]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Copyright (c) 1995-2016 Apple Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * This file contains Original Code and/or Modifications of Original Code | |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
14 | * | |
15 | * Please obtain a copy of the License at | |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
25 | * | |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ | |
27 | */ | |
28 | /* | |
29 | * Copyright (c) 1982, 1986, 1989, 1991, 1993 | |
30 | * The Regents of the University of California. All rights reserved. | |
31 | * (c) UNIX System Laboratories, Inc. | |
32 | * All or some portions of this file are derived from material licensed | |
33 | * to the University of California by American Telephone and Telegraph | |
34 | * Co. or Unix System Laboratories, Inc. and are reproduced herein with | |
35 | * the permission of UNIX System Laboratories, Inc. | |
36 | * | |
37 | * Redistribution and use in source and binary forms, with or without | |
38 | * modification, are permitted provided that the following conditions | |
39 | * are met: | |
40 | * 1. Redistributions of source code must retain the above copyright | |
41 | * notice, this list of conditions and the following disclaimer. | |
42 | * 2. Redistributions in binary form must reproduce the above copyright | |
43 | * notice, this list of conditions and the following disclaimer in the | |
44 | * documentation and/or other materials provided with the distribution. | |
45 | * 3. All advertising materials mentioning features or use of this software | |
46 | * must display the following acknowledgement: | |
47 | * This product includes software developed by the University of | |
48 | * California, Berkeley and its contributors. | |
49 | * 4. Neither the name of the University nor the names of its contributors | |
50 | * may be used to endorse or promote products derived from this software | |
51 | * without specific prior written permission. | |
52 | * | |
53 | * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND | |
54 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
55 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |
56 | * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE | |
57 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | |
58 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | |
59 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | |
60 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | |
61 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | |
62 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | |
63 | * SUCH DAMAGE. | |
64 | * | |
65 | * @(#)kern_sig.c 8.7 (Berkeley) 4/18/94 | |
66 | */ | |
67 | /* | |
68 | * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce | |
69 | * support for mandatory and extensible security protections. This notice | |
70 | * is included in support of clause 2.2 (b) of the Apple Public License, | |
71 | * Version 2.0. | |
72 | */ | |
73 | ||
74 | #define SIGPROP /* include signal properties table */ | |
75 | #include <sys/param.h> | |
76 | #include <sys/resourcevar.h> | |
77 | #include <sys/proc_internal.h> | |
78 | #include <sys/kauth.h> | |
79 | #include <sys/systm.h> | |
80 | #include <sys/timeb.h> | |
81 | #include <sys/times.h> | |
82 | #include <sys/acct.h> | |
83 | #include <sys/file_internal.h> | |
84 | #include <sys/kernel.h> | |
85 | #include <sys/wait.h> | |
86 | #include <sys/signalvar.h> | |
87 | #include <sys/syslog.h> | |
88 | #include <sys/stat.h> | |
89 | #include <sys/lock.h> | |
90 | #include <sys/kdebug.h> | |
91 | #include <sys/reason.h> | |
92 | ||
93 | #include <sys/mount.h> | |
94 | #include <sys/sysproto.h> | |
95 | ||
96 | #include <security/audit/audit.h> | |
97 | ||
98 | #include <machine/spl.h> | |
99 | ||
100 | #include <kern/cpu_number.h> | |
101 | ||
102 | #include <sys/vm.h> | |
103 | #include <sys/user.h> /* for coredump */ | |
104 | #include <kern/ast.h> /* for APC support */ | |
105 | #include <kern/kalloc.h> | |
106 | #include <kern/task.h> /* extern void *get_bsdtask_info(task_t); */ | |
107 | #include <kern/thread.h> | |
108 | #include <kern/sched_prim.h> | |
109 | #include <kern/thread_call.h> | |
110 | #include <kern/policy_internal.h> | |
111 | ||
112 | #include <mach/exception.h> | |
113 | #include <mach/task.h> | |
114 | #include <mach/thread_act.h> | |
115 | #include <libkern/OSAtomic.h> | |
116 | ||
117 | #include <sys/sdt.h> | |
118 | #include <sys/codesign.h> | |
119 | ||
120 | /* | |
121 | * Missing prototypes that Mach should export | |
122 | * | |
123 | * +++ | |
124 | */ | |
125 | extern int thread_enable_fpe(thread_t act, int onoff); | |
126 | extern thread_t port_name_to_thread(mach_port_name_t port_name); | |
127 | extern kern_return_t get_signalact(task_t , thread_t *, int); | |
128 | extern unsigned int get_useraddr(void); | |
129 | extern boolean_t task_did_exec(task_t task); | |
130 | extern boolean_t task_is_exec_copy(task_t task); | |
131 | ||
132 | /* | |
133 | * --- | |
134 | */ | |
135 | ||
136 | extern void doexception(int exc, mach_exception_code_t code, | |
137 | mach_exception_subcode_t sub); | |
138 | ||
139 | static void stop(proc_t, proc_t); | |
140 | int cansignal(proc_t, kauth_cred_t, proc_t, int, int); | |
141 | int killpg1(proc_t, int, int, int, int); | |
142 | kern_return_t do_bsdexception(int, int, int); | |
143 | void __posix_sem_syscall_return(kern_return_t); | |
144 | char *proc_name_address(void *p); | |
145 | ||
146 | /* implementations in osfmk/kern/sync_sema.c. We do not want port.h in this scope, so void * them */ | |
147 | kern_return_t semaphore_timedwait_signal_trap_internal(mach_port_name_t, mach_port_name_t, unsigned int, clock_res_t, void (*)(kern_return_t)); | |
148 | kern_return_t semaphore_timedwait_trap_internal(mach_port_name_t, unsigned int, clock_res_t, void (*)(kern_return_t)); | |
149 | kern_return_t semaphore_wait_signal_trap_internal(mach_port_name_t, mach_port_name_t, void (*)(kern_return_t)); | |
150 | kern_return_t semaphore_wait_trap_internal(mach_port_name_t, void (*)(kern_return_t)); | |
151 | ||
152 | static int filt_sigattach(struct knote *kn); | |
153 | static void filt_sigdetach(struct knote *kn); | |
154 | static int filt_signal(struct knote *kn, long hint); | |
155 | static int filt_signaltouch(struct knote *kn, struct kevent_internal_s *kev); | |
156 | static int filt_signalprocess(struct knote *kn, struct filt_process_s *data, struct kevent_internal_s *kev); | |
157 | ||
158 | struct filterops sig_filtops = { | |
159 | .f_attach = filt_sigattach, | |
160 | .f_detach = filt_sigdetach, | |
161 | .f_event = filt_signal, | |
162 | .f_touch = filt_signaltouch, | |
163 | .f_process = filt_signalprocess, | |
164 | }; | |
165 | ||
166 | /* structures and fns for killpg1 iterartion callback and filters */ | |
167 | struct killpg1_filtargs { | |
168 | int posix; | |
169 | proc_t cp; | |
170 | }; | |
171 | ||
172 | struct killpg1_iterargs { | |
173 | proc_t cp; | |
174 | kauth_cred_t uc; | |
175 | int signum; | |
176 | int * nfoundp; | |
177 | int zombie; | |
178 | }; | |
179 | ||
180 | static int killpg1_filt(proc_t p, void * arg); | |
181 | static int killpg1_pgrpfilt(proc_t p, __unused void * arg); | |
182 | static int killpg1_callback(proc_t p, void * arg); | |
183 | ||
184 | static int pgsignal_filt(proc_t p, void * arg); | |
185 | static int pgsignal_callback(proc_t p, void * arg); | |
186 | static kern_return_t get_signalthread(proc_t, int, thread_t *); | |
187 | ||
188 | ||
189 | /* flags for psignal_internal */ | |
190 | #define PSIG_LOCKED 0x1 | |
191 | #define PSIG_VFORK 0x2 | |
192 | #define PSIG_THREAD 0x4 | |
193 | #define PSIG_TRY_THREAD 0x8 | |
194 | ||
195 | static os_reason_t build_signal_reason(int signum, const char *procname); | |
196 | static void psignal_internal(proc_t p, task_t task, thread_t thread, int flavor, int signum, os_reason_t signal_reason); | |
197 | ||
198 | /* | |
199 | * NOTE: Source and target may *NOT* overlap! (target is smaller) | |
200 | */ | |
201 | static void | |
202 | sigaltstack_kern_to_user32(struct kern_sigaltstack *in, struct user32_sigaltstack *out) | |
203 | { | |
204 | out->ss_sp = CAST_DOWN_EXPLICIT(user32_addr_t, in->ss_sp); | |
205 | out->ss_size = CAST_DOWN_EXPLICIT(user32_size_t, in->ss_size); | |
206 | out->ss_flags = in->ss_flags; | |
207 | } | |
208 | ||
209 | static void | |
210 | sigaltstack_kern_to_user64(struct kern_sigaltstack *in, struct user64_sigaltstack *out) | |
211 | { | |
212 | out->ss_sp = in->ss_sp; | |
213 | out->ss_size = in->ss_size; | |
214 | out->ss_flags = in->ss_flags; | |
215 | } | |
216 | ||
217 | /* | |
218 | * NOTE: Source and target may are permitted to overlap! (source is smaller); | |
219 | * this works because we copy fields in order from the end of the struct to | |
220 | * the beginning. | |
221 | */ | |
222 | static void | |
223 | sigaltstack_user32_to_kern(struct user32_sigaltstack *in, struct kern_sigaltstack *out) | |
224 | { | |
225 | out->ss_flags = in->ss_flags; | |
226 | out->ss_size = in->ss_size; | |
227 | out->ss_sp = CAST_USER_ADDR_T(in->ss_sp); | |
228 | } | |
229 | static void | |
230 | sigaltstack_user64_to_kern(struct user64_sigaltstack *in, struct kern_sigaltstack *out) | |
231 | { | |
232 | out->ss_flags = in->ss_flags; | |
233 | out->ss_size = in->ss_size; | |
234 | out->ss_sp = in->ss_sp; | |
235 | } | |
236 | ||
237 | static void | |
238 | sigaction_kern_to_user32(struct kern_sigaction *in, struct user32_sigaction *out) | |
239 | { | |
240 | /* This assumes 32 bit __sa_handler is of type sig_t */ | |
241 | out->__sigaction_u.__sa_handler = CAST_DOWN_EXPLICIT(user32_addr_t,in->__sigaction_u.__sa_handler); | |
242 | out->sa_mask = in->sa_mask; | |
243 | out->sa_flags = in->sa_flags; | |
244 | } | |
245 | static void | |
246 | sigaction_kern_to_user64(struct kern_sigaction *in, struct user64_sigaction *out) | |
247 | { | |
248 | /* This assumes 32 bit __sa_handler is of type sig_t */ | |
249 | out->__sigaction_u.__sa_handler = in->__sigaction_u.__sa_handler; | |
250 | out->sa_mask = in->sa_mask; | |
251 | out->sa_flags = in->sa_flags; | |
252 | } | |
253 | ||
254 | static void | |
255 | __sigaction_user32_to_kern(struct __user32_sigaction *in, struct __kern_sigaction *out) | |
256 | { | |
257 | out->__sigaction_u.__sa_handler = CAST_USER_ADDR_T(in->__sigaction_u.__sa_handler); | |
258 | out->sa_tramp = CAST_USER_ADDR_T(in->sa_tramp); | |
259 | out->sa_mask = in->sa_mask; | |
260 | out->sa_flags = in->sa_flags; | |
261 | } | |
262 | ||
263 | static void | |
264 | __sigaction_user64_to_kern(struct __user64_sigaction *in, struct __kern_sigaction *out) | |
265 | { | |
266 | out->__sigaction_u.__sa_handler = in->__sigaction_u.__sa_handler; | |
267 | out->sa_tramp = in->sa_tramp; | |
268 | out->sa_mask = in->sa_mask; | |
269 | out->sa_flags = in->sa_flags; | |
270 | } | |
271 | ||
272 | #if SIGNAL_DEBUG | |
273 | void ram_printf(int); | |
274 | int ram_debug=0; | |
275 | unsigned int rdebug_proc=0; | |
276 | void | |
277 | ram_printf(int x) | |
278 | { | |
279 | printf("x is %d",x); | |
280 | ||
281 | } | |
282 | #endif /* SIGNAL_DEBUG */ | |
283 | ||
284 | ||
285 | void | |
286 | signal_setast(thread_t sig_actthread) | |
287 | { | |
288 | act_set_astbsd(sig_actthread); | |
289 | } | |
290 | ||
291 | /* | |
292 | * Can process p, with ucred uc, send the signal signum to process q? | |
293 | * uc is refcounted by the caller so internal fileds can be used safely | |
294 | * when called with zombie arg, list lock is held | |
295 | */ | |
296 | int | |
297 | cansignal(proc_t p, kauth_cred_t uc, proc_t q, int signum, int zombie) | |
298 | { | |
299 | kauth_cred_t my_cred; | |
300 | struct session * p_sessp = SESSION_NULL; | |
301 | struct session * q_sessp = SESSION_NULL; | |
302 | #if CONFIG_MACF | |
303 | int error; | |
304 | ||
305 | error = mac_proc_check_signal(p, q, signum); | |
306 | if (error) | |
307 | return (0); | |
308 | #endif | |
309 | ||
310 | /* you can signal yourself */ | |
311 | if (p == q) | |
312 | return(1); | |
313 | ||
314 | /* you can't send launchd SIGKILL, even if root */ | |
315 | if (signum == SIGKILL && q == initproc) | |
316 | return(0); | |
317 | ||
318 | if (!suser(uc, NULL)) | |
319 | return (1); /* root can always signal */ | |
320 | ||
321 | if (zombie == 0) | |
322 | proc_list_lock(); | |
323 | if (p->p_pgrp != PGRP_NULL) | |
324 | p_sessp = p->p_pgrp->pg_session; | |
325 | if (q->p_pgrp != PGRP_NULL) | |
326 | q_sessp = q->p_pgrp->pg_session; | |
327 | ||
328 | if (signum == SIGCONT && q_sessp == p_sessp) { | |
329 | if (zombie == 0) | |
330 | proc_list_unlock(); | |
331 | return (1); /* SIGCONT in session */ | |
332 | } | |
333 | ||
334 | if (zombie == 0) | |
335 | proc_list_unlock(); | |
336 | ||
337 | /* | |
338 | * If the real or effective UID of the sender matches the real | |
339 | * or saved UID of the target, permit the signal to | |
340 | * be sent. | |
341 | */ | |
342 | if (zombie == 0) | |
343 | my_cred = kauth_cred_proc_ref(q); | |
344 | else | |
345 | my_cred = proc_ucred(q); | |
346 | ||
347 | if (kauth_cred_getruid(uc) == kauth_cred_getruid(my_cred) || | |
348 | kauth_cred_getruid(uc) == kauth_cred_getsvuid(my_cred) || | |
349 | kauth_cred_getuid(uc) == kauth_cred_getruid(my_cred) || | |
350 | kauth_cred_getuid(uc) == kauth_cred_getsvuid(my_cred)) { | |
351 | if (zombie == 0) | |
352 | kauth_cred_unref(&my_cred); | |
353 | return (1); | |
354 | } | |
355 | ||
356 | if (zombie == 0) | |
357 | kauth_cred_unref(&my_cred); | |
358 | ||
359 | return (0); | |
360 | } | |
361 | ||
362 | /* | |
363 | * <rdar://problem/21952708> Some signals can be restricted from being handled, | |
364 | * forcing the default action for that signal. This behavior applies only to | |
365 | * non-root (EUID != 0) processes, and is configured with the "sigrestrict=x" | |
366 | * bootarg: | |
367 | * | |
368 | * 0 (default): Disallow use of restricted signals. Trying to register a handler | |
369 | * returns ENOTSUP, which userspace may use to take special action (e.g. abort). | |
370 | * 1: As above, but return EINVAL. Restricted signals behave similarly to SIGKILL. | |
371 | * 2: Usual POSIX semantics. | |
372 | */ | |
373 | unsigned sigrestrict_arg = 0; | |
374 | ||
375 | #if PLATFORM_WatchOS | |
376 | static int | |
377 | sigrestrictmask(void) | |
378 | { | |
379 | if (kauth_getuid() != 0 && sigrestrict_arg != 2) { | |
380 | return SIGRESTRICTMASK; | |
381 | } | |
382 | return 0; | |
383 | } | |
384 | ||
385 | static int | |
386 | signal_is_restricted(proc_t p, int signum) | |
387 | { | |
388 | if (sigmask(signum) & sigrestrictmask()) { | |
389 | if (sigrestrict_arg == 0 && | |
390 | task_get_apptype(p->task) == TASK_APPTYPE_APP_DEFAULT) { | |
391 | return ENOTSUP; | |
392 | } else { | |
393 | return EINVAL; | |
394 | } | |
395 | } | |
396 | return 0; | |
397 | } | |
398 | ||
399 | #else | |
400 | ||
401 | static inline int | |
402 | signal_is_restricted(proc_t p, int signum) | |
403 | { | |
404 | (void)p; | |
405 | (void)signum; | |
406 | return 0; | |
407 | } | |
408 | #endif /* !PLATFORM_WatchOS */ | |
409 | ||
410 | /* | |
411 | * Returns: 0 Success | |
412 | * EINVAL | |
413 | * copyout:EFAULT | |
414 | * copyin:EFAULT | |
415 | * | |
416 | * Notes: Uses current thread as a parameter to inform PPC to enable | |
