]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Copyright (c) 2010-2017 Apple Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * This file contains Original Code and/or Modifications of Original Code | |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
14 | * | |
15 | * Please obtain a copy of the License at | |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
25 | * | |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ | |
27 | */ | |
28 | /*- | |
29 | * Copyright (c) 2007-2009 Bruce Simpson. | |
30 | * Copyright (c) 2005 Robert N. M. Watson. | |
31 | * All rights reserved. | |
32 | * | |
33 | * Redistribution and use in source and binary forms, with or without | |
34 | * modification, are permitted provided that the following conditions | |
35 | * are met: | |
36 | * 1. Redistributions of source code must retain the above copyright | |
37 | * notice, this list of conditions and the following disclaimer. | |
38 | * 2. Redistributions in binary form must reproduce the above copyright | |
39 | * notice, this list of conditions and the following disclaimer in the | |
40 | * documentation and/or other materials provided with the distribution. | |
41 | * 3. The name of the author may not be used to endorse or promote | |
42 | * products derived from this software without specific prior written | |
43 | * permission. | |
44 | * | |
45 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND | |
46 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
47 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |
48 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | |
49 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | |
50 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | |
51 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | |
52 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | |
53 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | |
54 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | |
55 | * SUCH DAMAGE. | |
56 | */ | |
57 | ||
58 | /* | |
59 | * IPv4 multicast socket, group, and socket option processing module. | |
60 | */ | |
61 | ||
62 | #include <sys/cdefs.h> | |
63 | ||
64 | #include <sys/param.h> | |
65 | #include <sys/systm.h> | |
66 | #include <sys/kernel.h> | |
67 | #include <sys/malloc.h> | |
68 | #include <sys/mbuf.h> | |
69 | #include <sys/protosw.h> | |
70 | #include <sys/socket.h> | |
71 | #include <sys/socketvar.h> | |
72 | #include <sys/protosw.h> | |
73 | #include <sys/sysctl.h> | |
74 | #include <sys/tree.h> | |
75 | #include <sys/mcache.h> | |
76 | ||
77 | #include <kern/zalloc.h> | |
78 | ||
79 | #include <pexpert/pexpert.h> | |
80 | ||
81 | #include <net/if.h> | |
82 | #include <net/if_dl.h> | |
83 | #include <net/net_api_stats.h> | |
84 | #include <net/route.h> | |
85 | ||
86 | #include <netinet/in.h> | |
87 | #include <netinet/in_systm.h> | |
88 | #include <netinet/in_pcb.h> | |
89 | #include <netinet/in_var.h> | |
90 | #include <netinet/ip_var.h> | |
91 | #include <netinet/igmp_var.h> | |
92 | ||
93 | /* | |
94 | * Functions with non-static linkage defined in this file should be | |
95 | * declared in in_var.h: | |
96 | * imo_multi_filter() | |
97 | * in_addmulti() | |
98 | * in_delmulti() | |
99 | * in_joingroup() | |
100 | * in_leavegroup() | |
101 | * and ip_var.h: | |
102 | * inp_freemoptions() | |
103 | * inp_getmoptions() | |
104 | * inp_setmoptions() | |
105 | * | |
106 | * XXX: Both carp and pf need to use the legacy (*,G) KPIs in_addmulti() | |
107 | * and in_delmulti(). | |
108 | */ | |
109 | static void imf_commit(struct in_mfilter *); | |
110 | static int imf_get_source(struct in_mfilter *imf, | |
111 | const struct sockaddr_in *psin, | |
112 | struct in_msource **); | |
113 | static struct in_msource * | |
114 | imf_graft(struct in_mfilter *, const uint8_t, | |
115 | const struct sockaddr_in *); | |
116 | static int imf_prune(struct in_mfilter *, const struct sockaddr_in *); | |
117 | static void imf_rollback(struct in_mfilter *); | |
118 | static void imf_reap(struct in_mfilter *); | |
119 | static int imo_grow(struct ip_moptions *, size_t); | |
120 | static size_t imo_match_group(const struct ip_moptions *, | |
121 | const struct ifnet *, const struct sockaddr_in *); | |
122 | static struct in_msource * | |
123 | imo_match_source(const struct ip_moptions *, const size_t, | |
124 | const struct sockaddr_in *); | |
125 | static void ims_merge(struct ip_msource *ims, | |
126 | const struct in_msource *lims, const int rollback); | |
127 | static int in_getmulti(struct ifnet *, const struct in_addr *, | |
128 | struct in_multi **); | |
129 | static int in_joingroup(struct ifnet *, const struct in_addr *, | |
130 | struct in_mfilter *, struct in_multi **); | |
131 | static int inm_get_source(struct in_multi *inm, const in_addr_t haddr, | |
132 | const int noalloc, struct ip_msource **pims); | |
133 | static int inm_is_ifp_detached(const struct in_multi *); | |
134 | static int inm_merge(struct in_multi *, /*const*/ struct in_mfilter *); | |
135 | static void inm_reap(struct in_multi *); | |
136 | static struct ip_moptions * | |
137 | inp_findmoptions(struct inpcb *); | |
138 | static int inp_get_source_filters(struct inpcb *, struct sockopt *); | |
139 | static struct ifnet * | |
140 | inp_lookup_mcast_ifp(const struct inpcb *, | |
141 | const struct sockaddr_in *, const struct in_addr); | |
142 | static int inp_block_unblock_source(struct inpcb *, struct sockopt *); | |
143 | static int inp_set_multicast_if(struct inpcb *, struct sockopt *); | |
144 | static int inp_set_source_filters(struct inpcb *, struct sockopt *); | |
145 | static int sysctl_ip_mcast_filters SYSCTL_HANDLER_ARGS; | |
146 | static struct ifnet * ip_multicast_if(struct in_addr *, unsigned int *); | |
147 | static __inline__ int ip_msource_cmp(const struct ip_msource *, | |
148 | const struct ip_msource *); | |
149 | ||
150 | SYSCTL_NODE(_net_inet_ip, OID_AUTO, mcast, CTLFLAG_RW | CTLFLAG_LOCKED, 0, "IPv4 multicast"); | |
151 | ||
152 | static u_long in_mcast_maxgrpsrc = IP_MAX_GROUP_SRC_FILTER; | |
153 | SYSCTL_LONG(_net_inet_ip_mcast, OID_AUTO, maxgrpsrc, | |
154 | CTLFLAG_RW | CTLFLAG_LOCKED, &in_mcast_maxgrpsrc, "Max source filters per group"); | |
155 | ||
156 | static u_long in_mcast_maxsocksrc = IP_MAX_SOCK_SRC_FILTER; | |
157 | SYSCTL_LONG(_net_inet_ip_mcast, OID_AUTO, maxsocksrc, | |
158 | CTLFLAG_RW | CTLFLAG_LOCKED, &in_mcast_maxsocksrc, | |
159 | "Max source filters per socket"); | |
160 | ||
161 | int in_mcast_loop = IP_DEFAULT_MULTICAST_LOOP; | |
162 | SYSCTL_INT(_net_inet_ip_mcast, OID_AUTO, loop, CTLFLAG_RW | CTLFLAG_LOCKED, | |
163 | &in_mcast_loop, 0, "Loopback multicast datagrams by default"); | |
164 | ||
165 | SYSCTL_NODE(_net_inet_ip_mcast, OID_AUTO, filters, | |
166 | CTLFLAG_RD | CTLFLAG_LOCKED, sysctl_ip_mcast_filters, | |
167 | "Per-interface stack-wide source filters"); | |
168 | ||
169 | RB_GENERATE_PREV(ip_msource_tree, ip_msource, ims_link, ip_msource_cmp); | |
170 | ||
171 | #define INM_TRACE_HIST_SIZE 32 /* size of trace history */ | |
172 | ||
173 | /* For gdb */ | |
174 | __private_extern__ unsigned int inm_trace_hist_size = INM_TRACE_HIST_SIZE; | |
175 | ||
176 | struct in_multi_dbg { | |
177 | struct in_multi inm; /* in_multi */ | |
178 | u_int16_t inm_refhold_cnt; /* # of ref */ | |
179 | u_int16_t inm_refrele_cnt; /* # of rele */ | |
180 | /* | |
181 | * Circular lists of inm_addref and inm_remref callers. | |
182 | */ | |
183 | ctrace_t inm_refhold[INM_TRACE_HIST_SIZE]; | |
184 | ctrace_t inm_refrele[INM_TRACE_HIST_SIZE]; | |
185 | /* | |
186 | * Trash list linkage | |
187 | */ | |
188 | TAILQ_ENTRY(in_multi_dbg) inm_trash_link; | |
189 | }; | |
190 | ||
191 | /* List of trash in_multi entries protected by inm_trash_lock */ | |
192 | static TAILQ_HEAD(, in_multi_dbg) inm_trash_head; | |
193 | static decl_lck_mtx_data(, inm_trash_lock); | |
194 | ||
195 | #define INM_ZONE_MAX 64 /* maximum elements in zone */ | |
196 | #define INM_ZONE_NAME "in_multi" /* zone name */ | |
197 | ||
198 | #if DEBUG | |
199 | static unsigned int inm_debug = 1; /* debugging (enabled) */ | |
200 | #else | |
201 | static unsigned int inm_debug; /* debugging (disabled) */ | |
202 | #endif /* !DEBUG */ | |
203 | static unsigned int inm_size; /* size of zone element */ | |
204 | static struct zone *inm_zone; /* zone for in_multi */ | |
205 | ||
206 | #define IPMS_ZONE_MAX 64 /* maximum elements in zone */ | |
207 | #define IPMS_ZONE_NAME "ip_msource" /* zone name */ | |
208 | ||
209 | static unsigned int ipms_size; /* size of zone element */ | |
210 | static struct zone *ipms_zone; /* zone for ip_msource */ | |
211 | ||
212 | #define INMS_ZONE_MAX 64 /* maximum elements in zone */ | |
213 | #define INMS_ZONE_NAME "in_msource" /* zone name */ | |
214 | ||
215 | static unsigned int inms_size; /* size of zone element */ | |
216 | static struct zone *inms_zone; /* zone for in_msource */ | |
217 | ||
218 | /* Lock group and attribute for in_multihead_lock lock */ | |
219 | static lck_attr_t *in_multihead_lock_attr; | |
220 | static lck_grp_t *in_multihead_lock_grp; | |
221 | static lck_grp_attr_t *in_multihead_lock_grp_attr; | |
222 | ||
223 | static decl_lck_rw_data(, in_multihead_lock); | |
224 | struct in_multihead in_multihead; | |
225 | ||
226 | static struct in_multi *in_multi_alloc(int); | |
227 | static void in_multi_free(struct in_multi *); | |
228 | static void in_multi_attach(struct in_multi *); | |
229 | static void inm_trace(struct in_multi *, int); | |
230 | ||
231 | static struct ip_msource *ipms_alloc(int); | |
232 | static void ipms_free(struct ip_msource *); | |
233 | static struct in_msource *inms_alloc(int); | |
234 | static void inms_free(struct in_msource *); | |
235 | ||
236 | static __inline int | |
237 | ip_msource_cmp(const struct ip_msource *a, const struct ip_msource *b) | |
238 | { | |
239 | if (a->ims_haddr < b->ims_haddr) { | |
240 | return -1; | |
241 | } | |
242 | if (a->ims_haddr == b->ims_haddr) { | |
243 | return 0; | |
244 | } | |
245 | return 1; | |
246 | } | |
247 | ||
248 | /* | |
249 | * Inline function which wraps assertions for a valid ifp. | |
250 | */ | |
251 | static __inline__ int | |
252 | inm_is_ifp_detached(const struct in_multi *inm) | |
253 | { | |
254 | VERIFY(inm->inm_ifma != NULL); | |
255 | VERIFY(inm->inm_ifp == inm->inm_ifma->ifma_ifp); | |
256 | ||
257 | return !ifnet_is_attached(inm->inm_ifp, 0); | |
258 | } | |
259 | ||
260 | /* | |
261 | * Initialize an in_mfilter structure to a known state at t0, t1 | |
262 | * with an empty source filter list. | |
263 | */ | |
264 | static __inline__ void | |
265 | imf_init(struct in_mfilter *imf, const int st0, const int st1) | |
266 | { | |
267 | memset(imf, 0, sizeof(struct in_mfilter)); | |
268 | RB_INIT(&imf->imf_sources); | |
269 | imf->imf_st[0] = st0; | |
270 | imf->imf_st[1] = st1; | |
271 | } | |
272 | ||
273 | /* | |
274 | * Resize the ip_moptions vector to the next power-of-two minus 1. | |
275 | */ | |
276 | static int | |
277 | imo_grow(struct ip_moptions *imo, size_t newmax) | |
278 | { | |
279 | struct in_multi **nmships; | |
280 | struct in_multi **omships; | |
281 | struct in_mfilter *nmfilters; | |
282 | struct in_mfilter *omfilters; | |
283 | size_t idx; | |
284 | size_t oldmax; | |
285 | ||
286 | IMO_LOCK_ASSERT_HELD(imo); | |
287 | ||
288 | nmships = NULL; | |
289 | nmfilters = NULL; | |
290 | omships = imo->imo_membership; | |
291 | omfilters = imo->imo_mfilters; | |
292 | oldmax = imo->imo_max_memberships; | |
293 | if (newmax == 0) { | |
294 | newmax = ((oldmax + 1) * 2) - 1; | |
295 | } | |
296 | ||
297 | if (newmax > IP_MAX_MEMBERSHIPS) { | |
298 | return ETOOMANYREFS; | |
299 | } | |
300 | ||
301 | if ((nmships = (struct in_multi **)_REALLOC(omships, | |
302 | sizeof(struct in_multi *) * newmax, M_IPMOPTS, | |
303 | M_WAITOK | M_ZERO)) == NULL) { | |
304 | return ENOMEM; | |
305 | } | |
306 | ||
307 | imo->imo_membership = nmships; | |
308 | ||
309 | if ((nmfilters = (struct in_mfilter *)_REALLOC(omfilters, | |
310 | sizeof(struct in_mfilter) * newmax, M_INMFILTER, | |
311 | M_WAITOK | M_ZERO)) == NULL) { | |
312 | return ENOMEM; | |
313 | } | |
314 | ||
315 | imo->imo_mfilters = nmfilters; | |
316 | ||
317 | /* Initialize newly allocated source filter heads. */ | |
318 | for (idx = oldmax; idx < newmax; idx++) { | |
319 | imf_init(&nmfilters[idx], MCAST_UNDEFINED, MCAST_EXCLUDE); | |
320 | } | |
321 | ||
322 | imo->imo_max_memberships = newmax; | |
323 | ||
324 | return 0; | |
325 | } | |
326 | ||
327 | /* | |
328 | * Find an IPv4 multicast group entry for this ip_moptions instance | |
329 | * which matches the specified group, and optionally an interface. | |
330 | * Return its index into the array, or -1 if not found. | |
331 | */ | |
332 | static size_t | |
333 | imo_match_group(const struct ip_moptions *imo, const struct ifnet *ifp, | |
334 | const struct sockaddr_in *group) | |
335 | { | |
336 | struct in_multi *pinm; | |
337 | int idx; | |
338 | int nmships; | |
339 | ||
340 | IMO_LOCK_ASSERT_HELD(__DECONST(struct ip_moptions *, imo)); | |
341 | ||
342 | ||
343 | /* The imo_membership array may be lazy allocated. */ | |
344 | if (imo->imo_membership == NULL || imo->imo_num_memberships == 0) { | |
345 | return -1; | |
346 | } | |
347 | ||
348 | nmships = imo->imo_num_memberships; | |
349 | for (idx = 0; idx < nmships; idx++) { | |
350 | pinm = imo->imo_membership[idx]; | |
351 | if (pinm == NULL) { | |
352 | continue; | |
353 | } | |
354 | INM_LOCK(pinm); | |
355 | if ((ifp == NULL || (pinm->inm_ifp == ifp)) && | |
356 | in_hosteq(pinm->inm_addr, group->sin_addr)) { | |
357 | INM_UNLOCK(pinm); | |
358 | break; | |
359 | } | |
360 | INM_UNLOCK(pinm); | |
361 | } | |
362 | if (idx >= nmships) { | |
363 | idx = -1; | |
364 | } | |
365 | ||
366 | return idx; | |
367 | } | |
368 | ||
369 | /* | |
370 | * Find an IPv4 multicast source entry for this imo which matches | |
371 | * the given group index for this socket, and source address. | |
372 | * | |
373 | * NOTE: This does not check if the entry is in-mode, merely if | |
374 | * it exists, which may not be the desired behaviour. | |
375 | */ | |
376 | static struct in_msource * | |
377 | imo_match_source(const struct ip_moptions *imo, const size_t gidx, | |
378 | const struct sockaddr_in *src) | |
379 | { | |
380 | struct ip_msource find; | |
381 | struct in_mfilter *imf; | |
382 | struct ip_msource *ims; | |
383 | ||
384 | IMO_LOCK_ASSERT_HELD(__DECONST(struct ip_moptions *, imo)); | |
385 | ||
386 | VERIFY(src->sin_family == AF_INET); | |
387 | VERIFY(gidx != (size_t)-1 && gidx < imo->imo_num_memberships); | |
388 | ||
389 | /* The imo_mfilters array may be lazy allocated. */ | |
390 | if (imo->imo_mfilters == NULL) { | |
391 | return NULL; | |
392 | } | |
393 | imf = &imo->imo_mfilters[gidx]; | |
394 | ||
395 | /* Source trees are keyed in host byte order. */ | |
396 | find.ims_haddr = ntohl(src->sin_addr.s_addr); | |
397 | ims = RB_FIND(ip_msource_tree, &imf->imf_sources, &find); | |
398 | ||
399 | return (struct in_msource *)ims; | |
400 | } | |
401 | ||
402 | /* | |
403 | * Perform filtering for multicast datagrams on a socket by group and source. | |
404 | * | |
405 | * Returns 0 if a datagram should be allowed through, or various error codes | |
406 | * if the socket was not a member of the group, or the source was muted, etc. | |
407 | */ | |
408 | int | |
409 | imo_multi_filter(const struct ip_moptions *imo, const struct ifnet *ifp, | |
410 | const struct sockaddr_in *group, const struct sockaddr_in *src) | |
411 | { | |
412 | size_t gidx; | |
413 | struct in_msource *ims; | |
414 | int mode; | |
415 | ||
416 | IMO_LOCK_ASSERT_HELD(__DECONST(struct ip_moptions *, imo)); | |
417 | VERIFY(ifp != NULL); | |
418 | ||
419 | gidx = imo_match_group(imo, ifp, group); | |
420 | if (gidx == (size_t)-1) { | |
421 | return MCAST_NOTGMEMBER; | |
422 | } | |
423 | ||
424 | /* | |
425 | * Check if the source was included in an (S,G) join. | |
426 | * Allow reception on exclusive memberships by default, | |
