]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Copyright (c) 2000-2015 Apple Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * This file contains Original Code and/or Modifications of Original Code | |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
14 | * | |
15 | * Please obtain a copy of the License at | |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
25 | * | |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ | |
27 | */ | |
28 | /* | |
29 | * Copyright (c) 1988, 1991, 1993 | |
30 | * The Regents of the University of California. All rights reserved. | |
31 | * | |
32 | * Redistribution and use in source and binary forms, with or without | |
33 | * modification, are permitted provided that the following conditions | |
34 | * are met: | |
35 | * 1. Redistributions of source code must retain the above copyright | |
36 | * notice, this list of conditions and the following disclaimer. | |
37 | * 2. Redistributions in binary form must reproduce the above copyright | |
38 | * notice, this list of conditions and the following disclaimer in the | |
39 | * documentation and/or other materials provided with the distribution. | |
40 | * 3. All advertising materials mentioning features or use of this software | |
41 | * must display the following acknowledgement: | |
42 | * This product includes software developed by the University of | |
43 | * California, Berkeley and its contributors. | |
44 | * 4. Neither the name of the University nor the names of its contributors | |
45 | * may be used to endorse or promote products derived from this software | |
46 | * without specific prior written permission. | |
47 | * | |
48 | * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND | |
49 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
50 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |
51 | * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE | |
52 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | |
53 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | |
54 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | |
55 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | |
56 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | |
57 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | |
58 | * SUCH DAMAGE. | |
59 | * | |
60 | * @(#)rtsock.c 8.5 (Berkeley) 11/2/94 | |
61 | */ | |
62 | ||
63 | #include <sys/param.h> | |
64 | #include <sys/systm.h> | |
65 | #include <sys/kauth.h> | |
66 | #include <sys/kernel.h> | |
67 | #include <sys/sysctl.h> | |
68 | #include <sys/proc.h> | |
69 | #include <sys/malloc.h> | |
70 | #include <sys/mbuf.h> | |
71 | #include <sys/socket.h> | |
72 | #include <sys/socketvar.h> | |
73 | #include <sys/domain.h> | |
74 | #include <sys/protosw.h> | |
75 | #include <sys/syslog.h> | |
76 | #include <sys/mcache.h> | |
77 | #include <kern/locks.h> | |
78 | ||
79 | #include <net/if.h> | |
80 | #include <net/route.h> | |
81 | #include <net/dlil.h> | |
82 | #include <net/raw_cb.h> | |
83 | #include <netinet/in.h> | |
84 | #include <netinet/in_var.h> | |
85 | #include <netinet/in_arp.h> | |
86 | #include <netinet6/nd6.h> | |
87 | ||
88 | extern struct rtstat rtstat; | |
89 | extern struct domain routedomain_s; | |
90 | static struct domain *routedomain = NULL; | |
91 | ||
92 | MALLOC_DEFINE(M_RTABLE, "routetbl", "routing tables"); | |
93 | ||
94 | static struct sockaddr route_dst = { 2, PF_ROUTE, { 0, } }; | |
95 | static struct sockaddr route_src = { 2, PF_ROUTE, { 0, } }; | |
96 | static struct sockaddr sa_zero = { sizeof (sa_zero), AF_INET, { 0, } }; | |
97 | ||
98 | struct route_cb { | |
99 | u_int32_t ip_count; /* attached w/ AF_INET */ | |
100 | u_int32_t ip6_count; /* attached w/ AF_INET6 */ | |
101 | u_int32_t any_count; /* total attached */ | |
102 | }; | |
103 | ||
104 | static struct route_cb route_cb; | |
105 | ||
106 | struct walkarg { | |
107 | int w_tmemsize; | |
108 | int w_op, w_arg; | |
109 | caddr_t w_tmem; | |
110 | struct sysctl_req *w_req; | |
111 | }; | |
112 | ||
113 | static void route_dinit(struct domain *); | |
114 | static int rts_abort(struct socket *); | |
115 | static int rts_attach(struct socket *, int, struct proc *); | |
116 | static int rts_bind(struct socket *, struct sockaddr *, struct proc *); | |
117 | static int rts_connect(struct socket *, struct sockaddr *, struct proc *); | |
118 | static int rts_detach(struct socket *); | |
119 | static int rts_disconnect(struct socket *); | |
120 | static int rts_peeraddr(struct socket *, struct sockaddr **); | |
121 | static int rts_send(struct socket *, int, struct mbuf *, struct sockaddr *, | |
122 | struct mbuf *, struct proc *); | |
123 | static int rts_shutdown(struct socket *); | |
124 | static int rts_sockaddr(struct socket *, struct sockaddr **); | |
125 | ||
126 | static int route_output(struct mbuf *, struct socket *); | |
127 | static int rt_setmetrics(u_int32_t, struct rt_metrics *, struct rtentry *); | |
128 | static void rt_getmetrics(struct rtentry *, struct rt_metrics *); | |
129 | static void rt_setif(struct rtentry *, struct sockaddr *, struct sockaddr *, | |
130 | struct sockaddr *, unsigned int); | |
131 | static int rt_xaddrs(caddr_t, caddr_t, struct rt_addrinfo *); | |
132 | static struct mbuf *rt_msg1(int, struct rt_addrinfo *); | |
133 | static int rt_msg2(int, struct rt_addrinfo *, caddr_t, struct walkarg *, | |
134 | kauth_cred_t *); | |
135 | static int sysctl_dumpentry(struct radix_node *rn, void *vw); | |
136 | static int sysctl_dumpentry_ext(struct radix_node *rn, void *vw); | |
137 | static int sysctl_iflist(int af, struct walkarg *w); | |
138 | static int sysctl_iflist2(int af, struct walkarg *w); | |
139 | static int sysctl_rtstat(struct sysctl_req *); | |
140 | static int sysctl_rttrash(struct sysctl_req *); | |
141 | static int sysctl_rtsock SYSCTL_HANDLER_ARGS; | |
142 | ||
143 | SYSCTL_NODE(_net, PF_ROUTE, routetable, CTLFLAG_RD | CTLFLAG_LOCKED, | |
144 | sysctl_rtsock, ""); | |
145 | ||
146 | SYSCTL_NODE(_net, OID_AUTO, route, CTLFLAG_RW|CTLFLAG_LOCKED, 0, "routing"); | |
147 | ||
148 | #define ROUNDUP32(a) \ | |
149 | ((a) > 0 ? (1 + (((a) - 1) | (sizeof (uint32_t) - 1))) : \ | |
150 | sizeof (uint32_t)) | |
151 | ||
152 | #define ADVANCE32(x, n) \ | |
153 | (x += ROUNDUP32((n)->sa_len)) | |
154 | ||
155 | /* | |
156 | * It really doesn't make any sense at all for this code to share much | |
157 | * with raw_usrreq.c, since its functionality is so restricted. XXX | |
158 | */ | |
159 | static int | |
160 | rts_abort(struct socket *so) | |
161 | { | |
162 | return (raw_usrreqs.pru_abort(so)); | |
163 | } | |
164 | ||
165 | /* pru_accept is EOPNOTSUPP */ | |
166 | ||
167 | static int | |
168 | rts_attach(struct socket *so, int proto, struct proc *p) | |
169 | { | |
170 | #pragma unused(p) | |
171 | struct rawcb *rp; | |
172 | int error; | |
173 | ||
174 | VERIFY(so->so_pcb == NULL); | |
175 | ||
176 | MALLOC(rp, struct rawcb *, sizeof (*rp), M_PCB, M_WAITOK | M_ZERO); | |
177 | if (rp == NULL) | |
178 | return (ENOBUFS); | |
179 | ||
180 | so->so_pcb = (caddr_t)rp; | |
181 | /* don't use raw_usrreqs.pru_attach, it checks for SS_PRIV */ | |
182 | error = raw_attach(so, proto); | |
183 | rp = sotorawcb(so); | |
184 | if (error) { | |
185 | FREE(rp, M_PCB); | |
186 | so->so_pcb = NULL; | |
187 | so->so_flags |= SOF_PCBCLEARING; | |
188 | return (error); | |
189 | } | |
190 | ||
191 | switch (rp->rcb_proto.sp_protocol) { | |
192 | case AF_INET: | |
193 | atomic_add_32(&route_cb.ip_count, 1); | |
194 | break; | |
195 | case AF_INET6: | |
196 | atomic_add_32(&route_cb.ip6_count, 1); | |
197 | break; | |
198 | } | |
199 | rp->rcb_faddr = &route_src; | |
200 | atomic_add_32(&route_cb.any_count, 1); | |
201 | /* the socket is already locked when we enter rts_attach */ | |
202 | soisconnected(so); | |
203 | so->so_options |= SO_USELOOPBACK; | |
204 | return (0); | |
205 | } | |
206 | ||
207 | static int | |
208 | rts_bind(struct socket *so, struct sockaddr *nam, struct proc *p) | |
209 | { | |
210 | return (raw_usrreqs.pru_bind(so, nam, p)); /* xxx just EINVAL */ | |
211 | } | |
212 | ||
213 | static int | |
214 | rts_connect(struct socket *so, struct sockaddr *nam, struct proc *p) | |
215 | { | |
216 | return (raw_usrreqs.pru_connect(so, nam, p)); /* XXX just EINVAL */ | |
217 | } | |
218 | ||
219 | /* pru_connect2 is EOPNOTSUPP */ | |
220 | /* pru_control is EOPNOTSUPP */ | |
221 | ||
222 | static int | |
223 | rts_detach(struct socket *so) | |
224 | { | |
225 | struct rawcb *rp = sotorawcb(so); | |
226 | ||
227 | VERIFY(rp != NULL); | |
228 | ||
229 | switch (rp->rcb_proto.sp_protocol) { | |
230 | case AF_INET: | |
231 | atomic_add_32(&route_cb.ip_count, -1); | |
232 | break; | |
233 | case AF_INET6: | |
234 | atomic_add_32(&route_cb.ip6_count, -1); | |
