]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Copyright (c) 2000-2016 Apple Computer, Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * This file contains Original Code and/or Modifications of Original Code | |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
14 | * | |
15 | * Please obtain a copy of the License at | |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
25 | * | |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ | |
27 | */ | |
28 | /* Copyright (c) 1995 NeXT Computer, Inc. All Rights Reserved */ | |
29 | /* | |
30 | * Copyright (c) 1989, 1993, 1995 | |
31 | * The Regents of the University of California. All rights reserved. | |
32 | * | |
33 | * Redistribution and use in source and binary forms, with or without | |
34 | * modification, are permitted provided that the following conditions | |
35 | * are met: | |
36 | * 1. Redistributions of source code must retain the above copyright | |
37 | * notice, this list of conditions and the following disclaimer. | |
38 | * 2. Redistributions in binary form must reproduce the above copyright | |
39 | * notice, this list of conditions and the following disclaimer in the | |
40 | * documentation and/or other materials provided with the distribution. | |
41 | * 3. All advertising materials mentioning features or use of this software | |
42 | * must display the following acknowledgement: | |
43 | * This product includes software developed by the University of | |
44 | * California, Berkeley and its contributors. | |
45 | * 4. Neither the name of the University nor the names of its contributors | |
46 | * may be used to endorse or promote products derived from this software | |
47 | * without specific prior written permission. | |
48 | * | |
49 | * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND | |
50 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
51 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |
52 | * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE | |
53 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | |
54 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | |
55 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | |
56 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | |
57 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | |
58 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | |
59 | * SUCH DAMAGE. | |
60 | * | |
61 | * @(#)spec_vnops.c 8.14 (Berkeley) 5/21/95 | |
62 | */ | |
63 | ||
64 | #include <sys/param.h> | |
65 | #include <sys/proc_internal.h> | |
66 | #include <sys/kauth.h> | |
67 | #include <sys/systm.h> | |
68 | #include <sys/kernel.h> | |
69 | #include <sys/conf.h> | |
70 | #include <sys/buf_internal.h> | |
71 | #include <sys/mount_internal.h> | |
72 | #include <sys/vnode_internal.h> | |
73 | #include <sys/file_internal.h> | |
74 | #include <sys/namei.h> | |
75 | #include <sys/stat.h> | |
76 | #include <sys/errno.h> | |
77 | #include <sys/ioctl.h> | |
78 | #include <sys/file.h> | |
79 | #include <sys/user.h> | |
80 | #include <sys/malloc.h> | |
81 | #include <sys/disk.h> | |
82 | #include <sys/uio_internal.h> | |
83 | #include <sys/resource.h> | |
84 | #include <machine/machine_routines.h> | |
85 | #include <miscfs/specfs/specdev.h> | |
86 | #include <vfs/vfs_support.h> | |
87 | ||
88 | #include <kern/assert.h> | |
89 | #include <kern/task.h> | |
90 | #include <kern/sched_prim.h> | |
91 | #include <kern/thread.h> | |
92 | #include <kern/policy_internal.h> | |
93 | #include <kern/timer_call.h> | |
94 | ||
95 | #include <pexpert/pexpert.h> | |
96 | ||
97 | #include <sys/kdebug.h> | |
98 | ||
99 | /* XXX following three prototypes should be in a header file somewhere */ | |
100 | extern dev_t chrtoblk(dev_t dev); | |
101 | extern boolean_t iskmemdev(dev_t dev); | |
102 | extern int bpfkqfilter(dev_t dev, struct knote *kn); | |
103 | extern int ptsd_kqfilter(dev_t dev, struct knote *kn); | |
104 | ||
105 | extern int ignore_is_ssd; | |
106 | ||
107 | struct vnode *speclisth[SPECHSZ]; | |
108 | ||
109 | /* symbolic sleep message strings for devices */ | |
110 | char devopn[] = "devopn"; | |
111 | char devio[] = "devio"; | |
112 | char devwait[] = "devwait"; | |
113 | char devin[] = "devin"; | |
114 | char devout[] = "devout"; | |
115 | char devioc[] = "devioc"; | |
116 | char devcls[] = "devcls"; | |
117 | ||
118 | #define VOPFUNC int (*)(void *) | |
119 | ||
120 | int (**spec_vnodeop_p)(void *); | |
121 | struct vnodeopv_entry_desc spec_vnodeop_entries[] = { | |
122 | { &vnop_default_desc, (VOPFUNC)vn_default_error }, | |
123 | { &vnop_lookup_desc, (VOPFUNC)spec_lookup }, /* lookup */ | |
124 | { &vnop_create_desc, (VOPFUNC)err_create }, /* create */ | |
125 | { &vnop_mknod_desc, (VOPFUNC)err_mknod }, /* mknod */ | |
126 | { &vnop_open_desc, (VOPFUNC)spec_open }, /* open */ | |
127 | { &vnop_close_desc, (VOPFUNC)spec_close }, /* close */ | |
128 | { &vnop_access_desc, (VOPFUNC)spec_access }, /* access */ | |
129 | { &vnop_getattr_desc, (VOPFUNC)spec_getattr }, /* getattr */ | |
130 | { &vnop_setattr_desc, (VOPFUNC)spec_setattr }, /* setattr */ | |
131 | { &vnop_read_desc, (VOPFUNC)spec_read }, /* read */ | |
132 | { &vnop_write_desc, (VOPFUNC)spec_write }, /* write */ | |
133 | { &vnop_ioctl_desc, (VOPFUNC)spec_ioctl }, /* ioctl */ | |
134 | { &vnop_select_desc, (VOPFUNC)spec_select }, /* select */ | |
135 | { &vnop_revoke_desc, (VOPFUNC)nop_revoke }, /* revoke */ | |
136 | { &vnop_mmap_desc, (VOPFUNC)err_mmap }, /* mmap */ | |
137 | { &vnop_fsync_desc, (VOPFUNC)spec_fsync }, /* fsync */ | |
138 | { &vnop_remove_desc, (VOPFUNC)err_remove }, /* remove */ | |
139 | { &vnop_link_desc, (VOPFUNC)err_link }, /* link */ | |
140 | { &vnop_rename_desc, (VOPFUNC)err_rename }, /* rename */ | |
141 | { &vnop_mkdir_desc, (VOPFUNC)err_mkdir }, /* mkdir */ | |
142 | { &vnop_rmdir_desc, (VOPFUNC)err_rmdir }, /* rmdir */ | |
143 | { &vnop_symlink_desc, (VOPFUNC)err_symlink }, /* symlink */ | |
144 | { &vnop_readdir_desc, (VOPFUNC)err_readdir }, /* readdir */ | |
145 | { &vnop_readlink_desc, (VOPFUNC)err_readlink }, /* readlink */ | |
146 | { &vnop_inactive_desc, (VOPFUNC)nop_inactive }, /* inactive */ | |
147 | { &vnop_reclaim_desc, (VOPFUNC)nop_reclaim }, /* reclaim */ | |
148 | { &vnop_strategy_desc, (VOPFUNC)spec_strategy }, /* strategy */ | |
149 | { &vnop_pathconf_desc, (VOPFUNC)spec_pathconf }, /* pathconf */ | |
150 | { &vnop_advlock_desc, (VOPFUNC)err_advlock }, /* advlock */ | |
151 | { &vnop_bwrite_desc, (VOPFUNC)spec_bwrite }, /* bwrite */ | |
152 | { &vnop_pagein_desc, (VOPFUNC)err_pagein }, /* Pagein */ | |
153 | { &vnop_pageout_desc, (VOPFUNC)err_pageout }, /* Pageout */ | |
154 | { &vnop_copyfile_desc, (VOPFUNC)err_copyfile }, /* Copyfile */ | |
155 | { &vnop_blktooff_desc, (VOPFUNC)spec_blktooff }, /* blktooff */ | |
156 | { &vnop_offtoblk_desc, (VOPFUNC)spec_offtoblk }, /* offtoblk */ | |
157 | { &vnop_blockmap_desc, (VOPFUNC)spec_blockmap }, /* blockmap */ | |
158 | { (struct vnodeop_desc*)NULL, (int(*)())NULL } | |
159 | }; | |
160 | struct vnodeopv_desc spec_vnodeop_opv_desc = | |
161 | { &spec_vnodeop_p, spec_vnodeop_entries }; | |
162 | ||
163 | ||
164 | static void set_blocksize(vnode_t, dev_t); | |
165 | ||
166 | #define LOWPRI_TIER1_WINDOW_MSECS 25 | |
167 | #define LOWPRI_TIER2_WINDOW_MSECS 100 | |
168 | #define LOWPRI_TIER3_WINDOW_MSECS 500 | |
169 | ||
170 | #define LOWPRI_TIER1_IO_PERIOD_MSECS 40 | |
171 | #define LOWPRI_TIER2_IO_PERIOD_MSECS 85 | |
172 | #define LOWPRI_TIER3_IO_PERIOD_MSECS 200 | |
173 | ||
174 | #define LOWPRI_TIER1_IO_PERIOD_SSD_MSECS 5 | |
175 | #define LOWPRI_TIER2_IO_PERIOD_SSD_MSECS 15 | |
176 | #define LOWPRI_TIER3_IO_PERIOD_SSD_MSECS 25 | |
177 | ||
178 | ||
179 | int throttle_windows_msecs[THROTTLE_LEVEL_END + 1] = { | |
180 | 0, | |
181 | LOWPRI_TIER1_WINDOW_MSECS, | |
182 | LOWPRI_TIER2_WINDOW_MSECS, | |
183 | LOWPRI_TIER3_WINDOW_MSECS, | |
184 | }; | |
185 | ||
186 | int throttle_io_period_msecs[THROTTLE_LEVEL_END + 1] = { | |
187 | 0, | |
188 | LOWPRI_TIER1_IO_PERIOD_MSECS, | |
189 | LOWPRI_TIER2_IO_PERIOD_MSECS, | |
190 | LOWPRI_TIER3_IO_PERIOD_MSECS, | |
191 | }; | |
192 | ||
193 | int throttle_io_period_ssd_msecs[THROTTLE_LEVEL_END + 1] = { | |
194 | 0, | |
195 | LOWPRI_TIER1_IO_PERIOD_SSD_MSECS, | |
196 | LOWPRI_TIER2_IO_PERIOD_SSD_MSECS, | |
197 | LOWPRI_TIER3_IO_PERIOD_SSD_MSECS, | |
198 | }; | |
199 | ||
200 | ||
201 | int throttled_count[THROTTLE_LEVEL_END + 1]; | |
202 | ||
203 | struct _throttle_io_info_t { | |
204 | lck_mtx_t throttle_lock; | |
205 | ||
206 | struct timeval throttle_last_write_timestamp; | |
207 | struct timeval throttle_min_timer_deadline; | |
208 | struct timeval throttle_window_start_timestamp[THROTTLE_LEVEL_END + 1]; /* window starts at both the beginning and completion of an I/O */ | |
209 | struct timeval throttle_last_IO_timestamp[THROTTLE_LEVEL_END + 1]; | |
210 | pid_t throttle_last_IO_pid[THROTTLE_LEVEL_END + 1]; | |
211 | struct timeval throttle_start_IO_period_timestamp[THROTTLE_LEVEL_END + 1]; | |
212 | int32_t throttle_inflight_count[THROTTLE_LEVEL_END + 1]; | |
213 | ||
214 | TAILQ_HEAD( , uthread) throttle_uthlist[THROTTLE_LEVEL_END + 1]; /* Lists of throttled uthreads */ | |
215 | int throttle_next_wake_level; | |
216 | ||
217 | thread_call_t throttle_timer_call; | |
218 | int32_t throttle_timer_ref; | |
219 | int32_t throttle_timer_active; | |
220 | ||
221 | int32_t throttle_io_count; | |
222 | int32_t throttle_io_count_begin; | |
223 | int *throttle_io_periods; | |
224 | uint32_t throttle_io_period_num; | |
225 | ||
226 | int32_t throttle_refcnt; | |
227 | int32_t throttle_alloc; | |
228 | int32_t throttle_disabled; | |
229 | int32_t throttle_is_fusion_with_priority; | |
230 | }; | |
231 | ||
232 | struct _throttle_io_info_t _throttle_io_info[LOWPRI_MAX_NUM_DEV]; | |
233 | ||
234 | ||
235 | int lowpri_throttle_enabled = 1; | |
236 | ||
237 | ||
238 | static void throttle_info_end_io_internal(struct _throttle_io_info_t *info, int throttle_level); | |
239 | static int throttle_info_update_internal(struct _throttle_io_info_t *info, uthread_t ut, int flags, boolean_t isssd, boolean_t inflight, struct bufattr *bap); | |
240 | static int throttle_get_thread_throttle_level(uthread_t ut); | |
241 | static int throttle_get_thread_throttle_level_internal(uthread_t ut, int io_tier); | |
242 | ||
243 | /* | |
244 | * Trivial lookup routine that always fails. | |
245 | */ | |
246 | int | |
247 | spec_lookup(struct vnop_lookup_args *ap) | |
248 | { | |
249 | ||
250 | *ap->a_vpp = NULL; | |
251 | return (ENOTDIR); | |
252 | } | |
253 | ||
254 | static void | |
255 | set_blocksize(struct vnode *vp, dev_t dev) | |
256 | { | |
257 | int (*size)(dev_t); | |
258 | int rsize; | |
259 | ||
260 | if ((major(dev) < nblkdev) && (size = bdevsw[major(dev)].d_psize)) { | |
261 | rsize = (*size)(dev); | |
262 | if (rsize <= 0) /* did size fail? */ | |
263 | vp->v_specsize = DEV_BSIZE; | |
264 | else | |
265 | vp->v_specsize = rsize; | |
266 | } | |
267 | else | |
268 | vp->v_specsize = DEV_BSIZE; | |
269 | } | |
270 | ||
271 | void | |
272 | set_fsblocksize(struct vnode *vp) | |
273 | { | |
274 | ||
275 | if (vp->v_type == VBLK) { | |
276 | dev_t dev = (dev_t)vp->v_rdev; | |
277 | int maj = major(dev); | |
278 | ||
279 | if ((u_int)maj >= (u_int)nblkdev) | |
280 | return; | |
281 | ||
282 | vnode_lock(vp); | |
283 | set_blocksize(vp, dev); | |
284 | vnode_unlock(vp); | |
285 | } | |
286 | ||
287 | } | |
288 | ||
289 | ||
290 | /* | |
291 | * Open a special file. | |
292 | */ | |
293 | int | |
294 | spec_open(struct vnop_open_args *ap) | |
295 | { | |
296 | struct proc *p = vfs_context_proc(ap->a_context); | |
297 | kauth_cred_t cred = vfs_context_ucred(ap->a_context); | |
298 | struct vnode *vp = ap->a_vp; | |
299 | dev_t bdev, dev = (dev_t)vp->v_rdev; | |
300 | int maj = major(dev); | |
301 | int error; | |
302 | ||
303 | /* | |
304 | * Don't allow open if fs is mounted -nodev. | |
305 | */ | |
306 | if (vp->v_mount && (vp->v_mount->mnt_flag & MNT_NODEV)) | |
307 | return (ENXIO); | |
308 | ||
309 | switch (vp->v_type) { | |
310 | ||
311 | case VCHR: | |
312 | if ((u_int)maj >= (u_int)nchrdev) | |
313 | return (ENXIO); | |
314 | if (cred != FSCRED && (ap->a_mode & FWRITE)) { | |
315 | /* | |
316 | * When running in very secure mode, do not allow | |
317 | * opens for writing of any disk character devices. | |
318 | */ | |
319 | if (securelevel >= 2 && isdisk(dev, VCHR)) | |
320 | return (EPERM); | |
321 | ||
322 | /* Never allow writing to /dev/mem or /dev/kmem */ | |
323 | if (iskmemdev(dev)) | |
324 | return (EPERM); | |
325 | /* | |
326 | * When running in secure mode, do not allow opens for | |
327 | * writing of character devices whose corresponding block | |
328 | * devices are currently mounted. | |
329 | */ | |
330 | if (securelevel >= 1) { | |
331 | if ((bdev = chrtoblk(dev)) != NODEV && check_mountedon(bdev, VBLK, &error)) | |
332 | return (error); | |
333 | } | |
334 | } | |
335 | ||
336 | devsw_lock(dev, S_IFCHR); | |
337 | error = (*cdevsw[maj].d_open)(dev, ap->a_mode, S_IFCHR, p); | |
338 | ||
339 | if (error == 0) { | |