427 | * reject reception on inclusive memberships by default. | |
428 | * Exclude source only if an in-mode exclude filter exists. | |
429 | * Include source only if an in-mode include filter exists. | |
430 | * NOTE: We are comparing group state here at IGMP t1 (now) | |
431 | * with socket-layer t0 (since last downcall). | |
432 | */ | |
433 | mode = imo->imo_mfilters[gidx].imf_st[1]; | |
434 | ims = imo_match_source(imo, gidx, src); | |
435 | ||
436 | if ((ims == NULL && mode == MCAST_INCLUDE) || | |
437 | (ims != NULL && ims->imsl_st[0] != mode)) { | |
438 | return MCAST_NOTSMEMBER; | |
439 | } | |
440 | ||
441 | return MCAST_PASS; | |
442 | } | |
443 | ||
444 | int | |
445 | imo_clone(struct inpcb *from_inp, struct inpcb *to_inp) | |
446 | { | |
447 | int i, err = 0; | |
448 | struct ip_moptions *from; | |
449 | struct ip_moptions *to; | |
450 | ||
451 | from = inp_findmoptions(from_inp); | |
452 | if (from == NULL) { | |
453 | return ENOMEM; | |
454 | } | |
455 | ||
456 | to = inp_findmoptions(to_inp); | |
457 | if (to == NULL) { | |
458 | IMO_REMREF(from); | |
459 | return ENOMEM; | |
460 | } | |
461 | ||
462 | IMO_LOCK(from); | |
463 | IMO_LOCK(to); | |
464 | ||
465 | to->imo_multicast_ifp = from->imo_multicast_ifp; | |
466 | to->imo_multicast_vif = from->imo_multicast_vif; | |
467 | to->imo_multicast_ttl = from->imo_multicast_ttl; | |
468 | to->imo_multicast_loop = from->imo_multicast_loop; | |
469 | ||
470 | /* | |
471 | * We're cloning, so drop any existing memberships and source | |
472 | * filters on the destination ip_moptions. | |
473 | */ | |
474 | for (i = 0; i < to->imo_num_memberships; ++i) { | |
475 | struct in_mfilter *imf; | |
476 | ||
477 | imf = to->imo_mfilters ? &to->imo_mfilters[i] : NULL; | |
478 | if (imf != NULL) { | |
479 | imf_leave(imf); | |
480 | } | |
481 | ||
482 | (void) in_leavegroup(to->imo_membership[i], imf); | |
483 | ||
484 | if (imf != NULL) { | |
485 | imf_purge(imf); | |
486 | } | |
487 | ||
488 | INM_REMREF(to->imo_membership[i]); | |
489 | to->imo_membership[i] = NULL; | |
490 | } | |
491 | to->imo_num_memberships = 0; | |
492 | ||
493 | VERIFY(to->imo_max_memberships != 0 && from->imo_max_memberships != 0); | |
494 | if (to->imo_max_memberships < from->imo_max_memberships) { | |
495 | /* | |
496 | * Ensure source and destination ip_moptions memberships | |
497 | * and source filters arrays are at least equal in size. | |
498 | */ | |
499 | err = imo_grow(to, from->imo_max_memberships); | |
500 | if (err != 0) { | |
501 | goto done; | |
502 | } | |
503 | } | |
504 | VERIFY(to->imo_max_memberships >= from->imo_max_memberships); | |
505 | ||
506 | /* | |
507 | * Source filtering doesn't apply to OpenTransport socket, | |
508 | * so simply hold additional reference count per membership. | |
509 | */ | |
510 | for (i = 0; i < from->imo_num_memberships; i++) { | |
511 | to->imo_membership[i] = | |
512 | in_addmulti(&from->imo_membership[i]->inm_addr, | |
513 | from->imo_membership[i]->inm_ifp); | |
514 | if (to->imo_membership[i] == NULL) { | |
515 | break; | |
516 | } | |
517 | to->imo_num_memberships++; | |
518 | } | |
519 | VERIFY(to->imo_num_memberships == from->imo_num_memberships); | |
520 | ||
521 | done: | |
522 | IMO_UNLOCK(to); | |
523 | IMO_REMREF(to); | |
524 | IMO_UNLOCK(from); | |
525 | IMO_REMREF(from); | |
526 | ||
527 | return err; | |
528 | } | |
529 | ||
530 | /* | |
531 | * Find and return a reference to an in_multi record for (ifp, group), | |
532 | * and bump its reference count. | |
533 | * If one does not exist, try to allocate it, and update link-layer multicast | |
534 | * filters on ifp to listen for group. | |
535 | * Return 0 if successful, otherwise return an appropriate error code. | |
536 | */ | |
537 | static int | |
538 | in_getmulti(struct ifnet *ifp, const struct in_addr *group, | |
539 | struct in_multi **pinm) | |
540 | { | |
541 | struct sockaddr_in gsin; | |
542 | struct ifmultiaddr *ifma; | |
543 | struct in_multi *inm; | |
544 | int error; | |
545 | ||
546 | in_multihead_lock_shared(); | |
547 | IN_LOOKUP_MULTI(group, ifp, inm); | |
548 | if (inm != NULL) { | |
549 | INM_LOCK(inm); | |
550 | VERIFY(inm->inm_reqcnt >= 1); | |
551 | inm->inm_reqcnt++; | |
552 | VERIFY(inm->inm_reqcnt != 0); | |
553 | *pinm = inm; | |
554 | INM_UNLOCK(inm); | |
555 | in_multihead_lock_done(); | |
556 | /* | |
557 | * We already joined this group; return the inm | |
558 | * with a refcount held (via lookup) for caller. | |
559 | */ | |
560 | return 0; | |
561 | } | |
562 | in_multihead_lock_done(); | |
563 | ||
564 | bzero(&gsin, sizeof(gsin)); | |
565 | gsin.sin_family = AF_INET; | |
566 | gsin.sin_len = sizeof(struct sockaddr_in); | |
567 | gsin.sin_addr = *group; | |
568 | ||
569 | /* | |
570 | * Check if a link-layer group is already associated | |
571 | * with this network-layer group on the given ifnet. | |
572 | */ | |
573 | error = if_addmulti(ifp, (struct sockaddr *)&gsin, &ifma); | |
574 | if (error != 0) { | |
575 | return error; | |
576 | } | |
577 | ||
578 | /* | |
579 | * See comments in inm_remref() for access to ifma_protospec. | |
580 | */ | |
581 | in_multihead_lock_exclusive(); | |
582 | IFMA_LOCK(ifma); | |
583 | if ((inm = ifma->ifma_protospec) != NULL) { | |
584 | VERIFY(ifma->ifma_addr != NULL); | |
585 | VERIFY(ifma->ifma_addr->sa_family == AF_INET); | |
586 | INM_ADDREF(inm); /* for caller */ | |
587 | IFMA_UNLOCK(ifma); | |
588 | INM_LOCK(inm); | |
589 | VERIFY(inm->inm_ifma == ifma); | |
590 | VERIFY(inm->inm_ifp == ifp); | |
591 | VERIFY(in_hosteq(inm->inm_addr, *group)); | |
592 | if (inm->inm_debug & IFD_ATTACHED) { | |
593 | VERIFY(inm->inm_reqcnt >= 1); | |
594 | inm->inm_reqcnt++; | |
595 | VERIFY(inm->inm_reqcnt != 0); | |
596 | *pinm = inm; | |
597 | INM_UNLOCK(inm); | |
598 | in_multihead_lock_done(); | |
599 | IFMA_REMREF(ifma); | |
600 | /* | |
601 | * We lost the race with another thread doing | |
602 | * in_getmulti(); since this group has already | |
603 | * been joined; return the inm with a refcount | |
604 | * held for caller. | |
605 | */ | |
606 | return 0; | |
607 | } | |
608 | /* | |
609 | * We lost the race with another thread doing in_delmulti(); | |
610 | * the inm referring to the ifma has been detached, thus we | |
611 | * reattach it back to the in_multihead list and return the | |
612 | * inm with a refcount held for the caller. | |
613 | */ | |
614 | in_multi_attach(inm); | |
615 | VERIFY((inm->inm_debug & | |
616 | (IFD_ATTACHED | IFD_TRASHED)) == IFD_ATTACHED); | |
617 | *pinm = inm; | |
618 | INM_UNLOCK(inm); | |
619 | in_multihead_lock_done(); | |
620 | IFMA_REMREF(ifma); | |
621 | return 0; | |
622 | } | |
623 | IFMA_UNLOCK(ifma); | |
624 | ||
625 | /* | |
626 | * A new in_multi record is needed; allocate and initialize it. | |
627 | * We DO NOT perform an IGMP join as the in_ layer may need to | |
628 | * push an initial source list down to IGMP to support SSM. | |
629 | * | |
630 | * The initial source filter state is INCLUDE, {} as per the RFC. | |
631 | */ | |
632 | inm = in_multi_alloc(M_WAITOK); | |
633 | if (inm == NULL) { | |
634 | in_multihead_lock_done(); | |
635 | IFMA_REMREF(ifma); | |
636 | return ENOMEM; | |
637 | } | |
638 | INM_LOCK(inm); | |
639 | inm->inm_addr = *group; | |
640 | inm->inm_ifp = ifp; | |
641 | inm->inm_igi = IGMP_IFINFO(ifp); | |
642 | VERIFY(inm->inm_igi != NULL); | |
643 | IGI_ADDREF(inm->inm_igi); | |
644 | inm->inm_ifma = ifma; /* keep refcount from if_addmulti() */ | |
645 | inm->inm_state = IGMP_NOT_MEMBER; | |
646 | /* | |
647 | * Pending state-changes per group are subject to a bounds check. | |
648 | */ | |
649 | inm->inm_scq.ifq_maxlen = IGMP_MAX_STATE_CHANGES; | |
650 | inm->inm_st[0].iss_fmode = MCAST_UNDEFINED; | |
651 | inm->inm_st[1].iss_fmode = MCAST_UNDEFINED; | |
652 | RB_INIT(&inm->inm_srcs); | |
653 | *pinm = inm; | |
654 | in_multi_attach(inm); | |
655 | VERIFY((inm->inm_debug & (IFD_ATTACHED | IFD_TRASHED)) == IFD_ATTACHED); | |
656 | INM_ADDREF_LOCKED(inm); /* for caller */ | |
657 | INM_UNLOCK(inm); | |
658 | ||
659 | IFMA_LOCK(ifma); | |
660 | VERIFY(ifma->ifma_protospec == NULL); | |
661 | ifma->ifma_protospec = inm; | |
662 | IFMA_UNLOCK(ifma); | |
663 | in_multihead_lock_done(); | |
664 | ||
665 | return 0; | |
666 | } | |
667 | ||
668 | /* | |
669 | * Clear recorded source entries for a group. | |
670 | * Used by the IGMP code. | |
671 | * FIXME: Should reap. | |
672 | */ | |
673 | void | |
674 | inm_clear_recorded(struct in_multi *inm) | |
675 | { | |
676 | struct ip_msource *ims; | |
677 | ||
678 | INM_LOCK_ASSERT_HELD(inm); | |
679 | ||
680 | RB_FOREACH(ims, ip_msource_tree, &inm->inm_srcs) { | |
681 | if (ims->ims_stp) { | |
682 | ims->ims_stp = 0; | |
683 | --inm->inm_st[1].iss_rec; | |
684 | } | |
685 | } | |
686 | VERIFY(inm->inm_st[1].iss_rec == 0); | |
687 | } | |
688 | ||
689 | /* | |
690 | * Record a source as pending for a Source-Group IGMPv3 query. | |
691 | * This lives here as it modifies the shared tree. | |
692 | * | |
693 | * inm is the group descriptor. | |
694 | * naddr is the address of the source to record in network-byte order. | |
695 | * | |
696 | * If the net.inet.igmp.sgalloc sysctl is non-zero, we will | |
697 | * lazy-allocate a source node in response to an SG query. | |
698 | * Otherwise, no allocation is performed. This saves some memory | |
699 | * with the trade-off that the source will not be reported to the | |
700 | * router if joined in the window between the query response and | |
701 | * the group actually being joined on the local host. | |
702 | * | |
703 | * Return 0 if the source didn't exist or was already marked as recorded. | |
704 | * Return 1 if the source was marked as recorded by this function. | |
705 | * Return <0 if any error occured (negated errno code). | |
706 | */ | |
707 | int | |
708 | inm_record_source(struct in_multi *inm, const in_addr_t naddr) | |
709 | { | |
710 | struct ip_msource find; | |
711 | struct ip_msource *ims, *nims; | |
712 | ||
713 | INM_LOCK_ASSERT_HELD(inm); | |
714 | ||
715 | find.ims_haddr = ntohl(naddr); | |
716 | ims = RB_FIND(ip_msource_tree, &inm->inm_srcs, &find); | |
717 | if (ims && ims->ims_stp) { | |
718 | return 0; | |
719 | } | |
720 | if (ims == NULL) { | |
721 | if (inm->inm_nsrc == in_mcast_maxgrpsrc) { | |
722 | return -ENOSPC; | |
723 | } | |
724 | nims = ipms_alloc(M_WAITOK); | |
725 | if (nims == NULL) { | |
726 | return -ENOMEM; | |
727 | } | |
728 | nims->ims_haddr = find.ims_haddr; | |
729 | RB_INSERT(ip_msource_tree, &inm->inm_srcs, nims); | |
730 | ++inm->inm_nsrc; | |
731 | ims = nims; | |
732 | } | |
733 | ||
734 | /* | |
735 | * Mark the source as recorded and update the recorded | |
736 | * source count. | |
737 | */ | |
738 | ++ims->ims_stp; | |
739 | ++inm->inm_st[1].iss_rec; | |
740 | ||
741 | return 1; | |
742 | } | |
743 | ||
744 | /* | |
745 | * Return a pointer to an in_msource owned by an in_mfilter, | |
746 | * given its source address. | |
747 | * Lazy-allocate if needed. If this is a new entry its filter state is | |
748 | * undefined at t0. | |
749 | * | |
750 | * imf is the filter set being modified. | |
751 | * haddr is the source address in *host* byte-order. | |
752 | * | |
753 | * Caller is expected to be holding imo_lock. | |
754 | */ | |
755 | static int | |
756 | imf_get_source(struct in_mfilter *imf, const struct sockaddr_in *psin, | |
757 | struct in_msource **plims) | |
758 | { | |
759 | struct ip_msource find; | |
760 | struct ip_msource *ims; | |
761 | struct in_msource *lims; | |
762 | int error; | |
763 | ||
764 | error = 0; | |
765 | ims = NULL; | |
766 | lims = NULL; | |
767 | ||
768 | /* key is host byte order */ | |
769 | find.ims_haddr = ntohl(psin->sin_addr.s_addr); | |
770 | ims = RB_FIND(ip_msource_tree, &imf->imf_sources, &find); | |
771 | lims = (struct in_msource *)ims; | |
772 | if (lims == NULL) { | |
773 | if (imf->imf_nsrc == in_mcast_maxsocksrc) { | |
774 | return ENOSPC; | |
775 | } | |
776 | lims = inms_alloc(M_WAITOK); | |
777 | if (lims == NULL) { | |
778 | return ENOMEM; | |
779 | } | |
780 | lims->ims_haddr = find.ims_haddr; | |
781 | lims->imsl_st[0] = MCAST_UNDEFINED; | |
782 | RB_INSERT(ip_msource_tree, &imf->imf_sources, | |
783 | (struct ip_msource *)lims); | |
784 | ++imf->imf_nsrc; | |
785 | } | |
786 | ||
787 | *plims = lims; | |
788 | ||
789 | return error; | |
790 | } | |
791 | ||
792 | /* | |
793 | * Graft a source entry into an existing socket-layer filter set, | |
794 | * maintaining any required invariants and checking allocations. | |
795 | * | |
796 | * The source is marked as being in the new filter mode at t1. | |
797 | * | |
798 | * Return the pointer to the new node, otherwise return NULL. | |
799 | * | |
800 | * Caller is expected to be holding imo_lock. | |
801 | */ | |
802 | static struct in_msource * | |
803 | imf_graft(struct in_mfilter *imf, const uint8_t st1, | |
804 | const struct sockaddr_in *psin) | |
805 | { | |
806 | struct in_msource *lims; | |
807 | ||
808 | lims = inms_alloc(M_WAITOK); | |
809 | if (lims == NULL) { | |
810 | return NULL; | |
811 | } | |
812 | lims->ims_haddr = ntohl(psin->sin_addr.s_addr); | |
813 | lims->imsl_st[0] = MCAST_UNDEFINED; | |
814 | lims->imsl_st[1] = st1; | |
815 | RB_INSERT(ip_msource_tree, &imf->imf_sources, | |
816 | (struct ip_msource *)lims); | |
817 | ++imf->imf_nsrc; | |
818 | ||
819 | return lims; | |
820 | } | |
821 | ||
822 | /* | |
823 | * Prune a source entry from an existing socket-layer filter set, | |
824 | * maintaining any required invariants and checking allocations. | |
825 | * | |
826 | * The source is marked as being left at t1, it is not freed. | |
827 | * | |
828 | * Return 0 if no error occurred, otherwise return an errno value. | |
829 | * | |
830 | * Caller is expected to be holding imo_lock. | |
831 | */ | |
832 | static int | |
833 | imf_prune(struct in_mfilter *imf, const struct sockaddr_in *psin) | |
834 | { | |
835 | struct ip_msource find; | |
836 | struct ip_msource *ims; | |
837 | struct in_msource *lims; | |
838 | ||
839 | /* key is host byte order */ | |
840 | find.ims_haddr = ntohl(psin->sin_addr.s_addr); | |
841 | ims = RB_FIND(ip_msource_tree, &imf->imf_sources, &find); | |
842 | if (ims == NULL) { | |
843 | return ENOENT; | |
844 | } | |
845 | lims = (struct in_msource *)ims; | |
846 | lims->imsl_st[1] = MCAST_UNDEFINED; | |
847 | return 0; | |
848 | } | |
849 | ||
850 | /* | |
851 | * Revert socket-layer filter set deltas at t1 to t0 state. | |
852 | * | |
853 | * Caller is expected to be holding imo_lock. | |
854 | */ | |
855 | static void | |
856 | imf_rollback(struct in_mfilter *imf) | |
857 | { | |
858 | struct ip_msource *ims, *tims; | |
859 | struct in_msource *lims; | |
860 | ||
861 | RB_FOREACH_SAFE(ims, ip_msource_tree, &imf->imf_sources, tims) { | |
862 | lims = (struct in_msource *)ims; | |
863 | if (lims->imsl_st[0] == lims->imsl_st[1]) { | |
864 | /* no change at t1 */ | |
865 | continue; | |
866 | } else if (lims->imsl_st[0] != MCAST_UNDEFINED) { | |
867 | /* revert change to existing source at t1 */ | |
868 | lims->imsl_st[1] = lims->imsl_st[0]; | |
869 | } else { | |
870 | /* revert source added t1 */ | |
871 | IGMP_PRINTF(("%s: free inms 0x%llx\n", __func__, | |
872 | (uint64_t)VM_KERNEL_ADDRPERM(lims))); | |
873 | RB_REMOVE(ip_msource_tree, &imf->imf_sources, ims); | |
874 | inms_free(lims); | |
875 | imf->imf_nsrc--; | |
876 | } | |
877 | } | |
878 | imf->imf_st[1] = imf->imf_st[0]; | |
879 | } | |
880 | ||
881 | /* | |
882 | * Mark socket-layer filter set as INCLUDE {} at t1. | |
883 | * | |
884 | * Caller is expected to be holding imo_lock. | |
885 | */ | |
886 | void | |
887 | imf_leave(struct in_mfilter *imf) | |
888 | { | |
889 | struct ip_msource *ims; | |
890 | struct in_msource *lims; | |
891 | ||
892 | RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) { | |
893 | lims = (struct in_msource *)ims; | |
894 | lims->imsl_st[1] = MCAST_UNDEFINED; | |
895 | } | |
896 | imf->imf_st[1] = MCAST_INCLUDE; | |
