = filesize - uio->uio_offset;
4917
4918 if (io_size > max_size)
4919 io_size = max_size;
4920
4921 iov_base = uio_curriovbase(uio);
4922
4923 upl_offset = (vm_offset_t)((u_int32_t)iov_base & PAGE_MASK);
4924 upl_needed_size = upl_offset + io_size;
4925
4926 pages_in_pl = 0;
4927 upl_size = upl_needed_size;
4928 upl_flags = UPL_FILE_IO | UPL_NO_SYNC | UPL_CLEAN_IN_PLACE | UPL_SET_INTERNAL | UPL_SET_LITE | UPL_SET_IO_WIRE
4929 | UPL_MEMORY_TAG_MAKE(VM_KERN_MEMORY_FILE);
4930
4931
4932 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 92)) | DBG_FUNC_START,
4933 (int)upl_offset, (int)upl_size, (int)iov_base, io_size, 0);
4934
4935 vm_map_t map = UIO_SEG_IS_USER_SPACE(uio->uio_segflg) ? current_map() : kernel_map;
4936 kret = vm_map_get_upl(map,
4937 (vm_map_offset_t)(iov_base & ~((user_addr_t)PAGE_MASK)),
4938 &upl_size, &upl[cur_upl], NULL, &pages_in_pl, &upl_flags, 0);
4939
4940 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 92)) | DBG_FUNC_END,
4941 (int)upl_offset, upl_size, io_size, kret, 0);
4942
4943 if (kret != KERN_SUCCESS) {
4944 /*
4945 * failed to get pagelist
4946 */
4947 error = EINVAL;
4948 goto wait_for_creads;
4949 }
4950 num_upl++;
4951
4952 if (upl_size < upl_needed_size) {
4953 /*
4954 * The upl_size wasn't satisfied.
4955 */
4956 error = EINVAL;
4957 goto wait_for_creads;
4958 }
4959 pl = ubc_upl_pageinfo(upl[cur_upl]);
4960
4961 dst_paddr = ((addr64_t)upl_phys_page(pl, 0) << PAGE_SHIFT) + (addr64_t)upl_offset;
4962
4963 while (((uio->uio_offset & (devblocksize - 1)) || io_size < devblocksize) && io_size) {
4964 u_int32_t head_size;
4965
4966 head_size = devblocksize - (u_int32_t)(uio->uio_offset & (devblocksize - 1));
4967
4968 if (head_size > io_size)
4969 head_size = io_size;
4970
4971 error = cluster_align_phys_io(vp, uio, dst_paddr, head_size, CL_READ, callback, callback_arg);
4972
4973 if (error)
4974 goto wait_for_creads;
4975
4976 upl_offset += head_size;
4977 dst_paddr += head_size;
4978 io_size -= head_size;
4979
4980 iov_base += head_size;
4981 }
4982 if ((u_int32_t)iov_base & mem_alignment_mask) {
4983 /*
4984 * request doesn't set up on a memory boundary
4985 * the underlying DMA engine can handle...
4986 * return an error instead of going through
4987 * the slow copy path since the intent of this
4988 * path is direct I/O to device memory
4989 */
4990 error = EINVAL;
4991 goto wait_for_creads;
4992 }
4993
4994 tail_size = io_size & (devblocksize - 1);
4995
4996 io_size -= tail_size;
4997
4998 while (io_size && error == 0) {
4999
5000 if (io_size > MAX_IO_CONTIG_SIZE)
5001 xsize = MAX_IO_CONTIG_SIZE;
5002 else
5003 xsize = io_size;
5004 /*
5005 * request asynchronously so that we can overlap
5006 * the preparation of the next I/O... we'll do
5007 * the commit after all the I/O has completed
5008 * since its all issued against the same UPL
5009 * if there are already too many outstanding reads
5010 * wait until some have completed before issuing the next
5011 */
5012 cluster_iostate_wait(&iostate, MAX_IO_CONTIG_SIZE * IO_SCALE(vp, 2), "cluster_read_contig");
5013
5014 if (iostate.io_error) {
5015 /*
5016 * one of the earlier reads we issued ran into a hard error
5017 * don't issue any more reads...
5018 * go wait for any other reads to complete before
5019 * returning the error to the caller
5020 */
5021 goto wait_for_creads;
5022 }
5023 error = cluster_io(vp, upl[cur_upl], upl_offset, uio->uio_offset, xsize,
5024 CL_READ | CL_NOZERO | CL_DEV_MEMORY | CL_ASYNC | bflag,
5025 (buf_t)NULL, &iostate, callback, callback_arg);
5026 /*
5027 * The cluster_io read was issued successfully,
5028 * update the uio structure
5029 */
5030 if (error == 0) {
5031 uio_update(uio, (user_size_t)xsize);
5032
5033 dst_paddr += xsize;
5034 upl_offset += xsize;
5035 io_size -= xsize;
5036 }
5037 }
5038 if (error == 0 && iostate.io_error == 0 && tail_size == 0 && num_upl < MAX_VECTS && uio->uio_offset < filesize) {
5039
5040 error = cluster_io_type(uio, read_type, read_length, 0);
5041
5042 if (error == 0 && *read_type == IO_CONTIG) {
5043 cur_upl++;
5044 goto next_cread;
5045 }
5046 } else
5047 *read_type = IO_UNKNOWN;
5048
5049wait_for_creads:
5050 /*
5051 * make sure all async reads that are part of this stream
5052 * have completed before we proceed
5053 */
5054 cluster_iostate_wait(&iostate, 0, "cluster_read_contig");
5055
5056 if (iostate.io_error)
5057 error = iostate.io_error;
5058
5059 lck_mtx_destroy(&iostate.io_mtxp, cl_mtx_grp);
5060
5061 if (error == 0 && tail_size)
5062 error = cluster_align_phys_io(vp, uio, dst_paddr, tail_size, CL_READ, callback, callback_arg);
5063
5064 for (n = 0; n < num_upl; n++)
5065 /*
5066 * just release our hold on each physically contiguous
5067 * region without changing any state
5068 */
5069 ubc_upl_abort(upl[n], 0);
5070
5071 return (error);
5072}
5073
5074
5075static int
5076cluster_io_type(struct uio *uio, int *io_type, u_int32_t *io_length, u_int32_t min_length)
5077{
5078 user_size_t iov_len;
5079 user_addr_t iov_base = 0;
5080 upl_t upl;
5081 upl_size_t upl_size;
5082 upl_control_flags_t upl_flags;
5083 int retval = 0;
5084
5085 /*
5086 * skip over any emtpy vectors
5087 */
5088 uio_update(uio, (user_size_t)0);
5089
5090 iov_len = uio_curriovlen(uio);
5091
5092 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 94)) | DBG_FUNC_START, uio, (int)iov_len, 0, 0, 0);
5093
5094 if (iov_len) {
5095 iov_base = uio_curriovbase(uio);
5096 /*
5097 * make sure the size of the vector isn't too big...
5098 * internally, we want to handle all of the I/O in
5099 * chunk sizes that fit in a 32 bit int
5100 */
5101 if (iov_len > (user_size_t)MAX_IO_REQUEST_SIZE)
5102 upl_size = MAX_IO_REQUEST_SIZE;
5103 else
5104 upl_size = (u_int32_t)iov_len;
5105
5106 upl_flags = UPL_QUERY_OBJECT_TYPE | UPL_MEMORY_TAG_MAKE(VM_KERN_MEMORY_FILE);
5107
5108 vm_map_t map = UIO_SEG_IS_USER_SPACE(uio->uio_segflg) ? current_map() : kernel_map;
5109 if ((vm_map_get_upl(map,
5110 (vm_map_offset_t)(iov_base & ~((user_addr_t)PAGE_MASK)),
5111 &upl_size, &upl, NULL, NULL, &upl_flags, 0)) != KERN_SUCCESS) {
5112 /*
5113 * the user app must have passed in an invalid address
5114 */
5115 retval = EFAULT;
5116 }
5117 if (upl_size == 0)
5118 retval = EFAULT;
5119
5120 *io_length = upl_size;
5121
5122 if (upl_flags & UPL_PHYS_CONTIG)
5123 *io_type = IO_CONTIG;
5124 else if (iov_len >= min_length)
5125 *io_type = IO_DIRECT;
5126 else
5127 *io_type = IO_COPY;
5128 } else {
5129 /*
5130 * nothing left to do for this uio
5131 */
5132 *io_length = 0;
5133 *io_type = IO_UNKNOWN;
5134 }
5135 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 94)) | DBG_FUNC_END, iov_base, *io_type, *io_length, retval, 0);
5136
5137 return (retval);
5138}
5139
5140
5141/*
5142 * generate advisory I/O's in the largest chunks possible
5143 * the completed pages will be released into the VM cache
5144 */
5145int
5146advisory_read(vnode_t vp, off_t filesize, off_t f_offset, int resid)
5147{
5148 return advisory_read_ext(vp, filesize, f_offset, resid, NULL, NULL, CL_PASSIVE);
5149}
5150
5151int
5152advisory_read_ext(vnode_t vp, off_t filesize, off_t f_offset, int resid, int (*callback)(buf_t, void *), void *callback_arg, int bflag)
5153{
5154 upl_page_info_t *pl;
5155 upl_t upl;
5156 vm_offset_t upl_offset;
5157 int upl_size;
5158 off_t upl_f_offset;
5159 int start_offset;
5160 int start_pg;
5161 int last_pg;
5162 int pages_in_upl;
5163 off_t max_size;
5164 int io_size;
5165 kern_return_t kret;
5166 int retval = 0;
5167 int issued_io;
5168 int skip_range;
5169 uint32_t max_io_size;
5170
5171
5172 if ( !UBCINFOEXISTS(vp))
5173 return(EINVAL);
5174
5175 if (resid < 0)
5176 return(EINVAL);
5177
5178 max_io_size = cluster_max_io_size(vp->v_mount, CL_READ);
5179
5180 if ((vp->v_mount->mnt_kern_flag & MNTK_SSD) && !ignore_is_ssd) {
5181 if (max_io_size > speculative_prefetch_max_iosize)
5182 max_io_size = speculative_prefetch_max_iosize;
5183 }
5184
5185 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 60)) | DBG_FUNC_START,
5186 (int)f_offset, resid, (int)filesize, 0, 0);
5187
5188 while (resid && f_offset < filesize && retval == 0) {
5189 /*
5190 * compute the size of the upl needed to encompass
5191 * the requested read... limit each call to cluster_io
5192 * to the maximum UPL size... cluster_io will clip if
5193 * this exceeds the maximum io_size for the device,
5194 * make sure to account for
5195 * a starting offset that's not page aligned
5196 */
5197 start_offset = (int)(f_offset & PAGE_MASK_64);
5198 upl_f_offset = f_offset - (off_t)start_offset;
5199 max_size = filesize - f_offset;
5200
5201 if (resid < max_size)
5202 io_size = resid;
5203 else
5204 io_size = max_size;
5205
5206 upl_size = (start_offset + io_size + (PAGE_SIZE - 1)) & ~PAGE_MASK;
5207 if ((uint32_t)upl_size > max_io_size)
5208 upl_size = max_io_size;
5209
5210 skip_range = 0;
5211 /*
5212 * return the number of contiguously present pages in the cache
5213 * starting at upl_f_offset within the file
5214 */
5215 ubc_range_op(vp, upl_f_offset, upl_f_offset + upl_size, UPL_ROP_PRESENT, &skip_range);
5216
5217 if (skip_range) {
5218 /*
5219 * skip over pages already present in the cache
5220 */
5221 io_size = skip_range - start_offset;
5222
5223 f_offset += io_size;
5224 resid -= io_size;