340 | vp->v_specinfo->si_opencount++; | |
341 | } | |
342 | ||
343 | devsw_unlock(dev, S_IFCHR); | |
344 | ||
345 | if (error == 0 && cdevsw[maj].d_type == D_DISK && !vp->v_un.vu_specinfo->si_initted) { | |
346 | int isssd = 0; | |
347 | uint64_t throttle_mask = 0; | |
348 | uint32_t devbsdunit = 0; | |
349 | ||
350 | if (VNOP_IOCTL(vp, DKIOCGETTHROTTLEMASK, (caddr_t)&throttle_mask, 0, NULL) == 0) { | |
351 | ||
352 | if (throttle_mask != 0 && | |
353 | VNOP_IOCTL(vp, DKIOCISSOLIDSTATE, (caddr_t)&isssd, 0, ap->a_context) == 0) { | |
354 | /* | |
355 | * as a reasonable approximation, only use the lowest bit of the mask | |
356 | * to generate a disk unit number | |
357 | */ | |
358 | devbsdunit = num_trailing_0(throttle_mask); | |
359 | ||
360 | vnode_lock(vp); | |
361 | ||
362 | vp->v_un.vu_specinfo->si_isssd = isssd; | |
363 | vp->v_un.vu_specinfo->si_devbsdunit = devbsdunit; | |
364 | vp->v_un.vu_specinfo->si_throttle_mask = throttle_mask; | |
365 | vp->v_un.vu_specinfo->si_throttleable = 1; | |
366 | vp->v_un.vu_specinfo->si_initted = 1; | |
367 | ||
368 | vnode_unlock(vp); | |
369 | } | |
370 | } | |
371 | if (vp->v_un.vu_specinfo->si_initted == 0) { | |
372 | vnode_lock(vp); | |
373 | vp->v_un.vu_specinfo->si_initted = 1; | |
374 | vnode_unlock(vp); | |
375 | } | |
376 | } | |
377 | return (error); | |
378 | ||
379 | case VBLK: | |
380 | if ((u_int)maj >= (u_int)nblkdev) | |
381 | return (ENXIO); | |
382 | /* | |
383 | * When running in very secure mode, do not allow | |
384 | * opens for writing of any disk block devices. | |
385 | */ | |
386 | if (securelevel >= 2 && cred != FSCRED && | |
387 | (ap->a_mode & FWRITE) && bdevsw[maj].d_type == D_DISK) | |
388 | return (EPERM); | |
389 | /* | |
390 | * Do not allow opens of block devices that are | |
391 | * currently mounted. | |
392 | */ | |
393 | if ( (error = vfs_mountedon(vp)) ) | |
394 | return (error); | |
395 | ||
396 | devsw_lock(dev, S_IFBLK); | |
397 | error = (*bdevsw[maj].d_open)(dev, ap->a_mode, S_IFBLK, p); | |
398 | if (!error) { | |
399 | vp->v_specinfo->si_opencount++; | |
400 | } | |
401 | devsw_unlock(dev, S_IFBLK); | |
402 | ||
403 | if (!error) { | |
404 | u_int64_t blkcnt; | |
405 | u_int32_t blksize; | |
406 | int setsize = 0; | |
407 | u_int32_t size512 = 512; | |
408 | ||
409 | ||
410 | if (!VNOP_IOCTL(vp, DKIOCGETBLOCKSIZE, (caddr_t)&blksize, 0, ap->a_context)) { | |
411 | /* Switch to 512 byte sectors (temporarily) */ | |
412 | ||
413 | if (!VNOP_IOCTL(vp, DKIOCSETBLOCKSIZE, (caddr_t)&size512, FWRITE, ap->a_context)) { | |
414 | /* Get the number of 512 byte physical blocks. */ | |
415 | if (!VNOP_IOCTL(vp, DKIOCGETBLOCKCOUNT, (caddr_t)&blkcnt, 0, ap->a_context)) { | |
416 | setsize = 1; | |
417 | } | |
418 | } | |
419 | /* If it doesn't set back, we can't recover */ | |
420 | if (VNOP_IOCTL(vp, DKIOCSETBLOCKSIZE, (caddr_t)&blksize, FWRITE, ap->a_context)) | |
421 | error = ENXIO; | |
422 | } | |
423 | ||
424 | ||
425 | vnode_lock(vp); | |
426 | set_blocksize(vp, dev); | |
427 | ||
428 | /* | |
429 | * Cache the size in bytes of the block device for later | |
430 | * use by spec_write(). | |
431 | */ | |
432 | if (setsize) | |
433 | vp->v_specdevsize = blkcnt * (u_int64_t)size512; | |
434 | else | |
435 | vp->v_specdevsize = (u_int64_t)0; /* Default: Can't get */ | |
436 | ||
437 | vnode_unlock(vp); | |
438 | ||
439 | } | |
440 | return(error); | |
441 | default: | |
442 | panic("spec_open type"); | |
443 | } | |
444 | return (0); | |
445 | } | |
446 | ||
447 | /* | |
448 | * Vnode op for read | |
449 | */ | |
450 | int | |
451 | spec_read(struct vnop_read_args *ap) | |
452 | { | |
453 | struct vnode *vp = ap->a_vp; | |
454 | struct uio *uio = ap->a_uio; | |
455 | struct buf *bp; | |
456 | daddr64_t bn, nextbn; | |
457 | long bsize, bscale; | |
458 | int devBlockSize=0; | |
459 | int n, on; | |
460 | int error = 0; | |
461 | dev_t dev; | |
462 | ||
463 | #if DIAGNOSTIC | |
464 | if (uio->uio_rw != UIO_READ) | |
465 | panic("spec_read mode"); | |
466 | if (UIO_SEG_IS_USER_SPACE(uio->uio_segflg)) | |
467 | panic("spec_read proc"); | |
468 | #endif | |
469 | if (uio_resid(uio) == 0) | |
470 | return (0); | |
471 | ||
472 | switch (vp->v_type) { | |
473 | ||
474 | case VCHR: | |
475 | { | |
476 | struct _throttle_io_info_t *throttle_info = NULL; | |
477 | int thread_throttle_level; | |
478 | if (cdevsw[major(vp->v_rdev)].d_type == D_DISK && vp->v_un.vu_specinfo->si_throttleable) { | |
479 | throttle_info = &_throttle_io_info[vp->v_un.vu_specinfo->si_devbsdunit]; | |
480 | thread_throttle_level = throttle_info_update_internal(throttle_info, NULL, 0, vp->v_un.vu_specinfo->si_isssd, TRUE, NULL); | |
481 | } | |
482 | error = (*cdevsw[major(vp->v_rdev)].d_read) | |
483 | (vp->v_rdev, uio, ap->a_ioflag); | |
484 | ||
485 | if (throttle_info) { | |
486 | throttle_info_end_io_internal(throttle_info, thread_throttle_level); | |
487 | } | |
488 | ||
489 | return (error); | |
490 | } | |
491 | ||
492 | case VBLK: | |
493 | if (uio->uio_offset < 0) | |
494 | return (EINVAL); | |
495 | ||
496 | dev = vp->v_rdev; | |
497 | ||
498 | devBlockSize = vp->v_specsize; | |
499 | ||
500 | if (devBlockSize > PAGE_SIZE) | |
501 | return (EINVAL); | |
502 | ||
503 | bscale = PAGE_SIZE / devBlockSize; | |
504 | bsize = bscale * devBlockSize; | |
505 | ||
506 | do { | |
507 | on = uio->uio_offset % bsize; | |
508 | ||
509 | bn = (daddr64_t)((uio->uio_offset / devBlockSize) &~ (bscale - 1)); | |
510 | ||
511 | if (vp->v_speclastr + bscale == bn) { | |
512 | nextbn = bn + bscale; | |
513 | error = buf_breadn(vp, bn, (int)bsize, &nextbn, | |
514 | (int *)&bsize, 1, NOCRED, &bp); | |
515 | } else | |
516 | error = buf_bread(vp, bn, (int)bsize, NOCRED, &bp); | |
517 | ||
518 | vnode_lock(vp); | |
519 | vp->v_speclastr = bn; | |
520 | vnode_unlock(vp); | |
521 | ||
522 | n = bsize - buf_resid(bp); | |
523 | if ((on > n) || error) { | |
524 | if (!error) | |
525 | error = EINVAL; | |
526 | buf_brelse(bp); | |
527 | return (error); | |
528 | } | |
529 | n = min((unsigned)(n - on), uio_resid(uio)); | |
530 | ||
531 | error = uiomove((char *)buf_dataptr(bp) + on, n, uio); | |
532 | if (n + on == bsize) | |
533 | buf_markaged(bp); | |
534 | buf_brelse(bp); | |
535 | } while (error == 0 && uio_resid(uio) > 0 && n != 0); | |
536 | return (error); | |
537 | ||
538 | default: | |
539 | panic("spec_read type"); | |
540 | } | |
541 | /* NOTREACHED */ | |
542 | ||
543 | return (0); | |
544 | } | |
545 | ||
546 | /* | |
547 | * Vnode op for write | |
548 | */ | |
549 | int | |
550 | spec_write(struct vnop_write_args *ap) | |
551 | { | |
552 | struct vnode *vp = ap->a_vp; | |
553 | struct uio *uio = ap->a_uio; | |
554 | struct buf *bp; | |
555 | daddr64_t bn; | |
556 | int bsize, blkmask, bscale; | |
557 | int io_sync; | |
558 | int devBlockSize=0; | |
559 | int n, on; | |
560 | int error = 0; | |
561 | dev_t dev; | |
562 | ||
563 | #if DIAGNOSTIC | |
564 | if (uio->uio_rw != UIO_WRITE) | |
565 | panic("spec_write mode"); | |
566 | if (UIO_SEG_IS_USER_SPACE(uio->uio_segflg)) | |
567 | panic("spec_write proc"); | |
568 | #endif | |
569 | ||
570 | switch (vp->v_type) { | |
571 | ||
572 | case VCHR: | |
573 | { | |
574 | struct _throttle_io_info_t *throttle_info = NULL; | |
575 | int thread_throttle_level; | |
576 | if (cdevsw[major(vp->v_rdev)].d_type == D_DISK && vp->v_un.vu_specinfo->si_throttleable) { | |
577 | throttle_info = &_throttle_io_info[vp->v_un.vu_specinfo->si_devbsdunit]; | |
578 | ||
579 | thread_throttle_level = throttle_info_update_internal(throttle_info, NULL, 0, vp->v_un.vu_specinfo->si_isssd, TRUE, NULL); | |
580 | ||
581 | microuptime(&throttle_info->throttle_last_write_timestamp); | |
582 | } | |
583 | error = (*cdevsw[major(vp->v_rdev)].d_write) | |
584 | (vp->v_rdev, uio, ap->a_ioflag); | |
585 | ||
586 | if (throttle_info) { | |
587 | throttle_info_end_io_internal(throttle_info, thread_throttle_level); | |
588 | } | |
589 | ||
590 | return (error); | |
591 | } | |
592 | ||
593 | case VBLK: | |
594 | if (uio_resid(uio) == 0) | |
595 | return (0); | |
596 | if (uio->uio_offset < 0) | |
597 | return (EINVAL); | |
598 | ||
599 | io_sync = (ap->a_ioflag & IO_SYNC); | |
600 | ||
601 | dev = (vp->v_rdev); | |
602 | ||
603 | devBlockSize = vp->v_specsize; | |
604 | if (devBlockSize > PAGE_SIZE) | |
605 | return(EINVAL); | |
606 | ||
607 | bscale = PAGE_SIZE / devBlockSize; | |
608 | blkmask = bscale - 1; | |
609 | bsize = bscale * devBlockSize; | |
610 | ||
611 | ||
612 | do { | |
613 | bn = (daddr64_t)((uio->uio_offset / devBlockSize) &~ blkmask); | |
614 | on = uio->uio_offset % bsize; | |
615 | ||
616 | n = min((unsigned)(bsize - on), uio_resid(uio)); | |
617 | ||
618 | /* | |
619 | * Use buf_getblk() as an optimization IFF: | |
620 | * | |
621 | * 1) We are reading exactly a block on a block | |
622 | * aligned boundary | |
623 | * 2) We know the size of the device from spec_open | |
624 | * 3) The read doesn't span the end of the device | |
625 | * | |
626 | * Otherwise, we fall back on buf_bread(). | |
627 | */ | |
628 | if (n == bsize && | |
629 | vp->v_specdevsize != (u_int64_t)0 && | |
630 | (uio->uio_offset + (u_int64_t)n) > vp->v_specdevsize) { | |
631 | /* reduce the size of the read to what is there */ | |
632 | n = (uio->uio_offset + (u_int64_t)n) - vp->v_specdevsize; | |
633 | } | |
634 | ||
635 | if (n == bsize) | |
636 | bp = buf_getblk(vp, bn, bsize, 0, 0, BLK_WRITE); | |
637 | else | |
638 | error = (int)buf_bread(vp, bn, bsize, NOCRED, &bp); | |
639 | ||
640 | /* Translate downstream error for upstream, if needed */ | |
641 | if (!error) | |
642 | error = (int)buf_error(bp); | |
643 | if (error) { | |
644 | buf_brelse(bp); | |
645 | return (error); | |
646 | } | |
647 | n = min(n, bsize - buf_resid(bp)); | |
648 | ||
649 | error = uiomove((char *)buf_dataptr(bp) + on, n, uio); | |
650 | if (error) { | |
651 | buf_brelse(bp); | |
652 | return (error); | |
653 | } | |
654 | buf_markaged(bp); | |
655 | ||
656 | if (io_sync) | |
657 | error = buf_bwrite(bp); | |
658 | else { | |
659 | if ((n + on) == bsize) | |
660 | error = buf_bawrite(bp); | |
661 | else | |
662 | error = buf_bdwrite(bp); | |
663 | } | |
664 | } while (error == 0 && uio_resid(uio) > 0 && n != 0); | |
665 | return (error); | |
666 | ||
667 | default: | |
668 | panic("spec_write type"); | |
669 | } | |
670 | /* NOTREACHED */ | |
671 | ||
672 | return (0); | |
673 | } | |
674 | ||
675 | /* | |
676 | * Device ioctl operation. | |
677 | */ | |
678 | int | |
679 | spec_ioctl(struct vnop_ioctl_args *ap) | |
680 | { | |
681 | proc_t p = vfs_context_proc(ap->a_context); | |
682 | dev_t dev = ap->a_vp->v_rdev; | |
683 | int retval = 0; | |
684 | ||
685 | KERNEL_DEBUG_CONSTANT(FSDBG_CODE(DBG_IOCTL, 0) | DBG_FUNC_START, | |
686 | dev, ap->a_command, ap->a_fflag, ap->a_vp->v_type, 0); | |
687 | ||
688 | switch (ap->a_vp->v_type) { | |
689 | ||
690 | case VCHR: | |
691 | retval = (*cdevsw[major(dev)].d_ioctl)(dev, ap->a_command, ap->a_data, | |
692 | ap->a_fflag, p); | |
693 | break; | |
694 | ||
695 | case VBLK: | |
696 | retval = (*bdevsw[major(dev)].d_ioctl)(dev, ap->a_command, ap->a_data, ap->a_fflag, p); | |
697 | if (!retval && ap->a_command == DKIOCSETBLOCKSIZE) | |
698 | ap->a_vp->v_specsize = *(uint32_t *)ap->a_data; | |
699 | break; | |
700 | ||
701 | default: | |
702 | panic("spec_ioctl"); | |
703 | /* NOTREACHED */ | |
704 | } | |
705 | KERNEL_DEBUG_CONSTANT(FSDBG_CODE(DBG_IOCTL, 0) | DBG_FUNC_END, | |
706 | dev, ap->a_command, ap->a_fflag, retval, 0); | |
707 | ||
708 | return (retval); | |
709 | } | |
710 | ||
711 | int | |
712 | spec_select(struct vnop_select_args *ap) | |
713 | { | |
714 | proc_t p = vfs_context_proc(ap->a_context); | |
715 | dev_t dev; | |
716 | ||
717 | switch (ap->a_vp->v_type) { | |
718 | ||
719 | default: | |
720 | return (1); /* XXX */ | |
721 | ||
722 | case VCHR: | |
723 | dev = ap->a_vp->v_rdev; | |
724 | return (*cdevsw[major(dev)].d_select)(dev, ap->a_which, ap->a_wql, p); | |
725 | } | |
726 | } | |
727 | ||
728 | static int filt_specattach(struct knote *kn); | |
729 | ||
730 | int | |
731 | spec_kqfilter(vnode_t vp, struct knote *kn) | |
732 | { | |
733 | dev_t dev; | |
734 | ||
735 | assert(vnode_ischr(vp)); | |
736 | ||
737 | dev = vnode_specrdev(vp); | |
738 | ||
739 | #if NETWORKING | |
740 | /* | |
741 | * Try a bpf device, as defined in bsd/net/bpf.c | |
742 | * If it doesn't error out the attach, then it | |
743 | * claimed it. Otherwise, fall through and try | |
744 | * a regular spec attach. | |
745 | */ | |
746 | int32_t tmp_flags = kn->kn_flags; | |
747 | int64_t tmp_data = kn->kn_data; | |
748 | int res; | |
749 | ||
750 | res = bpfkqfilter(dev, kn); | |
751 | if ((kn->kn_flags & EV_ERROR) == 0) { | |
752 | return res; | |
753 | } | |
754 | kn->kn_flags = tmp_flags; | |
755 | kn->kn_data = tmp_data; | |
756 | #endif | |
757 | ||
758 | /* Try to attach to other char special devices */ | |
759 | return filt_specattach(kn); | |
760 | } | |
761 | ||
762 | /* | |
763 | * Synch buffers associated with a block device | |
764 | */ | |
765 | int | |