235 | break; | |
236 | } | |
237 | atomic_add_32(&route_cb.any_count, -1); | |
238 | return (raw_usrreqs.pru_detach(so)); | |
239 | } | |
240 | ||
241 | static int | |
242 | rts_disconnect(struct socket *so) | |
243 | { | |
244 | return (raw_usrreqs.pru_disconnect(so)); | |
245 | } | |
246 | ||
247 | /* pru_listen is EOPNOTSUPP */ | |
248 | ||
249 | static int | |
250 | rts_peeraddr(struct socket *so, struct sockaddr **nam) | |
251 | { | |
252 | return (raw_usrreqs.pru_peeraddr(so, nam)); | |
253 | } | |
254 | ||
255 | /* pru_rcvd is EOPNOTSUPP */ | |
256 | /* pru_rcvoob is EOPNOTSUPP */ | |
257 | ||
258 | static int | |
259 | rts_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam, | |
260 | struct mbuf *control, struct proc *p) | |
261 | { | |
262 | return (raw_usrreqs.pru_send(so, flags, m, nam, control, p)); | |
263 | } | |
264 | ||
265 | /* pru_sense is null */ | |
266 | ||
267 | static int | |
268 | rts_shutdown(struct socket *so) | |
269 | { | |
270 | return (raw_usrreqs.pru_shutdown(so)); | |
271 | } | |
272 | ||
273 | static int | |
274 | rts_sockaddr(struct socket *so, struct sockaddr **nam) | |
275 | { | |
276 | return (raw_usrreqs.pru_sockaddr(so, nam)); | |
277 | } | |
278 | ||
279 | static struct pr_usrreqs route_usrreqs = { | |
280 | .pru_abort = rts_abort, | |
281 | .pru_attach = rts_attach, | |
282 | .pru_bind = rts_bind, | |
283 | .pru_connect = rts_connect, | |
284 | .pru_detach = rts_detach, | |
285 | .pru_disconnect = rts_disconnect, | |
286 | .pru_peeraddr = rts_peeraddr, | |
287 | .pru_send = rts_send, | |
288 | .pru_shutdown = rts_shutdown, | |
289 | .pru_sockaddr = rts_sockaddr, | |
290 | .pru_sosend = sosend, | |
291 | .pru_soreceive = soreceive, | |
292 | }; | |
293 | ||
294 | /*ARGSUSED*/ | |
295 | static int | |
296 | route_output(struct mbuf *m, struct socket *so) | |
297 | { | |
298 | struct rt_msghdr *rtm = NULL; | |
299 | struct rtentry *rt = NULL; | |
300 | struct rtentry *saved_nrt = NULL; | |
301 | struct radix_node_head *rnh; | |
302 | struct rt_addrinfo info; | |
303 | int len, error = 0; | |
304 | sa_family_t dst_sa_family = 0; | |
305 | struct ifnet *ifp = NULL; | |
306 | struct sockaddr_in dst_in, gate_in; | |
307 | int sendonlytoself = 0; | |
308 | unsigned int ifscope = IFSCOPE_NONE; | |
309 | struct rawcb *rp = NULL; | |
310 | ||
311 | #define senderr(e) { error = (e); goto flush; } | |
312 | if (m == NULL || ((m->m_len < sizeof (intptr_t)) && | |
313 | (m = m_pullup(m, sizeof (intptr_t))) == NULL)) | |
314 | return (ENOBUFS); | |
315 | VERIFY(m->m_flags & M_PKTHDR); | |
316 | ||
317 | /* | |
318 | * Unlock the socket (but keep a reference) it won't be | |
319 | * accessed until raw_input appends to it. | |
320 | */ | |
321 | socket_unlock(so, 0); | |
322 | lck_mtx_lock(rnh_lock); | |
323 | ||
324 | len = m->m_pkthdr.len; | |
325 | if (len < sizeof (*rtm) || | |
326 | len != mtod(m, struct rt_msghdr *)->rtm_msglen) { | |
327 | info.rti_info[RTAX_DST] = NULL; | |
328 | senderr(EINVAL); | |
329 | } | |
330 | R_Malloc(rtm, struct rt_msghdr *, len); | |
331 | if (rtm == NULL) { | |
332 | info.rti_info[RTAX_DST] = NULL; | |
333 | senderr(ENOBUFS); | |
334 | } | |
335 | m_copydata(m, 0, len, (caddr_t)rtm); | |
336 | if (rtm->rtm_version != RTM_VERSION) { | |
337 | info.rti_info[RTAX_DST] = NULL; | |
338 | senderr(EPROTONOSUPPORT); | |
339 | } | |
340 | ||
341 | /* | |
342 | * Silent version of RTM_GET for Reachabiltiy APIs. We may change | |
343 | * all RTM_GETs to be silent in the future, so this is private for now. | |
344 | */ | |
345 | if (rtm->rtm_type == RTM_GET_SILENT) { | |
346 | if (!(so->so_options & SO_USELOOPBACK)) | |
347 | senderr(EINVAL); | |
348 | sendonlytoself = 1; | |
349 | rtm->rtm_type = RTM_GET; | |
350 | } | |
351 | ||
352 | /* | |
353 | * Perform permission checking, only privileged sockets | |
354 | * may perform operations other than RTM_GET | |
355 | */ | |
356 | if (rtm->rtm_type != RTM_GET && !(so->so_state & SS_PRIV)) { | |
357 | info.rti_info[RTAX_DST] = NULL; | |
358 | senderr(EPERM); | |
359 | } | |
360 | ||
361 | rtm->rtm_pid = proc_selfpid(); | |
362 | info.rti_addrs = rtm->rtm_addrs; | |
363 | if (rt_xaddrs((caddr_t)(rtm + 1), len + (caddr_t)rtm, &info)) { | |
364 | info.rti_info[RTAX_DST] = NULL; | |
365 | senderr(EINVAL); | |
366 | } | |
367 | if (info.rti_info[RTAX_DST] == NULL || | |
368 | info.rti_info[RTAX_DST]->sa_family >= AF_MAX || | |
369 | (info.rti_info[RTAX_GATEWAY] != NULL && | |
370 | info.rti_info[RTAX_GATEWAY]->sa_family >= AF_MAX)) | |
371 | senderr(EINVAL); | |
372 | ||
373 | if (info.rti_info[RTAX_DST]->sa_family == AF_INET && | |
374 | info.rti_info[RTAX_DST]->sa_len != sizeof (dst_in)) { | |
375 | /* At minimum, we need up to sin_addr */ | |
376 | if (info.rti_info[RTAX_DST]->sa_len < | |
377 | offsetof(struct sockaddr_in, sin_zero)) | |
378 | senderr(EINVAL); | |
379 | bzero(&dst_in, sizeof (dst_in)); | |
380 | dst_in.sin_len = sizeof (dst_in); | |
381 | dst_in.sin_family = AF_INET; | |
382 | dst_in.sin_port = SIN(info.rti_info[RTAX_DST])->sin_port; | |
383 | dst_in.sin_addr = SIN(info.rti_info[RTAX_DST])->sin_addr; | |
384 | info.rti_info[RTAX_DST] = (struct sockaddr *)&dst_in; | |
385 | dst_sa_family = info.rti_info[RTAX_DST]->sa_family; | |
386 | } | |
387 | ||
388 | if (info.rti_info[RTAX_GATEWAY] != NULL && | |
389 | info.rti_info[RTAX_GATEWAY]->sa_family == AF_INET && | |
390 | info.rti_info[RTAX_GATEWAY]->sa_len != sizeof (gate_in)) { | |
391 | /* At minimum, we need up to sin_addr */ | |
392 | if (info.rti_info[RTAX_GATEWAY]->sa_len < | |
393 | offsetof(struct sockaddr_in, sin_zero)) | |
394 | senderr(EINVAL); | |
395 | bzero(&gate_in, sizeof (gate_in)); | |
396 | gate_in.sin_len = sizeof (gate_in); | |
397 | gate_in.sin_family = AF_INET; | |
398 | gate_in.sin_port = SIN(info.rti_info[RTAX_GATEWAY])->sin_port; | |
399 | gate_in.sin_addr = SIN(info.rti_info[RTAX_GATEWAY])->sin_addr; | |
400 | info.rti_info[RTAX_GATEWAY] = (struct sockaddr *)&gate_in; | |
401 | } | |
402 | ||
403 | if (info.rti_info[RTAX_GENMASK]) { | |
404 | struct radix_node *t; | |
405 | t = rn_addmask((caddr_t)info.rti_info[RTAX_GENMASK], 0, 1); | |
406 | if (t != NULL && Bcmp(info.rti_info[RTAX_GENMASK], | |
407 | t->rn_key, *(u_char *)info.rti_info[RTAX_GENMASK]) == 0) | |
408 | info.rti_info[RTAX_GENMASK] = | |
409 | (struct sockaddr *)(t->rn_key); | |
410 | else | |
411 | senderr(ENOBUFS); | |
412 | } | |
413 | ||
414 | /* | |
415 | * If RTF_IFSCOPE flag is set, then rtm_index specifies the scope. | |
416 | */ | |
417 | if (rtm->rtm_flags & RTF_IFSCOPE) { | |
418 | if (info.rti_info[RTAX_DST]->sa_family != AF_INET && | |
419 | info.rti_info[RTAX_DST]->sa_family != AF_INET6) | |
420 | senderr(EINVAL); | |
421 | ifscope = rtm->rtm_index; | |
422 | } | |
423 | ||
424 | /* | |
425 | * RTF_PROXY can only be set internally from within the kernel. | |
426 | */ | |
427 | if (rtm->rtm_flags & RTF_PROXY) | |
428 | senderr(EINVAL); | |
429 | ||
430 | /* | |
431 | * For AF_INET, always zero out the embedded scope ID. If this is | |
432 | * a scoped request, it must be done explicitly by setting RTF_IFSCOPE | |
433 | * flag and the corresponding rtm_index value. This is to prevent | |
434 | * false interpretation of the scope ID because it's using the sin_zero | |
435 | * field, which might not be properly cleared by the requestor. | |
436 | */ | |
437 | if (info.rti_info[RTAX_DST]->sa_family == AF_INET) | |
438 | sin_set_ifscope(info.rti_info[RTAX_DST], IFSCOPE_NONE); | |
439 | if (info.rti_info[RTAX_GATEWAY] != NULL && | |
440 | info.rti_info[RTAX_GATEWAY]->sa_family == AF_INET) | |
441 | sin_set_ifscope(info.rti_info[RTAX_GATEWAY], IFSCOPE_NONE); | |
442 | ||
443 | switch (rtm->rtm_type) { | |
444 | case RTM_ADD: | |
445 | if (info.rti_info[RTAX_GATEWAY] == NULL) | |
446 | senderr(EINVAL); | |
447 | ||
448 | error = rtrequest_scoped_locked(RTM_ADD, | |
449 | info.rti_info[RTAX_DST], info.rti_info[RTAX_GATEWAY], | |
450 | info.rti_info[RTAX_NETMASK], rtm->rtm_flags, &saved_nrt, | |
451 | ifscope); | |
452 | if (error == 0 && saved_nrt != NULL) { | |
453 | RT_LOCK(saved_nrt); | |
454 | /* | |
455 | * If the route request specified an interface with | |
456 | * IFA and/or IFP, we set the requested interface on | |
457 | * the route with rt_setif. It would be much better | |
458 | * to do this inside rtrequest, but that would | |
459 | * require passing the desired interface, in some | |
460 | * form, to rtrequest. Since rtrequest is called in | |
461 | * so many places (roughly 40 in our source), adding | |
462 | * a parameter is to much for us to swallow; this is | |
463 | * something for the FreeBSD developers to tackle. | |
464 | * Instead, we let rtrequest compute whatever | |
465 | * interface it wants, then come in behind it and | |