5225
5226 if (skip_range == upl_size)
5227 continue;
5228 /*
5229 * have to issue some real I/O
5230 * at this point, we know it's starting on a page boundary
5231 * because we've skipped over at least the first page in the request
5232 */
5233 start_offset = 0;
5234 upl_f_offset += skip_range;
5235 upl_size -= skip_range;
5236 }
5237 pages_in_upl = upl_size / PAGE_SIZE;
5238
5239 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 61)) | DBG_FUNC_START,
5240 upl, (int)upl_f_offset, upl_size, start_offset, 0);
5241
5242 kret = ubc_create_upl(vp,
5243 upl_f_offset,
5244 upl_size,
5245 &upl,
5246 &pl,
5247 UPL_RET_ONLY_ABSENT | UPL_SET_LITE);
5248 if (kret != KERN_SUCCESS)
5249 return(retval);
5250 issued_io = 0;
5251
5252 /*
5253 * before we start marching forward, we must make sure we end on
5254 * a present page, otherwise we will be working with a freed
5255 * upl
5256 */
5257 for (last_pg = pages_in_upl - 1; last_pg >= 0; last_pg--) {
5258 if (upl_page_present(pl, last_pg))
5259 break;
5260 }
5261 pages_in_upl = last_pg + 1;
5262
5263
5264 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 61)) | DBG_FUNC_END,
5265 upl, (int)upl_f_offset, upl_size, start_offset, 0);
5266
5267
5268 for (last_pg = 0; last_pg < pages_in_upl; ) {
5269 /*
5270 * scan from the beginning of the upl looking for the first
5271 * page that is present.... this will become the first page in
5272 * the request we're going to make to 'cluster_io'... if all
5273 * of the pages are absent, we won't call through to 'cluster_io'
5274 */
5275 for (start_pg = last_pg; start_pg < pages_in_upl; start_pg++) {
5276 if (upl_page_present(pl, start_pg))
5277 break;
5278 }
5279
5280 /*
5281 * scan from the starting present page looking for an absent
5282 * page before the end of the upl is reached, if we
5283 * find one, then it will terminate the range of pages being
5284 * presented to 'cluster_io'
5285 */
5286 for (last_pg = start_pg; last_pg < pages_in_upl; last_pg++) {
5287 if (!upl_page_present(pl, last_pg))
5288 break;
5289 }
5290
5291 if (last_pg > start_pg) {
5292 /*
5293 * we found a range of pages that must be filled
5294 * if the last page in this range is the last page of the file
5295 * we may have to clip the size of it to keep from reading past
5296 * the end of the last physical block associated with the file
5297 */
5298 upl_offset = start_pg * PAGE_SIZE;
5299 io_size = (last_pg - start_pg) * PAGE_SIZE;
5300
5301 if ((off_t)(upl_f_offset + upl_offset + io_size) > filesize)
5302 io_size = filesize - (upl_f_offset + upl_offset);
5303
5304 /*
5305 * issue an asynchronous read to cluster_io
5306 */
5307 retval = cluster_io(vp, upl, upl_offset, upl_f_offset + upl_offset, io_size,
5308 CL_ASYNC | CL_READ | CL_COMMIT | CL_AGE | bflag, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg);
5309
5310 issued_io = 1;
5311 }
5312 }
5313 if (issued_io == 0)
5314 ubc_upl_abort(upl, 0);
5315
5316 io_size = upl_size - start_offset;
5317
5318 if (io_size > resid)
5319 io_size = resid;
5320 f_offset += io_size;
5321 resid -= io_size;
5322 }
5323
5324 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 60)) | DBG_FUNC_END,
5325 (int)f_offset, resid, retval, 0, 0);
5326
5327 return(retval);
5328}
5329
5330
5331int
5332cluster_push(vnode_t vp, int flags)
5333{
5334 return cluster_push_ext(vp, flags, NULL, NULL);
5335}
5336
5337
5338int
5339cluster_push_ext(vnode_t vp, int flags, int (*callback)(buf_t, void *), void *callback_arg)
5340{
5341 return cluster_push_err(vp, flags, callback, callback_arg, NULL);
5342}
5343
5344/* write errors via err, but return the number of clusters written */
5345int
5346cluster_push_err(vnode_t vp, int flags, int (*callback)(buf_t, void *), void *callback_arg, int *err)
5347{
5348 int retval;
5349 int my_sparse_wait = 0;
5350 struct cl_writebehind *wbp;
5351
5352 if (err)
5353 *err = 0;
5354
5355 if ( !UBCINFOEXISTS(vp)) {
5356 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_NONE, kdebug_vnode(vp), flags, 0, -1, 0);
5357 return (0);
5358 }
5359 /* return if deferred write is set */
5360 if (((unsigned int)vfs_flags(vp->v_mount) & MNT_DEFWRITE) && (flags & IO_DEFWRITE)) {
5361 return (0);
5362 }
5363 if ((wbp = cluster_get_wbp(vp, CLW_RETURNLOCKED)) == NULL) {
5364 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_NONE, kdebug_vnode(vp), flags, 0, -2, 0);
5365 return (0);
5366 }
5367 if (!ISSET(flags, IO_SYNC) && wbp->cl_number == 0 && wbp->cl_scmap == NULL) {
5368 lck_mtx_unlock(&wbp->cl_lockw);
5369
5370 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_NONE, kdebug_vnode(vp), flags, 0, -3, 0);
5371 return(0);
5372 }
5373 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_START,
5374 wbp->cl_scmap, wbp->cl_number, flags, 0, 0);
5375
5376 /*
5377 * if we have an fsync in progress, we don't want to allow any additional
5378 * sync/fsync/close(s) to occur until it finishes.
5379 * note that its possible for writes to continue to occur to this file
5380 * while we're waiting and also once the fsync starts to clean if we're
5381 * in the sparse map case
5382 */
5383 while (wbp->cl_sparse_wait) {
5384 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 97)) | DBG_FUNC_START, kdebug_vnode(vp), 0, 0, 0, 0);
5385
5386 msleep((caddr_t)&wbp->cl_sparse_wait, &wbp->cl_lockw, PRIBIO + 1, "cluster_push_ext", NULL);
5387
5388 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 97)) | DBG_FUNC_END, kdebug_vnode(vp), 0, 0, 0, 0);
5389 }
5390 if (flags & IO_SYNC) {
5391 my_sparse_wait = 1;
5392 wbp->cl_sparse_wait = 1;
5393
5394 /*
5395 * this is an fsync (or equivalent)... we must wait for any existing async
5396 * cleaning operations to complete before we evaulate the current state
5397 * and finish cleaning... this insures that all writes issued before this
5398 * fsync actually get cleaned to the disk before this fsync returns
5399 */
5400 while (wbp->cl_sparse_pushes) {
5401 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 98)) | DBG_FUNC_START, kdebug_vnode(vp), 0, 0, 0, 0);
5402
5403 msleep((caddr_t)&wbp->cl_sparse_pushes, &wbp->cl_lockw, PRIBIO + 1, "cluster_push_ext", NULL);
5404
5405 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 98)) | DBG_FUNC_END, kdebug_vnode(vp), 0, 0, 0, 0);
5406 }
5407 }
5408 if (wbp->cl_scmap) {
5409 void *scmap;
5410
5411 if (wbp->cl_sparse_pushes < SPARSE_PUSH_LIMIT) {
5412
5413 scmap = wbp->cl_scmap;
5414 wbp->cl_scmap = NULL;
5415
5416 wbp->cl_sparse_pushes++;
5417
5418 lck_mtx_unlock(&wbp->cl_lockw);
5419
5420 retval = sparse_cluster_push(&scmap, vp, ubc_getsize(vp), PUSH_ALL, flags, callback, callback_arg);
5421
5422 lck_mtx_lock(&wbp->cl_lockw);
5423
5424 wbp->cl_sparse_pushes--;
5425
5426 if (wbp->cl_sparse_wait && wbp->cl_sparse_pushes == 0)
5427 wakeup((caddr_t)&wbp->cl_sparse_pushes);
5428 } else {
5429 retval = sparse_cluster_push(&(wbp->cl_scmap), vp, ubc_getsize(vp), PUSH_ALL, flags, callback, callback_arg);
5430 }
5431 if (err)
5432 *err = retval;
5433 retval = 1;
5434 } else {
5435 retval = cluster_try_push(wbp, vp, ubc_getsize(vp), PUSH_ALL, flags, callback, callback_arg, err);
5436 }
5437 lck_mtx_unlock(&wbp->cl_lockw);
5438
5439 if (flags & IO_SYNC)
5440 (void)vnode_waitforwrites(vp, 0, 0, 0, "cluster_push");
5441
5442 if (my_sparse_wait) {
5443 /*
5444 * I'm the owner of the serialization token
5445 * clear it and wakeup anyone that is waiting
5446 * for me to finish
5447 */
5448 lck_mtx_lock(&wbp->cl_lockw);
5449
5450 wbp->cl_sparse_wait = 0;
5451 wakeup((caddr_t)&wbp->cl_sparse_wait);
5452
5453 lck_mtx_unlock(&wbp->cl_lockw);
5454 }
5455 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_END,
5456 wbp->cl_scmap, wbp->cl_number, retval, 0, 0);
5457
5458 return (retval);
5459}
5460
5461
5462__private_extern__ void
5463cluster_release(struct ubc_info *ubc)
5464{
5465 struct cl_writebehind *wbp;
5466 struct cl_readahead *rap;
5467
5468 if ((wbp = ubc->cl_wbehind)) {
5469
5470 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 81)) | DBG_FUNC_START, ubc, wbp->cl_scmap, 0, 0, 0);
5471
5472 if (wbp->cl_scmap)
5473 vfs_drt_control(&(wbp->cl_scmap), 0);
5474 } else {
5475 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 81)) | DBG_FUNC_START, ubc, 0, 0, 0, 0);
5476 }
5477
5478 rap = ubc->cl_rahead;
5479
5480 if (wbp != NULL) {
5481 lck_mtx_destroy(&wbp->cl_lockw, cl_mtx_grp);
5482 FREE_ZONE((void *)wbp, sizeof *wbp, M_CLWRBEHIND);
5483 }
5484 if ((rap = ubc->cl_rahead)) {
5485 lck_mtx_destroy(&rap->cl_lockr, cl_mtx_grp);
5486 FREE_ZONE((void *)rap, sizeof *rap, M_CLRDAHEAD);
5487 }
5488 ubc->cl_rahead = NULL;
5489 ubc->cl_wbehind = NULL;
5490
5491 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 81)) | DBG_FUNC_END, ubc, rap, wbp, 0, 0);
5492}
5493
5494
5495static int
5496cluster_try_push(struct cl_writebehind *wbp, vnode_t vp, off_t EOF, int push_flag, int io_flags, int (*callback)(buf_t, void *), void *callback_arg, int *err)
5497{
5498 int cl_index;
5499 int cl_index1;
5500 int min_index;
5501 int cl_len;
5502 int cl_pushed = 0;
5503 struct cl_wextent l_clusters[MAX_CLUSTERS];
5504 u_int max_cluster_pgcount;
5505 int error = 0;
5506
5507 max_cluster_pgcount = MAX_CLUSTER_SIZE(vp) / PAGE_SIZE;
5508 /*
5509 * the write behind context exists and has
5510 * already been locked...
