]> git.saurik.com Git - apple/xnu.git/blame_incremental - bsd/netinet6/mld6.c
xnu-3248.20.55.tar.gz
[apple/xnu.git] / bsd / netinet6 / mld6.c
... / ...
CommitLineData
1/*
2 * Copyright (c) 2000-2015 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28/*-
29 * Copyright (c) 2009 Bruce Simpson.
30 *
31 * Redistribution and use in source and binary forms, with or without
32 * modification, are permitted provided that the following conditions
33 * are met:
34 * 1. Redistributions of source code must retain the above copyright
35 * notice, this list of conditions and the following disclaimer.
36 * 2. Redistributions in binary form must reproduce the above copyright
37 * notice, this list of conditions and the following disclaimer in the
38 * documentation and/or other materials provided with the distribution.
39 * 3. The name of the author may not be used to endorse or promote
40 * products derived from this software without specific prior written
41 * permission.
42 *
43 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
44 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
45 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
46 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
47 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
48 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
49 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
50 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
51 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
52 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
53 * SUCH DAMAGE.
54 */
55
56/*
57 * Copyright (c) 1988 Stephen Deering.
58 * Copyright (c) 1992, 1993
59 * The Regents of the University of California. All rights reserved.
60 *
61 * This code is derived from software contributed to Berkeley by
62 * Stephen Deering of Stanford University.
63 *
64 * Redistribution and use in source and binary forms, with or without
65 * modification, are permitted provided that the following conditions
66 * are met:
67 * 1. Redistributions of source code must retain the above copyright
68 * notice, this list of conditions and the following disclaimer.
69 * 2. Redistributions in binary form must reproduce the above copyright
70 * notice, this list of conditions and the following disclaimer in the
71 * documentation and/or other materials provided with the distribution.
72 * 3. All advertising materials mentioning features or use of this software
73 * must display the following acknowledgement:
74 * This product includes software developed by the University of
75 * California, Berkeley and its contributors.
76 * 4. Neither the name of the University nor the names of its contributors
77 * may be used to endorse or promote products derived from this software
78 * without specific prior written permission.
79 *
80 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
81 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
82 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
83 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
84 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
85 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
86 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
87 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
88 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
89 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
90 * SUCH DAMAGE.
91 *
92 * @(#)igmp.c 8.1 (Berkeley) 7/19/93
93 */
94/*
95 * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce
96 * support for mandatory and extensible security protections. This notice
97 * is included in support of clause 2.2 (b) of the Apple Public License,
98 * Version 2.0.
99 */
100
101#include <sys/cdefs.h>
102
103#include <sys/param.h>
104#include <sys/systm.h>
105#include <sys/mbuf.h>
106#include <sys/socket.h>
107#include <sys/protosw.h>
108#include <sys/sysctl.h>
109#include <sys/kernel.h>
110#include <sys/malloc.h>
111#include <sys/mcache.h>
112
113#include <dev/random/randomdev.h>
114
115#include <kern/zalloc.h>
116
117#include <net/if.h>
118#include <net/route.h>
119
120#include <netinet/in.h>
121#include <netinet/in_var.h>
122#include <netinet6/in6_var.h>
123#include <netinet/ip6.h>
124#include <netinet6/ip6_var.h>
125#include <netinet6/scope6_var.h>
126#include <netinet/icmp6.h>
127#include <netinet6/mld6.h>
128#include <netinet6/mld6_var.h>
129
130/* Lock group and attribute for mld_mtx */
131static lck_attr_t *mld_mtx_attr;
132static lck_grp_t *mld_mtx_grp;
133static lck_grp_attr_t *mld_mtx_grp_attr;
134
135/*
136 * Locking and reference counting:
137 *
138 * mld_mtx mainly protects mli_head. In cases where both mld_mtx and
139 * in6_multihead_lock must be held, the former must be acquired first in order
140 * to maintain lock ordering. It is not a requirement that mld_mtx be
141 * acquired first before in6_multihead_lock, but in case both must be acquired
142 * in succession, the correct lock ordering must be followed.
143 *
144 * Instead of walking the if_multiaddrs list at the interface and returning
145 * the ifma_protospec value of a matching entry, we search the global list
146 * of in6_multi records and find it that way; this is done with in6_multihead
147 * lock held. Doing so avoids the race condition issues that many other BSDs
148 * suffer from (therefore in our implementation, ifma_protospec will never be
149 * NULL for as long as the in6_multi is valid.)
150 *
151 * The above creates a requirement for the in6_multi to stay in in6_multihead
152 * list even after the final MLD leave (in MLDv2 mode) until no longer needs
153 * be retransmitted (this is not required for MLDv1.) In order to handle
154 * this, the request and reference counts of the in6_multi are bumped up when
155 * the state changes to MLD_LEAVING_MEMBER, and later dropped in the timeout
156 * handler. Each in6_multi holds a reference to the underlying mld_ifinfo.
157 *
158 * Thus, the permitted lock order is:
159 *
160 * mld_mtx, in6_multihead_lock, inm6_lock, mli_lock
161 *
162 * Any may be taken independently, but if any are held at the same time,
163 * the above lock order must be followed.
164 */
165static decl_lck_mtx_data(, mld_mtx);
166
167SLIST_HEAD(mld_in6m_relhead, in6_multi);
168
169static void mli_initvar(struct mld_ifinfo *, struct ifnet *, int);
170static struct mld_ifinfo *mli_alloc(int);
171static void mli_free(struct mld_ifinfo *);
172static void mli_delete(const struct ifnet *, struct mld_in6m_relhead *);
173static void mld_dispatch_packet(struct mbuf *);
174static void mld_final_leave(struct in6_multi *, struct mld_ifinfo *,
175 struct mld_tparams *);
176static int mld_handle_state_change(struct in6_multi *, struct mld_ifinfo *,
177 struct mld_tparams *);
178static int mld_initial_join(struct in6_multi *, struct mld_ifinfo *,
179 struct mld_tparams *, const int);
180#ifdef MLD_DEBUG
181static const char * mld_rec_type_to_str(const int);
182#endif
183static uint32_t mld_set_version(struct mld_ifinfo *, const int);
184static void mld_flush_relq(struct mld_ifinfo *, struct mld_in6m_relhead *);
185static void mld_dispatch_queue(struct mld_ifinfo *, struct ifqueue *, int);
186static int mld_v1_input_query(struct ifnet *, const struct ip6_hdr *,
187 /*const*/ struct mld_hdr *);
188static int mld_v1_input_report(struct ifnet *, struct mbuf *,
189 const struct ip6_hdr *, /*const*/ struct mld_hdr *);
190static void mld_v1_process_group_timer(struct in6_multi *, const int);
191static void mld_v1_process_querier_timers(struct mld_ifinfo *);
192static int mld_v1_transmit_report(struct in6_multi *, const int);
193static uint32_t mld_v1_update_group(struct in6_multi *, const int);
194static void mld_v2_cancel_link_timers(struct mld_ifinfo *);
195static uint32_t mld_v2_dispatch_general_query(struct mld_ifinfo *);
196static struct mbuf *
197 mld_v2_encap_report(struct ifnet *, struct mbuf *);
198static int mld_v2_enqueue_filter_change(struct ifqueue *,
199 struct in6_multi *);
200static int mld_v2_enqueue_group_record(struct ifqueue *,
201 struct in6_multi *, const int, const int, const int,
202 const int);
203static int mld_v2_input_query(struct ifnet *, const struct ip6_hdr *,
204 struct mbuf *, const int, const int);
205static int mld_v2_merge_state_changes(struct in6_multi *,
206 struct ifqueue *);
207static void mld_v2_process_group_timers(struct mld_ifinfo *,
208 struct ifqueue *, struct ifqueue *,
209 struct in6_multi *, const int);
210static int mld_v2_process_group_query(struct in6_multi *,
211 int, struct mbuf *, const int);
212static int sysctl_mld_gsr SYSCTL_HANDLER_ARGS;
213static int sysctl_mld_ifinfo SYSCTL_HANDLER_ARGS;
214static int sysctl_mld_v2enable SYSCTL_HANDLER_ARGS;
215
216static int mld_timeout_run; /* MLD timer is scheduled to run */
217static void mld_timeout(void *);
218static void mld_sched_timeout(void);
219
220/*
221 * Normative references: RFC 2710, RFC 3590, RFC 3810.
222 */
223static struct timeval mld_gsrdelay = {10, 0};
224static LIST_HEAD(, mld_ifinfo) mli_head;
225
226static int querier_present_timers_running6;
227static int interface_timers_running6;
228static int state_change_timers_running6;
229static int current_state_timers_running6;
230
231/*
232 * Subsystem lock macros.
233 */
234#define MLD_LOCK() \
235 lck_mtx_lock(&mld_mtx)
236#define MLD_LOCK_ASSERT_HELD() \
237 lck_mtx_assert(&mld_mtx, LCK_MTX_ASSERT_OWNED)
238#define MLD_LOCK_ASSERT_NOTHELD() \
239 lck_mtx_assert(&mld_mtx, LCK_MTX_ASSERT_NOTOWNED)
240#define MLD_UNLOCK() \
241 lck_mtx_unlock(&mld_mtx)
242
243#define MLD_ADD_DETACHED_IN6M(_head, _in6m) { \
244 SLIST_INSERT_HEAD(_head, _in6m, in6m_dtle); \
245}
246
247#define MLD_REMOVE_DETACHED_IN6M(_head) { \
248 struct in6_multi *_in6m, *_inm_tmp; \
249 SLIST_FOREACH_SAFE(_in6m, _head, in6m_dtle, _inm_tmp) { \
250 SLIST_REMOVE(_head, _in6m, in6_multi, in6m_dtle); \
251 IN6M_REMREF(_in6m); \
252 } \
253 VERIFY(SLIST_EMPTY(_head)); \
254}
255
256#define MLI_ZONE_MAX 64 /* maximum elements in zone */
257#define MLI_ZONE_NAME "mld_ifinfo" /* zone name */
258
259static unsigned int mli_size; /* size of zone element */
260static struct zone *mli_zone; /* zone for mld_ifinfo */
261
262SYSCTL_DECL(_net_inet6); /* Note: Not in any common header. */
263
264SYSCTL_NODE(_net_inet6, OID_AUTO, mld, CTLFLAG_RW | CTLFLAG_LOCKED, 0,
265 "IPv6 Multicast Listener Discovery");
266SYSCTL_PROC(_net_inet6_mld, OID_AUTO, gsrdelay,
267 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED,
268 &mld_gsrdelay.tv_sec, 0, sysctl_mld_gsr, "I",
269 "Rate limit for MLDv2 Group-and-Source queries in seconds");
270
271SYSCTL_NODE(_net_inet6_mld, OID_AUTO, ifinfo, CTLFLAG_RD | CTLFLAG_LOCKED,
272 sysctl_mld_ifinfo, "Per-interface MLDv2 state");
273
274static int mld_v1enable = 1;
275SYSCTL_INT(_net_inet6_mld, OID_AUTO, v1enable, CTLFLAG_RW | CTLFLAG_LOCKED,
276 &mld_v1enable, 0, "Enable fallback to MLDv1");
277
278static int mld_v2enable = 1;
279SYSCTL_PROC(_net_inet6_mld, OID_AUTO, v2enable,
280 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED,
281 &mld_v2enable, 0, sysctl_mld_v2enable, "I",
282 "Enable MLDv2 (debug purposes only)");
283
284static int mld_use_allow = 1;
285SYSCTL_INT(_net_inet6_mld, OID_AUTO, use_allow, CTLFLAG_RW | CTLFLAG_LOCKED,
286 &mld_use_allow, 0, "Use ALLOW/BLOCK for RFC 4604 SSM joins/leaves");
287
288#ifdef MLD_DEBUG
289int mld_debug = 0;
290SYSCTL_INT(_net_inet6_mld, OID_AUTO,
291 debug, CTLFLAG_RW | CTLFLAG_LOCKED, &mld_debug, 0, "");
292#endif
293/*
294 * Packed Router Alert option structure declaration.
295 */
296struct mld_raopt {
297 struct ip6_hbh hbh;
298 struct ip6_opt pad;
299 struct ip6_opt_router ra;
300} __packed;
301
302/*
303 * Router Alert hop-by-hop option header.
304 */
305static struct mld_raopt mld_ra = {
306 .hbh = { 0, 0 },
307 .pad = { .ip6o_type = IP6OPT_PADN, 0 },
308 .ra = {
309 .ip6or_type = (u_int8_t)IP6OPT_ROUTER_ALERT,
310 .ip6or_len = (u_int8_t)(IP6OPT_RTALERT_LEN - 2),
311 .ip6or_value = {((IP6OPT_RTALERT_MLD >> 8) & 0xFF),
312 (IP6OPT_RTALERT_MLD & 0xFF) }
313 }
314};
315static struct ip6_pktopts mld_po;
316
317/* Store MLDv2 record count in the module private scratch space */
318#define vt_nrecs pkt_mpriv.__mpriv_u.__mpriv32[0].__mpriv32_u.__val16[0]
319
320static __inline void
321mld_save_context(struct mbuf *m, struct ifnet *ifp)
322{
323 m->m_pkthdr.rcvif = ifp;
324}
325
326static __inline void
327mld_scrub_context(struct mbuf *m)
328{
329 m->m_pkthdr.rcvif = NULL;
330}
331
332/*
333 * Restore context from a queued output chain.
334 * Return saved ifp.
335 */
336static __inline struct ifnet *
337mld_restore_context(struct mbuf *m)
338{
339 return (m->m_pkthdr.rcvif);
340}
341
342/*
343 * Retrieve or set threshold between group-source queries in seconds.
344 */
345static int
346sysctl_mld_gsr SYSCTL_HANDLER_ARGS
347{
348#pragma unused(arg1, arg2)
349 int error;
350 int i;
351
352 MLD_LOCK();
353
354 i = mld_gsrdelay.tv_sec;
355
356 error = sysctl_handle_int(oidp, &i, 0, req);
357 if (error || !req->newptr)
358 goto out_locked;
359
360 if (i < -1 || i >= 60) {
361 error = EINVAL;
362 goto out_locked;
363 }
364
365 mld_gsrdelay.tv_sec = i;
366
367out_locked:
368 MLD_UNLOCK();
369 return (error);
370}
371/*
372 * Expose struct mld_ifinfo to userland, keyed by ifindex.
373 * For use by ifmcstat(8).
374 *
375 */
376static int
377sysctl_mld_ifinfo SYSCTL_HANDLER_ARGS
378{
379#pragma unused(oidp)
380 int *name;
381 int error;
382 u_int namelen;
383 struct ifnet *ifp;
384 struct mld_ifinfo *mli;
385 struct mld_ifinfo_u mli_u;
386
387 name = (int *)arg1;
388 namelen = arg2;
389
390 if (req->newptr != USER_ADDR_NULL)
391 return (EPERM);
392
393 if (namelen != 1)
394 return (EINVAL);
395
396 MLD_LOCK();
397
398 if (name[0] <= 0 || name[0] > (u_int)if_index) {
399 error = ENOENT;
400 goto out_locked;
401 }
402
403 error = ENOENT;
404
405 ifnet_head_lock_shared();
406 ifp = ifindex2ifnet[name[0]];
407 ifnet_head_done();
408 if (ifp == NULL)
409 goto out_locked;
410
411 bzero(&mli_u, sizeof (mli_u));
412
413 LIST_FOREACH(mli, &mli_head, mli_link) {
414 MLI_LOCK(mli);
415 if (ifp != mli->mli_ifp) {
416 MLI_UNLOCK(mli);
417 continue;
418 }
419
420 mli_u.mli_ifindex = mli->mli_ifp->if_index;
421 mli_u.mli_version = mli->mli_version;
422 mli_u.mli_v1_timer = mli->mli_v1_timer;
423 mli_u.mli_v2_timer = mli->mli_v2_timer;
424 mli_u.mli_flags = mli->mli_flags;
425 mli_u.mli_rv = mli->mli_rv;
426 mli_u.mli_qi = mli->mli_qi;
427 mli_u.mli_qri = mli->mli_qri;
428 mli_u.mli_uri = mli->mli_uri;
429 MLI_UNLOCK(mli);
430
431 error = SYSCTL_OUT(req, &mli_u, sizeof (mli_u));
432 break;
433 }
434
435out_locked:
436 MLD_UNLOCK();
437 return (error);
438}
439
440static int
441sysctl_mld_v2enable SYSCTL_HANDLER_ARGS
442{
443#pragma unused(arg1, arg2)
444 int error;
445 int i;
446 struct mld_ifinfo *mli;
447 struct mld_tparams mtp = { 0, 0, 0, 0 };
448
449 MLD_LOCK();
450
451 i = mld_v2enable;
452
453 error = sysctl_handle_int(oidp, &i, 0, req);
454 if (error || !req->newptr)
455 goto out_locked;
456
457 if (i < 0 || i > 1) {
458 error = EINVAL;
459 goto out_locked;
460 }
461
462 mld_v2enable = i;
463 /*
464 * If we enabled v2, the state transition will take care of upgrading
465 * the MLD version back to v2. Otherwise, we have to explicitly
466 * downgrade. Note that this functionality is to be used for debugging.
467 */
468 if (mld_v2enable == 1)
469 goto out_locked;
470
471 LIST_FOREACH(mli, &mli_head, mli_link) {
472 MLI_LOCK(mli);
473 if (mld_set_version(mli, MLD_VERSION_1) > 0)
474 mtp.qpt = 1;
475 MLI_UNLOCK(mli);
476 }
477
478out_locked:
479 MLD_UNLOCK();
480
481 mld_set_timeout(&mtp);
482
483 return (error);
484}
485
486/*
487 * Dispatch an entire queue of pending packet chains.
488 *
489 * Must not be called with in6m_lock held.