466 | * stick in the interface that we really want. This | |
467 | * works reasonably well except when rtrequest can't | |
468 | * figure out what interface to use (with | |
469 | * ifa_withroute) and returns ENETUNREACH. Ideally | |
470 | * it shouldn't matter if rtrequest can't figure out | |
471 | * the interface if we're going to explicitly set it | |
472 | * ourselves anyway. But practically we can't | |
473 | * recover here because rtrequest will not do any of | |
474 | * the work necessary to add the route if it can't | |
475 | * find an interface. As long as there is a default | |
476 | * route that leads to some interface, rtrequest will | |
477 | * find an interface, so this problem should be | |
478 | * rarely encountered. | |
479 | * dwiggins@bbn.com | |
480 | */ | |
481 | rt_setif(saved_nrt, | |
482 | info.rti_info[RTAX_IFP], info.rti_info[RTAX_IFA], | |
483 | info.rti_info[RTAX_GATEWAY], ifscope); | |
484 | (void)rt_setmetrics(rtm->rtm_inits, &rtm->rtm_rmx, saved_nrt); | |
485 | saved_nrt->rt_rmx.rmx_locks &= ~(rtm->rtm_inits); | |
486 | saved_nrt->rt_rmx.rmx_locks |= | |
487 | (rtm->rtm_inits & rtm->rtm_rmx.rmx_locks); | |
488 | saved_nrt->rt_genmask = info.rti_info[RTAX_GENMASK]; | |
489 | RT_REMREF_LOCKED(saved_nrt); | |
490 | RT_UNLOCK(saved_nrt); | |
491 | } | |
492 | break; | |
493 | ||
494 | case RTM_DELETE: | |
495 | error = rtrequest_scoped_locked(RTM_DELETE, | |
496 | info.rti_info[RTAX_DST], info.rti_info[RTAX_GATEWAY], | |
497 | info.rti_info[RTAX_NETMASK], rtm->rtm_flags, &saved_nrt, | |
498 | ifscope); | |
499 | if (error == 0) { | |
500 | rt = saved_nrt; | |
501 | RT_LOCK(rt); | |
502 | goto report; | |
503 | } | |
504 | break; | |
505 | ||
506 | case RTM_GET: | |
507 | case RTM_CHANGE: | |
508 | case RTM_LOCK: | |
509 | rnh = rt_tables[info.rti_info[RTAX_DST]->sa_family]; | |
510 | if (rnh == NULL) | |
511 | senderr(EAFNOSUPPORT); | |
512 | /* | |
513 | * Lookup the best match based on the key-mask pair; | |
514 | * callee adds a reference and checks for root node. | |
515 | */ | |
516 | rt = rt_lookup(TRUE, info.rti_info[RTAX_DST], | |
517 | info.rti_info[RTAX_NETMASK], rnh, ifscope); | |
518 | if (rt == NULL) | |
519 | senderr(ESRCH); | |
520 | RT_LOCK(rt); | |
521 | ||
522 | /* | |
523 | * Holding rnh_lock here prevents the possibility of | |
524 | * ifa from changing (e.g. in_ifinit), so it is safe | |
525 | * to access its ifa_addr (down below) without locking. | |
526 | */ | |
527 | switch (rtm->rtm_type) { | |
528 | case RTM_GET: { | |
529 | struct ifaddr *ifa2; | |
530 | report: | |
531 | ifa2 = NULL; | |
532 | RT_LOCK_ASSERT_HELD(rt); | |
533 | info.rti_info[RTAX_DST] = rt_key(rt); | |
534 | dst_sa_family = info.rti_info[RTAX_DST]->sa_family; | |
535 | info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; | |
536 | info.rti_info[RTAX_NETMASK] = rt_mask(rt); | |
537 | info.rti_info[RTAX_GENMASK] = rt->rt_genmask; | |
538 | if (rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) { | |
539 | ifp = rt->rt_ifp; | |
540 | if (ifp != NULL) { | |
541 | ifnet_lock_shared(ifp); | |
542 | ifa2 = ifp->if_lladdr; | |
543 | info.rti_info[RTAX_IFP] = | |
544 | ifa2->ifa_addr; | |
545 | IFA_ADDREF(ifa2); | |
546 | ifnet_lock_done(ifp); | |
547 | info.rti_info[RTAX_IFA] = | |
548 | rt->rt_ifa->ifa_addr; | |
549 | rtm->rtm_index = ifp->if_index; | |
550 | } else { | |
551 | info.rti_info[RTAX_IFP] = NULL; | |
552 | info.rti_info[RTAX_IFA] = NULL; | |
553 | } | |
554 | } else if ((ifp = rt->rt_ifp) != NULL) { | |
555 | rtm->rtm_index = ifp->if_index; | |
556 | } | |
557 | if (ifa2 != NULL) | |
558 | IFA_LOCK(ifa2); | |
559 | len = rt_msg2(rtm->rtm_type, &info, NULL, NULL, NULL); | |
560 | if (ifa2 != NULL) | |
561 | IFA_UNLOCK(ifa2); | |
562 | if (len > rtm->rtm_msglen) { | |
563 | struct rt_msghdr *new_rtm; | |
564 | R_Malloc(new_rtm, struct rt_msghdr *, len); | |
565 | if (new_rtm == NULL) { | |
566 | RT_UNLOCK(rt); | |
567 | if (ifa2 != NULL) | |
568 | IFA_REMREF(ifa2); | |
569 | senderr(ENOBUFS); | |
570 | } | |
571 | Bcopy(rtm, new_rtm, rtm->rtm_msglen); | |
572 | R_Free(rtm); rtm = new_rtm; | |
573 | } | |
574 | if (ifa2 != NULL) | |
575 | IFA_LOCK(ifa2); | |
576 | (void) rt_msg2(rtm->rtm_type, &info, (caddr_t)rtm, | |
577 | NULL, NULL); | |
578 | if (ifa2 != NULL) | |
579 | IFA_UNLOCK(ifa2); | |
580 | rtm->rtm_flags = rt->rt_flags; | |
581 | rt_getmetrics(rt, &rtm->rtm_rmx); | |
582 | rtm->rtm_addrs = info.rti_addrs; | |
583 | if (ifa2 != NULL) | |
584 | IFA_REMREF(ifa2); | |
585 | break; | |
586 | } | |
587 | ||
588 | case RTM_CHANGE: | |
589 | if (info.rti_info[RTAX_GATEWAY] != NULL && | |
590 | (error = rt_setgate(rt, rt_key(rt), | |
591 | info.rti_info[RTAX_GATEWAY]))) { | |
592 | int tmp = error; | |
593 | RT_UNLOCK(rt); | |
594 | senderr(tmp); | |
595 | } | |
596 | /* | |
597 | * If they tried to change things but didn't specify | |
598 | * the required gateway, then just use the old one. | |
599 | * This can happen if the user tries to change the | |
600 | * flags on the default route without changing the | |
601 | * default gateway. Changing flags still doesn't work. | |
602 | */ | |
603 | if ((rt->rt_flags & RTF_GATEWAY) && | |
604 | info.rti_info[RTAX_GATEWAY] == NULL) | |
605 | info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; | |
606 | ||
607 | /* | |
608 | * On Darwin, we call rt_setif which contains the | |
609 | * equivalent to the code found at this very spot | |
610 | * in BSD. | |
611 | */ | |
612 | rt_setif(rt, | |
613 | info.rti_info[RTAX_IFP], info.rti_info[RTAX_IFA], | |
614 | info.rti_info[RTAX_GATEWAY], ifscope); | |
615 | ||
616 | if ((error = rt_setmetrics(rtm->rtm_inits, | |
617 | &rtm->rtm_rmx, rt))) { | |
618 | int tmp = error; | |
619 | RT_UNLOCK(rt); | |
620 | senderr(tmp); | |
621 | } | |
622 | if (info.rti_info[RTAX_GENMASK]) | |
623 | rt->rt_genmask = info.rti_info[RTAX_GENMASK]; | |
624 | /* FALLTHRU */ | |
625 | case RTM_LOCK: | |
626 | rt->rt_rmx.rmx_locks &= ~(rtm->rtm_inits); | |
627 | rt->rt_rmx.rmx_locks |= | |
628 | (rtm->rtm_inits & rtm->rtm_rmx.rmx_locks); | |
629 | break; | |
630 | } | |
631 | RT_UNLOCK(rt); | |
632 | break; | |
633 | ||
634 | default: | |
635 | senderr(EOPNOTSUPP); | |
636 | } | |
637 | flush: | |
638 | if (rtm != NULL) { | |
639 | if (error) | |
640 | rtm->rtm_errno = error; | |
641 | else | |
642 | rtm->rtm_flags |= RTF_DONE; | |
643 | } | |
644 | if (rt != NULL) { | |
645 | RT_LOCK_ASSERT_NOTHELD(rt); | |
646 | rtfree_locked(rt); | |
647 | } | |
648 | lck_mtx_unlock(rnh_lock); | |
649 | ||
650 | /* relock the socket now */ | |
651 | socket_lock(so, 0); | |
652 | /* | |
653 | * Check to see if we don't want our own messages. | |
654 | */ | |
655 | if (!(so->so_options & SO_USELOOPBACK)) { | |
656 | if (route_cb.any_count <= 1) { | |
657 | if (rtm != NULL) | |
658 | R_Free(rtm); | |
659 | m_freem(m); | |
660 | return (error); | |
661 | } | |
662 | /* There is another listener, so construct message */ | |
663 | rp = sotorawcb(so); | |
664 | } | |
665 | if (rtm != NULL) { | |
666 | m_copyback(m, 0, rtm->rtm_msglen, (caddr_t)rtm); | |
667 | if (m->m_pkthdr.len < rtm->rtm_msglen) { | |
668 | m_freem(m); | |
669 | m = NULL; | |
670 | } else if (m->m_pkthdr.len > rtm->rtm_msglen) { | |
671 | m_adj(m, rtm->rtm_msglen - m->m_pkthdr.len); | |
672 | } | |
673 | R_Free(rtm); | |
674 | } | |
675 | if (sendonlytoself && m != NULL) { | |
676 | error = 0; | |
677 | if (sbappendaddr(&so->so_rcv, &route_src, m, | |
678 | NULL, &error) != 0) { | |
679 | sorwakeup(so); | |
680 | } | |
681 | if (error) | |
682 | return (error); | |
683 | } else { | |
684 | struct sockproto route_proto = { PF_ROUTE, 0 }; | |
685 | if (rp != NULL) | |
686 | rp->rcb_proto.sp_family = 0; /* Avoid us */ | |
687 | if (dst_sa_family != 0) | |
688 | route_proto.sp_protocol = dst_sa_family; | |
689 | if (m != NULL) { | |
690 | socket_unlock(so, 0); | |
691 | raw_input(m, &route_proto, &route_src, &route_dst); | |
692 | socket_lock(so, 0); | |
693 | } | |
694 | if (rp != NULL) | |
695 | rp->rcb_proto.sp_family = PF_ROUTE; | |
696 | } | |
697 | return (error); | |
698 | } | |
699 | ||
700 | void | |
701 | rt_setexpire(struct rtentry *rt, uint64_t expiry) | |
702 | { | |
703 | /* set both rt_expire and rmx_expire */ | |
704 | rt->rt_expire = expiry; | |
705 | if (expiry) { | |
706 | rt->rt_rmx.rmx_expire = expiry + rt->base_calendartime - | |
707 | rt->base_uptime; | |
708 | } else { | |
709 | rt->rt_rmx.rmx_expire = 0; | |
710 | } | |
711 | } | |
712 | ||
713 | static int | |
714 | rt_setmetrics(u_int32_t which, struct rt_metrics *in, struct rtentry *out) | |
715 | { | |
716 | if (!(which & RTV_REFRESH_HOST)) { | |
717 | struct timeval caltime; | |
718 | getmicrotime(&caltime); | |
719 | #define metric(f, e) if (which & (f)) out->rt_rmx.e = in->e; | |
