]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Copyright (c) 1991-2015 Apple Computer, Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * This file contains Original Code and/or Modifications of Original Code | |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
14 | * | |
15 | * Please obtain a copy of the License at | |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
25 | * | |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ | |
27 | */ | |
28 | #include <sys/param.h> | |
29 | #include <sys/types.h> | |
30 | #include <sys/uio.h> | |
31 | #include <sys/vnode.h> | |
32 | #include <vm/vm_kern.h> | |
33 | #include <mach/kern_return.h> | |
34 | #include <mach/vm_param.h> | |
35 | #include <kern/cpu_number.h> | |
36 | #include <mach-o/fat.h> | |
37 | #include <kern/mach_loader.h> | |
38 | #include <kern/mach_fat.h> | |
39 | #include <libkern/OSByteOrder.h> | |
40 | #include <machine/exec.h> | |
41 | ||
42 | /********************************************************************** | |
43 | * Routine: fatfile_getarch() | |
44 | * | |
45 | * Function: Locate the architecture-dependant contents of a fat | |
46 | * file that match this CPU. | |
47 | * | |
48 | * Args: header: A pointer to the fat file header. | |
49 | * size: How large the fat file header is (including fat_arch array) | |
50 | * req_cpu_type: The required cpu type. | |
51 | * mask_bits: Bits to mask from the sub-image type when | |
52 | * grading it vs. the req_cpu_type | |
53 | * archret (out): Pointer to fat_arch structure to hold | |
54 | * the results. | |
55 | * | |
56 | * Returns: KERN_SUCCESS: Valid architecture found. | |
57 | * KERN_FAILURE: No valid architecture found. | |
58 | **********************************************************************/ | |
59 | static load_return_t | |
60 | fatfile_getarch( | |
61 | vm_offset_t data_ptr, | |
62 | vm_size_t data_size, | |
63 | cpu_type_t req_cpu_type, | |
64 | cpu_type_t mask_bits, | |
65 | struct fat_arch *archret) | |
66 | { | |
67 | load_return_t lret; | |
68 | struct fat_arch *arch; | |
69 | struct fat_arch *best_arch; | |
70 | int grade; | |
71 | int best_grade; | |
72 | uint32_t nfat_arch, max_nfat_arch; | |
73 | cpu_type_t testtype; | |
74 | cpu_type_t testsubtype; | |
75 | struct fat_header *header; | |
76 | ||
77 | if (sizeof(struct fat_header) > data_size) { | |
78 | return (LOAD_FAILURE); | |
79 | } | |
80 | ||
81 | header = (struct fat_header *)data_ptr; | |
82 | nfat_arch = OSSwapBigToHostInt32(header->nfat_arch); | |
83 | ||
84 | max_nfat_arch = (data_size - sizeof(struct fat_header)) / sizeof(struct fat_arch); | |
85 | if (nfat_arch > max_nfat_arch) { | |
86 | /* nfat_arch would cause us to read off end of buffer */ | |
87 | return (LOAD_BADMACHO); | |
88 | } | |
89 | ||
90 | /* | |
91 | * Scan the fat_arch's looking for the best one. */ | |
92 | best_arch = NULL; | |
93 | best_grade = 0; | |
94 | arch = (struct fat_arch *) (data_ptr + sizeof(struct fat_header)); | |
95 | for (; nfat_arch-- > 0; arch++) { | |
96 | testtype = OSSwapBigToHostInt32(arch->cputype); | |
97 | testsubtype = OSSwapBigToHostInt32(arch->cpusubtype) & ~CPU_SUBTYPE_MASK; | |
98 | ||
99 | /* | |
100 | * Check to see if right cpu type. | |
101 | */ | |
102 | if((testtype & ~mask_bits) != (req_cpu_type & ~mask_bits)) { | |
103 | continue; | |
104 | } | |
105 | ||
106 | /* | |
107 | * Get the grade of the cpu subtype (without feature flags) | |
108 | */ | |