490 */
491static void
492mld_dispatch_queue(struct mld_ifinfo *mli, struct ifqueue *ifq, int limit)
493{
494 struct mbuf *m;
495
496 if (mli != NULL)
497 MLI_LOCK_ASSERT_HELD(mli);
498
499 for (;;) {
500 IF_DEQUEUE(ifq, m);
501 if (m == NULL)
502 break;
503 MLD_PRINTF(("%s: dispatch 0x%llx from 0x%llx\n", __func__,
504 (uint64_t)VM_KERNEL_ADDRPERM(ifq),
505 (uint64_t)VM_KERNEL_ADDRPERM(m)));
506 if (mli != NULL)
507 MLI_UNLOCK(mli);
508 mld_dispatch_packet(m);
509 if (mli != NULL)
510 MLI_LOCK(mli);
511 if (--limit == 0)
512 break;
513 }
514
515 if (mli != NULL)
516 MLI_LOCK_ASSERT_HELD(mli);
517}
518
519/*
520 * Filter outgoing MLD report state by group.
521 *
522 * Reports are ALWAYS suppressed for ALL-HOSTS (ff02::1)
523 * and node-local addresses. However, kernel and socket consumers
524 * always embed the KAME scope ID in the address provided, so strip it
525 * when performing comparison.
526 * Note: This is not the same as the *multicast* scope.
527 *
528 * Return zero if the given group is one for which MLD reports
529 * should be suppressed, or non-zero if reports should be issued.
530 */
531static __inline__ int
532mld_is_addr_reported(const struct in6_addr *addr)
533{
534
535 VERIFY(IN6_IS_ADDR_MULTICAST(addr));
536
537 if (IPV6_ADDR_MC_SCOPE(addr) == IPV6_ADDR_SCOPE_NODELOCAL)
538 return (0);
539
540 if (IPV6_ADDR_MC_SCOPE(addr) == IPV6_ADDR_SCOPE_LINKLOCAL) {
541 struct in6_addr tmp = *addr;
542 in6_clearscope(&tmp);
543 if (IN6_ARE_ADDR_EQUAL(&tmp, &in6addr_linklocal_allnodes))
544 return (0);
545 }
546
547 return (1);
548}
549
550/*
551 * Attach MLD when PF_INET6 is attached to an interface.
552 */
553struct mld_ifinfo *
554mld_domifattach(struct ifnet *ifp, int how)
555{
556 struct mld_ifinfo *mli;
557
558 MLD_PRINTF(("%s: called for ifp 0x%llx(%s)\n", __func__,
559 (uint64_t)VM_KERNEL_ADDRPERM(ifp), if_name(ifp)));
560
561 mli = mli_alloc(how);
562 if (mli == NULL)
563 return (NULL);
564
565 MLD_LOCK();
566
567 MLI_LOCK(mli);
568 mli_initvar(mli, ifp, 0);
569 mli->mli_debug |= IFD_ATTACHED;
570 MLI_ADDREF_LOCKED(mli); /* hold a reference for mli_head */
571 MLI_ADDREF_LOCKED(mli); /* hold a reference for caller */
572 MLI_UNLOCK(mli);
573 ifnet_lock_shared(ifp);
574 mld6_initsilent(ifp, mli);
575 ifnet_lock_done(ifp);
576
577 LIST_INSERT_HEAD(&mli_head, mli, mli_link);
578
579 MLD_UNLOCK();
580
581 MLD_PRINTF(("%s: allocate mld_ifinfo for ifp 0x%llx(%s)\n",
582 __func__, (uint64_t)VM_KERNEL_ADDRPERM(ifp), if_name(ifp)));
583
584 return (mli);
585}
586
587/*
588 * Attach MLD when PF_INET6 is reattached to an interface. Caller is
589 * expected to have an outstanding reference to the mli.
590 */
591void
592mld_domifreattach(struct mld_ifinfo *mli)
593{
594 struct ifnet *ifp;
595
596 MLD_LOCK();
597
598 MLI_LOCK(mli);
599 VERIFY(!(mli->mli_debug & IFD_ATTACHED));
600 ifp = mli->mli_ifp;
601 VERIFY(ifp != NULL);
602 mli_initvar(mli, ifp, 1);
603 mli->mli_debug |= IFD_ATTACHED;
604 MLI_ADDREF_LOCKED(mli); /* hold a reference for mli_head */
605 MLI_UNLOCK(mli);
606 ifnet_lock_shared(ifp);
607 mld6_initsilent(ifp, mli);
608 ifnet_lock_done(ifp);
609
610 LIST_INSERT_HEAD(&mli_head, mli, mli_link);
611
612 MLD_UNLOCK();
613
614 MLD_PRINTF(("%s: reattached mld_ifinfo for ifp 0x%llx(%s)\n",
615 __func__, (uint64_t)VM_KERNEL_ADDRPERM(ifp), if_name(ifp)));
616}
617
618/*
619 * Hook for domifdetach.
620 */
621void
622mld_domifdetach(struct ifnet *ifp)
623{
624 SLIST_HEAD(, in6_multi) in6m_dthead;
625
626 SLIST_INIT(&in6m_dthead);
627
628 MLD_PRINTF(("%s: called for ifp 0x%llx(%s)\n", __func__,
629 (uint64_t)VM_KERNEL_ADDRPERM(ifp), if_name(ifp)));
630
631 MLD_LOCK();
632 mli_delete(ifp, (struct mld_in6m_relhead *)&in6m_dthead);
633 MLD_UNLOCK();
634
635 /* Now that we're dropped all locks, release detached records */
636 MLD_REMOVE_DETACHED_IN6M(&in6m_dthead);
637}
638
639/*
640 * Called at interface detach time. Note that we only flush all deferred
641 * responses and record releases; all remaining inm records and their source
642 * entries related to this interface are left intact, in order to handle
643 * the reattach case.
644 */
645static void
646mli_delete(const struct ifnet *ifp, struct mld_in6m_relhead *in6m_dthead)
647{
648 struct mld_ifinfo *mli, *tmli;
649
650 MLD_LOCK_ASSERT_HELD();
651
652 LIST_FOREACH_SAFE(mli, &mli_head, mli_link, tmli) {
653 MLI_LOCK(mli);
654 if (mli->mli_ifp == ifp) {
655 /*
656 * Free deferred General Query responses.
657 */
658 IF_DRAIN(&mli->mli_gq);
659 IF_DRAIN(&mli->mli_v1q);
660 mld_flush_relq(mli, in6m_dthead);
661 VERIFY(SLIST_EMPTY(&mli->mli_relinmhead));
662 mli->mli_debug &= ~IFD_ATTACHED;
663 MLI_UNLOCK(mli);
664
665 LIST_REMOVE(mli, mli_link);
666 MLI_REMREF(mli); /* release mli_head reference */
667 return;
668 }
669 MLI_UNLOCK(mli);
670 }
671 panic("%s: mld_ifinfo not found for ifp %p(%s)\n", __func__,
672 ifp, ifp->if_xname);
673}
674
675__private_extern__ void
676mld6_initsilent(struct ifnet *ifp, struct mld_ifinfo *mli)
677{
678 ifnet_lock_assert(ifp, IFNET_LCK_ASSERT_OWNED);
679
680 MLI_LOCK_ASSERT_NOTHELD(mli);
681 MLI_LOCK(mli);
682 if (!(ifp->if_flags & IFF_MULTICAST) &&
683 (ifp->if_eflags & (IFEF_IPV6_ND6ALT|IFEF_LOCALNET_PRIVATE)))
684 mli->mli_flags |= MLIF_SILENT;
685 else
686 mli->mli_flags &= ~MLIF_SILENT;
687 MLI_UNLOCK(mli);
688}
689
690static void
691mli_initvar(struct mld_ifinfo *mli, struct ifnet *ifp, int reattach)
692{
693 MLI_LOCK_ASSERT_HELD(mli);
694
695 mli->mli_ifp = ifp;
696 if (mld_v2enable)
697 mli->mli_version = MLD_VERSION_2;
698 else
699 mli->mli_version = MLD_VERSION_1;
700 mli->mli_flags = 0;
701 mli->mli_rv = MLD_RV_INIT;
702 mli->mli_qi = MLD_QI_INIT;
703 mli->mli_qri = MLD_QRI_INIT;
704 mli->mli_uri = MLD_URI_INIT;
705
706 if (mld_use_allow)
707 mli->mli_flags |= MLIF_USEALLOW;
708 if (!reattach)
709 SLIST_INIT(&mli->mli_relinmhead);
710
711 /*
712 * Responses to general queries are subject to bounds.
713 */
714 mli->mli_gq.ifq_maxlen = MLD_MAX_RESPONSE_PACKETS;
715 mli->mli_v1q.ifq_maxlen = MLD_MAX_RESPONSE_PACKETS;
716}
717
718static struct mld_ifinfo *
719mli_alloc(int how)
720{
721 struct mld_ifinfo *mli;
722
723 mli = (how == M_WAITOK) ? zalloc(mli_zone) : zalloc_noblock(mli_zone);
724 if (mli != NULL) {
725 bzero(mli, mli_size);
726 lck_mtx_init(&mli->mli_lock, mld_mtx_grp, mld_mtx_attr);
727 mli->mli_debug |= IFD_ALLOC;
728 }
729 return (mli);
730}
731
732static void
733mli_free(struct mld_ifinfo *mli)
734{
735 MLI_LOCK(mli);
736 if (mli->mli_debug & IFD_ATTACHED) {
737 panic("%s: attached mli=%p is being freed", __func__, mli);
738 /* NOTREACHED */
739 } else if (mli->mli_ifp != NULL) {
740 panic("%s: ifp not NULL for mli=%p", __func__, mli);
741 /* NOTREACHED */
742 } else if (!(mli->mli_debug & IFD_ALLOC)) {
743 panic("%s: mli %p cannot be freed", __func__, mli);
744 /* NOTREACHED */
745 } else if (mli->mli_refcnt != 0) {
746 panic("%s: non-zero refcnt mli=%p", __func__, mli);
747 /* NOTREACHED */
748 }
749 mli->mli_debug &= ~IFD_ALLOC;
750 MLI_UNLOCK(mli);
751
752 lck_mtx_destroy(&mli->mli_lock, mld_mtx_grp);
753 zfree(mli_zone, mli);
754}
755
756void
757mli_addref(struct mld_ifinfo *mli, int locked)
758{
759 if (!locked)
760 MLI_LOCK_SPIN(mli);
761 else
762 MLI_LOCK_ASSERT_HELD(mli);
763
764 if (++mli->mli_refcnt == 0) {
765 panic("%s: mli=%p wraparound refcnt", __func__, mli);
766 /* NOTREACHED */
767 }
768 if (!locked)
769 MLI_UNLOCK(mli);
770}
771
772void
773mli_remref(struct mld_ifinfo *mli)
774{
775 SLIST_HEAD(, in6_multi) in6m_dthead;
776 struct ifnet *ifp;
777
778 MLI_LOCK_SPIN(mli);
779
780 if (mli->mli_refcnt == 0) {
781 panic("%s: mli=%p negative refcnt", __func__, mli);
782 /* NOTREACHED */
783 }
784
785 --mli->mli_refcnt;
786 if (mli->mli_refcnt > 0) {
787 MLI_UNLOCK(mli);
788 return;
789 }
790
791 ifp = mli->mli_ifp;
792 mli->mli_ifp = NULL;
793 IF_DRAIN(&mli->mli_gq);
794 IF_DRAIN(&mli->mli_v1q);
795 SLIST_INIT(&in6m_dthead);
796 mld_flush_relq(mli, (struct mld_in6m_relhead *)&in6m_dthead);
797 VERIFY(SLIST_EMPTY(&mli->mli_relinmhead));
798 MLI_UNLOCK(mli);
799
800 /* Now that we're dropped all locks, release detached records */
801 MLD_REMOVE_DETACHED_IN6M(&in6m_dthead);
802
803 MLD_PRINTF(("%s: freeing mld_ifinfo for ifp 0x%llx(%s)\n",
804 __func__, (uint64_t)VM_KERNEL_ADDRPERM(ifp), if_name(ifp)));
805
806 mli_free(mli);
807}
808
809/*
810 * Process a received MLDv1 general or address-specific query.
811 * Assumes that the query header has been pulled up to sizeof(mld_hdr).
812 *
813 * NOTE: Can't be fully const correct as we temporarily embed scope ID in
814 * mld_addr. This is OK as we own the mbuf chain.
815 */
816static int
817mld_v1_input_query(struct ifnet *ifp, const struct ip6_hdr *ip6,
818 /*const*/ struct mld_hdr *mld)
819{
820 struct mld_ifinfo *mli;
821 struct in6_multi *inm;
822 int err = 0, is_general_query;
823 uint16_t timer;
824 struct mld_tparams mtp = { 0, 0, 0, 0 };
825
826 MLD_LOCK_ASSERT_NOTHELD();
827
828 is_general_query = 0;
829
830 if (!mld_v1enable) {
831 MLD_PRINTF(("%s: ignore v1 query %s on ifp 0x%llx(%s)\n",
832 __func__, ip6_sprintf(&mld->mld_addr),
833 (uint64_t)VM_KERNEL_ADDRPERM(ifp), if_name(ifp)));
834 goto done;
835 }
836
837 /*
838 * RFC3810 Section 6.2: MLD queries must originate from
839 * a router's link-local address.
840 */
841 if (!IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src)) {
842 MLD_PRINTF(("%s: ignore v1 query src %s on ifp 0x%llx(%s)\n",
843 __func__, ip6_sprintf(&ip6->ip6_src),
844 (uint64_t)VM_KERNEL_ADDRPERM(ifp), if_name(ifp)));
845 goto done;
846 }
847
848 /*
849 * Do address field validation upfront before we accept
850 * the query.
851 */
852 if (IN6_IS_ADDR_UNSPECIFIED(&mld->mld_addr)) {
853 /*
854 * MLDv1 General Query.
855 * If this was not sent to the all-nodes group, ignore it.
856 */
857 struct in6_addr dst;
858
859 dst = ip6->ip6_dst;
860 in6_clearscope(&dst);
861 if (!IN6_ARE_ADDR_EQUAL(&dst, &in6addr_linklocal_allnodes)) {
862 err = EINVAL;
863 goto done;
864 }
865 is_general_query = 1;
866 } else {
867 /*
868 * Embed scope ID of receiving interface in MLD query for
869 * lookup whilst we don't hold other locks.
870 */
871 in6_setscope(&mld->mld_addr, ifp, NULL);
872 }
873
874 /*
875 * Switch to MLDv1 host compatibility mode.
876 */
877 mli = MLD_IFINFO(ifp);
878 VERIFY(mli != NULL);
879
880 MLI_LOCK(mli);
881 mtp.qpt = mld_set_version(mli, MLD_VERSION_1);
882 MLI_UNLOCK(mli);
883
884 timer = ntohs(mld->mld_maxdelay) / MLD_TIMER_SCALE;
885 if (timer == 0)
886 timer = 1;
887
888 if (is_general_query) {
889 struct in6_multistep step;
890
891 MLD_PRINTF(("%s: process v1 general query on ifp 0x%llx(%s)\n",
892 __func__, (uint64_t)VM_KERNEL_ADDRPERM(ifp), if_name(ifp)));
893 /*
894 * For each reporting group joined on this
895 * interface, kick the report timer.
896 */
897 in6_multihead_lock_shared();
898 IN6_FIRST_MULTI(step, inm);
899 while (inm != NULL) {
900 IN6M_LOCK(inm);
901 if (inm->in6m_ifp == ifp)
902 mtp.cst += mld_v1_update_group(inm, timer);
903 IN6M_UNLOCK(inm);
904 IN6_NEXT_MULTI(step, inm);
905 }
906 in6_multihead_lock_done();
907 } else {
908 /*
909 * MLDv1 Group-Specific Query.
910 * If this is a group-specific MLDv1 query, we need only
911 * look up the single group to process it.
912 */
913 in6_multihead_lock_shared();
914 IN6_LOOKUP_MULTI(&mld->mld_addr, ifp, inm);
915 in6_multihead_lock_done();
916
917 if (inm != NULL) {
918 IN6M_LOCK(inm);
919 MLD_PRINTF(("%s: process v1 query %s on "
920 "ifp 0x%llx(%s)\n", __func__,
921 ip6_sprintf(&mld->mld_addr),
922 (uint64_t)VM_KERNEL_ADDRPERM(ifp), if_name(ifp)));
923 mtp.cst = mld_v1_update_group(inm, timer);
924 IN6M_UNLOCK(inm);
925 IN6M_REMREF(inm); /* from IN6_LOOKUP_MULTI */
926 }
927 /* XXX Clear embedded scope ID as userland won't expect it. */
928 in6_clearscope(&mld->mld_addr);
929 }
930done:
931 mld_set_timeout(&mtp);
932
933 return (err);
934}
935
936/*
937 * Update the report timer on a group in response to an MLDv1 query.
938 *
939 * If we are becoming the reporting member for this group, start the timer.
940 * If we already are the reporting member for this group, and timer is
941 * below the threshold, reset it.
942 *
943 * We may be updating the group for the first time since we switched
944 * to MLDv2. If we are, then we must clear any recorded source lists,
945 * and transition to REPORTING state; the group timer is overloaded
946 * for group and group-source query responses.
947 *
948 * Unlike MLDv2, the delay per group should be jittered
949 * to avoid bursts of MLDv1 reports.
950 */
951static uint32_t
952mld_v1_update_group(struct in6_multi *inm, const int timer)
953{
954 IN6M_LOCK_ASSERT_HELD(inm);
955
956 MLD_PRINTF(("%s: %s/%s timer=%d\n", __func__,
957 ip6_sprintf(&inm->in6m_addr),
958 if_name(inm->in6m_ifp), timer));
959
960 switch (inm->in6m_state) {
961 case MLD_NOT_MEMBER:
962 case MLD_SILENT_MEMBER:
963 break;
964 case MLD_REPORTING_MEMBER:
965 if (inm->in6m_timer != 0 &&
966 inm->in6m_timer <= timer) {
967 MLD_PRINTF(("%s: REPORTING and timer running, "
968 "skipping.\n", __func__));
969 break;
970 }
971 /* FALLTHROUGH */
972 case MLD_SG_QUERY_PENDING_MEMBER:
973 case MLD_G_QUERY_PENDING_MEMBER:
974 case MLD_IDLE_MEMBER:
975 case MLD_LAZY_MEMBER:
976 case MLD_AWAKENING_MEMBER:
977 MLD_PRINTF(("%s: ->REPORTING\n", __func__));
978 inm->in6m_state = MLD_REPORTING_MEMBER;
979 inm->in6m_timer = MLD_RANDOM_DELAY(timer);
980 break;
981 case MLD_SLEEPING_MEMBER:
982 MLD_PRINTF(("%s: ->AWAKENING\n", __func__));
983 inm->in6m_state = MLD_AWAKENING_MEMBER;
984 break;
985 case MLD_LEAVING_MEMBER:
986 break;
987 }
988
989 return (inm->in6m_timer);
990}
991
992/*
993 * Process a received MLDv2 general, group-specific or
994 * group-and-source-specific query.