417 | * FPU exceptions via setsigvec(); this operation is not proxy | |
418 | * safe! | |
419 | */ | |
420 | /* ARGSUSED */ | |
421 | int | |
422 | sigaction(proc_t p, struct sigaction_args *uap, __unused int32_t *retval) | |
423 | { | |
424 | struct kern_sigaction vec; | |
425 | struct __kern_sigaction __vec; | |
426 | ||
427 | struct kern_sigaction *sa = &vec; | |
428 | struct sigacts *ps = p->p_sigacts; | |
429 | ||
430 | int signum; | |
431 | int bit, error=0; | |
432 | ||
433 | signum = uap->signum; | |
434 | if (signum <= 0 || signum >= NSIG || | |
435 | signum == SIGKILL || signum == SIGSTOP) | |
436 | return (EINVAL); | |
437 | ||
438 | if (uap->nsa) { | |
439 | if (IS_64BIT_PROCESS(p)) { | |
440 | struct __user64_sigaction __vec64; | |
441 | error = copyin(uap->nsa, &__vec64, sizeof(__vec64)); | |
442 | __sigaction_user64_to_kern(&__vec64, &__vec); | |
443 | } else { | |
444 | struct __user32_sigaction __vec32; | |
445 | error = copyin(uap->nsa, &__vec32, sizeof(__vec32)); | |
446 | __sigaction_user32_to_kern(&__vec32, &__vec); | |
447 | } | |
448 | if (error) | |
449 | return (error); | |
450 | __vec.sa_flags &= SA_USERSPACE_MASK; /* Only pass on valid sa_flags */ | |
451 | ||
452 | if ((__vec.sa_flags & SA_SIGINFO) || __vec.sa_handler != SIG_DFL) { | |
453 | if ((error = signal_is_restricted(p, signum))) { | |
454 | if (error == ENOTSUP) { | |
455 | printf("%s(%d): denied attempt to register action for signal %d\n", | |
456 | proc_name_address(p), proc_pid(p), signum); | |
457 | } | |
458 | return error; | |
459 | } | |
460 | } | |
461 | } | |
462 | ||
463 | if (uap->osa) { | |
464 | sa->sa_handler = ps->ps_sigact[signum]; | |
465 | sa->sa_mask = ps->ps_catchmask[signum]; | |
466 | bit = sigmask(signum); | |
467 | sa->sa_flags = 0; | |
468 | if ((ps->ps_sigonstack & bit) != 0) | |
469 | sa->sa_flags |= SA_ONSTACK; | |
470 | if ((ps->ps_sigintr & bit) == 0) | |
471 | sa->sa_flags |= SA_RESTART; | |
472 | if (ps->ps_siginfo & bit) | |
473 | sa->sa_flags |= SA_SIGINFO; | |
474 | if (ps->ps_signodefer & bit) | |
475 | sa->sa_flags |= SA_NODEFER; | |
476 | if (ps->ps_64regset & bit) | |
477 | sa->sa_flags |= SA_64REGSET; | |
478 | if ((signum == SIGCHLD) && (p->p_flag & P_NOCLDSTOP)) | |
479 | sa->sa_flags |= SA_NOCLDSTOP; | |
480 | if ((signum == SIGCHLD) && (p->p_flag & P_NOCLDWAIT)) | |
481 | sa->sa_flags |= SA_NOCLDWAIT; | |
482 | ||
483 | if (IS_64BIT_PROCESS(p)) { | |
484 | struct user64_sigaction vec64; | |
485 | sigaction_kern_to_user64(sa, &vec64); | |
486 | error = copyout(&vec64, uap->osa, sizeof(vec64)); | |
487 | } else { | |
488 | struct user32_sigaction vec32; | |
489 | sigaction_kern_to_user32(sa, &vec32); | |
490 | error = copyout(&vec32, uap->osa, sizeof(vec32)); | |
491 | } | |
492 | if (error) | |
493 | return (error); | |
494 | } | |
495 | ||
496 | if (uap->nsa) { | |
497 | error = setsigvec(p, current_thread(), signum, &__vec, FALSE); | |
498 | } | |
499 | ||
500 | return (error); | |
501 | } | |
502 | ||
503 | /* Routines to manipulate bits on all threads */ | |
504 | int | |
505 | clear_procsiglist(proc_t p, int bit, boolean_t in_signalstart) | |
506 | { | |
507 | struct uthread * uth; | |
508 | thread_t thact; | |
509 | ||
510 | proc_lock(p); | |
511 | if (!in_signalstart) | |
512 | proc_signalstart(p, 1); | |
513 | ||
514 | if ((p->p_lflag & P_LINVFORK) && p->p_vforkact) { | |
515 | thact = p->p_vforkact; | |
516 | uth = (struct uthread *)get_bsdthread_info(thact); | |
517 | if (uth) { | |
518 | uth->uu_siglist &= ~bit; | |
519 | } | |
520 | if (!in_signalstart) | |
521 | proc_signalend(p, 1); | |
522 | proc_unlock(p); | |
523 | return(0); | |
524 | } | |
525 | ||
526 | TAILQ_FOREACH(uth, &p->p_uthlist, uu_list) { | |
527 | uth->uu_siglist &= ~bit; | |
528 | } | |
529 | p->p_siglist &= ~bit; | |
530 | if (!in_signalstart) | |
531 | proc_signalend(p, 1); | |
532 | proc_unlock(p); | |
533 | ||
534 | return(0); | |
535 | } | |
536 | ||
537 | ||
538 | static int | |
539 | unblock_procsigmask(proc_t p, int bit) | |
540 | { | |
541 | struct uthread * uth; | |
542 | thread_t thact; | |
543 | ||
544 | proc_lock(p); | |
545 | proc_signalstart(p, 1); | |
546 | ||
547 | if ((p->p_lflag & P_LINVFORK) && p->p_vforkact) { | |
548 | thact = p->p_vforkact; | |
549 | uth = (struct uthread *)get_bsdthread_info(thact); | |
550 | if (uth) { | |
551 | uth->uu_sigmask &= ~bit; | |
552 | } | |
553 | p->p_sigmask &= ~bit; | |
554 | proc_signalend(p, 1); | |
555 | proc_unlock(p); | |
556 | return(0); | |
557 | } | |
558 | TAILQ_FOREACH(uth, &p->p_uthlist, uu_list) { | |
559 | uth->uu_sigmask &= ~bit; | |
560 | } | |
561 | p->p_sigmask &= ~bit; | |
562 | ||
563 | proc_signalend(p, 1); | |
564 | proc_unlock(p); | |
565 | return(0); | |
566 | } | |
567 | ||
568 | static int | |
569 | block_procsigmask(proc_t p, int bit) | |
570 | { | |
571 | struct uthread * uth; | |
572 | thread_t thact; | |
573 | ||
574 | proc_lock(p); | |
575 | proc_signalstart(p, 1); | |
576 | ||
577 | if ((p->p_lflag & P_LINVFORK) && p->p_vforkact) { | |
578 | thact = p->p_vforkact; | |
579 | uth = (struct uthread *)get_bsdthread_info(thact); | |
580 | if (uth) { | |
581 | uth->uu_sigmask |= bit; | |
582 | } | |
583 | p->p_sigmask |= bit; | |
584 | proc_signalend(p, 1); | |
585 | proc_unlock(p); | |
586 | return(0); | |
587 | } | |
588 | TAILQ_FOREACH(uth, &p->p_uthlist, uu_list) { | |
589 | uth->uu_sigmask |= bit; | |
590 | } | |
591 | p->p_sigmask |= bit; | |
592 | ||
593 | proc_signalend(p, 1); | |
594 | proc_unlock(p); | |
595 | return(0); | |
596 | } | |
597 | ||
598 | int | |
599 | set_procsigmask(proc_t p, int bit) | |
600 | { | |
601 | struct uthread * uth; | |
602 | thread_t thact; | |
603 | ||
604 | proc_lock(p); | |
605 | proc_signalstart(p, 1); | |
606 | ||
607 | if ((p->p_lflag & P_LINVFORK) && p->p_vforkact) { | |
608 | thact = p->p_vforkact; | |
609 | uth = (struct uthread *)get_bsdthread_info(thact); | |
610 | if (uth) { | |
611 | uth->uu_sigmask = bit; | |
612 | } | |
613 | p->p_sigmask = bit; | |
614 | proc_signalend(p, 1); | |
615 | proc_unlock(p); | |
616 | return(0); | |
617 | } | |
618 | TAILQ_FOREACH(uth, &p->p_uthlist, uu_list) { | |
619 | uth->uu_sigmask = bit; | |
620 | } | |
621 | p->p_sigmask = bit; | |
622 | proc_signalend(p, 1); | |
623 | proc_unlock(p); | |
624 | ||
625 | return(0); | |
626 | } | |
627 | ||
628 | /* XXX should be static? */ | |
629 | /* | |
630 | * Notes: The thread parameter is used in the PPC case to select the | |
631 | * thread on which the floating point exception will be enabled | |
632 | * or disabled. We can't simply take current_thread(), since | |
633 | * this is called from posix_spawn() on the not currently running | |
634 | * process/thread pair. | |
635 | * | |
636 | * We mark thread as unused to alow compilation without warning | |
637 | * on non-PPC platforms. | |
638 | */ | |
639 | int | |
640 | setsigvec(proc_t p, __unused thread_t thread, int signum, struct __kern_sigaction *sa, boolean_t in_sigstart) | |
641 | { | |
642 | struct sigacts *ps = p->p_sigacts; | |
643 | int bit; | |
644 | ||
645 | assert(signum < NSIG); | |
646 | ||
647 | if ((signum == SIGKILL || signum == SIGSTOP) && | |
648 | sa->sa_handler != SIG_DFL) | |
649 | return(EINVAL); | |
650 | bit = sigmask(signum); | |
651 | /* | |
652 | * Change setting atomically. | |
653 | */ | |
654 | ps->ps_sigact[signum] = sa->sa_handler; | |
655 | ps->ps_trampact[signum] = sa->sa_tramp; | |
656 | ps->ps_catchmask[signum] = sa->sa_mask &~ sigcantmask; | |
657 | if (sa->sa_flags & SA_SIGINFO) | |
658 | ps->ps_siginfo |= bit; | |
659 | else | |
660 | ps->ps_siginfo &= ~bit; | |
661 | if (sa->sa_flags & SA_64REGSET) | |
662 | ps->ps_64regset |= bit; | |
663 | else | |
664 | ps->ps_64regset &= ~bit; | |
665 | if ((sa->sa_flags & SA_RESTART) == 0) | |
666 | ps->ps_sigintr |= bit; | |
667 | else | |
668 | ps->ps_sigintr &= ~bit; | |
669 | if (sa->sa_flags & SA_ONSTACK) | |
670 | ps->ps_sigonstack |= bit; | |
671 | else | |
672 | ps->ps_sigonstack &= ~bit; | |
673 | if (sa->sa_flags & SA_USERTRAMP) | |
674 | ps->ps_usertramp |= bit; | |
675 | else | |
676 | ps->ps_usertramp &= ~bit; | |
677 | if (sa->sa_flags & SA_RESETHAND) | |
678 | ps->ps_sigreset |= bit; | |
679 | else | |
680 | ps->ps_sigreset &= ~bit; | |
681 | if (sa->sa_flags & SA_NODEFER) | |
682 | ps->ps_signodefer |= bit; | |
683 | else | |
684 | ps->ps_signodefer &= ~bit; | |
685 | if (signum == SIGCHLD) { | |
686 | if (sa->sa_flags & SA_NOCLDSTOP) | |
687 | OSBitOrAtomic(P_NOCLDSTOP, &p->p_flag); | |
688 | else | |
689 | OSBitAndAtomic(~((uint32_t)P_NOCLDSTOP), &p->p_flag); | |
690 | if ((sa->sa_flags & SA_NOCLDWAIT) || (sa->sa_handler == SIG_IGN)) | |
691 | OSBitOrAtomic(P_NOCLDWAIT, &p->p_flag); | |
692 | else | |
693 | OSBitAndAtomic(~((uint32_t)P_NOCLDWAIT), &p->p_flag); | |
694 | } | |
695 | ||
696 | /* | |
697 | * Set bit in p_sigignore for signals that are set to SIG_IGN, | |
698 | * and for signals set to SIG_DFL where the default is to ignore. | |
699 | * However, don't put SIGCONT in p_sigignore, | |
700 | * as we have to restart the process. | |
701 | */ | |
702 | if (sa->sa_handler == SIG_IGN || | |
703 | (sigprop[signum] & SA_IGNORE && sa->sa_handler == SIG_DFL)) { | |
704 | ||
705 | clear_procsiglist(p, bit, in_sigstart); | |
706 | if (signum != SIGCONT) | |
707 | p->p_sigignore |= bit; /* easier in psignal */ | |
708 | p->p_sigcatch &= ~bit; | |
709 | } else { | |
710 | p->p_sigignore &= ~bit; | |
711 | if (sa->sa_handler == SIG_DFL) | |
712 | p->p_sigcatch &= ~bit; | |
713 | else | |
714 | p->p_sigcatch |= bit; | |
715 | } | |
716 | return(0); | |
717 | } | |
718 | ||
719 | /* | |
720 | * Initialize signal state for process 0; | |
721 | * set to ignore signals that are ignored by default. | |
722 | */ | |
723 | void | |
724 | siginit(proc_t p) | |
725 | { | |
726 | int i; | |
727 | ||
728 | for (i = 1; i < NSIG; i++) | |
729 | if (sigprop[i] & SA_IGNORE && i != SIGCONT) | |
730 | p->p_sigignore |= sigmask(i); | |
731 | } | |
732 | ||
733 | /* | |
734 | * Reset signals for an exec of the specified process. | |
735 | */ | |
736 | void | |
737 | execsigs(proc_t p, thread_t thread) | |
738 | { | |
739 | struct sigacts *ps = p->p_sigacts; | |
740 | int nc, mask; | |
741 | struct uthread *ut; | |
742 | ||
743 | ut = (struct uthread *)get_bsdthread_info(thread); | |
744 | ||
745 | /* | |
746 | * transfer saved signal states from the process | |
747 | * back to the current thread. | |
748 | * | |
749 | * NOTE: We do this without the process locked, | |
750 | * because we are guaranteed to be single-threaded | |
751 | * by this point in exec and the p_siglist is | |
752 | * only accessed by threads inside the process. | |
753 | */ | |
754 | ut->uu_siglist |= p->p_siglist; | |
755 | p->p_siglist = 0; | |
756 | ||
757 | /* | |
758 | * Reset caught signals. Held signals remain held | |
759 | * through p_sigmask (unless they were caught, | |
760 | * and are now ignored by default). | |
761 | */ | |
762 | while (p->p_sigcatch) { | |
763 | nc = ffs((long)p->p_sigcatch); | |
764 | mask = sigmask(nc); | |
765 | p->p_sigcatch &= ~mask; | |
766 | if (sigprop[nc] & SA_IGNORE) { | |
767 | if (nc != SIGCONT) | |
768 | p->p_sigignore |= mask; | |
769 | ut->uu_siglist &= ~mask; | |
770 | } | |
771 | ps->ps_sigact[nc] = SIG_DFL; | |
772 | } | |
773 | ||
774 | /* | |
775 | * Reset stack state to the user stack. | |
776 | * Clear set of signals caught on the signal stack. | |
777 | */ | |
778 | /* thread */ | |
779 | ut->uu_sigstk.ss_flags = SA_DISABLE; | |
780 | ut->uu_sigstk.ss_size = 0; | |
781 | ut->uu_sigstk.ss_sp = USER_ADDR_NULL; | |
782 | ut->uu_flag &= ~UT_ALTSTACK; | |
783 | /* process */ | |
784 | ps->ps_sigonstack = 0; | |
785 | } | |
786 | ||
787 | /* | |
788 | * Manipulate signal mask. | |
789 | * Note that we receive new mask, not pointer, | |
790 | * and return old mask as return value; | |
791 | * the library stub does the rest. | |
792 | */ | |
793 | int | |
794 | sigprocmask(proc_t p, struct sigprocmask_args *uap, __unused int32_t *retval) | |
795 | { | |
796 | int error = 0; | |
797 | sigset_t oldmask, nmask; | |
798 | user_addr_t omask = uap->omask; | |
799 | struct uthread *ut; | |
800 | ||
801 | ut = (struct uthread *)get_bsdthread_info(current_thread()); | |
802 | oldmask = ut->uu_sigmask; | |
803 | ||
804 | if (uap->mask == USER_ADDR_NULL) { | |
805 | /* just want old mask */ | |
806 | goto out; | |
807 | } | |
808 | error = copyin(uap->mask, &nmask, sizeof(sigset_t)); | |
809 | if (error) | |
810 | goto out; | |
811 | ||
812 | switch (uap->how) { | |
813 | case SIG_BLOCK: | |
814 | block_procsigmask(p, (nmask & ~sigcantmask)); | |
815 | signal_setast(current_thread()); | |
816 | break; | |
817 | ||
818 | case SIG_UNBLOCK: | |
819 | unblock_procsigmask(p, (nmask & ~sigcantmask)); | |
820 | signal_setast(current_thread()); | |
821 | break; | |
822 | ||
823 | case SIG_SETMASK: | |
824 | set_procsigmask(p, (nmask & ~sigcantmask)); | |
825 | signal_setast(current_thread()); | |
826 | break; | |
827 | ||
828 | default: | |
829 | error = EINVAL; | |
830 | break; | |
831 | } | |
832 | out: | |
833 | if (!error && omask != USER_ADDR_NULL) | |
834 | copyout(&oldmask, omask, sizeof(sigset_t)); | |
835 | return (error); | |
836 | } | |
837 | ||
838 | int | |
839 | sigpending(__unused proc_t p, struct sigpending_args *uap, __unused int32_t *retval) | |
840 | { | |
841 | struct uthread *ut; | |
842 | sigset_t pendlist; | |
843 | ||
844 | ut = (struct uthread *)get_bsdthread_info(current_thread()); | |
845 | pendlist = ut->uu_siglist; | |
846 | ||
847 | if (uap->osv) | |
848 | copyout(&pendlist, uap->osv, sizeof(sigset_t)); | |
849 | return(0); | |
850 | } | |
851 | ||
852 | /* | |
853 | * Suspend process until signal, providing mask to be set | |
854 | * in the meantime. Note nonstandard calling convention: | |
855 | * libc stub passes mask, not pointer, to save a copyin. | |
856 | */ | |
857 | ||
858 | static int | |
859 | sigcontinue(__unused int error) | |
860 | { | |
861 | // struct uthread *ut = get_bsdthread_info(current_thread()); | |
862 | unix_syscall_return(EINTR); | |
863 | } | |
864 | ||
865 | int | |
866 | sigsuspend(proc_t p, struct sigsuspend_args *uap, int32_t *retval) | |
867 | { | |
868 | __pthread_testcancel(1); | |
869 | return(sigsuspend_nocancel(p, (struct sigsuspend_nocancel_args *)uap, retval)); | |
870 | } | |
871 | ||
872 | int | |
873 | sigsuspend_nocancel(proc_t p, struct sigsuspend_nocancel_args *uap, __unused int32_t *retval) | |
874 | { | |
875 | struct uthread *ut; | |
876 | ||
877 | ut = (struct uthread *)get_bsdthread_info(current_thread()); | |
878 | ||
879 | /* | |
880 | * When returning from sigpause, we want | |
881 | * the old mask to be restored after the | |
882 | * signal handler has finished. Thus, we | |
883 | * save it here and mark the sigacts structure | |
884 | * to indicate this. | |
885 | */ | |
886 | ut->uu_oldmask = ut->uu_sigmask; | |
887 | ut->uu_flag |= UT_SAS_OLDMASK; | |
888 | ut->uu_sigmask = (uap->mask & ~sigcantmask); | |
889 | (void) tsleep0((caddr_t) p, PPAUSE|PCATCH, "pause", 0, sigcontinue); | |
890 | /* always return EINTR rather than ERESTART... */ | |
891 | return (EINTR); | |
892 | } | |
893 | ||
894 | ||
895 | int | |
896 | __disable_threadsignal(__unused proc_t p, | |
897 | __unused struct __disable_threadsignal_args *uap, | |