5511 */
5512 if (wbp->cl_number == 0)
5513 /*
5514 * no clusters to push
5515 * return number of empty slots
5516 */
5517 return (MAX_CLUSTERS);
5518
5519 /*
5520 * make a local 'sorted' copy of the clusters
5521 * and clear wbp->cl_number so that new clusters can
5522 * be developed
5523 */
5524 for (cl_index = 0; cl_index < wbp->cl_number; cl_index++) {
5525 for (min_index = -1, cl_index1 = 0; cl_index1 < wbp->cl_number; cl_index1++) {
5526 if (wbp->cl_clusters[cl_index1].b_addr == wbp->cl_clusters[cl_index1].e_addr)
5527 continue;
5528 if (min_index == -1)
5529 min_index = cl_index1;
5530 else if (wbp->cl_clusters[cl_index1].b_addr < wbp->cl_clusters[min_index].b_addr)
5531 min_index = cl_index1;
5532 }
5533 if (min_index == -1)
5534 break;
5535
5536 l_clusters[cl_index].b_addr = wbp->cl_clusters[min_index].b_addr;
5537 l_clusters[cl_index].e_addr = wbp->cl_clusters[min_index].e_addr;
5538 l_clusters[cl_index].io_flags = wbp->cl_clusters[min_index].io_flags;
5539
5540 wbp->cl_clusters[min_index].b_addr = wbp->cl_clusters[min_index].e_addr;
5541 }
5542 wbp->cl_number = 0;
5543
5544 cl_len = cl_index;
5545
5546 /* skip switching to the sparse cluster mechanism if on diskimage */
5547 if ( ((push_flag & PUSH_DELAY) && cl_len == MAX_CLUSTERS ) &&
5548 !(vp->v_mount->mnt_kern_flag & MNTK_VIRTUALDEV) ) {
5549 int i;
5550
5551 /*
5552 * determine if we appear to be writing the file sequentially
5553 * if not, by returning without having pushed any clusters
5554 * we will cause this vnode to be pushed into the sparse cluster mechanism
5555 * used for managing more random I/O patterns
5556 *
5557 * we know that we've got all clusters currently in use and the next write doesn't fit into one of them...
5558 * that's why we're in try_push with PUSH_DELAY...
5559 *
5560 * check to make sure that all the clusters except the last one are 'full'... and that each cluster
5561 * is adjacent to the next (i.e. we're looking for sequential writes) they were sorted above
5562 * so we can just make a simple pass through, up to, but not including the last one...
5563 * note that e_addr is not inclusive, so it will be equal to the b_addr of the next cluster if they
5564 * are sequential
5565 *
5566 * we let the last one be partial as long as it was adjacent to the previous one...
5567 * we need to do this to deal with multi-threaded servers that might write an I/O or 2 out
5568 * of order... if this occurs at the tail of the last cluster, we don't want to fall into the sparse cluster world...
5569 */
5570 for (i = 0; i < MAX_CLUSTERS - 1; i++) {
5571 if ((l_clusters[i].e_addr - l_clusters[i].b_addr) != max_cluster_pgcount)
5572 goto dont_try;
5573 if (l_clusters[i].e_addr != l_clusters[i+1].b_addr)
5574 goto dont_try;
5575 }
5576 }
5577 for (cl_index = 0; cl_index < cl_len; cl_index++) {
5578 int flags;
5579 struct cl_extent cl;
5580 int retval;
5581
5582 flags = io_flags & (IO_PASSIVE|IO_CLOSE);
5583
5584 /*
5585 * try to push each cluster in turn...
5586 */
5587 if (l_clusters[cl_index].io_flags & CLW_IONOCACHE)
5588 flags |= IO_NOCACHE;
5589
5590 if (l_clusters[cl_index].io_flags & CLW_IOPASSIVE)
5591 flags |= IO_PASSIVE;
5592
5593 if (push_flag & PUSH_SYNC)
5594 flags |= IO_SYNC;
5595
5596 cl.b_addr = l_clusters[cl_index].b_addr;
5597 cl.e_addr = l_clusters[cl_index].e_addr;
5598
5599 retval = cluster_push_now(vp, &cl, EOF, flags, callback, callback_arg);
5600
5601 if (error == 0 && retval)
5602 error = retval;
5603
5604 l_clusters[cl_index].b_addr = 0;
5605 l_clusters[cl_index].e_addr = 0;
5606
5607 cl_pushed++;
5608
5609 if ( !(push_flag & PUSH_ALL) )
5610 break;
5611 }
5612 if (err)
5613 *err = error;
5614
5615dont_try:
5616 if (cl_len > cl_pushed) {
5617 /*
5618 * we didn't push all of the clusters, so
5619 * lets try to merge them back in to the vnode
5620 */
5621 if ((MAX_CLUSTERS - wbp->cl_number) < (cl_len - cl_pushed)) {
5622 /*
5623 * we picked up some new clusters while we were trying to
5624 * push the old ones... this can happen because I've dropped
5625 * the vnode lock... the sum of the
5626 * leftovers plus the new cluster count exceeds our ability
5627 * to represent them, so switch to the sparse cluster mechanism
5628 *
5629 * collect the active public clusters...