897 | } | |
898 | ||
899 | /* | |
900 | * Mark socket-layer filter set deltas as committed. | |
901 | * | |
902 | * Caller is expected to be holding imo_lock. | |
903 | */ | |
904 | static void | |
905 | imf_commit(struct in_mfilter *imf) | |
906 | { | |
907 | struct ip_msource *ims; | |
908 | struct in_msource *lims; | |
909 | ||
910 | RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) { | |
911 | lims = (struct in_msource *)ims; | |
912 | lims->imsl_st[0] = lims->imsl_st[1]; | |
913 | } | |
914 | imf->imf_st[0] = imf->imf_st[1]; | |
915 | } | |
916 | ||
917 | /* | |
918 | * Reap unreferenced sources from socket-layer filter set. | |
919 | * | |
920 | * Caller is expected to be holding imo_lock. | |
921 | */ | |
922 | static void | |
923 | imf_reap(struct in_mfilter *imf) | |
924 | { | |
925 | struct ip_msource *ims, *tims; | |
926 | struct in_msource *lims; | |
927 | ||
928 | RB_FOREACH_SAFE(ims, ip_msource_tree, &imf->imf_sources, tims) { | |
929 | lims = (struct in_msource *)ims; | |
930 | if ((lims->imsl_st[0] == MCAST_UNDEFINED) && | |
931 | (lims->imsl_st[1] == MCAST_UNDEFINED)) { | |
932 | IGMP_PRINTF(("%s: free inms 0x%llx\n", __func__, | |
933 | (uint64_t)VM_KERNEL_ADDRPERM(lims))); | |
934 | RB_REMOVE(ip_msource_tree, &imf->imf_sources, ims); | |
935 | inms_free(lims); | |
936 | imf->imf_nsrc--; | |
937 | } | |
938 | } | |
939 | } | |
940 | ||
941 | /* | |
942 | * Purge socket-layer filter set. | |
943 | * | |
944 | * Caller is expected to be holding imo_lock. | |
945 | */ | |
946 | void | |
947 | imf_purge(struct in_mfilter *imf) | |
948 | { | |
949 | struct ip_msource *ims, *tims; | |
950 | struct in_msource *lims; | |
951 | ||
952 | RB_FOREACH_SAFE(ims, ip_msource_tree, &imf->imf_sources, tims) { | |
953 | lims = (struct in_msource *)ims; | |
954 | IGMP_PRINTF(("%s: free inms 0x%llx\n", __func__, | |
955 | (uint64_t)VM_KERNEL_ADDRPERM(lims))); | |
956 | RB_REMOVE(ip_msource_tree, &imf->imf_sources, ims); | |
957 | inms_free(lims); | |
958 | imf->imf_nsrc--; | |
959 | } | |
960 | imf->imf_st[0] = imf->imf_st[1] = MCAST_UNDEFINED; | |
961 | VERIFY(RB_EMPTY(&imf->imf_sources)); | |
962 | } | |
963 | ||
964 | /* | |
965 | * Look up a source filter entry for a multicast group. | |
966 | * | |
967 | * inm is the group descriptor to work with. | |
968 | * haddr is the host-byte-order IPv4 address to look up. | |
969 | * noalloc may be non-zero to suppress allocation of sources. | |
970 | * *pims will be set to the address of the retrieved or allocated source. | |
971 | * | |
972 | * Return 0 if successful, otherwise return a non-zero error code. | |
973 | */ | |
974 | static int | |
975 | inm_get_source(struct in_multi *inm, const in_addr_t haddr, | |
976 | const int noalloc, struct ip_msource **pims) | |
977 | { | |
978 | struct ip_msource find; | |
979 | struct ip_msource *ims, *nims; | |
980 | #ifdef IGMP_DEBUG | |
981 | struct in_addr ia; | |
982 | char buf[MAX_IPv4_STR_LEN]; | |
983 | #endif | |
984 | INM_LOCK_ASSERT_HELD(inm); | |
985 | ||
986 | find.ims_haddr = haddr; | |
987 | ims = RB_FIND(ip_msource_tree, &inm->inm_srcs, &find); | |
988 | if (ims == NULL && !noalloc) { | |
989 | if (inm->inm_nsrc == in_mcast_maxgrpsrc) { | |
990 | return ENOSPC; | |
991 | } | |
992 | nims = ipms_alloc(M_WAITOK); | |
993 | if (nims == NULL) { | |
994 | return ENOMEM; | |
995 | } | |
996 | nims->ims_haddr = haddr; | |
997 | RB_INSERT(ip_msource_tree, &inm->inm_srcs, nims); | |
998 | ++inm->inm_nsrc; | |
999 | ims = nims; | |
1000 | #ifdef IGMP_DEBUG | |
1001 | ia.s_addr = htonl(haddr); | |
1002 | inet_ntop(AF_INET, &ia, buf, sizeof(buf)); | |
1003 | IGMP_PRINTF(("%s: allocated %s as 0x%llx\n", __func__, | |
1004 | buf, (uint64_t)VM_KERNEL_ADDRPERM(ims))); | |
1005 | #endif | |
1006 | } | |
1007 | ||
1008 | *pims = ims; | |
1009 | return 0; | |
1010 | } | |
1011 | ||
1012 | /* | |
1013 | * Helper function to derive the filter mode on a source entry | |
1014 | * from its internal counters. Predicates are: | |
1015 | * A source is only excluded if all listeners exclude it. | |
1016 | * A source is only included if no listeners exclude it, | |
1017 | * and at least one listener includes it. | |
1018 | * May be used by ifmcstat(8). | |
1019 | */ | |
1020 | uint8_t | |
1021 | ims_get_mode(const struct in_multi *inm, const struct ip_msource *ims, | |
1022 | uint8_t t) | |
1023 | { | |
1024 | INM_LOCK_ASSERT_HELD(__DECONST(struct in_multi *, inm)); | |
1025 | ||
1026 | t = !!t; | |
1027 | if (inm->inm_st[t].iss_ex > 0 && | |
1028 | inm->inm_st[t].iss_ex == ims->ims_st[t].ex) { | |
1029 | return MCAST_EXCLUDE; | |
1030 | } else if (ims->ims_st[t].in > 0 && ims->ims_st[t].ex == 0) { | |
1031 | return MCAST_INCLUDE; | |
1032 | } | |
1033 | return MCAST_UNDEFINED; | |
1034 | } | |
1035 | ||
1036 | /* | |
1037 | * Merge socket-layer source into IGMP-layer source. | |
1038 | * If rollback is non-zero, perform the inverse of the merge. | |
1039 | */ | |
1040 | static void | |
1041 | ims_merge(struct ip_msource *ims, const struct in_msource *lims, | |
1042 | const int rollback) | |
1043 | { | |
1044 | int n = rollback ? -1 : 1; | |
1045 | #ifdef IGMP_DEBUG | |
1046 | struct in_addr ia; | |
1047 | ||
1048 | ia.s_addr = htonl(ims->ims_haddr); | |
1049 | #endif | |
1050 | ||
1051 | if (lims->imsl_st[0] == MCAST_EXCLUDE) { | |
1052 | IGMP_INET_PRINTF(ia, | |
1053 | ("%s: t1 ex -= %d on %s\n", | |
1054 | __func__, n, _igmp_inet_buf)); | |
1055 | ims->ims_st[1].ex -= n; | |
1056 | } else if (lims->imsl_st[0] == MCAST_INCLUDE) { | |
1057 | IGMP_INET_PRINTF(ia, | |
1058 | ("%s: t1 in -= %d on %s\n", | |
1059 | __func__, n, _igmp_inet_buf)); | |
1060 | ims->ims_st[1].in -= n; | |
1061 | } | |
1062 | ||
1063 | if (lims->imsl_st[1] == MCAST_EXCLUDE) { | |
1064 | IGMP_INET_PRINTF(ia, | |
1065 | ("%s: t1 ex += %d on %s\n", | |
1066 | __func__, n, _igmp_inet_buf)); | |
1067 | ims->ims_st[1].ex += n; | |
1068 | } else if (lims->imsl_st[1] == MCAST_INCLUDE) { | |
1069 | IGMP_INET_PRINTF(ia, | |
1070 | ("%s: t1 in += %d on %s\n", | |
1071 | __func__, n, _igmp_inet_buf)); | |
1072 | ims->ims_st[1].in += n; | |
1073 | } | |
1074 | } | |
1075 | ||
1076 | /* | |
1077 | * Atomically update the global in_multi state, when a membership's | |
1078 | * filter list is being updated in any way. | |
1079 | * | |
1080 | * imf is the per-inpcb-membership group filter pointer. | |
1081 | * A fake imf may be passed for in-kernel consumers. | |
1082 | * | |
1083 | * XXX This is a candidate for a set-symmetric-difference style loop | |
1084 | * which would eliminate the repeated lookup from root of ims nodes, | |
1085 | * as they share the same key space. | |
1086 | * | |
1087 | * If any error occurred this function will back out of refcounts | |
1088 | * and return a non-zero value. | |
1089 | */ | |
1090 | static int | |
1091 | inm_merge(struct in_multi *inm, /*const*/ struct in_mfilter *imf) | |
1092 | { | |
1093 | struct ip_msource *ims, *nims = NULL; | |
1094 | struct in_msource *lims; | |
1095 | int schanged, error; | |
1096 | int nsrc0, nsrc1; | |
1097 | ||
1098 | INM_LOCK_ASSERT_HELD(inm); | |
1099 | ||
1100 | schanged = 0; | |
1101 | error = 0; | |
1102 | nsrc1 = nsrc0 = 0; | |
1103 | ||
1104 | /* | |
1105 | * Update the source filters first, as this may fail. | |
1106 | * Maintain count of in-mode filters at t0, t1. These are | |
1107 | * used to work out if we transition into ASM mode or not. | |
1108 | * Maintain a count of source filters whose state was | |
1109 | * actually modified by this operation. | |
1110 | */ | |
1111 | RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) { | |
1112 | lims = (struct in_msource *)ims; | |
1113 | if (lims->imsl_st[0] == imf->imf_st[0]) { | |
1114 | nsrc0++; | |
1115 | } | |
1116 | if (lims->imsl_st[1] == imf->imf_st[1]) { | |
1117 | nsrc1++; | |
1118 | } | |
1119 | if (lims->imsl_st[0] == lims->imsl_st[1]) { | |
1120 | continue; | |
1121 | } | |
1122 | error = inm_get_source(inm, lims->ims_haddr, 0, &nims); | |
1123 | ++schanged; | |
1124 | if (error) { | |
1125 | break; | |
1126 | } | |
1127 | ims_merge(nims, lims, 0); | |
1128 | } | |
1129 | if (error) { | |
1130 | struct ip_msource *bims; | |
1131 | ||
1132 | RB_FOREACH_REVERSE_FROM(ims, ip_msource_tree, nims) { | |
1133 | lims = (struct in_msource *)ims; | |
1134 | if (lims->imsl_st[0] == lims->imsl_st[1]) { | |
1135 | continue; | |
1136 | } | |
1137 | (void) inm_get_source(inm, lims->ims_haddr, 1, &bims); | |
1138 | if (bims == NULL) { | |
1139 | continue; | |
1140 | } | |
1141 | ims_merge(bims, lims, 1); | |
1142 | } | |
1143 | goto out_reap; | |
1144 | } | |
1145 | ||
1146 | IGMP_PRINTF(("%s: imf filters in-mode: %d at t0, %d at t1\n", | |
1147 | __func__, nsrc0, nsrc1)); | |
1148 | ||
1149 | /* Handle transition between INCLUDE {n} and INCLUDE {} on socket. */ | |
1150 | if (imf->imf_st[0] == imf->imf_st[1] && | |
1151 | imf->imf_st[1] == MCAST_INCLUDE) { | |
1152 | if (nsrc1 == 0) { | |
1153 | IGMP_PRINTF(("%s: --in on inm at t1\n", __func__)); | |
1154 | --inm->inm_st[1].iss_in; | |
1155 | } | |
1156 | } | |
1157 | ||
1158 | /* Handle filter mode transition on socket. */ | |
1159 | if (imf->imf_st[0] != imf->imf_st[1]) { | |
1160 | IGMP_PRINTF(("%s: imf transition %d to %d\n", | |
1161 | __func__, imf->imf_st[0], imf->imf_st[1])); | |
1162 | ||
1163 | if (imf->imf_st[0] == MCAST_EXCLUDE) { | |
1164 | IGMP_PRINTF(("%s: --ex on inm at t1\n", __func__)); | |
1165 | --inm->inm_st[1].iss_ex; | |
1166 | } else if (imf->imf_st[0] == MCAST_INCLUDE) { | |
1167 | IGMP_PRINTF(("%s: --in on inm at t1\n", __func__)); | |
1168 | --inm->inm_st[1].iss_in; | |
1169 | } | |
1170 | ||
1171 | if (imf->imf_st[1] == MCAST_EXCLUDE) { | |
1172 | IGMP_PRINTF(("%s: ex++ on inm at t1\n", __func__)); | |
1173 | inm->inm_st[1].iss_ex++; | |
1174 | } else if (imf->imf_st[1] == MCAST_INCLUDE && nsrc1 > 0) { | |
1175 | IGMP_PRINTF(("%s: in++ on inm at t1\n", __func__)); | |
1176 | inm->inm_st[1].iss_in++; | |
1177 | } | |
1178 | } | |
1179 | ||
1180 | /* | |
1181 | * Track inm filter state in terms of listener counts. | |
1182 | * If there are any exclusive listeners, stack-wide | |
1183 | * membership is exclusive. | |
1184 | * Otherwise, if only inclusive listeners, stack-wide is inclusive. | |
1185 | * If no listeners remain, state is undefined at t1, | |
1186 | * and the IGMP lifecycle for this group should finish. | |
1187 | */ | |
1188 | if (inm->inm_st[1].iss_ex > 0) { | |
1189 | IGMP_PRINTF(("%s: transition to EX\n", __func__)); | |
1190 | inm->inm_st[1].iss_fmode = MCAST_EXCLUDE; | |
1191 | } else if (inm->inm_st[1].iss_in > 0) { | |
1192 | IGMP_PRINTF(("%s: transition to IN\n", __func__)); | |
1193 | inm->inm_st[1].iss_fmode = MCAST_INCLUDE; | |
1194 | } else { | |
1195 | IGMP_PRINTF(("%s: transition to UNDEF\n", __func__)); | |
1196 | inm->inm_st[1].iss_fmode = MCAST_UNDEFINED; | |
1197 | } | |
1198 | ||
1199 | /* Decrement ASM listener count on transition out of ASM mode. */ | |
1200 | if (imf->imf_st[0] == MCAST_EXCLUDE && nsrc0 == 0) { | |
1201 | if ((imf->imf_st[1] != MCAST_EXCLUDE) || | |
1202 | (imf->imf_st[1] == MCAST_EXCLUDE && nsrc1 > 0)) { | |
1203 | IGMP_PRINTF(("%s: --asm on inm at t1\n", __func__)); | |
1204 | --inm->inm_st[1].iss_asm; | |
1205 | } | |
1206 | } | |
1207 | ||
1208 | /* Increment ASM listener count on transition to ASM mode. */ | |
1209 | if (imf->imf_st[1] == MCAST_EXCLUDE && nsrc1 == 0) { | |
1210 | IGMP_PRINTF(("%s: asm++ on inm at t1\n", __func__)); | |
1211 | inm->inm_st[1].iss_asm++; | |
1212 | } | |
1213 | ||
1214 | IGMP_PRINTF(("%s: merged imf 0x%llx to inm 0x%llx\n", __func__, | |
1215 | (uint64_t)VM_KERNEL_ADDRPERM(imf), | |
1216 | (uint64_t)VM_KERNEL_ADDRPERM(inm))); | |
1217 | inm_print(inm); | |
1218 | ||
1219 | out_reap: | |
1220 | if (schanged > 0) { | |
1221 | IGMP_PRINTF(("%s: sources changed; reaping\n", __func__)); | |
1222 | inm_reap(inm); | |
1223 | } | |
1224 | return error; | |
1225 | } | |
1226 | ||
1227 | /* | |
1228 | * Mark an in_multi's filter set deltas as committed. | |
1229 | * Called by IGMP after a state change has been enqueued. | |
1230 | */ | |
1231 | void | |
1232 | inm_commit(struct in_multi *inm) | |
1233 | { | |
1234 | struct ip_msource *ims; | |
1235 | ||
1236 | INM_LOCK_ASSERT_HELD(inm); | |
1237 | ||
1238 | IGMP_PRINTF(("%s: commit inm 0x%llx\n", __func__, | |
1239 | (uint64_t)VM_KERNEL_ADDRPERM(inm))); | |
1240 | IGMP_PRINTF(("%s: pre commit:\n", __func__)); | |
1241 | inm_print(inm); | |
1242 | ||
1243 | RB_FOREACH(ims, ip_msource_tree, &inm->inm_srcs) { | |
1244 | ims->ims_st[0] = ims->ims_st[1]; | |
1245 | } | |
1246 | inm->inm_st[0] = inm->inm_st[1]; | |
1247 | } | |
1248 | ||
1249 | /* | |
1250 | * Reap unreferenced nodes from an in_multi's filter set. | |
1251 | */ | |
1252 | static void | |
1253 | inm_reap(struct in_multi *inm) | |
1254 | { | |
1255 | struct ip_msource *ims, *tims; | |
1256 | ||
1257 | INM_LOCK_ASSERT_HELD(inm); | |
1258 | ||
1259 | RB_FOREACH_SAFE(ims, ip_msource_tree, &inm->inm_srcs, tims) { | |
1260 | if (ims->ims_st[0].ex > 0 || ims->ims_st[0].in > 0 || | |
1261 | ims->ims_st[1].ex > 0 || ims->ims_st[1].in > 0 || | |
1262 | ims->ims_stp != 0) { | |
1263 | continue; | |
1264 | } | |
1265 | IGMP_PRINTF(("%s: free ims 0x%llx\n", __func__, | |
1266 | (uint64_t)VM_KERNEL_ADDRPERM(ims))); | |
1267 | RB_REMOVE(ip_msource_tree, &inm->inm_srcs, ims); | |
1268 | ipms_free(ims); | |
1269 | inm->inm_nsrc--; | |
1270 | } | |
1271 | } | |
1272 | ||
1273 | /* | |
1274 | * Purge all source nodes from an in_multi's filter set. | |
1275 | */ | |
1276 | void | |
1277 | inm_purge(struct in_multi *inm) | |
1278 | { | |
1279 | struct ip_msource *ims, *tims; | |
1280 | ||
1281 | INM_LOCK_ASSERT_HELD(inm); | |
1282 | ||
1283 | RB_FOREACH_SAFE(ims, ip_msource_tree, &inm->inm_srcs, tims) { | |
1284 | IGMP_PRINTF(("%s: free ims 0x%llx\n", __func__, | |
1285 | (uint64_t)VM_KERNEL_ADDRPERM(ims))); | |
1286 | RB_REMOVE(ip_msource_tree, &inm->inm_srcs, ims); | |
1287 | ipms_free(ims); | |
1288 | inm->inm_nsrc--; | |
1289 | } | |
1290 | } | |
1291 | ||
1292 | /* | |
1293 | * Join a multicast group; real entry point. | |
1294 | * | |
1295 | * Only preserves atomicity at inm level. | |
1296 | * NOTE: imf argument cannot be const due to sys/tree.h limitations. | |
1297 | * | |
1298 | * If the IGMP downcall fails, the group is not joined, and an error | |
1299 | * code is returned. | |
1300 | */ | |
1301 | static int | |
1302 | in_joingroup(struct ifnet *ifp, const struct in_addr *gina, | |
1303 | /*const*/ struct in_mfilter *imf, struct in_multi **pinm) | |
1304 | { | |
1305 | struct in_mfilter timf; | |
1306 | struct in_multi *inm = NULL; | |
1307 | int error = 0; | |
1308 | struct igmp_tparams itp; | |
1309 | ||
1310 | IGMP_INET_PRINTF(*gina, ("%s: join %s on 0x%llx(%s))\n", __func__, | |
1311 | _igmp_inet_buf, (uint64_t)VM_KERNEL_ADDRPERM(ifp), if_name(ifp))); | |
1312 | ||
1313 | bzero(&itp, sizeof(itp)); | |
1314 | *pinm = NULL; | |
1315 | ||
1316 | /* | |
1317 | * If no imf was specified (i.e. kernel consumer), | |
1318 | * fake one up and assume it is an ASM join. | |
1319 | */ | |
1320 | if (imf == NULL) { | |
1321 | imf_init(&timf, MCAST_UNDEFINED, MCAST_EXCLUDE); | |
1322 | imf = &timf; | |
1323 | } | |
1324 | ||
1325 | error = in_getmulti(ifp, gina, &inm); | |
1326 | if (error) { | |
1327 | IGMP_PRINTF(("%s: in_getmulti() failure\n", __func__)); | |
1328 | return error; | |
1329 | } | |
1330 | ||
1331 | IGMP_PRINTF(("%s: merge inm state\n", __func__)); | |
1332 | ||
1333 | INM_LOCK(inm); | |
1334 | error = inm_merge(inm, imf); | |
1335 | if (error) { | |
1336 | IGMP_PRINTF(("%s: failed to merge inm state\n", __func__)); | |
1337 | goto out_inm_release; | |
1338 | } | |
1339 | ||
1340 | IGMP_PRINTF(("%s: doing igmp downcall\n", __func__)); | |
1341 | error = igmp_change_state(inm, &itp); | |
1342 | if (error) { | |
1343 | IGMP_PRINTF(("%s: failed to update source\n", __func__)); | |
1344 | imf_rollback(imf); | |
1345 | goto out_inm_release; | |
1346 | } | |
1347 | ||
1348 | out_inm_release: | |