720 | metric(RTV_RPIPE, rmx_recvpipe); | |
721 | metric(RTV_SPIPE, rmx_sendpipe); | |
722 | metric(RTV_SSTHRESH, rmx_ssthresh); | |
723 | metric(RTV_RTT, rmx_rtt); | |
724 | metric(RTV_RTTVAR, rmx_rttvar); | |
725 | metric(RTV_HOPCOUNT, rmx_hopcount); | |
726 | metric(RTV_MTU, rmx_mtu); | |
727 | metric(RTV_EXPIRE, rmx_expire); | |
728 | #undef metric | |
729 | if (out->rt_rmx.rmx_expire > 0) { | |
730 | /* account for system time change */ | |
731 | getmicrotime(&caltime); | |
732 | out->base_calendartime += | |
733 | NET_CALCULATE_CLOCKSKEW(caltime, | |
734 | out->base_calendartime, | |
735 | net_uptime(), out->base_uptime); | |
736 | rt_setexpire(out, | |
737 | out->rt_rmx.rmx_expire - | |
738 | out->base_calendartime + | |
739 | out->base_uptime); | |
740 | } else { | |
741 | rt_setexpire(out, 0); | |
742 | } | |
743 | ||
744 | VERIFY(out->rt_expire == 0 || out->rt_rmx.rmx_expire != 0); | |
745 | VERIFY(out->rt_expire != 0 || out->rt_rmx.rmx_expire == 0); | |
746 | } else { | |
747 | /* Only RTV_REFRESH_HOST must be set */ | |
748 | if ((which & ~RTV_REFRESH_HOST) || | |
749 | (out->rt_flags & RTF_STATIC) || | |
750 | !(out->rt_flags & RTF_LLINFO)) { | |
751 | return (EINVAL); | |
752 | } | |
753 | ||
754 | if (out->rt_llinfo_refresh == NULL) { | |
755 | return (ENOTSUP); | |
756 | } | |
757 | ||
758 | out->rt_llinfo_refresh(out); | |
759 | } | |
760 | return (0); | |
761 | } | |
762 | ||
763 | static void | |
764 | rt_getmetrics(struct rtentry *in, struct rt_metrics *out) | |
765 | { | |
766 | struct timeval caltime; | |
767 | ||
768 | VERIFY(in->rt_expire == 0 || in->rt_rmx.rmx_expire != 0); | |
769 | VERIFY(in->rt_expire != 0 || in->rt_rmx.rmx_expire == 0); | |
770 | ||
771 | *out = in->rt_rmx; | |
772 | ||
773 | if (in->rt_expire != 0) { | |
774 | /* account for system time change */ | |
775 | getmicrotime(&caltime); | |
776 | ||
777 | in->base_calendartime += | |
778 | NET_CALCULATE_CLOCKSKEW(caltime, | |
779 | in->base_calendartime, net_uptime(), in->base_uptime); | |
780 | ||
781 | out->rmx_expire = in->base_calendartime + | |
782 | in->rt_expire - in->base_uptime; | |
783 | } else { | |
784 | out->rmx_expire = 0; | |
785 | } | |
786 | } | |
787 | ||
788 | /* | |
789 | * Set route's interface given info.rti_info[RTAX_IFP], | |
790 | * info.rti_info[RTAX_IFA], and gateway. | |
791 | */ | |
792 | static void | |
793 | rt_setif(struct rtentry *rt, struct sockaddr *Ifpaddr, struct sockaddr *Ifaaddr, | |
794 | struct sockaddr *Gate, unsigned int ifscope) | |
795 | { | |
796 | struct ifaddr *ifa = NULL; | |
797 | struct ifnet *ifp = NULL; | |
798 | void (*ifa_rtrequest)(int, struct rtentry *, struct sockaddr *); | |
799 | ||
800 | lck_mtx_assert(rnh_lock, LCK_MTX_ASSERT_OWNED); | |
801 | ||
802 | RT_LOCK_ASSERT_HELD(rt); | |
803 | ||
804 | /* Don't update a defunct route */ | |
805 | if (rt->rt_flags & RTF_CONDEMNED) | |
806 | return; | |
807 | ||
808 | /* Add an extra ref for ourselves */ | |
809 | RT_ADDREF_LOCKED(rt); | |
810 | ||
811 | /* Become a regular mutex, just in case */ | |
812 | RT_CONVERT_LOCK(rt); | |
813 | ||
814 | /* | |
815 | * New gateway could require new ifaddr, ifp; flags may also | |
816 | * be different; ifp may be specified by ll sockaddr when | |
817 | * protocol address is ambiguous. | |
818 | */ | |
819 | if (Ifpaddr && (ifa = ifa_ifwithnet_scoped(Ifpaddr, ifscope)) && | |
820 | (ifp = ifa->ifa_ifp) && (Ifaaddr || Gate)) { | |
821 | IFA_REMREF(ifa); | |
822 | ifa = ifaof_ifpforaddr(Ifaaddr ? Ifaaddr : Gate, ifp); | |
823 | } else { | |
824 | if (ifa != NULL) { | |
825 | IFA_REMREF(ifa); | |
826 | ifa = NULL; | |
827 | } | |
828 | if (Ifpaddr && (ifp = if_withname(Ifpaddr))) { | |
829 | if (Gate) { | |
830 | ifa = ifaof_ifpforaddr(Gate, ifp); | |
831 | } else { | |
832 | ifnet_lock_shared(ifp); | |
833 | ifa = TAILQ_FIRST(&ifp->if_addrhead); | |
834 | if (ifa != NULL) | |
835 | IFA_ADDREF(ifa); | |
836 | ifnet_lock_done(ifp); | |
837 | } | |
838 | } else if (Ifaaddr && | |
839 | (ifa = ifa_ifwithaddr_scoped(Ifaaddr, ifscope))) { | |
840 | ifp = ifa->ifa_ifp; | |
841 | } else if (Gate != NULL) { | |
842 | /* | |
843 | * Safe to drop rt_lock and use rt_key, since holding | |
844 | * rnh_lock here prevents another thread from calling | |
845 | * rt_setgate() on this route. We cannot hold the | |
846 | * lock across ifa_ifwithroute since the lookup done | |
847 | * by that routine may point to the same route. | |
848 | */ | |
849 | RT_UNLOCK(rt); | |
850 | if ((ifa = ifa_ifwithroute_scoped_locked(rt->rt_flags, | |
851 | rt_key(rt), Gate, ifscope)) != NULL) | |
852 | ifp = ifa->ifa_ifp; | |
853 | RT_LOCK(rt); | |
854 | /* Don't update a defunct route */ | |
855 | if (rt->rt_flags & RTF_CONDEMNED) { | |
856 | if (ifa != NULL) | |
857 | IFA_REMREF(ifa); | |
858 | /* Release extra ref */ | |
859 | RT_REMREF_LOCKED(rt); | |
860 | return; | |
861 | } | |
862 | } | |
863 | } | |
864 | ||
865 | /* trigger route cache reevaluation */ | |
866 | if (rt_key(rt)->sa_family == AF_INET) | |
867 | routegenid_inet_update(); | |
868 | #if INET6 | |
869 | else if (rt_key(rt)->sa_family == AF_INET6) | |
870 | routegenid_inet6_update(); | |
871 | #endif /* INET6 */ | |
872 | ||
873 | if (ifa != NULL) { | |
874 | struct ifaddr *oifa = rt->rt_ifa; | |
875 | if (oifa != ifa) { | |
876 | if (oifa != NULL) { | |
877 | IFA_LOCK_SPIN(oifa); | |
878 | ifa_rtrequest = oifa->ifa_rtrequest; | |
879 | IFA_UNLOCK(oifa); | |
880 | if (ifa_rtrequest != NULL) | |
881 | ifa_rtrequest(RTM_DELETE, rt, Gate); | |
882 | } | |
883 | rtsetifa(rt, ifa); | |
884 | ||
885 | if (rt->rt_ifp != ifp) { | |
886 | /* | |
887 | * Purge any link-layer info caching. | |
888 | */ | |
889 | if (rt->rt_llinfo_purge != NULL) | |
890 | rt->rt_llinfo_purge(rt); | |
891 | ||
892 | /* | |
893 | * Adjust route ref count for the interfaces. | |
894 | */ | |
895 | if (rt->rt_if_ref_fn != NULL) { | |
896 | rt->rt_if_ref_fn(ifp, 1); | |
897 | rt->rt_if_ref_fn(rt->rt_ifp, -1); | |
898 | } | |
899 | } | |
900 | rt->rt_ifp = ifp; | |
901 | /* | |
902 | * If this is the (non-scoped) default route, record | |
903 | * the interface index used for the primary ifscope. | |
904 | */ | |
905 | if (rt_primary_default(rt, rt_key(rt))) { | |
906 | set_primary_ifscope(rt_key(rt)->sa_family, | |
907 | rt->rt_ifp->if_index); | |
908 | } | |
909 | /* | |
910 | * If rmx_mtu is not locked, update it | |
911 | * to the MTU used by the new interface. | |
912 | */ | |
913 | if (!(rt->rt_rmx.rmx_locks & RTV_MTU)) | |
914 | rt->rt_rmx.rmx_mtu = rt->rt_ifp->if_mtu; | |
915 | ||
916 | if (rt->rt_ifa != NULL) { | |
917 | IFA_LOCK_SPIN(rt->rt_ifa); | |
918 | ifa_rtrequest = rt->rt_ifa->ifa_rtrequest; | |
919 | IFA_UNLOCK(rt->rt_ifa); | |
920 | if (ifa_rtrequest != NULL) | |
921 | ifa_rtrequest(RTM_ADD, rt, Gate); | |
922 | } | |
923 | IFA_REMREF(ifa); | |
924 | /* Release extra ref */ | |
925 | RT_REMREF_LOCKED(rt); | |
926 | return; | |
927 | } | |
928 | IFA_REMREF(ifa); | |
929 | ifa = NULL; | |
930 | } | |
931 | ||
932 | /* XXX: to reset gateway to correct value, at RTM_CHANGE */ | |
933 | if (rt->rt_ifa != NULL) { | |
934 | IFA_LOCK_SPIN(rt->rt_ifa); | |
935 | ifa_rtrequest = rt->rt_ifa->ifa_rtrequest; | |
936 | IFA_UNLOCK(rt->rt_ifa); | |
937 | if (ifa_rtrequest != NULL) | |
938 | ifa_rtrequest(RTM_ADD, rt, Gate); | |
939 | } | |
940 | ||
941 | /* | |
942 | * Workaround for local address routes pointing to the loopback | |
943 | * interface added by configd, until <rdar://problem/12970142>. | |
944 | */ | |
945 | if ((rt->rt_ifp->if_flags & IFF_LOOPBACK) && | |
946 | (rt->rt_flags & RTF_HOST) && rt->rt_ifa->ifa_ifp == rt->rt_ifp) { | |
947 | ifa = ifa_ifwithaddr(rt_key(rt)); | |
948 | if (ifa != NULL) { | |
949 | if (ifa != rt->rt_ifa) | |
950 | rtsetifa(rt, ifa); | |
951 | IFA_REMREF(ifa); | |
952 | } | |
953 | } | |
954 | ||
955 | /* Release extra ref */ | |
956 | RT_REMREF_LOCKED(rt); | |
957 | } | |
958 | ||
959 | /* | |
960 | * Extract the addresses of the passed sockaddrs. | |
961 | * Do a little sanity checking so as to avoid bad memory references. | |
962 | * This data is derived straight from userland. | |
963 | */ | |
964 | static int | |
965 | rt_xaddrs(caddr_t cp, caddr_t cplim, struct rt_addrinfo *rtinfo) | |
966 | { | |
967 | struct sockaddr *sa; | |
968 | int i; | |
969 | ||
970 | bzero(rtinfo->rti_info, sizeof (rtinfo->rti_info)); | |
971 | for (i = 0; (i < RTAX_MAX) && (cp < cplim); i++) { | |
972 | if ((rtinfo->rti_addrs & (1 << i)) == 0) | |
973 | continue; | |
974 | sa = (struct sockaddr *)cp; | |
975 | /* | |
976 | * It won't fit. | |
977 | */ | |
978 | if ((cp + sa->sa_len) > cplim) | |
979 | return (EINVAL); | |
980 | /* | |
981 | * there are no more.. quit now | |
982 | * If there are more bits, they are in error. | |
983 | * I've seen this. route(1) can evidently generate these. | |