5630 */
5631 sparse_cluster_switch(wbp, vp, EOF, callback, callback_arg);
5632
5633 for (cl_index = 0, cl_index1 = 0; cl_index < cl_len; cl_index++) {
5634 if (l_clusters[cl_index].b_addr == l_clusters[cl_index].e_addr)
5635 continue;
5636 wbp->cl_clusters[cl_index1].b_addr = l_clusters[cl_index].b_addr;
5637 wbp->cl_clusters[cl_index1].e_addr = l_clusters[cl_index].e_addr;
5638 wbp->cl_clusters[cl_index1].io_flags = l_clusters[cl_index].io_flags;
5639
5640 cl_index1++;
5641 }
5642 /*
5643 * update the cluster count
5644 */
5645 wbp->cl_number = cl_index1;
5646
5647 /*
5648 * and collect the original clusters that were moved into the
5649 * local storage for sorting purposes
5650 */
5651 sparse_cluster_switch(wbp, vp, EOF, callback, callback_arg);
5652
5653 } else {
5654 /*
5655 * we've got room to merge the leftovers back in
5656 * just append them starting at the next 'hole'
5657 * represented by wbp->cl_number
5658 */
5659 for (cl_index = 0, cl_index1 = wbp->cl_number; cl_index < cl_len; cl_index++) {
5660 if (l_clusters[cl_index].b_addr == l_clusters[cl_index].e_addr)
5661 continue;
5662
5663 wbp->cl_clusters[cl_index1].b_addr = l_clusters[cl_index].b_addr;
5664 wbp->cl_clusters[cl_index1].e_addr = l_clusters[cl_index].e_addr;
5665 wbp->cl_clusters[cl_index1].io_flags = l_clusters[cl_index].io_flags;
5666
5667 cl_index1++;
5668 }
5669 /*
5670 * update the cluster count
5671 */
5672 wbp->cl_number = cl_index1;
5673 }
5674 }
5675 return (MAX_CLUSTERS - wbp->cl_number);
5676}
5677
5678
5679
5680static int
5681cluster_push_now(vnode_t vp, struct cl_extent *cl, off_t EOF, int flags, int (*callback)(buf_t, void *), void *callback_arg)
5682{
5683 upl_page_info_t *pl;
5684 upl_t upl;
5685 vm_offset_t upl_offset;
5686 int upl_size;
5687 off_t upl_f_offset;
5688 int pages_in_upl;
5689 int start_pg;
5690 int last_pg;
5691 int io_size;
5692 int io_flags;
5693 int upl_flags;
5694 int bflag;
5695 int size;
5696 int error = 0;
5697 int retval;
5698 kern_return_t kret;
5699
5700 if (flags & IO_PASSIVE)
5701 bflag = CL_PASSIVE;
5702 else
5703 bflag = 0;
5704
5705 if (flags & IO_SKIP_ENCRYPTION)
5706 bflag |= CL_ENCRYPTED;
5707
5708 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 51)) | DBG_FUNC_START,
5709 (int)cl->b_addr, (int)cl->e_addr, (int)EOF, flags, 0);
5710
5711 if ((pages_in_upl = (int)(cl->e_addr - cl->b_addr)) == 0) {
5712 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 51)) | DBG_FUNC_END, 1, 0, 0, 0, 0);
5713
5714 return (0);
5715 }
5716 upl_size = pages_in_upl * PAGE_SIZE;
5717 upl_f_offset = (off_t)(cl->b_addr * PAGE_SIZE_64);
5718
5719 if (upl_f_offset + upl_size >= EOF) {
5720
5721 if (upl_f_offset >= EOF) {
5722 /*
5723 * must have truncated the file and missed
5724 * clearing a dangling cluster (i.e. it's completely
5725 * beyond the new EOF
5726 */
5727 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 51)) | DBG_FUNC_END, 1, 1, 0, 0, 0);
5728
5729 return(0);
5730 }
5731 size = EOF - upl_f_offset;
5732
5733 upl_size = (size + (PAGE_SIZE - 1)) & ~PAGE_MASK;
5734 pages_in_upl = upl_size / PAGE_SIZE;
5735 } else
5736 size = upl_size;
5737
5738 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 41)) | DBG_FUNC_START, upl_size, size, 0, 0, 0);
5739
5740 /*
5741 * by asking for UPL_COPYOUT_FROM and UPL_RET_ONLY_DIRTY, we get the following desirable behavior
5742 *
5743 * - only pages that are currently dirty are returned... these are the ones we need to clean
5744 * - the hardware dirty bit is cleared when the page is gathered into the UPL... the software dirty bit is set
5745 * - if we have to abort the I/O for some reason, the software dirty bit is left set since we didn't clean the page
5746 * - when we commit the page, the software dirty bit is cleared... the hardware dirty bit is untouched so that if
5747 * someone dirties this page while the I/O is in progress, we don't lose track of the new state
5748 *
5749 * when the I/O completes, we no longer ask for an explicit clear of the DIRTY state (either soft or hard)
5750 */
5751
5752 if ((vp->v_flag & VNOCACHE_DATA) || (flags & IO_NOCACHE))
5753 upl_flags = UPL_COPYOUT_FROM | UPL_RET_ONLY_DIRTY | UPL_SET_LITE | UPL_WILL_BE_DUMPED;
5754 else
5755 upl_flags = UPL_COPYOUT_FROM | UPL_RET_ONLY_DIRTY | UPL_SET_LITE;
5756
5757 kret = ubc_create_upl(vp,
5758 upl_f_offset,
5759 upl_size,
5760 &upl,
5761 &pl,
5762 upl_flags);
5763 if (kret != KERN_SUCCESS)
5764 panic("cluster_push: failed to get pagelist");
5765
5766 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 41)) | DBG_FUNC_END, upl, upl_f_offset, 0, 0, 0);
5767
5768 /*
5769 * since we only asked for the dirty pages back
5770 * it's possible that we may only get a few or even none, so...
5771 * before we start marching forward, we must make sure we know
5772 * where the last present page is in the UPL, otherwise we could
5773 * end up working with a freed upl due to the FREE_ON_EMPTY semantics
5774 * employed by commit_range and abort_range.
5775 */
5776 for (last_pg = pages_in_upl - 1; last_pg >= 0; last_pg--) {
5777 if (upl_page_present(pl, last_pg))
5778 break;
5779 }
5780 pages_in_upl = last_pg + 1;
5781
5782 if (pages_in_upl == 0) {
5783 ubc_upl_abort(upl, 0);
5784
5785 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 51)) | DBG_FUNC_END, 1, 2, 0, 0, 0);
5786 return(0);
5787 }
5788
5789 for (last_pg = 0; last_pg < pages_in_upl; ) {
5790 /*
5791 * find the next dirty page in the UPL
5792 * this will become the first page in the
5793 * next I/O to generate
5794 */
5795 for (start_pg = last_pg; start_pg < pages_in_upl; start_pg++) {
5796 if (upl_dirty_page(pl, start_pg))
5797 break;
5798 if (upl_page_present(pl, start_pg))
5799 /*
5800 * RET_ONLY_DIRTY will return non-dirty 'precious' pages
5801 * just release these unchanged since we're not going
5802 * to steal them or change their state
5803 */
5804 ubc_upl_abort_range(upl, start_pg * PAGE_SIZE, PAGE_SIZE, UPL_ABORT_FREE_ON_EMPTY);
5805 }
5806 if (start_pg >= pages_in_upl)
5807 /*
5808 * done... no more dirty pages to push
5809 */
5810 break;
5811 if (start_pg > last_pg)
5812 /*
5813 * skipped over some non-dirty pages
5814 */
5815 size -= ((start_pg - last_pg) * PAGE_SIZE);
5816
5817 /*
5818 * find a range of dirty pages to write
5819 */
5820 for (last_pg = start_pg; last_pg < pages_in_upl; last_pg++) {
5821 if (!upl_dirty_page(pl, last_pg))
5822 break;
5823 }
5824 upl_offset = start_pg * PAGE_SIZE;
5825
5826 io_size = min(size, (last_pg - start_pg) * PAGE_SIZE);
5827
5828 io_flags = CL_THROTTLE | CL_COMMIT | CL_AGE | bflag;
5829
5830 if ( !(flags & IO_SYNC))
5831 io_flags |= CL_ASYNC;
5832
5833 if (flags & IO_CLOSE)
5834 io_flags |= CL_CLOSE;
5835
5836 if (flags & IO_NOCACHE)
5837 io_flags |= CL_NOCACHE;
5838
5839 retval = cluster_io(vp, upl, upl_offset, upl_f_offset + upl_offset, io_size,
5840 io_flags, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg);
5841
5842 if (error == 0 && retval)
5843 error = retval;
5844
5845 size -= io_size;
5846 }
5847 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 51)) | DBG_FUNC_END, 1, 3, 0, 0, 0);
5848
5849 return(error);
5850}
5851
5852
5853/*
5854 * sparse_cluster_switch is called with the write behind lock held
5855 */
5856static void
5857sparse_cluster_switch(struct cl_writebehind *wbp, vnode_t vp, off_t EOF, int (*callback)(buf_t, void *), void *callback_arg)
5858{
5859 int cl_index;
5860
5861 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 78)) | DBG_FUNC_START, kdebug_vnode(vp), wbp->cl_scmap, 0, 0, 0);
5862
5863 for (cl_index = 0; cl_index < wbp->cl_number; cl_index++) {
5864 int flags;
5865 struct cl_extent cl;
5866
5867 for (cl.b_addr = wbp->cl_clusters[cl_index].b_addr; cl.b_addr < wbp->cl_clusters[cl_index].e_addr; cl.b_addr++) {
5868
5869 if (ubc_page_op(vp, (off_t)(cl.b_addr * PAGE_SIZE_64), 0, NULL, &flags) == KERN_SUCCESS) {
5870 if (flags & UPL_POP_DIRTY) {
5871 cl.e_addr = cl.b_addr + 1;
5872
5873 sparse_cluster_add(&(wbp->cl_scmap), vp, &cl, EOF, callback, callback_arg);
5874 }
5875 }
5876 }
5877 }
5878 wbp->cl_number = 0;
5879
5880 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 78)) | DBG_FUNC_END, kdebug_vnode(vp), wbp->cl_scmap, 0, 0, 0);
5881}
5882
5883
5884/*
5885 * sparse_cluster_push must be called with the write-behind lock held if the scmap is
5886 * still associated with the write-behind context... however, if the scmap has been disassociated
5887 * from the write-behind context (the cluster_push case), the wb lock is not held
5888 */
5889static int
5890sparse_cluster_push(void **scmap, vnode_t vp, off_t EOF, int push_flag, int io_flags, int (*callback)(buf_t, void *), void *callback_arg)
5891{
5892 struct cl_extent cl;
5893 off_t offset;
5894 u_int length;
5895 int error = 0;
5896
5897 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 79)) | DBG_FUNC_START, kdebug_vnode(vp), (*scmap), 0, push_flag, 0);
5898
5899 if (push_flag & PUSH_ALL)
5900 vfs_drt_control(scmap, 1);
5901
5902 for (;;) {
5903 int retval;
5904 if (vfs_drt_get_cluster(scmap, &offset, &length) != KERN_SUCCESS)
5905 break;
5906
5907 cl.b_addr = (daddr64_t)(offset / PAGE_SIZE_64);
5908 cl.e_addr = (daddr64_t)((offset + length) / PAGE_SIZE_64);
5909
5910 retval = cluster_push_now(vp, &cl, EOF, io_flags & (IO_PASSIVE|IO_CLOSE), callback, callback_arg);
5911 if (error == 0 && retval)
5912 error = retval;
5913
5914 if ( !(push_flag & PUSH_ALL) )
5915 break;
5916 }
5917 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 79)) | DBG_FUNC_END, kdebug_vnode(vp), (*scmap), 0, 0, 0);
5918
5919 return error;
5920}
5921
5922
5923/*
5924 * sparse_cluster_add is called with the write behind lock held
5925 */
5926static void
5927sparse_cluster_add(void **scmap, vnode_t vp, struct cl_extent *cl, off_t EOF, int (*callback)(buf_t, void *), void *callback_arg)
5928{
5929 u_int new_dirty;
5930 u_int length;
5931 off_t offset;
5932
5933 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 80)) | DBG_FUNC_START, (*scmap), 0, cl->b_addr, (int)cl->e_addr, 0);
5934
5935 offset = (off_t)(cl->b_addr * PAGE_SIZE_64);
5936 length = ((u_int)(cl->e_addr - cl->b_addr)) * PAGE_SIZE;
5937
5938 while (vfs_drt_mark_pages(scmap, offset, length, &new_dirty) != KERN_SUCCESS) {
5939 /*
5940 * no room left in the map
5941 * only a partial update was done
5942 * push out some pages and try again
5943 */
5944 sparse_cluster_push(scmap, vp, EOF, 0, 0, callback, callback_arg);
5945
5946 offset += (new_dirty * PAGE_SIZE_64);
5947 length -= (new_dirty * PAGE_SIZE);
5948 }
5949 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 80)) | DBG_FUNC_END, kdebug_vnode(vp), (*scmap), 0, 0, 0);
5950}
5951
5952
5953static int
5954cluster_align_phys_io(vnode_t vp, struct uio *uio, addr64_t usr_paddr, u_int32_t xsize, int flags, int (*callback)(buf_t, void *), void *callback_arg)
5955{
5956 upl_page_info_t *pl;
5957 upl_t upl;
5958 addr64_t ubc_paddr;
5959 kern_return_t kret;
5960 int error = 0;
5961 int did_read = 0;
5962 int abort_flags;
5963 int upl_flags;
5964 int bflag;
5965
5966 if (flags & IO_PASSIVE)
5967 bflag = CL_PASSIVE;
5968 else
5969 bflag = 0;
5970
5971 if (flags & IO_NOCACHE)
5972 bflag |= CL_NOCACHE;
5973
5974 upl_flags = UPL_SET_LITE;
5975
5976 if ( !(flags & CL_READ) ) {
5977 /*
5978 * "write" operation: let the UPL subsystem know
5979 * that we intend to modify the buffer cache pages
5980 * we're gathering.