898 | __unused int32_t *retval) | |
899 | { | |
900 | struct uthread *uth; | |
901 | ||
902 | uth = (struct uthread *)get_bsdthread_info(current_thread()); | |
903 | ||
904 | /* No longer valid to have any signal delivered */ | |
905 | uth->uu_flag |= (UT_NO_SIGMASK | UT_CANCELDISABLE); | |
906 | ||
907 | return(0); | |
908 | ||
909 | } | |
910 | ||
911 | void | |
912 | __pthread_testcancel(int presyscall) | |
913 | { | |
914 | ||
915 | thread_t self = current_thread(); | |
916 | struct uthread * uthread; | |
917 | ||
918 | uthread = (struct uthread *)get_bsdthread_info(self); | |
919 | ||
920 | ||
921 | uthread->uu_flag &= ~UT_NOTCANCELPT; | |
922 | ||
923 | if ((uthread->uu_flag & (UT_CANCELDISABLE | UT_CANCEL | UT_CANCELED)) == UT_CANCEL) { | |
924 | if(presyscall != 0) { | |
925 | unix_syscall_return(EINTR); | |
926 | /* NOTREACHED */ | |
927 | } else | |
928 | thread_abort_safely(self); | |
929 | } | |
930 | } | |
931 | ||
932 | ||
933 | ||
934 | int | |
935 | __pthread_markcancel(__unused proc_t p, | |
936 | struct __pthread_markcancel_args *uap, __unused int32_t *retval) | |
937 | { | |
938 | thread_act_t target_act; | |
939 | int error = 0; | |
940 | struct uthread *uth; | |
941 | ||
942 | target_act = (thread_act_t)port_name_to_thread(uap->thread_port); | |
943 | ||
944 | if (target_act == THR_ACT_NULL) | |
945 | return (ESRCH); | |
946 | ||
947 | uth = (struct uthread *)get_bsdthread_info(target_act); | |
948 | ||
949 | /* if the thread is in vfork do not cancel */ | |
950 | if ((uth->uu_flag & (UT_VFORK | UT_CANCEL | UT_CANCELED )) == 0) { | |
951 | uth->uu_flag |= (UT_CANCEL | UT_NO_SIGMASK); | |
952 | if (((uth->uu_flag & UT_NOTCANCELPT) == 0) | |
953 | && ((uth->uu_flag & UT_CANCELDISABLE) == 0)) | |
954 | thread_abort_safely(target_act); | |
955 | } | |
956 | ||
957 | thread_deallocate(target_act); | |
958 | return (error); | |
959 | } | |
960 | ||
961 | /* if action =0 ; return the cancellation state , | |
962 | * if marked for cancellation, make the thread canceled | |
963 | * if action = 1 ; Enable the cancel handling | |
964 | * if action = 2; Disable the cancel handling | |
965 | */ | |
966 | int | |
967 | __pthread_canceled(__unused proc_t p, | |
968 | struct __pthread_canceled_args *uap, __unused int32_t *retval) | |
969 | { | |
970 | thread_act_t thread; | |
971 | struct uthread *uth; | |
972 | int action = uap->action; | |
973 | ||
974 | thread = current_thread(); | |
975 | uth = (struct uthread *)get_bsdthread_info(thread); | |
976 | ||
977 | switch (action) { | |
978 | case 1: | |
979 | uth->uu_flag &= ~UT_CANCELDISABLE; | |
980 | return(0); | |
981 | case 2: | |
982 | uth->uu_flag |= UT_CANCELDISABLE; | |
983 | return(0); | |
984 | case 0: | |
985 | default: | |
986 | /* if the thread is in vfork do not cancel */ | |
987 | if((uth->uu_flag & ( UT_CANCELDISABLE | UT_CANCEL | UT_CANCELED)) == UT_CANCEL) { | |
988 | uth->uu_flag &= ~UT_CANCEL; | |
989 | uth->uu_flag |= (UT_CANCELED | UT_NO_SIGMASK); | |
990 | return(0); | |
991 | } | |
992 | return(EINVAL); | |
993 | } | |
994 | return(EINVAL); | |
995 | } | |
996 | ||
997 | __attribute__((noreturn)) | |
998 | void | |
999 | __posix_sem_syscall_return(kern_return_t kern_result) | |
1000 | { | |
1001 | int error = 0; | |
1002 | ||
1003 | if (kern_result == KERN_SUCCESS) | |
1004 | error = 0; | |
1005 | else if (kern_result == KERN_ABORTED) | |
1006 | error = EINTR; | |
1007 | else if (kern_result == KERN_OPERATION_TIMED_OUT) | |
1008 | error = ETIMEDOUT; | |
1009 | else | |
1010 | error = EINVAL; | |
1011 | unix_syscall_return(error); | |
1012 | /* does not return */ | |
1013 | } | |
1014 | ||
1015 | #if OLD_SEMWAIT_SIGNAL | |
1016 | /* | |
1017 | * Returns: 0 Success | |
1018 | * EINTR | |
1019 | * ETIMEDOUT | |
1020 | * EINVAL | |
1021 | * EFAULT if timespec is NULL | |
1022 | */ | |
1023 | int | |
1024 | __old_semwait_signal(proc_t p, struct __old_semwait_signal_args *uap, | |
1025 | int32_t *retval) | |
1026 | { | |
1027 | __pthread_testcancel(0); | |
1028 | return(__old_semwait_signal_nocancel(p, (struct __old_semwait_signal_nocancel_args *)uap, retval)); | |
1029 | } | |
1030 | ||
1031 | int | |
1032 | __old_semwait_signal_nocancel(proc_t p, struct __old_semwait_signal_nocancel_args *uap, | |
1033 | __unused int32_t *retval) | |
1034 | { | |
1035 | ||
1036 | kern_return_t kern_result; | |
1037 | int error; | |
1038 | mach_timespec_t then; | |
1039 | struct timespec now; | |
1040 | struct user_timespec ts; | |
1041 | boolean_t truncated_timeout = FALSE; | |
1042 | ||
1043 | if(uap->timeout) { | |
1044 | ||
1045 | if (IS_64BIT_PROCESS(p)) { | |
1046 | struct user64_timespec ts64; | |
1047 | error = copyin(uap->ts, &ts64, sizeof(ts64)); | |
1048 | ts.tv_sec = ts64.tv_sec; | |
1049 | ts.tv_nsec = ts64.tv_nsec; | |
1050 | } else { | |
1051 | struct user32_timespec ts32; | |
1052 | error = copyin(uap->ts, &ts32, sizeof(ts32)); | |
1053 | ts.tv_sec = ts32.tv_sec; | |
1054 | ts.tv_nsec = ts32.tv_nsec; | |
1055 | } | |
1056 | ||
1057 | if (error) { | |
1058 | return error; | |
1059 | } | |
1060 | ||
1061 | if ((ts.tv_sec & 0xFFFFFFFF00000000ULL) != 0) { | |
1062 | ts.tv_sec = 0xFFFFFFFF; | |
1063 | ts.tv_nsec = 0; | |
1064 | truncated_timeout = TRUE; | |
1065 | } | |
1066 | ||
1067 | if (uap->relative) { | |
1068 | then.tv_sec = ts.tv_sec; | |
1069 | then.tv_nsec = ts.tv_nsec; | |
1070 | } else { | |
1071 | nanotime(&now); | |
1072 | ||
1073 | /* if time has elapsed, set time to null timepsec to bailout rightaway */ | |
1074 | if (now.tv_sec == ts.tv_sec ? | |
1075 | now.tv_nsec > ts.tv_nsec : | |
1076 | now.tv_sec > ts.tv_sec) { | |
1077 | then.tv_sec = 0; | |
1078 | then.tv_nsec = 0; | |
1079 | } else { | |
1080 | then.tv_sec = ts.tv_sec - now.tv_sec; | |
1081 | then.tv_nsec = ts.tv_nsec - now.tv_nsec; | |
1082 | if (then.tv_nsec < 0) { | |
1083 | then.tv_nsec += NSEC_PER_SEC; | |
1084 | then.tv_sec--; | |
1085 | } | |
1086 | } | |
1087 | } | |
1088 | ||
1089 | if (uap->mutex_sem == 0) | |
1090 | kern_result = semaphore_timedwait_trap_internal((mach_port_name_t)uap->cond_sem, then.tv_sec, then.tv_nsec, __posix_sem_syscall_return); | |
1091 | else | |
1092 | kern_result = semaphore_timedwait_signal_trap_internal(uap->cond_sem, uap->mutex_sem, then.tv_sec, then.tv_nsec, __posix_sem_syscall_return); | |
1093 | ||
1094 | } else { | |
1095 | ||
1096 | if (uap->mutex_sem == 0) | |
1097 | kern_result = semaphore_wait_trap_internal(uap->cond_sem, __posix_sem_syscall_return); | |
1098 | else | |
1099 | ||
1100 | kern_result = semaphore_wait_signal_trap_internal(uap->cond_sem, uap->mutex_sem, __posix_sem_syscall_return); | |
1101 | } | |
1102 | ||
1103 | if (kern_result == KERN_SUCCESS && !truncated_timeout) | |
1104 | return(0); | |
1105 | else if (kern_result == KERN_SUCCESS && truncated_timeout) | |
1106 | return(EINTR); /* simulate an exceptional condition because Mach doesn't support a longer timeout */ | |
1107 | else if (kern_result == KERN_ABORTED) | |
1108 | return(EINTR); | |
1109 | else if (kern_result == KERN_OPERATION_TIMED_OUT) | |
1110 | return(ETIMEDOUT); | |
1111 | else | |
1112 | return(EINVAL); | |
1113 | } | |
1114 | #endif /* OLD_SEMWAIT_SIGNAL*/ | |
1115 | ||
1116 | /* | |
1117 | * Returns: 0 Success | |
1118 | * EINTR | |
1119 | * ETIMEDOUT | |
1120 | * EINVAL | |
1121 | * EFAULT if timespec is NULL | |
1122 | */ | |
1123 | int | |
1124 | __semwait_signal(proc_t p, struct __semwait_signal_args *uap, | |
1125 | int32_t *retval) | |
1126 | { | |
1127 | __pthread_testcancel(0); | |
1128 | return(__semwait_signal_nocancel(p, (struct __semwait_signal_nocancel_args *)uap, retval)); | |
1129 | } | |
1130 | ||
1131 | int | |
1132 | __semwait_signal_nocancel(__unused proc_t p, struct __semwait_signal_nocancel_args *uap, | |
1133 | __unused int32_t *retval) | |
1134 | { | |
1135 | ||
1136 | kern_return_t kern_result; | |
1137 | mach_timespec_t then; | |
1138 | struct timespec now; | |
1139 | struct user_timespec ts; | |
1140 | boolean_t truncated_timeout = FALSE; | |
1141 | ||
1142 | if(uap->timeout) { | |
1143 | ||
1144 | ts.tv_sec = uap->tv_sec; | |
1145 | ts.tv_nsec = uap->tv_nsec; | |
1146 | ||
1147 | if ((ts.tv_sec & 0xFFFFFFFF00000000ULL) != 0) { | |
1148 | ts.tv_sec = 0xFFFFFFFF; | |
1149 | ts.tv_nsec = 0; | |
1150 | truncated_timeout = TRUE; | |
1151 | } | |
1152 | ||
1153 | if (uap->relative) { | |
1154 | then.tv_sec = ts.tv_sec; | |
1155 | then.tv_nsec = ts.tv_nsec; | |
1156 | } else { | |
1157 | nanotime(&now); | |
1158 | ||
1159 | /* if time has elapsed, set time to null timepsec to bailout rightaway */ | |
1160 | if (now.tv_sec == ts.tv_sec ? | |
1161 | now.tv_nsec > ts.tv_nsec : | |
1162 | now.tv_sec > ts.tv_sec) { | |
1163 | then.tv_sec = 0; | |
1164 | then.tv_nsec = 0; | |
1165 | } else { | |
1166 | then.tv_sec = ts.tv_sec - now.tv_sec; | |
1167 | then.tv_nsec = ts.tv_nsec - now.tv_nsec; | |
1168 | if (then.tv_nsec < 0) { | |
1169 | then.tv_nsec += NSEC_PER_SEC; | |
1170 | then.tv_sec--; | |
1171 | } | |
1172 | } | |
1173 | } | |
1174 | ||
1175 | if (uap->mutex_sem == 0) | |
1176 | kern_result = semaphore_timedwait_trap_internal((mach_port_name_t)uap->cond_sem, then.tv_sec, then.tv_nsec, __posix_sem_syscall_return); | |
1177 | else | |
1178 | kern_result = semaphore_timedwait_signal_trap_internal(uap->cond_sem, uap->mutex_sem, then.tv_sec, then.tv_nsec, __posix_sem_syscall_return); | |
1179 | ||
1180 | } else { | |
1181 | ||
1182 | if (uap->mutex_sem == 0) | |
1183 | kern_result = semaphore_wait_trap_internal(uap->cond_sem, __posix_sem_syscall_return); | |
1184 | else | |
1185 | ||
1186 | kern_result = semaphore_wait_signal_trap_internal(uap->cond_sem, uap->mutex_sem, __posix_sem_syscall_return); | |
1187 | } | |
1188 | ||
1189 | if (kern_result == KERN_SUCCESS && !truncated_timeout) | |
1190 | return(0); | |
1191 | else if (kern_result == KERN_SUCCESS && truncated_timeout) | |
1192 | return(EINTR); /* simulate an exceptional condition because Mach doesn't support a longer timeout */ | |
1193 | else if (kern_result == KERN_ABORTED) | |
1194 | return(EINTR); | |
1195 | else if (kern_result == KERN_OPERATION_TIMED_OUT) | |
1196 | return(ETIMEDOUT); | |
1197 | else | |
1198 | return(EINVAL); | |
1199 | } | |
1200 | ||
1201 | ||
1202 | int | |
1203 | __pthread_kill(__unused proc_t p, struct __pthread_kill_args *uap, | |
1204 | __unused int32_t *retval) | |
1205 | { | |
1206 | thread_t target_act; | |
1207 | int error = 0; | |
1208 | int signum = uap->sig; | |
1209 | struct uthread *uth; | |
1210 | ||
1211 | target_act = (thread_t)port_name_to_thread(uap->thread_port); | |
1212 | ||
1213 | if (target_act == THREAD_NULL) | |
1214 | return (ESRCH); | |
1215 | if ((u_int)signum >= NSIG) { | |
1216 | error = EINVAL; | |
1217 | goto out; | |
1218 | } | |
1219 | ||
1220 | uth = (struct uthread *)get_bsdthread_info(target_act); | |
1221 | ||
1222 | if (uth->uu_flag & UT_NO_SIGMASK) { | |
1223 | error = ESRCH; | |
1224 | goto out; | |
1225 | } | |
1226 | ||
1227 | if (signum) | |
1228 | psignal_uthread(target_act, signum); | |
1229 | out: | |
1230 | thread_deallocate(target_act); | |
1231 | return (error); | |
1232 | } | |
1233 | ||
1234 | ||
1235 | int | |
1236 | __pthread_sigmask(__unused proc_t p, struct __pthread_sigmask_args *uap, | |
1237 | __unused int32_t *retval) | |
1238 | { | |
1239 | user_addr_t set = uap->set; | |
1240 | user_addr_t oset = uap->oset; | |
1241 | sigset_t nset; | |
1242 | int error = 0; | |
1243 | struct uthread *ut; | |
1244 | sigset_t oldset; | |
1245 | ||
1246 | ut = (struct uthread *)get_bsdthread_info(current_thread()); | |
1247 | oldset = ut->uu_sigmask; | |
1248 | ||
1249 | if (set == USER_ADDR_NULL) { | |
1250 | /* need only old mask */ | |
1251 | goto out; | |
1252 | } | |
1253 | ||
1254 | error = copyin(set, &nset, sizeof(sigset_t)); | |
1255 | if (error) | |
1256 | goto out; | |
1257 | ||
1258 | switch (uap->how) { | |
1259 | case SIG_BLOCK: | |
1260 | ut->uu_sigmask |= (nset & ~sigcantmask); | |
1261 | break; | |
1262 | ||
1263 | case SIG_UNBLOCK: | |
1264 | ut->uu_sigmask &= ~(nset); | |
1265 | signal_setast(current_thread()); | |
1266 | break; | |
1267 | ||
1268 | case SIG_SETMASK: | |
1269 | ut->uu_sigmask = (nset & ~sigcantmask); | |
1270 | signal_setast(current_thread()); | |
1271 | break; | |
1272 | ||
1273 | default: | |
1274 | error = EINVAL; | |
1275 | ||
1276 | } | |
1277 | out: | |
1278 | if (!error && oset != USER_ADDR_NULL) | |
1279 | copyout(&oldset, oset, sizeof(sigset_t)); | |
1280 | ||
1281 | return(error); | |
1282 | } | |
1283 | ||
1284 | /* | |
1285 | * Returns: 0 Success | |
1286 | * EINVAL | |
1287 | * copyin:EFAULT | |
1288 | * copyout:EFAULT | |
1289 | */ | |
1290 | int | |
1291 | __sigwait(proc_t p, struct __sigwait_args *uap, int32_t *retval) | |
1292 | { | |
1293 | __pthread_testcancel(1); | |
1294 | return(__sigwait_nocancel(p, (struct __sigwait_nocancel_args *)uap, retval)); | |
1295 | } | |
1296 | ||
1297 | int | |
1298 | __sigwait_nocancel(proc_t p, struct __sigwait_nocancel_args *uap, __unused int32_t *retval) | |
1299 | { | |
1300 | struct uthread *ut; | |
1301 | struct uthread *uth; | |
1302 | int error = 0; | |
1303 | sigset_t mask; | |
1304 | sigset_t siglist; | |
1305 | sigset_t sigw=0; | |
1306 | int signum; | |
1307 | ||
1308 | ut = (struct uthread *)get_bsdthread_info(current_thread()); | |
1309 | ||
1310 | if (uap->set == USER_ADDR_NULL) | |
1311 | return(EINVAL); | |
1312 | ||
1313 | error = copyin(uap->set, &mask, sizeof(sigset_t)); | |
1314 | if (error) | |
1315 | return(error); | |
1316 | ||
1317 | siglist = (mask & ~sigcantmask); | |
1318 | ||
1319 | if (siglist == 0) | |
1320 | return(EINVAL); | |
1321 | ||
1322 | proc_lock(p); | |
1323 | if ((p->p_lflag & P_LINVFORK) && p->p_vforkact) { | |
1324 | proc_unlock(p); | |
1325 | return(EINVAL); | |
1326 | } else { | |
1327 | proc_signalstart(p, 1); | |
1328 | TAILQ_FOREACH(uth, &p->p_uthlist, uu_list) { | |
1329 | if ( (sigw = uth->uu_siglist & siglist) ) { | |
1330 | break; | |
1331 | } | |
1332 | } | |
1333 | proc_signalend(p, 1); | |
1334 | } | |
1335 | ||
1336 | if (sigw) { | |
1337 | /* The signal was pending on a thread */ | |
1338 | goto sigwait1; | |
1339 | } | |
1340 | /* | |
1341 | * When returning from sigwait, we want | |
1342 | * the old mask to be restored after the | |
1343 | * signal handler has finished. Thus, we | |
1344 | * save it here and mark the sigacts structure | |
1345 | * to indicate this. | |
1346 | */ | |
1347 | uth = ut; /* wait for it to be delivered to us */ | |
1348 | ut->uu_oldmask = ut->uu_sigmask; | |
1349 | ut->uu_flag |= UT_SAS_OLDMASK; | |
1350 | if (siglist == (sigset_t)0) { | |
1351 | proc_unlock(p); | |
1352 | return(EINVAL); | |
1353 | } | |
1354 | /* SIGKILL and SIGSTOP are not maskable as well */ | |
1355 | ut->uu_sigmask = ~(siglist|sigcantmask); | |
1356 | ut->uu_sigwait = siglist; | |
1357 | ||
1358 | /* No Continuations for now */ | |
1359 | error = msleep((caddr_t)&ut->uu_sigwait, &p->p_mlock, PPAUSE|PCATCH, "pause", 0); | |
1360 | ||
1361 | if (error == ERESTART) | |
1362 | error = 0; | |
1363 | ||
1364 | sigw = (ut->uu_sigwait & siglist); | |
1365 | ut->uu_sigmask = ut->uu_oldmask; | |
1366 | ut->uu_oldmask = 0; | |
1367 | ut->uu_flag &= ~UT_SAS_OLDMASK; | |
1368 | sigwait1: | |
1369 | ut->uu_sigwait = 0; | |
1370 | if (!error) { | |
1371 | signum = ffs((unsigned int)sigw); | |