995 *
996 * Assumes that the query header has been pulled up to sizeof(mldv2_query).
997 *
998 * Return 0 if successful, otherwise an appropriate error code is returned.
999 */
1000static int
1001mld_v2_input_query(struct ifnet *ifp, const struct ip6_hdr *ip6,
1002 struct mbuf *m, const int off, const int icmp6len)
1003{
1004 struct mld_ifinfo *mli;
1005 struct mldv2_query *mld;
1006 struct in6_multi *inm;
1007 uint32_t maxdelay, nsrc, qqi;
1008 int err = 0, is_general_query;
1009 uint16_t timer;
1010 uint8_t qrv;
1011 struct mld_tparams mtp = { 0, 0, 0, 0 };
1012
1013 MLD_LOCK_ASSERT_NOTHELD();
1014
1015 is_general_query = 0;
1016
1017 if (!mld_v2enable) {
1018 MLD_PRINTF(("%s: ignore v2 query %s on ifp 0x%llx(%s)\n",
1019 __func__, ip6_sprintf(&ip6->ip6_src),
1020 (uint64_t)VM_KERNEL_ADDRPERM(ifp), if_name(ifp)));
1021 goto done;
1022 }
1023
1024 /*
1025 * RFC3810 Section 6.2: MLD queries must originate from
1026 * a router's link-local address.
1027 */
1028 if (!IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src)) {
1029 MLD_PRINTF(("%s: ignore v1 query src %s on ifp 0x%llx(%s)\n",
1030 __func__, ip6_sprintf(&ip6->ip6_src),
1031 (uint64_t)VM_KERNEL_ADDRPERM(ifp), if_name(ifp)));
1032 goto done;
1033 }
1034
1035 MLD_PRINTF(("%s: input v2 query on ifp 0x%llx(%s)\n", __func__,
1036 (uint64_t)VM_KERNEL_ADDRPERM(ifp), if_name(ifp)));
1037
1038 mld = (struct mldv2_query *)(mtod(m, uint8_t *) + off);
1039
1040 maxdelay = ntohs(mld->mld_maxdelay); /* in 1/10ths of a second */
1041 if (maxdelay >= 32768) {
1042 maxdelay = (MLD_MRC_MANT(maxdelay) | 0x1000) <<
1043 (MLD_MRC_EXP(maxdelay) + 3);
1044 }
1045 timer = maxdelay / MLD_TIMER_SCALE;
1046 if (timer == 0)
1047 timer = 1;
1048
1049 qrv = MLD_QRV(mld->mld_misc);
1050 if (qrv < 2) {
1051 MLD_PRINTF(("%s: clamping qrv %d to %d\n", __func__,
1052 qrv, MLD_RV_INIT));
1053 qrv = MLD_RV_INIT;
1054 }
1055
1056 qqi = mld->mld_qqi;
1057 if (qqi >= 128) {
1058 qqi = MLD_QQIC_MANT(mld->mld_qqi) <<
1059 (MLD_QQIC_EXP(mld->mld_qqi) + 3);
1060 }
1061
1062 nsrc = ntohs(mld->mld_numsrc);
1063 if (nsrc > MLD_MAX_GS_SOURCES) {
1064 err = EMSGSIZE;
1065 goto done;
1066 }
1067 if (icmp6len < sizeof(struct mldv2_query) +
1068 (nsrc * sizeof(struct in6_addr))) {
1069 err = EMSGSIZE;
1070 goto done;
1071 }
1072
1073 /*
1074 * Do further input validation upfront to avoid resetting timers
1075 * should we need to discard this query.
1076 */
1077 if (IN6_IS_ADDR_UNSPECIFIED(&mld->mld_addr)) {
1078 /*
1079 * A general query with a source list has undefined
1080 * behaviour; discard it.
1081 */
1082 if (nsrc > 0) {
1083 err = EINVAL;
1084 goto done;
1085 }
1086 is_general_query = 1;
1087 } else {
1088 /*
1089 * Embed scope ID of receiving interface in MLD query for
1090 * lookup whilst we don't hold other locks (due to KAME
1091 * locking lameness). We own this mbuf chain just now.
1092 */
1093 in6_setscope(&mld->mld_addr, ifp, NULL);
1094 }
1095
1096 mli = MLD_IFINFO(ifp);
1097 VERIFY(mli != NULL);
1098
1099 MLI_LOCK(mli);
1100 /*
1101 * Discard the v2 query if we're in Compatibility Mode.
1102 * The RFC is pretty clear that hosts need to stay in MLDv1 mode
1103 * until the Old Version Querier Present timer expires.
1104 */
1105 if (mli->mli_version != MLD_VERSION_2) {
1106 MLI_UNLOCK(mli);
1107 goto done;
1108 }
1109
1110 mtp.qpt = mld_set_version(mli, MLD_VERSION_2);
1111 mli->mli_rv = qrv;
1112 mli->mli_qi = qqi;
1113 mli->mli_qri = MAX(timer, MLD_QRI_MIN);
1114
1115 MLD_PRINTF(("%s: qrv %d qi %d qri %d\n", __func__, mli->mli_rv,
1116 mli->mli_qi, mli->mli_qri));
1117
1118 if (is_general_query) {
1119 /*
1120 * MLDv2 General Query.
1121 *
1122 * Schedule a current-state report on this ifp for
1123 * all groups, possibly containing source lists.
1124 *
1125 * If there is a pending General Query response
1126 * scheduled earlier than the selected delay, do
1127 * not schedule any other reports.
1128 * Otherwise, reset the interface timer.
1129 */
1130 MLD_PRINTF(("%s: process v2 general query on ifp 0x%llx(%s)\n",
1131 __func__, (uint64_t)VM_KERNEL_ADDRPERM(ifp), if_name(ifp)));
1132 if (mli->mli_v2_timer == 0 || mli->mli_v2_timer >= timer) {
1133 mtp.it = mli->mli_v2_timer = MLD_RANDOM_DELAY(timer);
1134 }
1135 MLI_UNLOCK(mli);
1136 } else {
1137 MLI_UNLOCK(mli);
1138 /*
1139 * MLDv2 Group-specific or Group-and-source-specific Query.
1140 *
1141 * Group-source-specific queries are throttled on
1142 * a per-group basis to defeat denial-of-service attempts.
1143 * Queries for groups we are not a member of on this
1144 * link are simply ignored.
1145 */
1146 in6_multihead_lock_shared();
1147 IN6_LOOKUP_MULTI(&mld->mld_addr, ifp, inm);
1148 in6_multihead_lock_done();
1149 if (inm == NULL)
1150 goto done;
1151
1152 IN6M_LOCK(inm);
1153 if (nsrc > 0) {
1154 if (!ratecheck(&inm->in6m_lastgsrtv,
1155 &mld_gsrdelay)) {
1156 MLD_PRINTF(("%s: GS query throttled.\n",
1157 __func__));
1158 IN6M_UNLOCK(inm);
1159 IN6M_REMREF(inm); /* from IN6_LOOKUP_MULTI */
1160 goto done;
1161 }
1162 }
1163 MLD_PRINTF(("%s: process v2 group query on ifp 0x%llx(%s)\n",
1164 __func__, (uint64_t)VM_KERNEL_ADDRPERM(ifp), if_name(ifp)));
1165 /*
1166 * If there is a pending General Query response
1167 * scheduled sooner than the selected delay, no
1168 * further report need be scheduled.
1169 * Otherwise, prepare to respond to the
1170 * group-specific or group-and-source query.
1171 */
1172 MLI_LOCK(mli);
1173 mtp.it = mli->mli_v2_timer;
1174 MLI_UNLOCK(mli);
1175 if (mtp.it == 0 || mtp.it >= timer) {
1176 (void) mld_v2_process_group_query(inm, timer, m, off);
1177 mtp.cst = inm->in6m_timer;
1178 }
1179 IN6M_UNLOCK(inm);
1180 IN6M_REMREF(inm); /* from IN6_LOOKUP_MULTI */
1181 /* XXX Clear embedded scope ID as userland won't expect it. */
1182 in6_clearscope(&mld->mld_addr);
1183 }
1184done:
1185 if (mtp.it > 0) {
1186 MLD_PRINTF(("%s: v2 general query response scheduled in "
1187 "T+%d seconds on ifp 0x%llx(%s)\n", __func__, mtp.it,
1188 (uint64_t)VM_KERNEL_ADDRPERM(ifp), if_name(ifp)));
1189 }
1190 mld_set_timeout(&mtp);
1191
1192 return (err);
1193}
1194
1195/*
1196 * Process a recieved MLDv2 group-specific or group-and-source-specific
1197 * query.
1198 * Return <0 if any error occured. Currently this is ignored.
1199 */
1200static int
1201mld_v2_process_group_query(struct in6_multi *inm, int timer, struct mbuf *m0,
1202 const int off)
1203{
1204 struct mldv2_query *mld;
1205 int retval;
1206 uint16_t nsrc;
1207
1208 IN6M_LOCK_ASSERT_HELD(inm);
1209
1210 retval = 0;
1211 mld = (struct mldv2_query *)(mtod(m0, uint8_t *) + off);
1212
1213 switch (inm->in6m_state) {
1214 case MLD_NOT_MEMBER:
1215 case MLD_SILENT_MEMBER:
1216 case MLD_SLEEPING_MEMBER:
1217 case MLD_LAZY_MEMBER:
1218 case MLD_AWAKENING_MEMBER:
1219 case MLD_IDLE_MEMBER:
1220 case MLD_LEAVING_MEMBER:
1221 return (retval);
1222 break;
1223 case MLD_REPORTING_MEMBER:
1224 case MLD_G_QUERY_PENDING_MEMBER:
1225 case MLD_SG_QUERY_PENDING_MEMBER:
1226 break;
1227 }
1228
1229 nsrc = ntohs(mld->mld_numsrc);
1230
1231 /*
1232 * Deal with group-specific queries upfront.
1233 * If any group query is already pending, purge any recorded
1234 * source-list state if it exists, and schedule a query response
1235 * for this group-specific query.
1236 */
1237 if (nsrc == 0) {
1238 if (inm->in6m_state == MLD_G_QUERY_PENDING_MEMBER ||
1239 inm->in6m_state == MLD_SG_QUERY_PENDING_MEMBER) {
1240 in6m_clear_recorded(inm);
1241 timer = min(inm->in6m_timer, timer);
1242 }
1243 inm->in6m_state = MLD_G_QUERY_PENDING_MEMBER;
1244 inm->in6m_timer = MLD_RANDOM_DELAY(timer);
1245 return (retval);
1246 }
1247
1248 /*
1249 * Deal with the case where a group-and-source-specific query has
1250 * been received but a group-specific query is already pending.
1251 */
1252 if (inm->in6m_state == MLD_G_QUERY_PENDING_MEMBER) {
1253 timer = min(inm->in6m_timer, timer);
1254 inm->in6m_timer = MLD_RANDOM_DELAY(timer);
1255 return (retval);
1256 }
1257
1258 /*
1259 * Finally, deal with the case where a group-and-source-specific
1260 * query has been received, where a response to a previous g-s-r
1261 * query exists, or none exists.
1262 * In this case, we need to parse the source-list which the Querier
1263 * has provided us with and check if we have any source list filter
1264 * entries at T1 for these sources. If we do not, there is no need
1265 * schedule a report and the query may be dropped.
1266 * If we do, we must record them and schedule a current-state
1267 * report for those sources.
1268 */
1269 if (inm->in6m_nsrc > 0) {
1270 struct mbuf *m;
1271 uint8_t *sp;
1272 int i, nrecorded;
1273 int soff;
1274
1275 m = m0;
1276 soff = off + sizeof(struct mldv2_query);
1277 nrecorded = 0;
1278 for (i = 0; i < nsrc; i++) {
1279 sp = mtod(m, uint8_t *) + soff;
1280 retval = in6m_record_source(inm,
1281 (const struct in6_addr *)(void *)sp);
1282 if (retval < 0)
1283 break;
1284 nrecorded += retval;
1285 soff += sizeof(struct in6_addr);
1286 if (soff >= m->m_len) {
1287 soff = soff - m->m_len;
1288 m = m->m_next;
1289 if (m == NULL)
1290 break;
1291 }
1292 }
1293 if (nrecorded > 0) {
1294 MLD_PRINTF(( "%s: schedule response to SG query\n",
1295 __func__));
1296 inm->in6m_state = MLD_SG_QUERY_PENDING_MEMBER;
1297 inm->in6m_timer = MLD_RANDOM_DELAY(timer);
1298 }
1299 }
1300
1301 return (retval);
1302}
1303
1304/*
1305 * Process a received MLDv1 host membership report.
1306 * Assumes mld points to mld_hdr in pulled up mbuf chain.
1307 *
1308 * NOTE: Can't be fully const correct as we temporarily embed scope ID in
1309 * mld_addr. This is OK as we own the mbuf chain.
1310 */
1311static int
1312mld_v1_input_report(struct ifnet *ifp, struct mbuf *m,
1313 const struct ip6_hdr *ip6, /*const*/ struct mld_hdr *mld)
1314{
1315 struct in6_addr src, dst;
1316 struct in6_ifaddr *ia;
1317 struct in6_multi *inm;
1318
1319 if (!mld_v1enable) {
1320 MLD_PRINTF(("%s: ignore v1 report %s on ifp 0x%llx(%s)\n",
1321 __func__, ip6_sprintf(&mld->mld_addr),
1322 (uint64_t)VM_KERNEL_ADDRPERM(ifp), if_name(ifp)));
1323 return (0);
1324 }
1325
1326 if ((ifp->if_flags & IFF_LOOPBACK) ||
1327 (m->m_pkthdr.pkt_flags & PKTF_LOOP))
1328 return (0);
1329
1330 /*
1331 * MLDv1 reports must originate from a host's link-local address,
1332 * or the unspecified address (when booting).
1333 */
1334 src = ip6->ip6_src;
1335 in6_clearscope(&src);
1336 if (!IN6_IS_SCOPE_LINKLOCAL(&src) && !IN6_IS_ADDR_UNSPECIFIED(&src)) {
1337 MLD_PRINTF(("%s: ignore v1 query src %s on ifp 0x%llx(%s)\n",
1338 __func__, ip6_sprintf(&ip6->ip6_src),
1339 (uint64_t)VM_KERNEL_ADDRPERM(ifp), if_name(ifp)));
1340 return (EINVAL);
1341 }
1342
1343 /*
1344 * RFC2710 Section 4: MLDv1 reports must pertain to a multicast
1345 * group, and must be directed to the group itself.
1346 */
1347 dst = ip6->ip6_dst;
1348 in6_clearscope(&dst);
1349 if (!IN6_IS_ADDR_MULTICAST(&mld->mld_addr) ||
1350 !IN6_ARE_ADDR_EQUAL(&mld->mld_addr, &dst)) {
1351 MLD_PRINTF(("%s: ignore v1 query dst %s on ifp 0x%llx(%s)\n",
1352 __func__, ip6_sprintf(&ip6->ip6_dst),
1353 (uint64_t)VM_KERNEL_ADDRPERM(ifp), if_name(ifp)));
1354 return (EINVAL);
1355 }
1356
1357 /*
1358 * Make sure we don't hear our own membership report, as fast
1359 * leave requires knowing that we are the only member of a
1360 * group. Assume we used the link-local address if available,
1361 * otherwise look for ::.
1362 *
1363 * XXX Note that scope ID comparison is needed for the address
1364 * returned by in6ifa_ifpforlinklocal(), but SHOULD NOT be
1365 * performed for the on-wire address.
1366 */
1367 ia = in6ifa_ifpforlinklocal(ifp, IN6_IFF_NOTREADY|IN6_IFF_ANYCAST);
1368 if (ia != NULL) {
1369 IFA_LOCK(&ia->ia_ifa);
1370 if ((IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, IA6_IN6(ia)))){
1371 IFA_UNLOCK(&ia->ia_ifa);
1372 IFA_REMREF(&ia->ia_ifa);
1373 return (0);
1374 }
1375 IFA_UNLOCK(&ia->ia_ifa);
1376 IFA_REMREF(&ia->ia_ifa);
1377 } else if (IN6_IS_ADDR_UNSPECIFIED(&src)) {
1378 return (0);
1379 }
1380
1381 MLD_PRINTF(("%s: process v1 report %s on ifp 0x%llx(%s)\n",
1382 __func__, ip6_sprintf(&mld->mld_addr),
1383 (uint64_t)VM_KERNEL_ADDRPERM(ifp), if_name(ifp)));
1384
1385 /*
1386 * Embed scope ID of receiving interface in MLD query for lookup
1387 * whilst we don't hold other locks (due to KAME locking lameness).
1388 */
1389 if (!IN6_IS_ADDR_UNSPECIFIED(&mld->mld_addr))
1390 in6_setscope(&mld->mld_addr, ifp, NULL);
1391
1392 /*
1393 * MLDv1 report suppression.
1394 * If we are a member of this group, and our membership should be
1395 * reported, and our group timer is pending or about to be reset,
1396 * stop our group timer by transitioning to the 'lazy' state.
1397 */
1398 in6_multihead_lock_shared();
1399 IN6_LOOKUP_MULTI(&mld->mld_addr, ifp, inm);
1400 in6_multihead_lock_done();
1401
1402 if (inm != NULL) {
1403 struct mld_ifinfo *mli;
1404
1405 IN6M_LOCK(inm);
1406 mli = inm->in6m_mli;
1407 VERIFY(mli != NULL);
1408
1409 MLI_LOCK(mli);
1410 /*
1411 * If we are in MLDv2 host mode, do not allow the
1412 * other host's MLDv1 report to suppress our reports.