109 | grade = grade_binary(testtype, testsubtype); | |
110 | ||
111 | /* | |
112 | * Remember it if it's the best we've seen. | |
113 | */ | |
114 | if (grade > best_grade) { | |
115 | best_grade = grade; | |
116 | best_arch = arch; | |
117 | } | |
118 | } | |
119 | ||
120 | /* | |
121 | * Return our results. | |
122 | */ | |
123 | if (best_arch == NULL) { | |
124 | lret = LOAD_BADARCH; | |
125 | } else { | |
126 | archret->cputype = | |
127 | OSSwapBigToHostInt32(best_arch->cputype); | |
128 | archret->cpusubtype = | |
129 | OSSwapBigToHostInt32(best_arch->cpusubtype); | |
130 | archret->offset = | |
131 | OSSwapBigToHostInt32(best_arch->offset); | |
132 | archret->size = | |
133 | OSSwapBigToHostInt32(best_arch->size); | |
134 | archret->align = | |
135 | OSSwapBigToHostInt32(best_arch->align); | |
136 | ||
137 | lret = LOAD_SUCCESS; | |
138 | } | |
139 | ||
140 | /* | |
141 | * Free the memory we allocated and return. | |
142 | */ | |
143 | return(lret); | |
144 | } | |
145 | ||
146 | load_return_t | |
147 | fatfile_getbestarch( | |
148 | vm_offset_t data_ptr, | |
149 | vm_size_t data_size, | |
150 | struct fat_arch *archret) | |
151 | { | |
152 | /* | |
153 | * Ignore all architectural bits when determining if an image | |
154 | * in a fat file should be skipped or graded. | |
155 | */ | |
156 | return fatfile_getarch(data_ptr, data_size, cpu_type(), CPU_ARCH_MASK, archret); | |
157 | } | |
158 | ||
159 | load_return_t | |
160 | fatfile_getbestarch_for_cputype( | |
161 | cpu_type_t cputype, | |
162 | vm_offset_t data_ptr, | |
163 | vm_size_t data_size, | |
164 | struct fat_arch *archret) | |
165 | { | |
166 | /* | |
167 | * Scan the fat_arch array for exact matches for this cpu_type_t only | |
168 | */ | |
169 | return fatfile_getarch(data_ptr, data_size, cputype, 0, archret); | |
170 | } | |
171 | ||
172 | /********************************************************************** | |
173 | * Routine: fatfile_getarch_with_bits() | |
174 | * | |
175 | * Function: Locate the architecture-dependant contents of a fat | |
176 | * file that match this CPU. | |
177 | * | |
178 | * Args: vp: The vnode for the fat file. | |
179 | * archbits: Architecture specific feature bits | |
180 | * header: A pointer to the fat file header. | |
181 | * archret (out): Pointer to fat_arch structure to hold | |
182 | * the results. | |
183 | * | |
184 | * Returns: KERN_SUCCESS: Valid architecture found. | |
185 | * KERN_FAILURE: No valid architecture found. | |
186 | **********************************************************************/ | |
187 | load_return_t | |
188 | fatfile_getarch_with_bits( | |
189 | integer_t archbits, | |
190 | vm_offset_t data_ptr, | |
191 | vm_size_t data_size, | |
192 | struct fat_arch *archret) | |
193 | { | |
194 | /* | |
195 | * Scan the fat_arch array for matches with the requested | |
196 | * architectural bits set, and for the current hardware cpu CPU. | |
197 | */ | |
198 | return fatfile_getarch(data_ptr, data_size, (archbits & CPU_ARCH_MASK) | (cpu_type() & ~CPU_ARCH_MASK), 0, archret); | |
199 | } | |
200 | ||
201 | /* | |
202 | * Validate the fat_header and fat_arch array in memory. We check that: | |
203 | * | |
204 | * 1) arch count would not exceed the data buffer | |
205 | * 2) arch list does not contain duplicate cputype/cpusubtype tuples | |
206 | * 3) arch list does not have two overlapping slices. The area | |
207 | * at the front of the file containing the fat headers is implicitly | |