766 | spec_fsync_internal(vnode_t vp, int waitfor, __unused vfs_context_t context) | |
767 | { | |
768 | if (vp->v_type == VCHR) | |
769 | return (0); | |
770 | /* | |
771 | * Flush all dirty buffers associated with a block device. | |
772 | */ | |
773 | buf_flushdirtyblks(vp, (waitfor == MNT_WAIT || waitfor == MNT_DWAIT), 0, "spec_fsync"); | |
774 | ||
775 | return (0); | |
776 | } | |
777 | ||
778 | int | |
779 | spec_fsync(struct vnop_fsync_args *ap) | |
780 | { | |
781 | return spec_fsync_internal(ap->a_vp, ap->a_waitfor, ap->a_context); | |
782 | } | |
783 | ||
784 | ||
785 | /* | |
786 | * Just call the device strategy routine | |
787 | */ | |
788 | void throttle_init(void); | |
789 | ||
790 | ||
791 | #if 0 | |
792 | #define DEBUG_ALLOC_THROTTLE_INFO(format, debug_info, args...) \ | |
793 | do { \ | |
794 | if ((debug_info)->alloc) \ | |
795 | printf("%s: "format, __FUNCTION__, ## args); \ | |
796 | } while(0) | |
797 | ||
798 | #else | |
799 | #define DEBUG_ALLOC_THROTTLE_INFO(format, debug_info, args...) | |
800 | #endif | |
801 | ||
802 | ||
803 | SYSCTL_INT(_debug, OID_AUTO, lowpri_throttle_tier1_window_msecs, CTLFLAG_RW | CTLFLAG_LOCKED, &throttle_windows_msecs[THROTTLE_LEVEL_TIER1], 0, ""); | |
804 | SYSCTL_INT(_debug, OID_AUTO, lowpri_throttle_tier2_window_msecs, CTLFLAG_RW | CTLFLAG_LOCKED, &throttle_windows_msecs[THROTTLE_LEVEL_TIER2], 0, ""); | |
805 | SYSCTL_INT(_debug, OID_AUTO, lowpri_throttle_tier3_window_msecs, CTLFLAG_RW | CTLFLAG_LOCKED, &throttle_windows_msecs[THROTTLE_LEVEL_TIER3], 0, ""); | |
806 | ||
807 | SYSCTL_INT(_debug, OID_AUTO, lowpri_throttle_tier1_io_period_msecs, CTLFLAG_RW | CTLFLAG_LOCKED, &throttle_io_period_msecs[THROTTLE_LEVEL_TIER1], 0, ""); | |
808 | SYSCTL_INT(_debug, OID_AUTO, lowpri_throttle_tier2_io_period_msecs, CTLFLAG_RW | CTLFLAG_LOCKED, &throttle_io_period_msecs[THROTTLE_LEVEL_TIER2], 0, ""); | |
809 | SYSCTL_INT(_debug, OID_AUTO, lowpri_throttle_tier3_io_period_msecs, CTLFLAG_RW | CTLFLAG_LOCKED, &throttle_io_period_msecs[THROTTLE_LEVEL_TIER3], 0, ""); | |
810 | ||
811 | SYSCTL_INT(_debug, OID_AUTO, lowpri_throttle_tier1_io_period_ssd_msecs, CTLFLAG_RW | CTLFLAG_LOCKED, &throttle_io_period_ssd_msecs[THROTTLE_LEVEL_TIER1], 0, ""); | |
812 | SYSCTL_INT(_debug, OID_AUTO, lowpri_throttle_tier2_io_period_ssd_msecs, CTLFLAG_RW | CTLFLAG_LOCKED, &throttle_io_period_ssd_msecs[THROTTLE_LEVEL_TIER2], 0, ""); | |
813 | SYSCTL_INT(_debug, OID_AUTO, lowpri_throttle_tier3_io_period_ssd_msecs, CTLFLAG_RW | CTLFLAG_LOCKED, &throttle_io_period_ssd_msecs[THROTTLE_LEVEL_TIER3], 0, ""); | |
814 | ||
815 | SYSCTL_INT(_debug, OID_AUTO, lowpri_throttle_enabled, CTLFLAG_RW | CTLFLAG_LOCKED, &lowpri_throttle_enabled, 0, ""); | |
816 | ||
817 | ||
818 | static lck_grp_t *throttle_lock_grp; | |
819 | static lck_attr_t *throttle_lock_attr; | |
820 | static lck_grp_attr_t *throttle_lock_grp_attr; | |
821 | ||
822 | ||
823 | /* | |
824 | * throttled I/O helper function | |
825 | * convert the index of the lowest set bit to a device index | |
826 | */ | |
827 | int | |
828 | num_trailing_0(uint64_t n) | |
829 | { | |
830 | /* | |
831 | * since in most cases the number of trailing 0s is very small, | |
832 | * we simply counting sequentially from the lowest bit | |
833 | */ | |
834 | if (n == 0) | |
835 | return sizeof(n) * 8; | |
836 | int count = 0; | |
837 | while (!ISSET(n, 1)) { | |
838 | n >>= 1; | |
839 | ++count; | |
840 | } | |
841 | return count; | |
842 | } | |
843 | ||
844 | ||
845 | /* | |
846 | * Release the reference and if the item was allocated and this is the last | |
847 | * reference then free it. | |
848 | * | |
849 | * This routine always returns the old value. | |
850 | */ | |
851 | static int | |
852 | throttle_info_rel(struct _throttle_io_info_t *info) | |
853 | { | |
854 | SInt32 oldValue = OSDecrementAtomic(&info->throttle_refcnt); | |
855 | ||
856 | DEBUG_ALLOC_THROTTLE_INFO("refcnt = %d info = %p\n", | |
857 | info, (int)(oldValue -1), info ); | |
858 | ||
859 | /* The reference count just went negative, very bad */ | |
860 | if (oldValue == 0) | |
861 | panic("throttle info ref cnt went negative!"); | |
862 | ||
863 | /* | |
864 | * Once reference count is zero, no one else should be able to take a | |
865 | * reference | |
866 | */ | |
867 | if ((info->throttle_refcnt == 0) && (info->throttle_alloc)) { | |
868 | DEBUG_ALLOC_THROTTLE_INFO("Freeing info = %p\n", info); | |
869 | ||
870 | lck_mtx_destroy(&info->throttle_lock, throttle_lock_grp); | |
871 | FREE(info, M_TEMP); | |
872 | } | |
873 | return oldValue; | |
874 | } | |
875 | ||
876 | ||
877 | /* | |
878 | * Just take a reference on the throttle info structure. | |
879 | * | |
880 | * This routine always returns the old value. | |
881 | */ | |
882 | static SInt32 | |
883 | throttle_info_ref(struct _throttle_io_info_t *info) | |
884 | { | |
885 | SInt32 oldValue = OSIncrementAtomic(&info->throttle_refcnt); | |
886 | ||
887 | DEBUG_ALLOC_THROTTLE_INFO("refcnt = %d info = %p\n", | |
888 | info, (int)(oldValue -1), info ); | |
889 | /* Allocated items should never have a reference of zero */ | |
890 | if (info->throttle_alloc && (oldValue == 0)) | |
891 | panic("Taking a reference without calling create throttle info!\n"); | |
892 | ||
893 | return oldValue; | |
894 | } | |
895 | ||
896 | /* | |
897 | * on entry the throttle_lock is held... | |
898 | * this function is responsible for taking | |
899 | * and dropping the reference on the info | |
900 | * structure which will keep it from going | |
901 | * away while the timer is running if it | |
902 | * happens to have been dynamically allocated by | |
903 | * a network fileystem kext which is now trying | |
904 | * to free it | |
905 | */ | |
906 | static uint32_t | |
907 | throttle_timer_start(struct _throttle_io_info_t *info, boolean_t update_io_count, int wakelevel) | |
908 | { | |
909 | struct timeval elapsed; | |
910 | struct timeval now; | |
911 | struct timeval period; | |
912 | uint64_t elapsed_msecs; | |
913 | int throttle_level; | |
914 | int level; | |
915 | int msecs; | |
916 | boolean_t throttled = FALSE; | |
917 | boolean_t need_timer = FALSE; | |
918 | ||
919 | microuptime(&now); | |
920 | ||
921 | if (update_io_count == TRUE) { | |
922 | info->throttle_io_count_begin = info->throttle_io_count; | |
923 | info->throttle_io_period_num++; | |
924 | ||
925 | while (wakelevel >= THROTTLE_LEVEL_THROTTLED) | |
926 | info->throttle_start_IO_period_timestamp[wakelevel--] = now; | |
927 | ||
928 | info->throttle_min_timer_deadline = now; | |
929 | ||
930 | msecs = info->throttle_io_periods[THROTTLE_LEVEL_THROTTLED]; | |
931 | period.tv_sec = msecs / 1000; | |
932 | period.tv_usec = (msecs % 1000) * 1000; | |
933 | ||
934 | timevaladd(&info->throttle_min_timer_deadline, &period); | |
935 | } | |
936 | for (throttle_level = THROTTLE_LEVEL_START; throttle_level < THROTTLE_LEVEL_END; throttle_level++) { | |
937 | ||
938 | elapsed = now; | |
939 | timevalsub(&elapsed, &info->throttle_window_start_timestamp[throttle_level]); | |
940 | elapsed_msecs = (uint64_t)elapsed.tv_sec * (uint64_t)1000 + (elapsed.tv_usec / 1000); | |
941 | ||
942 | for (level = throttle_level + 1; level <= THROTTLE_LEVEL_END; level++) { | |
943 | ||
944 | if (!TAILQ_EMPTY(&info->throttle_uthlist[level])) { | |
945 | ||
946 | if (elapsed_msecs < (uint64_t)throttle_windows_msecs[level] || info->throttle_inflight_count[throttle_level]) { | |
947 | /* | |
948 | * we had an I/O occur at a higher priority tier within | |
949 | * this tier's throttle window | |
950 | */ | |
951 | throttled = TRUE; | |
952 | } | |
953 | /* | |
954 | * we assume that the windows are the same or longer | |
955 | * as we drop through the throttling tiers... thus | |
956 | * we can stop looking once we run into a tier with | |
957 | * threads to schedule regardless of whether it's | |
958 | * still in its throttling window or not | |
959 | */ | |
960 | break; | |
961 | } | |
962 | } | |
963 | if (throttled == TRUE) | |
964 | break; | |
965 | } | |
966 | if (throttled == TRUE) { | |
967 | uint64_t deadline = 0; | |
968 | struct timeval target; | |
969 | struct timeval min_target; | |
970 | ||
971 | /* | |
972 | * we've got at least one tier still in a throttled window | |
973 | * so we need a timer running... compute the next deadline | |
974 | * and schedule it | |
975 | */ | |
976 | for (level = throttle_level+1; level <= THROTTLE_LEVEL_END; level++) { | |
977 | ||
978 | if (TAILQ_EMPTY(&info->throttle_uthlist[level])) | |
979 | continue; | |
980 | ||
981 | target = info->throttle_start_IO_period_timestamp[level]; | |
982 | ||
983 | msecs = info->throttle_io_periods[level]; | |
984 | period.tv_sec = msecs / 1000; | |
985 | period.tv_usec = (msecs % 1000) * 1000; | |
986 | ||
987 | timevaladd(&target, &period); | |
988 | ||
989 | if (need_timer == FALSE || timevalcmp(&target, &min_target, <)) { | |
990 | min_target = target; | |
991 | need_timer = TRUE; | |
992 | } | |
993 | } | |
994 | if (timevalcmp(&info->throttle_min_timer_deadline, &now, >)) { | |
995 | if (timevalcmp(&info->throttle_min_timer_deadline, &min_target, >)) | |
996 | min_target = info->throttle_min_timer_deadline; | |
997 | } | |
998 | ||
999 | if (info->throttle_timer_active) { | |
1000 | if (thread_call_cancel(info->throttle_timer_call) == FALSE) { | |
1001 | /* | |
1002 | * couldn't kill the timer because it's already | |
1003 | * been dispatched, so don't try to start a new | |
1004 | * one... once we drop the lock, the timer will | |
1005 | * proceed and eventually re-run this function | |
1006 | */ | |
1007 | need_timer = FALSE; | |
1008 | } else | |
1009 | info->throttle_timer_active = 0; | |
1010 | } | |
1011 | if (need_timer == TRUE) { | |
1012 | /* | |
1013 | * This is defined as an int (32-bit) rather than a 64-bit | |
1014 | * value because it would need a really big period in the | |
1015 | * order of ~500 days to overflow this. So, we let this be | |
1016 | * 32-bit which allows us to use the clock_interval_to_deadline() | |
1017 | * routine. | |
1018 | */ | |
1019 | int target_msecs; | |
1020 | ||
1021 | if (info->throttle_timer_ref == 0) { | |
1022 | /* | |
1023 | * take a reference for the timer | |
1024 | */ | |
1025 | throttle_info_ref(info); | |
1026 | ||
1027 | info->throttle_timer_ref = 1; | |
1028 | } | |
1029 | elapsed = min_target; | |
1030 | timevalsub(&elapsed, &now); | |
1031 | target_msecs = elapsed.tv_sec * 1000 + elapsed.tv_usec / 1000; | |
1032 | ||
1033 | if (target_msecs <= 0) { | |
1034 | /* | |
1035 | * we may have computed a deadline slightly in the past | |
1036 | * due to various factors... if so, just set the timer | |
1037 | * to go off in the near future (we don't need to be precise) | |
1038 | */ | |
1039 | target_msecs = 1; | |
1040 | } | |
1041 | clock_interval_to_deadline(target_msecs, 1000000, &deadline); | |
1042 | ||
1043 | thread_call_enter_delayed(info->throttle_timer_call, deadline); | |
1044 | info->throttle_timer_active = 1; | |
1045 | } | |
1046 | } | |
1047 | return (throttle_level); | |
1048 | } | |
1049 | ||
1050 | ||
1051 | static void | |
1052 | throttle_timer(struct _throttle_io_info_t *info) | |
1053 | { | |
1054 | uthread_t ut, utlist; | |
1055 | struct timeval elapsed; | |
1056 | struct timeval now; | |
1057 | uint64_t elapsed_msecs; | |
1058 | int throttle_level; | |
1059 | int level; | |
1060 | int wake_level; | |
1061 | caddr_t wake_address = NULL; | |
1062 | boolean_t update_io_count = FALSE; | |
1063 | boolean_t need_wakeup = FALSE; | |
1064 | boolean_t need_release = FALSE; | |
1065 | ||
1066 | ut = NULL; | |
1067 | lck_mtx_lock(&info->throttle_lock); | |
1068 | ||
1069 | info->throttle_timer_active = 0; | |
1070 | microuptime(&now); | |
1071 | ||
1072 | elapsed = now; | |
1073 | timevalsub(&elapsed, &info->throttle_start_IO_period_timestamp[THROTTLE_LEVEL_THROTTLED]); | |
1074 | elapsed_msecs = (uint64_t)elapsed.tv_sec * (uint64_t)1000 + (elapsed.tv_usec / 1000); | |
1075 | ||
1076 | if (elapsed_msecs >= (uint64_t)info->throttle_io_periods[THROTTLE_LEVEL_THROTTLED]) { | |
1077 | ||
1078 | wake_level = info->throttle_next_wake_level; | |
1079 | ||
1080 | for (level = THROTTLE_LEVEL_START; level < THROTTLE_LEVEL_END; level++) { | |
1081 | ||
1082 | elapsed = now; | |
1083 | timevalsub(&elapsed, &info->throttle_start_IO_period_timestamp[wake_level]); | |
1084 | elapsed_msecs = (uint64_t)elapsed.tv_sec * (uint64_t)1000 + (elapsed.tv_usec / 1000); | |
1085 | ||
1086 | if (elapsed_msecs >= (uint64_t)info->throttle_io_periods[wake_level] && !TAILQ_EMPTY(&info->throttle_uthlist[wake_level])) { | |
1087 | /* | |
1088 | * we're closing out the current IO period... | |
1089 | * if we have a waiting thread, wake it up | |
1090 | * after we have reset the I/O window info | |
1091 | */ | |
1092 | need_wakeup = TRUE; | |
1093 | update_io_count = TRUE; | |
1094 | ||
1095 | info->throttle_next_wake_level = wake_level - 1; | |
1096 | ||
1097 | if (info->throttle_next_wake_level == THROTTLE_LEVEL_START) | |
1098 | info->throttle_next_wake_level = THROTTLE_LEVEL_END; | |
1099 | ||
1100 | break; | |
1101 | } | |
1102 | wake_level--; | |