1372 | if (!signum) | |
1373 | panic("sigwait with no signal wakeup"); | |
1374 | /* Clear the pending signal in the thread it was delivered */ | |
1375 | uth->uu_siglist &= ~(sigmask(signum)); | |
1376 | ||
1377 | #if CONFIG_DTRACE | |
1378 | DTRACE_PROC2(signal__clear, int, signum, siginfo_t *, &(ut->t_dtrace_siginfo)); | |
1379 | #endif | |
1380 | ||
1381 | proc_unlock(p); | |
1382 | if (uap->sig != USER_ADDR_NULL) | |
1383 | error = copyout(&signum, uap->sig, sizeof(int)); | |
1384 | } else | |
1385 | proc_unlock(p); | |
1386 | ||
1387 | return(error); | |
1388 | ||
1389 | } | |
1390 | ||
1391 | int | |
1392 | sigaltstack(__unused proc_t p, struct sigaltstack_args *uap, __unused int32_t *retval) | |
1393 | { | |
1394 | struct kern_sigaltstack ss; | |
1395 | struct kern_sigaltstack *pstk; | |
1396 | int error; | |
1397 | struct uthread *uth; | |
1398 | int onstack; | |
1399 | ||
1400 | uth = (struct uthread *)get_bsdthread_info(current_thread()); | |
1401 | ||
1402 | pstk = &uth->uu_sigstk; | |
1403 | if ((uth->uu_flag & UT_ALTSTACK) == 0) | |
1404 | uth->uu_sigstk.ss_flags |= SA_DISABLE; | |
1405 | onstack = pstk->ss_flags & SA_ONSTACK; | |
1406 | if (uap->oss) { | |
1407 | if (IS_64BIT_PROCESS(p)) { | |
1408 | struct user64_sigaltstack ss64; | |
1409 | sigaltstack_kern_to_user64(pstk, &ss64); | |
1410 | error = copyout(&ss64, uap->oss, sizeof(ss64)); | |
1411 | } else { | |
1412 | struct user32_sigaltstack ss32; | |
1413 | sigaltstack_kern_to_user32(pstk, &ss32); | |
1414 | error = copyout(&ss32, uap->oss, sizeof(ss32)); | |
1415 | } | |
1416 | if (error) | |
1417 | return (error); | |
1418 | } | |
1419 | if (uap->nss == USER_ADDR_NULL) | |
1420 | return (0); | |
1421 | if (IS_64BIT_PROCESS(p)) { | |
1422 | struct user64_sigaltstack ss64; | |
1423 | error = copyin(uap->nss, &ss64, sizeof(ss64)); | |
1424 | sigaltstack_user64_to_kern(&ss64, &ss); | |
1425 | } else { | |
1426 | struct user32_sigaltstack ss32; | |
1427 | error = copyin(uap->nss, &ss32, sizeof(ss32)); | |
1428 | sigaltstack_user32_to_kern(&ss32, &ss); | |
1429 | } | |
1430 | if (error) | |
1431 | return (error); | |
1432 | if ((ss.ss_flags & ~SA_DISABLE) != 0) { | |
1433 | return(EINVAL); | |
1434 | } | |
1435 | ||
1436 | if (ss.ss_flags & SA_DISABLE) { | |
1437 | /* if we are here we are not in the signal handler ;so no need to check */ | |
1438 | if (uth->uu_sigstk.ss_flags & SA_ONSTACK) | |
1439 | return (EINVAL); | |
1440 | uth->uu_flag &= ~UT_ALTSTACK; | |
1441 | uth->uu_sigstk.ss_flags = ss.ss_flags; | |
1442 | return (0); | |
1443 | } | |
1444 | if (onstack) | |
1445 | return (EPERM); | |
1446 | /* The older stacksize was 8K, enforce that one so no compat problems */ | |
1447 | #define OLDMINSIGSTKSZ 8*1024 | |
1448 | if (ss.ss_size < OLDMINSIGSTKSZ) | |
1449 | return (ENOMEM); | |
1450 | uth->uu_flag |= UT_ALTSTACK; | |
1451 | uth->uu_sigstk= ss; | |
1452 | return (0); | |
1453 | } | |
1454 | ||
1455 | int | |
1456 | kill(proc_t cp, struct kill_args *uap, __unused int32_t *retval) | |
1457 | { | |
1458 | proc_t p; | |
1459 | kauth_cred_t uc = kauth_cred_get(); | |
1460 | int posix = uap->posix; /* !0 if posix behaviour desired */ | |
1461 | ||
1462 | AUDIT_ARG(pid, uap->pid); | |
1463 | AUDIT_ARG(signum, uap->signum); | |
1464 | ||
1465 | if ((u_int)uap->signum >= NSIG) | |
1466 | return (EINVAL); | |
1467 | if (uap->pid > 0) { | |
1468 | /* kill single process */ | |
1469 | if ((p = proc_find(uap->pid)) == NULL) { | |
1470 | if ((p = pzfind(uap->pid)) != NULL) { | |
1471 | /* | |
1472 | * IEEE Std 1003.1-2001: return success | |
1473 | * when killing a zombie. | |
1474 | */ | |
1475 | return (0); | |
1476 | } | |
1477 | return (ESRCH); | |
1478 | } | |
1479 | AUDIT_ARG(process, p); | |
1480 | if (!cansignal(cp, uc, p, uap->signum, 0)) { | |
1481 | proc_rele(p); | |
1482 | return(EPERM); | |
1483 | } | |
1484 | if (uap->signum) | |
1485 | psignal(p, uap->signum); | |
1486 | proc_rele(p); | |
1487 | return (0); | |
1488 | } | |
1489 | switch (uap->pid) { | |
1490 | case -1: /* broadcast signal */ | |
1491 | return (killpg1(cp, uap->signum, 0, 1, posix)); | |
1492 | case 0: /* signal own process group */ | |
1493 | return (killpg1(cp, uap->signum, 0, 0, posix)); | |
1494 | default: /* negative explicit process group */ | |
1495 | return (killpg1(cp, uap->signum, -(uap->pid), 0, posix)); | |
1496 | } | |
1497 | /* NOTREACHED */ | |
1498 | } | |
1499 | ||
1500 | os_reason_t | |
1501 | build_userspace_exit_reason(uint32_t reason_namespace, uint64_t reason_code, user_addr_t payload, uint32_t payload_size, | |
1502 | user_addr_t reason_string, uint64_t reason_flags) | |
1503 | { | |
1504 | os_reason_t exit_reason = OS_REASON_NULL; | |
1505 | ||
1506 | int error = 0; | |
1507 | int num_items_to_copy = 0; | |
1508 | uint32_t user_data_to_copy = 0; | |
1509 | char *reason_user_desc = NULL; | |
1510 | size_t reason_user_desc_len = 0; | |
1511 | ||
1512 | exit_reason = os_reason_create(reason_namespace, reason_code); | |
1513 | if (exit_reason == OS_REASON_NULL) { | |
1514 | printf("build_userspace_exit_reason: failed to allocate exit reason\n"); | |
1515 | return exit_reason; | |
1516 | } | |
1517 | ||
1518 | exit_reason->osr_flags |= OS_REASON_FLAG_FROM_USERSPACE; | |
1519 | ||
1520 | /* | |
1521 | * Only apply flags that are allowed to be passed from userspace. | |
1522 | */ | |
1523 | exit_reason->osr_flags |= (reason_flags & OS_REASON_FLAG_MASK_ALLOWED_FROM_USER); | |
1524 | if ((reason_flags & OS_REASON_FLAG_MASK_ALLOWED_FROM_USER) != reason_flags) { | |
1525 | printf("build_userspace_exit_reason: illegal flags passed from userspace (some masked off) 0x%llx, ns: %u, code 0x%llx\n", | |
1526 | reason_flags, reason_namespace, reason_code); | |
1527 | } | |
1528 | ||
1529 | if (!(exit_reason->osr_flags & OS_REASON_FLAG_NO_CRASH_REPORT)) { | |
1530 | exit_reason->osr_flags |= OS_REASON_FLAG_GENERATE_CRASH_REPORT; | |
1531 | } | |
1532 | ||
1533 | if (payload != USER_ADDR_NULL) { | |
1534 | if (payload_size == 0) { | |
1535 | printf("build_userspace_exit_reason: exit reason with namespace %u, nonzero payload but zero length\n", | |
1536 | reason_namespace); | |
1537 | exit_reason->osr_flags |= OS_REASON_FLAG_BAD_PARAMS; | |
1538 | payload = USER_ADDR_NULL; | |
1539 | } else { | |
1540 | num_items_to_copy++; | |
1541 | ||
1542 | if (payload_size > EXIT_REASON_PAYLOAD_MAX_LEN) { | |
1543 | exit_reason->osr_flags |= OS_REASON_FLAG_PAYLOAD_TRUNCATED; | |
1544 | payload_size = EXIT_REASON_PAYLOAD_MAX_LEN; | |
1545 | } | |
1546 | ||
1547 | user_data_to_copy += payload_size; | |
1548 | } | |
1549 | } | |
1550 | ||
1551 | if (reason_string != USER_ADDR_NULL) { | |
1552 | reason_user_desc = (char *) kalloc(EXIT_REASON_USER_DESC_MAX_LEN); | |
1553 | ||
1554 | if (reason_user_desc != NULL) { | |
1555 | error = copyinstr(reason_string, (void *) reason_user_desc, | |
1556 | EXIT_REASON_USER_DESC_MAX_LEN, &reason_user_desc_len); | |
1557 | ||
1558 | if (error == 0) { | |
1559 | num_items_to_copy++; | |
1560 | user_data_to_copy += reason_user_desc_len; | |
1561 | } else if (error == ENAMETOOLONG) { | |
1562 | num_items_to_copy++; | |
1563 | reason_user_desc[EXIT_REASON_USER_DESC_MAX_LEN - 1] = '\0'; | |
1564 | user_data_to_copy += reason_user_desc_len; | |
1565 | } else { | |
1566 | exit_reason->osr_flags |= OS_REASON_FLAG_FAILED_DATA_COPYIN; | |
1567 | kfree(reason_user_desc, EXIT_REASON_USER_DESC_MAX_LEN); | |
1568 | reason_user_desc = NULL; | |
1569 | reason_user_desc_len = 0; | |
1570 | } | |
1571 | } | |
1572 | } | |
1573 | ||
1574 | if (num_items_to_copy != 0) { | |
1575 | uint32_t reason_buffer_size_estimate = 0; | |
1576 | mach_vm_address_t data_addr = 0; | |
1577 | ||
1578 | reason_buffer_size_estimate = kcdata_estimate_required_buffer_size(num_items_to_copy, user_data_to_copy); | |
1579 | ||
1580 | error = os_reason_alloc_buffer(exit_reason, reason_buffer_size_estimate); | |
1581 | if (error != 0) { | |
1582 | printf("build_userspace_exit_reason: failed to allocate signal reason buffer\n"); | |
1583 | goto out_failed_copyin; | |
1584 | } | |
1585 | ||
1586 | if (reason_user_desc != NULL && reason_user_desc_len != 0) { | |
1587 | if (KERN_SUCCESS == kcdata_get_memory_addr(&exit_reason->osr_kcd_descriptor, | |
1588 | EXIT_REASON_USER_DESC, | |
1589 | reason_user_desc_len, | |
1590 | &data_addr)) { | |
1591 | ||
1592 | kcdata_memcpy(&exit_reason->osr_kcd_descriptor, (mach_vm_address_t) data_addr, | |
1593 | reason_user_desc, reason_user_desc_len); | |
1594 | } else { | |
1595 | printf("build_userspace_exit_reason: failed to allocate space for reason string\n"); | |
1596 | goto out_failed_copyin; | |
1597 | } | |
1598 | } | |
1599 | ||
1600 | if (payload != USER_ADDR_NULL) { | |
1601 | if (KERN_SUCCESS == | |
1602 | kcdata_get_memory_addr(&exit_reason->osr_kcd_descriptor, | |
1603 | EXIT_REASON_USER_PAYLOAD, | |
1604 | payload_size, | |
1605 | &data_addr)) { | |
1606 | error = copyin(payload, (void *) data_addr, payload_size); | |
1607 | if (error) { | |
1608 | printf("build_userspace_exit_reason: failed to copy in payload data with error %d\n", error); | |
1609 | goto out_failed_copyin; | |
1610 | } | |
1611 | } else { | |
1612 | printf("build_userspace_exit_reason: failed to allocate space for payload data\n"); | |
1613 | goto out_failed_copyin; | |
1614 | } | |
1615 | } | |
1616 | } | |
1617 | ||
1618 | if (reason_user_desc != NULL) { | |
1619 | kfree(reason_user_desc, EXIT_REASON_USER_DESC_MAX_LEN); | |
1620 | reason_user_desc = NULL; | |
1621 | reason_user_desc_len = 0; | |
1622 | } | |
1623 | ||
1624 | return exit_reason; | |
1625 | ||
1626 | out_failed_copyin: | |
1627 | ||
1628 | if (reason_user_desc != NULL) { | |
1629 | kfree(reason_user_desc, EXIT_REASON_USER_DESC_MAX_LEN); | |
1630 | reason_user_desc = NULL; | |
1631 | reason_user_desc_len = 0; | |
1632 | } | |
1633 | ||
1634 | exit_reason->osr_flags |= OS_REASON_FLAG_FAILED_DATA_COPYIN; | |
1635 | os_reason_alloc_buffer(exit_reason, 0); | |
1636 | return exit_reason; | |
1637 | } | |
1638 | ||
1639 | static int | |
1640 | terminate_with_payload_internal(struct proc *cur_proc, int target_pid, uint32_t reason_namespace, | |
1641 | uint64_t reason_code, user_addr_t payload, uint32_t payload_size, | |
1642 | user_addr_t reason_string, uint64_t reason_flags) | |
1643 | { | |
1644 | proc_t target_proc = PROC_NULL; | |
1645 | kauth_cred_t cur_cred = kauth_cred_get(); | |
1646 | ||
1647 | os_reason_t signal_reason = OS_REASON_NULL; | |
1648 | ||
1649 | AUDIT_ARG(pid, target_pid); | |
1650 | if ((target_pid <= 0)) { | |
1651 | return EINVAL; | |
1652 | } | |
1653 | ||
1654 | target_proc = proc_find(target_pid); | |
1655 | if (target_proc == PROC_NULL) { | |
1656 | return ESRCH; | |
1657 | } | |
1658 | ||
1659 | AUDIT_ARG(process, target_proc); | |
1660 | ||
1661 | if (!cansignal(cur_proc, cur_cred, target_proc, SIGKILL, 0)) { | |
1662 | proc_rele(target_proc); | |
1663 | return EPERM; | |
1664 | } | |
1665 | ||
1666 | KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_PROC, BSD_PROC_EXITREASON_CREATE) | DBG_FUNC_NONE, | |
1667 | target_proc->p_pid, reason_namespace, | |
1668 | reason_code, 0, 0); | |
1669 | ||
1670 | signal_reason = build_userspace_exit_reason(reason_namespace, reason_code, payload, payload_size, | |
1671 | reason_string, reason_flags); | |
1672 | ||
1673 | if (target_pid == cur_proc->p_pid) { | |
1674 | /* | |
1675 | * psignal_thread_with_reason() will pend a SIGKILL on the specified thread or | |
1676 | * return if the thread and/or task are already terminating. Either way, the | |
1677 | * current thread won't return to userspace. | |
1678 | */ | |
1679 | psignal_thread_with_reason(target_proc, current_thread(), SIGKILL, signal_reason); | |
1680 | } else { | |
1681 | psignal_with_reason(target_proc, SIGKILL, signal_reason); | |
1682 | } | |
1683 | ||
1684 | proc_rele(target_proc); | |
1685 | ||
1686 | return 0; | |
1687 | } | |
1688 | ||
1689 | int | |
1690 | terminate_with_payload(struct proc *cur_proc, struct terminate_with_payload_args *args, | |
1691 | __unused int32_t *retval) | |
1692 | { | |
1693 | return terminate_with_payload_internal(cur_proc, args->pid, args->reason_namespace, args->reason_code, args->payload, | |
1694 | args->payload_size, args->reason_string, args->reason_flags); | |
1695 | } | |
1696 | ||
1697 | static int | |
1698 | killpg1_filt(proc_t p, void * arg) | |
1699 | { | |
1700 | struct killpg1_filtargs * kfargp = (struct killpg1_filtargs *)arg; | |
1701 | proc_t cp = kfargp->cp; | |
1702 | int posix = kfargp->posix; | |
1703 | ||
1704 | ||
1705 | if (p->p_pid <= 1 || p->p_flag & P_SYSTEM || | |
1706 | (!posix && p == cp)) | |
1707 | return(0); | |
1708 | else | |
1709 | return(1); | |
1710 | } | |
1711 | ||
1712 | ||
1713 | static int | |
1714 | killpg1_pgrpfilt(proc_t p, __unused void * arg) | |
1715 | { | |
1716 | if (p->p_pid <= 1 || p->p_flag & P_SYSTEM || | |
1717 | (p->p_stat == SZOMB)) | |
1718 | return(0); | |
1719 | else | |
1720 | return(1); | |
1721 | } | |
1722 | ||
1723 | ||
1724 | ||
1725 | static int | |
1726 | killpg1_callback(proc_t p, void * arg) | |
1727 | { | |
1728 | struct killpg1_iterargs * kargp = (struct killpg1_iterargs *)arg; | |
1729 | proc_t cp = kargp->cp; | |
1730 | kauth_cred_t uc = kargp->uc; /* refcounted by the caller safe to use internal fields */ | |
1731 | int signum = kargp->signum; | |
1732 | int * nfoundp = kargp->nfoundp; | |
1733 | int n; | |
1734 | int zombie = 0; | |
1735 | int error = 0; | |
1736 | ||
1737 | if ((kargp->zombie != 0) && ((p->p_listflag & P_LIST_EXITED) == P_LIST_EXITED)) | |
1738 | zombie = 1; | |
1739 | ||
1740 | if (zombie != 0) { | |
1741 | proc_list_lock(); | |
1742 | error = cansignal(cp, uc, p, signum, zombie); | |
1743 | proc_list_unlock(); | |
1744 | ||
1745 | if (error != 0 && nfoundp != NULL) { | |
1746 | n = *nfoundp; | |
1747 | *nfoundp = n+1; | |
1748 | } | |
1749 | } else { | |
1750 | if (cansignal(cp, uc, p, signum, 0) == 0) | |
1751 | return(PROC_RETURNED); | |
1752 | ||
1753 | if (nfoundp != NULL) { | |
1754 | n = *nfoundp; | |
1755 | *nfoundp = n+1; | |
1756 | } | |
1757 | if (signum != 0) | |
1758 | psignal(p, signum); | |
1759 | } | |
1760 | ||
1761 | return(PROC_RETURNED); | |
1762 | } | |
1763 | ||
1764 | /* | |
1765 | * Common code for kill process group/broadcast kill. | |
1766 | * cp is calling process. | |
1767 | */ | |
1768 | int | |
1769 | killpg1(proc_t cp, int signum, int pgid, int all, int posix) | |
1770 | { | |
1771 | kauth_cred_t uc; | |
1772 | struct pgrp *pgrp; | |
1773 | int nfound = 0; | |
1774 | struct killpg1_iterargs karg; | |
1775 | struct killpg1_filtargs kfarg; | |
1776 | int error = 0; | |
1777 | ||
1778 | uc = kauth_cred_proc_ref(cp); | |
1779 | if (all) { | |
1780 | /* | |
1781 | * broadcast | |
1782 | */ | |
1783 | kfarg.posix = posix; | |
1784 | kfarg.cp = cp; | |
1785 | ||
1786 | karg.cp = cp; | |
1787 | karg.uc = uc; | |
1788 | karg.nfoundp = &nfound; | |
1789 | karg.signum = signum; | |
1790 | karg.zombie = 1; | |
1791 | ||
1792 | proc_iterate((PROC_ALLPROCLIST | PROC_ZOMBPROCLIST), killpg1_callback, &karg, killpg1_filt, (void *)&kfarg); | |
1793 | ||
1794 | } else { | |
1795 | if (pgid == 0) { | |
1796 | /* | |
1797 | * zero pgid means send to my process group. | |
1798 | */ | |
1799 | pgrp = proc_pgrp(cp); | |
1800 | } else { | |
1801 | pgrp = pgfind(pgid); | |