5981 */
5982 upl_flags |= UPL_WILL_MODIFY;
5983 } else {
5984 /*
5985 * indicate that there is no need to pull the
5986 * mapping for this page... we're only going
5987 * to read from it, not modify it.
5988 */
5989 upl_flags |= UPL_FILE_IO;
5990 }
5991 kret = ubc_create_upl(vp,
5992 uio->uio_offset & ~PAGE_MASK_64,
5993 PAGE_SIZE,
5994 &upl,
5995 &pl,
5996 upl_flags);
5997
5998 if (kret != KERN_SUCCESS)
5999 return(EINVAL);
6000
6001 if (!upl_valid_page(pl, 0)) {
6002 /*
6003 * issue a synchronous read to cluster_io
6004 */
6005 error = cluster_io(vp, upl, 0, uio->uio_offset & ~PAGE_MASK_64, PAGE_SIZE,
6006 CL_READ | bflag, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg);
6007 if (error) {
6008 ubc_upl_abort_range(upl, 0, PAGE_SIZE, UPL_ABORT_DUMP_PAGES | UPL_ABORT_FREE_ON_EMPTY);
6009
6010 return(error);
6011 }
6012 did_read = 1;
6013 }
6014 ubc_paddr = ((addr64_t)upl_phys_page(pl, 0) << PAGE_SHIFT) + (addr64_t)(uio->uio_offset & PAGE_MASK_64);
6015
6016/*
6017 * NOTE: There is no prototype for the following in BSD. It, and the definitions
6018 * of the defines for cppvPsrc, cppvPsnk, cppvFsnk, and cppvFsrc will be found in
6019 * osfmk/ppc/mappings.h. They are not included here because there appears to be no
6020 * way to do so without exporting them to kexts as well.
6021 */
6022 if (flags & CL_READ)
6023// copypv(ubc_paddr, usr_paddr, xsize, cppvPsrc | cppvPsnk | cppvFsnk); /* Copy physical to physical and flush the destination */
6024 copypv(ubc_paddr, usr_paddr, xsize, 2 | 1 | 4); /* Copy physical to physical and flush the destination */
6025 else
6026// copypv(usr_paddr, ubc_paddr, xsize, cppvPsrc | cppvPsnk | cppvFsrc); /* Copy physical to physical and flush the source */
6027 copypv(usr_paddr, ubc_paddr, xsize, 2 | 1 | 8); /* Copy physical to physical and flush the source */
6028
6029 if ( !(flags & CL_READ) || (upl_valid_page(pl, 0) && upl_dirty_page(pl, 0))) {
6030 /*
6031 * issue a synchronous write to cluster_io
6032 */
6033 error = cluster_io(vp, upl, 0, uio->uio_offset & ~PAGE_MASK_64, PAGE_SIZE,
6034 bflag, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg);
6035 }
6036 if (error == 0)
6037 uio_update(uio, (user_size_t)xsize);
6038
6039 if (did_read)
6040 abort_flags = UPL_ABORT_FREE_ON_EMPTY;
6041 else
6042 abort_flags = UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_DUMP_PAGES;
6043
6044 ubc_upl_abort_range(upl, 0, PAGE_SIZE, abort_flags);
6045
6046 return (error);
6047}
6048
6049int
6050cluster_copy_upl_data(struct uio *uio, upl_t upl, int upl_offset, int *io_resid)
6051{
6052 int pg_offset;
6053 int pg_index;
6054 int csize;
6055 int segflg;
6056 int retval = 0;
6057 int xsize;
6058 upl_page_info_t *pl;
6059 int dirty_count;
6060
6061 xsize = *io_resid;
6062
6063 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_START,
6064 (int)uio->uio_offset, upl_offset, xsize, 0, 0);
6065
6066 segflg = uio->uio_segflg;
6067
6068 switch(segflg) {
6069
6070 case UIO_USERSPACE32:
6071 case UIO_USERISPACE32:
6072 uio->uio_segflg = UIO_PHYS_USERSPACE32;
6073 break;
6074
6075 case UIO_USERSPACE:
6076 case UIO_USERISPACE:
6077 uio->uio_segflg = UIO_PHYS_USERSPACE;
6078 break;
6079
6080 case UIO_USERSPACE64:
6081 case UIO_USERISPACE64:
6082 uio->uio_segflg = UIO_PHYS_USERSPACE64;
6083 break;
6084
6085 case UIO_SYSSPACE:
6086 uio->uio_segflg = UIO_PHYS_SYSSPACE;
6087 break;
6088
6089 }
6090 pl = ubc_upl_pageinfo(upl);
6091
6092 pg_index = upl_offset / PAGE_SIZE;
6093 pg_offset = upl_offset & PAGE_MASK;
6094 csize = min(PAGE_SIZE - pg_offset, xsize);
6095
6096 dirty_count = 0;
6097 while (xsize && retval == 0) {
6098 addr64_t paddr;
6099
6100 paddr = ((addr64_t)upl_phys_page(pl, pg_index) << PAGE_SHIFT) + pg_offset;
6101 if ((uio->uio_rw == UIO_WRITE) && (upl_dirty_page(pl, pg_index) == FALSE))
6102 dirty_count++;
6103
6104 retval = uiomove64(paddr, csize, uio);
6105
6106 pg_index += 1;
6107 pg_offset = 0;
6108 xsize -= csize;
6109 csize = min(PAGE_SIZE, xsize);
6110 }
6111 *io_resid = xsize;
6112
6113 uio->uio_segflg = segflg;
6114
6115 task_update_logical_writes(current_task(), (dirty_count * PAGE_SIZE), TASK_WRITE_DEFERRED, upl_lookup_vnode(upl));
6116 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_END,
6117 (int)uio->uio_offset, xsize, retval, segflg, 0);
6118
6119 return (retval);
6120}
6121
6122
6123int
6124cluster_copy_ubc_data(vnode_t vp, struct uio *uio, int *io_resid, int mark_dirty)
6125{
6126
6127 return (cluster_copy_ubc_data_internal(vp, uio, io_resid, mark_dirty, 1));
6128}
6129
6130
6131static int
6132cluster_copy_ubc_data_internal(vnode_t vp, struct uio *uio, int *io_resid, int mark_dirty, int take_reference)
6133{
6134 int segflg;
6135 int io_size;
6136 int xsize;
6137 int start_offset;
6138 int retval = 0;
6139 memory_object_control_t control;
6140
6141 io_size = *io_resid;
6142
6143 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_START,
6144 (int)uio->uio_offset, io_size, mark_dirty, take_reference, 0);
6145
6146 control = ubc_getobject(vp, UBC_FLAGS_NONE);
6147
6148 if (control == MEMORY_OBJECT_CONTROL_NULL) {
6149 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_END,
6150 (int)uio->uio_offset, io_size, retval, 3, 0);
6151
6152 return(0);
6153 }
6154 segflg = uio->uio_segflg;
6155
6156 switch(segflg) {
6157
6158 case UIO_USERSPACE32:
6159 case UIO_USERISPACE32:
6160 uio->uio_segflg = UIO_PHYS_USERSPACE32;
6161 break;
6162
6163 case UIO_USERSPACE64:
6164 case UIO_USERISPACE64:
6165 uio->uio_segflg = UIO_PHYS_USERSPACE64;
6166 break;
6167
6168 case UIO_USERSPACE:
6169 case UIO_USERISPACE:
6170 uio->uio_segflg = UIO_PHYS_USERSPACE;
6171 break;
6172
6173 case UIO_SYSSPACE:
6174 uio->uio_segflg = UIO_PHYS_SYSSPACE;
6175 break;
6176 }
6177
6178 if ( (io_size = *io_resid) ) {
6179 start_offset = (int)(uio->uio_offset & PAGE_MASK_64);
6180 xsize = uio_resid(uio);
6181
6182 retval = memory_object_control_uiomove(control, uio->uio_offset - start_offset, uio,
6183 start_offset, io_size, mark_dirty, take_reference);
6184 xsize -= uio_resid(uio);
6185 io_size -= xsize;
6186 }
6187 uio->uio_segflg = segflg;
6188 *io_resid = io_size;
6189
6190 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_END,
6191 (int)uio->uio_offset, io_size, retval, 0x80000000 | segflg, 0);
6192
6193 return(retval);
6194}
6195
6196
6197int
6198is_file_clean(vnode_t vp, off_t filesize)
6199{
6200 off_t f_offset;
6201 int flags;
6202 int total_dirty = 0;
6203
6204 for (f_offset = 0; f_offset < filesize; f_offset += PAGE_SIZE_64) {
6205 if (ubc_page_op(vp, f_offset, 0, NULL, &flags) == KERN_SUCCESS) {
6206 if (flags & UPL_POP_DIRTY) {
6207 total_dirty++;
6208 }
6209 }
6210 }
6211 if (total_dirty)
6212 return(EINVAL);
6213
6214 return (0);
6215}
6216
6217
6218
6219/*
6220 * Dirty region tracking/clustering mechanism.