1413 */
1414 if (mli->mli_version == MLD_VERSION_2) {
1415 MLI_UNLOCK(mli);
1416 IN6M_UNLOCK(inm);
1417 IN6M_REMREF(inm); /* from IN6_LOOKUP_MULTI */
1418 goto out;
1419 }
1420 MLI_UNLOCK(mli);
1421
1422 inm->in6m_timer = 0;
1423
1424 switch (inm->in6m_state) {
1425 case MLD_NOT_MEMBER:
1426 case MLD_SILENT_MEMBER:
1427 case MLD_SLEEPING_MEMBER:
1428 break;
1429 case MLD_REPORTING_MEMBER:
1430 case MLD_IDLE_MEMBER:
1431 case MLD_AWAKENING_MEMBER:
1432 MLD_PRINTF(("%s: report suppressed for %s on "
1433 "ifp 0x%llx(%s)\n", __func__,
1434 ip6_sprintf(&mld->mld_addr),
1435 (uint64_t)VM_KERNEL_ADDRPERM(ifp), if_name(ifp)));
1436 case MLD_LAZY_MEMBER:
1437 inm->in6m_state = MLD_LAZY_MEMBER;
1438 break;
1439 case MLD_G_QUERY_PENDING_MEMBER:
1440 case MLD_SG_QUERY_PENDING_MEMBER:
1441 case MLD_LEAVING_MEMBER:
1442 break;
1443 }
1444 IN6M_UNLOCK(inm);
1445 IN6M_REMREF(inm); /* from IN6_LOOKUP_MULTI */
1446 }
1447
1448out:
1449 /* XXX Clear embedded scope ID as userland won't expect it. */
1450 in6_clearscope(&mld->mld_addr);
1451
1452 return (0);
1453}
1454
1455/*
1456 * MLD input path.
1457 *
1458 * Assume query messages which fit in a single ICMPv6 message header
1459 * have been pulled up.
1460 * Assume that userland will want to see the message, even if it
1461 * otherwise fails kernel input validation; do not free it.
1462 * Pullup may however free the mbuf chain m if it fails.
1463 *
1464 * Return IPPROTO_DONE if we freed m. Otherwise, return 0.
1465 */
1466int
1467mld_input(struct mbuf *m, int off, int icmp6len)
1468{
1469 struct ifnet *ifp;
1470 struct ip6_hdr *ip6;
1471 struct mld_hdr *mld;
1472 int mldlen;
1473
1474 MLD_PRINTF(("%s: called w/mbuf (0x%llx,%d)\n", __func__,
1475 (uint64_t)VM_KERNEL_ADDRPERM(m), off));
1476
1477 ifp = m->m_pkthdr.rcvif;
1478
1479 ip6 = mtod(m, struct ip6_hdr *);
1480
1481 /* Pullup to appropriate size. */
1482 mld = (struct mld_hdr *)(mtod(m, uint8_t *) + off);
1483 if (mld->mld_type == MLD_LISTENER_QUERY &&
1484 icmp6len >= sizeof(struct mldv2_query)) {
1485 mldlen = sizeof(struct mldv2_query);
1486 } else {
1487 mldlen = sizeof(struct mld_hdr);
1488 }
1489 IP6_EXTHDR_GET(mld, struct mld_hdr *, m, off, mldlen);
1490 if (mld == NULL) {
1491 icmp6stat.icp6s_badlen++;
1492 return (IPPROTO_DONE);
1493 }
1494
1495 /*
1496 * Userland needs to see all of this traffic for implementing
1497 * the endpoint discovery portion of multicast routing.
1498 */
1499 switch (mld->mld_type) {
1500 case MLD_LISTENER_QUERY:
1501 icmp6_ifstat_inc(ifp, ifs6_in_mldquery);
1502 if (icmp6len == sizeof(struct mld_hdr)) {
1503 if (mld_v1_input_query(ifp, ip6, mld) != 0)
1504 return (0);
1505 } else if (icmp6len >= sizeof(struct mldv2_query)) {
1506 if (mld_v2_input_query(ifp, ip6, m, off,
1507 icmp6len) != 0)
1508 return (0);
1509 }
1510 break;
1511 case MLD_LISTENER_REPORT:
1512 icmp6_ifstat_inc(ifp, ifs6_in_mldreport);
1513 if (mld_v1_input_report(ifp, m, ip6, mld) != 0)
1514 return (0);
1515 break;
1516 case MLDV2_LISTENER_REPORT:
1517 icmp6_ifstat_inc(ifp, ifs6_in_mldreport);
1518 break;
1519 case MLD_LISTENER_DONE:
1520 icmp6_ifstat_inc(ifp, ifs6_in_mlddone);
1521 break;
1522 default:
1523 break;
1524 }
1525
1526 return (0);
1527}
1528
1529/*
1530 * Schedule MLD timer based on various parameters; caller must ensure that
1531 * lock ordering is maintained as this routine acquires MLD global lock.
1532 */
1533void
1534mld_set_timeout(struct mld_tparams *mtp)
1535{
1536 MLD_LOCK_ASSERT_NOTHELD();
1537 VERIFY(mtp != NULL);
1538
1539 if (mtp->qpt != 0 || mtp->it != 0 || mtp->cst != 0 || mtp->sct != 0) {
1540 MLD_LOCK();
1541 if (mtp->qpt != 0)
1542 querier_present_timers_running6 = 1;
1543 if (mtp->it != 0)
1544 interface_timers_running6 = 1;
1545 if (mtp->cst != 0)
1546 current_state_timers_running6 = 1;
1547 if (mtp->sct != 0)
1548 state_change_timers_running6 = 1;
1549 mld_sched_timeout();
1550 MLD_UNLOCK();
1551 }
1552}
1553
1554/*
1555 * MLD6 timer handler (per 1 second).
1556 */
1557static void
1558mld_timeout(void *arg)
1559{
1560#pragma unused(arg)
1561 struct ifqueue scq; /* State-change packets */
1562 struct ifqueue qrq; /* Query response packets */
1563 struct ifnet *ifp;
1564 struct mld_ifinfo *mli;
1565 struct in6_multi *inm;
1566 int uri_sec = 0;
1567 SLIST_HEAD(, in6_multi) in6m_dthead;
1568
1569 SLIST_INIT(&in6m_dthead);
1570
1571 /*
1572 * Update coarse-grained networking timestamp (in sec.); the idea
1573 * is to piggy-back on the timeout callout to update the counter
1574 * returnable via net_uptime().
1575 */
1576 net_update_uptime();
1577
1578 MLD_LOCK();
1579
1580 MLD_PRINTF(("%s: qpt %d, it %d, cst %d, sct %d\n", __func__,
1581 querier_present_timers_running6, interface_timers_running6,
1582 current_state_timers_running6, state_change_timers_running6));
1583
1584 /*
1585 * MLDv1 querier present timer processing.
1586 */
1587 if (querier_present_timers_running6) {
1588 querier_present_timers_running6 = 0;
1589 LIST_FOREACH(mli, &mli_head, mli_link) {
1590 MLI_LOCK(mli);
1591 mld_v1_process_querier_timers(mli);
1592 if (mli->mli_v1_timer > 0)
1593 querier_present_timers_running6 = 1;
1594 MLI_UNLOCK(mli);
1595 }
1596 }
1597
1598 /*
1599 * MLDv2 General Query response timer processing.
1600 */
1601 if (interface_timers_running6) {
1602 MLD_PRINTF(("%s: interface timers running\n", __func__));
1603 interface_timers_running6 = 0;
1604 LIST_FOREACH(mli, &mli_head, mli_link) {
1605 MLI_LOCK(mli);
1606 if (mli->mli_version != MLD_VERSION_2) {
1607 MLI_UNLOCK(mli);
1608 continue;
1609 }
1610 if (mli->mli_v2_timer == 0) {
1611 /* Do nothing. */
1612 } else if (--mli->mli_v2_timer == 0) {
1613 if (mld_v2_dispatch_general_query(mli) > 0)
1614 interface_timers_running6 = 1;
1615 } else {
1616 interface_timers_running6 = 1;
1617 }
1618 MLI_UNLOCK(mli);
1619 }
1620 }
1621
1622 if (!current_state_timers_running6 &&
1623 !state_change_timers_running6)
1624 goto out_locked;
1625
1626 current_state_timers_running6 = 0;
1627 state_change_timers_running6 = 0;
1628
1629 MLD_PRINTF(("%s: state change timers running\n", __func__));
1630
1631 memset(&qrq, 0, sizeof(struct ifqueue));
1632 qrq.ifq_maxlen = MLD_MAX_G_GS_PACKETS;
1633
1634 memset(&scq, 0, sizeof(struct ifqueue));
1635 scq.ifq_maxlen = MLD_MAX_STATE_CHANGE_PACKETS;
1636
1637 /*
1638 * MLD host report and state-change timer processing.
1639 * Note: Processing a v2 group timer may remove a node.
1640 */
1641 LIST_FOREACH(mli, &mli_head, mli_link) {
1642 struct in6_multistep step;
1643
1644 MLI_LOCK(mli);
1645 ifp = mli->mli_ifp;
1646 uri_sec = MLD_RANDOM_DELAY(mli->mli_uri);
1647 MLI_UNLOCK(mli);
1648
1649 in6_multihead_lock_shared();
1650 IN6_FIRST_MULTI(step, inm);
1651 while (inm != NULL) {
1652 IN6M_LOCK(inm);
1653 if (inm->in6m_ifp != ifp)
1654 goto next;
1655
1656 MLI_LOCK(mli);
1657 switch (mli->mli_version) {
1658 case MLD_VERSION_1:
1659 mld_v1_process_group_timer(inm,
1660 mli->mli_version);
1661 break;
1662 case MLD_VERSION_2:
1663 mld_v2_process_group_timers(mli, &qrq,
1664 &scq, inm, uri_sec);
1665 break;
1666 }
1667 MLI_UNLOCK(mli);
1668next:
1669 IN6M_UNLOCK(inm);
1670 IN6_NEXT_MULTI(step, inm);
1671 }
1672 in6_multihead_lock_done();
1673
1674 MLI_LOCK(mli);
1675 if (mli->mli_version == MLD_VERSION_1) {
1676 mld_dispatch_queue(mli, &mli->mli_v1q, 0);
1677 } else if (mli->mli_version == MLD_VERSION_2) {
1678 MLI_UNLOCK(mli);
1679 mld_dispatch_queue(NULL, &qrq, 0);
1680 mld_dispatch_queue(NULL, &scq, 0);
1681 VERIFY(qrq.ifq_len == 0);
1682 VERIFY(scq.ifq_len == 0);
1683 MLI_LOCK(mli);
1684 }
1685 /*
1686 * In case there are still any pending membership reports
1687 * which didn't get drained at version change time.
1688 */
1689 IF_DRAIN(&mli->mli_v1q);
1690 /*
1691 * Release all deferred inm records, and drain any locally
1692 * enqueued packets; do it even if the current MLD version
1693 * for the link is no longer MLDv2, in order to handle the
1694 * version change case.
1695 */
1696 mld_flush_relq(mli, (struct mld_in6m_relhead *)&in6m_dthead);
1697 VERIFY(SLIST_EMPTY(&mli->mli_relinmhead));
1698 MLI_UNLOCK(mli);
1699
1700 IF_DRAIN(&qrq);
1701 IF_DRAIN(&scq);
1702 }
1703
1704out_locked:
1705 /* re-arm the timer if there's work to do */
1706 mld_timeout_run = 0;
1707 mld_sched_timeout();
1708 MLD_UNLOCK();
1709
1710 /* Now that we're dropped all locks, release detached records */
1711 MLD_REMOVE_DETACHED_IN6M(&in6m_dthead);
1712}
1713
1714static void
1715mld_sched_timeout(void)
1716{
1717 MLD_LOCK_ASSERT_HELD();
1718
1719 if (!mld_timeout_run &&
1720 (querier_present_timers_running6 || current_state_timers_running6 ||
1721 interface_timers_running6 || state_change_timers_running6)) {
1722 mld_timeout_run = 1;
1723 timeout(mld_timeout, NULL, hz);
1724 }
1725}
1726
1727/*
1728 * Free the in6_multi reference(s) for this MLD lifecycle.
1729 *
1730 * Caller must be holding mli_lock.
1731 */
1732static void
1733mld_flush_relq(struct mld_ifinfo *mli, struct mld_in6m_relhead *in6m_dthead)
1734{
1735 struct in6_multi *inm;
1736
1737again:
1738 MLI_LOCK_ASSERT_HELD(mli);
1739 inm = SLIST_FIRST(&mli->mli_relinmhead);
1740 if (inm != NULL) {
1741 int lastref;
1742
1743 SLIST_REMOVE_HEAD(&mli->mli_relinmhead, in6m_nrele);
1744 MLI_UNLOCK(mli);
1745
1746 in6_multihead_lock_exclusive();
1747 IN6M_LOCK(inm);
1748 VERIFY(inm->in6m_nrelecnt != 0);
1749 inm->in6m_nrelecnt--;
1750 lastref = in6_multi_detach(inm);
1751 VERIFY(!lastref || (!(inm->in6m_debug & IFD_ATTACHED) &&
1752 inm->in6m_reqcnt == 0));
1753 IN6M_UNLOCK(inm);
1754 in6_multihead_lock_done();
1755 /* from mli_relinmhead */
1756 IN6M_REMREF(inm);
1757 /* from in6_multihead_list */
1758 if (lastref) {
1759 /*
1760 * Defer releasing our final reference, as we
1761 * are holding the MLD lock at this point, and
1762 * we could end up with locking issues later on
1763 * (while issuing SIOCDELMULTI) when this is the
1764 * final reference count. Let the caller do it
1765 * when it is safe.
1766 */
1767 MLD_ADD_DETACHED_IN6M(in6m_dthead, inm);
1768 }
1769 MLI_LOCK(mli);
1770 goto again;
1771 }
1772}
1773
1774/*
1775 * Update host report group timer.
1776 * Will update the global pending timer flags.
1777 */
1778static void
1779mld_v1_process_group_timer(struct in6_multi *inm, const int mld_version)
1780{
1781#pragma unused(mld_version)
1782 int report_timer_expired;
1783
1784 MLD_LOCK_ASSERT_HELD();
1785 IN6M_LOCK_ASSERT_HELD(inm);
1786 MLI_LOCK_ASSERT_HELD(inm->in6m_mli);
1787
1788 if (inm->in6m_timer == 0) {
1789 report_timer_expired = 0;
1790 } else if (--inm->in6m_timer == 0) {
1791 report_timer_expired = 1;
1792 } else {
1793 current_state_timers_running6 = 1;
1794 /* caller will schedule timer */
1795 return;
1796 }
1797
1798 switch (inm->in6m_state) {
1799 case MLD_NOT_MEMBER:
1800 case MLD_SILENT_MEMBER:
1801 case MLD_IDLE_MEMBER:
1802 case MLD_LAZY_MEMBER:
1803 case MLD_SLEEPING_MEMBER:
1804 case MLD_AWAKENING_MEMBER:
1805 break;
1806 case MLD_REPORTING_MEMBER:
1807 if (report_timer_expired) {
1808 inm->in6m_state = MLD_IDLE_MEMBER;
1809 (void) mld_v1_transmit_report(inm,
1810 MLD_LISTENER_REPORT);
1811 IN6M_LOCK_ASSERT_HELD(inm);
1812 MLI_LOCK_ASSERT_HELD(inm->in6m_mli);
1813 }
1814 break;
1815 case MLD_G_QUERY_PENDING_MEMBER:
1816 case MLD_SG_QUERY_PENDING_MEMBER:
1817 case MLD_LEAVING_MEMBER:
1818 break;
1819 }
1820}
1821
1822/*
1823 * Update a group's timers for MLDv2.
1824 * Will update the global pending timer flags.
1825 * Note: Unlocked read from mli.
1826 */
1827static void
1828mld_v2_process_group_timers(struct mld_ifinfo *mli,
1829 struct ifqueue *qrq, struct ifqueue *scq,
1830 struct in6_multi *inm, const int uri_sec)
1831{
1832 int query_response_timer_expired;
1833 int state_change_retransmit_timer_expired;
1834
1835 MLD_LOCK_ASSERT_HELD();
1836 IN6M_LOCK_ASSERT_HELD(inm);
1837 MLI_LOCK_ASSERT_HELD(mli);
1838 VERIFY(mli == inm->in6m_mli);
1839
1840 query_response_timer_expired = 0;
1841 state_change_retransmit_timer_expired = 0;
1842
1843 /*
1844 * During a transition from compatibility mode back to MLDv2,
1845 * a group record in REPORTING state may still have its group
1846 * timer active. This is a no-op in this function; it is easier
1847 * to deal with it here than to complicate the timeout path.
1848 */
1849 if (inm->in6m_timer == 0) {
1850 query_response_timer_expired = 0;
1851 } else if (--inm->in6m_timer == 0) {
1852 query_response_timer_expired = 1;
1853 } else {
1854 current_state_timers_running6 = 1;
1855 /* caller will schedule timer */
1856 }
1857
1858 if (inm->in6m_sctimer == 0) {
1859 state_change_retransmit_timer_expired = 0;
1860 } else if (--inm->in6m_sctimer == 0) {
1861 state_change_retransmit_timer_expired = 1;
1862 } else {
1863 state_change_timers_running6 = 1;
1864 /* caller will schedule timer */
1865 }
1866
1867 /* We are in timer callback, so be quick about it. */
1868 if (!state_change_retransmit_timer_expired &&
1869 !query_response_timer_expired)
1870 return;
1871
1872 switch (inm->in6m_state) {
1873 case MLD_NOT_MEMBER:
1874 case MLD_SILENT_MEMBER:
1875 case MLD_SLEEPING_MEMBER:
1876 case MLD_LAZY_MEMBER:
1877 case MLD_AWAKENING_MEMBER:
1878 case MLD_IDLE_MEMBER:
1879 break;
1880 case MLD_G_QUERY_PENDING_MEMBER:
1881 case MLD_SG_QUERY_PENDING_MEMBER:
1882 /*
1883 * Respond to a previously pending Group-Specific
1884 * or Group-and-Source-Specific query by enqueueing
1885 * the appropriate Current-State report for
1886 * immediate transmission.