1802 | if (pgrp == NULL) { | |
1803 | error = ESRCH; | |
1804 | goto out; | |
1805 | } | |
1806 | } | |
1807 | ||
1808 | karg.nfoundp = &nfound; | |
1809 | karg.uc = uc; | |
1810 | karg.signum = signum; | |
1811 | karg.cp = cp; | |
1812 | karg.zombie = 0; | |
1813 | ||
1814 | ||
1815 | /* PGRP_DROPREF drops the pgrp refernce */ | |
1816 | pgrp_iterate(pgrp, PGRP_DROPREF, killpg1_callback, &karg, | |
1817 | killpg1_pgrpfilt, NULL); | |
1818 | } | |
1819 | error = (nfound ? 0 : (posix ? EPERM : ESRCH)); | |
1820 | out: | |
1821 | kauth_cred_unref(&uc); | |
1822 | return (error); | |
1823 | } | |
1824 | ||
1825 | ||
1826 | /* | |
1827 | * Send a signal to a process group. | |
1828 | */ | |
1829 | void | |
1830 | gsignal(int pgid, int signum) | |
1831 | { | |
1832 | struct pgrp *pgrp; | |
1833 | ||
1834 | if (pgid && (pgrp = pgfind(pgid))) { | |
1835 | pgsignal(pgrp, signum, 0); | |
1836 | pg_rele(pgrp); | |
1837 | } | |
1838 | } | |
1839 | ||
1840 | /* | |
1841 | * Send a signal to a process group. If checkctty is 1, | |
1842 | * limit to members which have a controlling terminal. | |
1843 | */ | |
1844 | ||
1845 | static int | |
1846 | pgsignal_filt(proc_t p, void * arg) | |
1847 | { | |
1848 | int checkctty = *(int*)arg; | |
1849 | ||
1850 | if ((checkctty == 0) || p->p_flag & P_CONTROLT) | |
1851 | return(1); | |
1852 | else | |
1853 | return(0); | |
1854 | } | |
1855 | ||
1856 | ||
1857 | static int | |
1858 | pgsignal_callback(proc_t p, void * arg) | |
1859 | { | |
1860 | int signum = *(int*)arg; | |
1861 | ||
1862 | psignal(p, signum); | |
1863 | return(PROC_RETURNED); | |
1864 | } | |
1865 | ||
1866 | ||
1867 | void | |
1868 | pgsignal(struct pgrp *pgrp, int signum, int checkctty) | |
1869 | { | |
1870 | if (pgrp != PGRP_NULL) { | |
1871 | pgrp_iterate(pgrp, 0, pgsignal_callback, &signum, pgsignal_filt, &checkctty); | |
1872 | } | |
1873 | } | |
1874 | ||
1875 | ||
1876 | void | |
1877 | tty_pgsignal(struct tty *tp, int signum, int checkctty) | |
1878 | { | |
1879 | struct pgrp * pg; | |
1880 | ||
1881 | pg = tty_pgrp(tp); | |
1882 | if (pg != PGRP_NULL) { | |
1883 | pgrp_iterate(pg, 0, pgsignal_callback, &signum, pgsignal_filt, &checkctty); | |
1884 | pg_rele(pg); | |
1885 | } | |
1886 | } | |
1887 | /* | |
1888 | * Send a signal caused by a trap to a specific thread. | |
1889 | */ | |
1890 | void | |
1891 | threadsignal(thread_t sig_actthread, int signum, mach_exception_code_t code, boolean_t set_exitreason) | |
1892 | { | |
1893 | struct uthread *uth; | |
1894 | struct task * sig_task; | |
1895 | proc_t p; | |
1896 | int mask; | |
1897 | ||
1898 | if ((u_int)signum >= NSIG || signum == 0) | |
1899 | return; | |
1900 | ||
1901 | mask = sigmask(signum); | |
1902 | if ((mask & threadmask) == 0) | |
1903 | return; | |
1904 | sig_task = get_threadtask(sig_actthread); | |
1905 | p = (proc_t)(get_bsdtask_info(sig_task)); | |
1906 | ||
1907 | uth = get_bsdthread_info(sig_actthread); | |
1908 | if (uth->uu_flag & UT_VFORK) | |
1909 | p = uth->uu_proc; | |
1910 | ||
1911 | proc_lock(p); | |
1912 | if (!(p->p_lflag & P_LTRACED) && (p->p_sigignore & mask)) { | |
1913 | proc_unlock(p); | |
1914 | return; | |
1915 | } | |
1916 | ||
1917 | uth->uu_siglist |= mask; | |
1918 | uth->uu_code = code; | |
1919 | ||
1920 | /* Attempt to establish whether the signal will be fatal (mirrors logic in psignal_internal()) */ | |
1921 | if (set_exitreason && ((p->p_lflag & P_LTRACED) || (!(uth->uu_sigwait & mask) | |
1922 | && !(uth->uu_sigmask & mask) && !(p->p_sigcatch & mask))) && | |
1923 | !(mask & stopsigmask) && !(mask & contsigmask)) { | |
1924 | ||
1925 | if (uth->uu_exit_reason == OS_REASON_NULL) { | |
1926 | KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_PROC, BSD_PROC_EXITREASON_CREATE) | DBG_FUNC_NONE, | |
1927 | p->p_pid, OS_REASON_SIGNAL, signum, 0, 0); | |
1928 | ||
1929 | os_reason_t signal_reason = build_signal_reason(signum, "exc handler"); | |
1930 | ||
1931 | set_thread_exit_reason(sig_actthread, signal_reason, TRUE); | |
1932 | ||
1933 | /* We dropped/consumed the reference in set_thread_exit_reason() */ | |
1934 | signal_reason = OS_REASON_NULL; | |
1935 | } | |
1936 | } | |
1937 | ||
1938 | proc_unlock(p); | |
1939 | ||
1940 | /* mark on process as well */ | |
1941 | signal_setast(sig_actthread); | |
1942 | } | |
1943 | ||
1944 | void | |
1945 | set_thread_exit_reason(void *th, void *reason, boolean_t proc_locked) | |
1946 | { | |
1947 | struct uthread *targ_uth = get_bsdthread_info(th); | |
1948 | struct task *targ_task = NULL; | |
1949 | proc_t targ_proc = NULL; | |
1950 | ||
1951 | os_reason_t exit_reason = (os_reason_t)reason; | |
1952 | ||
1953 | if (exit_reason == OS_REASON_NULL) | |
1954 | return; | |
1955 | ||
1956 | if (!proc_locked) { | |
1957 | targ_task = get_threadtask(th); | |
1958 | targ_proc = (proc_t)(get_bsdtask_info(targ_task)); | |
1959 | ||
1960 | proc_lock(targ_proc); | |
1961 | } | |
1962 | ||
1963 | if (targ_uth->uu_exit_reason == OS_REASON_NULL) { | |
1964 | targ_uth->uu_exit_reason = exit_reason; | |
1965 | } else { | |
1966 | /* The caller expects that we drop a reference on the exit reason */ | |
1967 | os_reason_free(exit_reason); | |
1968 | } | |
1969 | ||
1970 | if (!proc_locked) { | |
1971 | assert(targ_proc != NULL); | |
1972 | proc_unlock(targ_proc); | |
1973 | } | |
1974 | } | |
1975 | ||
1976 | /* | |
1977 | * get_signalthread | |
1978 | * | |
1979 | * Picks an appropriate thread from a process to target with a signal. | |
1980 | * | |
1981 | * Called with proc locked. | |
1982 | * Returns thread with BSD ast set. | |
1983 | * | |
1984 | * We attempt to deliver a proc-wide signal to the first thread in the task. | |
1985 | * This allows single threaded applications which use signals to | |
1986 | * be able to be linked with multithreaded libraries. | |
1987 | */ | |
1988 | static kern_return_t | |
1989 | get_signalthread(proc_t p, int signum, thread_t * thr) | |
1990 | { | |
1991 | struct uthread *uth; | |
1992 | sigset_t mask = sigmask(signum); | |
1993 | thread_t sig_thread; | |
1994 | struct task * sig_task = p->task; | |
1995 | kern_return_t kret; | |
1996 | ||
1997 | *thr = THREAD_NULL; | |
1998 | ||
1999 | if ((p->p_lflag & P_LINVFORK) && p->p_vforkact) { | |
2000 | sig_thread = p->p_vforkact; | |
2001 | kret = check_actforsig(sig_task, sig_thread, 1); | |
2002 | if (kret == KERN_SUCCESS) { | |
2003 | *thr = sig_thread; | |
2004 | return(KERN_SUCCESS); | |
2005 | }else | |
2006 | return(KERN_FAILURE); | |
2007 | } | |
2008 | ||
2009 | TAILQ_FOREACH(uth, &p->p_uthlist, uu_list) { | |
2010 | if(((uth->uu_flag & UT_NO_SIGMASK)== 0) && | |
2011 | (((uth->uu_sigmask & mask) == 0) || (uth->uu_sigwait & mask))) { | |
2012 | if (check_actforsig(p->task, uth->uu_context.vc_thread, 1) == KERN_SUCCESS) { | |
2013 | *thr = uth->uu_context.vc_thread; | |
2014 | return(KERN_SUCCESS); | |
2015 | } | |
2016 | } | |
2017 | } | |
2018 | if (get_signalact(p->task, thr, 1) == KERN_SUCCESS) { | |
2019 | return(KERN_SUCCESS); | |
2020 | } | |
2021 | ||
2022 | return(KERN_FAILURE); | |
2023 | } | |
2024 | ||
2025 | static os_reason_t | |
2026 | build_signal_reason(int signum, const char *procname) | |
2027 | { | |
2028 | os_reason_t signal_reason = OS_REASON_NULL; | |
2029 | proc_t sender_proc = current_proc(); | |
2030 | uint32_t reason_buffer_size_estimate = 0, proc_name_length = 0; | |
2031 | const char *default_sender_procname = "unknown"; | |
2032 | mach_vm_address_t data_addr; | |
2033 | int ret; | |
2034 | ||
2035 | signal_reason = os_reason_create(OS_REASON_SIGNAL, signum); | |
2036 | if (signal_reason == OS_REASON_NULL) { | |
2037 | printf("build_signal_reason: unable to allocate signal reason structure.\n"); | |
2038 | return signal_reason; | |
2039 | } | |
2040 | ||
2041 | reason_buffer_size_estimate = kcdata_estimate_required_buffer_size(2, sizeof(sender_proc->p_name) + | |
2042 | sizeof(sender_proc->p_pid)); | |
2043 | ||
2044 | ret = os_reason_alloc_buffer_noblock(signal_reason, reason_buffer_size_estimate); | |
2045 | if (ret != 0) { | |
2046 | printf("build_signal_reason: unable to allocate signal reason buffer.\n"); | |
2047 | return signal_reason; | |
2048 | } | |
2049 | ||
2050 | if (KERN_SUCCESS == kcdata_get_memory_addr(&signal_reason->osr_kcd_descriptor, KCDATA_TYPE_PID, | |
2051 | sizeof(sender_proc->p_pid), &data_addr)) { | |
2052 | kcdata_memcpy(&signal_reason->osr_kcd_descriptor, data_addr, &sender_proc->p_pid, | |
2053 | sizeof(sender_proc->p_pid)); | |
2054 | } else { | |
2055 | printf("build_signal_reason: exceeded space in signal reason buf, unable to log PID\n"); | |
2056 | } | |
2057 | ||
2058 | proc_name_length = sizeof(sender_proc->p_name); | |
2059 | if (KERN_SUCCESS == kcdata_get_memory_addr(&signal_reason->osr_kcd_descriptor, KCDATA_TYPE_PROCNAME, | |
2060 | proc_name_length, &data_addr)) { | |
2061 | if (procname) { | |
2062 | char truncated_procname[proc_name_length]; | |
2063 | strncpy((char *) &truncated_procname, procname, proc_name_length); | |
2064 | truncated_procname[proc_name_length - 1] = '\0'; | |
2065 | ||
2066 | kcdata_memcpy(&signal_reason->osr_kcd_descriptor, data_addr, truncated_procname, | |
2067 | strlen((char *) &truncated_procname)); | |
2068 | } else if (*sender_proc->p_name) { | |
2069 | kcdata_memcpy(&signal_reason->osr_kcd_descriptor, data_addr, &sender_proc->p_name, | |
2070 | sizeof(sender_proc->p_name)); | |
2071 | } else { | |
2072 | kcdata_memcpy(&signal_reason->osr_kcd_descriptor, data_addr, &default_sender_procname, | |
2073 | strlen(default_sender_procname) + 1); | |
2074 | } | |
2075 | } else { | |
2076 | printf("build_signal_reason: exceeded space in signal reason buf, unable to log procname\n"); | |
2077 | } | |
2078 | ||
2079 | return signal_reason; | |
2080 | } | |
2081 | ||
2082 | /* | |
2083 | * Send the signal to the process. If the signal has an action, the action | |
2084 | * is usually performed by the target process rather than the caller; we add | |
2085 | * the signal to the set of pending signals for the process. | |
2086 | * | |
2087 | * Always drops a reference on a signal_reason if one is provided, whether via | |
2088 | * passing it to a thread or deallocating directly. | |
2089 | * | |
2090 | * Exceptions: | |
2091 | * o When a stop signal is sent to a sleeping process that takes the | |
2092 | * default action, the process is stopped without awakening it. | |
2093 | * o SIGCONT restarts stopped processes (or puts them back to sleep) | |
2094 | * regardless of the signal action (eg, blocked or ignored). | |
2095 | * | |
2096 | * Other ignored signals are discarded immediately. | |
2097 | */ | |
2098 | static void | |
2099 | psignal_internal(proc_t p, task_t task, thread_t thread, int flavor, int signum, os_reason_t signal_reason) | |
2100 | { | |
2101 | int prop; | |
2102 | user_addr_t action = USER_ADDR_NULL; | |
2103 | proc_t sig_proc; | |
2104 | thread_t sig_thread; | |
2105 | task_t sig_task; | |
2106 | int mask; | |
2107 | struct uthread *uth; | |
2108 | kern_return_t kret; | |
2109 | uid_t r_uid; | |
2110 | proc_t pp; | |
2111 | kauth_cred_t my_cred; | |
2112 | char *launchd_exit_reason_desc = NULL; | |
2113 | boolean_t update_thread_policy = FALSE; | |
2114 | ||
2115 | if ((u_int)signum >= NSIG || signum == 0) | |
2116 | panic("psignal: bad signal number %d", signum); | |
2117 | ||
2118 | mask = sigmask(signum); | |
2119 | prop = sigprop[signum]; | |
2120 | ||
2121 | #if SIGNAL_DEBUG | |
2122 | if(rdebug_proc && (p != PROC_NULL) && (p == rdebug_proc)) { | |
2123 | ram_printf(3); | |
2124 | } | |
2125 | #endif /* SIGNAL_DEBUG */ | |
2126 | ||
2127 | /* catch unexpected initproc kills early for easier debuggging */ | |
2128 | if (signum == SIGKILL && p == initproc) { | |
2129 | if (signal_reason == NULL) { | |
2130 | panic_plain("unexpected SIGKILL of %s %s (no reason provided)", | |
2131 | (p->p_name[0] != '\0' ? p->p_name : "initproc"), | |
2132 | ((p->p_csflags & CS_KILLED) ? "(CS_KILLED)" : "")); | |
2133 | } else { | |
2134 | launchd_exit_reason_desc = launchd_exit_reason_get_string_desc(signal_reason); | |
2135 | panic_plain("unexpected SIGKILL of %s %s with reason -- namespace %d code 0x%llx description %." LAUNCHD_PANIC_REASON_STRING_MAXLEN "s", | |
2136 | (p->p_name[0] != '\0' ? p->p_name : "initproc"), | |
2137 | ((p->p_csflags & CS_KILLED) ? "(CS_KILLED)" : ""), | |
2138 | signal_reason->osr_namespace, signal_reason->osr_code, | |
2139 | launchd_exit_reason_desc ? launchd_exit_reason_desc : "none"); | |
2140 | } | |
2141 | } | |
2142 | ||
2143 | /* | |
2144 | * We will need the task pointer later. Grab it now to | |
2145 | * check for a zombie process. Also don't send signals | |
2146 | * to kernel internal tasks. | |
2147 | */ | |
2148 | if (flavor & PSIG_VFORK) { | |
2149 | sig_task = task; | |
2150 | sig_thread = thread; | |
2151 | sig_proc = p; | |
2152 | } else if (flavor & PSIG_THREAD) { | |
2153 | sig_task = get_threadtask(thread); | |
2154 | sig_thread = thread; | |
2155 | sig_proc = (proc_t)get_bsdtask_info(sig_task); | |
2156 | } else if (flavor & PSIG_TRY_THREAD) { | |
2157 | assert((thread == current_thread()) && (p == current_proc())); | |
2158 | sig_task = p->task; | |
2159 | sig_thread = thread; | |
2160 | sig_proc = p; | |
2161 | } else { | |
2162 | sig_task = p->task; | |
2163 | sig_thread = THREAD_NULL; | |
2164 | sig_proc = p; | |
2165 | } | |
2166 | ||
2167 | if ((sig_task == TASK_NULL) || is_kerneltask(sig_task)) { | |
2168 | os_reason_free(signal_reason); | |
2169 | return; | |
2170 | } | |
2171 | ||
2172 | /* | |
2173 | * do not send signals to the process that has the thread | |
2174 | * doing a reboot(). Not doing so will mark that thread aborted | |
2175 | * and can cause IO failures wich will cause data loss. There's | |
2176 | * also no need to send a signal to a process that is in the middle | |
2177 | * of being torn down. | |
2178 | */ | |
2179 | if (ISSET(sig_proc->p_flag, P_REBOOT) || ISSET(sig_proc->p_lflag, P_LEXIT)) { | |
2180 | DTRACE_PROC3(signal__discard, thread_t, sig_thread, proc_t, sig_proc, int, signum); | |
2181 | os_reason_free(signal_reason); | |
2182 | return; | |
2183 | } | |
2184 | ||
2185 | if( (flavor & (PSIG_VFORK | PSIG_THREAD)) == 0) { | |
2186 | proc_knote(sig_proc, NOTE_SIGNAL | signum); | |
2187 | } | |
2188 | ||
2189 | if ((flavor & PSIG_LOCKED)== 0) | |
2190 | proc_signalstart(sig_proc, 0); | |
2191 | ||
2192 | /* Don't send signals to a process that has ignored them. */ | |
2193 | if (((flavor & PSIG_VFORK) == 0) && ((sig_proc->p_lflag & P_LTRACED) == 0) && (sig_proc->p_sigignore & mask)) { | |
2194 | DTRACE_PROC3(signal__discard, thread_t, sig_thread, proc_t, sig_proc, int, signum); | |
2195 | goto sigout_unlocked; | |
2196 | } | |
2197 | ||
2198 | /* | |
2199 | * The proc_lock prevents the targeted thread from being deallocated | |
2200 | * or handling the signal until we're done signaling it. | |
2201 | * | |
2202 | * Once the proc_lock is dropped, we have no guarantee the thread or uthread exists anymore. | |
2203 | * | |
2204 | * XXX: What if the thread goes inactive after the thread passes bsd ast point? | |
2205 | */ | |
2206 | proc_lock(sig_proc); | |
2207 | ||
2208 | if (flavor & PSIG_VFORK) { | |
2209 | action = SIG_DFL; | |
2210 | act_set_astbsd(sig_thread); | |
2211 | kret = KERN_SUCCESS; | |
2212 | } else if (flavor & PSIG_TRY_THREAD) { | |