6221 *
6222 * This code (vfs_drt_*) provides a mechanism for tracking and clustering
6223 * dirty regions within a larger space (file). It is primarily intended to
6224 * support clustering in large files with many dirty areas.
6225 *
6226 * The implementation assumes that the dirty regions are pages.
6227 *
6228 * To represent dirty pages within the file, we store bit vectors in a
6229 * variable-size circular hash.
6230 */
6231
6232/*
6233 * Bitvector size. This determines the number of pages we group in a
6234 * single hashtable entry. Each hashtable entry is aligned to this
6235 * size within the file.
6236 */
6237#define DRT_BITVECTOR_PAGES ((1024 * 1024) / PAGE_SIZE)
6238
6239/*
6240 * File offset handling.
6241 *
6242 * DRT_ADDRESS_MASK is dependent on DRT_BITVECTOR_PAGES;
6243 * the correct formula is (~((DRT_BITVECTOR_PAGES * PAGE_SIZE) - 1))
6244 */
6245#define DRT_ADDRESS_MASK (~((DRT_BITVECTOR_PAGES * PAGE_SIZE) - 1))
6246#define DRT_ALIGN_ADDRESS(addr) ((addr) & DRT_ADDRESS_MASK)
6247
6248/*
6249 * Hashtable address field handling.
6250 *
6251 * The low-order bits of the hashtable address are used to conserve
6252 * space.
6253 *
6254 * DRT_HASH_COUNT_MASK must be large enough to store the range
6255 * 0-DRT_BITVECTOR_PAGES inclusive, as well as have one value
6256 * to indicate that the bucket is actually unoccupied.
6257 */
6258#define DRT_HASH_GET_ADDRESS(scm, i) ((scm)->scm_hashtable[(i)].dhe_control & DRT_ADDRESS_MASK)
6259#define DRT_HASH_SET_ADDRESS(scm, i, a) \
6260 do { \
6261 (scm)->scm_hashtable[(i)].dhe_control = \
6262 ((scm)->scm_hashtable[(i)].dhe_control & ~DRT_ADDRESS_MASK) | DRT_ALIGN_ADDRESS(a); \
6263 } while (0)
6264#define DRT_HASH_COUNT_MASK 0x1ff
6265#define DRT_HASH_GET_COUNT(scm, i) ((scm)->scm_hashtable[(i)].dhe_control & DRT_HASH_COUNT_MASK)
6266#define DRT_HASH_SET_COUNT(scm, i, c) \
6267 do { \
6268 (scm)->scm_hashtable[(i)].dhe_control = \
6269 ((scm)->scm_hashtable[(i)].dhe_control & ~DRT_HASH_COUNT_MASK) | ((c) & DRT_HASH_COUNT_MASK); \
6270 } while (0)
6271#define DRT_HASH_CLEAR(scm, i) \
6272 do { \
6273 (scm)->scm_hashtable[(i)].dhe_control = 0; \
6274 } while (0)
6275#define DRT_HASH_VACATE(scm, i) DRT_HASH_SET_COUNT((scm), (i), DRT_HASH_COUNT_MASK)
6276#define DRT_HASH_VACANT(scm, i) (DRT_HASH_GET_COUNT((scm), (i)) == DRT_HASH_COUNT_MASK)
6277#define DRT_HASH_COPY(oscm, oi, scm, i) \
6278 do { \
6279 (scm)->scm_hashtable[(i)].dhe_control = (oscm)->scm_hashtable[(oi)].dhe_control; \
6280 DRT_BITVECTOR_COPY(oscm, oi, scm, i); \
6281 } while(0);
6282
6283
6284/*
6285 * Hash table moduli.
6286 *
6287 * Since the hashtable entry's size is dependent on the size of
6288 * the bitvector, and since the hashtable size is constrained to
6289 * both being prime and fitting within the desired allocation
6290 * size, these values need to be manually determined.
6291 *
6292 * For DRT_BITVECTOR_SIZE = 256, the entry size is 40 bytes.
6293 *
6294 * The small hashtable allocation is 1024 bytes, so the modulus is 23.
6295 * The large hashtable allocation is 16384 bytes, so the modulus is 401.
6296 */
6297#define DRT_HASH_SMALL_MODULUS 23
6298#define DRT_HASH_LARGE_MODULUS 401
6299
6300/*
6301 * Physical memory required before the large hash modulus is permitted.
6302 *
6303 * On small memory systems, the large hash modulus can lead to phsyical
6304 * memory starvation, so we avoid using it there.
6305 */
6306#define DRT_HASH_LARGE_MEMORY_REQUIRED (1024LL * 1024LL * 1024LL) /* 1GiB */
6307
6308#define DRT_SMALL_ALLOCATION 1024 /* 104 bytes spare */
6309#define DRT_LARGE_ALLOCATION 16384 /* 344 bytes spare */
6310
6311/* *** nothing below here has secret dependencies on DRT_BITVECTOR_PAGES *** */
6312
6313/*
6314 * Hashtable bitvector handling.
6315 *
6316 * Bitvector fields are 32 bits long.
6317 */
6318
6319#define DRT_HASH_SET_BIT(scm, i, bit) \
6320 (scm)->scm_hashtable[(i)].dhe_bitvector[(bit) / 32] |= (1 << ((bit) % 32))
6321
6322#define DRT_HASH_CLEAR_BIT(scm, i, bit) \
6323 (scm)->scm_hashtable[(i)].dhe_bitvector[(bit) / 32] &= ~(1 << ((bit) % 32))
6324
6325#define DRT_HASH_TEST_BIT(scm, i, bit) \
6326 ((scm)->scm_hashtable[(i)].dhe_bitvector[(bit) / 32] & (1 << ((bit) % 32)))
6327
6328#define DRT_BITVECTOR_CLEAR(scm, i) \
6329 bzero(&(scm)->scm_hashtable[(i)].dhe_bitvector[0], (DRT_BITVECTOR_PAGES / 32) * sizeof(u_int32_t))
6330
6331#define DRT_BITVECTOR_COPY(oscm, oi, scm, i) \
6332 bcopy(&(oscm)->scm_hashtable[(oi)].dhe_bitvector[0], \
6333 &(scm)->scm_hashtable[(i)].dhe_bitvector[0], \
6334 (DRT_BITVECTOR_PAGES / 32) * sizeof(u_int32_t))
6335
6336
6337
6338/*
6339 * Hashtable entry.
6340 */
6341struct vfs_drt_hashentry {
6342 u_int64_t dhe_control;
6343/*
6344* dhe_bitvector was declared as dhe_bitvector[DRT_BITVECTOR_PAGES / 32];
6345* DRT_BITVECTOR_PAGES is defined as ((1024 * 1024) / PAGE_SIZE)
6346* Since PAGE_SIZE is only known at boot time,
6347* -define MAX_DRT_BITVECTOR_PAGES for smallest supported page size (4k)
6348* -declare dhe_bitvector array for largest possible length
6349*/
6350#define MAX_DRT_BITVECTOR_PAGES (1024 * 1024)/( 4 * 1024)
6351 u_int32_t dhe_bitvector[MAX_DRT_BITVECTOR_PAGES/32];
6352};
6353
6354/*
6355 * Dirty Region Tracking structure.
6356 *
6357 * The hashtable is allocated entirely inside the DRT structure.
6358 *
6359 * The hash is a simple circular prime modulus arrangement, the structure
6360 * is resized from small to large if it overflows.
6361 */
6362
6363struct vfs_drt_clustermap {
6364 u_int32_t scm_magic; /* sanity/detection */
6365#define DRT_SCM_MAGIC 0x12020003
6366 u_int32_t scm_modulus; /* current ring size */
6367 u_int32_t scm_buckets; /* number of occupied buckets */
6368 u_int32_t scm_lastclean; /* last entry we cleaned */
6369 u_int32_t scm_iskips; /* number of slot skips */
6370
6371 struct vfs_drt_hashentry scm_hashtable[0];
6372};
6373
6374
6375#define DRT_HASH(scm, addr) ((addr) % (scm)->scm_modulus)
6376#define DRT_HASH_NEXT(scm, addr) (((addr) + 1) % (scm)->scm_modulus)
6377
6378/*
6379 * Debugging codes and arguments.
6380 */
6381#define DRT_DEBUG_EMPTYFREE (FSDBG_CODE(DBG_FSRW, 82)) /* nil */
6382#define DRT_DEBUG_RETCLUSTER (FSDBG_CODE(DBG_FSRW, 83)) /* offset, length */
6383#define DRT_DEBUG_ALLOC (FSDBG_CODE(DBG_FSRW, 84)) /* copycount */
6384#define DRT_DEBUG_INSERT (FSDBG_CODE(DBG_FSRW, 85)) /* offset, iskip */
6385#define DRT_DEBUG_MARK (FSDBG_CODE(DBG_FSRW, 86)) /* offset, length,
6386 * dirty */
6387 /* 0, setcount */
6388 /* 1 (clean, no map) */
6389 /* 2 (map alloc fail) */
6390 /* 3, resid (partial) */
6391#define DRT_DEBUG_6 (FSDBG_CODE(DBG_FSRW, 87))
6392#define DRT_DEBUG_SCMDATA (FSDBG_CODE(DBG_FSRW, 88)) /* modulus, buckets,
6393 * lastclean, iskips */
6394
6395
6396static kern_return_t vfs_drt_alloc_map(struct vfs_drt_clustermap **cmapp);
6397static kern_return_t vfs_drt_free_map(struct vfs_drt_clustermap *cmap);
6398static kern_return_t vfs_drt_search_index(struct vfs_drt_clustermap *cmap,
6399 u_int64_t offset, int *indexp);
6400static kern_return_t vfs_drt_get_index(struct vfs_drt_clustermap **cmapp,
6401 u_int64_t offset,
6402 int *indexp,
6403 int recursed);
6404static kern_return_t vfs_drt_do_mark_pages(
6405 void **cmapp,
6406 u_int64_t offset,
6407 u_int length,
6408 u_int *setcountp,
6409 int dirty);
6410static void vfs_drt_trace(
6411 struct vfs_drt_clustermap *cmap,
6412 int code,
6413 int arg1,
6414 int arg2,
6415 int arg3,
6416 int arg4);
6417
6418
6419/*
6420 * Allocate and initialise a sparse cluster map.