984 | * This causes kernel to core dump. | |
985 | * for compatibility, If we see this, point to a safe address. | |
986 | */ | |
987 | if (sa->sa_len == 0) { | |
988 | rtinfo->rti_info[i] = &sa_zero; | |
989 | return (0); /* should be EINVAL but for compat */ | |
990 | } | |
991 | /* accept it */ | |
992 | rtinfo->rti_info[i] = sa; | |
993 | ADVANCE32(cp, sa); | |
994 | } | |
995 | return (0); | |
996 | } | |
997 | ||
998 | static struct mbuf * | |
999 | rt_msg1(int type, struct rt_addrinfo *rtinfo) | |
1000 | { | |
1001 | struct rt_msghdr *rtm; | |
1002 | struct mbuf *m; | |
1003 | int i; | |
1004 | int len, dlen, off; | |
1005 | ||
1006 | switch (type) { | |
1007 | ||
1008 | case RTM_DELADDR: | |
1009 | case RTM_NEWADDR: | |
1010 | len = sizeof (struct ifa_msghdr); | |
1011 | break; | |
1012 | ||
1013 | case RTM_DELMADDR: | |
1014 | case RTM_NEWMADDR: | |
1015 | len = sizeof (struct ifma_msghdr); | |
1016 | break; | |
1017 | ||
1018 | case RTM_IFINFO: | |
1019 | len = sizeof (struct if_msghdr); | |
1020 | break; | |
1021 | ||
1022 | default: | |
1023 | len = sizeof (struct rt_msghdr); | |
1024 | } | |
1025 | m = m_gethdr(M_DONTWAIT, MT_DATA); | |
1026 | if (m && len > MHLEN) { | |
1027 | MCLGET(m, M_DONTWAIT); | |
1028 | if (!(m->m_flags & M_EXT)) { | |
1029 | m_free(m); | |
1030 | m = NULL; | |
1031 | } | |
1032 | } | |
1033 | if (m == NULL) | |
1034 | return (NULL); | |
1035 | m->m_pkthdr.len = m->m_len = len; | |
1036 | m->m_pkthdr.rcvif = NULL; | |
1037 | rtm = mtod(m, struct rt_msghdr *); | |
1038 | bzero((caddr_t)rtm, len); | |
1039 | off = len; | |
1040 | for (i = 0; i < RTAX_MAX; i++) { | |
1041 | struct sockaddr *sa, *hint; | |
1042 | uint8_t ssbuf[SOCK_MAXADDRLEN + 1]; | |
1043 | ||
1044 | /* | |
1045 | * Make sure to accomodate the largest possible size of sa_len. | |
1046 | */ | |
1047 | _CASSERT(sizeof (ssbuf) == (SOCK_MAXADDRLEN + 1)); | |
1048 | ||
1049 | if ((sa = rtinfo->rti_info[i]) == NULL) | |
1050 | continue; | |
1051 | ||
1052 | switch (i) { | |
1053 | case RTAX_DST: | |
1054 | case RTAX_NETMASK: | |
1055 | if ((hint = rtinfo->rti_info[RTAX_DST]) == NULL) | |
1056 | hint = rtinfo->rti_info[RTAX_IFA]; | |
1057 | ||
1058 | /* Scrub away any trace of embedded interface scope */ | |
1059 | sa = rtm_scrub(type, i, hint, sa, &ssbuf, | |
1060 | sizeof (ssbuf), NULL); | |
1061 | break; | |
1062 | ||
1063 | default: | |
1064 | break; | |
1065 | } | |
1066 | ||
1067 | rtinfo->rti_addrs |= (1 << i); | |
1068 | dlen = sa->sa_len; | |
1069 | m_copyback(m, off, dlen, (caddr_t)sa); | |
1070 | len = off + dlen; | |
1071 | off += ROUNDUP32(dlen); | |
1072 | } | |
1073 | if (m->m_pkthdr.len != len) { | |
1074 | m_freem(m); | |
1075 | return (NULL); | |
1076 | } | |
1077 | rtm->rtm_msglen = len; | |
1078 | rtm->rtm_version = RTM_VERSION; | |
1079 | rtm->rtm_type = type; | |
1080 | return (m); | |
1081 | } | |
1082 | ||
1083 | static int | |
1084 | rt_msg2(int type, struct rt_addrinfo *rtinfo, caddr_t cp, struct walkarg *w, | |
1085 | kauth_cred_t* credp) | |
1086 | { | |
1087 | int i; | |
1088 | int len, dlen, rlen, second_time = 0; | |
1089 | caddr_t cp0; | |
1090 | ||
1091 | rtinfo->rti_addrs = 0; | |
1092 | again: | |
1093 | switch (type) { | |
1094 | ||
1095 | case RTM_DELADDR: | |
1096 | case RTM_NEWADDR: | |
1097 | len = sizeof (struct ifa_msghdr); | |
1098 | break; | |
1099 | ||
1100 | case RTM_DELMADDR: | |
1101 | case RTM_NEWMADDR: | |
1102 | len = sizeof (struct ifma_msghdr); | |
1103 | break; | |
1104 | ||
1105 | case RTM_IFINFO: | |
1106 | len = sizeof (struct if_msghdr); | |
1107 | break; | |
1108 | ||
1109 | case RTM_IFINFO2: | |
1110 | len = sizeof (struct if_msghdr2); | |
1111 | break; | |
1112 | ||
1113 | case RTM_NEWMADDR2: | |
1114 | len = sizeof (struct ifma_msghdr2); | |
1115 | break; | |
1116 | ||
1117 | case RTM_GET_EXT: | |
1118 | len = sizeof (struct rt_msghdr_ext); | |
1119 | break; | |
1120 | ||
1121 | case RTM_GET2: | |
1122 | len = sizeof (struct rt_msghdr2); | |
1123 | break; | |
1124 | ||
1125 | default: | |
1126 | len = sizeof (struct rt_msghdr); | |
1127 | } | |
1128 | cp0 = cp; | |
1129 | if (cp0) | |
1130 | cp += len; | |
1131 | for (i = 0; i < RTAX_MAX; i++) { | |
1132 | struct sockaddr *sa, *hint; | |
1133 | uint8_t ssbuf[SOCK_MAXADDRLEN + 1]; | |
1134 | ||
1135 | /* | |
1136 | * Make sure to accomodate the largest possible size of sa_len. | |
1137 | */ | |
1138 | _CASSERT(sizeof (ssbuf) == (SOCK_MAXADDRLEN + 1)); | |
1139 | ||
1140 | if ((sa = rtinfo->rti_info[i]) == NULL) | |
1141 | continue; | |
1142 | ||
1143 | switch (i) { | |
1144 | case RTAX_DST: | |
1145 | case RTAX_NETMASK: | |
1146 | if ((hint = rtinfo->rti_info[RTAX_DST]) == NULL) | |
1147 | hint = rtinfo->rti_info[RTAX_IFA]; | |
1148 | ||
1149 | /* Scrub away any trace of embedded interface scope */ | |
1150 | sa = rtm_scrub(type, i, hint, sa, &ssbuf, | |
1151 | sizeof (ssbuf), NULL); | |
1152 | break; | |
1153 | ||
1154 | case RTAX_IFP: | |
1155 | sa = rtm_scrub(type, i, NULL, sa, &ssbuf, | |
1156 | sizeof (ssbuf), credp); | |
1157 | break; | |
1158 | ||
1159 | default: | |
1160 | break; | |
1161 | } | |
1162 | ||
1163 | rtinfo->rti_addrs |= (1 << i); | |
1164 | dlen = sa->sa_len; | |
1165 | rlen = ROUNDUP32(dlen); | |
1166 | if (cp) { | |
1167 | bcopy((caddr_t)sa, cp, (size_t)dlen); | |
1168 | if (dlen != rlen) | |
1169 | bzero(cp + dlen, rlen - dlen); | |
1170 | cp += rlen; | |
1171 | } | |
1172 | len += rlen; | |
1173 | } | |
1174 | if (cp == NULL && w != NULL && !second_time) { | |
1175 | struct walkarg *rw = w; | |
1176 | ||
1177 | if (rw->w_req != NULL) { | |
1178 | if (rw->w_tmemsize < len) { | |
1179 | if (rw->w_tmem != NULL) | |
1180 | FREE(rw->w_tmem, M_RTABLE); | |
1181 | rw->w_tmem = _MALLOC(len, M_RTABLE, M_WAITOK); | |
1182 | if (rw->w_tmem != NULL) | |
1183 | rw->w_tmemsize = len; | |
1184 | } | |
1185 | if (rw->w_tmem != NULL) { | |
1186 | cp = rw->w_tmem; | |
1187 | second_time = 1; | |
1188 | goto again; | |
1189 | } | |
1190 | } | |
1191 | } | |
1192 | if (cp) { | |
1193 | struct rt_msghdr *rtm = (struct rt_msghdr *)(void *)cp0; | |
1194 | ||
1195 | rtm->rtm_version = RTM_VERSION; | |
1196 | rtm->rtm_type = type; | |
1197 | rtm->rtm_msglen = len; | |
1198 | } | |
1199 | return (len); | |
1200 | } | |
1201 | ||
1202 | /* | |
1203 | * This routine is called to generate a message from the routing | |
1204 | * socket indicating that a redirect has occurred, a routing lookup | |
1205 | * has failed, or that a protocol has detected timeouts to a particular | |
1206 | * destination. | |
1207 | */ | |
1208 | void | |
1209 | rt_missmsg(int type, struct rt_addrinfo *rtinfo, int flags, int error) | |
1210 | { | |
1211 | struct rt_msghdr *rtm; | |
1212 | struct mbuf *m; | |
1213 | struct sockaddr *sa = rtinfo->rti_info[RTAX_DST]; | |
1214 | struct sockproto route_proto = { PF_ROUTE, 0 }; | |
1215 | ||
1216 | if (route_cb.any_count == 0) | |
1217 | return; | |
1218 | m = rt_msg1(type, rtinfo); | |
1219 | if (m == NULL) | |
1220 | return; | |
1221 | rtm = mtod(m, struct rt_msghdr *); | |
1222 | rtm->rtm_flags = RTF_DONE | flags; | |
1223 | rtm->rtm_errno = error; | |
1224 | rtm->rtm_addrs = rtinfo->rti_addrs; | |
1225 | route_proto.sp_family = sa ? sa->sa_family : 0; | |
1226 | raw_input(m, &route_proto, &route_src, &route_dst); | |
1227 | } | |
1228 | ||
1229 | /* | |
1230 | * This routine is called to generate a message from the routing | |
1231 | * socket indicating that the status of a network interface has changed. | |
1232 | */ | |
1233 | void | |
1234 | rt_ifmsg(struct ifnet *ifp) | |
1235 | { | |
1236 | struct if_msghdr *ifm; | |
1237 | struct mbuf *m; | |
1238 | struct rt_addrinfo info; | |
1239 | struct sockproto route_proto = { PF_ROUTE, 0 }; | |
1240 | ||
1241 | if (route_cb.any_count == 0) | |
1242 | return; | |
1243 | bzero((caddr_t)&info, sizeof (info)); | |
1244 | m = rt_msg1(RTM_IFINFO, &info); | |
1245 | if (m == NULL) | |
1246 | return; | |
1247 | ifm = mtod(m, struct if_msghdr *); | |
1248 | ifm->ifm_index = ifp->if_index; | |
1249 | ifm->ifm_flags = (u_short)ifp->if_flags; | |
1250 | if_data_internal_to_if_data(ifp, &ifp->if_data, &ifm->ifm_data); | |
1251 | ifm->ifm_addrs = 0; | |
1252 | raw_input(m, &route_proto, &route_src, &route_dst); | |
1253 | } | |
1254 | ||
1255 | /* | |
1256 | * This is called to generate messages from the routing socket | |
1257 | * indicating a network interface has had addresses associated with it. | |
1258 | * if we ever reverse the logic and replace messages TO the routing | |
1259 | * socket indicate a request to configure interfaces, then it will | |
1260 | * be unnecessary as the routing socket will automatically generate | |
1261 | * copies of it. | |
1262 | * | |
1263 | * Since this is coming from the interface, it is expected that the | |