2213 | uth = get_bsdthread_info(sig_thread); | |
2214 | if (((uth->uu_flag & UT_NO_SIGMASK) == 0) && | |
2215 | (((uth->uu_sigmask & mask) == 0) || (uth->uu_sigwait & mask)) && | |
2216 | ((kret = check_actforsig(sig_proc->task, sig_thread, 1)) == KERN_SUCCESS)) { | |
2217 | /* deliver to specified thread */ | |
2218 | } else { | |
2219 | /* deliver to any willing thread */ | |
2220 | kret = get_signalthread(sig_proc, signum, &sig_thread); | |
2221 | } | |
2222 | } else if (flavor & PSIG_THREAD) { | |
2223 | /* If successful return with ast set */ | |
2224 | kret = check_actforsig(sig_task, sig_thread, 1); | |
2225 | } else { | |
2226 | /* If successful return with ast set */ | |
2227 | kret = get_signalthread(sig_proc, signum, &sig_thread); | |
2228 | } | |
2229 | ||
2230 | if (kret != KERN_SUCCESS) { | |
2231 | DTRACE_PROC3(signal__discard, thread_t, sig_thread, proc_t, sig_proc, int, signum); | |
2232 | proc_unlock(sig_proc); | |
2233 | goto sigout_unlocked; | |
2234 | } | |
2235 | ||
2236 | uth = get_bsdthread_info(sig_thread); | |
2237 | ||
2238 | /* | |
2239 | * If proc is traced, always give parent a chance. | |
2240 | */ | |
2241 | ||
2242 | if ((flavor & PSIG_VFORK) == 0) { | |
2243 | if (sig_proc->p_lflag & P_LTRACED) | |
2244 | action = SIG_DFL; | |
2245 | else { | |
2246 | /* | |
2247 | * If the signal is being ignored, | |
2248 | * then we forget about it immediately. | |
2249 | * (Note: we don't set SIGCONT in p_sigignore, | |
2250 | * and if it is set to SIG_IGN, | |
2251 | * action will be SIG_DFL here.) | |
2252 | */ | |
2253 | if (sig_proc->p_sigignore & mask) | |
2254 | goto sigout_locked; | |
2255 | ||
2256 | if (uth->uu_sigwait & mask) | |
2257 | action = KERN_SIG_WAIT; | |
2258 | else if (uth->uu_sigmask & mask) | |
2259 | action = KERN_SIG_HOLD; | |
2260 | else if (sig_proc->p_sigcatch & mask) | |
2261 | action = KERN_SIG_CATCH; | |
2262 | else | |
2263 | action = SIG_DFL; | |
2264 | } | |
2265 | } | |
2266 | ||
2267 | /* TODO: p_nice isn't hooked up to the scheduler... */ | |
2268 | if (sig_proc->p_nice > NZERO && action == SIG_DFL && (prop & SA_KILL) && | |
2269 | (sig_proc->p_lflag & P_LTRACED) == 0) | |
2270 | sig_proc->p_nice = NZERO; | |
2271 | ||
2272 | if (prop & SA_CONT) | |
2273 | uth->uu_siglist &= ~stopsigmask; | |
2274 | ||
2275 | if (prop & SA_STOP) { | |
2276 | struct pgrp *pg; | |
2277 | /* | |
2278 | * If sending a tty stop signal to a member of an orphaned | |
2279 | * process group, discard the signal here if the action | |
2280 | * is default; don't stop the process below if sleeping, | |
2281 | * and don't clear any pending SIGCONT. | |
2282 | */ | |
2283 | pg = proc_pgrp(sig_proc); | |
2284 | if (prop & SA_TTYSTOP && pg->pg_jobc == 0 && | |
2285 | action == SIG_DFL) { | |
2286 | pg_rele(pg); | |
2287 | goto sigout_locked; | |
2288 | } | |
2289 | pg_rele(pg); | |
2290 | uth->uu_siglist &= ~contsigmask; | |
2291 | } | |
2292 | ||
2293 | uth->uu_siglist |= mask; | |
2294 | ||
2295 | /* | |
2296 | * Defer further processing for signals which are held, | |
2297 | * except that stopped processes must be continued by SIGCONT. | |
2298 | */ | |
2299 | /* vfork will not go thru as action is SIG_DFL */ | |
2300 | if ((action == KERN_SIG_HOLD) && ((prop & SA_CONT) == 0 || sig_proc->p_stat != SSTOP)) | |
2301 | goto sigout_locked; | |
2302 | ||
2303 | /* | |
2304 | * SIGKILL priority twiddling moved here from above because | |
2305 | * it needs sig_thread. Could merge it into large switch | |
2306 | * below if we didn't care about priority for tracing | |
2307 | * as SIGKILL's action is always SIG_DFL. | |
2308 | * | |
2309 | * TODO: p_nice isn't hooked up to the scheduler... | |
2310 | */ | |
2311 | if ((signum == SIGKILL) && (sig_proc->p_nice > NZERO)) { | |
2312 | sig_proc->p_nice = NZERO; | |
2313 | } | |
2314 | ||
2315 | /* | |
2316 | * Process is traced - wake it up (if not already | |
2317 | * stopped) so that it can discover the signal in | |
2318 | * issig() and stop for the parent. | |
2319 | */ | |
2320 | if (sig_proc->p_lflag & P_LTRACED) { | |
2321 | if (sig_proc->p_stat != SSTOP) | |
2322 | goto runlocked; | |
2323 | else | |
2324 | goto sigout_locked; | |
2325 | } | |
2326 | ||
2327 | if ((flavor & PSIG_VFORK) != 0) | |
2328 | goto runlocked; | |
2329 | ||
2330 | if (action == KERN_SIG_WAIT) { | |
2331 | #if CONFIG_DTRACE | |
2332 | /* | |
2333 | * DTrace proc signal-clear returns a siginfo_t. Collect the needed info. | |
2334 | */ | |
2335 | r_uid = kauth_getruid(); /* per thread credential; protected by our thread context */ | |
2336 | ||
2337 | bzero((caddr_t)&(uth->t_dtrace_siginfo), sizeof(uth->t_dtrace_siginfo)); | |
2338 | ||
2339 | uth->t_dtrace_siginfo.si_signo = signum; | |
2340 | uth->t_dtrace_siginfo.si_pid = current_proc()->p_pid; | |
2341 | uth->t_dtrace_siginfo.si_status = W_EXITCODE(signum, 0); | |
2342 | uth->t_dtrace_siginfo.si_uid = r_uid; | |
2343 | uth->t_dtrace_siginfo.si_code = 0; | |
2344 | #endif | |
2345 | uth->uu_sigwait = mask; | |
2346 | uth->uu_siglist &= ~mask; | |
2347 | wakeup(&uth->uu_sigwait); | |
2348 | /* if it is SIGCONT resume whole process */ | |
2349 | if (prop & SA_CONT) { | |
2350 | OSBitOrAtomic(P_CONTINUED, &sig_proc->p_flag); | |
2351 | sig_proc->p_contproc = current_proc()->p_pid; | |
2352 | (void) task_resume_internal(sig_task); | |
2353 | } | |
2354 | goto sigout_locked; | |
2355 | } | |
2356 | ||
2357 | if (action != SIG_DFL) { | |
2358 | /* | |
2359 | * User wants to catch the signal. | |
2360 | * Wake up the thread, but don't un-suspend it | |
2361 | * (except for SIGCONT). | |
2362 | */ | |
2363 | if (prop & SA_CONT) { | |
2364 | OSBitOrAtomic(P_CONTINUED, &sig_proc->p_flag); | |
2365 | (void) task_resume_internal(sig_task); | |
2366 | sig_proc->p_stat = SRUN; | |
2367 | } else if (sig_proc->p_stat == SSTOP) { | |
2368 | goto sigout_locked; | |
2369 | } | |
2370 | /* | |
2371 | * Fill out siginfo structure information to pass to the | |
2372 | * signalled process/thread sigaction handler, when it | |
2373 | * wakes up. si_code is 0 because this is an ordinary | |
2374 | * signal, not a SIGCHLD, and so si_status is the signal | |
2375 | * number itself, instead of the child process exit status. | |
2376 | * We shift this left because it will be shifted right before | |
2377 | * it is passed to user space. kind of ugly to use W_EXITCODE | |
2378 | * this way, but it beats defining a new macro. | |
2379 | * | |
2380 | * Note: Avoid the SIGCHLD recursion case! | |
2381 | */ | |
2382 | if (signum != SIGCHLD) { | |
2383 | r_uid = kauth_getruid(); | |
2384 | ||
2385 | sig_proc->si_pid = current_proc()->p_pid; | |
2386 | sig_proc->si_status = W_EXITCODE(signum, 0); | |
2387 | sig_proc->si_uid = r_uid; | |
2388 | sig_proc->si_code = 0; | |
2389 | } | |
2390 | ||
2391 | goto runlocked; | |
2392 | } else { | |
2393 | /* Default action - varies */ | |
2394 | if (mask & stopsigmask) { | |
2395 | assert(signal_reason == NULL); | |
2396 | /* | |
2397 | * These are the signals which by default | |
2398 | * stop a process. | |
2399 | * | |
2400 | * Don't clog system with children of init | |
2401 | * stopped from the keyboard. | |
2402 | */ | |
2403 | if (!(prop & SA_STOP) && sig_proc->p_pptr == initproc) { | |
2404 | uth->uu_siglist &= ~mask; | |
2405 | proc_unlock(sig_proc); | |
2406 | /* siglock still locked, proc_lock not locked */ | |
2407 | psignal_locked(sig_proc, SIGKILL); | |
2408 | goto sigout_unlocked; | |
2409 | } | |
2410 | ||
2411 | /* | |
2412 | * Stop the task | |
2413 | * if task hasn't already been stopped by | |
2414 | * a signal. | |
2415 | */ | |
2416 | uth->uu_siglist &= ~mask; | |
2417 | if (sig_proc->p_stat != SSTOP) { | |
2418 | sig_proc->p_xstat = signum; | |
2419 | sig_proc->p_stat = SSTOP; | |
2420 | OSBitAndAtomic(~((uint32_t)P_CONTINUED), &sig_proc->p_flag); | |
2421 | sig_proc->p_lflag &= ~P_LWAITED; | |
2422 | proc_unlock(sig_proc); | |
2423 | ||
2424 | pp = proc_parentholdref(sig_proc); | |
2425 | stop(sig_proc, pp); | |
2426 | if (( pp != PROC_NULL) && ((pp->p_flag & P_NOCLDSTOP) == 0)) { | |
2427 | ||
2428 | my_cred = kauth_cred_proc_ref(sig_proc); | |
2429 | r_uid = kauth_cred_getruid(my_cred); | |
2430 | kauth_cred_unref(&my_cred); | |
2431 | ||
2432 | proc_lock(sig_proc); | |
2433 | pp->si_pid = sig_proc->p_pid; | |
2434 | /* | |
2435 | * POSIX: sigaction for a stopped child | |
2436 | * when sent to the parent must set the | |
2437 | * child's signal number into si_status. | |
2438 | */ | |
2439 | if (signum != SIGSTOP) | |
2440 | pp->si_status = WEXITSTATUS(sig_proc->p_xstat); | |
2441 | else | |
2442 | pp->si_status = W_EXITCODE(signum, signum); | |
2443 | pp->si_code = CLD_STOPPED; | |
2444 | pp->si_uid = r_uid; | |
2445 | proc_unlock(sig_proc); | |
2446 | ||
2447 | psignal(pp, SIGCHLD); | |
2448 | } | |
2449 | if (pp != PROC_NULL) { | |
2450 | proc_parentdropref(pp, 0); | |
2451 | } | |
2452 | ||
2453 | goto sigout_unlocked; | |
2454 | } | |
2455 | ||
2456 | goto sigout_locked; | |
2457 | } | |
2458 | ||
2459 | DTRACE_PROC3(signal__send, thread_t, sig_thread, proc_t, p, int, signum); | |
2460 | ||
2461 | switch (signum) { | |
2462 | /* | |
2463 | * Signals ignored by default have been dealt | |
2464 | * with already, since their bits are on in | |
2465 | * p_sigignore. | |
2466 | */ | |
2467 | ||
2468 | case SIGKILL: | |
2469 | /* | |
2470 | * Kill signal always sets process running and | |
2471 | * unsuspends it. | |
2472 | */ | |
2473 | /* | |
2474 | * Process will be running after 'run' | |
2475 | */ | |
2476 | sig_proc->p_stat = SRUN; | |
2477 | /* | |
2478 | * In scenarios where suspend/resume are racing | |
2479 | * the signal we are missing AST_BSD by the time | |
2480 | * we get here, set again to avoid races. This | |
2481 | * was the scenario with spindump enabled shutdowns. | |
2482 | * We would need to cover this approp down the line. | |
2483 | */ | |
2484 | act_set_astbsd(sig_thread); | |
2485 | kret = thread_abort(sig_thread); | |
2486 | update_thread_policy = (kret == KERN_SUCCESS); | |
2487 | ||
2488 | if (uth->uu_exit_reason == OS_REASON_NULL) { | |
2489 | if (signal_reason == OS_REASON_NULL) { | |
2490 | KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_PROC, BSD_PROC_EXITREASON_CREATE) | DBG_FUNC_NONE, | |
2491 | sig_proc->p_pid, OS_REASON_SIGNAL, signum, 0, 0); | |
2492 | ||
2493 | signal_reason = build_signal_reason(signum, NULL); | |
2494 | } | |
2495 | ||
2496 | os_reason_ref(signal_reason); | |
2497 | set_thread_exit_reason(sig_thread, signal_reason, TRUE); | |
2498 | } | |
2499 | ||
2500 | goto sigout_locked; | |
2501 | ||
2502 | case SIGCONT: | |
2503 | /* | |
2504 | * Let the process run. If it's sleeping on an | |
2505 | * event, it remains so. | |
2506 | */ | |
2507 | assert(signal_reason == NULL); | |
2508 | OSBitOrAtomic(P_CONTINUED, &sig_proc->p_flag); | |
2509 | sig_proc->p_contproc = sig_proc->p_pid; | |
2510 | ||
2511 | (void) task_resume_internal(sig_task); | |
2512 | ||
2513 | /* | |
2514 | * When processing a SIGCONT, we need to check | |
2515 | * to see if there are signals pending that | |
2516 | * were not delivered because we had been | |
2517 | * previously stopped. If that's the case, | |
2518 | * we need to thread_abort_safely() to trigger | |
2519 | * interruption of the current system call to | |
2520 | * cause their handlers to fire. If it's only | |
2521 | * the SIGCONT, then don't wake up. | |
2522 | */ | |
2523 | if (((flavor & (PSIG_VFORK|PSIG_THREAD)) == 0) && (((uth->uu_siglist & ~uth->uu_sigmask) & ~sig_proc->p_sigignore) & ~mask)) { | |
2524 | uth->uu_siglist &= ~mask; | |
2525 | sig_proc->p_stat = SRUN; | |
2526 | goto runlocked; | |
2527 | } | |
2528 | ||
2529 | uth->uu_siglist &= ~mask; | |
2530 | sig_proc->p_stat = SRUN; | |
2531 | goto sigout_locked; | |
2532 | ||
2533 | default: | |
2534 | /* | |
2535 | * A signal which has a default action of killing | |
2536 | * the process, and for which there is no handler, | |
2537 | * needs to act like SIGKILL | |
2538 | */ | |
2539 | if (((flavor & (PSIG_VFORK|PSIG_THREAD)) == 0) && (action == SIG_DFL) && (prop & SA_KILL)) { | |
2540 | sig_proc->p_stat = SRUN; | |
2541 | kret = thread_abort(sig_thread); | |
2542 | update_thread_policy = (kret == KERN_SUCCESS); | |
2543 | ||
2544 | if (uth->uu_exit_reason == OS_REASON_NULL) { | |
2545 | if (signal_reason == OS_REASON_NULL) { | |
2546 | KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_PROC, BSD_PROC_EXITREASON_CREATE) | DBG_FUNC_NONE, | |
2547 | sig_proc->p_pid, OS_REASON_SIGNAL, signum, 0, 0); | |
2548 | ||
2549 | signal_reason = build_signal_reason(signum, NULL); | |
2550 | } | |
2551 | ||
2552 | os_reason_ref(signal_reason); | |
2553 | set_thread_exit_reason(sig_thread, signal_reason, TRUE); | |
2554 | } | |
2555 | ||
2556 | goto sigout_locked; | |
2557 | } | |
2558 | ||
2559 | /* | |
2560 | * All other signals wake up the process, but don't | |
2561 | * resume it. | |
2562 | */ | |
2563 | if (sig_proc->p_stat == SSTOP) { | |
2564 | goto sigout_locked; | |
2565 | } | |
2566 | goto runlocked; | |
2567 | } | |
2568 | } | |
2569 | /*NOTREACHED*/ | |
2570 | ||
2571 | runlocked: | |
2572 | /* | |
2573 | * If we're being traced (possibly because someone attached us | |
2574 | * while we were stopped), check for a signal from the debugger. | |
2575 | */ | |
2576 | if (sig_proc->p_stat == SSTOP) { | |
2577 | if ((sig_proc->p_lflag & P_LTRACED) != 0 && sig_proc->p_xstat != 0) | |
2578 | uth->uu_siglist |= sigmask(sig_proc->p_xstat); | |
2579 | ||
2580 | if ((flavor & PSIG_VFORK) != 0) { | |
2581 | sig_proc->p_stat = SRUN; | |
2582 | } | |
2583 | } else { | |
2584 | /* | |
2585 | * setrunnable(p) in BSD and | |
2586 | * Wake up the thread if it is interruptible. | |
2587 | */ | |
2588 | sig_proc->p_stat = SRUN; | |
2589 | if ((flavor & PSIG_VFORK) == 0) | |
2590 | thread_abort_safely(sig_thread); | |
2591 | } | |
2592 | ||
2593 | sigout_locked: | |
2594 | if (update_thread_policy) { | |
2595 | /* | |
2596 | * Update the thread policy to heading to terminate, increase priority if | |
2597 | * necessary. This needs to be done before we drop the proc lock because the | |
2598 | * thread can take the fatal signal once it's dropped. | |
2599 | */ | |
2600 | proc_set_thread_policy(sig_thread, TASK_POLICY_ATTRIBUTE, TASK_POLICY_TERMINATED, TASK_POLICY_ENABLE); | |
2601 | } | |
2602 | ||
2603 | proc_unlock(sig_proc); | |
2604 | ||
2605 | sigout_unlocked: | |
2606 | os_reason_free(signal_reason); | |
2607 | if ((flavor & PSIG_LOCKED)== 0) { | |
2608 | proc_signalend(sig_proc, 0); | |
2609 | } | |
2610 | } | |
2611 | ||
2612 | void | |
2613 | psignal(proc_t p, int signum) | |
2614 | { | |
2615 | psignal_internal(p, NULL, NULL, 0, signum, NULL); | |
2616 | } | |
2617 | ||
2618 | void | |
2619 | psignal_with_reason(proc_t p, int signum, struct os_reason *signal_reason) | |
2620 | { | |
2621 | psignal_internal(p, NULL, NULL, 0, signum, signal_reason); | |
2622 | } | |
2623 | ||
2624 | void | |
2625 | psignal_locked(proc_t p, int signum) | |
2626 | { | |
2627 | psignal_internal(p, NULL, NULL, PSIG_LOCKED, signum, NULL); | |
2628 | } | |
2629 | ||
2630 | void | |
2631 | psignal_vfork_with_reason(proc_t p, task_t new_task, thread_t thread, int signum, struct os_reason *signal_reason) | |
2632 | { | |
2633 | psignal_internal(p, new_task, thread, PSIG_VFORK, signum, signal_reason); | |