1103 | ||
1104 | if (wake_level == THROTTLE_LEVEL_START) | |
1105 | wake_level = THROTTLE_LEVEL_END; | |
1106 | } | |
1107 | } | |
1108 | if (need_wakeup == TRUE) { | |
1109 | if (!TAILQ_EMPTY(&info->throttle_uthlist[wake_level])) { | |
1110 | ||
1111 | ut = (uthread_t)TAILQ_FIRST(&info->throttle_uthlist[wake_level]); | |
1112 | TAILQ_REMOVE(&info->throttle_uthlist[wake_level], ut, uu_throttlelist); | |
1113 | ut->uu_on_throttlelist = THROTTLE_LEVEL_NONE; | |
1114 | ut->uu_is_throttled = FALSE; | |
1115 | ||
1116 | wake_address = (caddr_t)&ut->uu_on_throttlelist; | |
1117 | } | |
1118 | } else | |
1119 | wake_level = THROTTLE_LEVEL_START; | |
1120 | ||
1121 | throttle_level = throttle_timer_start(info, update_io_count, wake_level); | |
1122 | ||
1123 | if (wake_address != NULL) | |
1124 | wakeup(wake_address); | |
1125 | ||
1126 | for (level = THROTTLE_LEVEL_THROTTLED; level <= throttle_level; level++) { | |
1127 | ||
1128 | TAILQ_FOREACH_SAFE(ut, &info->throttle_uthlist[level], uu_throttlelist, utlist) { | |
1129 | ||
1130 | TAILQ_REMOVE(&info->throttle_uthlist[level], ut, uu_throttlelist); | |
1131 | ut->uu_on_throttlelist = THROTTLE_LEVEL_NONE; | |
1132 | ut->uu_is_throttled = FALSE; | |
1133 | ||
1134 | wakeup(&ut->uu_on_throttlelist); | |
1135 | } | |
1136 | } | |
1137 | if (info->throttle_timer_active == 0 && info->throttle_timer_ref) { | |
1138 | info->throttle_timer_ref = 0; | |
1139 | need_release = TRUE; | |
1140 | } | |
1141 | lck_mtx_unlock(&info->throttle_lock); | |
1142 | ||
1143 | if (need_release == TRUE) | |
1144 | throttle_info_rel(info); | |
1145 | } | |
1146 | ||
1147 | ||
1148 | static int | |
1149 | throttle_add_to_list(struct _throttle_io_info_t *info, uthread_t ut, int mylevel, boolean_t insert_tail) | |
1150 | { | |
1151 | boolean_t start_timer = FALSE; | |
1152 | int level = THROTTLE_LEVEL_START; | |
1153 | ||
1154 | if (TAILQ_EMPTY(&info->throttle_uthlist[mylevel])) { | |
1155 | info->throttle_start_IO_period_timestamp[mylevel] = info->throttle_last_IO_timestamp[mylevel]; | |
1156 | start_timer = TRUE; | |
1157 | } | |
1158 | ||
1159 | if (insert_tail == TRUE) | |
1160 | TAILQ_INSERT_TAIL(&info->throttle_uthlist[mylevel], ut, uu_throttlelist); | |
1161 | else | |
1162 | TAILQ_INSERT_HEAD(&info->throttle_uthlist[mylevel], ut, uu_throttlelist); | |
1163 | ||
1164 | ut->uu_on_throttlelist = mylevel; | |
1165 | ||
1166 | if (start_timer == TRUE) { | |
1167 | /* we may need to start or rearm the timer */ | |
1168 | level = throttle_timer_start(info, FALSE, THROTTLE_LEVEL_START); | |
1169 | ||
1170 | if (level == THROTTLE_LEVEL_END) { | |
1171 | if (ut->uu_on_throttlelist >= THROTTLE_LEVEL_THROTTLED) { | |
1172 | TAILQ_REMOVE(&info->throttle_uthlist[ut->uu_on_throttlelist], ut, uu_throttlelist); | |
1173 | ||
1174 | ut->uu_on_throttlelist = THROTTLE_LEVEL_NONE; | |
1175 | } | |
1176 | } | |
1177 | } | |
1178 | return (level); | |
1179 | } | |
1180 | ||
1181 | static void | |
1182 | throttle_init_throttle_window(void) | |
1183 | { | |
1184 | int throttle_window_size; | |
1185 | ||
1186 | /* | |
1187 | * The hierarchy of throttle window values is as follows: | |
1188 | * - Global defaults | |
1189 | * - Device tree properties | |
1190 | * - Boot-args | |
1191 | * All values are specified in msecs. | |
1192 | */ | |
1193 | ||
1194 | /* Override global values with device-tree properties */ | |
1195 | if (PE_get_default("kern.io_throttle_window_tier1", &throttle_window_size, sizeof(throttle_window_size))) | |
1196 | throttle_windows_msecs[THROTTLE_LEVEL_TIER1] = throttle_window_size; | |
1197 | ||
1198 | if (PE_get_default("kern.io_throttle_window_tier2", &throttle_window_size, sizeof(throttle_window_size))) | |
1199 | throttle_windows_msecs[THROTTLE_LEVEL_TIER2] = throttle_window_size; | |
1200 | ||
1201 | if (PE_get_default("kern.io_throttle_window_tier3", &throttle_window_size, sizeof(throttle_window_size))) | |
1202 | throttle_windows_msecs[THROTTLE_LEVEL_TIER3] = throttle_window_size; | |
1203 | ||
1204 | /* Override with boot-args */ | |
1205 | if (PE_parse_boot_argn("io_throttle_window_tier1", &throttle_window_size, sizeof(throttle_window_size))) | |
1206 | throttle_windows_msecs[THROTTLE_LEVEL_TIER1] = throttle_window_size; | |
1207 | ||
1208 | if (PE_parse_boot_argn("io_throttle_window_tier2", &throttle_window_size, sizeof(throttle_window_size))) | |
1209 | throttle_windows_msecs[THROTTLE_LEVEL_TIER2] = throttle_window_size; | |
1210 | ||
1211 | if (PE_parse_boot_argn("io_throttle_window_tier3", &throttle_window_size, sizeof(throttle_window_size))) | |
1212 | throttle_windows_msecs[THROTTLE_LEVEL_TIER3] = throttle_window_size; | |
1213 | } | |
1214 | ||
1215 | static void | |
1216 | throttle_init_throttle_period(struct _throttle_io_info_t *info, boolean_t isssd) | |
1217 | { | |
1218 | int throttle_period_size; | |
1219 | ||
1220 | /* | |
1221 | * The hierarchy of throttle period values is as follows: | |
1222 | * - Global defaults | |
1223 | * - Device tree properties | |
1224 | * - Boot-args | |
1225 | * All values are specified in msecs. | |
1226 | */ | |
1227 | ||
1228 | /* Assign global defaults */ | |
1229 | if ((isssd == TRUE) && (info->throttle_is_fusion_with_priority == 0)) | |
1230 | info->throttle_io_periods = &throttle_io_period_ssd_msecs[0]; | |
1231 | else | |
1232 | info->throttle_io_periods = &throttle_io_period_msecs[0]; | |
1233 | ||
1234 | /* Override global values with device-tree properties */ | |
1235 | if (PE_get_default("kern.io_throttle_period_tier1", &throttle_period_size, sizeof(throttle_period_size))) | |
1236 | info->throttle_io_periods[THROTTLE_LEVEL_TIER1] = throttle_period_size; | |
1237 | ||
1238 | if (PE_get_default("kern.io_throttle_period_tier2", &throttle_period_size, sizeof(throttle_period_size))) | |
1239 | info->throttle_io_periods[THROTTLE_LEVEL_TIER2] = throttle_period_size; | |
1240 | ||
1241 | if (PE_get_default("kern.io_throttle_period_tier3", &throttle_period_size, sizeof(throttle_period_size))) | |
1242 | info->throttle_io_periods[THROTTLE_LEVEL_TIER3] = throttle_period_size; | |
1243 | ||
1244 | /* Override with boot-args */ | |
1245 | if (PE_parse_boot_argn("io_throttle_period_tier1", &throttle_period_size, sizeof(throttle_period_size))) | |
1246 | info->throttle_io_periods[THROTTLE_LEVEL_TIER1] = throttle_period_size; | |
1247 | ||
1248 | if (PE_parse_boot_argn("io_throttle_period_tier2", &throttle_period_size, sizeof(throttle_period_size))) | |
1249 | info->throttle_io_periods[THROTTLE_LEVEL_TIER2] = throttle_period_size; | |
1250 | ||
1251 | if (PE_parse_boot_argn("io_throttle_period_tier3", &throttle_period_size, sizeof(throttle_period_size))) | |
1252 | info->throttle_io_periods[THROTTLE_LEVEL_TIER3] = throttle_period_size; | |
1253 | ||
1254 | } | |
1255 | ||
1256 | #if CONFIG_IOSCHED | |
1257 | extern void vm_io_reprioritize_init(void); | |
1258 | int iosched_enabled = 1; | |
1259 | #endif | |
1260 | ||
1261 | void | |
1262 | throttle_init(void) | |
1263 | { | |
1264 | struct _throttle_io_info_t *info; | |
1265 | int i; | |
1266 | int level; | |
1267 | #if CONFIG_IOSCHED | |
1268 | int iosched; | |
1269 | #endif | |
1270 | /* | |
1271 | * allocate lock group attribute and group | |
1272 | */ | |
1273 | throttle_lock_grp_attr = lck_grp_attr_alloc_init(); | |
1274 | throttle_lock_grp = lck_grp_alloc_init("throttle I/O", throttle_lock_grp_attr); | |
1275 | ||
1276 | /* Update throttle parameters based on device tree configuration */ | |
1277 | throttle_init_throttle_window(); | |
1278 | ||
1279 | /* | |
1280 | * allocate the lock attribute | |
1281 | */ | |
1282 | throttle_lock_attr = lck_attr_alloc_init(); | |
1283 | ||
1284 | for (i = 0; i < LOWPRI_MAX_NUM_DEV; i++) { | |
1285 | info = &_throttle_io_info[i]; | |
1286 | ||
1287 | lck_mtx_init(&info->throttle_lock, throttle_lock_grp, throttle_lock_attr); | |
1288 | info->throttle_timer_call = thread_call_allocate((thread_call_func_t)throttle_timer, (thread_call_param_t)info); | |
1289 | ||
1290 | for (level = 0; level <= THROTTLE_LEVEL_END; level++) { | |
1291 | TAILQ_INIT(&info->throttle_uthlist[level]); | |
1292 | info->throttle_last_IO_pid[level] = 0; | |
1293 | info->throttle_inflight_count[level] = 0; | |
1294 | } | |
1295 | info->throttle_next_wake_level = THROTTLE_LEVEL_END; | |
1296 | info->throttle_disabled = 0; | |
1297 | info->throttle_is_fusion_with_priority = 0; | |
1298 | } | |
1299 | #if CONFIG_IOSCHED | |
1300 | if (PE_parse_boot_argn("iosched", &iosched, sizeof(iosched))) { | |
1301 | iosched_enabled = iosched; | |
1302 | } | |
1303 | if (iosched_enabled) { | |
1304 | /* Initialize I/O Reprioritization mechanism */ | |
1305 | vm_io_reprioritize_init(); | |
1306 | } | |
1307 | #endif | |
1308 | } | |
1309 | ||
1310 | void | |
1311 | sys_override_io_throttle(int flag) | |
1312 | { | |
1313 | if (flag == THROTTLE_IO_ENABLE) | |
1314 | lowpri_throttle_enabled = 1; | |
1315 | ||
1316 | if (flag == THROTTLE_IO_DISABLE) | |
1317 | lowpri_throttle_enabled = 0; | |
1318 | } | |
1319 | ||
1320 | int rethrottle_wakeups = 0; | |
1321 | ||
1322 | /* | |
1323 | * the uu_rethrottle_lock is used to synchronize this function | |
1324 | * with "throttle_lowpri_io" which is where a throttled thread | |
1325 | * will block... that function will grab this lock before beginning | |
1326 | * it's decision making process concerning the need to block, and | |
1327 | * hold it through the assert_wait. When that thread is awakened | |
1328 | * for any reason (timer or rethrottle), it will reacquire the | |
1329 | * uu_rethrottle_lock before determining if it really is ok for | |
1330 | * it to now run. This is the point at which the thread could | |
1331 | * enter a different throttling queue and reblock or return from | |
1332 | * the throttle w/o having waited out it's entire throttle if | |
1333 | * the rethrottle has now moved it out of any currently | |
1334 | * active throttle window. | |
1335 | * | |
1336 | * | |
1337 | * NOTES: | |
1338 | * 1 - This may be called with the task lock held. | |
1339 | * 2 - This may be called with preemption and interrupts disabled | |
1340 | * in the kqueue wakeup path so we can't take the throttle_lock which is a mutex | |
1341 | * 3 - This cannot safely dereference uu_throttle_info, as it may | |
1342 | * get deallocated out from under us | |
1343 | */ | |
1344 | ||
1345 | void | |
1346 | rethrottle_thread(uthread_t ut) | |
1347 | { | |
1348 | /* | |
1349 | * If uthread doesn't have throttle state, then there's no chance | |
1350 | * of it needing a rethrottle. | |
1351 | */ | |
1352 | if (ut->uu_throttle_info == NULL) | |
1353 | return; | |
1354 | ||
1355 | boolean_t s = ml_set_interrupts_enabled(FALSE); | |
1356 | lck_spin_lock(&ut->uu_rethrottle_lock); | |
1357 | ||
1358 | if (ut->uu_is_throttled == FALSE) | |
1359 | ut->uu_was_rethrottled = TRUE; | |
1360 | else { | |
1361 | int my_new_level = throttle_get_thread_throttle_level(ut); | |
1362 | ||
1363 | if (my_new_level != ut->uu_on_throttlelist) { | |
1364 | /* | |
1365 | * ut is currently blocked (as indicated by | |
1366 | * ut->uu_is_throttled == TRUE) | |
1367 | * and we're changing it's throttle level, so | |
1368 | * we need to wake it up. | |
1369 | */ | |
1370 | ut->uu_is_throttled = FALSE; | |
1371 | wakeup(&ut->uu_on_throttlelist); | |
1372 | ||
1373 | rethrottle_wakeups++; | |
1374 | KERNEL_DEBUG_CONSTANT((FSDBG_CODE(DBG_FSRW, 102)), thread_tid(ut->uu_thread), ut->uu_on_throttlelist, my_new_level, 0, 0); | |
1375 | } | |
1376 | } | |
1377 | lck_spin_unlock(&ut->uu_rethrottle_lock); | |
1378 | ml_set_interrupts_enabled(s); | |
1379 | } | |
1380 | ||
1381 | ||
1382 | /* | |
1383 | * KPI routine | |
1384 | * | |
1385 | * Create and take a reference on a throttle info structure and return a | |
1386 | * pointer for the file system to use when calling throttle_info_update. | |
1387 | * Calling file system must have a matching release for every create. | |
1388 | */ | |
1389 | void * | |
1390 | throttle_info_create(void) | |
1391 | { | |
1392 | struct _throttle_io_info_t *info; | |
1393 | int level; | |
1394 | ||
1395 | MALLOC(info, struct _throttle_io_info_t *, sizeof(*info), M_TEMP, M_ZERO | M_WAITOK); | |
1396 | /* Should never happen but just in case */ | |
1397 | if (info == NULL) | |
1398 | return NULL; | |
1399 | /* Mark that this one was allocated and needs to be freed */ | |
1400 | DEBUG_ALLOC_THROTTLE_INFO("Creating info = %p\n", info, info ); | |
1401 | info->throttle_alloc = TRUE; | |
1402 | ||
1403 | lck_mtx_init(&info->throttle_lock, throttle_lock_grp, throttle_lock_attr); | |
1404 | info->throttle_timer_call = thread_call_allocate((thread_call_func_t)throttle_timer, (thread_call_param_t)info); | |
1405 | ||
1406 | for (level = 0; level <= THROTTLE_LEVEL_END; level++) { | |
1407 | TAILQ_INIT(&info->throttle_uthlist[level]); | |
1408 | } | |
1409 | info->throttle_next_wake_level = THROTTLE_LEVEL_END; | |
1410 | ||
1411 | /* Take a reference */ | |
1412 | OSIncrementAtomic(&info->throttle_refcnt); | |
1413 | return info; | |
1414 | } | |
1415 | ||
1416 | /* | |
1417 | * KPI routine | |
1418 | * | |