1264 | * interface will be locked. Caller must hold rnh_lock and rt_lock. | |
1265 | */ | |
1266 | void | |
1267 | rt_newaddrmsg(int cmd, struct ifaddr *ifa, int error, struct rtentry *rt) | |
1268 | { | |
1269 | struct rt_addrinfo info; | |
1270 | struct sockaddr *sa = 0; | |
1271 | int pass; | |
1272 | struct mbuf *m = 0; | |
1273 | struct ifnet *ifp = ifa->ifa_ifp; | |
1274 | struct sockproto route_proto = { PF_ROUTE, 0 }; | |
1275 | ||
1276 | lck_mtx_assert(rnh_lock, LCK_MTX_ASSERT_OWNED); | |
1277 | RT_LOCK_ASSERT_HELD(rt); | |
1278 | ||
1279 | if (route_cb.any_count == 0) | |
1280 | return; | |
1281 | ||
1282 | /* Become a regular mutex, just in case */ | |
1283 | RT_CONVERT_LOCK(rt); | |
1284 | for (pass = 1; pass < 3; pass++) { | |
1285 | bzero((caddr_t)&info, sizeof (info)); | |
1286 | if ((cmd == RTM_ADD && pass == 1) || | |
1287 | (cmd == RTM_DELETE && pass == 2)) { | |
1288 | struct ifa_msghdr *ifam; | |
1289 | int ncmd = cmd == RTM_ADD ? RTM_NEWADDR : RTM_DELADDR; | |
1290 | ||
1291 | /* Lock ifp for if_lladdr */ | |
1292 | ifnet_lock_shared(ifp); | |
1293 | IFA_LOCK(ifa); | |
1294 | info.rti_info[RTAX_IFA] = sa = ifa->ifa_addr; | |
1295 | /* | |
1296 | * Holding ifnet lock here prevents the link address | |
1297 | * from changing contents, so no need to hold its | |
1298 | * lock. The link address is always present; it's | |
1299 | * never freed. | |
1300 | */ | |
1301 | info.rti_info[RTAX_IFP] = ifp->if_lladdr->ifa_addr; | |
1302 | info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask; | |
1303 | info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; | |
1304 | if ((m = rt_msg1(ncmd, &info)) == NULL) { | |
1305 | IFA_UNLOCK(ifa); | |
1306 | ifnet_lock_done(ifp); | |
1307 | continue; | |
1308 | } | |
1309 | IFA_UNLOCK(ifa); | |
1310 | ifnet_lock_done(ifp); | |
1311 | ifam = mtod(m, struct ifa_msghdr *); | |
1312 | ifam->ifam_index = ifp->if_index; | |
1313 | IFA_LOCK_SPIN(ifa); | |
1314 | ifam->ifam_metric = ifa->ifa_metric; | |
1315 | ifam->ifam_flags = ifa->ifa_flags; | |
1316 | IFA_UNLOCK(ifa); | |
1317 | ifam->ifam_addrs = info.rti_addrs; | |
1318 | } | |
1319 | if ((cmd == RTM_ADD && pass == 2) || | |
1320 | (cmd == RTM_DELETE && pass == 1)) { | |
1321 | struct rt_msghdr *rtm; | |
1322 | ||
1323 | if (rt == NULL) | |
1324 | continue; | |
1325 | info.rti_info[RTAX_NETMASK] = rt_mask(rt); | |
1326 | info.rti_info[RTAX_DST] = sa = rt_key(rt); | |
1327 | info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; | |
1328 | if ((m = rt_msg1(cmd, &info)) == NULL) | |
1329 | continue; | |
1330 | rtm = mtod(m, struct rt_msghdr *); | |
1331 | rtm->rtm_index = ifp->if_index; | |
1332 | rtm->rtm_flags |= rt->rt_flags; | |
1333 | rtm->rtm_errno = error; | |
1334 | rtm->rtm_addrs = info.rti_addrs; | |
1335 | } | |
1336 | route_proto.sp_protocol = sa ? sa->sa_family : 0; | |
1337 | raw_input(m, &route_proto, &route_src, &route_dst); | |
1338 | } | |
1339 | } | |
1340 | ||
1341 | /* | |
1342 | * This is the analogue to the rt_newaddrmsg which performs the same | |
1343 | * function but for multicast group memberhips. This is easier since | |
1344 | * there is no route state to worry about. | |
1345 | */ | |
1346 | void | |
1347 | rt_newmaddrmsg(int cmd, struct ifmultiaddr *ifma) | |
1348 | { | |
1349 | struct rt_addrinfo info; | |
1350 | struct mbuf *m = 0; | |
1351 | struct ifnet *ifp = ifma->ifma_ifp; | |
1352 | struct ifma_msghdr *ifmam; | |
1353 | struct sockproto route_proto = { PF_ROUTE, 0 }; | |
1354 | ||
1355 | if (route_cb.any_count == 0) | |
1356 | return; | |
1357 | ||
1358 | /* Lock ifp for if_lladdr */ | |
1359 | ifnet_lock_shared(ifp); | |
1360 | bzero((caddr_t)&info, sizeof (info)); | |
1361 | IFMA_LOCK(ifma); | |
1362 | info.rti_info[RTAX_IFA] = ifma->ifma_addr; | |
1363 | /* lladdr doesn't need lock */ | |
1364 | info.rti_info[RTAX_IFP] = ifp->if_lladdr->ifa_addr; | |
1365 | ||
1366 | /* | |
1367 | * If a link-layer address is present, present it as a ``gateway'' | |
1368 | * (similarly to how ARP entries, e.g., are presented). | |
1369 | */ | |
1370 | info.rti_info[RTAX_GATEWAY] = (ifma->ifma_ll != NULL) ? | |
1371 | ifma->ifma_ll->ifma_addr : NULL; | |
1372 | if ((m = rt_msg1(cmd, &info)) == NULL) { | |
1373 | IFMA_UNLOCK(ifma); | |
1374 | ifnet_lock_done(ifp); | |
1375 | return; | |
1376 | } | |
1377 | ifmam = mtod(m, struct ifma_msghdr *); | |
1378 | ifmam->ifmam_index = ifp->if_index; | |
1379 | ifmam->ifmam_addrs = info.rti_addrs; | |
1380 | route_proto.sp_protocol = ifma->ifma_addr->sa_family; | |
1381 | IFMA_UNLOCK(ifma); | |
1382 | ifnet_lock_done(ifp); | |
1383 | raw_input(m, &route_proto, &route_src, &route_dst); | |
1384 | } | |
1385 | ||
1386 | const char * | |
1387 | rtm2str(int cmd) | |
1388 | { | |
1389 | const char *c = "RTM_?"; | |
1390 | ||
1391 | switch (cmd) { | |
1392 | case RTM_ADD: | |
1393 | c = "RTM_ADD"; | |
1394 | break; | |
1395 | case RTM_DELETE: | |
1396 | c = "RTM_DELETE"; | |
1397 | break; | |
1398 | case RTM_CHANGE: | |
1399 | c = "RTM_CHANGE"; | |
1400 | break; | |
1401 | case RTM_GET: | |
1402 | c = "RTM_GET"; | |
1403 | break; | |
1404 | case RTM_LOSING: | |
1405 | c = "RTM_LOSING"; | |
1406 | break; | |
1407 | case RTM_REDIRECT: | |
1408 | c = "RTM_REDIRECT"; | |
1409 | break; | |
1410 | case RTM_MISS: | |
1411 | c = "RTM_MISS"; | |
1412 | break; | |
1413 | case RTM_LOCK: | |
1414 | c = "RTM_LOCK"; | |
1415 | break; | |
1416 | case RTM_OLDADD: | |
1417 | c = "RTM_OLDADD"; | |
1418 | break; | |
1419 | case RTM_OLDDEL: | |
1420 | c = "RTM_OLDDEL"; | |
1421 | break; | |
1422 | case RTM_RESOLVE: | |
1423 | c = "RTM_RESOLVE"; | |
1424 | break; | |
1425 | case RTM_NEWADDR: | |
1426 | c = "RTM_NEWADDR"; | |
1427 | break; | |
1428 | case RTM_DELADDR: | |
1429 | c = "RTM_DELADDR"; | |
1430 | break; | |
1431 | case RTM_IFINFO: | |
1432 | c = "RTM_IFINFO"; | |
1433 | break; | |
1434 | case RTM_NEWMADDR: | |
1435 | c = "RTM_NEWMADDR"; | |
1436 | break; | |
1437 | case RTM_DELMADDR: | |
1438 | c = "RTM_DELMADDR"; | |
1439 | break; | |
1440 | case RTM_GET_SILENT: | |
1441 | c = "RTM_GET_SILENT"; | |
1442 | break; | |
1443 | case RTM_IFINFO2: | |
1444 | c = "RTM_IFINFO2"; | |
1445 | break; | |
1446 | case RTM_NEWMADDR2: | |
1447 | c = "RTM_NEWMADDR2"; | |
1448 | break; | |
1449 | case RTM_GET2: | |
1450 | c = "RTM_GET2"; | |
1451 | break; | |
1452 | case RTM_GET_EXT: | |
1453 | c = "RTM_GET_EXT"; | |
1454 | break; | |
1455 | } | |
1456 | ||
1457 | return (c); | |
1458 | } | |
1459 | ||
1460 | /* | |
1461 | * This is used in dumping the kernel table via sysctl(). | |
1462 | */ | |
1463 | static int | |
1464 | sysctl_dumpentry(struct radix_node *rn, void *vw) | |
1465 | { | |
1466 | struct walkarg *w = vw; | |
1467 | struct rtentry *rt = (struct rtentry *)rn; | |
1468 | int error = 0, size; | |
1469 | struct rt_addrinfo info; | |
1470 | kauth_cred_t cred; | |
1471 | ||
1472 | cred = kauth_cred_proc_ref(current_proc()); | |
1473 | ||
1474 | RT_LOCK(rt); | |
1475 | if (w->w_op == NET_RT_FLAGS && !(rt->rt_flags & w->w_arg)) | |
1476 | goto done; | |
1477 | bzero((caddr_t)&info, sizeof (info)); | |
1478 | info.rti_info[RTAX_DST] = rt_key(rt); | |
1479 | info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; | |
1480 | info.rti_info[RTAX_NETMASK] = rt_mask(rt); | |
1481 | info.rti_info[RTAX_GENMASK] = rt->rt_genmask; | |
1482 | ||
1483 | if (w->w_op != NET_RT_DUMP2) { | |
1484 | size = rt_msg2(RTM_GET, &info, NULL, w, &cred); | |
1485 | if (w->w_req != NULL && w->w_tmem != NULL) { | |
1486 | struct rt_msghdr *rtm = | |
1487 | (struct rt_msghdr *)(void *)w->w_tmem; | |
1488 | ||
1489 | rtm->rtm_flags = rt->rt_flags; | |
1490 | rtm->rtm_use = rt->rt_use; | |
1491 | rt_getmetrics(rt, &rtm->rtm_rmx); | |
1492 | rtm->rtm_index = rt->rt_ifp->if_index; | |
1493 | rtm->rtm_pid = 0; | |
1494 | rtm->rtm_seq = 0; | |
1495 | rtm->rtm_errno = 0; | |
1496 | rtm->rtm_addrs = info.rti_addrs; | |
1497 | error = SYSCTL_OUT(w->w_req, (caddr_t)rtm, size); | |
1498 | } | |
1499 | } else { | |
1500 | size = rt_msg2(RTM_GET2, &info, NULL, w, &cred); | |
1501 | if (w->w_req != NULL && w->w_tmem != NULL) { | |
1502 | struct rt_msghdr2 *rtm = | |
1503 | (struct rt_msghdr2 *)(void *)w->w_tmem; | |
1504 | ||
1505 | rtm->rtm_flags = rt->rt_flags; | |
1506 | rtm->rtm_use = rt->rt_use; | |
1507 | rt_getmetrics(rt, &rtm->rtm_rmx); | |
1508 | rtm->rtm_index = rt->rt_ifp->if_index; | |
1509 | rtm->rtm_refcnt = rt->rt_refcnt; | |
1510 | if (rt->rt_parent) | |
1511 | rtm->rtm_parentflags = rt->rt_parent->rt_flags; | |
1512 | else | |
1513 | rtm->rtm_parentflags = 0; | |
1514 | rtm->rtm_reserved = 0; | |
1515 | rtm->rtm_addrs = info.rti_addrs; | |
1516 | error = SYSCTL_OUT(w->w_req, (caddr_t)rtm, size); | |
1517 | } | |
1518 | } | |
1519 | ||
1520 | done: | |
1521 | RT_UNLOCK(rt); | |