2634 | } | |
2635 | ||
2636 | ||
2637 | void | |
2638 | psignal_vfork(proc_t p, task_t new_task, thread_t thread, int signum) | |
2639 | { | |
2640 | psignal_internal(p, new_task, thread, PSIG_VFORK, signum, NULL); | |
2641 | } | |
2642 | ||
2643 | void | |
2644 | psignal_uthread(thread_t thread, int signum) | |
2645 | { | |
2646 | psignal_internal(PROC_NULL, TASK_NULL, thread, PSIG_THREAD, signum, NULL); | |
2647 | } | |
2648 | ||
2649 | /* same as psignal(), but prefer delivery to 'thread' if possible */ | |
2650 | void | |
2651 | psignal_try_thread(proc_t p, thread_t thread, int signum) | |
2652 | { | |
2653 | psignal_internal(p, NULL, thread, PSIG_TRY_THREAD, signum, NULL); | |
2654 | } | |
2655 | ||
2656 | void | |
2657 | psignal_try_thread_with_reason(proc_t p, thread_t thread, int signum, struct os_reason *signal_reason) | |
2658 | { | |
2659 | psignal_internal(p, TASK_NULL, thread, PSIG_TRY_THREAD, signum, signal_reason); | |
2660 | } | |
2661 | ||
2662 | void | |
2663 | psignal_thread_with_reason(proc_t p, thread_t thread, int signum, struct os_reason *signal_reason) | |
2664 | { | |
2665 | psignal_internal(p, TASK_NULL, thread, PSIG_THREAD, signum, signal_reason); | |
2666 | } | |
2667 | ||
2668 | /* | |
2669 | * If the current process has received a signal (should be caught or cause | |
2670 | * termination, should interrupt current syscall), return the signal number. | |
2671 | * Stop signals with default action are processed immediately, then cleared; | |
2672 | * they aren't returned. This is checked after each entry to the system for | |
2673 | * a syscall or trap (though this can usually be done without calling issignal | |
2674 | * by checking the pending signal masks in the CURSIG macro.) The normal call | |
2675 | * sequence is | |
2676 | * | |
2677 | * while (signum = CURSIG(curproc)) | |
2678 | * postsig(signum); | |
2679 | */ | |
2680 | int | |
2681 | issignal_locked(proc_t p) | |
2682 | { | |
2683 | int signum, mask, prop, sigbits; | |
2684 | thread_t cur_act; | |
2685 | struct uthread * ut; | |
2686 | proc_t pp; | |
2687 | kauth_cred_t my_cred; | |
2688 | int retval = 0; | |
2689 | uid_t r_uid; | |
2690 | ||
2691 | cur_act = current_thread(); | |
2692 | ||
2693 | #if SIGNAL_DEBUG | |
2694 | if(rdebug_proc && (p == rdebug_proc)) { | |
2695 | ram_printf(3); | |
2696 | } | |
2697 | #endif /* SIGNAL_DEBUG */ | |
2698 | ||
2699 | /* | |
2700 | * Try to grab the signal lock. | |
2701 | */ | |
2702 | if (sig_try_locked(p) <= 0) { | |
2703 | return 0; | |
2704 | } | |
2705 | ||
2706 | proc_signalstart(p, 1); | |
2707 | ||
2708 | ut = get_bsdthread_info(cur_act); | |
2709 | for (;;) { | |
2710 | sigbits = ut->uu_siglist & ~ut->uu_sigmask; | |
2711 | ||
2712 | if (p->p_lflag & P_LPPWAIT) | |
2713 | sigbits &= ~stopsigmask; | |
2714 | if (sigbits == 0) { /* no signal to send */ | |
2715 | retval = 0; | |
2716 | goto out; | |
2717 | } | |
2718 | ||
2719 | signum = ffs((long)sigbits); | |
2720 | mask = sigmask(signum); | |
2721 | prop = sigprop[signum]; | |
2722 | ||
2723 | /* | |
2724 | * We should see pending but ignored signals | |
2725 | * only if P_LTRACED was on when they were posted. | |
2726 | */ | |
2727 | if (mask & p->p_sigignore && (p->p_lflag & P_LTRACED) == 0) { | |
2728 | ut->uu_siglist &= ~mask; | |
2729 | continue; | |
2730 | } | |
2731 | ||
2732 | if (p->p_lflag & P_LTRACED && (p->p_lflag & P_LPPWAIT) == 0) { | |
2733 | /* | |
2734 | * If traced, deliver the signal to the debugger, and wait to be | |
2735 | * released. | |
2736 | */ | |
2737 | task_t task; | |
2738 | p->p_xstat = signum; | |
2739 | ||
2740 | if (p->p_lflag & P_LSIGEXC) { | |
2741 | p->sigwait = TRUE; | |
2742 | p->sigwait_thread = cur_act; | |
2743 | p->p_stat = SSTOP; | |
2744 | OSBitAndAtomic(~((uint32_t)P_CONTINUED), &p->p_flag); | |
2745 | p->p_lflag &= ~P_LWAITED; | |
2746 | ut->uu_siglist &= ~mask; /* clear the current signal from the pending list */ | |
2747 | proc_signalend(p, 1); | |
2748 | proc_unlock(p); | |
2749 | do_bsdexception(EXC_SOFTWARE, EXC_SOFT_SIGNAL, signum); | |
2750 | proc_lock(p); | |
2751 | proc_signalstart(p, 1); | |
2752 | } else { | |
2753 | proc_unlock(p); | |
2754 | my_cred = kauth_cred_proc_ref(p); | |
2755 | r_uid = kauth_cred_getruid(my_cred); | |
2756 | kauth_cred_unref(&my_cred); | |
2757 | ||
2758 | pp = proc_parentholdref(p); | |
2759 | if (pp != PROC_NULL) { | |
2760 | proc_lock(pp); | |
2761 | ||
2762 | pp->si_pid = p->p_pid; | |
2763 | pp->si_status = p->p_xstat; | |
2764 | pp->si_code = CLD_TRAPPED; | |
2765 | pp->si_uid = r_uid; | |
2766 | ||
2767 | proc_unlock(pp); | |
2768 | } | |
2769 | ||
2770 | /* | |
2771 | * XXX Have to really stop for debuggers; | |
2772 | * XXX stop() doesn't do the right thing. | |
2773 | */ | |
2774 | task = p->task; | |
2775 | task_suspend_internal(task); | |
2776 | ||
2777 | proc_lock(p); | |
2778 | p->sigwait = TRUE; | |
2779 | p->sigwait_thread = cur_act; | |
2780 | p->p_stat = SSTOP; | |
2781 | OSBitAndAtomic(~((uint32_t)P_CONTINUED), &p->p_flag); | |
2782 | p->p_lflag &= ~P_LWAITED; | |
2783 | ut->uu_siglist &= ~mask; | |
2784 | ||
2785 | proc_signalend(p, 1); | |
2786 | proc_unlock(p); | |
2787 | ||
2788 | if (pp != PROC_NULL) { | |
2789 | psignal(pp, SIGCHLD); | |
2790 | proc_list_lock(); | |
2791 | wakeup((caddr_t)pp); | |
2792 | proc_parentdropref(pp, 1); | |
2793 | proc_list_unlock(); | |
2794 | } | |
2795 | ||
2796 | assert_wait((caddr_t)&p->sigwait, (THREAD_INTERRUPTIBLE)); | |
2797 | thread_block(THREAD_CONTINUE_NULL); | |
2798 | proc_lock(p); | |
2799 | proc_signalstart(p, 1); | |
2800 | } | |
2801 | ||
2802 | p->sigwait = FALSE; | |
2803 | p->sigwait_thread = NULL; | |
2804 | wakeup((caddr_t)&p->sigwait_thread); | |
2805 | ||
2806 | if (signum == SIGKILL || ut->uu_siglist & sigmask(SIGKILL)) { | |
2807 | /* | |
2808 | * Deliver a pending sigkill even if it's not the current signal. | |
2809 | * Necessary for PT_KILL, which should not be delivered to the | |
2810 | * debugger, but we can't differentiate it from any other KILL. | |
2811 | */ | |
2812 | signum = SIGKILL; | |
2813 | goto deliver_sig; | |
2814 | } | |
2815 | ||
2816 | /* We may have to quit. */ | |
2817 | if (thread_should_abort(current_thread())) { | |
2818 | retval = 0; | |
2819 | goto out; | |
2820 | } | |
2821 | ||
2822 | /* | |
2823 | * If parent wants us to take the signal, | |
2824 | * then it will leave it in p->p_xstat; | |
2825 | * otherwise we just look for signals again. | |
2826 | */ | |
2827 | signum = p->p_xstat; | |
2828 | if (signum == 0) | |
2829 | continue; | |
2830 | ||
2831 | /* | |
2832 | * Put the new signal into p_siglist. If the | |
2833 | * signal is being masked, look for other signals. | |
2834 | */ | |
2835 | mask = sigmask(signum); | |
2836 | ut->uu_siglist |= mask; | |
2837 | if (ut->uu_sigmask & mask) | |
2838 | continue; | |
2839 | } | |
2840 | ||
2841 | /* | |
2842 | * Decide whether the signal should be returned. | |
2843 | * Return the signal's number, or fall through | |
2844 | * to clear it from the pending mask. | |
2845 | */ | |
2846 | ||
2847 | switch ((long)p->p_sigacts->ps_sigact[signum]) { | |
2848 | ||
2849 | case (long)SIG_DFL: | |
2850 | /* | |
2851 | * If there is a pending stop signal to process | |
2852 | * with default action, stop here, | |
2853 | * then clear the signal. However, | |
2854 | * if process is member of an orphaned | |
2855 | * process group, ignore tty stop signals. | |
2856 | */ | |
2857 | if (prop & SA_STOP) { | |
2858 | struct pgrp * pg; | |
2859 | ||
2860 | proc_unlock(p); | |
2861 | pg = proc_pgrp(p); | |
2862 | if (p->p_lflag & P_LTRACED || | |
2863 | (pg->pg_jobc == 0 && | |
2864 | prop & SA_TTYSTOP)) { | |
2865 | proc_lock(p); | |
2866 | pg_rele(pg); | |
2867 | break; /* ignore signal */ | |
2868 | } | |
2869 | pg_rele(pg); | |
2870 | if (p->p_stat != SSTOP) { | |
2871 | proc_lock(p); | |
2872 | p->p_xstat = signum; | |
2873 | p->p_stat = SSTOP; | |
2874 | p->p_lflag &= ~P_LWAITED; | |
2875 | proc_unlock(p); | |
2876 | ||
2877 | pp = proc_parentholdref(p); | |
2878 | stop(p, pp); | |
2879 | if ((pp != PROC_NULL) && ((pp->p_flag & P_NOCLDSTOP) == 0)) { | |
2880 | my_cred = kauth_cred_proc_ref(p); | |
2881 | r_uid = kauth_cred_getruid(my_cred); | |
2882 | kauth_cred_unref(&my_cred); | |
2883 | ||
2884 | proc_lock(pp); | |
2885 | pp->si_pid = p->p_pid; | |
2886 | pp->si_status = WEXITSTATUS(p->p_xstat); | |
2887 | pp->si_code = CLD_STOPPED; | |
2888 | pp->si_uid = r_uid; | |
2889 | proc_unlock(pp); | |
2890 | ||
2891 | psignal(pp, SIGCHLD); | |
2892 | } | |
2893 | if (pp != PROC_NULL) | |
2894 | proc_parentdropref(pp, 0); | |
2895 | } | |
2896 | proc_lock(p); | |
2897 | break; | |
2898 | } else if (prop & SA_IGNORE) { | |
2899 | /* | |
2900 | * Except for SIGCONT, shouldn't get here. | |
2901 | * Default action is to ignore; drop it. | |
2902 | */ | |
2903 | break; /* ignore signal */ | |
2904 | } else { | |
2905 | goto deliver_sig; | |
2906 | } | |
2907 | ||
2908 | case (long)SIG_IGN: | |
2909 | /* | |
2910 | * Masking above should prevent us ever trying | |
2911 | * to take action on an ignored signal other | |
2912 | * than SIGCONT, unless process is traced. | |
2913 | */ | |
2914 | if ((prop & SA_CONT) == 0 && | |
2915 | (p->p_lflag & P_LTRACED) == 0) | |
2916 | printf("issignal\n"); | |
2917 | break; /* ignore signal */ | |
2918 | ||
2919 | default: | |
2920 | /* This signal has an action - deliver it. */ | |
2921 | goto deliver_sig; | |
2922 | } | |
2923 | ||
2924 | /* If we dropped through, the signal was ignored - remove it from pending list. */ | |
2925 | ut->uu_siglist &= ~mask; | |
2926 | ||
2927 | } /* for(;;) */ | |
2928 | ||
2929 | /* NOTREACHED */ | |
2930 | ||
2931 | deliver_sig: | |
2932 | ut->uu_siglist &= ~mask; | |
2933 | retval = signum; | |
2934 | ||
2935 | out: | |
2936 | proc_signalend(p, 1); | |
2937 | return retval; | |
2938 | } | |
2939 | ||
2940 | /* called from _sleep */ | |
2941 | int | |
2942 | CURSIG(proc_t p) | |
2943 | { | |
2944 | int signum, mask, prop, sigbits; | |
2945 | thread_t cur_act; | |
2946 | struct uthread * ut; | |
2947 | int retnum = 0; | |
2948 | ||
2949 | ||
2950 | cur_act = current_thread(); | |
2951 | ||
2952 | ut = get_bsdthread_info(cur_act); | |
2953 | ||
2954 | if (ut->uu_siglist == 0) | |
2955 | return (0); | |
2956 | ||
2957 | if (((ut->uu_siglist & ~ut->uu_sigmask) == 0) && ((p->p_lflag & P_LTRACED) == 0)) | |
2958 | return (0); | |
2959 | ||
2960 | sigbits = ut->uu_siglist & ~ut->uu_sigmask; | |
2961 | ||
2962 | for(;;) { | |
2963 | if (p->p_lflag & P_LPPWAIT) | |
2964 | sigbits &= ~stopsigmask; | |
2965 | if (sigbits == 0) { /* no signal to send */ | |
2966 | return (retnum); | |
2967 | } | |
2968 | ||
2969 | signum = ffs((long)sigbits); | |
2970 | mask = sigmask(signum); | |
2971 | prop = sigprop[signum]; | |
2972 | sigbits &= ~mask; /* take the signal out */ | |
2973 | ||
2974 | /* | |
2975 | * We should see pending but ignored signals | |
2976 | * only if P_LTRACED was on when they were posted. | |
2977 | */ | |
2978 | if (mask & p->p_sigignore && (p->p_lflag & P_LTRACED) == 0) { | |
2979 | continue; | |
2980 | } | |
2981 | ||
2982 | if (p->p_lflag & P_LTRACED && (p->p_lflag & P_LPPWAIT) == 0) { | |
2983 | return(signum); | |
2984 | } | |
2985 | ||
2986 | /* | |
2987 | * Decide whether the signal should be returned. | |
2988 | * Return the signal's number, or fall through | |
2989 | * to clear it from the pending mask. | |
2990 | */ | |
2991 | ||
2992 | switch ((long)p->p_sigacts->ps_sigact[signum]) { | |
2993 | ||
2994 | case (long)SIG_DFL: | |
2995 | /* | |
2996 | * If there is a pending stop signal to process | |
2997 | * with default action, stop here, | |
2998 | * then clear the signal. However, | |
2999 | * if process is member of an orphaned | |
3000 | * process group, ignore tty stop signals. | |
3001 | */ | |
3002 | if (prop & SA_STOP) { | |
3003 | struct pgrp *pg; | |
3004 | ||
3005 | pg = proc_pgrp(p); | |
3006 | ||
3007 | if (p->p_lflag & P_LTRACED || | |
3008 | (pg->pg_jobc == 0 && | |
3009 | prop & SA_TTYSTOP)) { | |
3010 | pg_rele(pg); | |
3011 | break; /* == ignore */ | |
3012 | } | |
3013 | pg_rele(pg); | |
3014 | retnum = signum; | |
3015 | break; | |
3016 | } else if (prop & SA_IGNORE) { | |
3017 | /* | |
3018 | * Except for SIGCONT, shouldn't get here. | |
3019 | * Default action is to ignore; drop it. | |
3020 | */ | |
3021 | break; /* == ignore */ | |
3022 | } else { | |
3023 | return (signum); | |
3024 | } | |
3025 | /*NOTREACHED*/ | |
3026 | ||
3027 | case (long)SIG_IGN: | |
3028 | /* | |
3029 | * Masking above should prevent us ever trying | |
3030 | * to take action on an ignored signal other | |
3031 | * than SIGCONT, unless process is traced. | |
3032 | */ | |
3033 | if ((prop & SA_CONT) == 0 && | |
3034 | (p->p_lflag & P_LTRACED) == 0) | |
3035 | printf("issignal\n"); | |
3036 | break; /* == ignore */ | |
3037 | ||
3038 | default: | |
3039 | /* | |
3040 | * This signal has an action, let | |
3041 | * postsig() process it. | |
3042 | */ | |
3043 | return (signum); | |
3044 | } | |
3045 | } | |
3046 | /* NOTREACHED */ | |
3047 | } | |
3048 | ||
3049 | /* | |
3050 | * Put the argument process into the stopped state and notify the parent | |
3051 | * via wakeup. Signals are handled elsewhere. The process must not be | |
3052 | * on the run queue. | |
3053 | */ | |
3054 | static void | |
3055 | stop(proc_t p, proc_t parent) | |
3056 | { | |
3057 | OSBitAndAtomic(~((uint32_t)P_CONTINUED), &p->p_flag); | |
3058 | if ((parent != PROC_NULL) && (parent->p_stat != SSTOP)) { | |
3059 | proc_list_lock(); | |
3060 | wakeup((caddr_t)parent); | |
3061 | proc_list_unlock(); | |
3062 | } | |
3063 | (void) task_suspend_internal(p->task); | |
3064 | } | |
3065 | ||
3066 | /* | |
3067 | * Take the action for the specified signal | |
3068 | * from the current set of pending signals. | |
3069 | */ | |
3070 | void | |
3071 | postsig_locked(int signum) | |
3072 | { | |
3073 | proc_t p = current_proc(); | |
3074 | struct sigacts *ps = p->p_sigacts; | |
3075 | user_addr_t catcher; | |
3076 | uint32_t code; | |
3077 | int mask, returnmask; | |
3078 | struct uthread * ut; | |
3079 | ||
3080 | #if DIAGNOSTIC | |
3081 | if (signum == 0) | |
3082 | panic("postsig"); | |
3083 | /* | |
3084 | * This must be called on master cpu | |
3085 | */ | |
3086 | if (cpu_number() != master_cpu) | |
3087 | panic("psig not on master"); | |
3088 | #endif | |
3089 | ||
3090 | /* | |
3091 | * Try to grab the signal lock. | |
3092 | */ | |
3093 | if (sig_try_locked(p) <= 0) { | |
3094 | return; | |
3095 | } | |
3096 | ||
3097 | proc_signalstart(p, 1); | |
3098 | ||
3099 | ut = (struct uthread *)get_bsdthread_info(current_thread()); | |
3100 | mask = sigmask(signum); | |
3101 | ut->uu_siglist &= ~mask; | |
3102 | catcher = ps->ps_sigact[signum]; | |
3103 | if (catcher == SIG_DFL) { | |
3104 | /* | |
3105 | * Default catcher, where the default is to kill | |
3106 | * the process. (Other cases were ignored above.) | |
3107 | */ | |
3108 | sig_lock_to_exit(p); | |
3109 | p->p_acflag |= AXSIG; | |
3110 | if (sigprop[signum] & SA_CORE) { | |
3111 | p->p_sigacts->ps_sig = signum; | |
3112 | proc_signalend(p, 1); | |
3113 | proc_unlock(p); | |
3114 | #if CONFIG_COREDUMP | |
3115 | if (coredump(p, 0, 0) == 0) | |
3116 | signum |= WCOREFLAG; | |
3117 | #endif | |
3118 | } else { | |
3119 | proc_signalend(p, 1); | |