1887 */
1888 if (query_response_timer_expired) {
1889 int retval;
1890
1891 retval = mld_v2_enqueue_group_record(qrq, inm, 0, 1,
1892 (inm->in6m_state == MLD_SG_QUERY_PENDING_MEMBER),
1893 0);
1894 MLD_PRINTF(("%s: enqueue record = %d\n",
1895 __func__, retval));
1896 inm->in6m_state = MLD_REPORTING_MEMBER;
1897 in6m_clear_recorded(inm);
1898 }
1899 /* FALLTHROUGH */
1900 case MLD_REPORTING_MEMBER:
1901 case MLD_LEAVING_MEMBER:
1902 if (state_change_retransmit_timer_expired) {
1903 /*
1904 * State-change retransmission timer fired.
1905 * If there are any further pending retransmissions,
1906 * set the global pending state-change flag, and
1907 * reset the timer.
1908 */
1909 if (--inm->in6m_scrv > 0) {
1910 inm->in6m_sctimer = uri_sec;
1911 state_change_timers_running6 = 1;
1912 /* caller will schedule timer */
1913 }
1914 /*
1915 * Retransmit the previously computed state-change
1916 * report. If there are no further pending
1917 * retransmissions, the mbuf queue will be consumed.
1918 * Update T0 state to T1 as we have now sent
1919 * a state-change.
1920 */
1921 (void) mld_v2_merge_state_changes(inm, scq);
1922
1923 in6m_commit(inm);
1924 MLD_PRINTF(("%s: T1 -> T0 for %s/%s\n", __func__,
1925 ip6_sprintf(&inm->in6m_addr),
1926 if_name(inm->in6m_ifp)));
1927
1928 /*
1929 * If we are leaving the group for good, make sure
1930 * we release MLD's reference to it.
1931 * This release must be deferred using a SLIST,
1932 * as we are called from a loop which traverses
1933 * the in_ifmultiaddr TAILQ.
1934 */
1935 if (inm->in6m_state == MLD_LEAVING_MEMBER &&
1936 inm->in6m_scrv == 0) {
1937 inm->in6m_state = MLD_NOT_MEMBER;
1938 /*
1939 * A reference has already been held in
1940 * mld_final_leave() for this inm, so
1941 * no need to hold another one. We also
1942 * bumped up its request count then, so
1943 * that it stays in in6_multihead. Both
1944 * of them will be released when it is
1945 * dequeued later on.
1946 */
1947 VERIFY(inm->in6m_nrelecnt != 0);
1948 SLIST_INSERT_HEAD(&mli->mli_relinmhead,
1949 inm, in6m_nrele);
1950 }
1951 }
1952 break;
1953 }
1954}
1955
1956/*
1957 * Switch to a different version on the given interface,
1958 * as per Section 9.12.
1959 */
1960static uint32_t
1961mld_set_version(struct mld_ifinfo *mli, const int mld_version)
1962{
1963 int old_version_timer;
1964
1965 MLI_LOCK_ASSERT_HELD(mli);
1966
1967 MLD_PRINTF(("%s: switching to v%d on ifp 0x%llx(%s)\n", __func__,
1968 mld_version, (uint64_t)VM_KERNEL_ADDRPERM(mli->mli_ifp),
1969 if_name(mli->mli_ifp)));
1970
1971 if (mld_version == MLD_VERSION_1) {
1972 /*
1973 * Compute the "Older Version Querier Present" timer as per
1974 * Section 9.12, in seconds.
1975 */
1976 old_version_timer = (mli->mli_rv * mli->mli_qi) + mli->mli_qri;
1977 mli->mli_v1_timer = old_version_timer;
1978 }
1979
1980 if (mli->mli_v1_timer > 0 && mli->mli_version != MLD_VERSION_1) {
1981 mli->mli_version = MLD_VERSION_1;
1982 mld_v2_cancel_link_timers(mli);
1983 }
1984
1985 MLI_LOCK_ASSERT_HELD(mli);
1986
1987 return (mli->mli_v1_timer);
1988}
1989
1990/*
1991 * Cancel pending MLDv2 timers for the given link and all groups
1992 * joined on it; state-change, general-query, and group-query timers.
1993 *
1994 * Only ever called on a transition from v2 to Compatibility mode. Kill
1995 * the timers stone dead (this may be expensive for large N groups), they
1996 * will be restarted if Compatibility Mode deems that they must be due to
1997 * query processing.
1998 */
1999static void
2000mld_v2_cancel_link_timers(struct mld_ifinfo *mli)
2001{
2002 struct ifnet *ifp;
2003 struct in6_multi *inm;
2004 struct in6_multistep step;
2005
2006 MLI_LOCK_ASSERT_HELD(mli);
2007
2008 MLD_PRINTF(("%s: cancel v2 timers on ifp 0x%llx(%s)\n", __func__,
2009 (uint64_t)VM_KERNEL_ADDRPERM(mli->mli_ifp), if_name(mli->mli_ifp)));
2010
2011 /*
2012 * Stop the v2 General Query Response on this link stone dead.
2013 * If timer is woken up due to interface_timers_running6,
2014 * the flag will be cleared if there are no pending link timers.
2015 */
2016 mli->mli_v2_timer = 0;
2017
2018 /*
2019 * Now clear the current-state and state-change report timers
2020 * for all memberships scoped to this link.
2021 */
2022 ifp = mli->mli_ifp;
2023 MLI_UNLOCK(mli);
2024
2025 in6_multihead_lock_shared();
2026 IN6_FIRST_MULTI(step, inm);
2027 while (inm != NULL) {
2028 IN6M_LOCK(inm);
2029 if (inm->in6m_ifp != ifp)
2030 goto next;
2031
2032 switch (inm->in6m_state) {
2033 case MLD_NOT_MEMBER:
2034 case MLD_SILENT_MEMBER:
2035 case MLD_IDLE_MEMBER:
2036 case MLD_LAZY_MEMBER:
2037 case MLD_SLEEPING_MEMBER:
2038 case MLD_AWAKENING_MEMBER:
2039 /*
2040 * These states are either not relevant in v2 mode,
2041 * or are unreported. Do nothing.
2042 */
2043 break;
2044 case MLD_LEAVING_MEMBER:
2045 /*
2046 * If we are leaving the group and switching
2047 * version, we need to release the final
2048 * reference held for issuing the INCLUDE {}.
2049 * During mld_final_leave(), we bumped up both the
2050 * request and reference counts. Since we cannot
2051 * call in6_multi_detach() here, defer this task to
2052 * the timer routine.
2053 */
2054 VERIFY(inm->in6m_nrelecnt != 0);
2055 MLI_LOCK(mli);
2056 SLIST_INSERT_HEAD(&mli->mli_relinmhead, inm,
2057 in6m_nrele);
2058 MLI_UNLOCK(mli);
2059 /* FALLTHROUGH */
2060 case MLD_G_QUERY_PENDING_MEMBER:
2061 case MLD_SG_QUERY_PENDING_MEMBER:
2062 in6m_clear_recorded(inm);
2063 /* FALLTHROUGH */
2064 case MLD_REPORTING_MEMBER:
2065 inm->in6m_state = MLD_REPORTING_MEMBER;
2066 break;
2067 }
2068 /*
2069 * Always clear state-change and group report timers.
2070 * Free any pending MLDv2 state-change records.
2071 */
2072 inm->in6m_sctimer = 0;
2073 inm->in6m_timer = 0;
2074 IF_DRAIN(&inm->in6m_scq);
2075next:
2076 IN6M_UNLOCK(inm);
2077 IN6_NEXT_MULTI(step, inm);
2078 }
2079 in6_multihead_lock_done();
2080
2081 MLI_LOCK(mli);
2082}
2083
2084/*
2085 * Update the Older Version Querier Present timers for a link.
2086 * See Section 9.12 of RFC 3810.
2087 */
2088static void
2089mld_v1_process_querier_timers(struct mld_ifinfo *mli)
2090{
2091 MLI_LOCK_ASSERT_HELD(mli);
2092
2093 if (mld_v2enable && mli->mli_version != MLD_VERSION_2 &&
2094 --mli->mli_v1_timer == 0) {
2095 /*
2096 * MLDv1 Querier Present timer expired; revert to MLDv2.
2097 */
2098 MLD_PRINTF(("%s: transition from v%d -> v%d on 0x%llx(%s)\n",
2099 __func__, mli->mli_version, MLD_VERSION_2,
2100 (uint64_t)VM_KERNEL_ADDRPERM(mli->mli_ifp),
2101 if_name(mli->mli_ifp)));
2102 mli->mli_version = MLD_VERSION_2;
2103 }
2104}
2105
2106/*
2107 * Transmit an MLDv1 report immediately.
2108 */
2109static int
2110mld_v1_transmit_report(struct in6_multi *in6m, const int type)
2111{
2112 struct ifnet *ifp;
2113 struct in6_ifaddr *ia;
2114 struct ip6_hdr *ip6;
2115 struct mbuf *mh, *md;
2116 struct mld_hdr *mld;
2117 int error = 0;
2118
2119 IN6M_LOCK_ASSERT_HELD(in6m);
2120 MLI_LOCK_ASSERT_HELD(in6m->in6m_mli);
2121
2122 ifp = in6m->in6m_ifp;
2123 /* ia may be NULL if link-local address is tentative. */
2124 ia = in6ifa_ifpforlinklocal(ifp, IN6_IFF_NOTREADY|IN6_IFF_ANYCAST);
2125
2126 MGETHDR(mh, M_DONTWAIT, MT_HEADER);
2127 if (mh == NULL) {
2128 if (ia != NULL)
2129 IFA_REMREF(&ia->ia_ifa);
2130 return (ENOMEM);
2131 }
2132 MGET(md, M_DONTWAIT, MT_DATA);
2133 if (md == NULL) {
2134 m_free(mh);
2135 if (ia != NULL)
2136 IFA_REMREF(&ia->ia_ifa);
2137 return (ENOMEM);
2138 }
2139 mh->m_next = md;
2140
2141 /*
2142 * FUTURE: Consider increasing alignment by ETHER_HDR_LEN, so
2143 * that ether_output() does not need to allocate another mbuf
2144 * for the header in the most common case.
2145 */
2146 MH_ALIGN(mh, sizeof(struct ip6_hdr));
2147 mh->m_pkthdr.len = sizeof(struct ip6_hdr) + sizeof(struct mld_hdr);
2148 mh->m_len = sizeof(struct ip6_hdr);
2149
2150 ip6 = mtod(mh, struct ip6_hdr *);
2151 ip6->ip6_flow = 0;
2152 ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
2153 ip6->ip6_vfc |= IPV6_VERSION;
2154 ip6->ip6_nxt = IPPROTO_ICMPV6;
2155 if (ia != NULL)
2156 IFA_LOCK(&ia->ia_ifa);
2157 ip6->ip6_src = ia ? ia->ia_addr.sin6_addr : in6addr_any;
2158 if (ia != NULL) {
2159 IFA_UNLOCK(&ia->ia_ifa);
2160 IFA_REMREF(&ia->ia_ifa);
2161 ia = NULL;
2162 }
2163 ip6->ip6_dst = in6m->in6m_addr;
2164
2165 md->m_len = sizeof(struct mld_hdr);
2166 mld = mtod(md, struct mld_hdr *);
2167 mld->mld_type = type;
2168 mld->mld_code = 0;
2169 mld->mld_cksum = 0;
2170 mld->mld_maxdelay = 0;
2171 mld->mld_reserved = 0;
2172 mld->mld_addr = in6m->in6m_addr;
2173 in6_clearscope(&mld->mld_addr);
2174 mld->mld_cksum = in6_cksum(mh, IPPROTO_ICMPV6,
2175 sizeof(struct ip6_hdr), sizeof(struct mld_hdr));
2176
2177 mld_save_context(mh, ifp);
2178 mh->m_flags |= M_MLDV1;
2179
2180 /*
2181 * Due to the fact that at this point we are possibly holding
2182 * in6_multihead_lock in shared or exclusive mode, we can't call
2183 * mld_dispatch_packet() here since that will eventually call
2184 * ip6_output(), which will try to lock in6_multihead_lock and cause
2185 * a deadlock.
2186 * Instead we defer the work to the mld_timeout() thread, thus
2187 * avoiding unlocking in_multihead_lock here.
2188 */
2189 if (IF_QFULL(&in6m->in6m_mli->mli_v1q)) {
2190 MLD_PRINTF(("%s: v1 outbound queue full\n", __func__));
2191 error = ENOMEM;
2192 m_freem(mh);
2193 } else {
2194 IF_ENQUEUE(&in6m->in6m_mli->mli_v1q, mh);
2195 VERIFY(error == 0);
2196 }
2197
2198 return (error);
2199}
2200
2201/*
2202 * Process a state change from the upper layer for the given IPv6 group.
2203 *
2204 * Each socket holds a reference on the in6_multi in its own ip_moptions.
2205 * The socket layer will have made the necessary updates to.the group
2206 * state, it is now up to MLD to issue a state change report if there
2207 * has been any change between T0 (when the last state-change was issued)
2208 * and T1 (now).
2209 *
2210 * We use the MLDv2 state machine at group level. The MLd module
2211 * however makes the decision as to which MLD protocol version to speak.
2212 * A state change *from* INCLUDE {} always means an initial join.
2213 * A state change *to* INCLUDE {} always means a final leave.
2214 *
2215 * If delay is non-zero, and the state change is an initial multicast
2216 * join, the state change report will be delayed by 'delay' ticks
2217 * in units of seconds if MLDv1 is active on the link; otherwise
2218 * the initial MLDv2 state change report will be delayed by whichever
2219 * is sooner, a pending state-change timer or delay itself.
2220 */
2221int
2222mld_change_state(struct in6_multi *inm, struct mld_tparams *mtp,
2223 const int delay)
2224{
2225 struct mld_ifinfo *mli;
2226 struct ifnet *ifp;
2227 int error = 0;
2228
2229 VERIFY(mtp != NULL);
2230 bzero(mtp, sizeof (*mtp));
2231
2232 IN6M_LOCK_ASSERT_HELD(inm);
2233 VERIFY(inm->in6m_mli != NULL);
2234 MLI_LOCK_ASSERT_NOTHELD(inm->in6m_mli);
2235
2236 /*
2237 * Try to detect if the upper layer just asked us to change state
2238 * for an interface which has now gone away.
2239 */
2240 VERIFY(inm->in6m_ifma != NULL);
2241 ifp = inm->in6m_ifma->ifma_ifp;
2242 /*
2243 * Sanity check that netinet6's notion of ifp is the same as net's.
2244 */
2245 VERIFY(inm->in6m_ifp == ifp);
2246
2247 mli = MLD_IFINFO(ifp);
2248 VERIFY(mli != NULL);
2249
2250 /*
2251 * If we detect a state transition to or from MCAST_UNDEFINED
2252 * for this group, then we are starting or finishing an MLD
2253 * life cycle for this group.
2254 */
2255 if (inm->in6m_st[1].iss_fmode != inm->in6m_st[0].iss_fmode) {
2256 MLD_PRINTF(("%s: inm transition %d -> %d\n", __func__,
2257 inm->in6m_st[0].iss_fmode, inm->in6m_st[1].iss_fmode));
2258 if (inm->in6m_st[0].iss_fmode == MCAST_UNDEFINED) {
2259 MLD_PRINTF(("%s: initial join\n", __func__));
2260 error = mld_initial_join(inm, mli, mtp, delay);
2261 goto out;
2262 } else if (inm->in6m_st[1].iss_fmode == MCAST_UNDEFINED) {
2263 MLD_PRINTF(("%s: final leave\n", __func__));
2264 mld_final_leave(inm, mli, mtp);
2265 goto out;
2266 }
2267 } else {
2268 MLD_PRINTF(("%s: filter set change\n", __func__));
2269 }
2270
2271 error = mld_handle_state_change(inm, mli, mtp);
2272out:
2273 return (error);
2274}
2275
2276/*
2277 * Perform the initial join for an MLD group.
2278 *
2279 * When joining a group:
2280 * If the group should have its MLD traffic suppressed, do nothing.
2281 * MLDv1 starts sending MLDv1 host membership reports.
2282 * MLDv2 will schedule an MLDv2 state-change report containing the
2283 * initial state of the membership.
2284 *
2285 * If the delay argument is non-zero, then we must delay sending the
2286 * initial state change for delay ticks (in units of seconds).
2287 */
2288static int
2289mld_initial_join(struct in6_multi *inm, struct mld_ifinfo *mli,
2290 struct mld_tparams *mtp, const int delay)
2291{
2292 struct ifnet *ifp;
2293 struct ifqueue *ifq;
2294 int error, retval, syncstates;
2295 int odelay;
2296
2297 IN6M_LOCK_ASSERT_HELD(inm);
2298 MLI_LOCK_ASSERT_NOTHELD(mli);
2299 VERIFY(mtp != NULL);
2300
2301 MLD_PRINTF(("%s: initial join %s on ifp 0x%llx(%s)\n",
2302 __func__, ip6_sprintf(&inm->in6m_addr),
2303 (uint64_t)VM_KERNEL_ADDRPERM(inm->in6m_ifp),
2304 if_name(inm->in6m_ifp)));
2305
2306 error = 0;
2307 syncstates = 1;
2308
2309 ifp = inm->in6m_ifp;
2310
2311 MLI_LOCK(mli);
2312 VERIFY(mli->mli_ifp == ifp);
2313
2314 /*
2315 * Avoid MLD if group is :
2316 * 1. Joined on loopback, OR
2317 * 2. On a link that is marked MLIF_SILENT
2318 * 3. rdar://problem/19227650 Is link local scoped and
2319 * on cellular interface
2320 * 4. Is a type that should not be reported (node local
2321 * or all node link local multicast.
2322 * All other groups enter the appropriate state machine
2323 * for the version in use on this link.