6421 *
6422 * Will allocate a new map, resize or compact an existing map.
6423 *
6424 * XXX we should probably have at least one intermediate map size,
6425 * as the 1:16 ratio seems a bit drastic.
6426 */
6427static kern_return_t
6428vfs_drt_alloc_map(struct vfs_drt_clustermap **cmapp)
6429{
6430 struct vfs_drt_clustermap *cmap, *ocmap;
6431 kern_return_t kret;
6432 u_int64_t offset;
6433 u_int32_t i;
6434 int nsize, active_buckets, index, copycount;
6435
6436 ocmap = NULL;
6437 if (cmapp != NULL)
6438 ocmap = *cmapp;
6439
6440 /*
6441 * Decide on the size of the new map.
6442 */
6443 if (ocmap == NULL) {
6444 nsize = DRT_HASH_SMALL_MODULUS;
6445 } else {
6446 /* count the number of active buckets in the old map */
6447 active_buckets = 0;
6448 for (i = 0; i < ocmap->scm_modulus; i++) {
6449 if (!DRT_HASH_VACANT(ocmap, i) &&
6450 (DRT_HASH_GET_COUNT(ocmap, i) != 0))
6451 active_buckets++;
6452 }
6453 /*
6454 * If we're currently using the small allocation, check to
6455 * see whether we should grow to the large one.
6456 */
6457 if (ocmap->scm_modulus == DRT_HASH_SMALL_MODULUS) {
6458 /*
6459 * If the ring is nearly full and we are allowed to
6460 * use the large modulus, upgrade.
6461 */
6462 if ((active_buckets > (DRT_HASH_SMALL_MODULUS - 5)) &&
6463 (max_mem >= DRT_HASH_LARGE_MEMORY_REQUIRED)) {
6464 nsize = DRT_HASH_LARGE_MODULUS;
6465 } else {
6466 nsize = DRT_HASH_SMALL_MODULUS;
6467 }
6468 } else {
6469 /* already using the large modulus */
6470 nsize = DRT_HASH_LARGE_MODULUS;
6471 /*
6472 * If the ring is completely full, there's
6473 * nothing useful for us to do. Behave as
6474 * though we had compacted into the new
6475 * array and return.
6476 */
6477 if (active_buckets >= DRT_HASH_LARGE_MODULUS)
6478 return(KERN_SUCCESS);
6479 }
6480 }
6481
6482 /*
6483 * Allocate and initialise the new map.
6484 */
6485
6486 kret = kmem_alloc(kernel_map, (vm_offset_t *)&cmap,
6487 (nsize == DRT_HASH_SMALL_MODULUS) ? DRT_SMALL_ALLOCATION : DRT_LARGE_ALLOCATION, VM_KERN_MEMORY_FILE);
6488 if (kret != KERN_SUCCESS)
6489 return(kret);
6490 cmap->scm_magic = DRT_SCM_MAGIC;
6491 cmap->scm_modulus = nsize;
6492 cmap->scm_buckets = 0;
6493 cmap->scm_lastclean = 0;
6494 cmap->scm_iskips = 0;
6495 for (i = 0; i < cmap->scm_modulus; i++) {
6496 DRT_HASH_CLEAR(cmap, i);
6497 DRT_HASH_VACATE(cmap, i);
6498 DRT_BITVECTOR_CLEAR(cmap, i);
6499 }
6500
6501 /*
6502 * If there's an old map, re-hash entries from it into the new map.
6503 */
6504 copycount = 0;
6505 if (ocmap != NULL) {
6506 for (i = 0; i < ocmap->scm_modulus; i++) {
6507 /* skip empty buckets */
6508 if (DRT_HASH_VACANT(ocmap, i) ||
6509 (DRT_HASH_GET_COUNT(ocmap, i) == 0))
6510 continue;
6511 /* get new index */
6512 offset = DRT_HASH_GET_ADDRESS(ocmap, i);
6513 kret = vfs_drt_get_index(&cmap, offset, &index, 1);
6514 if (kret != KERN_SUCCESS) {
6515 /* XXX need to bail out gracefully here */
6516 panic("vfs_drt: new cluster map mysteriously too small");
6517 index = 0;
6518 }
6519 /* copy */
6520 DRT_HASH_COPY(ocmap, i, cmap, index);
6521 copycount++;
6522 }
6523 }
6524
6525 /* log what we've done */
6526 vfs_drt_trace(cmap, DRT_DEBUG_ALLOC, copycount, 0, 0, 0);
6527
6528 /*
6529 * It's important to ensure that *cmapp always points to
6530 * a valid map, so we must overwrite it before freeing
6531 * the old map.
6532 */
6533 *cmapp = cmap;
6534 if (ocmap != NULL) {
6535 /* emit stats into trace buffer */
6536 vfs_drt_trace(ocmap, DRT_DEBUG_SCMDATA,
6537 ocmap->scm_modulus,
6538 ocmap->scm_buckets,
6539 ocmap->scm_lastclean,
6540 ocmap->scm_iskips);
6541
6542 vfs_drt_free_map(ocmap);
6543 }
6544 return(KERN_SUCCESS);
6545}
6546
6547
6548/*
6549 * Free a sparse cluster map.
6550 */
6551static kern_return_t
6552vfs_drt_free_map(struct vfs_drt_clustermap *cmap)
6553{
6554 kmem_free(kernel_map, (vm_offset_t)cmap,
6555 (cmap->scm_modulus == DRT_HASH_SMALL_MODULUS) ? DRT_SMALL_ALLOCATION : DRT_LARGE_ALLOCATION);
6556 return(KERN_SUCCESS);
6557}
6558
6559
6560/*
6561 * Find the hashtable slot currently occupied by an entry for the supplied offset.
6562 */
6563static kern_return_t
6564vfs_drt_search_index(struct vfs_drt_clustermap *cmap, u_int64_t offset, int *indexp)
6565{
6566 int index;
6567 u_int32_t i;
6568
6569 offset = DRT_ALIGN_ADDRESS(offset);
6570 index = DRT_HASH(cmap, offset);
6571
6572 /* traverse the hashtable */
6573 for (i = 0; i < cmap->scm_modulus; i++) {
6574
6575 /*
6576 * If the slot is vacant, we can stop.
6577 */
6578 if (DRT_HASH_VACANT(cmap, index))
6579 break;
6580
6581 /*
6582 * If the address matches our offset, we have success.
6583 */
6584 if (DRT_HASH_GET_ADDRESS(cmap, index) == offset) {
6585 *indexp = index;
6586 return(KERN_SUCCESS);
6587 }
6588
6589 /*
6590 * Move to the next slot, try again.
6591 */
6592 index = DRT_HASH_NEXT(cmap, index);
6593 }
6594 /*
6595 * It's not there.
6596 */
6597 return(KERN_FAILURE);
6598}
6599
6600/*
6601 * Find the hashtable slot for the supplied offset. If we haven't allocated
6602 * one yet, allocate one and populate the address field. Note that it will
6603 * not have a nonzero page count and thus will still technically be free, so
6604 * in the case where we are called to clean pages, the slot will remain free.
6605 */
6606static kern_return_t
6607vfs_drt_get_index(struct vfs_drt_clustermap **cmapp, u_int64_t offset, int *indexp, int recursed)
6608{
6609 struct vfs_drt_clustermap *cmap;
6610 kern_return_t kret;
6611 u_int32_t index;
6612 u_int32_t i;
6613
6614 cmap = *cmapp;
6615
6616 /* look for an existing entry */
6617 kret = vfs_drt_search_index(cmap, offset, indexp);
6618 if (kret == KERN_SUCCESS)
6619 return(kret);
6620
6621 /* need to allocate an entry */
6622 offset = DRT_ALIGN_ADDRESS(offset);
6623 index = DRT_HASH(cmap, offset);
6624
6625 /* scan from the index forwards looking for a vacant slot */
6626 for (i = 0; i < cmap->scm_modulus; i++) {
6627 /* slot vacant? */
6628 if (DRT_HASH_VACANT(cmap, index) || DRT_HASH_GET_COUNT(cmap,index) == 0) {
6629 cmap->scm_buckets++;
6630 if (index < cmap->scm_lastclean)
6631 cmap->scm_lastclean = index;
6632 DRT_HASH_SET_ADDRESS(cmap, index, offset);
6633 DRT_HASH_SET_COUNT(cmap, index, 0);
6634 DRT_BITVECTOR_CLEAR(cmap, index);
6635 *indexp = index;
6636 vfs_drt_trace(cmap, DRT_DEBUG_INSERT, (int)offset, i, 0, 0);
6637 return(KERN_SUCCESS);
6638 }
6639 cmap->scm_iskips += i;
6640 index = DRT_HASH_NEXT(cmap, index);
6641 }
6642
6643 /*
6644 * We haven't found a vacant slot, so the map is full. If we're not
6645 * already recursed, try reallocating/compacting it.
6646 */
6647 if (recursed)
6648 return(KERN_FAILURE);
6649 kret = vfs_drt_alloc_map(cmapp);
6650 if (kret == KERN_SUCCESS) {
6651 /* now try to insert again */
6652 kret = vfs_drt_get_index(cmapp, offset, indexp, 1);
6653 }
6654 return(kret);
6655}
6656
6657/*
6658 * Implementation of set dirty/clean.
6659 *
6660 * In the 'clean' case, not finding a map is OK.
6661 */
6662static kern_return_t
6663vfs_drt_do_mark_pages(
6664 void **private,
6665 u_int64_t offset,
6666 u_int length,
6667 u_int *setcountp,
6668 int dirty)
6669{
6670 struct vfs_drt_clustermap *cmap, **cmapp;
6671 kern_return_t kret;
6672 int i, index, pgoff, pgcount, setcount, ecount;
6673
6674 cmapp = (struct vfs_drt_clustermap **)private;
6675 cmap = *cmapp;
6676
6677 vfs_drt_trace(cmap, DRT_DEBUG_MARK | DBG_FUNC_START, (int)offset, (int)length, dirty, 0);
6678
6679 if (setcountp != NULL)
6680 *setcountp = 0;
6681
6682 /* allocate a cluster map if we don't already have one */
6683 if (cmap == NULL) {
6684 /* no cluster map, nothing to clean */
6685 if (!dirty) {
6686 vfs_drt_trace(cmap, DRT_DEBUG_MARK | DBG_FUNC_END, 1, 0, 0, 0);
6687 return(KERN_SUCCESS);
6688 }
6689 kret = vfs_drt_alloc_map(cmapp);
6690 if (kret != KERN_SUCCESS) {
6691 vfs_drt_trace(cmap, DRT_DEBUG_MARK | DBG_FUNC_END, 2, 0, 0, 0);
6692 return(kret);
6693 }
6694 }
6695 setcount = 0;
6696
6697 /*
6698 * Iterate over the length of the region.