1349 | if (error) { | |
1350 | IGMP_PRINTF(("%s: dropping ref on 0x%llx\n", __func__, | |
1351 | (uint64_t)VM_KERNEL_ADDRPERM(inm))); | |
1352 | INM_UNLOCK(inm); | |
1353 | INM_REMREF(inm); | |
1354 | } else { | |
1355 | INM_UNLOCK(inm); | |
1356 | *pinm = inm; /* keep refcount from in_getmulti() */ | |
1357 | } | |
1358 | ||
1359 | /* schedule timer now that we've dropped the lock(s) */ | |
1360 | igmp_set_timeout(&itp); | |
1361 | ||
1362 | return error; | |
1363 | } | |
1364 | ||
1365 | /* | |
1366 | * Leave a multicast group; real entry point. | |
1367 | * All source filters will be expunged. | |
1368 | * | |
1369 | * Only preserves atomicity at inm level. | |
1370 | * | |
1371 | * Note: This is not the same as inm_release(*) as this function also | |
1372 | * makes a state change downcall into IGMP. | |
1373 | */ | |
1374 | int | |
1375 | in_leavegroup(struct in_multi *inm, /*const*/ struct in_mfilter *imf) | |
1376 | { | |
1377 | struct in_mfilter timf; | |
1378 | int error, lastref; | |
1379 | struct igmp_tparams itp; | |
1380 | ||
1381 | bzero(&itp, sizeof(itp)); | |
1382 | error = 0; | |
1383 | ||
1384 | INM_LOCK_ASSERT_NOTHELD(inm); | |
1385 | ||
1386 | in_multihead_lock_exclusive(); | |
1387 | INM_LOCK(inm); | |
1388 | ||
1389 | IGMP_INET_PRINTF(inm->inm_addr, | |
1390 | ("%s: leave inm 0x%llx, %s/%s%d, imf 0x%llx\n", __func__, | |
1391 | (uint64_t)VM_KERNEL_ADDRPERM(inm), _igmp_inet_buf, | |
1392 | (inm_is_ifp_detached(inm) ? "null" : inm->inm_ifp->if_name), | |
1393 | inm->inm_ifp->if_unit, (uint64_t)VM_KERNEL_ADDRPERM(imf))); | |
1394 | ||
1395 | /* | |
1396 | * If no imf was specified (i.e. kernel consumer), | |
1397 | * fake one up and assume it is an ASM join. | |
1398 | */ | |
1399 | if (imf == NULL) { | |
1400 | imf_init(&timf, MCAST_EXCLUDE, MCAST_UNDEFINED); | |
1401 | imf = &timf; | |
1402 | } | |
1403 | ||
1404 | /* | |
1405 | * Begin state merge transaction at IGMP layer. | |
1406 | * | |
1407 | * As this particular invocation should not cause any memory | |
1408 | * to be allocated, and there is no opportunity to roll back | |
1409 | * the transaction, it MUST NOT fail. | |
1410 | */ | |
1411 | IGMP_PRINTF(("%s: merge inm state\n", __func__)); | |
1412 | ||
1413 | error = inm_merge(inm, imf); | |
1414 | KASSERT(error == 0, ("%s: failed to merge inm state\n", __func__)); | |
1415 | ||
1416 | IGMP_PRINTF(("%s: doing igmp downcall\n", __func__)); | |
1417 | error = igmp_change_state(inm, &itp); | |
1418 | #if IGMP_DEBUG | |
1419 | if (error) { | |
1420 | IGMP_PRINTF(("%s: failed igmp downcall\n", __func__)); | |
1421 | } | |
1422 | #endif | |
1423 | lastref = in_multi_detach(inm); | |
1424 | VERIFY(!lastref || (!(inm->inm_debug & IFD_ATTACHED) && | |
1425 | inm->inm_reqcnt == 0)); | |
1426 | INM_UNLOCK(inm); | |
1427 | in_multihead_lock_done(); | |
1428 | ||
1429 | if (lastref) { | |
1430 | INM_REMREF(inm); /* for in_multihead list */ | |
1431 | } | |
1432 | /* schedule timer now that we've dropped the lock(s) */ | |
1433 | igmp_set_timeout(&itp); | |
1434 | ||
1435 | return error; | |
1436 | } | |
1437 | ||
1438 | /* | |
1439 | * Join an IPv4 multicast group in (*,G) exclusive mode. | |
1440 | * The group must be a 224.0.0.0/24 link-scope group. | |
1441 | * This KPI is for legacy kernel consumers only. | |
1442 | */ | |
1443 | struct in_multi * | |
1444 | in_addmulti(struct in_addr *ap, struct ifnet *ifp) | |
1445 | { | |
1446 | struct in_multi *pinm = NULL; | |
1447 | int error; | |
1448 | ||
1449 | KASSERT(IN_LOCAL_GROUP(ntohl(ap->s_addr)), | |
1450 | ("%s: %s not in 224.0.0.0/24\n", __func__, inet_ntoa(*ap))); | |
1451 | ||
1452 | error = in_joingroup(ifp, ap, NULL, &pinm); | |
1453 | VERIFY(pinm != NULL || error != 0); | |
1454 | ||
1455 | return pinm; | |
1456 | } | |
1457 | ||
1458 | /* | |
1459 | * Leave an IPv4 multicast group, assumed to be in exclusive (*,G) mode. | |
1460 | * This KPI is for legacy kernel consumers only. | |
1461 | */ | |
1462 | void | |
1463 | in_delmulti(struct in_multi *inm) | |
1464 | { | |
1465 | (void) in_leavegroup(inm, NULL); | |
1466 | } | |
1467 | ||
1468 | /* | |
1469 | * Block or unblock an ASM multicast source on an inpcb. | |
1470 | * This implements the delta-based API described in RFC 3678. | |
1471 | * | |
1472 | * The delta-based API applies only to exclusive-mode memberships. | |
1473 | * An IGMP downcall will be performed. | |
1474 | * | |
1475 | * Return 0 if successful, otherwise return an appropriate error code. | |
1476 | */ | |
1477 | static int | |
1478 | inp_block_unblock_source(struct inpcb *inp, struct sockopt *sopt) | |
1479 | { | |
1480 | struct group_source_req gsr; | |
1481 | struct sockaddr_in *gsa, *ssa; | |
1482 | struct ifnet *ifp; | |
1483 | struct in_mfilter *imf; | |
1484 | struct ip_moptions *imo; | |
1485 | struct in_msource *ims; | |
1486 | struct in_multi *inm; | |
1487 | size_t idx; | |
1488 | uint16_t fmode; | |
1489 | int error, doblock; | |
1490 | unsigned int ifindex = 0; | |
1491 | struct igmp_tparams itp; | |
1492 | ||
1493 | bzero(&itp, sizeof(itp)); | |
1494 | ifp = NULL; | |
1495 | error = 0; | |
1496 | doblock = 0; | |
1497 | ||
1498 | memset(&gsr, 0, sizeof(struct group_source_req)); | |
1499 | gsa = (struct sockaddr_in *)&gsr.gsr_group; | |
1500 | ssa = (struct sockaddr_in *)&gsr.gsr_source; | |
1501 | ||
1502 | switch (sopt->sopt_name) { | |
1503 | case IP_BLOCK_SOURCE: | |
1504 | case IP_UNBLOCK_SOURCE: { | |
1505 | struct ip_mreq_source mreqs; | |
1506 | ||
1507 | error = sooptcopyin(sopt, &mreqs, | |
1508 | sizeof(struct ip_mreq_source), | |
1509 | sizeof(struct ip_mreq_source)); | |
1510 | if (error) { | |
1511 | return error; | |
1512 | } | |
1513 | ||
1514 | gsa->sin_family = AF_INET; | |
1515 | gsa->sin_len = sizeof(struct sockaddr_in); | |
1516 | gsa->sin_addr = mreqs.imr_multiaddr; | |
1517 | ||
1518 | ssa->sin_family = AF_INET; | |
1519 | ssa->sin_len = sizeof(struct sockaddr_in); | |
1520 | ssa->sin_addr = mreqs.imr_sourceaddr; | |
1521 | ||
1522 | if (!in_nullhost(mreqs.imr_interface)) { | |
1523 | ifp = ip_multicast_if(&mreqs.imr_interface, &ifindex); | |
1524 | } | |
1525 | ||
1526 | if (sopt->sopt_name == IP_BLOCK_SOURCE) { | |
1527 | doblock = 1; | |
1528 | } | |
1529 | ||
1530 | IGMP_INET_PRINTF(mreqs.imr_interface, | |
1531 | ("%s: imr_interface = %s, ifp = 0x%llx\n", __func__, | |
1532 | _igmp_inet_buf, (uint64_t)VM_KERNEL_ADDRPERM(ifp))); | |
1533 | break; | |
1534 | } | |
1535 | ||
1536 | case MCAST_BLOCK_SOURCE: | |
1537 | case MCAST_UNBLOCK_SOURCE: | |
1538 | error = sooptcopyin(sopt, &gsr, | |
1539 | sizeof(struct group_source_req), | |
1540 | sizeof(struct group_source_req)); | |
1541 | if (error) { | |
1542 | return error; | |
1543 | } | |
1544 | ||
1545 | if (gsa->sin_family != AF_INET || | |
1546 | gsa->sin_len != sizeof(struct sockaddr_in)) { | |
1547 | return EINVAL; | |
1548 | } | |
1549 | ||
1550 | if (ssa->sin_family != AF_INET || | |
1551 | ssa->sin_len != sizeof(struct sockaddr_in)) { | |
1552 | return EINVAL; | |
1553 | } | |
1554 | ||
1555 | ifnet_head_lock_shared(); | |
1556 | if (gsr.gsr_interface == 0 || | |
1557 | (u_int)if_index < gsr.gsr_interface) { | |
1558 | ifnet_head_done(); | |
1559 | return EADDRNOTAVAIL; | |
1560 | } | |
1561 | ||
1562 | ifp = ifindex2ifnet[gsr.gsr_interface]; | |
1563 | ifnet_head_done(); | |
1564 | ||
1565 | if (ifp == NULL) { | |
1566 | return EADDRNOTAVAIL; | |
1567 | } | |
1568 | ||
1569 | if (sopt->sopt_name == MCAST_BLOCK_SOURCE) { | |
1570 | doblock = 1; | |
1571 | } | |
1572 | break; | |
1573 | ||
1574 | default: | |
1575 | IGMP_PRINTF(("%s: unknown sopt_name %d\n", | |
1576 | __func__, sopt->sopt_name)); | |
1577 | return EOPNOTSUPP; | |
1578 | } | |
1579 | ||
1580 | if (!IN_MULTICAST(ntohl(gsa->sin_addr.s_addr))) { | |
1581 | return EINVAL; | |
1582 | } | |
1583 | ||
1584 | /* | |
1585 | * Check if we are actually a member of this group. | |
1586 | */ | |
1587 | imo = inp_findmoptions(inp); | |
1588 | if (imo == NULL) { | |
1589 | return ENOMEM; | |
1590 | } | |
1591 | ||
1592 | IMO_LOCK(imo); | |
1593 | idx = imo_match_group(imo, ifp, gsa); | |
1594 | if (idx == (size_t)-1 || imo->imo_mfilters == NULL) { | |
1595 | error = EADDRNOTAVAIL; | |
1596 | goto out_imo_locked; | |
1597 | } | |
1598 | ||
1599 | VERIFY(imo->imo_mfilters != NULL); | |
1600 | imf = &imo->imo_mfilters[idx]; | |
1601 | inm = imo->imo_membership[idx]; | |
1602 | ||
1603 | /* | |
1604 | * Attempting to use the delta-based API on an | |
1605 | * non exclusive-mode membership is an error. | |
1606 | */ | |
1607 | fmode = imf->imf_st[0]; | |
1608 | if (fmode != MCAST_EXCLUDE) { | |
1609 | error = EINVAL; | |
1610 | goto out_imo_locked; | |
1611 | } | |
1612 | ||
1613 | /* | |
1614 | * Deal with error cases up-front: | |
1615 | * Asked to block, but already blocked; or | |
1616 | * Asked to unblock, but nothing to unblock. | |
1617 | * If adding a new block entry, allocate it. | |
1618 | */ | |
1619 | ims = imo_match_source(imo, idx, ssa); | |
1620 | if ((ims != NULL && doblock) || (ims == NULL && !doblock)) { | |
1621 | IGMP_INET_PRINTF(ssa->sin_addr, | |
1622 | ("%s: source %s %spresent\n", __func__, | |
1623 | _igmp_inet_buf, doblock ? "" : "not ")); | |
1624 | error = EADDRNOTAVAIL; | |
1625 | goto out_imo_locked; | |
1626 | } | |
1627 | ||
1628 | /* | |
1629 | * Begin state merge transaction at socket layer. | |
1630 | */ | |
1631 | if (doblock) { | |
1632 | IGMP_PRINTF(("%s: %s source\n", __func__, "block")); | |
1633 | ims = imf_graft(imf, fmode, ssa); | |
1634 | if (ims == NULL) { | |
1635 | error = ENOMEM; | |
1636 | } | |
1637 | } else { | |
1638 | IGMP_PRINTF(("%s: %s source\n", __func__, "allow")); | |
1639 | error = imf_prune(imf, ssa); | |
1640 | } | |
1641 | ||
1642 | if (error) { | |
1643 | IGMP_PRINTF(("%s: merge imf state failed\n", __func__)); | |
1644 | goto out_imf_rollback; | |
1645 | } | |
1646 | ||
1647 | /* | |
1648 | * Begin state merge transaction at IGMP layer. | |
1649 | */ | |
1650 | INM_LOCK(inm); | |
1651 | IGMP_PRINTF(("%s: merge inm state\n", __func__)); | |
1652 | error = inm_merge(inm, imf); | |
1653 | if (error) { | |
1654 | IGMP_PRINTF(("%s: failed to merge inm state\n", __func__)); | |
1655 | INM_UNLOCK(inm); | |
1656 | goto out_imf_rollback; | |
1657 | } | |
1658 | ||
1659 | IGMP_PRINTF(("%s: doing igmp downcall\n", __func__)); | |
1660 | error = igmp_change_state(inm, &itp); | |
1661 | INM_UNLOCK(inm); | |
1662 | #if IGMP_DEBUG | |
1663 | if (error) { | |
1664 | IGMP_PRINTF(("%s: failed igmp downcall\n", __func__)); | |
1665 | } | |
1666 | #endif | |
1667 | ||
1668 | out_imf_rollback: | |
1669 | if (error) { | |
1670 | imf_rollback(imf); | |
1671 | } else { | |
1672 | imf_commit(imf); | |
1673 | } | |
1674 | ||
1675 | imf_reap(imf); | |
1676 | ||
1677 | out_imo_locked: | |
1678 | IMO_UNLOCK(imo); | |
1679 | IMO_REMREF(imo); /* from inp_findmoptions() */ | |
1680 | ||
1681 | /* schedule timer now that we've dropped the lock(s) */ | |
1682 | igmp_set_timeout(&itp); | |
1683 | ||
1684 | return error; | |
1685 | } | |
1686 | ||
1687 | /* | |
1688 | * Given an inpcb, return its multicast options structure pointer. | |
1689 | * | |
1690 | * Caller is responsible for locking the inpcb, and releasing the | |
1691 | * extra reference held on the imo, upon a successful return. | |
1692 | */ | |
1693 | static struct ip_moptions * | |
1694 | inp_findmoptions(struct inpcb *inp) | |
1695 | { | |
1696 | struct ip_moptions *imo; | |
1697 | struct in_multi **immp; | |
1698 | struct in_mfilter *imfp; | |
1699 | size_t idx; | |
1700 | ||
1701 | if ((imo = inp->inp_moptions) != NULL) { | |
1702 | IMO_ADDREF(imo); /* for caller */ | |
1703 | return imo; | |
1704 | } | |
1705 | ||
1706 | imo = ip_allocmoptions(M_WAITOK); | |
1707 | if (imo == NULL) { | |
1708 | return NULL; | |
1709 | } | |
1710 | ||
1711 | immp = _MALLOC(sizeof(*immp) * IP_MIN_MEMBERSHIPS, M_IPMOPTS, | |
1712 | M_WAITOK | M_ZERO); | |
1713 | if (immp == NULL) { | |
1714 | IMO_REMREF(imo); | |
1715 | return NULL; | |
1716 | } | |
1717 | ||
1718 | imfp = _MALLOC(sizeof(struct in_mfilter) * IP_MIN_MEMBERSHIPS, | |
1719 | M_INMFILTER, M_WAITOK | M_ZERO); | |
1720 | if (imfp == NULL) { | |
1721 | _FREE(immp, M_IPMOPTS); | |
1722 | IMO_REMREF(imo); | |
1723 | return NULL; | |
1724 | } | |
1725 | ||
1726 | imo->imo_multicast_ifp = NULL; | |
1727 | imo->imo_multicast_addr.s_addr = INADDR_ANY; | |
1728 | imo->imo_multicast_vif = -1; | |
1729 | imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL; | |
1730 | imo->imo_multicast_loop = in_mcast_loop; | |
1731 | imo->imo_num_memberships = 0; | |
1732 | imo->imo_max_memberships = IP_MIN_MEMBERSHIPS; | |
1733 | imo->imo_membership = immp; | |
1734 | ||
1735 | /* Initialize per-group source filters. */ | |
1736 | for (idx = 0; idx < IP_MIN_MEMBERSHIPS; idx++) { | |
1737 | imf_init(&imfp[idx], MCAST_UNDEFINED, MCAST_EXCLUDE); | |
1738 | } | |
1739 | ||
1740 | imo->imo_mfilters = imfp; | |
1741 | inp->inp_moptions = imo; /* keep reference from ip_allocmoptions() */ | |
1742 | IMO_ADDREF(imo); /* for caller */ | |
1743 | ||
1744 | return imo; | |
1745 | } | |
1746 | /* | |
1747 | * Atomically get source filters on a socket for an IPv4 multicast group. | |
1748 | */ | |
1749 | static int | |
1750 | inp_get_source_filters(struct inpcb *inp, struct sockopt *sopt) | |
1751 | { | |
1752 | struct __msfilterreq64 msfr = {}, msfr64; | |
1753 | struct __msfilterreq32 msfr32; | |
1754 | struct sockaddr_in *gsa; | |
1755 | struct ifnet *ifp; | |
1756 | struct ip_moptions *imo; | |
1757 | struct in_mfilter *imf; | |
1758 | struct ip_msource *ims; | |
1759 | struct in_msource *lims; | |
1760 | struct sockaddr_in *psin; | |
1761 | struct sockaddr_storage *ptss; | |
1762 | struct sockaddr_storage *tss; | |
1763 | int error; | |
1764 | size_t idx, nsrcs, ncsrcs; | |
1765 | user_addr_t tmp_ptr; | |
1766 | ||
1767 | imo = inp->inp_moptions; | |
1768 | VERIFY(imo != NULL); | |
1769 | ||
1770 | if (IS_64BIT_PROCESS(current_proc())) { | |
1771 | error = sooptcopyin(sopt, &msfr64, | |
1772 | sizeof(struct __msfilterreq64), | |
1773 | sizeof(struct __msfilterreq64)); | |
1774 | if (error) { | |
1775 | return error; | |
1776 | } | |
1777 | /* we never use msfr.msfr_srcs; */ | |
1778 | memcpy(&msfr, &msfr64, sizeof(msfr64)); | |
1779 | } else { | |
1780 | error = sooptcopyin(sopt, &msfr32, | |
1781 | sizeof(struct __msfilterreq32), | |
1782 | sizeof(struct __msfilterreq32)); | |
1783 | if (error) { | |
1784 | return error; | |
1785 | } | |
1786 | /* we never use msfr.msfr_srcs; */ | |
1787 | memcpy(&msfr, &msfr32, sizeof(msfr32)); | |
1788 | } | |
1789 | ||
1790 | ifnet_head_lock_shared(); | |
1791 | if (msfr.msfr_ifindex == 0 || (u_int)if_index < msfr.msfr_ifindex) { | |
1792 | ifnet_head_done(); | |
1793 | return EADDRNOTAVAIL; | |
1794 | } | |
1795 | ||
1796 | ifp = ifindex2ifnet[msfr.msfr_ifindex]; | |
1797 | ifnet_head_done(); | |
1798 | ||
1799 | if (ifp == NULL) { | |
1800 | return EADDRNOTAVAIL; | |
1801 | } | |
1802 | ||
1803 | if ((size_t) msfr.msfr_nsrcs > | |
1804 | UINT32_MAX / sizeof(struct sockaddr_storage)) { | |
1805 | msfr.msfr_nsrcs = UINT32_MAX / sizeof(struct sockaddr_storage); | |
1806 | } | |
1807 | ||
1808 | if (msfr.msfr_nsrcs > in_mcast_maxsocksrc) { | |
1809 | msfr.msfr_nsrcs = in_mcast_maxsocksrc; | |
1810 | } | |
1811 | ||
1812 | IMO_LOCK(imo); | |
1813 | /* | |
1814 | * Lookup group on the socket. | |
1815 | */ | |
1816 | gsa = (struct sockaddr_in *)&msfr.msfr_group; | |
1817 | ||
1818 | idx = imo_match_group(imo, ifp, gsa); | |
1819 | if (idx == (size_t)-1 || imo->imo_mfilters == NULL) { | |
1820 | IMO_UNLOCK(imo); | |
1821 | return EADDRNOTAVAIL; | |
1822 | } | |
1823 | imf = &imo->imo_mfilters[idx]; | |
1824 | ||
1825 | /* | |
1826 | * Ignore memberships which are in limbo. | |
1827 | */ | |
1828 | if (imf->imf_st[1] == MCAST_UNDEFINED) { | |
1829 | IMO_UNLOCK(imo); | |
1830 | return EAGAIN; | |
1831 | } | |
1832 | msfr.msfr_fmode = imf->imf_st[1]; | |
1833 | ||
1834 | /* | |
1835 | * If the user specified a buffer, copy out the source filter | |