1522 | kauth_cred_unref(&cred); | |
1523 | return (error); | |
1524 | } | |
1525 | ||
1526 | /* | |
1527 | * This is used for dumping extended information from route entries. | |
1528 | */ | |
1529 | static int | |
1530 | sysctl_dumpentry_ext(struct radix_node *rn, void *vw) | |
1531 | { | |
1532 | struct walkarg *w = vw; | |
1533 | struct rtentry *rt = (struct rtentry *)rn; | |
1534 | int error = 0, size; | |
1535 | struct rt_addrinfo info; | |
1536 | kauth_cred_t cred; | |
1537 | ||
1538 | cred = kauth_cred_proc_ref(current_proc()); | |
1539 | ||
1540 | RT_LOCK(rt); | |
1541 | if (w->w_op == NET_RT_DUMPX_FLAGS && !(rt->rt_flags & w->w_arg)) | |
1542 | goto done; | |
1543 | bzero(&info, sizeof (info)); | |
1544 | info.rti_info[RTAX_DST] = rt_key(rt); | |
1545 | info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; | |
1546 | info.rti_info[RTAX_NETMASK] = rt_mask(rt); | |
1547 | info.rti_info[RTAX_GENMASK] = rt->rt_genmask; | |
1548 | ||
1549 | size = rt_msg2(RTM_GET_EXT, &info, NULL, w, &cred); | |
1550 | if (w->w_req != NULL && w->w_tmem != NULL) { | |
1551 | struct rt_msghdr_ext *ertm = | |
1552 | (struct rt_msghdr_ext *)(void *)w->w_tmem; | |
1553 | ||
1554 | ertm->rtm_flags = rt->rt_flags; | |
1555 | ertm->rtm_use = rt->rt_use; | |
1556 | rt_getmetrics(rt, &ertm->rtm_rmx); | |
1557 | ertm->rtm_index = rt->rt_ifp->if_index; | |
1558 | ertm->rtm_pid = 0; | |
1559 | ertm->rtm_seq = 0; | |
1560 | ertm->rtm_errno = 0; | |
1561 | ertm->rtm_addrs = info.rti_addrs; | |
1562 | if (rt->rt_llinfo_get_ri == NULL) { | |
1563 | bzero(&ertm->rtm_ri, sizeof (ertm->rtm_ri)); | |
1564 | ertm->rtm_ri.ri_rssi = IFNET_RSSI_UNKNOWN; | |
1565 | ertm->rtm_ri.ri_lqm = IFNET_LQM_THRESH_OFF; | |
1566 | ertm->rtm_ri.ri_npm = IFNET_NPM_THRESH_UNKNOWN; | |
1567 | } else { | |
1568 | rt->rt_llinfo_get_ri(rt, &ertm->rtm_ri); | |
1569 | } | |
1570 | error = SYSCTL_OUT(w->w_req, (caddr_t)ertm, size); | |
1571 | } | |
1572 | ||
1573 | done: | |
1574 | RT_UNLOCK(rt); | |
1575 | kauth_cred_unref(&cred); | |
1576 | return (error); | |
1577 | } | |
1578 | ||
1579 | /* | |
1580 | * rdar://9307819 | |
1581 | * To avoid to call copyout() while holding locks and to cause problems | |
1582 | * in the paging path, sysctl_iflist() and sysctl_iflist2() contstruct | |
1583 | * the list in two passes. In the first pass we compute the total | |
1584 | * length of the data we are going to copyout, then we release | |
1585 | * all locks to allocate a temporary buffer that gets filled | |
1586 | * in the second pass. | |
1587 | * | |
1588 | * Note that we are verifying the assumption that _MALLOC returns a buffer | |
1589 | * that is at least 32 bits aligned and that the messages and addresses are | |
1590 | * 32 bits aligned. | |
1591 | */ | |
1592 | static int | |
1593 | sysctl_iflist(int af, struct walkarg *w) | |
1594 | { | |
1595 | struct ifnet *ifp; | |
1596 | struct ifaddr *ifa; | |
1597 | struct rt_addrinfo info; | |
1598 | int len, error = 0; | |
1599 | int pass = 0; | |
1600 | int total_len = 0, current_len = 0; | |
1601 | char *total_buffer = NULL, *cp = NULL; | |
1602 | kauth_cred_t cred; | |
1603 | ||
1604 | cred = kauth_cred_proc_ref(current_proc()); | |
1605 | ||
1606 | bzero((caddr_t)&info, sizeof (info)); | |
1607 | ||
1608 | for (pass = 0; pass < 2; pass++) { | |
1609 | ifnet_head_lock_shared(); | |
1610 | ||
1611 | TAILQ_FOREACH(ifp, &ifnet_head, if_link) { | |
1612 | if (error) | |
1613 | break; | |
1614 | if (w->w_arg && w->w_arg != ifp->if_index) | |
1615 | continue; | |
1616 | ifnet_lock_shared(ifp); | |
1617 | /* | |
1618 | * Holding ifnet lock here prevents the link address | |
1619 | * from changing contents, so no need to hold the ifa | |
1620 | * lock. The link address is always present; it's | |
1621 | * never freed. | |
1622 | */ | |
1623 | ifa = ifp->if_lladdr; | |
1624 | info.rti_info[RTAX_IFP] = ifa->ifa_addr; | |
1625 | len = rt_msg2(RTM_IFINFO, &info, NULL, NULL, &cred); | |
1626 | if (pass == 0) { | |
1627 | total_len += len; | |
1628 | } else { | |
1629 | struct if_msghdr *ifm; | |
1630 | ||
1631 | if (current_len + len > total_len) { | |
1632 | ifnet_lock_done(ifp); | |
1633 | error = ENOBUFS; | |
1634 | break; | |
1635 | } | |
1636 | info.rti_info[RTAX_IFP] = ifa->ifa_addr; | |
1637 | len = rt_msg2(RTM_IFINFO, &info, | |
1638 | (caddr_t)cp, NULL, &cred); | |
1639 | info.rti_info[RTAX_IFP] = NULL; | |
1640 | ||
1641 | ifm = (struct if_msghdr *)(void *)cp; | |
1642 | ifm->ifm_index = ifp->if_index; | |
1643 | ifm->ifm_flags = (u_short)ifp->if_flags; | |
1644 | if_data_internal_to_if_data(ifp, &ifp->if_data, | |
1645 | &ifm->ifm_data); | |
1646 | ifm->ifm_addrs = info.rti_addrs; | |
1647 | ||
1648 | cp += len; | |
1649 | VERIFY(IS_P2ALIGNED(cp, sizeof (u_int32_t))); | |
1650 | current_len += len; | |
1651 | } | |
1652 | while ((ifa = ifa->ifa_link.tqe_next) != NULL) { | |
1653 | IFA_LOCK(ifa); | |
1654 | if (af && af != ifa->ifa_addr->sa_family) { | |
1655 | IFA_UNLOCK(ifa); | |
1656 | continue; | |
1657 | } | |
1658 | info.rti_info[RTAX_IFA] = ifa->ifa_addr; | |
1659 | info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask; | |
1660 | info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; | |
1661 | len = rt_msg2(RTM_NEWADDR, &info, NULL, NULL, | |
1662 | &cred); | |
1663 | if (pass == 0) { | |
1664 | total_len += len; | |
1665 | } else { | |
1666 | struct ifa_msghdr *ifam; | |
1667 | ||
1668 | if (current_len + len > total_len) { | |
1669 | IFA_UNLOCK(ifa); | |
1670 | error = ENOBUFS; | |
1671 | break; | |
1672 | } | |
1673 | len = rt_msg2(RTM_NEWADDR, &info, | |
1674 | (caddr_t)cp, NULL, &cred); | |
1675 | ||
1676 | ifam = (struct ifa_msghdr *)(void *)cp; | |
1677 | ifam->ifam_index = | |
1678 | ifa->ifa_ifp->if_index; | |
1679 | ifam->ifam_flags = ifa->ifa_flags; | |
1680 | ifam->ifam_metric = ifa->ifa_metric; | |
1681 | ifam->ifam_addrs = info.rti_addrs; | |
1682 | ||
1683 | cp += len; | |
1684 | VERIFY(IS_P2ALIGNED(cp, | |
1685 | sizeof (u_int32_t))); | |
1686 | current_len += len; | |
1687 | } | |
1688 | IFA_UNLOCK(ifa); | |
1689 | } | |
1690 | ifnet_lock_done(ifp); | |
1691 | info.rti_info[RTAX_IFA] = info.rti_info[RTAX_NETMASK] = | |
1692 | info.rti_info[RTAX_BRD] = NULL; | |
1693 | } | |
1694 | ||
1695 | ifnet_head_done(); | |
1696 | ||
1697 | if (error != 0) { | |
1698 | if (error == ENOBUFS) | |
1699 | printf("%s: current_len (%d) + len (%d) > " | |
1700 | "total_len (%d)\n", __func__, current_len, | |
1701 | len, total_len); | |
1702 | break; | |
1703 | } | |
1704 | ||
1705 | if (pass == 0) { | |
1706 | /* Better to return zero length buffer than ENOBUFS */ | |
1707 | if (total_len == 0) | |
1708 | total_len = 1; | |
1709 | total_len += total_len >> 3; | |
1710 | total_buffer = _MALLOC(total_len, M_RTABLE, | |
1711 | M_ZERO | M_WAITOK); | |
1712 | if (total_buffer == NULL) { | |
1713 | printf("%s: _MALLOC(%d) failed\n", __func__, | |
1714 | total_len); | |
1715 | error = ENOBUFS; | |
1716 | break; | |
1717 | } | |
1718 | cp = total_buffer; | |
1719 | VERIFY(IS_P2ALIGNED(cp, sizeof (u_int32_t))); | |
1720 | } else { | |
1721 | error = SYSCTL_OUT(w->w_req, total_buffer, current_len); | |
1722 | if (error) | |
1723 | break; | |
1724 | } | |
1725 | } | |
1726 | ||
1727 | if (total_buffer != NULL) | |
1728 | _FREE(total_buffer, M_RTABLE); | |
1729 | ||
1730 | kauth_cred_unref(&cred); | |
1731 | return (error); | |
1732 | } | |
1733 | ||
1734 | static int | |
1735 | sysctl_iflist2(int af, struct walkarg *w) | |
1736 | { | |
1737 | struct ifnet *ifp; | |
1738 | struct ifaddr *ifa; | |
1739 | struct rt_addrinfo info; | |
1740 | int len, error = 0; | |
1741 | int pass = 0; | |
1742 | int total_len = 0, current_len = 0; | |
1743 | char *total_buffer = NULL, *cp = NULL; | |
1744 | kauth_cred_t cred; | |
1745 | ||
1746 | cred = kauth_cred_proc_ref(current_proc()); | |
1747 | ||
1748 | bzero((caddr_t)&info, sizeof (info)); | |
1749 | ||
1750 | for (pass = 0; pass < 2; pass++) { | |
1751 | struct ifmultiaddr *ifma; | |
1752 | ||
1753 | ifnet_head_lock_shared(); | |
1754 | ||
1755 | TAILQ_FOREACH(ifp, &ifnet_head, if_link) { | |
1756 | if (error) | |
1757 | break; | |
1758 | if (w->w_arg && w->w_arg != ifp->if_index) | |
1759 | continue; | |
1760 | ifnet_lock_shared(ifp); | |
1761 | /* | |
1762 | * Holding ifnet lock here prevents the link address | |
1763 | * from changing contents, so no need to hold the ifa | |
1764 | * lock. The link address is always present; it's | |
1765 | * never freed. | |
1766 | */ | |
1767 | ifa = ifp->if_lladdr; | |
1768 | info.rti_info[RTAX_IFP] = ifa->ifa_addr; | |
1769 | len = rt_msg2(RTM_IFINFO2, &info, NULL, NULL, &cred); | |
1770 | if (pass == 0) { | |
1771 | total_len += len; | |
1772 | } else { | |
1773 | struct if_msghdr2 *ifm; | |
1774 | ||
1775 | if (current_len + len > total_len) { | |