6699 */
6700 while (length > 0) {
6701 /*
6702 * Get the hashtable index for this offset.
6703 *
6704 * XXX this will add blank entries if we are clearing a range
6705 * that hasn't been dirtied.
6706 */
6707 kret = vfs_drt_get_index(cmapp, offset, &index, 0);
6708 cmap = *cmapp; /* may have changed! */
6709 /* this may be a partial-success return */
6710 if (kret != KERN_SUCCESS) {
6711 if (setcountp != NULL)
6712 *setcountp = setcount;
6713 vfs_drt_trace(cmap, DRT_DEBUG_MARK | DBG_FUNC_END, 3, (int)length, 0, 0);
6714
6715 return(kret);
6716 }
6717
6718 /*
6719 * Work out how many pages we're modifying in this
6720 * hashtable entry.
6721 */
6722 pgoff = (offset - DRT_ALIGN_ADDRESS(offset)) / PAGE_SIZE;
6723 pgcount = min((length / PAGE_SIZE), (DRT_BITVECTOR_PAGES - pgoff));
6724
6725 /*
6726 * Iterate over pages, dirty/clearing as we go.
6727 */
6728 ecount = DRT_HASH_GET_COUNT(cmap, index);
6729 for (i = 0; i < pgcount; i++) {
6730 if (dirty) {
6731 if (!DRT_HASH_TEST_BIT(cmap, index, pgoff + i)) {
6732 DRT_HASH_SET_BIT(cmap, index, pgoff + i);
6733 ecount++;
6734 setcount++;
6735 }
6736 } else {
6737 if (DRT_HASH_TEST_BIT(cmap, index, pgoff + i)) {
6738 DRT_HASH_CLEAR_BIT(cmap, index, pgoff + i);
6739 ecount--;
6740 setcount++;
6741 }
6742 }
6743 }
6744 DRT_HASH_SET_COUNT(cmap, index, ecount);
6745
6746 offset += pgcount * PAGE_SIZE;
6747 length -= pgcount * PAGE_SIZE;
6748 }
6749 if (setcountp != NULL)
6750 *setcountp = setcount;
6751
6752 vfs_drt_trace(cmap, DRT_DEBUG_MARK | DBG_FUNC_END, 0, setcount, 0, 0);
6753
6754 return(KERN_SUCCESS);
6755}
6756
6757/*
6758 * Mark a set of pages as dirty/clean.
6759 *
6760 * This is a public interface.
6761 *
6762 * cmapp
6763 * Pointer to storage suitable for holding a pointer. Note that
6764 * this must either be NULL or a value set by this function.
6765 *
6766 * size
6767 * Current file size in bytes.
6768 *
6769 * offset
6770 * Offset of the first page to be marked as dirty, in bytes. Must be
6771 * page-aligned.
6772 *
6773 * length
6774 * Length of dirty region, in bytes. Must be a multiple of PAGE_SIZE.
6775 *
6776 * setcountp
6777 * Number of pages newly marked dirty by this call (optional).
6778 *
6779 * Returns KERN_SUCCESS if all the pages were successfully marked.
6780 */
6781static kern_return_t
6782vfs_drt_mark_pages(void **cmapp, off_t offset, u_int length, u_int *setcountp)
6783{
6784 /* XXX size unused, drop from interface */
6785 return(vfs_drt_do_mark_pages(cmapp, offset, length, setcountp, 1));
6786}
6787
6788#if 0
6789static kern_return_t
6790vfs_drt_unmark_pages(void **cmapp, off_t offset, u_int length)
6791{
6792 return(vfs_drt_do_mark_pages(cmapp, offset, length, NULL, 0));
6793}
6794#endif
6795
6796/*
6797 * Get a cluster of dirty pages.
6798 *
6799 * This is a public interface.
6800 *
6801 * cmapp
6802 * Pointer to storage managed by drt_mark_pages. Note that this must
6803 * be NULL or a value set by drt_mark_pages.
6804 *
6805 * offsetp
6806 * Returns the byte offset into the file of the first page in the cluster.
6807 *
6808 * lengthp
6809 * Returns the length in bytes of the cluster of dirty pages.
6810 *
6811 * Returns success if a cluster was found. If KERN_FAILURE is returned, there
6812 * are no dirty pages meeting the minmum size criteria. Private storage will
6813 * be released if there are no more dirty pages left in the map
6814 *
6815 */
6816static kern_return_t
6817vfs_drt_get_cluster(void **cmapp, off_t *offsetp, u_int *lengthp)
6818{
6819 struct vfs_drt_clustermap *cmap;
6820 u_int64_t offset;
6821 u_int length;
6822 u_int32_t j;
6823 int index, i, fs, ls;
6824
6825 /* sanity */
6826 if ((cmapp == NULL) || (*cmapp == NULL))
6827 return(KERN_FAILURE);
6828 cmap = *cmapp;
6829
6830 /* walk the hashtable */
6831 for (offset = 0, j = 0; j < cmap->scm_modulus; offset += (DRT_BITVECTOR_PAGES * PAGE_SIZE), j++) {
6832 index = DRT_HASH(cmap, offset);
6833
6834 if (DRT_HASH_VACANT(cmap, index) || (DRT_HASH_GET_COUNT(cmap, index) == 0))
6835 continue;
6836
6837 /* scan the bitfield for a string of bits */
6838 fs = -1;
6839
6840 for (i = 0; i < DRT_BITVECTOR_PAGES; i++) {
6841 if (DRT_HASH_TEST_BIT(cmap, index, i)) {
6842 fs = i;
6843 break;
6844 }
6845 }
6846 if (fs == -1) {
6847 /* didn't find any bits set */
6848 panic("vfs_drt: entry summary count > 0 but no bits set in map");
6849 }
6850 for (ls = 0; i < DRT_BITVECTOR_PAGES; i++, ls++) {
6851 if (!DRT_HASH_TEST_BIT(cmap, index, i))
6852 break;
6853 }
6854
6855 /* compute offset and length, mark pages clean */
6856 offset = DRT_HASH_GET_ADDRESS(cmap, index) + (PAGE_SIZE * fs);
6857 length = ls * PAGE_SIZE;
6858 vfs_drt_do_mark_pages(cmapp, offset, length, NULL, 0);
6859 cmap->scm_lastclean = index;
6860
6861 /* return successful */
6862 *offsetp = (off_t)offset;
6863 *lengthp = length;
6864
6865 vfs_drt_trace(cmap, DRT_DEBUG_RETCLUSTER, (int)offset, (int)length, 0, 0);
6866 return(KERN_SUCCESS);
6867 }
6868 /*
6869 * We didn't find anything... hashtable is empty
6870 * emit stats into trace buffer and
6871 * then free it
6872 */
6873 vfs_drt_trace(cmap, DRT_DEBUG_SCMDATA,
6874 cmap->scm_modulus,
6875 cmap->scm_buckets,
6876 cmap->scm_lastclean,
6877 cmap->scm_iskips);
6878
6879 vfs_drt_free_map(cmap);
6880 *cmapp = NULL;
6881
6882 return(KERN_FAILURE);
6883}
6884
6885
6886static kern_return_t
6887vfs_drt_control(void **cmapp, int op_type)
6888{
6889 struct vfs_drt_clustermap *cmap;
6890
6891 /* sanity */
6892 if ((cmapp == NULL) || (*cmapp == NULL))
6893 return(KERN_FAILURE);
6894 cmap = *cmapp;
6895
6896 switch (op_type) {
6897 case 0:
6898 /* emit stats into trace buffer */
6899 vfs_drt_trace(cmap, DRT_DEBUG_SCMDATA,
6900 cmap->scm_modulus,
6901 cmap->scm_buckets,
6902 cmap->scm_lastclean,
6903 cmap->scm_iskips);
6904
6905 vfs_drt_free_map(cmap);
6906 *cmapp = NULL;
6907 break;
6908
6909 case 1:
6910 cmap->scm_lastclean = 0;
6911 break;
6912 }
6913 return(KERN_SUCCESS);
6914}
6915
6916
6917
6918/*
6919 * Emit a summary of the state of the clustermap into the trace buffer
6920 * along with some caller-provided data.
6921 */
6922#if KDEBUG
6923static void
6924vfs_drt_trace(__unused struct vfs_drt_clustermap *cmap, int code, int arg1, int arg2, int arg3, int arg4)
6925{
6926 KERNEL_DEBUG(code, arg1, arg2, arg3, arg4, 0);
6927}
6928#else
6929static void
6930vfs_drt_trace(__unused struct vfs_drt_clustermap *cmap, __unused int code,
6931 __unused int arg1, __unused int arg2, __unused int arg3,
6932 __unused int arg4)
6933{
6934}
6935#endif
6936
6937#if 0
6938/*
6939 * Perform basic sanity check on the hash entry summary count
6940 * vs. the actual bits set in the entry.
6941 */
6942static void
6943vfs_drt_sanity(struct vfs_drt_clustermap *cmap)
6944{
6945 int index, i;
6946 int bits_on;
6947
6948 for (index = 0; index < cmap->scm_modulus; index++) {
6949 if (DRT_HASH_VACANT(cmap, index))
6950 continue;
6951
6952 for (bits_on = 0, i = 0; i < DRT_BITVECTOR_PAGES; i++) {
6953 if (DRT_HASH_TEST_BIT(cmap, index, i))
6954 bits_on++;
6955 }
6956 if (bits_on != DRT_HASH_GET_COUNT(cmap, index))
6957 panic("bits_on = %d, index = %d\n", bits_on, index);
6958 }
6959}
6960#endif