2324 */
2325 if ((ifp->if_flags & IFF_LOOPBACK) ||
2326 (mli->mli_flags & MLIF_SILENT) ||
2327 (IFNET_IS_CELLULAR(ifp) &&
2328 IN6_IS_ADDR_MC_LINKLOCAL(&inm->in6m_addr)) ||
2329 !mld_is_addr_reported(&inm->in6m_addr)) {
2330 MLD_PRINTF(("%s: not kicking state machine for silent group\n",
2331 __func__));
2332 inm->in6m_state = MLD_SILENT_MEMBER;
2333 inm->in6m_timer = 0;
2334 } else {
2335 /*
2336 * Deal with overlapping in6_multi lifecycle.
2337 * If this group was LEAVING, then make sure
2338 * we drop the reference we picked up to keep the
2339 * group around for the final INCLUDE {} enqueue.
2340 * Since we cannot call in6_multi_detach() here,
2341 * defer this task to the timer routine.
2342 */
2343 if (mli->mli_version == MLD_VERSION_2 &&
2344 inm->in6m_state == MLD_LEAVING_MEMBER) {
2345 VERIFY(inm->in6m_nrelecnt != 0);
2346 SLIST_INSERT_HEAD(&mli->mli_relinmhead, inm,
2347 in6m_nrele);
2348 }
2349
2350 inm->in6m_state = MLD_REPORTING_MEMBER;
2351
2352 switch (mli->mli_version) {
2353 case MLD_VERSION_1:
2354 /*
2355 * If a delay was provided, only use it if
2356 * it is greater than the delay normally
2357 * used for an MLDv1 state change report,
2358 * and delay sending the initial MLDv1 report
2359 * by not transitioning to the IDLE state.
2360 */
2361 odelay = MLD_RANDOM_DELAY(MLD_V1_MAX_RI);
2362 if (delay) {
2363 inm->in6m_timer = max(delay, odelay);
2364 mtp->cst = 1;
2365 } else {
2366 inm->in6m_state = MLD_IDLE_MEMBER;
2367 error = mld_v1_transmit_report(inm,
2368 MLD_LISTENER_REPORT);
2369
2370 IN6M_LOCK_ASSERT_HELD(inm);
2371 MLI_LOCK_ASSERT_HELD(mli);
2372
2373 if (error == 0) {
2374 inm->in6m_timer = odelay;
2375 mtp->cst = 1;
2376 }
2377 }
2378 break;
2379
2380 case MLD_VERSION_2:
2381 /*
2382 * Defer update of T0 to T1, until the first copy
2383 * of the state change has been transmitted.
2384 */
2385 syncstates = 0;
2386
2387 /*
2388 * Immediately enqueue a State-Change Report for
2389 * this interface, freeing any previous reports.
2390 * Don't kick the timers if there is nothing to do,
2391 * or if an error occurred.
2392 */
2393 ifq = &inm->in6m_scq;
2394 IF_DRAIN(ifq);
2395 retval = mld_v2_enqueue_group_record(ifq, inm, 1,
2396 0, 0, (mli->mli_flags & MLIF_USEALLOW));
2397 mtp->cst = (ifq->ifq_len > 0);
2398 MLD_PRINTF(("%s: enqueue record = %d\n",
2399 __func__, retval));
2400 if (retval <= 0) {
2401 error = retval * -1;
2402 break;
2403 }
2404
2405 /*
2406 * Schedule transmission of pending state-change
2407 * report up to RV times for this link. The timer
2408 * will fire at the next mld_timeout (1 second)),
2409 * giving us an opportunity to merge the reports.
2410 *
2411 * If a delay was provided to this function, only
2412 * use this delay if sooner than the existing one.
2413 */
2414 VERIFY(mli->mli_rv > 1);
2415 inm->in6m_scrv = mli->mli_rv;
2416 if (delay) {
2417 if (inm->in6m_sctimer > 1) {
2418 inm->in6m_sctimer =
2419 min(inm->in6m_sctimer, delay);
2420 } else
2421 inm->in6m_sctimer = delay;
2422 } else {
2423 inm->in6m_sctimer = 1;
2424 }
2425 mtp->sct = 1;
2426 error = 0;
2427 break;
2428 }
2429 }
2430 MLI_UNLOCK(mli);
2431
2432 /*
2433 * Only update the T0 state if state change is atomic,
2434 * i.e. we don't need to wait for a timer to fire before we
2435 * can consider the state change to have been communicated.
2436 */
2437 if (syncstates) {
2438 in6m_commit(inm);
2439 MLD_PRINTF(("%s: T1 -> T0 for %s/%s\n", __func__,
2440 ip6_sprintf(&inm->in6m_addr),
2441 if_name(inm->in6m_ifp)));
2442 }
2443
2444 return (error);
2445}
2446
2447/*
2448 * Issue an intermediate state change during the life-cycle.
2449 */
2450static int
2451mld_handle_state_change(struct in6_multi *inm, struct mld_ifinfo *mli,
2452 struct mld_tparams *mtp)
2453{
2454 struct ifnet *ifp;
2455 int retval = 0;
2456
2457 IN6M_LOCK_ASSERT_HELD(inm);
2458 MLI_LOCK_ASSERT_NOTHELD(mli);
2459 VERIFY(mtp != NULL);
2460
2461 MLD_PRINTF(("%s: state change for %s on ifp 0x%llx(%s)\n",
2462 __func__, ip6_sprintf(&inm->in6m_addr),
2463 (uint64_t)VM_KERNEL_ADDRPERM(inm->in6m_ifp),
2464 if_name(inm->in6m_ifp)));
2465
2466 ifp = inm->in6m_ifp;
2467
2468 MLI_LOCK(mli);
2469 VERIFY(mli->mli_ifp == ifp);
2470
2471 if ((ifp->if_flags & IFF_LOOPBACK) ||
2472 (mli->mli_flags & MLIF_SILENT) ||
2473 !mld_is_addr_reported(&inm->in6m_addr) ||
2474 (mli->mli_version != MLD_VERSION_2)) {
2475 MLI_UNLOCK(mli);
2476 if (!mld_is_addr_reported(&inm->in6m_addr)) {
2477 MLD_PRINTF(("%s: not kicking state machine for silent "
2478 "group\n", __func__));
2479 }
2480 MLD_PRINTF(("%s: nothing to do\n", __func__));
2481 in6m_commit(inm);
2482 MLD_PRINTF(("%s: T1 -> T0 for %s/%s\n", __func__,
2483 ip6_sprintf(&inm->in6m_addr),
2484 if_name(inm->in6m_ifp)));
2485 goto done;
2486 }
2487
2488 IF_DRAIN(&inm->in6m_scq);
2489
2490 retval = mld_v2_enqueue_group_record(&inm->in6m_scq, inm, 1, 0, 0,
2491 (mli->mli_flags & MLIF_USEALLOW));
2492 mtp->cst = (inm->in6m_scq.ifq_len > 0);
2493 MLD_PRINTF(("%s: enqueue record = %d\n", __func__, retval));
2494 if (retval <= 0) {
2495 MLI_UNLOCK(mli);
2496 retval *= -1;
2497 goto done;
2498 } else {
2499 retval = 0;
2500 }
2501
2502 /*
2503 * If record(s) were enqueued, start the state-change
2504 * report timer for this group.
2505 */
2506 inm->in6m_scrv = mli->mli_rv;
2507 inm->in6m_sctimer = 1;
2508 mtp->sct = 1;
2509 MLI_UNLOCK(mli);
2510
2511done:
2512 return (retval);
2513}
2514
2515/*
2516 * Perform the final leave for a multicast address.
2517 *
2518 * When leaving a group:
2519 * MLDv1 sends a DONE message, if and only if we are the reporter.
2520 * MLDv2 enqueues a state-change report containing a transition
2521 * to INCLUDE {} for immediate transmission.
2522 */
2523static void
2524mld_final_leave(struct in6_multi *inm, struct mld_ifinfo *mli,
2525 struct mld_tparams *mtp)
2526{
2527 int syncstates = 1;
2528
2529 IN6M_LOCK_ASSERT_HELD(inm);
2530 MLI_LOCK_ASSERT_NOTHELD(mli);
2531 VERIFY(mtp != NULL);
2532
2533 MLD_PRINTF(("%s: final leave %s on ifp 0x%llx(%s)\n",
2534 __func__, ip6_sprintf(&inm->in6m_addr),
2535 (uint64_t)VM_KERNEL_ADDRPERM(inm->in6m_ifp),
2536 if_name(inm->in6m_ifp)));
2537
2538 switch (inm->in6m_state) {
2539 case MLD_NOT_MEMBER:
2540 case MLD_SILENT_MEMBER:
2541 case MLD_LEAVING_MEMBER:
2542 /* Already leaving or left; do nothing. */
2543 MLD_PRINTF(("%s: not kicking state machine for silent group\n",
2544 __func__));
2545 break;
2546 case MLD_REPORTING_MEMBER:
2547 case MLD_IDLE_MEMBER:
2548 case MLD_G_QUERY_PENDING_MEMBER:
2549 case MLD_SG_QUERY_PENDING_MEMBER:
2550 MLI_LOCK(mli);
2551 if (mli->mli_version == MLD_VERSION_1) {
2552 if (inm->in6m_state == MLD_G_QUERY_PENDING_MEMBER ||
2553 inm->in6m_state == MLD_SG_QUERY_PENDING_MEMBER) {
2554 panic("%s: MLDv2 state reached, not MLDv2 "
2555 "mode\n", __func__);
2556 /* NOTREACHED */
2557 }
2558 /* scheduler timer if enqueue is successful */
2559 mtp->cst = (mld_v1_transmit_report(inm,
2560 MLD_LISTENER_DONE) == 0);
2561
2562 IN6M_LOCK_ASSERT_HELD(inm);
2563 MLI_LOCK_ASSERT_HELD(mli);
2564
2565 inm->in6m_state = MLD_NOT_MEMBER;
2566 } else if (mli->mli_version == MLD_VERSION_2) {
2567 /*
2568 * Stop group timer and all pending reports.
2569 * Immediately enqueue a state-change report
2570 * TO_IN {} to be sent on the next timeout,
2571 * giving us an opportunity to merge reports.
2572 */
2573 IF_DRAIN(&inm->in6m_scq);
2574 inm->in6m_timer = 0;
2575 inm->in6m_scrv = mli->mli_rv;
2576 MLD_PRINTF(("%s: Leaving %s/%s with %d "
2577 "pending retransmissions.\n", __func__,
2578 ip6_sprintf(&inm->in6m_addr),
2579 if_name(inm->in6m_ifp),
2580 inm->in6m_scrv));
2581 if (inm->in6m_scrv == 0) {
2582 inm->in6m_state = MLD_NOT_MEMBER;
2583 inm->in6m_sctimer = 0;
2584 } else {
2585 int retval;
2586 /*
2587 * Stick around in the in6_multihead list;
2588 * the final detach will be issued by
2589 * mld_v2_process_group_timers() when
2590 * the retransmit timer expires.
2591 */
2592 IN6M_ADDREF_LOCKED(inm);
2593 VERIFY(inm->in6m_debug & IFD_ATTACHED);
2594 inm->in6m_reqcnt++;
2595 VERIFY(inm->in6m_reqcnt >= 1);
2596 inm->in6m_nrelecnt++;
2597 VERIFY(inm->in6m_nrelecnt != 0);
2598
2599 retval = mld_v2_enqueue_group_record(
2600 &inm->in6m_scq, inm, 1, 0, 0,
2601 (mli->mli_flags & MLIF_USEALLOW));
2602 mtp->cst = (inm->in6m_scq.ifq_len > 0);
2603 KASSERT(retval != 0,
2604 ("%s: enqueue record = %d\n", __func__,
2605 retval));
2606
2607 inm->in6m_state = MLD_LEAVING_MEMBER;
2608 inm->in6m_sctimer = 1;
2609 mtp->sct = 1;
2610 syncstates = 0;
2611 }
2612 }
2613 MLI_UNLOCK(mli);
2614 break;
2615 case MLD_LAZY_MEMBER:
2616 case MLD_SLEEPING_MEMBER:
2617 case MLD_AWAKENING_MEMBER:
2618 /* Our reports are suppressed; do nothing. */
2619 break;
2620 }
2621
2622 if (syncstates) {
2623 in6m_commit(inm);
2624 MLD_PRINTF(("%s: T1 -> T0 for %s/%s\n", __func__,
2625 ip6_sprintf(&inm->in6m_addr),
2626 if_name(inm->in6m_ifp)));
2627 inm->in6m_st[1].iss_fmode = MCAST_UNDEFINED;
2628 MLD_PRINTF(("%s: T1 now MCAST_UNDEFINED for 0x%llx/%s\n",
2629 __func__, (uint64_t)VM_KERNEL_ADDRPERM(&inm->in6m_addr),
2630 if_name(inm->in6m_ifp)));
2631 }
2632}
2633
2634/*
2635 * Enqueue an MLDv2 group record to the given output queue.
2636 *
2637 * If is_state_change is zero, a current-state record is appended.
2638 * If is_state_change is non-zero, a state-change report is appended.
2639 *
2640 * If is_group_query is non-zero, an mbuf packet chain is allocated.
2641 * If is_group_query is zero, and if there is a packet with free space
2642 * at the tail of the queue, it will be appended to providing there
2643 * is enough free space.
2644 * Otherwise a new mbuf packet chain is allocated.
2645 *
2646 * If is_source_query is non-zero, each source is checked to see if
2647 * it was recorded for a Group-Source query, and will be omitted if
2648 * it is not both in-mode and recorded.
2649 *
2650 * If use_block_allow is non-zero, state change reports for initial join
2651 * and final leave, on an inclusive mode group with a source list, will be
2652 * rewritten to use the ALLOW_NEW and BLOCK_OLD record types, respectively.
2653 *
2654 * The function will attempt to allocate leading space in the packet
2655 * for the IPv6+ICMP headers to be prepended without fragmenting the chain.
2656 *
2657 * If successful the size of all data appended to the queue is returned,
2658 * otherwise an error code less than zero is returned, or zero if
2659 * no record(s) were appended.
2660 */
2661static int
2662mld_v2_enqueue_group_record(struct ifqueue *ifq, struct in6_multi *inm,
2663 const int is_state_change, const int is_group_query,
2664 const int is_source_query, const int use_block_allow)
2665{
2666 struct mldv2_record mr;
2667 struct mldv2_record *pmr;
2668 struct ifnet *ifp;
2669 struct ip6_msource *ims, *nims;
2670 struct mbuf *m0, *m, *md;
2671 int error, is_filter_list_change;
2672 int minrec0len, m0srcs, msrcs, nbytes, off;
2673 int record_has_sources;
2674 int now;
2675 int type;
2676 uint8_t mode;
2677
2678 IN6M_LOCK_ASSERT_HELD(inm);
2679 MLI_LOCK_ASSERT_HELD(inm->in6m_mli);
2680
2681 error = 0;
2682 ifp = inm->in6m_ifp;
2683 is_filter_list_change = 0;
2684 m = NULL;
2685 m0 = NULL;
2686 m0srcs = 0;
2687 msrcs = 0;
2688 nbytes = 0;
2689 nims = NULL;
2690 record_has_sources = 1;
2691 pmr = NULL;
2692 type = MLD_DO_NOTHING;
2693 mode = inm->in6m_st[1].iss_fmode;
2694
2695 /*
2696 * If we did not transition out of ASM mode during t0->t1,
2697 * and there are no source nodes to process, we can skip
2698 * the generation of source records.
2699 */
2700 if (inm->in6m_st[0].iss_asm > 0 && inm->in6m_st[1].iss_asm > 0 &&
2701 inm->in6m_nsrc == 0)
2702 record_has_sources = 0;
2703
2704 if (is_state_change) {
2705 /*
2706 * Queue a state change record.
2707 * If the mode did not change, and there are non-ASM
2708 * listeners or source filters present,
2709 * we potentially need to issue two records for the group.
2710 * If there are ASM listeners, and there was no filter
2711 * mode transition of any kind, do nothing.
2712 *
2713 * If we are transitioning to MCAST_UNDEFINED, we need
2714 * not send any sources. A transition to/from this state is
2715 * considered inclusive with some special treatment.
2716 *
2717 * If we are rewriting initial joins/leaves to use
2718 * ALLOW/BLOCK, and the group's membership is inclusive,
2719 * we need to send sources in all cases.
2720 */
2721 if (mode != inm->in6m_st[0].iss_fmode) {
2722 if (mode == MCAST_EXCLUDE) {
2723 MLD_PRINTF(("%s: change to EXCLUDE\n",
2724 __func__));
2725 type = MLD_CHANGE_TO_EXCLUDE_MODE;
2726 } else {
2727 MLD_PRINTF(("%s: change to INCLUDE\n",
2728 __func__));
2729 if (use_block_allow) {
2730 /*
2731 * XXX
2732 * Here we're interested in state
2733 * edges either direction between
2734 * MCAST_UNDEFINED and MCAST_INCLUDE.
2735 * Perhaps we should just check
2736 * the group state, rather than
2737 * the filter mode.
2738 */
2739 if (mode == MCAST_UNDEFINED) {
2740 type = MLD_BLOCK_OLD_SOURCES;
2741 } else {
2742 type = MLD_ALLOW_NEW_SOURCES;
2743 }
2744 } else {
2745 type = MLD_CHANGE_TO_INCLUDE_MODE;
2746 if (mode == MCAST_UNDEFINED)
2747 record_has_sources = 0;
2748 }
2749 }
2750 } else {
2751 if (record_has_sources) {
2752 is_filter_list_change = 1;
2753 } else {
2754 type = MLD_DO_NOTHING;
2755 }
2756 }
2757 } else {
2758 /*
2759 * Queue a current state record.
2760 */
2761 if (mode == MCAST_EXCLUDE) {
2762 type = MLD_MODE_IS_EXCLUDE;
2763 } else if (mode == MCAST_INCLUDE) {
2764 type = MLD_MODE_IS_INCLUDE;
2765 VERIFY(inm->in6m_st[1].iss_asm == 0);
2766 }
2767 }
2768
2769 /*
2770 * Generate the filter list changes using a separate function.