1776 | ifnet_lock_done(ifp); | |
1777 | error = ENOBUFS; | |
1778 | break; | |
1779 | } | |
1780 | info.rti_info[RTAX_IFP] = ifa->ifa_addr; | |
1781 | len = rt_msg2(RTM_IFINFO2, &info, | |
1782 | (caddr_t)cp, NULL, &cred); | |
1783 | info.rti_info[RTAX_IFP] = NULL; | |
1784 | ||
1785 | ifm = (struct if_msghdr2 *)(void *)cp; | |
1786 | ifm->ifm_addrs = info.rti_addrs; | |
1787 | ifm->ifm_flags = (u_short)ifp->if_flags; | |
1788 | ifm->ifm_index = ifp->if_index; | |
1789 | ifm->ifm_snd_len = IFCQ_LEN(&ifp->if_snd); | |
1790 | ifm->ifm_snd_maxlen = IFCQ_MAXLEN(&ifp->if_snd); | |
1791 | ifm->ifm_snd_drops = | |
1792 | ifp->if_snd.ifcq_dropcnt.packets; | |
1793 | ifm->ifm_timer = ifp->if_timer; | |
1794 | if_data_internal_to_if_data64(ifp, | |
1795 | &ifp->if_data, &ifm->ifm_data); | |
1796 | ||
1797 | cp += len; | |
1798 | VERIFY(IS_P2ALIGNED(cp, sizeof (u_int32_t))); | |
1799 | current_len += len; | |
1800 | } | |
1801 | while ((ifa = ifa->ifa_link.tqe_next) != NULL) { | |
1802 | IFA_LOCK(ifa); | |
1803 | if (af && af != ifa->ifa_addr->sa_family) { | |
1804 | IFA_UNLOCK(ifa); | |
1805 | continue; | |
1806 | } | |
1807 | info.rti_info[RTAX_IFA] = ifa->ifa_addr; | |
1808 | info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask; | |
1809 | info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; | |
1810 | len = rt_msg2(RTM_NEWADDR, &info, NULL, NULL, | |
1811 | &cred); | |
1812 | if (pass == 0) { | |
1813 | total_len += len; | |
1814 | } else { | |
1815 | struct ifa_msghdr *ifam; | |
1816 | ||
1817 | if (current_len + len > total_len) { | |
1818 | IFA_UNLOCK(ifa); | |
1819 | error = ENOBUFS; | |
1820 | break; | |
1821 | } | |
1822 | len = rt_msg2(RTM_NEWADDR, &info, | |
1823 | (caddr_t)cp, NULL, &cred); | |
1824 | ||
1825 | ifam = (struct ifa_msghdr *)(void *)cp; | |
1826 | ifam->ifam_index = | |
1827 | ifa->ifa_ifp->if_index; | |
1828 | ifam->ifam_flags = ifa->ifa_flags; | |
1829 | ifam->ifam_metric = ifa->ifa_metric; | |
1830 | ifam->ifam_addrs = info.rti_addrs; | |
1831 | ||
1832 | cp += len; | |
1833 | VERIFY(IS_P2ALIGNED(cp, | |
1834 | sizeof (u_int32_t))); | |
1835 | current_len += len; | |
1836 | } | |
1837 | IFA_UNLOCK(ifa); | |
1838 | } | |
1839 | if (error) { | |
1840 | ifnet_lock_done(ifp); | |
1841 | break; | |
1842 | } | |
1843 | ||
1844 | for (ifma = LIST_FIRST(&ifp->if_multiaddrs); | |
1845 | ifma != NULL; ifma = LIST_NEXT(ifma, ifma_link)) { | |
1846 | struct ifaddr *ifa0; | |
1847 | ||
1848 | IFMA_LOCK(ifma); | |
1849 | if (af && af != ifma->ifma_addr->sa_family) { | |
1850 | IFMA_UNLOCK(ifma); | |
1851 | continue; | |
1852 | } | |
1853 | bzero((caddr_t)&info, sizeof (info)); | |
1854 | info.rti_info[RTAX_IFA] = ifma->ifma_addr; | |
1855 | /* | |
1856 | * Holding ifnet lock here prevents the link | |
1857 | * address from changing contents, so no need | |
1858 | * to hold the ifa0 lock. The link address is | |
1859 | * always present; it's never freed. | |
1860 | */ | |
1861 | ifa0 = ifp->if_lladdr; | |
1862 | info.rti_info[RTAX_IFP] = ifa0->ifa_addr; | |
1863 | if (ifma->ifma_ll != NULL) | |
1864 | info.rti_info[RTAX_GATEWAY] = | |
1865 | ifma->ifma_ll->ifma_addr; | |
1866 | len = rt_msg2(RTM_NEWMADDR2, &info, NULL, NULL, | |
1867 | &cred); | |
1868 | if (pass == 0) { | |
1869 | total_len += len; | |
1870 | } else { | |
1871 | struct ifma_msghdr2 *ifmam; | |
1872 | ||
1873 | if (current_len + len > total_len) { | |
1874 | IFMA_UNLOCK(ifma); | |
1875 | error = ENOBUFS; | |
1876 | break; | |
1877 | } | |
1878 | len = rt_msg2(RTM_NEWMADDR2, &info, | |
1879 | (caddr_t)cp, NULL, &cred); | |
1880 | ||
1881 | ifmam = | |
1882 | (struct ifma_msghdr2 *)(void *)cp; | |
1883 | ifmam->ifmam_addrs = info.rti_addrs; | |
1884 | ifmam->ifmam_flags = 0; | |
1885 | ifmam->ifmam_index = | |
1886 | ifma->ifma_ifp->if_index; | |
1887 | ifmam->ifmam_refcount = | |
1888 | ifma->ifma_reqcnt; | |
1889 | ||
1890 | cp += len; | |
1891 | VERIFY(IS_P2ALIGNED(cp, | |
1892 | sizeof (u_int32_t))); | |
1893 | current_len += len; | |
1894 | } | |
1895 | IFMA_UNLOCK(ifma); | |
1896 | } | |
1897 | ifnet_lock_done(ifp); | |
1898 | info.rti_info[RTAX_IFA] = info.rti_info[RTAX_NETMASK] = | |
1899 | info.rti_info[RTAX_BRD] = NULL; | |
1900 | } | |
1901 | ifnet_head_done(); | |
1902 | ||
1903 | if (error) { | |
1904 | if (error == ENOBUFS) | |
1905 | printf("%s: current_len (%d) + len (%d) > " | |
1906 | "total_len (%d)\n", __func__, current_len, | |
1907 | len, total_len); | |
1908 | break; | |
1909 | } | |
1910 | ||
1911 | if (pass == 0) { | |
1912 | /* Better to return zero length buffer than ENOBUFS */ | |
1913 | if (total_len == 0) | |
1914 | total_len = 1; | |
1915 | total_len += total_len >> 3; | |
1916 | total_buffer = _MALLOC(total_len, M_RTABLE, | |
1917 | M_ZERO | M_WAITOK); | |
1918 | if (total_buffer == NULL) { | |
1919 | printf("%s: _MALLOC(%d) failed\n", __func__, | |
1920 | total_len); | |
1921 | error = ENOBUFS; | |
1922 | break; | |
1923 | } | |
1924 | cp = total_buffer; | |
1925 | VERIFY(IS_P2ALIGNED(cp, sizeof (u_int32_t))); | |
1926 | } else { | |
1927 | error = SYSCTL_OUT(w->w_req, total_buffer, current_len); | |
1928 | if (error) | |
1929 | break; | |
1930 | } | |
1931 | } | |
1932 | ||
1933 | if (total_buffer != NULL) | |
1934 | _FREE(total_buffer, M_RTABLE); | |
1935 | ||
1936 | kauth_cred_unref(&cred); | |
1937 | return (error); | |
1938 | } | |
1939 | ||
1940 | ||
1941 | static int | |
1942 | sysctl_rtstat(struct sysctl_req *req) | |
1943 | { | |
1944 | return (SYSCTL_OUT(req, &rtstat, sizeof (struct rtstat))); | |
1945 | } | |
1946 | ||
1947 | static int | |
1948 | sysctl_rttrash(struct sysctl_req *req) | |
1949 | { | |
1950 | return (SYSCTL_OUT(req, &rttrash, sizeof (rttrash))); | |
1951 | } | |
1952 | ||
1953 | static int | |
1954 | sysctl_rtsock SYSCTL_HANDLER_ARGS | |
1955 | { | |
1956 | #pragma unused(oidp) | |
1957 | int *name = (int *)arg1; | |
1958 | u_int namelen = arg2; | |
1959 | struct radix_node_head *rnh; | |
1960 | int i, error = EINVAL; | |
1961 | u_char af; | |
1962 | struct walkarg w; | |
1963 | ||
1964 | name ++; | |
1965 | namelen--; | |
1966 | if (req->newptr) | |
1967 | return (EPERM); | |
1968 | if (namelen != 3) | |
1969 | return (EINVAL); | |
1970 | af = name[0]; | |
1971 | Bzero(&w, sizeof (w)); | |
1972 | w.w_op = name[1]; | |
1973 | w.w_arg = name[2]; | |
1974 | w.w_req = req; | |
1975 | ||
1976 | switch (w.w_op) { | |
1977 | ||
1978 | case NET_RT_DUMP: | |
1979 | case NET_RT_DUMP2: | |
1980 | case NET_RT_FLAGS: | |
1981 | lck_mtx_lock(rnh_lock); | |
1982 | for (i = 1; i <= AF_MAX; i++) | |
1983 | if ((rnh = rt_tables[i]) && (af == 0 || af == i) && | |
1984 | (error = rnh->rnh_walktree(rnh, | |
1985 | sysctl_dumpentry, &w))) | |
1986 | break; | |
1987 | lck_mtx_unlock(rnh_lock); | |
1988 | break; | |
1989 | case NET_RT_DUMPX: | |
1990 | case NET_RT_DUMPX_FLAGS: | |
1991 | lck_mtx_lock(rnh_lock); | |
1992 | for (i = 1; i <= AF_MAX; i++) | |
1993 | if ((rnh = rt_tables[i]) && (af == 0 || af == i) && | |
1994 | (error = rnh->rnh_walktree(rnh, | |
1995 | sysctl_dumpentry_ext, &w))) | |
1996 | break; | |
1997 | lck_mtx_unlock(rnh_lock); | |
1998 | break; | |
1999 | case NET_RT_IFLIST: | |
2000 | error = sysctl_iflist(af, &w); | |
2001 | break; | |
2002 | case NET_RT_IFLIST2: | |
2003 | error = sysctl_iflist2(af, &w); | |
2004 | break; | |
2005 | case NET_RT_STAT: | |
2006 | error = sysctl_rtstat(req); | |
2007 | break; | |
2008 | case NET_RT_TRASH: | |
2009 | error = sysctl_rttrash(req); | |
2010 | break; | |
2011 | } | |
2012 | if (w.w_tmem != NULL) | |
2013 | FREE(w.w_tmem, M_RTABLE); | |
2014 | return (error); | |
2015 | } | |
2016 | ||
2017 | /* | |
2018 | * Definitions of protocols supported in the ROUTE domain. | |
2019 | */ | |
2020 | static struct protosw routesw[] = { | |
2021 | { | |
2022 | .pr_type = SOCK_RAW, | |
2023 | .pr_protocol = 0, | |
2024 | .pr_flags = PR_ATOMIC|PR_ADDR, | |
2025 | .pr_output = route_output, | |
2026 | .pr_ctlinput = raw_ctlinput, | |
2027 | .pr_init = raw_init, | |
2028 | .pr_usrreqs = &route_usrreqs, | |
2029 | } | |
2030 | }; | |
2031 | ||
2032 | static int route_proto_count = (sizeof (routesw) / sizeof (struct protosw)); | |
2033 | ||
2034 | struct domain routedomain_s = { | |
2035 | .dom_family = PF_ROUTE, | |
2036 | .dom_name = "route", | |
2037 | .dom_init = route_dinit, | |
2038 | }; | |
2039 | ||
2040 | static void | |
2041 | route_dinit(struct domain *dp) | |
2042 | { | |
2043 | struct protosw *pr; | |
2044 | int i; | |
2045 | ||
2046 | VERIFY(!(dp->dom_flags & DOM_INITIALIZED)); | |
2047 | VERIFY(routedomain == NULL); | |
2048 | ||
2049 | routedomain = dp; | |
2050 | ||
2051 | for (i = 0, pr = &routesw[0]; i < route_proto_count; i++, pr++) | |
2052 | net_add_proto(pr, dp, 1); | |
2053 | ||
2054 | route_init(); | |
2055 | } |