1419 | * Release the throttle info pointer if all the reference are gone. Should be | |
1420 | * called to release reference taken by throttle_info_create | |
1421 | */ | |
1422 | void | |
1423 | throttle_info_release(void *throttle_info) | |
1424 | { | |
1425 | DEBUG_ALLOC_THROTTLE_INFO("Releaseing info = %p\n", | |
1426 | (struct _throttle_io_info_t *)throttle_info, | |
1427 | (struct _throttle_io_info_t *)throttle_info); | |
1428 | if (throttle_info) /* Just to be careful */ | |
1429 | throttle_info_rel(throttle_info); | |
1430 | } | |
1431 | ||
1432 | /* | |
1433 | * KPI routine | |
1434 | * | |
1435 | * File Systems that create an info structure, need to call this routine in | |
1436 | * their mount routine (used by cluster code). File Systems that call this in | |
1437 | * their mount routines must call throttle_info_mount_rel in their unmount | |
1438 | * routines. | |
1439 | */ | |
1440 | void | |
1441 | throttle_info_mount_ref(mount_t mp, void *throttle_info) | |
1442 | { | |
1443 | if ((throttle_info == NULL) || (mp == NULL)) | |
1444 | return; | |
1445 | throttle_info_ref(throttle_info); | |
1446 | ||
1447 | /* | |
1448 | * We already have a reference release it before adding the new one | |
1449 | */ | |
1450 | if (mp->mnt_throttle_info) | |
1451 | throttle_info_rel(mp->mnt_throttle_info); | |
1452 | mp->mnt_throttle_info = throttle_info; | |
1453 | } | |
1454 | ||
1455 | /* | |
1456 | * Private KPI routine | |
1457 | * | |
1458 | * return a handle for accessing throttle_info given a throttle_mask. The | |
1459 | * handle must be released by throttle_info_rel_by_mask | |
1460 | */ | |
1461 | int | |
1462 | throttle_info_ref_by_mask(uint64_t throttle_mask, throttle_info_handle_t *throttle_info_handle) | |
1463 | { | |
1464 | int dev_index; | |
1465 | struct _throttle_io_info_t *info; | |
1466 | ||
1467 | if (throttle_info_handle == NULL) | |
1468 | return EINVAL; | |
1469 | ||
1470 | dev_index = num_trailing_0(throttle_mask); | |
1471 | info = &_throttle_io_info[dev_index]; | |
1472 | throttle_info_ref(info); | |
1473 | *(struct _throttle_io_info_t**)throttle_info_handle = info; | |
1474 | ||
1475 | return 0; | |
1476 | } | |
1477 | ||
1478 | /* | |
1479 | * Private KPI routine | |
1480 | * | |
1481 | * release the handle obtained by throttle_info_ref_by_mask | |
1482 | */ | |
1483 | void | |
1484 | throttle_info_rel_by_mask(throttle_info_handle_t throttle_info_handle) | |
1485 | { | |
1486 | /* | |
1487 | * for now the handle is just a pointer to _throttle_io_info_t | |
1488 | */ | |
1489 | throttle_info_rel((struct _throttle_io_info_t*)throttle_info_handle); | |
1490 | } | |
1491 | ||
1492 | /* | |
1493 | * KPI routine | |
1494 | * | |
1495 | * File Systems that throttle_info_mount_ref, must call this routine in their | |
1496 | * umount routine. | |
1497 | */ | |
1498 | void | |
1499 | throttle_info_mount_rel(mount_t mp) | |
1500 | { | |
1501 | if (mp->mnt_throttle_info) | |
1502 | throttle_info_rel(mp->mnt_throttle_info); | |
1503 | mp->mnt_throttle_info = NULL; | |
1504 | } | |
1505 | ||
1506 | void | |
1507 | throttle_info_get_last_io_time(mount_t mp, struct timeval *tv) | |
1508 | { | |
1509 | struct _throttle_io_info_t *info; | |
1510 | ||
1511 | if (mp == NULL) | |
1512 | info = &_throttle_io_info[LOWPRI_MAX_NUM_DEV - 1]; | |
1513 | else if (mp->mnt_throttle_info == NULL) | |
1514 | info = &_throttle_io_info[mp->mnt_devbsdunit]; | |
1515 | else | |
1516 | info = mp->mnt_throttle_info; | |
1517 | ||
1518 | *tv = info->throttle_last_write_timestamp; | |
1519 | } | |
1520 | ||
1521 | void | |
1522 | update_last_io_time(mount_t mp) | |
1523 | { | |
1524 | struct _throttle_io_info_t *info; | |
1525 | ||
1526 | if (mp == NULL) | |
1527 | info = &_throttle_io_info[LOWPRI_MAX_NUM_DEV - 1]; | |
1528 | else if (mp->mnt_throttle_info == NULL) | |
1529 | info = &_throttle_io_info[mp->mnt_devbsdunit]; | |
1530 | else | |
1531 | info = mp->mnt_throttle_info; | |
1532 | ||
1533 | microuptime(&info->throttle_last_write_timestamp); | |
1534 | if (mp != NULL) | |
1535 | mp->mnt_last_write_completed_timestamp = info->throttle_last_write_timestamp; | |
1536 | } | |
1537 | ||
1538 | ||
1539 | int | |
1540 | throttle_get_io_policy(uthread_t *ut) | |
1541 | { | |
1542 | if (ut != NULL) | |
1543 | *ut = get_bsdthread_info(current_thread()); | |
1544 | ||
1545 | return (proc_get_effective_thread_policy(current_thread(), TASK_POLICY_IO)); | |
1546 | } | |
1547 | ||
1548 | int | |
1549 | throttle_get_passive_io_policy(uthread_t *ut) | |
1550 | { | |
1551 | if (ut != NULL) | |
1552 | *ut = get_bsdthread_info(current_thread()); | |
1553 | ||
1554 | return (proc_get_effective_thread_policy(current_thread(), TASK_POLICY_PASSIVE_IO)); | |
1555 | } | |
1556 | ||
1557 | ||
1558 | static int | |
1559 | throttle_get_thread_throttle_level(uthread_t ut) | |
1560 | { | |
1561 | uthread_t *ut_p = (ut == NULL) ? &ut : NULL; | |
1562 | int io_tier = throttle_get_io_policy(ut_p); | |
1563 | ||
1564 | return throttle_get_thread_throttle_level_internal(ut, io_tier); | |
1565 | } | |
1566 | ||
1567 | /* | |
1568 | * Return a throttle level given an existing I/O tier (such as returned by throttle_get_io_policy) | |
1569 | */ | |
1570 | static int | |
1571 | throttle_get_thread_throttle_level_internal(uthread_t ut, int io_tier) { | |
1572 | int thread_throttle_level = io_tier; | |
1573 | int user_idle_level; | |
1574 | ||
1575 | assert(ut != NULL); | |
1576 | ||
1577 | /* Bootcache misses should always be throttled */ | |
1578 | if (ut->uu_throttle_bc == TRUE) | |
1579 | thread_throttle_level = THROTTLE_LEVEL_TIER3; | |
1580 | ||
1581 | /* | |
1582 | * Issue tier3 I/O as tier2 when the user is idle | |
1583 | * to allow maintenance tasks to make more progress. | |
1584 | * | |
1585 | * Assume any positive idle level is enough... for now it's | |
1586 | * only ever 0 or 128 but this is not defined anywhere. | |
1587 | */ | |
1588 | if (thread_throttle_level >= THROTTLE_LEVEL_TIER3) { | |
1589 | user_idle_level = timer_get_user_idle_level(); | |
1590 | if (user_idle_level > 0) { | |
1591 | thread_throttle_level--; | |
1592 | } | |
1593 | } | |
1594 | ||
1595 | return (thread_throttle_level); | |
1596 | } | |
1597 | ||
1598 | /* | |
1599 | * I/O will be throttled if either of the following are true: | |
1600 | * - Higher tiers have in-flight I/O | |
1601 | * - The time delta since the last start/completion of a higher tier is within the throttle window interval | |
1602 | * | |
1603 | * In-flight I/O is bookended by throttle_info_update_internal/throttle_info_end_io_internal | |
1604 | */ | |
1605 | static int | |
1606 | throttle_io_will_be_throttled_internal(void * throttle_info, int * mylevel, int * throttling_level) | |
1607 | { | |
1608 | struct _throttle_io_info_t *info = throttle_info; | |
1609 | struct timeval elapsed; | |
1610 | struct timeval now; | |
1611 | uint64_t elapsed_msecs; | |
1612 | int thread_throttle_level; | |
1613 | int throttle_level; | |
1614 | ||
1615 | if ((thread_throttle_level = throttle_get_thread_throttle_level(NULL)) < THROTTLE_LEVEL_THROTTLED) | |
1616 | return (THROTTLE_DISENGAGED); | |
1617 | ||
1618 | microuptime(&now); | |
1619 | ||
1620 | for (throttle_level = THROTTLE_LEVEL_START; throttle_level < thread_throttle_level; throttle_level++) { | |
1621 | if (info->throttle_inflight_count[throttle_level]) { | |
1622 | break; | |
1623 | } | |
1624 | elapsed = now; | |
1625 | timevalsub(&elapsed, &info->throttle_window_start_timestamp[throttle_level]); | |
1626 | elapsed_msecs = (uint64_t)elapsed.tv_sec * (uint64_t)1000 + (elapsed.tv_usec / 1000); | |
1627 | ||
1628 | if (elapsed_msecs < (uint64_t)throttle_windows_msecs[thread_throttle_level]) | |
1629 | break; | |
1630 | } | |
1631 | if (throttle_level >= thread_throttle_level) { | |
1632 | /* | |
1633 | * we're beyond all of the throttle windows | |
1634 | * that affect the throttle level of this thread, | |
1635 | * so go ahead and treat as normal I/O | |
1636 | */ | |
1637 | return (THROTTLE_DISENGAGED); | |
1638 | } | |
1639 | if (mylevel) | |
1640 | *mylevel = thread_throttle_level; | |
1641 | if (throttling_level) | |
1642 | *throttling_level = throttle_level; | |
1643 | ||
1644 | if (info->throttle_io_count != info->throttle_io_count_begin) { | |
1645 | /* | |
1646 | * we've already issued at least one throttleable I/O | |
1647 | * in the current I/O window, so avoid issuing another one | |
1648 | */ | |
1649 | return (THROTTLE_NOW); | |
1650 | } | |
1651 | /* | |
1652 | * we're in the throttle window, so | |
1653 | * cut the I/O size back | |
1654 | */ | |
1655 | return (THROTTLE_ENGAGED); | |
1656 | } | |
1657 | ||
1658 | /* | |
1659 | * If we have a mount point and it has a throttle info pointer then | |
1660 | * use it to do the check, otherwise use the device unit number to find | |
1661 | * the correct throttle info array element. | |
1662 | */ | |
1663 | int | |
1664 | throttle_io_will_be_throttled(__unused int lowpri_window_msecs, mount_t mp) | |
1665 | { | |
1666 | struct _throttle_io_info_t *info; | |
1667 | ||
1668 | /* | |
1669 | * Should we just return zero if no mount point | |
1670 | */ | |
1671 | if (mp == NULL) | |
1672 | info = &_throttle_io_info[LOWPRI_MAX_NUM_DEV - 1]; | |
1673 | else if (mp->mnt_throttle_info == NULL) | |
1674 | info = &_throttle_io_info[mp->mnt_devbsdunit]; | |
1675 | else | |
1676 | info = mp->mnt_throttle_info; | |
1677 | ||
1678 | if (info->throttle_is_fusion_with_priority) { | |
1679 | uthread_t ut = get_bsdthread_info(current_thread()); | |
1680 | if (ut->uu_lowpri_window == 0) | |
1681 | return (THROTTLE_DISENGAGED); | |
1682 | } | |
1683 | ||
1684 | if (info->throttle_disabled) | |
1685 | return (THROTTLE_DISENGAGED); | |
1686 | else | |
1687 | return throttle_io_will_be_throttled_internal(info, NULL, NULL); | |
1688 | } | |
1689 | ||
1690 | /* | |
1691 | * Routine to increment I/O throttling counters maintained in the proc | |
1692 | */ | |
1693 | ||
1694 | static void | |
1695 | throttle_update_proc_stats(pid_t throttling_pid, int count) | |
1696 | { | |
1697 | proc_t throttling_proc; | |
1698 | proc_t throttled_proc = current_proc(); | |
1699 | ||
1700 | /* The throttled_proc is always the current proc; so we are not concerned with refs */ | |
1701 | OSAddAtomic64(count, &(throttled_proc->was_throttled)); | |
1702 | ||
1703 | /* The throttling pid might have exited by now */ | |
1704 | throttling_proc = proc_find(throttling_pid); | |
1705 | if (throttling_proc != PROC_NULL) { | |
1706 | OSAddAtomic64(count, &(throttling_proc->did_throttle)); | |
1707 | proc_rele(throttling_proc); | |
1708 | } | |
1709 | } | |
1710 | ||
1711 | /* | |
1712 | * Block until woken up by the throttle timer or by a rethrottle call. | |
1713 | * As long as we hold the throttle_lock while querying the throttle tier, we're | |
1714 | * safe against seeing an old throttle tier after a rethrottle. | |
1715 | */ | |
1716 | uint32_t | |
1717 | throttle_lowpri_io(int sleep_amount) | |
1718 | { | |
1719 | uthread_t ut; | |
1720 | struct _throttle_io_info_t *info; | |
1721 | int throttle_type = 0; | |
1722 | int mylevel = 0; | |
1723 | int throttling_level = THROTTLE_LEVEL_NONE; | |
1724 | int sleep_cnt = 0; | |
1725 | uint32_t throttle_io_period_num = 0; | |
1726 | boolean_t insert_tail = TRUE; | |
1727 | boolean_t s; | |
1728 | ||
1729 | ut = get_bsdthread_info(current_thread()); | |
1730 | ||
1731 | if (ut->uu_lowpri_window == 0) | |
1732 | return (0); | |
1733 | ||
1734 | info = ut->uu_throttle_info; | |
1735 | ||
1736 | if (info == NULL) { | |
1737 | ut->uu_throttle_bc = FALSE; | |
1738 | ut->uu_lowpri_window = 0; | |
1739 | return (0); | |
1740 | } | |
1741 | lck_mtx_lock(&info->throttle_lock); | |
1742 | assert(ut->uu_on_throttlelist < THROTTLE_LEVEL_THROTTLED); | |
1743 | ||
1744 | if (sleep_amount == 0) | |
1745 | goto done; | |
1746 | ||
1747 | if (sleep_amount == 1 && ut->uu_throttle_bc == FALSE) | |
1748 | sleep_amount = 0; | |
1749 | ||
1750 | throttle_io_period_num = info->throttle_io_period_num; | |
1751 | ||
1752 | ut->uu_was_rethrottled = FALSE; | |
1753 | ||
1754 | while ( (throttle_type = throttle_io_will_be_throttled_internal(info, &mylevel, &throttling_level)) ) { | |
1755 | ||
1756 | if (throttle_type == THROTTLE_ENGAGED) { | |
1757 | if (sleep_amount == 0) | |
1758 | break; | |
1759 | if (info->throttle_io_period_num < throttle_io_period_num) | |
1760 | break; | |
1761 | if ((info->throttle_io_period_num - throttle_io_period_num) >= (uint32_t)sleep_amount) | |
1762 | break; | |
1763 | } | |
1764 | /* | |
1765 | * keep the same position in the list if "rethrottle_thread" changes our throttle level and | |
1766 | * then puts us back to the original level before we get a chance to run | |
1767 | */ | |
1768 | if (ut->uu_on_throttlelist >= THROTTLE_LEVEL_THROTTLED && ut->uu_on_throttlelist != mylevel) { | |
1769 | /* | |
1770 | * must have been awakened via "rethrottle_thread" (the timer pulls us off the list) | |
1771 | * and we've changed our throttling level, so pull ourselves off of the appropriate list | |