2771 */
2772 if (is_filter_list_change)
2773 return (mld_v2_enqueue_filter_change(ifq, inm));
2774
2775 if (type == MLD_DO_NOTHING) {
2776 MLD_PRINTF(("%s: nothing to do for %s/%s\n",
2777 __func__, ip6_sprintf(&inm->in6m_addr),
2778 if_name(inm->in6m_ifp)));
2779 return (0);
2780 }
2781
2782 /*
2783 * If any sources are present, we must be able to fit at least
2784 * one in the trailing space of the tail packet's mbuf,
2785 * ideally more.
2786 */
2787 minrec0len = sizeof(struct mldv2_record);
2788 if (record_has_sources)
2789 minrec0len += sizeof(struct in6_addr);
2790 MLD_PRINTF(("%s: queueing %s for %s/%s\n", __func__,
2791 mld_rec_type_to_str(type),
2792 ip6_sprintf(&inm->in6m_addr),
2793 if_name(inm->in6m_ifp)));
2794
2795 /*
2796 * Check if we have a packet in the tail of the queue for this
2797 * group into which the first group record for this group will fit.
2798 * Otherwise allocate a new packet.
2799 * Always allocate leading space for IP6+RA+ICMPV6+REPORT.
2800 * Note: Group records for G/GSR query responses MUST be sent
2801 * in their own packet.
2802 */
2803 m0 = ifq->ifq_tail;
2804 if (!is_group_query &&
2805 m0 != NULL &&
2806 (m0->m_pkthdr.vt_nrecs + 1 <= MLD_V2_REPORT_MAXRECS) &&
2807 (m0->m_pkthdr.len + minrec0len) <
2808 (ifp->if_mtu - MLD_MTUSPACE)) {
2809 m0srcs = (ifp->if_mtu - m0->m_pkthdr.len -
2810 sizeof(struct mldv2_record)) /
2811 sizeof(struct in6_addr);
2812 m = m0;
2813 MLD_PRINTF(("%s: use existing packet\n", __func__));
2814 } else {
2815 if (IF_QFULL(ifq)) {
2816 MLD_PRINTF(("%s: outbound queue full\n", __func__));
2817 return (-ENOMEM);
2818 }
2819 m = NULL;
2820 m0srcs = (ifp->if_mtu - MLD_MTUSPACE -
2821 sizeof(struct mldv2_record)) / sizeof(struct in6_addr);
2822 if (!is_state_change && !is_group_query)
2823 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2824 if (m == NULL)
2825 m = m_gethdr(M_DONTWAIT, MT_DATA);
2826 if (m == NULL)
2827 return (-ENOMEM);
2828
2829 mld_save_context(m, ifp);
2830
2831 MLD_PRINTF(("%s: allocated first packet\n", __func__));
2832 }
2833
2834 /*
2835 * Append group record.
2836 * If we have sources, we don't know how many yet.
2837 */
2838 mr.mr_type = type;
2839 mr.mr_datalen = 0;
2840 mr.mr_numsrc = 0;
2841 mr.mr_addr = inm->in6m_addr;
2842 in6_clearscope(&mr.mr_addr);
2843 if (!m_append(m, sizeof(struct mldv2_record), (void *)&mr)) {
2844 if (m != m0)
2845 m_freem(m);
2846 MLD_PRINTF(("%s: m_append() failed.\n", __func__));
2847 return (-ENOMEM);
2848 }
2849 nbytes += sizeof(struct mldv2_record);
2850
2851 /*
2852 * Append as many sources as will fit in the first packet.
2853 * If we are appending to a new packet, the chain allocation
2854 * may potentially use clusters; use m_getptr() in this case.
2855 * If we are appending to an existing packet, we need to obtain
2856 * a pointer to the group record after m_append(), in case a new
2857 * mbuf was allocated.
2858 *
2859 * Only append sources which are in-mode at t1. If we are
2860 * transitioning to MCAST_UNDEFINED state on the group, and
2861 * use_block_allow is zero, do not include source entries.
2862 * Otherwise, we need to include this source in the report.
2863 *
2864 * Only report recorded sources in our filter set when responding
2865 * to a group-source query.
2866 */
2867 if (record_has_sources) {
2868 if (m == m0) {
2869 md = m_last(m);
2870 pmr = (struct mldv2_record *)(mtod(md, uint8_t *) +
2871 md->m_len - nbytes);
2872 } else {
2873 md = m_getptr(m, 0, &off);
2874 pmr = (struct mldv2_record *)(mtod(md, uint8_t *) +
2875 off);
2876 }
2877 msrcs = 0;
2878 RB_FOREACH_SAFE(ims, ip6_msource_tree, &inm->in6m_srcs,
2879 nims) {
2880 MLD_PRINTF(("%s: visit node %s\n", __func__,
2881 ip6_sprintf(&ims->im6s_addr)));
2882 now = im6s_get_mode(inm, ims, 1);
2883 MLD_PRINTF(("%s: node is %d\n", __func__, now));
2884 if ((now != mode) ||
2885 (now == mode &&
2886 (!use_block_allow && mode == MCAST_UNDEFINED))) {
2887 MLD_PRINTF(("%s: skip node\n", __func__));
2888 continue;
2889 }
2890 if (is_source_query && ims->im6s_stp == 0) {
2891 MLD_PRINTF(("%s: skip unrecorded node\n",
2892 __func__));
2893 continue;
2894 }
2895 MLD_PRINTF(("%s: append node\n", __func__));
2896 if (!m_append(m, sizeof(struct in6_addr),
2897 (void *)&ims->im6s_addr)) {
2898 if (m != m0)
2899 m_freem(m);
2900 MLD_PRINTF(("%s: m_append() failed.\n",
2901 __func__));
2902 return (-ENOMEM);
2903 }
2904 nbytes += sizeof(struct in6_addr);
2905 ++msrcs;
2906 if (msrcs == m0srcs)
2907 break;
2908 }
2909 MLD_PRINTF(("%s: msrcs is %d this packet\n", __func__,
2910 msrcs));
2911 pmr->mr_numsrc = htons(msrcs);
2912 nbytes += (msrcs * sizeof(struct in6_addr));
2913 }
2914
2915 if (is_source_query && msrcs == 0) {
2916 MLD_PRINTF(("%s: no recorded sources to report\n", __func__));
2917 if (m != m0)
2918 m_freem(m);
2919 return (0);
2920 }
2921
2922 /*
2923 * We are good to go with first packet.
2924 */
2925 if (m != m0) {
2926 MLD_PRINTF(("%s: enqueueing first packet\n", __func__));
2927 m->m_pkthdr.vt_nrecs = 1;
2928 IF_ENQUEUE(ifq, m);
2929 } else {
2930 m->m_pkthdr.vt_nrecs++;
2931 }
2932 /*
2933 * No further work needed if no source list in packet(s).
2934 */
2935 if (!record_has_sources)
2936 return (nbytes);
2937
2938 /*
2939 * Whilst sources remain to be announced, we need to allocate
2940 * a new packet and fill out as many sources as will fit.
2941 * Always try for a cluster first.
2942 */
2943 while (nims != NULL) {
2944 if (IF_QFULL(ifq)) {
2945 MLD_PRINTF(("%s: outbound queue full\n", __func__));
2946 return (-ENOMEM);
2947 }
2948 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2949 if (m == NULL)
2950 m = m_gethdr(M_DONTWAIT, MT_DATA);
2951 if (m == NULL)
2952 return (-ENOMEM);
2953 mld_save_context(m, ifp);
2954 md = m_getptr(m, 0, &off);
2955 pmr = (struct mldv2_record *)(mtod(md, uint8_t *) + off);
2956 MLD_PRINTF(("%s: allocated next packet\n", __func__));
2957
2958 if (!m_append(m, sizeof(struct mldv2_record), (void *)&mr)) {
2959 if (m != m0)
2960 m_freem(m);
2961 MLD_PRINTF(("%s: m_append() failed.\n", __func__));
2962 return (-ENOMEM);
2963 }
2964 m->m_pkthdr.vt_nrecs = 1;
2965 nbytes += sizeof(struct mldv2_record);
2966
2967 m0srcs = (ifp->if_mtu - MLD_MTUSPACE -
2968 sizeof(struct mldv2_record)) / sizeof(struct in6_addr);
2969
2970 msrcs = 0;
2971 RB_FOREACH_FROM(ims, ip6_msource_tree, nims) {
2972 MLD_PRINTF(("%s: visit node %s\n",
2973 __func__, ip6_sprintf(&ims->im6s_addr)));
2974 now = im6s_get_mode(inm, ims, 1);
2975 if ((now != mode) ||
2976 (now == mode &&
2977 (!use_block_allow && mode == MCAST_UNDEFINED))) {
2978 MLD_PRINTF(("%s: skip node\n", __func__));
2979 continue;
2980 }
2981 if (is_source_query && ims->im6s_stp == 0) {
2982 MLD_PRINTF(("%s: skip unrecorded node\n",
2983 __func__));
2984 continue;
2985 }
2986 MLD_PRINTF(("%s: append node\n", __func__));
2987 if (!m_append(m, sizeof(struct in6_addr),
2988 (void *)&ims->im6s_addr)) {
2989 if (m != m0)
2990 m_freem(m);
2991 MLD_PRINTF(("%s: m_append() failed.\n",
2992 __func__));
2993 return (-ENOMEM);
2994 }
2995 ++msrcs;
2996 if (msrcs == m0srcs)
2997 break;
2998 }
2999 pmr->mr_numsrc = htons(msrcs);
3000 nbytes += (msrcs * sizeof(struct in6_addr));
3001
3002 MLD_PRINTF(("%s: enqueueing next packet\n", __func__));
3003 IF_ENQUEUE(ifq, m);
3004 }
3005
3006 return (nbytes);
3007}
3008
3009/*
3010 * Type used to mark record pass completion.
3011 * We exploit the fact we can cast to this easily from the
3012 * current filter modes on each ip_msource node.
3013 */
3014typedef enum {
3015 REC_NONE = 0x00, /* MCAST_UNDEFINED */
3016 REC_ALLOW = 0x01, /* MCAST_INCLUDE */
3017 REC_BLOCK = 0x02, /* MCAST_EXCLUDE */
3018 REC_FULL = REC_ALLOW | REC_BLOCK
3019} rectype_t;
3020
3021/*
3022 * Enqueue an MLDv2 filter list change to the given output queue.
3023 *
3024 * Source list filter state is held in an RB-tree. When the filter list
3025 * for a group is changed without changing its mode, we need to compute
3026 * the deltas between T0 and T1 for each source in the filter set,
3027 * and enqueue the appropriate ALLOW_NEW/BLOCK_OLD records.
3028 *
3029 * As we may potentially queue two record types, and the entire R-B tree
3030 * needs to be walked at once, we break this out into its own function
3031 * so we can generate a tightly packed queue of packets.
3032 *
3033 * XXX This could be written to only use one tree walk, although that makes
3034 * serializing into the mbuf chains a bit harder. For now we do two walks
3035 * which makes things easier on us, and it may or may not be harder on
3036 * the L2 cache.
3037 *
3038 * If successful the size of all data appended to the queue is returned,
3039 * otherwise an error code less than zero is returned, or zero if
3040 * no record(s) were appended.
3041 */
3042static int
3043mld_v2_enqueue_filter_change(struct ifqueue *ifq, struct in6_multi *inm)
3044{
3045 static const int MINRECLEN =
3046 sizeof(struct mldv2_record) + sizeof(struct in6_addr);
3047 struct ifnet *ifp;
3048 struct mldv2_record mr;
3049 struct mldv2_record *pmr;
3050 struct ip6_msource *ims, *nims;
3051 struct mbuf *m, *m0, *md;
3052 int m0srcs, nbytes, npbytes, off, rsrcs, schanged;
3053 int nallow, nblock;
3054 uint8_t mode, now, then;
3055 rectype_t crt, drt, nrt;
3056
3057 IN6M_LOCK_ASSERT_HELD(inm);
3058
3059 if (inm->in6m_nsrc == 0 ||
3060 (inm->in6m_st[0].iss_asm > 0 && inm->in6m_st[1].iss_asm > 0))
3061 return (0);
3062
3063 ifp = inm->in6m_ifp; /* interface */
3064 mode = inm->in6m_st[1].iss_fmode; /* filter mode at t1 */
3065 crt = REC_NONE; /* current group record type */
3066 drt = REC_NONE; /* mask of completed group record types */
3067 nrt = REC_NONE; /* record type for current node */
3068 m0srcs = 0; /* # source which will fit in current mbuf chain */
3069 npbytes = 0; /* # of bytes appended this packet */
3070 nbytes = 0; /* # of bytes appended to group's state-change queue */
3071 rsrcs = 0; /* # sources encoded in current record */
3072 schanged = 0; /* # nodes encoded in overall filter change */
3073 nallow = 0; /* # of source entries in ALLOW_NEW */
3074 nblock = 0; /* # of source entries in BLOCK_OLD */
3075 nims = NULL; /* next tree node pointer */
3076
3077 /*
3078 * For each possible filter record mode.
3079 * The first kind of source we encounter tells us which
3080 * is the first kind of record we start appending.
3081 * If a node transitioned to UNDEFINED at t1, its mode is treated
3082 * as the inverse of the group's filter mode.
3083 */
3084 while (drt != REC_FULL) {
3085 do {
3086 m0 = ifq->ifq_tail;
3087 if (m0 != NULL &&
3088 (m0->m_pkthdr.vt_nrecs + 1 <=
3089 MLD_V2_REPORT_MAXRECS) &&
3090 (m0->m_pkthdr.len + MINRECLEN) <
3091 (ifp->if_mtu - MLD_MTUSPACE)) {
3092 m = m0;
3093 m0srcs = (ifp->if_mtu - m0->m_pkthdr.len -
3094 sizeof(struct mldv2_record)) /
3095 sizeof(struct in6_addr);
3096 MLD_PRINTF(("%s: use previous packet\n",
3097 __func__));
3098 } else {
3099 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
3100 if (m == NULL)
3101 m = m_gethdr(M_DONTWAIT, MT_DATA);
3102 if (m == NULL) {
3103 MLD_PRINTF(("%s: m_get*() failed\n",
3104 __func__));
3105 return (-ENOMEM);
3106 }
3107 m->m_pkthdr.vt_nrecs = 0;
3108 mld_save_context(m, ifp);
3109 m0srcs = (ifp->if_mtu - MLD_MTUSPACE -
3110 sizeof(struct mldv2_record)) /
3111 sizeof(struct in6_addr);
3112 npbytes = 0;
3113 MLD_PRINTF(("%s: allocated new packet\n",
3114 __func__));
3115 }
3116 /*
3117 * Append the MLD group record header to the
3118 * current packet's data area.
3119 * Recalculate pointer to free space for next
3120 * group record, in case m_append() allocated
3121 * a new mbuf or cluster.
3122 */
3123 memset(&mr, 0, sizeof(mr));
3124 mr.mr_addr = inm->in6m_addr;
3125 in6_clearscope(&mr.mr_addr);
3126 if (!m_append(m, sizeof(mr), (void *)&mr)) {
3127 if (m != m0)
3128 m_freem(m);
3129 MLD_PRINTF(("%s: m_append() failed\n",
3130 __func__));
3131 return (-ENOMEM);
3132 }
3133 npbytes += sizeof(struct mldv2_record);
3134 if (m != m0) {
3135 /* new packet; offset in chain */
3136 md = m_getptr(m, npbytes -
3137 sizeof(struct mldv2_record), &off);
3138 pmr = (struct mldv2_record *)(mtod(md,
3139 uint8_t *) + off);
3140 } else {
3141 /* current packet; offset from last append */
3142 md = m_last(m);
3143 pmr = (struct mldv2_record *)(mtod(md,
3144 uint8_t *) + md->m_len -
3145 sizeof(struct mldv2_record));
3146 }
3147 /*
3148 * Begin walking the tree for this record type
3149 * pass, or continue from where we left off
3150 * previously if we had to allocate a new packet.
3151 * Only report deltas in-mode at t1.
3152 * We need not report included sources as allowed
3153 * if we are in inclusive mode on the group,
3154 * however the converse is not true.
3155 */
3156 rsrcs = 0;
3157 if (nims == NULL) {
3158 nims = RB_MIN(ip6_msource_tree,
3159 &inm->in6m_srcs);
3160 }
3161 RB_FOREACH_FROM(ims, ip6_msource_tree, nims) {
3162 MLD_PRINTF(("%s: visit node %s\n", __func__,
3163 ip6_sprintf(&ims->im6s_addr)));
3164 now = im6s_get_mode(inm, ims, 1);
3165 then = im6s_get_mode(inm, ims, 0);
3166 MLD_PRINTF(("%s: mode: t0 %d, t1 %d\n",
3167 __func__, then, now));
3168 if (now == then) {
3169 MLD_PRINTF(("%s: skip unchanged\n",
3170 __func__));
3171 continue;
3172 }
3173 if (mode == MCAST_EXCLUDE &&
3174 now == MCAST_INCLUDE) {
3175 MLD_PRINTF(("%s: skip IN src on EX "
3176 "group\n", __func__));
3177 continue;
3178 }
3179 nrt = (rectype_t)now;
3180 if (nrt == REC_NONE)
3181 nrt = (rectype_t)(~mode & REC_FULL);
3182 if (schanged++ == 0) {
3183 crt = nrt;
3184 } else if (crt != nrt)
3185 continue;
3186 if (!m_append(m, sizeof(struct in6_addr),
3187 (void *)&ims->im6s_addr)) {
3188 if (m != m0)
3189 m_freem(m);
3190 MLD_PRINTF(("%s: m_append() failed\n",
3191 __func__));
3192 return (-ENOMEM);
3193 }
3194 nallow += !!(crt == REC_ALLOW);
3195 nblock += !!(crt == REC_BLOCK);
3196 if (++rsrcs == m0srcs)
3197 break;
3198 }
3199 /*
3200 * If we did not append any tree nodes on this
3201 * pass, back out of allocations.