1836 | * entries to userland gracefully. | |
1837 | * We only copy out the number of entries which userland | |
1838 | * has asked for, but we always tell userland how big the | |
1839 | * buffer really needs to be. | |
1840 | */ | |
1841 | ||
1842 | if (IS_64BIT_PROCESS(current_proc())) { | |
1843 | tmp_ptr = msfr64.msfr_srcs; | |
1844 | } else { | |
1845 | tmp_ptr = CAST_USER_ADDR_T(msfr32.msfr_srcs); | |
1846 | } | |
1847 | ||
1848 | tss = NULL; | |
1849 | if (tmp_ptr != USER_ADDR_NULL && msfr.msfr_nsrcs > 0) { | |
1850 | tss = _MALLOC((size_t) msfr.msfr_nsrcs * sizeof(*tss), | |
1851 | M_TEMP, M_WAITOK | M_ZERO); | |
1852 | if (tss == NULL) { | |
1853 | IMO_UNLOCK(imo); | |
1854 | return ENOBUFS; | |
1855 | } | |
1856 | } | |
1857 | ||
1858 | /* | |
1859 | * Count number of sources in-mode at t0. | |
1860 | * If buffer space exists and remains, copy out source entries. | |
1861 | */ | |
1862 | nsrcs = msfr.msfr_nsrcs; | |
1863 | ncsrcs = 0; | |
1864 | ptss = tss; | |
1865 | RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) { | |
1866 | lims = (struct in_msource *)ims; | |
1867 | if (lims->imsl_st[0] == MCAST_UNDEFINED || | |
1868 | lims->imsl_st[0] != imf->imf_st[0]) { | |
1869 | continue; | |
1870 | } | |
1871 | if (tss != NULL && nsrcs > 0) { | |
1872 | psin = (struct sockaddr_in *)ptss; | |
1873 | psin->sin_family = AF_INET; | |
1874 | psin->sin_len = sizeof(struct sockaddr_in); | |
1875 | psin->sin_addr.s_addr = htonl(lims->ims_haddr); | |
1876 | psin->sin_port = 0; | |
1877 | ++ptss; | |
1878 | --nsrcs; | |
1879 | ++ncsrcs; | |
1880 | } | |
1881 | } | |
1882 | ||
1883 | IMO_UNLOCK(imo); | |
1884 | ||
1885 | if (tss != NULL) { | |
1886 | error = copyout(tss, tmp_ptr, ncsrcs * sizeof(*tss)); | |
1887 | FREE(tss, M_TEMP); | |
1888 | if (error) { | |
1889 | return error; | |
1890 | } | |
1891 | } | |
1892 | ||
1893 | msfr.msfr_nsrcs = ncsrcs; | |
1894 | if (IS_64BIT_PROCESS(current_proc())) { | |
1895 | msfr64.msfr_ifindex = msfr.msfr_ifindex; | |
1896 | msfr64.msfr_fmode = msfr.msfr_fmode; | |
1897 | msfr64.msfr_nsrcs = msfr.msfr_nsrcs; | |
1898 | memcpy(&msfr64.msfr_group, &msfr.msfr_group, | |
1899 | sizeof(struct sockaddr_storage)); | |
1900 | error = sooptcopyout(sopt, &msfr64, | |
1901 | sizeof(struct __msfilterreq64)); | |
1902 | } else { | |
1903 | msfr32.msfr_ifindex = msfr.msfr_ifindex; | |
1904 | msfr32.msfr_fmode = msfr.msfr_fmode; | |
1905 | msfr32.msfr_nsrcs = msfr.msfr_nsrcs; | |
1906 | memcpy(&msfr32.msfr_group, &msfr.msfr_group, | |
1907 | sizeof(struct sockaddr_storage)); | |
1908 | error = sooptcopyout(sopt, &msfr32, | |
1909 | sizeof(struct __msfilterreq32)); | |
1910 | } | |
1911 | ||
1912 | return error; | |
1913 | } | |
1914 | ||
1915 | /* | |
1916 | * Return the IP multicast options in response to user getsockopt(). | |
1917 | */ | |
1918 | int | |
1919 | inp_getmoptions(struct inpcb *inp, struct sockopt *sopt) | |
1920 | { | |
1921 | struct ip_mreqn mreqn; | |
1922 | struct ip_moptions *imo; | |
1923 | struct ifnet *ifp; | |
1924 | struct in_ifaddr *ia; | |
1925 | int error, optval; | |
1926 | unsigned int ifindex; | |
1927 | u_char coptval; | |
1928 | ||
1929 | imo = inp->inp_moptions; | |
1930 | /* | |
1931 | * If socket is neither of type SOCK_RAW or SOCK_DGRAM, | |
1932 | * or is a divert socket, reject it. | |
1933 | */ | |
1934 | if (SOCK_PROTO(inp->inp_socket) == IPPROTO_DIVERT || | |
1935 | (SOCK_TYPE(inp->inp_socket) != SOCK_RAW && | |
1936 | SOCK_TYPE(inp->inp_socket) != SOCK_DGRAM)) { | |
1937 | return EOPNOTSUPP; | |
1938 | } | |
1939 | ||
1940 | error = 0; | |
1941 | switch (sopt->sopt_name) { | |
1942 | case IP_MULTICAST_IF: | |
1943 | memset(&mreqn, 0, sizeof(struct ip_mreqn)); | |
1944 | if (imo != NULL) { | |
1945 | IMO_LOCK(imo); | |
1946 | ifp = imo->imo_multicast_ifp; | |
1947 | if (!in_nullhost(imo->imo_multicast_addr)) { | |
1948 | mreqn.imr_address = imo->imo_multicast_addr; | |
1949 | } else if (ifp != NULL) { | |
1950 | mreqn.imr_ifindex = ifp->if_index; | |
1951 | IFP_TO_IA(ifp, ia); | |
1952 | if (ia != NULL) { | |
1953 | IFA_LOCK_SPIN(&ia->ia_ifa); | |
1954 | mreqn.imr_address = | |
1955 | IA_SIN(ia)->sin_addr; | |
1956 | IFA_UNLOCK(&ia->ia_ifa); | |
1957 | IFA_REMREF(&ia->ia_ifa); | |
1958 | } | |
1959 | } | |
1960 | IMO_UNLOCK(imo); | |
1961 | } | |
1962 | if (sopt->sopt_valsize == sizeof(struct ip_mreqn)) { | |
1963 | error = sooptcopyout(sopt, &mreqn, | |
1964 | sizeof(struct ip_mreqn)); | |
1965 | } else { | |
1966 | error = sooptcopyout(sopt, &mreqn.imr_address, | |
1967 | sizeof(struct in_addr)); | |
1968 | } | |
1969 | break; | |
1970 | ||
1971 | case IP_MULTICAST_IFINDEX: | |
1972 | if (imo != NULL) { | |
1973 | IMO_LOCK(imo); | |
1974 | } | |
1975 | if (imo == NULL || imo->imo_multicast_ifp == NULL) { | |
1976 | ifindex = 0; | |
1977 | } else { | |
1978 | ifindex = imo->imo_multicast_ifp->if_index; | |
1979 | } | |
1980 | if (imo != NULL) { | |
1981 | IMO_UNLOCK(imo); | |
1982 | } | |
1983 | error = sooptcopyout(sopt, &ifindex, sizeof(ifindex)); | |
1984 | break; | |
1985 | ||
1986 | case IP_MULTICAST_TTL: | |
1987 | if (imo == NULL) { | |
1988 | optval = coptval = IP_DEFAULT_MULTICAST_TTL; | |
1989 | } else { | |
1990 | IMO_LOCK(imo); | |
1991 | optval = coptval = imo->imo_multicast_ttl; | |
1992 | IMO_UNLOCK(imo); | |
1993 | } | |
1994 | if (sopt->sopt_valsize == sizeof(u_char)) { | |
1995 | error = sooptcopyout(sopt, &coptval, sizeof(u_char)); | |
1996 | } else { | |
1997 | error = sooptcopyout(sopt, &optval, sizeof(int)); | |
1998 | } | |
1999 | break; | |
2000 | ||
2001 | case IP_MULTICAST_LOOP: | |
2002 | if (imo == 0) { | |
2003 | optval = coptval = IP_DEFAULT_MULTICAST_LOOP; | |
2004 | } else { | |
2005 | IMO_LOCK(imo); | |
2006 | optval = coptval = imo->imo_multicast_loop; | |
2007 | IMO_UNLOCK(imo); | |
2008 | } | |
2009 | if (sopt->sopt_valsize == sizeof(u_char)) { | |
2010 | error = sooptcopyout(sopt, &coptval, sizeof(u_char)); | |
2011 | } else { | |
2012 | error = sooptcopyout(sopt, &optval, sizeof(int)); | |
2013 | } | |
2014 | break; | |
2015 | ||
2016 | case IP_MSFILTER: | |
2017 | if (imo == NULL) { | |
2018 | error = EADDRNOTAVAIL; | |
2019 | } else { | |
2020 | error = inp_get_source_filters(inp, sopt); | |
2021 | } | |
2022 | break; | |
2023 | ||
2024 | default: | |
2025 | error = ENOPROTOOPT; | |
2026 | break; | |
2027 | } | |
2028 | ||
2029 | return error; | |
2030 | } | |
2031 | ||
2032 | /* | |
2033 | * Look up the ifnet to use for a multicast group membership, | |
2034 | * given the IPv4 address of an interface, and the IPv4 group address. | |
2035 | * | |
2036 | * This routine exists to support legacy multicast applications | |
2037 | * which do not understand that multicast memberships are scoped to | |
2038 | * specific physical links in the networking stack, or which need | |
2039 | * to join link-scope groups before IPv4 addresses are configured. | |
2040 | * | |
2041 | * If inp is non-NULL and is bound to an interface, use this socket's | |
2042 | * inp_boundif for any required routing table lookup. | |
2043 | * | |
2044 | * If the route lookup fails, attempt to use the first non-loopback | |
2045 | * interface with multicast capability in the system as a | |
2046 | * last resort. The legacy IPv4 ASM API requires that we do | |
2047 | * this in order to allow groups to be joined when the routing | |
2048 | * table has not yet been populated during boot. | |
2049 | * | |
2050 | * Returns NULL if no ifp could be found. | |
2051 | * | |
2052 | */ | |
2053 | static struct ifnet * | |
2054 | inp_lookup_mcast_ifp(const struct inpcb *inp, | |
2055 | const struct sockaddr_in *gsin, const struct in_addr ina) | |
2056 | { | |
2057 | struct ifnet *ifp; | |
2058 | unsigned int ifindex = 0; | |
2059 | ||
2060 | VERIFY(gsin->sin_family == AF_INET); | |
2061 | VERIFY(IN_MULTICAST(ntohl(gsin->sin_addr.s_addr))); | |
2062 | ||
2063 | ifp = NULL; | |
2064 | if (!in_nullhost(ina)) { | |
2065 | struct in_addr new_ina; | |
2066 | memcpy(&new_ina, &ina, sizeof(struct in_addr)); | |
2067 | ifp = ip_multicast_if(&new_ina, &ifindex); | |
2068 | } else { | |
2069 | struct route ro; | |
2070 | unsigned int ifscope = IFSCOPE_NONE; | |
2071 | ||
2072 | if (inp != NULL && (inp->inp_flags & INP_BOUND_IF)) { | |
2073 | ifscope = inp->inp_boundifp->if_index; | |
2074 | } | |
2075 | ||
2076 | bzero(&ro, sizeof(ro)); | |
2077 | memcpy(&ro.ro_dst, gsin, sizeof(struct sockaddr_in)); | |
2078 | rtalloc_scoped_ign(&ro, 0, ifscope); | |
2079 | if (ro.ro_rt != NULL) { | |
2080 | ifp = ro.ro_rt->rt_ifp; | |
2081 | VERIFY(ifp != NULL); | |
2082 | } else { | |
2083 | struct in_ifaddr *ia; | |
2084 | struct ifnet *mifp; | |
2085 | ||
2086 | mifp = NULL; | |
2087 | lck_rw_lock_shared(in_ifaddr_rwlock); | |
2088 | TAILQ_FOREACH(ia, &in_ifaddrhead, ia_link) { | |
2089 | IFA_LOCK_SPIN(&ia->ia_ifa); | |
2090 | mifp = ia->ia_ifp; | |
2091 | IFA_UNLOCK(&ia->ia_ifa); | |
2092 | if (!(mifp->if_flags & IFF_LOOPBACK) && | |
2093 | (mifp->if_flags & IFF_MULTICAST)) { | |
2094 | ifp = mifp; | |
2095 | break; | |
2096 | } | |
2097 | } | |
2098 | lck_rw_done(in_ifaddr_rwlock); | |
2099 | } | |
2100 | ROUTE_RELEASE(&ro); | |
2101 | } | |
2102 | ||
2103 | return ifp; | |
2104 | } | |
2105 | ||
2106 | /* | |
2107 | * Join an IPv4 multicast group, possibly with a source. | |
2108 | * | |
2109 | * NB: sopt->sopt_val might point to the kernel address space. This means that | |
2110 | * we were called by the IPv6 stack due to the presence of an IPv6 v4 mapped | |
2111 | * address. In this scenario, sopt_p points to kernproc and sooptcopyin() will | |
2112 | * just issue an in-kernel memcpy. | |
2113 | */ | |
2114 | int | |
2115 | inp_join_group(struct inpcb *inp, struct sockopt *sopt) | |
2116 | { | |
2117 | struct group_source_req gsr; | |
2118 | struct sockaddr_in *gsa, *ssa; | |
2119 | struct ifnet *ifp; | |
2120 | struct in_mfilter *imf; | |
2121 | struct ip_moptions *imo; | |
2122 | struct in_multi *inm = NULL; | |
2123 | struct in_msource *lims; | |
2124 | size_t idx; | |
2125 | int error, is_new; | |
2126 | struct igmp_tparams itp; | |
2127 | ||
2128 | bzero(&itp, sizeof(itp)); | |
2129 | ifp = NULL; | |
2130 | imf = NULL; | |
2131 | error = 0; | |
2132 | is_new = 0; | |
2133 | ||
2134 | memset(&gsr, 0, sizeof(struct group_source_req)); | |
2135 | gsa = (struct sockaddr_in *)&gsr.gsr_group; | |
2136 | gsa->sin_family = AF_UNSPEC; | |
2137 | ssa = (struct sockaddr_in *)&gsr.gsr_source; | |
2138 | ssa->sin_family = AF_UNSPEC; | |
2139 | ||
2140 | switch (sopt->sopt_name) { | |
2141 | case IP_ADD_MEMBERSHIP: | |
2142 | case IP_ADD_SOURCE_MEMBERSHIP: { | |
2143 | struct ip_mreq_source mreqs; | |
2144 | ||
2145 | if (sopt->sopt_name == IP_ADD_MEMBERSHIP) { | |
2146 | error = sooptcopyin(sopt, &mreqs, | |
2147 | sizeof(struct ip_mreq), | |
2148 | sizeof(struct ip_mreq)); | |
2149 | /* | |
2150 | * Do argument switcharoo from ip_mreq into | |
2151 | * ip_mreq_source to avoid using two instances. | |
2152 | */ | |
2153 | mreqs.imr_interface = mreqs.imr_sourceaddr; | |
2154 | mreqs.imr_sourceaddr.s_addr = INADDR_ANY; | |
2155 | } else if (sopt->sopt_name == IP_ADD_SOURCE_MEMBERSHIP) { | |
2156 | error = sooptcopyin(sopt, &mreqs, | |
2157 | sizeof(struct ip_mreq_source), | |
2158 | sizeof(struct ip_mreq_source)); | |
2159 | } | |
2160 | if (error) { | |
2161 | IGMP_PRINTF(("%s: error copyin IP_ADD_MEMBERSHIP/" | |
2162 | "IP_ADD_SOURCE_MEMBERSHIP %d err=%d\n", | |
2163 | __func__, sopt->sopt_name, error)); | |
2164 | return error; | |
2165 | } | |
2166 | ||
2167 | gsa->sin_family = AF_INET; | |
2168 | gsa->sin_len = sizeof(struct sockaddr_in); | |
2169 | gsa->sin_addr = mreqs.imr_multiaddr; | |
2170 | ||
2171 | if (sopt->sopt_name == IP_ADD_SOURCE_MEMBERSHIP) { | |
2172 | ssa->sin_family = AF_INET; | |
2173 | ssa->sin_len = sizeof(struct sockaddr_in); | |
2174 | ssa->sin_addr = mreqs.imr_sourceaddr; | |
2175 | } | |
2176 | ||
2177 | if (!IN_MULTICAST(ntohl(gsa->sin_addr.s_addr))) { | |
2178 | return EINVAL; | |
2179 | } | |
2180 | ||
2181 | ifp = inp_lookup_mcast_ifp(inp, gsa, mreqs.imr_interface); | |
2182 | IGMP_INET_PRINTF(mreqs.imr_interface, | |
2183 | ("%s: imr_interface = %s, ifp = 0x%llx\n", __func__, | |
2184 | _igmp_inet_buf, (uint64_t)VM_KERNEL_ADDRPERM(ifp))); | |
2185 | break; | |
2186 | } | |
2187 | ||
2188 | case MCAST_JOIN_GROUP: | |
2189 | case MCAST_JOIN_SOURCE_GROUP: | |
2190 | if (sopt->sopt_name == MCAST_JOIN_GROUP) { | |
2191 | error = sooptcopyin(sopt, &gsr, | |
2192 | sizeof(struct group_req), | |
2193 | sizeof(struct group_req)); | |
2194 | } else if (sopt->sopt_name == MCAST_JOIN_SOURCE_GROUP) { | |
2195 | error = sooptcopyin(sopt, &gsr, | |
2196 | sizeof(struct group_source_req), | |
2197 | sizeof(struct group_source_req)); | |
2198 | } | |
2199 | if (error) { | |
2200 | return error; | |
2201 | } | |
2202 | ||
2203 | if (gsa->sin_family != AF_INET || | |
2204 | gsa->sin_len != sizeof(struct sockaddr_in)) { | |
2205 | return EINVAL; | |
2206 | } | |
2207 | ||
2208 | /* | |
2209 | * Overwrite the port field if present, as the sockaddr | |
2210 | * being copied in may be matched with a binary comparison. | |
2211 | */ | |
2212 | gsa->sin_port = 0; | |
2213 | if (sopt->sopt_name == MCAST_JOIN_SOURCE_GROUP) { | |
2214 | if (ssa->sin_family != AF_INET || | |
2215 | ssa->sin_len != sizeof(struct sockaddr_in)) { | |
2216 | return EINVAL; | |
2217 | } | |
2218 | ssa->sin_port = 0; | |
2219 | } | |
2220 | ||
2221 | if (!IN_MULTICAST(ntohl(gsa->sin_addr.s_addr))) { | |
2222 | return EINVAL; | |
2223 | } | |
2224 | ||
2225 | ifnet_head_lock_shared(); | |
2226 | if (gsr.gsr_interface == 0 || | |
2227 | (u_int)if_index < gsr.gsr_interface) { | |
2228 | ifnet_head_done(); | |
2229 | return EADDRNOTAVAIL; | |
2230 | } | |
2231 | ifp = ifindex2ifnet[gsr.gsr_interface]; | |
2232 | ifnet_head_done(); | |
2233 | ||
2234 | break; | |
2235 | ||
2236 | default: | |
2237 | IGMP_PRINTF(("%s: unknown sopt_name %d\n", | |
2238 | __func__, sopt->sopt_name)); | |
2239 | return EOPNOTSUPP; | |
2240 | } | |
2241 | ||
2242 | if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) { | |
2243 | return EADDRNOTAVAIL; | |
2244 | } | |
2245 | ||
2246 | INC_ATOMIC_INT64_LIM(net_api_stats.nas_socket_mcast_join_total); | |
2247 | /* | |
2248 | * TBD: revisit the criteria for non-OS initiated joins | |
2249 | */ | |
2250 | if (inp->inp_lport == htons(5353)) { | |
2251 | INC_ATOMIC_INT64_LIM(net_api_stats.nas_socket_mcast_join_os_total); | |
2252 | } | |
2253 | ||
2254 | imo = inp_findmoptions(inp); | |
2255 | if (imo == NULL) { | |
2256 | return ENOMEM; | |
2257 | } | |
2258 | ||
2259 | IMO_LOCK(imo); | |
2260 | idx = imo_match_group(imo, ifp, gsa); | |
2261 | if (idx == (size_t)-1) { | |
2262 | is_new = 1; | |
2263 | } else { | |
2264 | inm = imo->imo_membership[idx]; | |
2265 | imf = &imo->imo_mfilters[idx]; | |
2266 | if (ssa->sin_family != AF_UNSPEC) { | |
2267 | /* | |
2268 | * MCAST_JOIN_SOURCE_GROUP on an exclusive membership | |
2269 | * is an error. On an existing inclusive membership, | |
2270 | * it just adds the source to the filter list. | |
2271 | */ | |
2272 | if (imf->imf_st[1] != MCAST_INCLUDE) { | |
2273 | error = EINVAL; | |
2274 | goto out_imo_locked; | |
2275 | } | |
2276 | /* | |
2277 | * Throw out duplicates. | |
2278 | * | |
2279 | * XXX FIXME: This makes a naive assumption that | |
2280 | * even if entries exist for *ssa in this imf, | |
2281 | * they will be rejected as dupes, even if they | |
2282 | * are not valid in the current mode (in-mode). | |
2283 | * | |
2284 | * in_msource is transactioned just as for anything | |
2285 | * else in SSM -- but note naive use of inm_graft() | |
2286 | * below for allocating new filter entries. | |
2287 | * | |
2288 | * This is only an issue if someone mixes the | |
2289 | * full-state SSM API with the delta-based API, | |
2290 | * which is discouraged in the relevant RFCs. | |
2291 | */ | |
2292 | lims = imo_match_source(imo, idx, ssa); | |
2293 | if (lims != NULL /*&& | |