208 | * a range that a slice should also not try to cover | |
209 | */ | |
210 | load_return_t | |
211 | fatfile_validate_fatarches(vm_offset_t data_ptr, vm_size_t data_size) | |
212 | { | |
213 | uint32_t magic, nfat_arch; | |
214 | uint32_t max_nfat_arch, i, j; | |
215 | uint32_t fat_header_size; | |
216 | ||
217 | struct fat_arch *arches; | |
218 | struct fat_header *header; | |
219 | ||
220 | if (sizeof(struct fat_header) > data_size) { | |
221 | return (LOAD_FAILURE); | |
222 | } | |
223 | ||
224 | header = (struct fat_header *)data_ptr; | |
225 | magic = OSSwapBigToHostInt32(header->magic); | |
226 | nfat_arch = OSSwapBigToHostInt32(header->nfat_arch); | |
227 | ||
228 | if (magic != FAT_MAGIC) { | |
229 | /* must be FAT_MAGIC big endian */ | |
230 | return (LOAD_FAILURE); | |
231 | } | |
232 | ||
233 | max_nfat_arch = (data_size - sizeof(struct fat_header)) / sizeof(struct fat_arch); | |
234 | if (nfat_arch > max_nfat_arch) { | |
235 | /* nfat_arch would cause us to read off end of buffer */ | |
236 | return (LOAD_BADMACHO); | |
237 | } | |
238 | ||
239 | /* now that we know the fat_arch list fits in the buffer, how much does it use? */ | |
240 | fat_header_size = sizeof(struct fat_header) + nfat_arch * sizeof(struct fat_arch); | |
241 | arches = (struct fat_arch *)(data_ptr + sizeof(struct fat_header)); | |
242 | ||
243 | for (i=0; i < nfat_arch; i++) { | |
244 | uint32_t i_begin = OSSwapBigToHostInt32(arches[i].offset); | |
245 | uint32_t i_size = OSSwapBigToHostInt32(arches[i].size); | |
246 | uint32_t i_cputype = OSSwapBigToHostInt32(arches[i].cputype); | |
247 | uint32_t i_cpusubtype = OSSwapBigToHostInt32(arches[i].cpusubtype); | |
248 | ||
249 | if (i_begin < fat_header_size) { | |
250 | /* slice is trying to claim part of the file used by fat headers themselves */ | |
251 | return (LOAD_BADMACHO); | |
252 | } | |
253 | ||
254 | if ((UINT32_MAX - i_size) < i_begin) { | |
255 | /* start + size would overflow */ | |
256 | return (LOAD_BADMACHO); | |
257 | } | |
258 | uint32_t i_end = i_begin + i_size; | |
259 | ||
260 | for (j=i+1; j < nfat_arch; j++) { | |
261 | uint32_t j_begin = OSSwapBigToHostInt32(arches[j].offset); | |
262 | uint32_t j_size = OSSwapBigToHostInt32(arches[j].size); | |
263 | uint32_t j_cputype = OSSwapBigToHostInt32(arches[j].cputype); | |
264 | uint32_t j_cpusubtype = OSSwapBigToHostInt32(arches[j].cpusubtype); | |
265 | ||
266 | if ((i_cputype == j_cputype) && (i_cpusubtype == j_cpusubtype)) { | |
267 | /* duplicate cputype/cpusubtype, results in ambiguous references */ | |
268 | return (LOAD_BADMACHO); | |
269 | } | |
270 | ||
271 | if ((UINT32_MAX - j_size) < j_begin) { | |
272 | /* start + size would overflow */ | |
273 | return (LOAD_BADMACHO); | |
274 | } | |
275 | uint32_t j_end = j_begin + j_size; | |
276 | ||
277 | if (i_begin <= j_begin) { | |
278 | if (i_end <= j_begin) { | |
279 | /* I completely precedes J */ | |
280 | } else { | |
281 | /* I started before J, but ends somewhere in or after J */ | |
282 | return (LOAD_BADMACHO); | |
283 | } | |
284 | } else { | |
285 | if (i_begin >= j_end) { | |
286 | /* I started after J started but also after J ended */ | |
287 | } else { | |
288 | /* I started after J started but before it ended, so there is overlap */ | |
289 | return (LOAD_BADMACHO); | |
290 | } | |
291 | } | |
292 | } | |
293 | } | |
294 | ||
295 | return (LOAD_SUCCESS); | |
296 | } |