1772 | * and make sure we get put on the tail of the new list since we're starting anew w/r to | |
1773 | * the throttling engine | |
1774 | */ | |
1775 | TAILQ_REMOVE(&info->throttle_uthlist[ut->uu_on_throttlelist], ut, uu_throttlelist); | |
1776 | ut->uu_on_throttlelist = THROTTLE_LEVEL_NONE; | |
1777 | insert_tail = TRUE; | |
1778 | } | |
1779 | if (ut->uu_on_throttlelist < THROTTLE_LEVEL_THROTTLED) { | |
1780 | if (throttle_add_to_list(info, ut, mylevel, insert_tail) == THROTTLE_LEVEL_END) | |
1781 | goto done; | |
1782 | } | |
1783 | assert(throttling_level >= THROTTLE_LEVEL_START && throttling_level <= THROTTLE_LEVEL_END); | |
1784 | ||
1785 | s = ml_set_interrupts_enabled(FALSE); | |
1786 | lck_spin_lock(&ut->uu_rethrottle_lock); | |
1787 | ||
1788 | /* | |
1789 | * this is the critical section w/r to our interaction | |
1790 | * with "rethrottle_thread" | |
1791 | */ | |
1792 | if (ut->uu_was_rethrottled == TRUE) { | |
1793 | ||
1794 | lck_spin_unlock(&ut->uu_rethrottle_lock); | |
1795 | ml_set_interrupts_enabled(s); | |
1796 | lck_mtx_yield(&info->throttle_lock); | |
1797 | ||
1798 | KERNEL_DEBUG_CONSTANT((FSDBG_CODE(DBG_FSRW, 103)), thread_tid(ut->uu_thread), ut->uu_on_throttlelist, 0, 0, 0); | |
1799 | ||
1800 | ut->uu_was_rethrottled = FALSE; | |
1801 | continue; | |
1802 | } | |
1803 | KERNEL_DEBUG_CONSTANT((FSDBG_CODE(DBG_THROTTLE, PROCESS_THROTTLED)) | DBG_FUNC_NONE, | |
1804 | info->throttle_last_IO_pid[throttling_level], throttling_level, proc_selfpid(), mylevel, 0); | |
1805 | ||
1806 | if (sleep_cnt == 0) { | |
1807 | KERNEL_DEBUG_CONSTANT((FSDBG_CODE(DBG_FSRW, 97)) | DBG_FUNC_START, | |
1808 | throttle_windows_msecs[mylevel], info->throttle_io_periods[mylevel], info->throttle_io_count, 0, 0); | |
1809 | throttled_count[mylevel]++; | |
1810 | } | |
1811 | ut->uu_wmesg = "throttle_lowpri_io"; | |
1812 | ||
1813 | assert_wait((caddr_t)&ut->uu_on_throttlelist, THREAD_UNINT); | |
1814 | ||
1815 | ut->uu_is_throttled = TRUE; | |
1816 | lck_spin_unlock(&ut->uu_rethrottle_lock); | |
1817 | ml_set_interrupts_enabled(s); | |
1818 | ||
1819 | lck_mtx_unlock(&info->throttle_lock); | |
1820 | ||
1821 | thread_block(THREAD_CONTINUE_NULL); | |
1822 | ||
1823 | ut->uu_wmesg = NULL; | |
1824 | ||
1825 | ut->uu_is_throttled = FALSE; | |
1826 | ut->uu_was_rethrottled = FALSE; | |
1827 | ||
1828 | lck_mtx_lock(&info->throttle_lock); | |
1829 | ||
1830 | sleep_cnt++; | |
1831 | ||
1832 | if (sleep_amount == 0) | |
1833 | insert_tail = FALSE; | |
1834 | else if (info->throttle_io_period_num < throttle_io_period_num || | |
1835 | (info->throttle_io_period_num - throttle_io_period_num) >= (uint32_t)sleep_amount) { | |
1836 | insert_tail = FALSE; | |
1837 | sleep_amount = 0; | |
1838 | } | |
1839 | } | |
1840 | done: | |
1841 | if (ut->uu_on_throttlelist >= THROTTLE_LEVEL_THROTTLED) { | |
1842 | TAILQ_REMOVE(&info->throttle_uthlist[ut->uu_on_throttlelist], ut, uu_throttlelist); | |
1843 | ut->uu_on_throttlelist = THROTTLE_LEVEL_NONE; | |
1844 | } | |
1845 | lck_mtx_unlock(&info->throttle_lock); | |
1846 | ||
1847 | if (sleep_cnt) { | |
1848 | KERNEL_DEBUG_CONSTANT((FSDBG_CODE(DBG_FSRW, 97)) | DBG_FUNC_END, | |
1849 | throttle_windows_msecs[mylevel], info->throttle_io_periods[mylevel], info->throttle_io_count, 0, 0); | |
1850 | /* | |
1851 | * We update the stats for the last pid which opened a throttle window for the throttled thread. | |
1852 | * This might not be completely accurate since the multiple throttles seen by the lower tier pid | |
1853 | * might have been caused by various higher prio pids. However, updating these stats accurately | |
1854 | * means doing a proc_find while holding the throttle lock which leads to deadlock. | |
1855 | */ | |
1856 | throttle_update_proc_stats(info->throttle_last_IO_pid[throttling_level], sleep_cnt); | |
1857 | } | |
1858 | ||
1859 | ut->uu_throttle_info = NULL; | |
1860 | ut->uu_throttle_bc = FALSE; | |
1861 | ut->uu_lowpri_window = 0; | |
1862 | ||
1863 | throttle_info_rel(info); | |
1864 | ||
1865 | return (sleep_cnt); | |
1866 | } | |
1867 | ||
1868 | /* | |
1869 | * KPI routine | |
1870 | * | |
1871 | * set a kernel thread's IO policy. policy can be: | |
1872 | * IOPOL_NORMAL, IOPOL_THROTTLE, IOPOL_PASSIVE, IOPOL_UTILITY, IOPOL_STANDARD | |
1873 | * | |
1874 | * explanations about these policies are in the man page of setiopolicy_np | |
1875 | */ | |
1876 | void throttle_set_thread_io_policy(int policy) | |
1877 | { | |
1878 | proc_set_thread_policy(current_thread(), TASK_POLICY_INTERNAL, TASK_POLICY_IOPOL, policy); | |
1879 | } | |
1880 | ||
1881 | void throttle_info_reset_window(uthread_t ut) | |
1882 | { | |
1883 | struct _throttle_io_info_t *info; | |
1884 | ||
1885 | if (ut == NULL) | |
1886 | ut = get_bsdthread_info(current_thread()); | |
1887 | ||
1888 | if ( (info = ut->uu_throttle_info) ) { | |
1889 | throttle_info_rel(info); | |
1890 | ||
1891 | ut->uu_throttle_info = NULL; | |
1892 | ut->uu_lowpri_window = 0; | |
1893 | ut->uu_throttle_bc = FALSE; | |
1894 | } | |
1895 | } | |
1896 | ||
1897 | static | |
1898 | void throttle_info_set_initial_window(uthread_t ut, struct _throttle_io_info_t *info, boolean_t BC_throttle, boolean_t isssd) | |
1899 | { | |
1900 | if (lowpri_throttle_enabled == 0 || info->throttle_disabled) | |
1901 | return; | |
1902 | ||
1903 | if (info->throttle_io_periods == 0) { | |
1904 | throttle_init_throttle_period(info, isssd); | |
1905 | } | |
1906 | if (ut->uu_throttle_info == NULL) { | |
1907 | ||
1908 | ut->uu_throttle_info = info; | |
1909 | throttle_info_ref(info); | |
1910 | DEBUG_ALLOC_THROTTLE_INFO("updating info = %p\n", info, info ); | |
1911 | ||
1912 | ut->uu_lowpri_window = 1; | |
1913 | ut->uu_throttle_bc = BC_throttle; | |
1914 | } | |
1915 | } | |
1916 | ||
1917 | /* | |
1918 | * Update inflight IO count and throttling window | |
1919 | * Should be called when an IO is done | |
1920 | * | |
1921 | * Only affects IO that was sent through spec_strategy | |
1922 | */ | |
1923 | void throttle_info_end_io(buf_t bp) { | |
1924 | mount_t mp; | |
1925 | struct bufattr *bap; | |
1926 | struct _throttle_io_info_t *info; | |
1927 | int io_tier; | |
1928 | ||
1929 | bap = &bp->b_attr; | |
1930 | if (!ISSET(bap->ba_flags, BA_STRATEGY_TRACKED_IO)) { | |
1931 | return; | |
1932 | } | |
1933 | CLR(bap->ba_flags, BA_STRATEGY_TRACKED_IO); | |
1934 | ||
1935 | mp = buf_vnode(bp)->v_mount; | |
1936 | if (mp != NULL) { | |
1937 | info = &_throttle_io_info[mp->mnt_devbsdunit]; | |
1938 | } else { | |
1939 | info = &_throttle_io_info[LOWPRI_MAX_NUM_DEV - 1]; | |
1940 | } | |
1941 | ||
1942 | io_tier = GET_BUFATTR_IO_TIER(bap); | |
1943 | if (ISSET(bap->ba_flags, BA_IO_TIER_UPGRADE)) { | |
1944 | io_tier--; | |
1945 | } | |
1946 | ||
1947 | throttle_info_end_io_internal(info, io_tier); | |
1948 | } | |
1949 | ||
1950 | /* | |
1951 | * Decrement inflight count initially incremented by throttle_info_update_internal | |
1952 | */ | |
1953 | static | |
1954 | void throttle_info_end_io_internal(struct _throttle_io_info_t *info, int throttle_level) { | |
1955 | if (throttle_level == THROTTLE_LEVEL_NONE) { | |
1956 | return; | |
1957 | } | |
1958 | ||
1959 | microuptime(&info->throttle_window_start_timestamp[throttle_level]); | |
1960 | OSDecrementAtomic(&info->throttle_inflight_count[throttle_level]); | |
1961 | assert(info->throttle_inflight_count[throttle_level] >= 0); | |
1962 | } | |
1963 | ||
1964 | /* | |
1965 | * If inflight is TRUE and bap is NULL then the caller is responsible for calling | |
1966 | * throttle_info_end_io_internal to avoid leaking in-flight I/O. | |
1967 | */ | |
1968 | static | |
1969 | int throttle_info_update_internal(struct _throttle_io_info_t *info, uthread_t ut, int flags, boolean_t isssd, boolean_t inflight, struct bufattr *bap) | |
1970 | { | |
1971 | int thread_throttle_level; | |
1972 | ||
1973 | if (lowpri_throttle_enabled == 0 || info->throttle_disabled) | |
1974 | return THROTTLE_LEVEL_NONE; | |
1975 | ||
1976 | if (ut == NULL) | |
1977 | ut = get_bsdthread_info(current_thread()); | |
1978 | ||
1979 | if (bap && inflight && !ut->uu_throttle_bc) { | |
1980 | thread_throttle_level = GET_BUFATTR_IO_TIER(bap); | |
1981 | if (ISSET(bap->ba_flags, BA_IO_TIER_UPGRADE)) { | |
1982 | thread_throttle_level--; | |
1983 | } | |
1984 | } else { | |
1985 | thread_throttle_level = throttle_get_thread_throttle_level(ut); | |
1986 | } | |
1987 | ||
1988 | if (thread_throttle_level != THROTTLE_LEVEL_NONE) { | |
1989 | if(!ISSET(flags, B_PASSIVE)) { | |
1990 | info->throttle_last_IO_pid[thread_throttle_level] = proc_selfpid(); | |
1991 | if (inflight && !ut->uu_throttle_bc) { | |
1992 | if (NULL != bap) { | |
1993 | SET(bap->ba_flags, BA_STRATEGY_TRACKED_IO); | |
1994 | } | |
1995 | OSIncrementAtomic(&info->throttle_inflight_count[thread_throttle_level]); | |
1996 | } else { | |
1997 | microuptime(&info->throttle_window_start_timestamp[thread_throttle_level]); | |
1998 | } | |
1999 | KERNEL_DEBUG_CONSTANT((FSDBG_CODE(DBG_THROTTLE, OPEN_THROTTLE_WINDOW)) | DBG_FUNC_NONE, | |
2000 | current_proc()->p_pid, thread_throttle_level, 0, 0, 0); | |
2001 | } | |
2002 | microuptime(&info->throttle_last_IO_timestamp[thread_throttle_level]); | |
2003 | } | |
2004 | ||
2005 | ||
2006 | if (thread_throttle_level >= THROTTLE_LEVEL_THROTTLED) { | |
2007 | /* | |
2008 | * I'd really like to do the IOSleep here, but | |
2009 | * we may be holding all kinds of filesystem related locks | |
2010 | * and the pages for this I/O marked 'busy'... | |
2011 | * we don't want to cause a normal task to block on | |
2012 | * one of these locks while we're throttling a task marked | |
2013 | * for low priority I/O... we'll mark the uthread and | |
2014 | * do the delay just before we return from the system | |
2015 | * call that triggered this I/O or from vnode_pagein | |
2016 | */ | |
2017 | OSAddAtomic(1, &info->throttle_io_count); | |
2018 | ||
2019 | throttle_info_set_initial_window(ut, info, FALSE, isssd); | |
2020 | } | |
2021 | ||
2022 | return thread_throttle_level; | |
2023 | } | |
2024 | ||
2025 | void *throttle_info_update_by_mount(mount_t mp) | |
2026 | { | |
2027 | struct _throttle_io_info_t *info; | |
2028 | uthread_t ut; | |
2029 | boolean_t isssd = FALSE; | |
2030 | ||
2031 | ut = get_bsdthread_info(current_thread()); | |
2032 | ||
2033 | if (mp != NULL) { | |
2034 | if ((mp->mnt_kern_flag & MNTK_SSD) && !ignore_is_ssd) | |
2035 | isssd = TRUE; | |
2036 | info = &_throttle_io_info[mp->mnt_devbsdunit]; | |
2037 | } else | |
2038 | info = &_throttle_io_info[LOWPRI_MAX_NUM_DEV - 1]; | |
2039 | ||
2040 | if (!ut->uu_lowpri_window) | |
2041 | throttle_info_set_initial_window(ut, info, FALSE, isssd); | |
2042 | ||
2043 | return info; | |
2044 | } | |
2045 | ||
2046 | ||
2047 | /* | |
2048 | * KPI routine | |
2049 | * | |
2050 | * this is usually called before every I/O, used for throttled I/O | |
2051 | * book keeping. This routine has low overhead and does not sleep | |
2052 | */ | |
2053 | void throttle_info_update(void *throttle_info, int flags) | |
2054 | { | |
2055 | if (throttle_info) | |
2056 | throttle_info_update_internal(throttle_info, NULL, flags, FALSE, FALSE, NULL); | |
2057 | } | |
2058 | ||
2059 | /* | |
2060 | * KPI routine | |
2061 | * | |
2062 | * this is usually called before every I/O, used for throttled I/O | |
2063 | * book keeping. This routine has low overhead and does not sleep | |
2064 | */ | |
2065 | void throttle_info_update_by_mask(void *throttle_info_handle, int flags) | |
2066 | { | |
2067 | void *throttle_info = throttle_info_handle; | |
2068 | ||
2069 | /* | |
2070 | * for now we only use the lowest bit of the throttle mask, so the | |
2071 | * handle is the same as the throttle_info. Later if we store a | |
2072 | * set of throttle infos in the handle, we will want to loop through | |
2073 | * them and call throttle_info_update in a loop | |
2074 | */ | |
2075 | throttle_info_update(throttle_info, flags); | |
2076 | } | |
2077 | /* | |
2078 | * KPI routine | |
2079 | * | |
2080 | * This routine marks the throttle info as disabled. Used for mount points which | |
2081 | * support I/O scheduling. | |
2082 | */ | |
2083 | ||
2084 | void throttle_info_disable_throttle(int devno, boolean_t isfusion) | |
2085 | { | |
2086 | struct _throttle_io_info_t *info; | |
2087 | ||
2088 | if (devno < 0 || devno >= LOWPRI_MAX_NUM_DEV) | |
2089 | panic("Illegal devno (%d) passed into throttle_info_disable_throttle()", devno); | |
2090 | ||
2091 | info = &_throttle_io_info[devno]; | |
2092 | // don't disable software throttling on devices that are part of a fusion device | |
2093 | // and override the software throttle periods to use HDD periods | |
2094 | if (isfusion) { | |
2095 | info->throttle_is_fusion_with_priority = isfusion; | |
2096 | throttle_init_throttle_period(info, FALSE); | |
2097 | } | |
2098 | info->throttle_disabled = !info->throttle_is_fusion_with_priority; | |
2099 | return; | |
2100 | } | |
2101 | ||
2102 | ||
2103 | /* | |
2104 | * KPI routine (private) | |
2105 | * Called to determine if this IO is being throttled to this level so that it can be treated specially | |
2106 | */ | |