3202 */
3203 if (rsrcs == 0) {
3204 npbytes -= sizeof(struct mldv2_record);
3205 if (m != m0) {
3206 MLD_PRINTF(("%s: m_free(m)\n",
3207 __func__));
3208 m_freem(m);
3209 } else {
3210 MLD_PRINTF(("%s: m_adj(m, -mr)\n",
3211 __func__));
3212 m_adj(m, -((int)sizeof(
3213 struct mldv2_record)));
3214 }
3215 continue;
3216 }
3217 npbytes += (rsrcs * sizeof(struct in6_addr));
3218 if (crt == REC_ALLOW)
3219 pmr->mr_type = MLD_ALLOW_NEW_SOURCES;
3220 else if (crt == REC_BLOCK)
3221 pmr->mr_type = MLD_BLOCK_OLD_SOURCES;
3222 pmr->mr_numsrc = htons(rsrcs);
3223 /*
3224 * Count the new group record, and enqueue this
3225 * packet if it wasn't already queued.
3226 */
3227 m->m_pkthdr.vt_nrecs++;
3228 if (m != m0)
3229 IF_ENQUEUE(ifq, m);
3230 nbytes += npbytes;
3231 } while (nims != NULL);
3232 drt |= crt;
3233 crt = (~crt & REC_FULL);
3234 }
3235
3236 MLD_PRINTF(("%s: queued %d ALLOW_NEW, %d BLOCK_OLD\n", __func__,
3237 nallow, nblock));
3238
3239 return (nbytes);
3240}
3241
3242static int
3243mld_v2_merge_state_changes(struct in6_multi *inm, struct ifqueue *ifscq)
3244{
3245 struct ifqueue *gq;
3246 struct mbuf *m; /* pending state-change */
3247 struct mbuf *m0; /* copy of pending state-change */
3248 struct mbuf *mt; /* last state-change in packet */
3249 struct mbuf *n;
3250 int docopy, domerge;
3251 u_int recslen;
3252
3253 IN6M_LOCK_ASSERT_HELD(inm);
3254
3255 docopy = 0;
3256 domerge = 0;
3257 recslen = 0;
3258
3259 /*
3260 * If there are further pending retransmissions, make a writable
3261 * copy of each queued state-change message before merging.
3262 */
3263 if (inm->in6m_scrv > 0)
3264 docopy = 1;
3265
3266 gq = &inm->in6m_scq;
3267#ifdef MLD_DEBUG
3268 if (gq->ifq_head == NULL) {
3269 MLD_PRINTF(("%s: WARNING: queue for inm 0x%llx is empty\n",
3270 __func__, (uint64_t)VM_KERNEL_ADDRPERM(inm)));
3271 }
3272#endif
3273
3274 /*
3275 * Use IF_REMQUEUE() instead of IF_DEQUEUE() below, since the
3276 * packet might not always be at the head of the ifqueue.
3277 */
3278 m = gq->ifq_head;
3279 while (m != NULL) {
3280 /*
3281 * Only merge the report into the current packet if
3282 * there is sufficient space to do so; an MLDv2 report
3283 * packet may only contain 65,535 group records.
3284 * Always use a simple mbuf chain concatentation to do this,
3285 * as large state changes for single groups may have
3286 * allocated clusters.
3287 */
3288 domerge = 0;
3289 mt = ifscq->ifq_tail;
3290 if (mt != NULL) {
3291 recslen = m_length(m);
3292
3293 if ((mt->m_pkthdr.vt_nrecs +
3294 m->m_pkthdr.vt_nrecs <=
3295 MLD_V2_REPORT_MAXRECS) &&
3296 (mt->m_pkthdr.len + recslen <=
3297 (inm->in6m_ifp->if_mtu - MLD_MTUSPACE)))
3298 domerge = 1;
3299 }
3300
3301 if (!domerge && IF_QFULL(gq)) {
3302 MLD_PRINTF(("%s: outbound queue full, skipping whole "
3303 "packet 0x%llx\n", __func__,
3304 (uint64_t)VM_KERNEL_ADDRPERM(m)));
3305 n = m->m_nextpkt;
3306 if (!docopy) {
3307 IF_REMQUEUE(gq, m);
3308 m_freem(m);
3309 }
3310 m = n;
3311 continue;
3312 }
3313
3314 if (!docopy) {
3315 MLD_PRINTF(("%s: dequeueing 0x%llx\n", __func__,
3316 (uint64_t)VM_KERNEL_ADDRPERM(m)));
3317 n = m->m_nextpkt;
3318 IF_REMQUEUE(gq, m);
3319 m0 = m;
3320 m = n;
3321 } else {
3322 MLD_PRINTF(("%s: copying 0x%llx\n", __func__,
3323 (uint64_t)VM_KERNEL_ADDRPERM(m)));
3324 m0 = m_dup(m, M_NOWAIT);
3325 if (m0 == NULL)
3326 return (ENOMEM);
3327 m0->m_nextpkt = NULL;
3328 m = m->m_nextpkt;
3329 }
3330
3331 if (!domerge) {
3332 MLD_PRINTF(("%s: queueing 0x%llx to ifscq 0x%llx)\n",
3333 __func__, (uint64_t)VM_KERNEL_ADDRPERM(m0),
3334 (uint64_t)VM_KERNEL_ADDRPERM(ifscq)));
3335 IF_ENQUEUE(ifscq, m0);
3336 } else {
3337 struct mbuf *mtl; /* last mbuf of packet mt */
3338
3339 MLD_PRINTF(("%s: merging 0x%llx with ifscq tail "
3340 "0x%llx)\n", __func__,
3341 (uint64_t)VM_KERNEL_ADDRPERM(m0),
3342 (uint64_t)VM_KERNEL_ADDRPERM(mt)));
3343
3344 mtl = m_last(mt);
3345 m0->m_flags &= ~M_PKTHDR;
3346 mt->m_pkthdr.len += recslen;
3347 mt->m_pkthdr.vt_nrecs +=
3348 m0->m_pkthdr.vt_nrecs;
3349
3350 mtl->m_next = m0;
3351 }
3352 }
3353
3354 return (0);
3355}
3356
3357/*
3358 * Respond to a pending MLDv2 General Query.
3359 */
3360static uint32_t
3361mld_v2_dispatch_general_query(struct mld_ifinfo *mli)
3362{
3363 struct ifnet *ifp;
3364 struct in6_multi *inm;
3365 struct in6_multistep step;
3366 int retval;
3367
3368 MLI_LOCK_ASSERT_HELD(mli);
3369
3370 VERIFY(mli->mli_version == MLD_VERSION_2);
3371
3372 ifp = mli->mli_ifp;
3373 MLI_UNLOCK(mli);
3374
3375 in6_multihead_lock_shared();
3376 IN6_FIRST_MULTI(step, inm);
3377 while (inm != NULL) {
3378 IN6M_LOCK(inm);
3379 if (inm->in6m_ifp != ifp)
3380 goto next;
3381
3382 switch (inm->in6m_state) {
3383 case MLD_NOT_MEMBER:
3384 case MLD_SILENT_MEMBER:
3385 break;
3386 case MLD_REPORTING_MEMBER:
3387 case MLD_IDLE_MEMBER:
3388 case MLD_LAZY_MEMBER:
3389 case MLD_SLEEPING_MEMBER:
3390 case MLD_AWAKENING_MEMBER:
3391 inm->in6m_state = MLD_REPORTING_MEMBER;
3392 MLI_LOCK(mli);
3393 retval = mld_v2_enqueue_group_record(&mli->mli_gq,
3394 inm, 0, 0, 0, 0);
3395 MLI_UNLOCK(mli);
3396 MLD_PRINTF(("%s: enqueue record = %d\n",
3397 __func__, retval));
3398 break;
3399 case MLD_G_QUERY_PENDING_MEMBER:
3400 case MLD_SG_QUERY_PENDING_MEMBER:
3401 case MLD_LEAVING_MEMBER:
3402 break;
3403 }
3404next:
3405 IN6M_UNLOCK(inm);
3406 IN6_NEXT_MULTI(step, inm);
3407 }
3408 in6_multihead_lock_done();
3409
3410 MLI_LOCK(mli);
3411 mld_dispatch_queue(mli, &mli->mli_gq, MLD_MAX_RESPONSE_BURST);
3412 MLI_LOCK_ASSERT_HELD(mli);
3413
3414 /*
3415 * Slew transmission of bursts over 1 second intervals.
3416 */
3417 if (mli->mli_gq.ifq_head != NULL) {
3418 mli->mli_v2_timer = 1 + MLD_RANDOM_DELAY(
3419 MLD_RESPONSE_BURST_INTERVAL);
3420 }
3421
3422 return (mli->mli_v2_timer);
3423}
3424
3425/*
3426 * Transmit the next pending message in the output queue.
3427 *
3428 * Must not be called with in6m_lockm or mli_lock held.
3429 */
3430static void
3431mld_dispatch_packet(struct mbuf *m)
3432{
3433 struct ip6_moptions *im6o;
3434 struct ifnet *ifp;
3435 struct ifnet *oifp = NULL;
3436 struct mbuf *m0;
3437 struct mbuf *md;
3438 struct ip6_hdr *ip6;
3439 struct mld_hdr *mld;
3440 int error;
3441 int off;
3442 int type;
3443
3444 MLD_PRINTF(("%s: transmit 0x%llx\n", __func__,
3445 (uint64_t)VM_KERNEL_ADDRPERM(m)));
3446
3447 /*
3448 * Check if the ifnet is still attached.
3449 */
3450 ifp = mld_restore_context(m);
3451 if (ifp == NULL || !ifnet_is_attached(ifp, 0)) {
3452 MLD_PRINTF(("%s: dropped 0x%llx as ifindex %u went away.\n",
3453 __func__, (uint64_t)VM_KERNEL_ADDRPERM(m),
3454 (u_int)if_index));
3455 m_freem(m);
3456 ip6stat.ip6s_noroute++;
3457 return;
3458 }
3459
3460 im6o = ip6_allocmoptions(M_WAITOK);
3461 if (im6o == NULL) {
3462 m_freem(m);
3463 return;
3464 }
3465
3466 im6o->im6o_multicast_hlim = 1;
3467 im6o->im6o_multicast_loop = 0;
3468 im6o->im6o_multicast_ifp = ifp;
3469
3470 if (m->m_flags & M_MLDV1) {
3471 m0 = m;
3472 } else {
3473 m0 = mld_v2_encap_report(ifp, m);
3474 if (m0 == NULL) {
3475 MLD_PRINTF(("%s: dropped 0x%llx\n", __func__,
3476 (uint64_t)VM_KERNEL_ADDRPERM(m)));
3477 /*
3478 * mld_v2_encap_report() has already freed our mbuf.
3479 */
3480 IM6O_REMREF(im6o);
3481 ip6stat.ip6s_odropped++;
3482 return;
3483 }
3484 }
3485
3486 mld_scrub_context(m0);
3487 m->m_flags &= ~(M_PROTOFLAGS);
3488 m0->m_pkthdr.rcvif = lo_ifp;
3489
3490 ip6 = mtod(m0, struct ip6_hdr *);
3491 (void) in6_setscope(&ip6->ip6_dst, ifp, NULL);
3492
3493 /*
3494 * Retrieve the ICMPv6 type before handoff to ip6_output(),
3495 * so we can bump the stats.
3496 */
3497 md = m_getptr(m0, sizeof(struct ip6_hdr), &off);
3498 mld = (struct mld_hdr *)(mtod(md, uint8_t *) + off);
3499 type = mld->mld_type;
3500
3501 if (ifp->if_eflags & IFEF_TXSTART) {
3502 /*
3503 * Use control service class if the outgoing
3504 * interface supports transmit-start model.
3505 */
3506 (void) m_set_service_class(m0, MBUF_SC_CTL);
3507 }
3508
3509 error = ip6_output(m0, &mld_po, NULL, IPV6_UNSPECSRC, im6o,
3510 &oifp, NULL);
3511
3512 IM6O_REMREF(im6o);
3513
3514 if (error) {
3515 MLD_PRINTF(("%s: ip6_output(0x%llx) = %d\n", __func__,
3516 (uint64_t)VM_KERNEL_ADDRPERM(m0), error));
3517 if (oifp != NULL)
3518 ifnet_release(oifp);
3519 return;
3520 }
3521
3522 icmp6stat.icp6s_outhist[type]++;
3523 if (oifp != NULL) {
3524 icmp6_ifstat_inc(oifp, ifs6_out_msg);
3525 switch (type) {
3526 case MLD_LISTENER_REPORT:
3527 case MLDV2_LISTENER_REPORT:
3528 icmp6_ifstat_inc(oifp, ifs6_out_mldreport);
3529 break;
3530 case MLD_LISTENER_DONE:
3531 icmp6_ifstat_inc(oifp, ifs6_out_mlddone);
3532 break;
3533 }
3534 ifnet_release(oifp);
3535 }
3536}
3537
3538/*
3539 * Encapsulate an MLDv2 report.
3540 *
3541 * KAME IPv6 requires that hop-by-hop options be passed separately,
3542 * and that the IPv6 header be prepended in a separate mbuf.
3543 *
3544 * Returns a pointer to the new mbuf chain head, or NULL if the
3545 * allocation failed.
3546 */
3547static struct mbuf *
3548mld_v2_encap_report(struct ifnet *ifp, struct mbuf *m)
3549{
3550 struct mbuf *mh;
3551 struct mldv2_report *mld;
3552 struct ip6_hdr *ip6;
3553 struct in6_ifaddr *ia;
3554 int mldreclen;
3555
3556 VERIFY(m->m_flags & M_PKTHDR);
3557
3558 /*
3559 * RFC3590: OK to send as :: or tentative during DAD.
3560 */
3561 ia = in6ifa_ifpforlinklocal(ifp, IN6_IFF_NOTREADY|IN6_IFF_ANYCAST);
3562 if (ia == NULL)
3563 MLD_PRINTF(("%s: warning: ia is NULL\n", __func__));
3564
3565 MGETHDR(mh, M_DONTWAIT, MT_HEADER);
3566 if (mh == NULL) {
3567 if (ia != NULL)
3568 IFA_REMREF(&ia->ia_ifa);
3569 m_freem(m);
3570 return (NULL);
3571 }
3572 MH_ALIGN(mh, sizeof(struct ip6_hdr) + sizeof(struct mldv2_report));
3573
3574 mldreclen = m_length(m);
3575 MLD_PRINTF(("%s: mldreclen is %d\n", __func__, mldreclen));
3576
3577 mh->m_len = sizeof(struct ip6_hdr) + sizeof(struct mldv2_report);
3578 mh->m_pkthdr.len = sizeof(struct ip6_hdr) +
3579 sizeof(struct mldv2_report) + mldreclen;
3580
3581 ip6 = mtod(mh, struct ip6_hdr *);
3582 ip6->ip6_flow = 0;
3583 ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
3584 ip6->ip6_vfc |= IPV6_VERSION;
3585 ip6->ip6_nxt = IPPROTO_ICMPV6;
3586 if (ia != NULL)
3587 IFA_LOCK(&ia->ia_ifa);
3588 ip6->ip6_src = ia ? ia->ia_addr.sin6_addr : in6addr_any;
3589 if (ia != NULL) {
3590 IFA_UNLOCK(&ia->ia_ifa);
3591 IFA_REMREF(&ia->ia_ifa);
3592 ia = NULL;
3593 }
3594 ip6->ip6_dst = in6addr_linklocal_allv2routers;
3595 /* scope ID will be set in netisr */
3596
3597 mld = (struct mldv2_report *)(ip6 + 1);
3598 mld->mld_type = MLDV2_LISTENER_REPORT;
3599 mld->mld_code = 0;
3600 mld->mld_cksum = 0;
3601 mld->mld_v2_reserved = 0;
3602 mld->mld_v2_numrecs = htons(m->m_pkthdr.vt_nrecs);
3603 m->m_pkthdr.vt_nrecs = 0;
3604 m->m_flags &= ~M_PKTHDR;
3605
3606 mh->m_next = m;
3607 mld->mld_cksum = in6_cksum(mh, IPPROTO_ICMPV6,
3608 sizeof(struct ip6_hdr), sizeof(struct mldv2_report) + mldreclen);
3609 return (mh);
3610}
3611
3612#ifdef MLD_DEBUG
3613static const char *
3614mld_rec_type_to_str(const int type)
3615{
3616 switch (type) {
3617 case MLD_CHANGE_TO_EXCLUDE_MODE:
3618 return "TO_EX";
3619 break;
3620 case MLD_CHANGE_TO_INCLUDE_MODE:
3621 return "TO_IN";
3622 break;
3623 case MLD_MODE_IS_EXCLUDE:
3624 return "MODE_EX";
3625 break;
3626 case MLD_MODE_IS_INCLUDE:
3627 return "MODE_IN";
3628 break;
3629 case MLD_ALLOW_NEW_SOURCES:
3630 return "ALLOW_NEW";
3631 break;
3632 case MLD_BLOCK_OLD_SOURCES:
3633 return "BLOCK_OLD";
3634 break;
3635 default:
3636 break;
3637 }
3638 return "unknown";
3639}
3640#endif
3641
3642void
3643mld_init(void)
3644{
3645
3646 MLD_PRINTF(("%s: initializing\n", __func__));
3647
3648 /* Setup lock group and attribute for mld_mtx */
3649 mld_mtx_grp_attr = lck_grp_attr_alloc_init();
3650 mld_mtx_grp = lck_grp_alloc_init("mld_mtx\n", mld_mtx_grp_attr);
3651 mld_mtx_attr = lck_attr_alloc_init();
3652 lck_mtx_init(&mld_mtx, mld_mtx_grp, mld_mtx_attr);
3653
3654 ip6_initpktopts(&mld_po);
3655 mld_po.ip6po_hlim = 1;
3656 mld_po.ip6po_hbh = &mld_ra.hbh;
3657 mld_po.ip6po_prefer_tempaddr = IP6PO_TEMPADDR_NOTPREFER;
3658 mld_po.ip6po_flags = IP6PO_DONTFRAG;
3659 LIST_INIT(&mli_head);
3660
3661 mli_size = sizeof (struct mld_ifinfo);
3662 mli_zone = zinit(mli_size, MLI_ZONE_MAX * mli_size,
3663 0, MLI_ZONE_NAME);
3664 if (mli_zone == NULL) {
3665 panic("%s: failed allocating %s", __func__, MLI_ZONE_NAME);
3666 /* NOTREACHED */
3667 }
3668 zone_change(mli_zone, Z_EXPAND, TRUE);
3669 zone_change(mli_zone, Z_CALLERACCT, FALSE);
3670}