2294 | * lims->imsl_st[1] == MCAST_INCLUDE*/) { | |
2295 | error = EADDRNOTAVAIL; | |
2296 | goto out_imo_locked; | |
2297 | } | |
2298 | } else { | |
2299 | /* | |
2300 | * MCAST_JOIN_GROUP on an existing exclusive | |
2301 | * membership is an error; return EADDRINUSE | |
2302 | * to preserve 4.4BSD API idempotence, and | |
2303 | * avoid tedious detour to code below. | |
2304 | * NOTE: This is bending RFC 3678 a bit. | |
2305 | * | |
2306 | * On an existing inclusive membership, this is also | |
2307 | * an error; if you want to change filter mode, | |
2308 | * you must use the userland API setsourcefilter(). | |
2309 | * XXX We don't reject this for imf in UNDEFINED | |
2310 | * state at t1, because allocation of a filter | |
2311 | * is atomic with allocation of a membership. | |
2312 | */ | |
2313 | error = EINVAL; | |
2314 | /* See comments above for EADDRINUSE */ | |
2315 | if (imf->imf_st[1] == MCAST_EXCLUDE) { | |
2316 | error = EADDRINUSE; | |
2317 | } | |
2318 | goto out_imo_locked; | |
2319 | } | |
2320 | } | |
2321 | ||
2322 | /* | |
2323 | * Begin state merge transaction at socket layer. | |
2324 | */ | |
2325 | ||
2326 | if (is_new) { | |
2327 | if (imo->imo_num_memberships == imo->imo_max_memberships) { | |
2328 | error = imo_grow(imo, 0); | |
2329 | if (error) { | |
2330 | goto out_imo_locked; | |
2331 | } | |
2332 | } | |
2333 | /* | |
2334 | * Allocate the new slot upfront so we can deal with | |
2335 | * grafting the new source filter in same code path | |
2336 | * as for join-source on existing membership. | |
2337 | */ | |
2338 | idx = imo->imo_num_memberships; | |
2339 | imo->imo_membership[idx] = NULL; | |
2340 | imo->imo_num_memberships++; | |
2341 | VERIFY(imo->imo_mfilters != NULL); | |
2342 | imf = &imo->imo_mfilters[idx]; | |
2343 | VERIFY(RB_EMPTY(&imf->imf_sources)); | |
2344 | } | |
2345 | ||
2346 | /* | |
2347 | * Graft new source into filter list for this inpcb's | |
2348 | * membership of the group. The in_multi may not have | |
2349 | * been allocated yet if this is a new membership, however, | |
2350 | * the in_mfilter slot will be allocated and must be initialized. | |
2351 | */ | |
2352 | if (ssa->sin_family != AF_UNSPEC) { | |
2353 | /* Membership starts in IN mode */ | |
2354 | if (is_new) { | |
2355 | IGMP_PRINTF(("%s: new join w/source\n", __func__)); | |
2356 | imf_init(imf, MCAST_UNDEFINED, MCAST_INCLUDE); | |
2357 | } else { | |
2358 | IGMP_PRINTF(("%s: %s source\n", __func__, "allow")); | |
2359 | } | |
2360 | lims = imf_graft(imf, MCAST_INCLUDE, ssa); | |
2361 | if (lims == NULL) { | |
2362 | IGMP_PRINTF(("%s: merge imf state failed\n", | |
2363 | __func__)); | |
2364 | error = ENOMEM; | |
2365 | goto out_imo_free; | |
2366 | } | |
2367 | } else { | |
2368 | /* No address specified; Membership starts in EX mode */ | |
2369 | if (is_new) { | |
2370 | IGMP_PRINTF(("%s: new join w/o source\n", __func__)); | |
2371 | imf_init(imf, MCAST_UNDEFINED, MCAST_EXCLUDE); | |
2372 | } | |
2373 | } | |
2374 | ||
2375 | /* | |
2376 | * Begin state merge transaction at IGMP layer. | |
2377 | */ | |
2378 | if (is_new) { | |
2379 | /* | |
2380 | * Unlock socket as we may end up calling ifnet_ioctl() to join (or leave) | |
2381 | * the multicast group and we run the risk of a lock ordering issue | |
2382 | * if the ifnet thread calls into the socket layer to acquire the pcb list | |
2383 | * lock while the input thread delivers multicast packets | |
2384 | */ | |
2385 | IMO_ADDREF_LOCKED(imo); | |
2386 | IMO_UNLOCK(imo); | |
2387 | socket_unlock(inp->inp_socket, 0); | |
2388 | ||
2389 | VERIFY(inm == NULL); | |
2390 | error = in_joingroup(ifp, &gsa->sin_addr, imf, &inm); | |
2391 | ||
2392 | socket_lock(inp->inp_socket, 0); | |
2393 | IMO_REMREF(imo); | |
2394 | IMO_LOCK(imo); | |
2395 | ||
2396 | VERIFY(inm != NULL || error != 0); | |
2397 | if (error) { | |
2398 | goto out_imo_free; | |
2399 | } | |
2400 | imo->imo_membership[idx] = inm; /* from in_joingroup() */ | |
2401 | } else { | |
2402 | IGMP_PRINTF(("%s: merge inm state\n", __func__)); | |
2403 | INM_LOCK(inm); | |
2404 | error = inm_merge(inm, imf); | |
2405 | if (error) { | |
2406 | IGMP_PRINTF(("%s: failed to merge inm state\n", | |
2407 | __func__)); | |
2408 | INM_UNLOCK(inm); | |
2409 | goto out_imf_rollback; | |
2410 | } | |
2411 | IGMP_PRINTF(("%s: doing igmp downcall\n", __func__)); | |
2412 | error = igmp_change_state(inm, &itp); | |
2413 | INM_UNLOCK(inm); | |
2414 | if (error) { | |
2415 | IGMP_PRINTF(("%s: failed igmp downcall\n", | |
2416 | __func__)); | |
2417 | goto out_imf_rollback; | |
2418 | } | |
2419 | } | |
2420 | ||
2421 | out_imf_rollback: | |
2422 | if (error) { | |
2423 | imf_rollback(imf); | |
2424 | if (is_new) { | |
2425 | imf_purge(imf); | |
2426 | } else { | |
2427 | imf_reap(imf); | |
2428 | } | |
2429 | } else { | |
2430 | imf_commit(imf); | |
2431 | } | |
2432 | ||
2433 | out_imo_free: | |
2434 | if (error && is_new) { | |
2435 | VERIFY(inm == NULL); | |
2436 | imo->imo_membership[idx] = NULL; | |
2437 | --imo->imo_num_memberships; | |
2438 | } | |
2439 | ||
2440 | out_imo_locked: | |
2441 | IMO_UNLOCK(imo); | |
2442 | IMO_REMREF(imo); /* from inp_findmoptions() */ | |
2443 | ||
2444 | /* schedule timer now that we've dropped the lock(s) */ | |
2445 | igmp_set_timeout(&itp); | |
2446 | ||
2447 | return error; | |
2448 | } | |
2449 | ||
2450 | /* | |
2451 | * Leave an IPv4 multicast group on an inpcb, possibly with a source. | |
2452 | * | |
2453 | * NB: sopt->sopt_val might point to the kernel address space. Refer to the | |
2454 | * block comment on top of inp_join_group() for more information. | |
2455 | */ | |
2456 | int | |
2457 | inp_leave_group(struct inpcb *inp, struct sockopt *sopt) | |
2458 | { | |
2459 | struct group_source_req gsr; | |
2460 | struct ip_mreq_source mreqs; | |
2461 | struct sockaddr_in *gsa, *ssa; | |
2462 | struct ifnet *ifp; | |
2463 | struct in_mfilter *imf; | |
2464 | struct ip_moptions *imo; | |
2465 | struct in_msource *ims; | |
2466 | struct in_multi *inm = NULL; | |
2467 | size_t idx; | |
2468 | int error, is_final; | |
2469 | unsigned int ifindex = 0; | |
2470 | struct igmp_tparams itp; | |
2471 | ||
2472 | bzero(&itp, sizeof(itp)); | |
2473 | ifp = NULL; | |
2474 | error = 0; | |
2475 | is_final = 1; | |
2476 | ||
2477 | memset(&gsr, 0, sizeof(struct group_source_req)); | |
2478 | gsa = (struct sockaddr_in *)&gsr.gsr_group; | |
2479 | ssa = (struct sockaddr_in *)&gsr.gsr_source; | |
2480 | ||
2481 | switch (sopt->sopt_name) { | |
2482 | case IP_DROP_MEMBERSHIP: | |
2483 | case IP_DROP_SOURCE_MEMBERSHIP: | |
2484 | if (sopt->sopt_name == IP_DROP_MEMBERSHIP) { | |
2485 | error = sooptcopyin(sopt, &mreqs, | |
2486 | sizeof(struct ip_mreq), | |
2487 | sizeof(struct ip_mreq)); | |
2488 | /* | |
2489 | * Swap interface and sourceaddr arguments, | |
2490 | * as ip_mreq and ip_mreq_source are laid | |
2491 | * out differently. | |
2492 | */ | |
2493 | mreqs.imr_interface = mreqs.imr_sourceaddr; | |
2494 | mreqs.imr_sourceaddr.s_addr = INADDR_ANY; | |
2495 | } else if (sopt->sopt_name == IP_DROP_SOURCE_MEMBERSHIP) { | |
2496 | error = sooptcopyin(sopt, &mreqs, | |
2497 | sizeof(struct ip_mreq_source), | |
2498 | sizeof(struct ip_mreq_source)); | |
2499 | } | |
2500 | if (error) { | |
2501 | return error; | |
2502 | } | |
2503 | ||
2504 | gsa->sin_family = AF_INET; | |
2505 | gsa->sin_len = sizeof(struct sockaddr_in); | |
2506 | gsa->sin_addr = mreqs.imr_multiaddr; | |
2507 | ||
2508 | if (sopt->sopt_name == IP_DROP_SOURCE_MEMBERSHIP) { | |
2509 | ssa->sin_family = AF_INET; | |
2510 | ssa->sin_len = sizeof(struct sockaddr_in); | |
2511 | ssa->sin_addr = mreqs.imr_sourceaddr; | |
2512 | } | |
2513 | /* | |
2514 | * Attempt to look up hinted ifp from interface address. | |
2515 | * Fallthrough with null ifp iff lookup fails, to | |
2516 | * preserve 4.4BSD mcast API idempotence. | |
2517 | * XXX NOTE WELL: The RFC 3678 API is preferred because | |
2518 | * using an IPv4 address as a key is racy. | |
2519 | */ | |
2520 | if (!in_nullhost(mreqs.imr_interface)) { | |
2521 | ifp = ip_multicast_if(&mreqs.imr_interface, &ifindex); | |
2522 | } | |
2523 | ||
2524 | IGMP_INET_PRINTF(mreqs.imr_interface, | |
2525 | ("%s: imr_interface = %s, ifp = 0x%llx\n", __func__, | |
2526 | _igmp_inet_buf, (uint64_t)VM_KERNEL_ADDRPERM(ifp))); | |
2527 | ||
2528 | break; | |
2529 | ||
2530 | case MCAST_LEAVE_GROUP: | |
2531 | case MCAST_LEAVE_SOURCE_GROUP: | |
2532 | if (sopt->sopt_name == MCAST_LEAVE_GROUP) { | |
2533 | error = sooptcopyin(sopt, &gsr, | |
2534 | sizeof(struct group_req), | |
2535 | sizeof(struct group_req)); | |
2536 | } else if (sopt->sopt_name == MCAST_LEAVE_SOURCE_GROUP) { | |
2537 | error = sooptcopyin(sopt, &gsr, | |
2538 | sizeof(struct group_source_req), | |
2539 | sizeof(struct group_source_req)); | |
2540 | } | |
2541 | if (error) { | |
2542 | return error; | |
2543 | } | |
2544 | ||
2545 | if (gsa->sin_family != AF_INET || | |
2546 | gsa->sin_len != sizeof(struct sockaddr_in)) { | |
2547 | return EINVAL; | |
2548 | } | |
2549 | ||
2550 | if (sopt->sopt_name == MCAST_LEAVE_SOURCE_GROUP) { | |
2551 | if (ssa->sin_family != AF_INET || | |
2552 | ssa->sin_len != sizeof(struct sockaddr_in)) { | |
2553 | return EINVAL; | |
2554 | } | |
2555 | } | |
2556 | ||
2557 | ifnet_head_lock_shared(); | |
2558 | if (gsr.gsr_interface == 0 || | |
2559 | (u_int)if_index < gsr.gsr_interface) { | |
2560 | ifnet_head_done(); | |
2561 | return EADDRNOTAVAIL; | |
2562 | } | |
2563 | ||
2564 | ifp = ifindex2ifnet[gsr.gsr_interface]; | |
2565 | ifnet_head_done(); | |
2566 | break; | |
2567 | ||
2568 | default: | |
2569 | IGMP_PRINTF(("%s: unknown sopt_name %d\n", | |
2570 | __func__, sopt->sopt_name)); | |
2571 | return EOPNOTSUPP; | |
2572 | } | |
2573 | ||
2574 | if (!IN_MULTICAST(ntohl(gsa->sin_addr.s_addr))) { | |
2575 | return EINVAL; | |
2576 | } | |
2577 | ||
2578 | /* | |
2579 | * Find the membership in the membership array. | |
2580 | */ | |
2581 | imo = inp_findmoptions(inp); | |
2582 | if (imo == NULL) { | |
2583 | return ENOMEM; | |
2584 | } | |
2585 | ||
2586 | IMO_LOCK(imo); | |
2587 | idx = imo_match_group(imo, ifp, gsa); | |
2588 | if (idx == (size_t)-1) { | |
2589 | error = EADDRNOTAVAIL; | |
2590 | goto out_locked; | |
2591 | } | |
2592 | inm = imo->imo_membership[idx]; | |
2593 | imf = &imo->imo_mfilters[idx]; | |
2594 | ||
2595 | if (ssa->sin_family != AF_UNSPEC) { | |
2596 | IGMP_PRINTF(("%s: opt=%d is_final=0\n", __func__, | |
2597 | sopt->sopt_name)); | |
2598 | is_final = 0; | |
2599 | } | |
2600 | ||
2601 | /* | |
2602 | * Begin state merge transaction at socket layer. | |
2603 | */ | |
2604 | ||
2605 | /* | |
2606 | * If we were instructed only to leave a given source, do so. | |
2607 | * MCAST_LEAVE_SOURCE_GROUP is only valid for inclusive memberships. | |
2608 | */ | |
2609 | if (is_final) { | |
2610 | imf_leave(imf); | |
2611 | } else { | |
2612 | if (imf->imf_st[0] == MCAST_EXCLUDE) { | |
2613 | error = EADDRNOTAVAIL; | |
2614 | goto out_locked; | |
2615 | } | |
2616 | ims = imo_match_source(imo, idx, ssa); | |
2617 | if (ims == NULL) { | |
2618 | IGMP_INET_PRINTF(ssa->sin_addr, | |
2619 | ("%s: source %s %spresent\n", __func__, | |
2620 | _igmp_inet_buf, "not ")); | |
2621 | error = EADDRNOTAVAIL; | |
2622 | goto out_locked; | |
2623 | } | |
2624 | IGMP_PRINTF(("%s: %s source\n", __func__, "block")); | |
2625 | error = imf_prune(imf, ssa); | |
2626 | if (error) { | |
2627 | IGMP_PRINTF(("%s: merge imf state failed\n", | |
2628 | __func__)); | |
2629 | goto out_locked; | |
2630 | } | |
2631 | } | |
2632 | ||
2633 | /* | |
2634 | * Begin state merge transaction at IGMP layer. | |
2635 | */ | |
2636 | ||
2637 | ||
2638 | if (is_final) { | |
2639 | /* | |
2640 | * Give up the multicast address record to which | |
2641 | * the membership points. Reference held in imo | |
2642 | * will be released below. | |
2643 | */ | |
2644 | (void) in_leavegroup(inm, imf); | |
2645 | } else { | |
2646 | IGMP_PRINTF(("%s: merge inm state\n", __func__)); | |
2647 | INM_LOCK(inm); | |
2648 | error = inm_merge(inm, imf); | |
2649 | if (error) { | |
2650 | IGMP_PRINTF(("%s: failed to merge inm state\n", | |
2651 | __func__)); | |
2652 | INM_UNLOCK(inm); | |
2653 | goto out_imf_rollback; | |
2654 | } | |
2655 | ||
2656 | IGMP_PRINTF(("%s: doing igmp downcall\n", __func__)); | |
2657 | error = igmp_change_state(inm, &itp); | |
2658 | if (error) { | |
2659 | IGMP_PRINTF(("%s: failed igmp downcall\n", __func__)); | |
2660 | } | |
2661 | INM_UNLOCK(inm); | |
2662 | } | |
2663 | ||
2664 | out_imf_rollback: | |
2665 | if (error) { | |
2666 | imf_rollback(imf); | |
2667 | } else { | |
2668 | imf_commit(imf); | |
2669 | } | |
2670 | ||
2671 | imf_reap(imf); | |
2672 | ||
2673 | if (is_final) { | |
2674 | /* Remove the gap in the membership array. */ | |
2675 | VERIFY(inm == imo->imo_membership[idx]); | |
2676 | imo->imo_membership[idx] = NULL; | |
2677 | ||
2678 | /* | |
2679 | * See inp_join_group() for why we need to unlock | |
2680 | */ | |
2681 | IMO_ADDREF_LOCKED(imo); | |
2682 | IMO_UNLOCK(imo); | |
2683 | socket_unlock(inp->inp_socket, 0); | |
2684 | ||
2685 | INM_REMREF(inm); | |
2686 | ||
2687 | socket_lock(inp->inp_socket, 0); | |
2688 | IMO_REMREF(imo); | |
2689 | IMO_LOCK(imo); | |
2690 | ||
2691 | for (++idx; idx < imo->imo_num_memberships; ++idx) { | |
2692 | imo->imo_membership[idx - 1] = imo->imo_membership[idx]; | |
2693 | imo->imo_mfilters[idx - 1] = imo->imo_mfilters[idx]; | |
2694 | } | |
2695 | imo->imo_num_memberships--; | |
2696 | } | |
2697 | ||
2698 | out_locked: | |
2699 | IMO_UNLOCK(imo); | |
2700 | IMO_REMREF(imo); /* from inp_findmoptions() */ | |
2701 | ||
2702 | /* schedule timer now that we've dropped the lock(s) */ | |
2703 | igmp_set_timeout(&itp); | |
2704 | ||
2705 | return error; | |
2706 | } | |
2707 | ||
2708 | /* | |
2709 | * Select the interface for transmitting IPv4 multicast datagrams. | |
2710 | * | |
2711 | * Either an instance of struct in_addr or an instance of struct ip_mreqn | |
2712 | * may be passed to this socket option. An address of INADDR_ANY or an | |
2713 | * interface index of 0 is used to remove a previous selection. | |
2714 | * When no interface is selected, one is chosen for every send. | |
2715 | */ | |
2716 | static int | |
2717 | inp_set_multicast_if(struct inpcb *inp, struct sockopt *sopt) | |
2718 | { | |
2719 | struct in_addr addr; | |
2720 | struct ip_mreqn mreqn; | |
2721 | struct ifnet *ifp; | |
2722 | struct ip_moptions *imo; | |
2723 | int error = 0; | |
2724 | unsigned int ifindex = 0; | |
2725 | ||
2726 | bzero(&addr, sizeof(addr)); | |
2727 | if (sopt->sopt_valsize == sizeof(struct ip_mreqn)) { | |
2728 | /* | |
2729 | * An interface index was specified using the | |
2730 | * Linux-derived ip_mreqn structure. | |
2731 | */ | |
2732 | error = sooptcopyin(sopt, &mreqn, sizeof(struct ip_mreqn), | |
2733 | sizeof(struct ip_mreqn)); | |
2734 | if (error) { | |
2735 | return error; | |
2736 | } | |
2737 | ||
2738 | ifnet_head_lock_shared(); | |
2739 | if (mreqn.imr_ifindex < 0 || if_index < mreqn.imr_ifindex) { | |
2740 | ifnet_head_done(); | |
2741 | return EINVAL; | |
2742 | } | |
2743 | ||
2744 | if (mreqn.imr_ifindex == 0) { | |
2745 | ifp = NULL; | |
2746 | } else { | |
2747 | ifp = ifindex2ifnet[mreqn.imr_ifindex]; | |
2748 | if (ifp == NULL) { | |
2749 | ifnet_head_done(); | |
2750 | return EADDRNOTAVAIL; | |
2751 | } | |
2752 | } | |
2753 | ifnet_head_done(); | |
2754 | } else { | |
2755 | /* | |
2756 | * An interface was specified by IPv4 address. | |
2757 | * This is the traditional BSD usage. | |
2758 | */ | |
2759 | error = sooptcopyin(sopt, &addr, sizeof(struct in_addr), | |
2760 | sizeof(struct in_addr)); | |
2761 | if (error) { | |
2762 | return error; | |
2763 | } | |
2764 | if (in_nullhost(addr)) { | |
2765 | ifp = NULL; | |
2766 | } else { | |
2767 | ifp = ip_multicast_if(&addr, &ifindex); | |
2768 | if (ifp == NULL) { | |
2769 | IGMP_INET_PRINTF(addr, | |
2770 | ("%s: can't find ifp for addr=%s\n", | |