2107 | int throttle_info_io_will_be_throttled(void * throttle_info, int policy) | |
2108 | { | |
2109 | struct _throttle_io_info_t *info = throttle_info; | |
2110 | struct timeval elapsed; | |
2111 | uint64_t elapsed_msecs; | |
2112 | int throttle_level; | |
2113 | int thread_throttle_level; | |
2114 | ||
2115 | switch (policy) { | |
2116 | ||
2117 | case IOPOL_THROTTLE: | |
2118 | thread_throttle_level = THROTTLE_LEVEL_TIER3; | |
2119 | break; | |
2120 | case IOPOL_UTILITY: | |
2121 | thread_throttle_level = THROTTLE_LEVEL_TIER2; | |
2122 | break; | |
2123 | case IOPOL_STANDARD: | |
2124 | thread_throttle_level = THROTTLE_LEVEL_TIER1; | |
2125 | break; | |
2126 | default: | |
2127 | thread_throttle_level = THROTTLE_LEVEL_TIER0; | |
2128 | break; | |
2129 | } | |
2130 | for (throttle_level = THROTTLE_LEVEL_START; throttle_level < thread_throttle_level; throttle_level++) { | |
2131 | if (info->throttle_inflight_count[throttle_level]) { | |
2132 | break; | |
2133 | } | |
2134 | ||
2135 | microuptime(&elapsed); | |
2136 | timevalsub(&elapsed, &info->throttle_window_start_timestamp[throttle_level]); | |
2137 | elapsed_msecs = (uint64_t)elapsed.tv_sec * (uint64_t)1000 + (elapsed.tv_usec / 1000); | |
2138 | ||
2139 | if (elapsed_msecs < (uint64_t)throttle_windows_msecs[thread_throttle_level]) | |
2140 | break; | |
2141 | } | |
2142 | if (throttle_level >= thread_throttle_level) { | |
2143 | /* | |
2144 | * we're beyond all of the throttle windows | |
2145 | * so go ahead and treat as normal I/O | |
2146 | */ | |
2147 | return (THROTTLE_DISENGAGED); | |
2148 | } | |
2149 | /* | |
2150 | * we're in the throttle window | |
2151 | */ | |
2152 | return (THROTTLE_ENGAGED); | |
2153 | } | |
2154 | ||
2155 | int throttle_lowpri_window(void) | |
2156 | { | |
2157 | struct uthread *ut = get_bsdthread_info(current_thread()); | |
2158 | return ut->uu_lowpri_window; | |
2159 | } | |
2160 | ||
2161 | int | |
2162 | spec_strategy(struct vnop_strategy_args *ap) | |
2163 | { | |
2164 | buf_t bp; | |
2165 | int bflags; | |
2166 | int io_tier; | |
2167 | int passive; | |
2168 | dev_t bdev; | |
2169 | uthread_t ut; | |
2170 | mount_t mp; | |
2171 | struct bufattr *bap; | |
2172 | int strategy_ret; | |
2173 | struct _throttle_io_info_t *throttle_info; | |
2174 | boolean_t isssd = FALSE; | |
2175 | boolean_t inflight = FALSE; | |
2176 | boolean_t upgrade = FALSE; | |
2177 | int code = 0; | |
2178 | ||
2179 | proc_t curproc = current_proc(); | |
2180 | ||
2181 | bp = ap->a_bp; | |
2182 | bdev = buf_device(bp); | |
2183 | mp = buf_vnode(bp)->v_mount; | |
2184 | bap = &bp->b_attr; | |
2185 | ||
2186 | io_tier = throttle_get_io_policy(&ut); | |
2187 | passive = throttle_get_passive_io_policy(&ut); | |
2188 | ||
2189 | /* | |
2190 | * Mark if the I/O was upgraded by throttle_get_thread_throttle_level | |
2191 | * while preserving the original issued tier (throttle_get_io_policy | |
2192 | * does not return upgraded tiers) | |
2193 | */ | |
2194 | if (mp && io_tier > throttle_get_thread_throttle_level_internal(ut, io_tier)) { | |
2195 | #if CONFIG_IOSCHED | |
2196 | if (!(mp->mnt_ioflags & MNT_IOFLAGS_IOSCHED_SUPPORTED)) { | |
2197 | upgrade = TRUE; | |
2198 | } | |
2199 | #else /* CONFIG_IOSCHED */ | |
2200 | upgrade = TRUE; | |
2201 | #endif /* CONFIG_IOSCHED */ | |
2202 | } | |
2203 | ||
2204 | if (bp->b_flags & B_META) | |
2205 | bap->ba_flags |= BA_META; | |
2206 | ||
2207 | #if CONFIG_IOSCHED | |
2208 | /* | |
2209 | * For I/O Scheduling, we currently do not have a way to track and expedite metadata I/Os. | |
2210 | * To ensure we dont get into priority inversions due to metadata I/Os, we use the following rules: | |
2211 | * For metadata reads, ceil all I/Os to IOSCHED_METADATA_TIER & mark them passive if the I/O tier was upgraded | |
2212 | * For metadata writes, unconditionally mark them as IOSCHED_METADATA_TIER and passive | |
2213 | */ | |
2214 | if (bap->ba_flags & BA_META) { | |
2215 | if (mp && (mp->mnt_ioflags & MNT_IOFLAGS_IOSCHED_SUPPORTED)) { | |
2216 | if (bp->b_flags & B_READ) { | |
2217 | if (io_tier > IOSCHED_METADATA_TIER) { | |
2218 | io_tier = IOSCHED_METADATA_TIER; | |
2219 | passive = 1; | |
2220 | } | |
2221 | } else { | |
2222 | io_tier = IOSCHED_METADATA_TIER; | |
2223 | passive = 1; | |
2224 | } | |
2225 | } | |
2226 | } | |
2227 | #endif /* CONFIG_IOSCHED */ | |
2228 | ||
2229 | SET_BUFATTR_IO_TIER(bap, io_tier); | |
2230 | ||
2231 | if (passive) { | |
2232 | bp->b_flags |= B_PASSIVE; | |
2233 | bap->ba_flags |= BA_PASSIVE; | |
2234 | } | |
2235 | ||
2236 | if ((curproc != NULL) && ((curproc->p_flag & P_DELAYIDLESLEEP) == P_DELAYIDLESLEEP)) | |
2237 | bap->ba_flags |= BA_DELAYIDLESLEEP; | |
2238 | ||
2239 | bflags = bp->b_flags; | |
2240 | ||
2241 | if (((bflags & B_READ) == 0) && ((bflags & B_ASYNC) == 0)) | |
2242 | bufattr_markquickcomplete(bap); | |
2243 | ||
2244 | if (bflags & B_READ) | |
2245 | code |= DKIO_READ; | |
2246 | if (bflags & B_ASYNC) | |
2247 | code |= DKIO_ASYNC; | |
2248 | ||
2249 | if (bap->ba_flags & BA_META) | |
2250 | code |= DKIO_META; | |
2251 | else if (bflags & B_PAGEIO) | |
2252 | code |= DKIO_PAGING; | |
2253 | ||
2254 | if (io_tier != 0) | |
2255 | code |= DKIO_THROTTLE; | |
2256 | ||
2257 | code |= ((io_tier << DKIO_TIER_SHIFT) & DKIO_TIER_MASK); | |
2258 | ||
2259 | if (bflags & B_PASSIVE) | |
2260 | code |= DKIO_PASSIVE; | |
2261 | ||
2262 | if (bap->ba_flags & BA_NOCACHE) | |
2263 | code |= DKIO_NOCACHE; | |
2264 | ||
2265 | if (upgrade) { | |
2266 | code |= DKIO_TIER_UPGRADE; | |
2267 | SET(bap->ba_flags, BA_IO_TIER_UPGRADE); | |
2268 | } | |
2269 | ||
2270 | if (kdebug_enable) { | |
2271 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_COMMON, FSDBG_CODE(DBG_DKRW, code) | DBG_FUNC_NONE, | |
2272 | buf_kernel_addrperm_addr(bp), bdev, (int)buf_blkno(bp), buf_count(bp), 0); | |
2273 | } | |
2274 | ||
2275 | thread_update_io_stats(current_thread(), buf_count(bp), code); | |
2276 | ||
2277 | if (mp != NULL) { | |
2278 | if ((mp->mnt_kern_flag & MNTK_SSD) && !ignore_is_ssd) | |
2279 | isssd = TRUE; | |
2280 | /* | |
2281 | * Partially initialized mounts don't have a final devbsdunit and should not be tracked. | |
2282 | * Verify that devbsdunit is initialized (non-zero) or that 0 is the correct initialized value | |
2283 | * (mnt_throttle_mask is initialized and num_trailing_0 would be 0) | |
2284 | */ | |
2285 | if (mp->mnt_devbsdunit || (mp->mnt_throttle_mask != LOWPRI_MAX_NUM_DEV - 1 && mp->mnt_throttle_mask & 0x1)) { | |
2286 | inflight = TRUE; | |
2287 | } | |
2288 | throttle_info = &_throttle_io_info[mp->mnt_devbsdunit]; | |
2289 | ||
2290 | } else | |
2291 | throttle_info = &_throttle_io_info[LOWPRI_MAX_NUM_DEV - 1]; | |
2292 | ||
2293 | throttle_info_update_internal(throttle_info, ut, bflags, isssd, inflight, bap); | |
2294 | ||
2295 | if ((bflags & B_READ) == 0) { | |
2296 | microuptime(&throttle_info->throttle_last_write_timestamp); | |
2297 | ||
2298 | if (mp) { | |
2299 | mp->mnt_last_write_issued_timestamp = throttle_info->throttle_last_write_timestamp; | |
2300 | INCR_PENDING_IO(buf_count(bp), mp->mnt_pending_write_size); | |
2301 | } | |
2302 | } else if (mp) { | |
2303 | INCR_PENDING_IO(buf_count(bp), mp->mnt_pending_read_size); | |
2304 | } | |
2305 | /* | |
2306 | * The BootCache may give us special information about | |
2307 | * the IO, so it returns special values that we check | |
2308 | * for here. | |
2309 | * | |
2310 | * IO_SATISFIED_BY_CACHE | |
2311 | * The read has been satisfied by the boot cache. Don't | |
2312 | * throttle the thread unnecessarily. | |
2313 | * | |
2314 | * IO_SHOULD_BE_THROTTLED | |
2315 | * The boot cache is playing back a playlist and this IO | |
2316 | * cut through. Throttle it so we're not cutting through | |
2317 | * the boot cache too often. | |
2318 | * | |
2319 | * Note that typical strategy routines are defined with | |
2320 | * a void return so we'll get garbage here. In the | |
2321 | * unlikely case the garbage matches our special return | |
2322 | * value, it's not a big deal since we're only adjusting | |
2323 | * the throttling delay. | |
2324 | */ | |
2325 | #define IO_SATISFIED_BY_CACHE ((int)0xcafefeed) | |
2326 | #define IO_SHOULD_BE_THROTTLED ((int)0xcafebeef) | |
2327 | typedef int strategy_fcn_ret_t(struct buf *bp); | |
2328 | ||
2329 | strategy_ret = (*(strategy_fcn_ret_t*)bdevsw[major(bdev)].d_strategy)(bp); | |
2330 | ||
2331 | if (IO_SATISFIED_BY_CACHE == strategy_ret) { | |
2332 | /* | |
2333 | * If this was a throttled IO satisfied by the boot cache, | |
2334 | * don't delay the thread. | |
2335 | */ | |
2336 | throttle_info_reset_window(ut); | |
2337 | ||
2338 | } else if (IO_SHOULD_BE_THROTTLED == strategy_ret) { | |
2339 | /* | |
2340 | * If the boot cache indicates this IO should be throttled, | |
2341 | * delay the thread. | |
2342 | */ | |
2343 | throttle_info_set_initial_window(ut, throttle_info, TRUE, isssd); | |
2344 | } | |
2345 | return (0); | |
2346 | } | |
2347 | ||
2348 | ||
2349 | /* | |
2350 | * This is a noop, simply returning what one has been given. | |
2351 | */ | |
2352 | int | |
2353 | spec_blockmap(__unused struct vnop_blockmap_args *ap) | |
2354 | { | |
2355 | return (ENOTSUP); | |
2356 | } | |
2357 | ||
2358 | ||
2359 | /* | |
2360 | * Device close routine | |
2361 | */ | |
2362 | int | |
2363 | spec_close(struct vnop_close_args *ap) | |
2364 | { | |
2365 | struct vnode *vp = ap->a_vp; | |
2366 | dev_t dev = vp->v_rdev; | |
2367 | int error = 0; | |
2368 | int flags = ap->a_fflag; | |
2369 | struct proc *p = vfs_context_proc(ap->a_context); | |
2370 | struct session *sessp; | |
2371 | ||
2372 | switch (vp->v_type) { | |
2373 | ||
2374 | case VCHR: | |
2375 | /* | |
2376 | * Hack: a tty device that is a controlling terminal | |
2377 | * has a reference from the session structure. | |
2378 | * We cannot easily tell that a character device is | |
2379 | * a controlling terminal, unless it is the closing | |
2380 | * process' controlling terminal. In that case, | |
2381 | * if the reference count is 1 (this is the very | |
2382 | * last close) | |
2383 | */ | |
2384 | sessp = proc_session(p); | |
2385 | devsw_lock(dev, S_IFCHR); | |
2386 | if (sessp != SESSION_NULL) { | |
2387 | if (vp == sessp->s_ttyvp && vcount(vp) == 1) { | |
2388 | struct tty *tp = TTY_NULL; | |
2389 | ||
2390 | devsw_unlock(dev, S_IFCHR); | |
2391 | session_lock(sessp); | |
2392 | if (vp == sessp->s_ttyvp) { | |
2393 | tp = SESSION_TP(sessp); | |
2394 | sessp->s_ttyvp = NULL; | |
2395 | sessp->s_ttyvid = 0; | |
2396 | sessp->s_ttyp = TTY_NULL; | |
2397 | sessp->s_ttypgrpid = NO_PID; | |
2398 | } | |
2399 | session_unlock(sessp); | |
2400 | ||
2401 | if (tp != TTY_NULL) { | |
2402 | /* | |
2403 | * We may have won a race with a proc_exit | |
2404 | * of the session leader, the winner | |
2405 | * clears the flag (even if not set) | |
2406 | */ | |
2407 | tty_lock(tp); | |
2408 | ttyclrpgrphup(tp); | |
2409 | tty_unlock(tp); | |
2410 | ||
2411 | ttyfree(tp); | |
2412 | } | |
2413 | devsw_lock(dev, S_IFCHR); | |
2414 | } | |
2415 | session_rele(sessp); | |
2416 | } | |
2417 | ||
2418 | if (--vp->v_specinfo->si_opencount < 0) | |
2419 | panic("negative open count (c, %u, %u)", major(dev), minor(dev)); | |
2420 | ||
2421 | /* | |
2422 | * close on last reference or on vnode revoke call | |
2423 | */ | |
2424 | if (vcount(vp) == 0 || (flags & IO_REVOKE) != 0) | |
2425 | error = cdevsw[major(dev)].d_close(dev, flags, S_IFCHR, p); | |
2426 | ||
2427 | devsw_unlock(dev, S_IFCHR); | |
2428 | break; | |
2429 | ||
2430 | case VBLK: | |
2431 | /* | |
2432 | * If there is more than one outstanding open, don't | |
2433 | * send the close to the device. | |
2434 | */ | |
2435 | devsw_lock(dev, S_IFBLK); | |
2436 | if (vcount(vp) > 1) { | |
2437 | vp->v_specinfo->si_opencount--; | |
2438 | devsw_unlock(dev, S_IFBLK); | |
2439 | return (0); | |
2440 | } | |
2441 | devsw_unlock(dev, S_IFBLK); | |
2442 | ||
2443 | /* | |
2444 | * On last close of a block device (that isn't mounted) | |
2445 | * we must invalidate any in core blocks, so that | |
2446 | * we can, for instance, change floppy disks. | |
2447 | */ | |
2448 | if ((error = spec_fsync_internal(vp, MNT_WAIT, ap->a_context))) | |
2449 | return (error); | |
2450 | ||
2451 | error = buf_invalidateblks(vp, BUF_WRITE_DATA, 0, 0); | |
2452 | if (error) | |
2453 | return (error); | |
2454 | ||
2455 | devsw_lock(dev, S_IFBLK); | |
2456 | ||
2457 | if (--vp->v_specinfo->si_opencount < 0) | |
2458 | panic("negative open count (b, %u, %u)", major(dev), minor(dev)); | |
2459 | ||
2460 | if (vcount(vp) == 0) | |
2461 | error = bdevsw[major(dev)].d_close(dev, flags, S_IFBLK, p); | |
2462 | ||
2463 | devsw_unlock(dev, S_IFBLK); | |
2464 | break; | |
2465 | ||
2466 | default: | |
2467 | panic("spec_close: not special"); | |
2468 | return(EBADF); | |
2469 | } | |
2470 | ||
2471 | return error; | |
2472 | } | |
2473 | ||
2474 | /* | |
2475 | * Return POSIX pathconf information applicable to special devices. | |
2476 | */ | |
2477 | int | |
2478 | spec_pathconf(struct vnop_pathconf_args *ap) | |
2479 | { | |