3120 | proc_unlock(p); | |
3121 | } | |
3122 | ||
3123 | #if CONFIG_DTRACE | |
3124 | bzero((caddr_t)&(ut->t_dtrace_siginfo), sizeof(ut->t_dtrace_siginfo)); | |
3125 | ||
3126 | ut->t_dtrace_siginfo.si_signo = signum; | |
3127 | ut->t_dtrace_siginfo.si_pid = p->si_pid; | |
3128 | ut->t_dtrace_siginfo.si_uid = p->si_uid; | |
3129 | ut->t_dtrace_siginfo.si_status = WEXITSTATUS(p->si_status); | |
3130 | ||
3131 | /* Fire DTrace proc:::fault probe when signal is generated by hardware. */ | |
3132 | switch (signum) { | |
3133 | case SIGILL: case SIGBUS: case SIGSEGV: case SIGFPE: case SIGTRAP: | |
3134 | DTRACE_PROC2(fault, int, (int)(ut->uu_code), siginfo_t *, &(ut->t_dtrace_siginfo)); | |
3135 | break; | |
3136 | default: | |
3137 | break; | |
3138 | } | |
3139 | ||
3140 | ||
3141 | DTRACE_PROC3(signal__handle, int, signum, siginfo_t *, &(ut->t_dtrace_siginfo), | |
3142 | void (*)(void), SIG_DFL); | |
3143 | #endif | |
3144 | ||
3145 | KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_PROC, BSD_PROC_FRCEXIT) | DBG_FUNC_NONE, | |
3146 | p->p_pid, W_EXITCODE(0, signum), 3, 0, 0); | |
3147 | ||
3148 | /* | |
3149 | * exit_with_reason() will consume a reference to the thread's exit reason, so we take another | |
3150 | * reference for the thread. This reference will be destroyed in uthread_cleanup(). | |
3151 | */ | |
3152 | os_reason_ref(ut->uu_exit_reason); | |
3153 | exit_with_reason(p, W_EXITCODE(0, signum), (int *)NULL, TRUE, TRUE, 0, ut->uu_exit_reason); | |
3154 | ||
3155 | proc_lock(p); | |
3156 | return; | |
3157 | } else { | |
3158 | /* | |
3159 | * If we get here, the signal must be caught. | |
3160 | */ | |
3161 | #if DIAGNOSTIC | |
3162 | if (catcher == SIG_IGN || (ut->uu_sigmask & mask)) | |
3163 | log(LOG_WARNING, | |
3164 | "postsig: processing masked or ignored signal\n"); | |
3165 | #endif | |
3166 | ||
3167 | /* | |
3168 | * Set the new mask value and also defer further | |
3169 | * occurences of this signal. | |
3170 | * | |
3171 | * Special case: user has done a sigpause. Here the | |
3172 | * current mask is not of interest, but rather the | |
3173 | * mask from before the sigpause is what we want | |
3174 | * restored after the signal processing is completed. | |
3175 | */ | |
3176 | if (ut->uu_flag & UT_SAS_OLDMASK) { | |
3177 | returnmask = ut->uu_oldmask; | |
3178 | ut->uu_flag &= ~UT_SAS_OLDMASK; | |
3179 | ut->uu_oldmask = 0; | |
3180 | } else | |
3181 | returnmask = ut->uu_sigmask; | |
3182 | ut->uu_sigmask |= ps->ps_catchmask[signum]; | |
3183 | if ((ps->ps_signodefer & mask) == 0) | |
3184 | ut->uu_sigmask |= mask; | |
3185 | if ((signum != SIGILL) && (signum != SIGTRAP) && (ps->ps_sigreset & mask)) { | |
3186 | if ((signum != SIGCONT) && (sigprop[signum] & SA_IGNORE)) | |
3187 | p->p_sigignore |= mask; | |
3188 | ps->ps_sigact[signum] = SIG_DFL; | |
3189 | ps->ps_siginfo &= ~mask; | |
3190 | ps->ps_signodefer &= ~mask; | |
3191 | } | |
3192 | ||
3193 | if (ps->ps_sig != signum) { | |
3194 | code = 0; | |
3195 | } else { | |
3196 | code = ps->ps_code; | |
3197 | ps->ps_code = 0; | |
3198 | } | |
3199 | OSIncrementAtomicLong(&p->p_stats->p_ru.ru_nsignals); | |
3200 | sendsig(p, catcher, signum, returnmask, code); | |
3201 | } | |
3202 | proc_signalend(p, 1); | |
3203 | } | |
3204 | ||
3205 | /* | |
3206 | * Attach a signal knote to the list of knotes for this process. | |
3207 | * | |
3208 | * Signal knotes share the knote list with proc knotes. This | |
3209 | * could be avoided by using a signal-specific knote list, but | |
3210 | * probably isn't worth the trouble. | |
3211 | */ | |
3212 | ||
3213 | static int | |
3214 | filt_sigattach(struct knote *kn) | |
3215 | { | |
3216 | proc_t p = current_proc(); /* can attach only to oneself */ | |
3217 | ||
3218 | proc_klist_lock(); | |
3219 | ||
3220 | kn->kn_ptr.p_proc = p; | |
3221 | ||
3222 | KNOTE_ATTACH(&p->p_klist, kn); | |
3223 | ||
3224 | proc_klist_unlock(); | |
3225 | ||
3226 | /* edge-triggered events can't have fired before we attached */ | |
3227 | return (0); | |
3228 | } | |
3229 | ||
3230 | /* | |
3231 | * remove the knote from the process list, if it hasn't already | |
3232 | * been removed by exit processing. | |
3233 | */ | |
3234 | ||
3235 | static void | |
3236 | filt_sigdetach(struct knote *kn) | |
3237 | { | |
3238 | proc_t p = kn->kn_ptr.p_proc; | |
3239 | ||
3240 | proc_klist_lock(); | |
3241 | kn->kn_ptr.p_proc = NULL; | |
3242 | KNOTE_DETACH(&p->p_klist, kn); | |
3243 | proc_klist_unlock(); | |
3244 | } | |
3245 | ||
3246 | /* | |
3247 | * Post an event to the signal filter. Because we share the same list | |
3248 | * as process knotes, we have to filter out and handle only signal events. | |
3249 | * | |
3250 | * We assume that we process fdfree() before we post the NOTE_EXIT for | |
3251 | * a process during exit. Therefore, since signal filters can only be | |
3252 | * set up "in-process", we should have already torn down the kqueue | |
3253 | * hosting the EVFILT_SIGNAL knote and should never see NOTE_EXIT. | |
3254 | */ | |
3255 | static int | |
3256 | filt_signal(struct knote *kn, long hint) | |
3257 | { | |
3258 | ||
3259 | if (hint & NOTE_SIGNAL) { | |
3260 | hint &= ~NOTE_SIGNAL; | |
3261 | ||
3262 | if (kn->kn_id == (unsigned int)hint) | |
3263 | kn->kn_data++; | |
3264 | } else if (hint & NOTE_EXIT) { | |
3265 | panic("filt_signal: detected NOTE_EXIT event"); | |
3266 | } | |
3267 | ||
3268 | return (kn->kn_data != 0); | |
3269 | } | |
3270 | ||
3271 | static int | |
3272 | filt_signaltouch( | |
3273 | struct knote *kn, | |
3274 | struct kevent_internal_s *kev) | |
3275 | { | |
3276 | #pragma unused(kev) | |
3277 | ||
3278 | int res; | |
3279 | ||
3280 | proc_klist_lock(); | |
3281 | ||
3282 | if ((kn->kn_status & KN_UDATA_SPECIFIC) == 0) | |
3283 | kn->kn_udata = kev->udata; | |
3284 | /* | |
3285 | * No data to save - | |
3286 | * just capture if it is already fired | |
3287 | */ | |
3288 | res = (kn->kn_data > 0); | |
3289 | ||
3290 | proc_klist_unlock(); | |
3291 | ||
3292 | return res; | |
3293 | } | |
3294 | ||
3295 | static int | |
3296 | filt_signalprocess( | |
3297 | struct knote *kn, | |
3298 | __unused struct filt_process_s *data, | |
3299 | struct kevent_internal_s *kev) | |
3300 | { | |
3301 | proc_klist_lock(); | |
3302 | ||
3303 | if (kn->kn_data == 0) { | |
3304 | proc_klist_unlock(); | |
3305 | return 0; | |
3306 | } | |
3307 | ||
3308 | /* | |
3309 | * Snapshot the event data. | |
3310 | * All signal events are EV_CLEAR, so | |
3311 | * add that and clear out the data field. | |
3312 | */ | |
3313 | *kev = kn->kn_kevent; | |
3314 | kev->flags |= EV_CLEAR; | |
3315 | kn->kn_data = 0; | |
3316 | ||
3317 | proc_klist_unlock(); | |
3318 | return 1; | |
3319 | } | |
3320 | ||
3321 | void | |
3322 | bsd_ast(thread_t thread) | |
3323 | { | |
3324 | proc_t p = current_proc(); | |
3325 | struct uthread *ut = get_bsdthread_info(thread); | |
3326 | int signum; | |
3327 | user_addr_t pc; | |
3328 | static int bsd_init_done = 0; | |
3329 | ||
3330 | if (p == NULL) | |
3331 | return; | |
3332 | ||
3333 | /* don't run bsd ast on exec copy or exec'ed tasks */ | |
3334 | if (task_did_exec(current_task()) || task_is_exec_copy(current_task())) { | |
3335 | return; | |
3336 | } | |
3337 | ||
3338 | if ((p->p_flag & P_OWEUPC) && (p->p_flag & P_PROFIL)) { | |
3339 | pc = get_useraddr(); | |
3340 | addupc_task(p, pc, 1); | |
3341 | OSBitAndAtomic(~((uint32_t)P_OWEUPC), &p->p_flag); | |
3342 | } | |
3343 | ||
3344 | if (timerisset(&p->p_vtimer_user.it_value)) { | |
3345 | uint32_t microsecs; | |
3346 | ||
3347 | task_vtimer_update(p->task, TASK_VTIMER_USER, µsecs); | |
3348 | ||
3349 | if (!itimerdecr(p, &p->p_vtimer_user, microsecs)) { | |
3350 | if (timerisset(&p->p_vtimer_user.it_value)) | |
3351 | task_vtimer_set(p->task, TASK_VTIMER_USER); | |
3352 | else | |
3353 | task_vtimer_clear(p->task, TASK_VTIMER_USER); | |
3354 | ||
3355 | psignal_try_thread(p, thread, SIGVTALRM); | |
3356 | } | |
3357 | } | |
3358 | ||
3359 | if (timerisset(&p->p_vtimer_prof.it_value)) { | |
3360 | uint32_t microsecs; | |
3361 | ||
3362 | task_vtimer_update(p->task, TASK_VTIMER_PROF, µsecs); | |
3363 | ||
3364 | if (!itimerdecr(p, &p->p_vtimer_prof, microsecs)) { | |
3365 | if (timerisset(&p->p_vtimer_prof.it_value)) | |
3366 | task_vtimer_set(p->task, TASK_VTIMER_PROF); | |
3367 | else | |
3368 | task_vtimer_clear(p->task, TASK_VTIMER_PROF); | |
3369 | ||
3370 | psignal_try_thread(p, thread, SIGPROF); | |
3371 | } | |
3372 | } | |
3373 | ||
3374 | if (timerisset(&p->p_rlim_cpu)) { | |
3375 | struct timeval tv; | |
3376 | ||
3377 | task_vtimer_update(p->task, TASK_VTIMER_RLIM, (uint32_t *) &tv.tv_usec); | |
3378 | ||
3379 | proc_spinlock(p); | |
3380 | if (p->p_rlim_cpu.tv_sec > 0 || p->p_rlim_cpu.tv_usec > tv.tv_usec) { | |
3381 | tv.tv_sec = 0; | |
3382 | timersub(&p->p_rlim_cpu, &tv, &p->p_rlim_cpu); | |
3383 | proc_spinunlock(p); | |
3384 | } else { | |
3385 | ||
3386 | timerclear(&p->p_rlim_cpu); | |
3387 | proc_spinunlock(p); | |
3388 | ||
3389 | task_vtimer_clear(p->task, TASK_VTIMER_RLIM); | |
3390 | ||
3391 | psignal_try_thread(p, thread, SIGXCPU); | |
3392 | } | |
3393 | } | |
3394 | ||
3395 | #if CONFIG_DTRACE | |
3396 | if (ut->t_dtrace_sig) { | |
3397 | uint8_t dt_action_sig = ut->t_dtrace_sig; | |
3398 | ut->t_dtrace_sig = 0; | |
3399 | psignal(p, dt_action_sig); | |
3400 | } | |
3401 | ||
3402 | if (ut->t_dtrace_stop) { | |
3403 | ut->t_dtrace_stop = 0; | |
3404 | proc_lock(p); | |
3405 | p->p_dtrace_stop = 1; | |
3406 | proc_unlock(p); | |
3407 | (void)task_suspend_internal(p->task); | |
3408 | } | |
3409 | ||
3410 | if (ut->t_dtrace_resumepid) { | |
3411 | proc_t resumeproc = proc_find(ut->t_dtrace_resumepid); | |
3412 | ut->t_dtrace_resumepid = 0; | |
3413 | if (resumeproc != PROC_NULL) { | |
3414 | proc_lock(resumeproc); | |
3415 | /* We only act on processes stopped by dtrace */ | |
3416 | if (resumeproc->p_dtrace_stop) { | |
3417 | resumeproc->p_dtrace_stop = 0; | |
3418 | proc_unlock(resumeproc); | |
3419 | task_resume_internal(resumeproc->task); | |
3420 | } | |
3421 | else { | |
3422 | proc_unlock(resumeproc); | |
3423 | } | |
3424 | proc_rele(resumeproc); | |
3425 | } | |
3426 | } | |
3427 | ||
3428 | #endif /* CONFIG_DTRACE */ | |
3429 | ||
3430 | proc_lock(p); | |
3431 | if (CHECK_SIGNALS(p, current_thread(), ut)) { | |
3432 | while ( (signum = issignal_locked(p)) ) | |
3433 | postsig_locked(signum); | |
3434 | } | |
3435 | proc_unlock(p); | |
3436 | ||
3437 | if (!bsd_init_done) { | |
3438 | bsd_init_done = 1; | |
3439 | bsdinit_task(); | |
3440 | } | |
3441 | ||
3442 | } | |
3443 | ||
3444 | /* ptrace set runnable */ | |
3445 | void | |
3446 | pt_setrunnable(proc_t p) | |
3447 | { | |
3448 | task_t task; | |
3449 | ||
3450 | task = p->task; | |
3451 | ||
3452 | if (p->p_lflag & P_LTRACED) { | |
3453 | proc_lock(p); | |
3454 | p->p_stat = SRUN; | |
3455 | proc_unlock(p); | |
3456 | if (p->sigwait) { | |
3457 | wakeup((caddr_t)&(p->sigwait)); | |
3458 | if ((p->p_lflag & P_LSIGEXC) == 0) { // 5878479 | |
3459 | task_release(task); | |
3460 | } | |
3461 | } | |
3462 | } | |
3463 | } | |
3464 | ||
3465 | kern_return_t | |
3466 | do_bsdexception( | |
3467 | int exc, | |
3468 | int code, | |
3469 | int sub) | |
3470 | { | |
3471 | mach_exception_data_type_t codes[EXCEPTION_CODE_MAX]; | |
3472 | ||
3473 | codes[0] = code; | |
3474 | codes[1] = sub; | |
3475 | return(bsd_exception(exc, codes, 2)); | |
3476 | } | |
3477 | ||
3478 | int | |
3479 | proc_pendingsignals(proc_t p, sigset_t mask) | |
3480 | { | |
3481 | struct uthread * uth; | |
3482 | thread_t th; | |
3483 | sigset_t bits = 0; | |
3484 | ||
3485 | proc_lock(p); | |
3486 | /* If the process is in proc exit return no signal info */ | |
3487 | if (p->p_lflag & P_LPEXIT) { | |
3488 | goto out; | |
3489 | } | |
3490 | ||
3491 | if ((p->p_lflag & P_LINVFORK) && p->p_vforkact) { | |
3492 | th = p->p_vforkact; | |
3493 | uth = (struct uthread *)get_bsdthread_info(th); | |
3494 | if (uth) { | |
3495 | bits = (((uth->uu_siglist & ~uth->uu_sigmask) & ~p->p_sigignore) & mask); | |
3496 | } | |
3497 | goto out; | |
3498 | } | |
3499 | ||
3500 | bits = 0; | |
3501 | TAILQ_FOREACH(uth, &p->p_uthlist, uu_list) { | |
3502 | bits |= (((uth->uu_siglist & ~uth->uu_sigmask) & ~p->p_sigignore) & mask); | |
3503 | } | |
3504 | out: | |
3505 | proc_unlock(p); | |
3506 | return(bits); | |
3507 | } | |
3508 | ||
3509 | int | |
3510 | thread_issignal(proc_t p, thread_t th, sigset_t mask) | |
3511 | { | |
3512 | struct uthread * uth; | |
3513 | sigset_t bits=0; | |
3514 | ||
3515 | proc_lock(p); | |
3516 | uth = (struct uthread *)get_bsdthread_info(th); | |
3517 | if (uth) { | |
3518 | bits = (((uth->uu_siglist & ~uth->uu_sigmask) & ~p->p_sigignore) & mask); | |
3519 | } | |
3520 | proc_unlock(p); | |
3521 | return(bits); | |
3522 | } | |
3523 | ||
3524 | /* | |
3525 | * Allow external reads of the sigprop array. | |
3526 | */ | |
3527 | int | |
3528 | hassigprop(int sig, int prop) | |
3529 | { | |
3530 | return (sigprop[sig] & prop); | |
3531 | } | |
3532 | ||
3533 | void | |
3534 | pgsigio(pid_t pgid, int sig) | |
3535 | { | |
3536 | proc_t p = PROC_NULL; | |
3537 | ||
3538 | if (pgid < 0) | |
3539 | gsignal(-(pgid), sig); | |
3540 | ||
3541 | else if (pgid > 0 && (p = proc_find(pgid)) != 0) | |
3542 | psignal(p, sig); | |
3543 | if (p != PROC_NULL) | |
3544 | proc_rele(p); | |
3545 | } | |
3546 | ||
3547 | void | |
3548 | proc_signalstart(proc_t p, int locked) | |
3549 | { | |
3550 | if (!locked) | |
3551 | proc_lock(p); | |
3552 | ||
3553 | if(p->p_signalholder == current_thread()) | |
3554 | panic("proc_signalstart: thread attempting to signal a process for which it holds the signal lock"); | |
3555 | ||
3556 | p->p_sigwaitcnt++; | |
3557 | while ((p->p_lflag & P_LINSIGNAL) == P_LINSIGNAL) | |
3558 | msleep(&p->p_sigmask, &p->p_mlock, 0, "proc_signstart", NULL); | |
3559 | p->p_sigwaitcnt--; | |
3560 | ||
3561 | p->p_lflag |= P_LINSIGNAL; | |
3562 | p->p_signalholder = current_thread(); | |
3563 | if (!locked) | |
3564 | proc_unlock(p); | |
3565 | } | |
3566 | ||
3567 | void | |
3568 | proc_signalend(proc_t p, int locked) | |
3569 | { | |
3570 | if (!locked) | |
3571 | proc_lock(p); | |
3572 | p->p_lflag &= ~P_LINSIGNAL; | |
3573 | ||
3574 | if (p->p_sigwaitcnt > 0) | |
3575 | wakeup(&p->p_sigmask); | |
3576 | ||
3577 | p->p_signalholder = NULL; | |
3578 | if (!locked) | |
3579 | proc_unlock(p); | |
3580 | } | |
3581 | ||
3582 | void | |
3583 | sig_lock_to_exit(proc_t p) | |
3584 | { | |
3585 | thread_t self = current_thread(); | |
3586 | ||
3587 | p->exit_thread = self; | |
3588 | proc_unlock(p); | |
3589 | ||
3590 | task_hold(p->task); | |
3591 | task_wait(p->task, FALSE); | |
3592 | ||
3593 | proc_lock(p); | |
3594 | } | |
3595 | ||
3596 | int | |
3597 | sig_try_locked(proc_t p) | |
3598 | { | |
3599 | thread_t self = current_thread(); | |
3600 | ||
3601 | while (p->sigwait || p->exit_thread) { | |
3602 | if (p->exit_thread) { | |
3603 | return(0); | |
3604 | } | |
3605 | msleep((caddr_t)&p->sigwait_thread, &p->p_mlock, PCATCH | PDROP, 0, 0); | |
3606 | if (thread_should_abort(self)) { | |
3607 | /* | |
3608 | * Terminate request - clean up. | |
3609 | */ | |
3610 | proc_lock(p); | |
3611 | return -1; | |
3612 | } | |
3613 | proc_lock(p); | |
3614 | } | |
3615 | return 1; | |
3616 | } |