2771 | __func__, _igmp_inet_buf)); | |
2772 | return EADDRNOTAVAIL; | |
2773 | } | |
2774 | } | |
2775 | } | |
2776 | ||
2777 | /* Reject interfaces which do not support multicast. */ | |
2778 | if (ifp != NULL && (ifp->if_flags & IFF_MULTICAST) == 0) { | |
2779 | return EOPNOTSUPP; | |
2780 | } | |
2781 | ||
2782 | imo = inp_findmoptions(inp); | |
2783 | if (imo == NULL) { | |
2784 | return ENOMEM; | |
2785 | } | |
2786 | ||
2787 | IMO_LOCK(imo); | |
2788 | imo->imo_multicast_ifp = ifp; | |
2789 | if (ifindex) { | |
2790 | imo->imo_multicast_addr = addr; | |
2791 | } else { | |
2792 | imo->imo_multicast_addr.s_addr = INADDR_ANY; | |
2793 | } | |
2794 | IMO_UNLOCK(imo); | |
2795 | IMO_REMREF(imo); /* from inp_findmoptions() */ | |
2796 | ||
2797 | return 0; | |
2798 | } | |
2799 | ||
2800 | /* | |
2801 | * Atomically set source filters on a socket for an IPv4 multicast group. | |
2802 | */ | |
2803 | static int | |
2804 | inp_set_source_filters(struct inpcb *inp, struct sockopt *sopt) | |
2805 | { | |
2806 | struct __msfilterreq64 msfr = {}, msfr64; | |
2807 | struct __msfilterreq32 msfr32; | |
2808 | struct sockaddr_in *gsa; | |
2809 | struct ifnet *ifp; | |
2810 | struct in_mfilter *imf; | |
2811 | struct ip_moptions *imo; | |
2812 | struct in_multi *inm; | |
2813 | size_t idx; | |
2814 | int error; | |
2815 | user_addr_t tmp_ptr; | |
2816 | struct igmp_tparams itp; | |
2817 | ||
2818 | bzero(&itp, sizeof(itp)); | |
2819 | ||
2820 | if (IS_64BIT_PROCESS(current_proc())) { | |
2821 | error = sooptcopyin(sopt, &msfr64, | |
2822 | sizeof(struct __msfilterreq64), | |
2823 | sizeof(struct __msfilterreq64)); | |
2824 | if (error) { | |
2825 | return error; | |
2826 | } | |
2827 | /* we never use msfr.msfr_srcs; */ | |
2828 | memcpy(&msfr, &msfr64, sizeof(msfr64)); | |
2829 | } else { | |
2830 | error = sooptcopyin(sopt, &msfr32, | |
2831 | sizeof(struct __msfilterreq32), | |
2832 | sizeof(struct __msfilterreq32)); | |
2833 | if (error) { | |
2834 | return error; | |
2835 | } | |
2836 | /* we never use msfr.msfr_srcs; */ | |
2837 | memcpy(&msfr, &msfr32, sizeof(msfr32)); | |
2838 | } | |
2839 | ||
2840 | if ((size_t) msfr.msfr_nsrcs > | |
2841 | UINT32_MAX / sizeof(struct sockaddr_storage)) { | |
2842 | msfr.msfr_nsrcs = UINT32_MAX / sizeof(struct sockaddr_storage); | |
2843 | } | |
2844 | ||
2845 | if (msfr.msfr_nsrcs > in_mcast_maxsocksrc) { | |
2846 | return ENOBUFS; | |
2847 | } | |
2848 | ||
2849 | if ((msfr.msfr_fmode != MCAST_EXCLUDE && | |
2850 | msfr.msfr_fmode != MCAST_INCLUDE)) { | |
2851 | return EINVAL; | |
2852 | } | |
2853 | ||
2854 | if (msfr.msfr_group.ss_family != AF_INET || | |
2855 | msfr.msfr_group.ss_len != sizeof(struct sockaddr_in)) { | |
2856 | return EINVAL; | |
2857 | } | |
2858 | ||
2859 | gsa = (struct sockaddr_in *)&msfr.msfr_group; | |
2860 | if (!IN_MULTICAST(ntohl(gsa->sin_addr.s_addr))) { | |
2861 | return EINVAL; | |
2862 | } | |
2863 | ||
2864 | gsa->sin_port = 0; /* ignore port */ | |
2865 | ||
2866 | ifnet_head_lock_shared(); | |
2867 | if (msfr.msfr_ifindex == 0 || (u_int)if_index < msfr.msfr_ifindex) { | |
2868 | ifnet_head_done(); | |
2869 | return EADDRNOTAVAIL; | |
2870 | } | |
2871 | ||
2872 | ifp = ifindex2ifnet[msfr.msfr_ifindex]; | |
2873 | ifnet_head_done(); | |
2874 | if (ifp == NULL) { | |
2875 | return EADDRNOTAVAIL; | |
2876 | } | |
2877 | ||
2878 | /* | |
2879 | * Check if this socket is a member of this group. | |
2880 | */ | |
2881 | imo = inp_findmoptions(inp); | |
2882 | if (imo == NULL) { | |
2883 | return ENOMEM; | |
2884 | } | |
2885 | ||
2886 | IMO_LOCK(imo); | |
2887 | idx = imo_match_group(imo, ifp, gsa); | |
2888 | if (idx == (size_t)-1 || imo->imo_mfilters == NULL) { | |
2889 | error = EADDRNOTAVAIL; | |
2890 | goto out_imo_locked; | |
2891 | } | |
2892 | inm = imo->imo_membership[idx]; | |
2893 | imf = &imo->imo_mfilters[idx]; | |
2894 | ||
2895 | /* | |
2896 | * Begin state merge transaction at socket layer. | |
2897 | */ | |
2898 | ||
2899 | imf->imf_st[1] = msfr.msfr_fmode; | |
2900 | ||
2901 | /* | |
2902 | * Apply any new source filters, if present. | |
2903 | * Make a copy of the user-space source vector so | |
2904 | * that we may copy them with a single copyin. This | |
2905 | * allows us to deal with page faults up-front. | |
2906 | */ | |
2907 | if (msfr.msfr_nsrcs > 0) { | |
2908 | struct in_msource *lims; | |
2909 | struct sockaddr_in *psin; | |
2910 | struct sockaddr_storage *kss, *pkss; | |
2911 | int i; | |
2912 | ||
2913 | if (IS_64BIT_PROCESS(current_proc())) { | |
2914 | tmp_ptr = msfr64.msfr_srcs; | |
2915 | } else { | |
2916 | tmp_ptr = CAST_USER_ADDR_T(msfr32.msfr_srcs); | |
2917 | } | |
2918 | ||
2919 | IGMP_PRINTF(("%s: loading %lu source list entries\n", | |
2920 | __func__, (unsigned long)msfr.msfr_nsrcs)); | |
2921 | kss = _MALLOC((size_t) msfr.msfr_nsrcs * sizeof(*kss), | |
2922 | M_TEMP, M_WAITOK); | |
2923 | if (kss == NULL) { | |
2924 | error = ENOMEM; | |
2925 | goto out_imo_locked; | |
2926 | } | |
2927 | error = copyin(tmp_ptr, kss, | |
2928 | (size_t) msfr.msfr_nsrcs * sizeof(*kss)); | |
2929 | if (error) { | |
2930 | FREE(kss, M_TEMP); | |
2931 | goto out_imo_locked; | |
2932 | } | |
2933 | ||
2934 | /* | |
2935 | * Mark all source filters as UNDEFINED at t1. | |
2936 | * Restore new group filter mode, as imf_leave() | |
2937 | * will set it to INCLUDE. | |
2938 | */ | |
2939 | imf_leave(imf); | |
2940 | imf->imf_st[1] = msfr.msfr_fmode; | |
2941 | ||
2942 | /* | |
2943 | * Update socket layer filters at t1, lazy-allocating | |
2944 | * new entries. This saves a bunch of memory at the | |
2945 | * cost of one RB_FIND() per source entry; duplicate | |
2946 | * entries in the msfr_nsrcs vector are ignored. | |
2947 | * If we encounter an error, rollback transaction. | |
2948 | * | |
2949 | * XXX This too could be replaced with a set-symmetric | |
2950 | * difference like loop to avoid walking from root | |
2951 | * every time, as the key space is common. | |
2952 | */ | |
2953 | for (i = 0, pkss = kss; (u_int)i < msfr.msfr_nsrcs; | |
2954 | i++, pkss++) { | |
2955 | psin = (struct sockaddr_in *)pkss; | |
2956 | if (psin->sin_family != AF_INET) { | |
2957 | error = EAFNOSUPPORT; | |
2958 | break; | |
2959 | } | |
2960 | if (psin->sin_len != sizeof(struct sockaddr_in)) { | |
2961 | error = EINVAL; | |
2962 | break; | |
2963 | } | |
2964 | error = imf_get_source(imf, psin, &lims); | |
2965 | if (error) { | |
2966 | break; | |
2967 | } | |
2968 | lims->imsl_st[1] = imf->imf_st[1]; | |
2969 | } | |
2970 | FREE(kss, M_TEMP); | |
2971 | } | |
2972 | ||
2973 | if (error) { | |
2974 | goto out_imf_rollback; | |
2975 | } | |
2976 | ||
2977 | /* | |
2978 | * Begin state merge transaction at IGMP layer. | |
2979 | */ | |
2980 | INM_LOCK(inm); | |
2981 | IGMP_PRINTF(("%s: merge inm state\n", __func__)); | |
2982 | error = inm_merge(inm, imf); | |
2983 | if (error) { | |
2984 | IGMP_PRINTF(("%s: failed to merge inm state\n", __func__)); | |
2985 | INM_UNLOCK(inm); | |
2986 | goto out_imf_rollback; | |
2987 | } | |
2988 | ||
2989 | IGMP_PRINTF(("%s: doing igmp downcall\n", __func__)); | |
2990 | error = igmp_change_state(inm, &itp); | |
2991 | INM_UNLOCK(inm); | |
2992 | #ifdef IGMP_DEBUG | |
2993 | if (error) { | |
2994 | IGMP_PRINTF(("%s: failed igmp downcall\n", __func__)); | |
2995 | } | |
2996 | #endif | |
2997 | ||
2998 | out_imf_rollback: | |
2999 | if (error) { | |
3000 | imf_rollback(imf); | |
3001 | } else { | |
3002 | imf_commit(imf); | |
3003 | } | |
3004 | ||
3005 | imf_reap(imf); | |
3006 | ||
3007 | out_imo_locked: | |
3008 | IMO_UNLOCK(imo); | |
3009 | IMO_REMREF(imo); /* from inp_findmoptions() */ | |
3010 | ||
3011 | /* schedule timer now that we've dropped the lock(s) */ | |
3012 | igmp_set_timeout(&itp); | |
3013 | ||
3014 | return error; | |
3015 | } | |
3016 | ||
3017 | /* | |
3018 | * Set the IP multicast options in response to user setsockopt(). | |
3019 | * | |
3020 | * Many of the socket options handled in this function duplicate the | |
3021 | * functionality of socket options in the regular unicast API. However, | |
3022 | * it is not possible to merge the duplicate code, because the idempotence | |
3023 | * of the IPv4 multicast part of the BSD Sockets API must be preserved; | |
3024 | * the effects of these options must be treated as separate and distinct. | |
3025 | */ | |
3026 | int | |
3027 | inp_setmoptions(struct inpcb *inp, struct sockopt *sopt) | |
3028 | { | |
3029 | struct ip_moptions *imo; | |
3030 | int error; | |
3031 | unsigned int ifindex; | |
3032 | struct ifnet *ifp; | |
3033 | ||
3034 | error = 0; | |
3035 | ||
3036 | /* | |
3037 | * If socket is neither of type SOCK_RAW or SOCK_DGRAM, | |
3038 | * or is a divert socket, reject it. | |
3039 | */ | |
3040 | if (SOCK_PROTO(inp->inp_socket) == IPPROTO_DIVERT || | |
3041 | (SOCK_TYPE(inp->inp_socket) != SOCK_RAW && | |
3042 | SOCK_TYPE(inp->inp_socket) != SOCK_DGRAM)) { | |
3043 | return EOPNOTSUPP; | |
3044 | } | |
3045 | ||
3046 | switch (sopt->sopt_name) { | |
3047 | case IP_MULTICAST_IF: | |
3048 | error = inp_set_multicast_if(inp, sopt); | |
3049 | break; | |
3050 | ||
3051 | case IP_MULTICAST_IFINDEX: | |
3052 | /* | |
3053 | * Select the interface for outgoing multicast packets. | |
3054 | */ | |
3055 | error = sooptcopyin(sopt, &ifindex, sizeof(ifindex), | |
3056 | sizeof(ifindex)); | |
3057 | if (error) { | |
3058 | break; | |
3059 | } | |
3060 | ||
3061 | imo = inp_findmoptions(inp); | |
3062 | if (imo == NULL) { | |
3063 | error = ENOMEM; | |
3064 | break; | |
3065 | } | |
3066 | /* | |
3067 | * Index 0 is used to remove a previous selection. | |
3068 | * When no interface is selected, a default one is | |
3069 | * chosen every time a multicast packet is sent. | |
3070 | */ | |
3071 | if (ifindex == 0) { | |
3072 | IMO_LOCK(imo); | |
3073 | imo->imo_multicast_ifp = NULL; | |
3074 | IMO_UNLOCK(imo); | |
3075 | IMO_REMREF(imo); /* from inp_findmoptions() */ | |
3076 | break; | |
3077 | } | |
3078 | ||
3079 | ifnet_head_lock_shared(); | |
3080 | /* Don't need to check is ifindex is < 0 since it's unsigned */ | |
3081 | if ((unsigned int)if_index < ifindex) { | |
3082 | ifnet_head_done(); | |
3083 | IMO_REMREF(imo); /* from inp_findmoptions() */ | |
3084 | error = ENXIO; /* per IPV6_MULTICAST_IF */ | |
3085 | break; | |
3086 | } | |
3087 | ifp = ifindex2ifnet[ifindex]; | |
3088 | ifnet_head_done(); | |
3089 | ||
3090 | /* If it's detached or isn't a multicast interface, bail out */ | |
3091 | if (ifp == NULL || !(ifp->if_flags & IFF_MULTICAST)) { | |
3092 | IMO_REMREF(imo); /* from inp_findmoptions() */ | |
3093 | error = EADDRNOTAVAIL; | |
3094 | break; | |
3095 | } | |
3096 | IMO_LOCK(imo); | |
3097 | imo->imo_multicast_ifp = ifp; | |
3098 | /* | |
3099 | * Clear out any remnants of past IP_MULTICAST_IF. The addr | |
3100 | * isn't really used anywhere in the kernel; we could have | |
3101 | * iterated thru the addresses of the interface and pick one | |
3102 | * here, but that is redundant since ip_getmoptions() already | |
3103 | * takes care of that for INADDR_ANY. | |
3104 | */ | |
3105 | imo->imo_multicast_addr.s_addr = INADDR_ANY; | |
3106 | IMO_UNLOCK(imo); | |
3107 | IMO_REMREF(imo); /* from inp_findmoptions() */ | |
3108 | break; | |
3109 | ||
3110 | case IP_MULTICAST_TTL: { | |
3111 | u_char ttl; | |
3112 | ||
3113 | /* | |
3114 | * Set the IP time-to-live for outgoing multicast packets. | |
3115 | * The original multicast API required a char argument, | |
3116 | * which is inconsistent with the rest of the socket API. | |
3117 | * We allow either a char or an int. | |
3118 | */ | |
3119 | if (sopt->sopt_valsize == sizeof(u_char)) { | |
3120 | error = sooptcopyin(sopt, &ttl, sizeof(u_char), | |
3121 | sizeof(u_char)); | |
3122 | if (error) { | |
3123 | break; | |
3124 | } | |
3125 | } else { | |
3126 | u_int ittl; | |
3127 | ||
3128 | error = sooptcopyin(sopt, &ittl, sizeof(u_int), | |
3129 | sizeof(u_int)); | |
3130 | if (error) { | |
3131 | break; | |
3132 | } | |
3133 | if (ittl > 255) { | |
3134 | error = EINVAL; | |
3135 | break; | |
3136 | } | |
3137 | ttl = (u_char)ittl; | |
3138 | } | |
3139 | imo = inp_findmoptions(inp); | |
3140 | if (imo == NULL) { | |
3141 | error = ENOMEM; | |
3142 | break; | |
3143 | } | |
3144 | IMO_LOCK(imo); | |
3145 | imo->imo_multicast_ttl = ttl; | |
3146 | IMO_UNLOCK(imo); | |
3147 | IMO_REMREF(imo); /* from inp_findmoptions() */ | |
3148 | break; | |
3149 | } | |
3150 | ||
3151 | case IP_MULTICAST_LOOP: { | |
3152 | u_char loop; | |
3153 | ||
3154 | /* | |
3155 | * Set the loopback flag for outgoing multicast packets. | |
3156 | * Must be zero or one. The original multicast API required a | |
3157 | * char argument, which is inconsistent with the rest | |
3158 | * of the socket API. We allow either a char or an int. | |
3159 | */ | |
3160 | if (sopt->sopt_valsize == sizeof(u_char)) { | |
3161 | error = sooptcopyin(sopt, &loop, sizeof(u_char), | |
3162 | sizeof(u_char)); | |
3163 | if (error) { | |
3164 | break; | |
3165 | } | |
3166 | } else { | |
3167 | u_int iloop; | |
3168 | ||
3169 | error = sooptcopyin(sopt, &iloop, sizeof(u_int), | |
3170 | sizeof(u_int)); | |
3171 | if (error) { | |
3172 | break; | |
3173 | } | |
3174 | loop = (u_char)iloop; | |
3175 | } | |
3176 | imo = inp_findmoptions(inp); | |
3177 | if (imo == NULL) { | |
3178 | error = ENOMEM; | |
3179 | break; | |
3180 | } | |
3181 | IMO_LOCK(imo); | |
3182 | imo->imo_multicast_loop = !!loop; | |
3183 | IMO_UNLOCK(imo); | |
3184 | IMO_REMREF(imo); /* from inp_findmoptions() */ | |
3185 | break; | |
3186 | } | |
3187 | ||
3188 | case IP_ADD_MEMBERSHIP: | |
3189 | case IP_ADD_SOURCE_MEMBERSHIP: | |
3190 | case MCAST_JOIN_GROUP: | |
3191 | case MCAST_JOIN_SOURCE_GROUP: | |
3192 | error = inp_join_group(inp, sopt); | |
3193 | break; | |
3194 | ||
3195 | case IP_DROP_MEMBERSHIP: | |
3196 | case IP_DROP_SOURCE_MEMBERSHIP: | |
3197 | case MCAST_LEAVE_GROUP: | |
3198 | case MCAST_LEAVE_SOURCE_GROUP: | |
3199 | error = inp_leave_group(inp, sopt); | |
3200 | break; | |
3201 | ||
3202 | case IP_BLOCK_SOURCE: | |
3203 | case IP_UNBLOCK_SOURCE: | |
3204 | case MCAST_BLOCK_SOURCE: | |
3205 | case MCAST_UNBLOCK_SOURCE: | |
3206 | error = inp_block_unblock_source(inp, sopt); | |
3207 | break; | |
3208 | ||
3209 | case IP_MSFILTER: | |
3210 | error = inp_set_source_filters(inp, sopt); | |
3211 | break; | |
3212 | ||
3213 | default: | |
3214 | error = EOPNOTSUPP; | |
3215 | break; | |
3216 | } | |
3217 | ||
3218 | return error; | |
3219 | } | |
3220 | ||
3221 | /* | |
3222 | * Expose IGMP's multicast filter mode and source list(s) to userland, | |
3223 | * keyed by (ifindex, group). | |
3224 | * The filter mode is written out as a uint32_t, followed by | |
3225 | * 0..n of struct in_addr. | |
3226 | * For use by ifmcstat(8). | |
3227 | */ | |
3228 | static int | |
3229 | sysctl_ip_mcast_filters SYSCTL_HANDLER_ARGS | |
3230 | { | |
3231 | #pragma unused(oidp) | |
3232 | ||
3233 | struct in_addr src = {}, group; | |
3234 | struct ifnet *ifp; | |
3235 | struct in_multi *inm; | |
3236 | struct in_multistep step; | |
3237 | struct ip_msource *ims; | |
3238 | int *name; | |
3239 | int retval = 0; | |
3240 | u_int namelen; | |
3241 | uint32_t fmode, ifindex; | |
3242 | ||
3243 | name = (int *)arg1; | |
3244 | namelen = (u_int)arg2; | |
3245 | ||
3246 | if (req->newptr != USER_ADDR_NULL) { | |
3247 | return EPERM; | |
3248 | } | |
3249 | ||
3250 | if (namelen != 2) { | |
3251 | return EINVAL; | |
3252 | } | |
3253 | ||
3254 | ifindex = name[0]; | |
3255 | ifnet_head_lock_shared(); | |
3256 | if (ifindex <= 0 || ifindex > (u_int)if_index) { | |
3257 | IGMP_PRINTF(("%s: ifindex %u out of range\n", | |
3258 | __func__, ifindex)); | |
3259 | ifnet_head_done(); | |
3260 | return ENOENT; | |
3261 | } | |
3262 | ||
3263 | group.s_addr = name[1]; | |
3264 | if (!IN_MULTICAST(ntohl(group.s_addr))) { | |
3265 | IGMP_INET_PRINTF(group, | |
3266 | ("%s: group %s is not multicast\n", | |
3267 | __func__, _igmp_inet_buf)); | |
3268 | ifnet_head_done(); | |