2480 | ||
2481 | switch (ap->a_name) { | |
2482 | case _PC_LINK_MAX: | |
2483 | *ap->a_retval = LINK_MAX; | |
2484 | return (0); | |
2485 | case _PC_MAX_CANON: | |
2486 | *ap->a_retval = MAX_CANON; | |
2487 | return (0); | |
2488 | case _PC_MAX_INPUT: | |
2489 | *ap->a_retval = MAX_INPUT; | |
2490 | return (0); | |
2491 | case _PC_PIPE_BUF: | |
2492 | *ap->a_retval = PIPE_BUF; | |
2493 | return (0); | |
2494 | case _PC_CHOWN_RESTRICTED: | |
2495 | *ap->a_retval = 200112; /* _POSIX_CHOWN_RESTRICTED */ | |
2496 | return (0); | |
2497 | case _PC_VDISABLE: | |
2498 | *ap->a_retval = _POSIX_VDISABLE; | |
2499 | return (0); | |
2500 | default: | |
2501 | return (EINVAL); | |
2502 | } | |
2503 | /* NOTREACHED */ | |
2504 | } | |
2505 | ||
2506 | /* | |
2507 | * Special device failed operation | |
2508 | */ | |
2509 | int | |
2510 | spec_ebadf(__unused void *dummy) | |
2511 | { | |
2512 | ||
2513 | return (EBADF); | |
2514 | } | |
2515 | ||
2516 | /* Blktooff derives file offset from logical block number */ | |
2517 | int | |
2518 | spec_blktooff(struct vnop_blktooff_args *ap) | |
2519 | { | |
2520 | struct vnode *vp = ap->a_vp; | |
2521 | ||
2522 | switch (vp->v_type) { | |
2523 | case VCHR: | |
2524 | *ap->a_offset = (off_t)-1; /* failure */ | |
2525 | return (ENOTSUP); | |
2526 | ||
2527 | case VBLK: | |
2528 | printf("spec_blktooff: not implemented for VBLK\n"); | |
2529 | *ap->a_offset = (off_t)-1; /* failure */ | |
2530 | return (ENOTSUP); | |
2531 | ||
2532 | default: | |
2533 | panic("spec_blktooff type"); | |
2534 | } | |
2535 | /* NOTREACHED */ | |
2536 | ||
2537 | return (0); | |
2538 | } | |
2539 | ||
2540 | /* Offtoblk derives logical block number from file offset */ | |
2541 | int | |
2542 | spec_offtoblk(struct vnop_offtoblk_args *ap) | |
2543 | { | |
2544 | struct vnode *vp = ap->a_vp; | |
2545 | ||
2546 | switch (vp->v_type) { | |
2547 | case VCHR: | |
2548 | *ap->a_lblkno = (daddr64_t)-1; /* failure */ | |
2549 | return (ENOTSUP); | |
2550 | ||
2551 | case VBLK: | |
2552 | printf("spec_offtoblk: not implemented for VBLK\n"); | |
2553 | *ap->a_lblkno = (daddr64_t)-1; /* failure */ | |
2554 | return (ENOTSUP); | |
2555 | ||
2556 | default: | |
2557 | panic("spec_offtoblk type"); | |
2558 | } | |
2559 | /* NOTREACHED */ | |
2560 | ||
2561 | return (0); | |
2562 | } | |
2563 | ||
2564 | static void filt_specdetach(struct knote *kn); | |
2565 | static int filt_spec(struct knote *kn, long hint); | |
2566 | static int filt_spectouch(struct knote *kn, struct kevent_internal_s *kev); | |
2567 | static int filt_specprocess(struct knote *kn, struct filt_process_s *data, struct kevent_internal_s *kev); | |
2568 | static unsigned filt_specpeek(struct knote *kn); | |
2569 | ||
2570 | struct filterops spec_filtops = { | |
2571 | .f_isfd = 1, | |
2572 | .f_attach = filt_specattach, | |
2573 | .f_detach = filt_specdetach, | |
2574 | .f_event = filt_spec, | |
2575 | .f_touch = filt_spectouch, | |
2576 | .f_process = filt_specprocess, | |
2577 | .f_peek = filt_specpeek | |
2578 | }; | |
2579 | ||
2580 | static int | |
2581 | filter_to_seltype(int16_t filter) | |
2582 | { | |
2583 | switch (filter) { | |
2584 | case EVFILT_READ: | |
2585 | return FREAD; | |
2586 | case EVFILT_WRITE: | |
2587 | return FWRITE; | |
2588 | default: | |
2589 | panic("filt_to_seltype(): invalid filter %d\n", filter); | |
2590 | return 0; | |
2591 | } | |
2592 | } | |
2593 | ||
2594 | static int | |
2595 | filt_specattach(struct knote *kn) | |
2596 | { | |
2597 | vnode_t vp; | |
2598 | dev_t dev; | |
2599 | ||
2600 | vp = (vnode_t)kn->kn_fp->f_fglob->fg_data; /* Already have iocount, and vnode is alive */ | |
2601 | ||
2602 | assert(vnode_ischr(vp)); | |
2603 | ||
2604 | dev = vnode_specrdev(vp); | |
2605 | ||
2606 | if (major(dev) > nchrdev) { | |
2607 | kn->kn_flags |= EV_ERROR; | |
2608 | kn->kn_data = ENXIO; | |
2609 | return 0; | |
2610 | } | |
2611 | ||
2612 | /* | |
2613 | * For a few special kinds of devices, we can attach knotes with | |
2614 | * no restrictions because their "select" vectors return the amount | |
2615 | * of data available. Others require an explicit NOTE_LOWAT with | |
2616 | * data of 1, indicating that the caller doesn't care about actual | |
2617 | * data counts, just an indication that the device has data. | |
2618 | */ | |
2619 | ||
2620 | if ((cdevsw_flags[major(dev)] & CDEVSW_SELECT_KQUEUE) == 0 && | |
2621 | ((kn->kn_sfflags & NOTE_LOWAT) == 0 || kn->kn_sdata != 1)) { | |
2622 | kn->kn_flags |= EV_ERROR; | |
2623 | kn->kn_data = EINVAL; | |
2624 | return 0; | |
2625 | } | |
2626 | ||
2627 | kn->kn_hook_data = 0; | |
2628 | ||
2629 | kn->kn_filtid = EVFILTID_SPEC; | |
2630 | kn->kn_hookid = vnode_vid(vp); | |
2631 | ||
2632 | knote_markstayactive(kn); | |
2633 | ||
2634 | return 0; | |
2635 | } | |
2636 | ||
2637 | static void | |
2638 | filt_specdetach(struct knote *kn) | |
2639 | { | |
2640 | knote_clearstayactive(kn); | |
2641 | ||
2642 | /* | |
2643 | * This is potentially tricky: the device's selinfo waitq that was | |
2644 | * tricked into being part of this knote's waitq set may not be a part | |
2645 | * of any other set, and the device itself may have revoked the memory | |
2646 | * in which the waitq was held. We use the knote's kn_hook_data field | |
2647 | * to keep the ID of the waitq's prepost table object. This | |
2648 | * object keeps a pointer back to the waitq, and gives us a safe way | |
2649 | * to decouple the dereferencing of driver allocated memory: if the | |
2650 | * driver goes away (taking the waitq with it) then the prepost table | |
2651 | * object will be invalidated. The waitq details are handled in the | |
2652 | * waitq API invoked here. | |
2653 | */ | |
2654 | if (kn->kn_hook_data) { | |
2655 | waitq_unlink_by_prepost_id(kn->kn_hook_data, &(knote_get_kq(kn)->kq_wqs)); | |
2656 | kn->kn_hook_data = 0; | |
2657 | } | |
2658 | } | |
2659 | ||
2660 | static int | |
2661 | filt_spec(__unused struct knote *kn, __unused long hint) | |
2662 | { | |
2663 | panic("filt_spec()"); | |
2664 | return 0; | |
2665 | } | |
2666 | ||
2667 | ||
2668 | ||
2669 | static int | |
2670 | filt_spectouch(struct knote *kn, struct kevent_internal_s *kev) | |
2671 | { | |
2672 | kn->kn_sdata = kev->data; | |
2673 | kn->kn_sfflags = kev->fflags; | |
2674 | if ((kn->kn_status & KN_UDATA_SPECIFIC) == 0) | |
2675 | kn->kn_udata = kev->udata; | |
2676 | ||
2677 | /* stayqueued knotes don't need hints from touch */ | |
2678 | return 0; | |
2679 | } | |
2680 | ||
2681 | static int | |
2682 | filt_specprocess(struct knote *kn, struct filt_process_s *data, struct kevent_internal_s *kev) | |
2683 | { | |
2684 | #pragma unused(data) | |
2685 | vnode_t vp; | |
2686 | uthread_t uth; | |
2687 | struct waitq_set *old_wqs; | |
2688 | vfs_context_t ctx; | |
2689 | int res; | |
2690 | int selres; | |
2691 | int error; | |
2692 | int use_offset; | |
2693 | dev_t dev; | |
2694 | uint64_t flags; | |
2695 | uint64_t rsvd, rsvd_arg; | |
2696 | uint64_t *rlptr = NULL; | |
2697 | ||
2698 | uth = get_bsdthread_info(current_thread()); | |
2699 | ctx = vfs_context_current(); | |
2700 | vp = (vnode_t)kn->kn_fp->f_fglob->fg_data; | |
2701 | ||
2702 | /* JMM - locking against touches? */ | |
2703 | ||
2704 | error = vnode_getwithvid(vp, kn->kn_hookid); | |
2705 | if (error != 0) { | |
2706 | kn->kn_flags |= (EV_EOF | EV_ONESHOT); | |
2707 | *kev = kn->kn_kevent; | |
2708 | return 1; | |
2709 | } | |
2710 | ||
2711 | dev = vnode_specrdev(vp); | |
2712 | flags = cdevsw_flags[major(dev)]; | |
2713 | use_offset = ((flags & CDEVSW_USE_OFFSET) != 0); | |
2714 | ||
2715 | /* | |
2716 | * This function may be called many times to link or re-link the | |
2717 | * underlying vnode to the kqueue. If we've already linked the two, | |
2718 | * we will have a valid kn_hook_data which ties us to the underlying | |
2719 | * device's waitq via a the waitq's prepost table object. However, | |
2720 | * devices can abort any select action by calling selthreadclear(). | |
2721 | * This is OK because the table object will be invalidated by the | |
2722 | * driver (through a call to selthreadclear), so any attempt to access | |
2723 | * the associated waitq will fail because the table object is invalid. | |
2724 | * | |
2725 | * Even if we've already registered, we need to pass a pointer | |
2726 | * to a reserved link structure. Otherwise, selrecord() will | |
2727 | * infer that we're in the second pass of select() and won't | |
2728 | * actually do anything! | |
2729 | */ | |
2730 | rsvd = rsvd_arg = waitq_link_reserve(NULL); | |
2731 | rlptr = (void *)&rsvd_arg; | |
2732 | ||
2733 | /* | |
2734 | * Trick selrecord() into hooking kqueue's wait queue set | |
2735 | * set into device's selinfo wait queue | |
2736 | */ | |
2737 | old_wqs = uth->uu_wqset; | |
2738 | uth->uu_wqset = &(knote_get_kq(kn)->kq_wqs); | |
2739 | selres = VNOP_SELECT(vp, filter_to_seltype(kn->kn_filter), | |
2740 | 0, rlptr, ctx); | |
2741 | uth->uu_wqset = old_wqs; | |
2742 | ||
2743 | /* | |
2744 | * make sure to cleanup the reserved link - this guards against | |
2745 | * drivers that may not actually call selrecord(). | |
2746 | */ | |
2747 | waitq_link_release(rsvd); | |
2748 | if (rsvd != rsvd_arg) { | |
2749 | /* the driver / handler called selrecord() */ | |
2750 | struct waitq *wq; | |
2751 | memcpy(&wq, rlptr, sizeof(void *)); | |
2752 | ||
2753 | /* | |
2754 | * The waitq_get_prepost_id() function will (potentially) | |
2755 | * allocate a prepost table object for the waitq and return | |
2756 | * the table object's ID to us. It will also set the | |
2757 | * waitq_prepost_id field within the waitq structure. | |
2758 | * | |
2759 | * We can just overwrite kn_hook_data because it's simply a | |
2760 | * table ID used to grab a reference when needed. | |
2761 | * | |
2762 | * We have a reference on the vnode, so we know that the | |
2763 | * device won't go away while we get this ID. | |
2764 | */ | |
2765 | kn->kn_hook_data = waitq_get_prepost_id(wq); | |
2766 | } | |
2767 | ||
2768 | if (use_offset) { | |
2769 | if (kn->kn_fp->f_fglob->fg_offset >= (uint32_t)selres) { | |
2770 | kn->kn_data = 0; | |
2771 | } else { | |
2772 | kn->kn_data = ((uint32_t)selres) - kn->kn_fp->f_fglob->fg_offset; | |
2773 | } | |
2774 | } else { | |
2775 | kn->kn_data = selres; | |
2776 | } | |
2777 | ||
2778 | vnode_put(vp); | |
2779 | ||
2780 | res = ((kn->kn_sfflags & NOTE_LOWAT) != 0) ? | |
2781 | (kn->kn_data >= kn->kn_sdata) : kn->kn_data; | |
2782 | ||
2783 | if (res) { | |
2784 | *kev = kn->kn_kevent; | |
2785 | if (kn->kn_flags & EV_CLEAR) { | |
2786 | kn->kn_fflags = 0; | |
2787 | kn->kn_data = 0; | |
2788 | } | |
2789 | } | |
2790 | ||
2791 | return res; | |
2792 | } | |
2793 | ||
2794 | static unsigned | |
2795 | filt_specpeek(struct knote *kn) | |
2796 | { | |
2797 | vnode_t vp; | |
2798 | uthread_t uth; | |
2799 | struct waitq_set *old_wqs; | |
2800 | vfs_context_t ctx; | |
2801 | int error, selres; | |
2802 | uint64_t rsvd, rsvd_arg; | |
2803 | uint64_t *rlptr = NULL; | |
2804 | ||
2805 | uth = get_bsdthread_info(current_thread()); | |
2806 | ctx = vfs_context_current(); | |
2807 | vp = (vnode_t)kn->kn_fp->f_fglob->fg_data; | |
2808 | ||
2809 | error = vnode_getwithvid(vp, kn->kn_hookid); | |
2810 | if (error != 0) { | |
2811 | return 1; /* Just like VNOP_SELECT() on recycled vnode */ | |
2812 | } | |
2813 | ||
2814 | /* | |
2815 | * Even if we've already registered, we need to pass a pointer | |
2816 | * to a reserved link structure. Otherwise, selrecord() will | |
2817 | * infer that we're in the second pass of select() and won't | |
2818 | * actually do anything! | |
2819 | */ | |
2820 | rsvd = rsvd_arg = waitq_link_reserve(NULL); | |
2821 | rlptr = (void *)&rsvd_arg; | |
2822 | ||
2823 | old_wqs = uth->uu_wqset; | |
2824 | uth->uu_wqset = &(knote_get_kq(kn)->kq_wqs); | |
2825 | selres = VNOP_SELECT(vp, filter_to_seltype(kn->kn_filter), | |
2826 | 0, (void *)rlptr, ctx); | |
2827 | uth->uu_wqset = old_wqs; | |
2828 | ||
2829 | /* | |
2830 | * make sure to cleanup the reserved link - this guards against | |
2831 | * drivers that may not actually call selrecord() | |
2832 | */ | |
2833 | waitq_link_release(rsvd); | |
2834 | if (rsvd != rsvd_arg) { | |
2835 | /* the driver / handler called selrecord() */ | |
2836 | struct waitq *wq; | |
2837 | memcpy(&wq, rlptr, sizeof(void *)); | |
2838 | ||
2839 | /* | |
2840 | * The waitq_get_prepost_id() function will (potentially) | |
2841 | * allocate a prepost table object for the waitq and return | |
2842 | * the table object's ID to us. It will also set the | |
2843 | * waitq_prepost_id field within the waitq structure. | |
2844 | * | |
2845 | * We can just overwrite kn_hook_data because it's simply a | |
2846 | * table ID used to grab a reference when needed. | |
2847 | * | |
2848 | * We have a reference on the vnode, so we know that the | |
2849 | * device won't go away while we get this ID. | |
2850 | */ | |
2851 | kn->kn_hook_data = waitq_get_prepost_id(wq); | |
2852 | } | |
2853 | ||
2854 | vnode_put(vp); | |
2855 | return selres; | |
2856 | } | |
2857 |