3269 | return EINVAL; | |
3270 | } | |
3271 | ||
3272 | ifp = ifindex2ifnet[ifindex]; | |
3273 | ifnet_head_done(); | |
3274 | if (ifp == NULL) { | |
3275 | IGMP_PRINTF(("%s: no ifp for ifindex %u\n", __func__, ifindex)); | |
3276 | return ENOENT; | |
3277 | } | |
3278 | ||
3279 | in_multihead_lock_shared(); | |
3280 | IN_FIRST_MULTI(step, inm); | |
3281 | while (inm != NULL) { | |
3282 | INM_LOCK(inm); | |
3283 | if (inm->inm_ifp != ifp) { | |
3284 | goto next; | |
3285 | } | |
3286 | ||
3287 | if (!in_hosteq(inm->inm_addr, group)) { | |
3288 | goto next; | |
3289 | } | |
3290 | ||
3291 | fmode = inm->inm_st[1].iss_fmode; | |
3292 | retval = SYSCTL_OUT(req, &fmode, sizeof(uint32_t)); | |
3293 | if (retval != 0) { | |
3294 | INM_UNLOCK(inm); | |
3295 | break; /* abort */ | |
3296 | } | |
3297 | RB_FOREACH(ims, ip_msource_tree, &inm->inm_srcs) { | |
3298 | #ifdef IGMP_DEBUG | |
3299 | struct in_addr ina; | |
3300 | ina.s_addr = htonl(ims->ims_haddr); | |
3301 | IGMP_INET_PRINTF(ina, | |
3302 | ("%s: visit node %s\n", __func__, _igmp_inet_buf)); | |
3303 | #endif | |
3304 | /* | |
3305 | * Only copy-out sources which are in-mode. | |
3306 | */ | |
3307 | if (fmode != ims_get_mode(inm, ims, 1)) { | |
3308 | IGMP_PRINTF(("%s: skip non-in-mode\n", | |
3309 | __func__)); | |
3310 | continue; /* process next source */ | |
3311 | } | |
3312 | src.s_addr = htonl(ims->ims_haddr); | |
3313 | retval = SYSCTL_OUT(req, &src, sizeof(struct in_addr)); | |
3314 | if (retval != 0) { | |
3315 | break; /* process next inm */ | |
3316 | } | |
3317 | } | |
3318 | next: | |
3319 | INM_UNLOCK(inm); | |
3320 | IN_NEXT_MULTI(step, inm); | |
3321 | } | |
3322 | in_multihead_lock_done(); | |
3323 | ||
3324 | return retval; | |
3325 | } | |
3326 | ||
3327 | /* | |
3328 | * XXX | |
3329 | * The whole multicast option thing needs to be re-thought. | |
3330 | * Several of these options are equally applicable to non-multicast | |
3331 | * transmission, and one (IP_MULTICAST_TTL) totally duplicates a | |
3332 | * standard option (IP_TTL). | |
3333 | */ | |
3334 | /* | |
3335 | * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index. | |
3336 | */ | |
3337 | static struct ifnet * | |
3338 | ip_multicast_if(struct in_addr *a, unsigned int *ifindexp) | |
3339 | { | |
3340 | unsigned int ifindex; | |
3341 | struct ifnet *ifp; | |
3342 | ||
3343 | if (ifindexp != NULL) { | |
3344 | *ifindexp = 0; | |
3345 | } | |
3346 | if (ntohl(a->s_addr) >> 24 == 0) { | |
3347 | ifindex = ntohl(a->s_addr) & 0xffffff; | |
3348 | ifnet_head_lock_shared(); | |
3349 | /* Don't need to check is ifindex is < 0 since it's unsigned */ | |
3350 | if ((unsigned int)if_index < ifindex) { | |
3351 | ifnet_head_done(); | |
3352 | return NULL; | |
3353 | } | |
3354 | ifp = ifindex2ifnet[ifindex]; | |
3355 | ifnet_head_done(); | |
3356 | if (ifp != NULL && ifindexp != NULL) { | |
3357 | *ifindexp = ifindex; | |
3358 | } | |
3359 | } else { | |
3360 | INADDR_TO_IFP(*a, ifp); | |
3361 | } | |
3362 | return ifp; | |
3363 | } | |
3364 | ||
3365 | void | |
3366 | in_multi_init(void) | |
3367 | { | |
3368 | PE_parse_boot_argn("ifa_debug", &inm_debug, sizeof(inm_debug)); | |
3369 | ||
3370 | /* Setup lock group and attribute for in_multihead */ | |
3371 | in_multihead_lock_grp_attr = lck_grp_attr_alloc_init(); | |
3372 | in_multihead_lock_grp = lck_grp_alloc_init("in_multihead", | |
3373 | in_multihead_lock_grp_attr); | |
3374 | in_multihead_lock_attr = lck_attr_alloc_init(); | |
3375 | lck_rw_init(&in_multihead_lock, in_multihead_lock_grp, | |
3376 | in_multihead_lock_attr); | |
3377 | ||
3378 | lck_mtx_init(&inm_trash_lock, in_multihead_lock_grp, | |
3379 | in_multihead_lock_attr); | |
3380 | TAILQ_INIT(&inm_trash_head); | |
3381 | ||
3382 | inm_size = (inm_debug == 0) ? sizeof(struct in_multi) : | |
3383 | sizeof(struct in_multi_dbg); | |
3384 | inm_zone = zinit(inm_size, INM_ZONE_MAX * inm_size, | |
3385 | 0, INM_ZONE_NAME); | |
3386 | if (inm_zone == NULL) { | |
3387 | panic("%s: failed allocating %s", __func__, INM_ZONE_NAME); | |
3388 | /* NOTREACHED */ | |
3389 | } | |
3390 | zone_change(inm_zone, Z_EXPAND, TRUE); | |
3391 | ||
3392 | ipms_size = sizeof(struct ip_msource); | |
3393 | ipms_zone = zinit(ipms_size, IPMS_ZONE_MAX * ipms_size, | |
3394 | 0, IPMS_ZONE_NAME); | |
3395 | if (ipms_zone == NULL) { | |
3396 | panic("%s: failed allocating %s", __func__, IPMS_ZONE_NAME); | |
3397 | /* NOTREACHED */ | |
3398 | } | |
3399 | zone_change(ipms_zone, Z_EXPAND, TRUE); | |
3400 | ||
3401 | inms_size = sizeof(struct in_msource); | |
3402 | inms_zone = zinit(inms_size, INMS_ZONE_MAX * inms_size, | |
3403 | 0, INMS_ZONE_NAME); | |
3404 | if (inms_zone == NULL) { | |
3405 | panic("%s: failed allocating %s", __func__, INMS_ZONE_NAME); | |
3406 | /* NOTREACHED */ | |
3407 | } | |
3408 | zone_change(inms_zone, Z_EXPAND, TRUE); | |
3409 | } | |
3410 | ||
3411 | static struct in_multi * | |
3412 | in_multi_alloc(int how) | |
3413 | { | |
3414 | struct in_multi *inm; | |
3415 | ||
3416 | inm = (how == M_WAITOK) ? zalloc(inm_zone) : zalloc_noblock(inm_zone); | |
3417 | if (inm != NULL) { | |
3418 | bzero(inm, inm_size); | |
3419 | lck_mtx_init(&inm->inm_lock, in_multihead_lock_grp, | |
3420 | in_multihead_lock_attr); | |
3421 | inm->inm_debug |= IFD_ALLOC; | |
3422 | if (inm_debug != 0) { | |
3423 | inm->inm_debug |= IFD_DEBUG; | |
3424 | inm->inm_trace = inm_trace; | |
3425 | } | |
3426 | } | |
3427 | return inm; | |
3428 | } | |
3429 | ||
3430 | static void | |
3431 | in_multi_free(struct in_multi *inm) | |
3432 | { | |
3433 | INM_LOCK(inm); | |
3434 | if (inm->inm_debug & IFD_ATTACHED) { | |
3435 | panic("%s: attached inm=%p is being freed", __func__, inm); | |
3436 | /* NOTREACHED */ | |
3437 | } else if (inm->inm_ifma != NULL) { | |
3438 | panic("%s: ifma not NULL for inm=%p", __func__, inm); | |
3439 | /* NOTREACHED */ | |
3440 | } else if (!(inm->inm_debug & IFD_ALLOC)) { | |
3441 | panic("%s: inm %p cannot be freed", __func__, inm); | |
3442 | /* NOTREACHED */ | |
3443 | } else if (inm->inm_refcount != 0) { | |
3444 | panic("%s: non-zero refcount inm=%p", __func__, inm); | |
3445 | /* NOTREACHED */ | |
3446 | } else if (inm->inm_reqcnt != 0) { | |
3447 | panic("%s: non-zero reqcnt inm=%p", __func__, inm); | |
3448 | /* NOTREACHED */ | |
3449 | } | |
3450 | ||
3451 | /* Free any pending IGMPv3 state-change records */ | |
3452 | IF_DRAIN(&inm->inm_scq); | |
3453 | ||
3454 | inm->inm_debug &= ~IFD_ALLOC; | |
3455 | if ((inm->inm_debug & (IFD_DEBUG | IFD_TRASHED)) == | |
3456 | (IFD_DEBUG | IFD_TRASHED)) { | |
3457 | lck_mtx_lock(&inm_trash_lock); | |
3458 | TAILQ_REMOVE(&inm_trash_head, (struct in_multi_dbg *)inm, | |
3459 | inm_trash_link); | |
3460 | lck_mtx_unlock(&inm_trash_lock); | |
3461 | inm->inm_debug &= ~IFD_TRASHED; | |
3462 | } | |
3463 | INM_UNLOCK(inm); | |
3464 | ||
3465 | lck_mtx_destroy(&inm->inm_lock, in_multihead_lock_grp); | |
3466 | zfree(inm_zone, inm); | |
3467 | } | |
3468 | ||
3469 | static void | |
3470 | in_multi_attach(struct in_multi *inm) | |
3471 | { | |
3472 | in_multihead_lock_assert(LCK_RW_ASSERT_EXCLUSIVE); | |
3473 | INM_LOCK_ASSERT_HELD(inm); | |
3474 | ||
3475 | if (inm->inm_debug & IFD_ATTACHED) { | |
3476 | panic("%s: Attempt to attach an already attached inm=%p", | |
3477 | __func__, inm); | |
3478 | /* NOTREACHED */ | |
3479 | } else if (inm->inm_debug & IFD_TRASHED) { | |
3480 | panic("%s: Attempt to reattach a detached inm=%p", | |
3481 | __func__, inm); | |
3482 | /* NOTREACHED */ | |
3483 | } | |
3484 | ||
3485 | inm->inm_reqcnt++; | |
3486 | VERIFY(inm->inm_reqcnt == 1); | |
3487 | INM_ADDREF_LOCKED(inm); | |
3488 | inm->inm_debug |= IFD_ATTACHED; | |
3489 | /* | |
3490 | * Reattach case: If debugging is enabled, take it | |
3491 | * out of the trash list and clear IFD_TRASHED. | |
3492 | */ | |
3493 | if ((inm->inm_debug & (IFD_DEBUG | IFD_TRASHED)) == | |
3494 | (IFD_DEBUG | IFD_TRASHED)) { | |
3495 | /* Become a regular mutex, just in case */ | |
3496 | INM_CONVERT_LOCK(inm); | |
3497 | lck_mtx_lock(&inm_trash_lock); | |
3498 | TAILQ_REMOVE(&inm_trash_head, (struct in_multi_dbg *)inm, | |
3499 | inm_trash_link); | |
3500 | lck_mtx_unlock(&inm_trash_lock); | |
3501 | inm->inm_debug &= ~IFD_TRASHED; | |
3502 | } | |
3503 | ||
3504 | LIST_INSERT_HEAD(&in_multihead, inm, inm_link); | |
3505 | } | |
3506 | ||
3507 | int | |
3508 | in_multi_detach(struct in_multi *inm) | |
3509 | { | |
3510 | in_multihead_lock_assert(LCK_RW_ASSERT_EXCLUSIVE); | |
3511 | INM_LOCK_ASSERT_HELD(inm); | |
3512 | ||
3513 | if (inm->inm_reqcnt == 0) { | |
3514 | panic("%s: inm=%p negative reqcnt", __func__, inm); | |
3515 | /* NOTREACHED */ | |
3516 | } | |
3517 | ||
3518 | --inm->inm_reqcnt; | |
3519 | if (inm->inm_reqcnt > 0) { | |
3520 | return 0; | |
3521 | } | |
3522 | ||
3523 | if (!(inm->inm_debug & IFD_ATTACHED)) { | |
3524 | panic("%s: Attempt to detach an unattached record inm=%p", | |
3525 | __func__, inm); | |
3526 | /* NOTREACHED */ | |
3527 | } else if (inm->inm_debug & IFD_TRASHED) { | |
3528 | panic("%s: inm %p is already in trash list", __func__, inm); | |
3529 | /* NOTREACHED */ | |
3530 | } | |
3531 | ||
3532 | /* | |
3533 | * NOTE: Caller calls IFMA_REMREF | |
3534 | */ | |
3535 | inm->inm_debug &= ~IFD_ATTACHED; | |
3536 | LIST_REMOVE(inm, inm_link); | |
3537 | ||
3538 | if (inm->inm_debug & IFD_DEBUG) { | |
3539 | /* Become a regular mutex, just in case */ | |
3540 | INM_CONVERT_LOCK(inm); | |
3541 | lck_mtx_lock(&inm_trash_lock); | |
3542 | TAILQ_INSERT_TAIL(&inm_trash_head, | |
3543 | (struct in_multi_dbg *)inm, inm_trash_link); | |
3544 | lck_mtx_unlock(&inm_trash_lock); | |
3545 | inm->inm_debug |= IFD_TRASHED; | |
3546 | } | |
3547 | ||
3548 | return 1; | |
3549 | } | |
3550 | ||
3551 | void | |
3552 | inm_addref(struct in_multi *inm, int locked) | |
3553 | { | |
3554 | if (!locked) { | |
3555 | INM_LOCK_SPIN(inm); | |
3556 | } else { | |
3557 | INM_LOCK_ASSERT_HELD(inm); | |
3558 | } | |
3559 | ||
3560 | if (++inm->inm_refcount == 0) { | |
3561 | panic("%s: inm=%p wraparound refcnt", __func__, inm); | |
3562 | /* NOTREACHED */ | |
3563 | } else if (inm->inm_trace != NULL) { | |
3564 | (*inm->inm_trace)(inm, TRUE); | |
3565 | } | |
3566 | if (!locked) { | |
3567 | INM_UNLOCK(inm); | |
3568 | } | |
3569 | } | |
3570 | ||
3571 | void | |
3572 | inm_remref(struct in_multi *inm, int locked) | |
3573 | { | |
3574 | struct ifmultiaddr *ifma; | |
3575 | struct igmp_ifinfo *igi; | |
3576 | ||
3577 | if (!locked) { | |
3578 | INM_LOCK_SPIN(inm); | |
3579 | } else { | |
3580 | INM_LOCK_ASSERT_HELD(inm); | |
3581 | } | |
3582 | ||
3583 | if (inm->inm_refcount == 0 || (inm->inm_refcount == 1 && locked)) { | |
3584 | panic("%s: inm=%p negative/missing refcnt", __func__, inm); | |
3585 | /* NOTREACHED */ | |
3586 | } else if (inm->inm_trace != NULL) { | |
3587 | (*inm->inm_trace)(inm, FALSE); | |
3588 | } | |
3589 | ||
3590 | --inm->inm_refcount; | |
3591 | if (inm->inm_refcount > 0) { | |
3592 | if (!locked) { | |
3593 | INM_UNLOCK(inm); | |
3594 | } | |
3595 | return; | |
3596 | } | |
3597 | ||
3598 | /* | |
3599 | * Synchronization with in_getmulti(). In the event the inm has been | |
3600 | * detached, the underlying ifma would still be in the if_multiaddrs | |
3601 | * list, and thus can be looked up via if_addmulti(). At that point, | |
3602 | * the only way to find this inm is via ifma_protospec. To avoid | |
3603 | * race conditions between the last inm_remref() of that inm and its | |
3604 | * use via ifma_protospec, in_multihead lock is used for serialization. | |
3605 | * In order to avoid violating the lock order, we must drop inm_lock | |
3606 | * before acquiring in_multihead lock. To prevent the inm from being | |
3607 | * freed prematurely, we hold an extra reference. | |
3608 | */ | |
3609 | ++inm->inm_refcount; | |
3610 | INM_UNLOCK(inm); | |
3611 | in_multihead_lock_shared(); | |
3612 | INM_LOCK_SPIN(inm); | |
3613 | --inm->inm_refcount; | |
3614 | if (inm->inm_refcount > 0) { | |
3615 | /* We've lost the race, so abort since inm is still in use */ | |
3616 | INM_UNLOCK(inm); | |
3617 | in_multihead_lock_done(); | |
3618 | /* If it was locked, return it as such */ | |
3619 | if (locked) { | |
3620 | INM_LOCK(inm); | |
3621 | } | |
3622 | return; | |
3623 | } | |
3624 | inm_purge(inm); | |
3625 | ifma = inm->inm_ifma; | |
3626 | inm->inm_ifma = NULL; | |
3627 | inm->inm_ifp = NULL; | |
3628 | igi = inm->inm_igi; | |
3629 | inm->inm_igi = NULL; | |
3630 | INM_UNLOCK(inm); | |
3631 | IFMA_LOCK_SPIN(ifma); | |
3632 | ifma->ifma_protospec = NULL; | |
3633 | IFMA_UNLOCK(ifma); | |
3634 | in_multihead_lock_done(); | |
3635 | ||
3636 | in_multi_free(inm); | |
3637 | if_delmulti_ifma(ifma); | |
3638 | /* Release reference held to the underlying ifmultiaddr */ | |
3639 | IFMA_REMREF(ifma); | |
3640 | ||
3641 | if (igi != NULL) { | |
3642 | IGI_REMREF(igi); | |
3643 | } | |
3644 | } | |
3645 | ||
3646 | static void | |
3647 | inm_trace(struct in_multi *inm, int refhold) | |
3648 | { | |
3649 | struct in_multi_dbg *inm_dbg = (struct in_multi_dbg *)inm; | |
3650 | ctrace_t *tr; | |
3651 | u_int32_t idx; | |
3652 | u_int16_t *cnt; | |
3653 | ||
3654 | if (!(inm->inm_debug & IFD_DEBUG)) { | |
3655 | panic("%s: inm %p has no debug structure", __func__, inm); | |
3656 | /* NOTREACHED */ | |
3657 | } | |
3658 | if (refhold) { | |
3659 | cnt = &inm_dbg->inm_refhold_cnt; | |
3660 | tr = inm_dbg->inm_refhold; | |
3661 | } else { | |
3662 | cnt = &inm_dbg->inm_refrele_cnt; | |
3663 | tr = inm_dbg->inm_refrele; | |
3664 | } | |
3665 | ||
3666 | idx = atomic_add_16_ov(cnt, 1) % INM_TRACE_HIST_SIZE; | |
3667 | ctrace_record(&tr[idx]); | |
3668 | } | |
3669 | ||
3670 | void | |
3671 | in_multihead_lock_exclusive(void) | |
3672 | { | |
3673 | lck_rw_lock_exclusive(&in_multihead_lock); | |
3674 | } | |
3675 | ||
3676 | void | |
3677 | in_multihead_lock_shared(void) | |
3678 | { | |
3679 | lck_rw_lock_shared(&in_multihead_lock); | |
3680 | } | |
3681 | ||
3682 | void | |
3683 | in_multihead_lock_assert(int what) | |
3684 | { | |
3685 | #if !MACH_ASSERT | |
3686 | #pragma unused(what) | |
3687 | #endif | |
3688 | LCK_RW_ASSERT(&in_multihead_lock, what); | |
3689 | } | |
3690 | ||
3691 | void | |
3692 | in_multihead_lock_done(void) | |
3693 | { | |
3694 | lck_rw_done(&in_multihead_lock); | |
3695 | } | |
3696 | ||
3697 | static struct ip_msource * | |
3698 | ipms_alloc(int how) | |
3699 | { | |
3700 | struct ip_msource *ims; | |
3701 | ||
3702 | ims = (how == M_WAITOK) ? zalloc(ipms_zone) : zalloc_noblock(ipms_zone); | |
3703 | if (ims != NULL) { | |
3704 | bzero(ims, ipms_size); | |
3705 | } | |
3706 | ||
3707 | return ims; | |
3708 | } | |
3709 | ||
3710 | static void | |
3711 | ipms_free(struct ip_msource *ims) | |
3712 | { | |
3713 | zfree(ipms_zone, ims); | |
3714 | } | |
3715 | ||
3716 | static struct in_msource * | |
3717 | inms_alloc(int how) | |
3718 | { | |
3719 | struct in_msource *inms; | |
3720 | ||
3721 | inms = (how == M_WAITOK) ? zalloc(inms_zone) : | |
3722 | zalloc_noblock(inms_zone); | |
3723 | if (inms != NULL) { | |
3724 | bzero(inms, inms_size); | |
3725 | } | |
3726 | ||
3727 | return inms; | |
3728 | } | |
3729 | ||
3730 | static void | |
3731 | inms_free(struct in_msource *inms) | |
3732 | { | |
3733 | zfree(inms_zone, inms); | |
3734 | } | |
3735 | ||
3736 | #ifdef IGMP_DEBUG | |
3737 | ||
3738 | static const char *inm_modestrs[] = { "un\n", "in", "ex" }; | |
3739 | ||
3740 | static const char * | |
3741 | inm_mode_str(const int mode) | |
3742 | { | |
3743 | if (mode >= MCAST_UNDEFINED && mode <= MCAST_EXCLUDE) { | |
3744 | return inm_modestrs[mode]; | |
3745 | } | |
3746 | return "??"; | |
3747 | } | |
3748 | ||
3749 | static const char *inm_statestrs[] = { | |
3750 | "not-member\n", | |
3751 | "silent\n", | |
3752 | "reporting\n", | |
3753 | "idle\n", | |
3754 | "lazy\n", | |
3755 | "sleeping\n", | |
3756 | "awakening\n", | |
3757 | "query-pending\n", | |
3758 | "sg-query-pending\n", | |
3759 | "leaving" | |
3760 | }; | |
3761 | ||
3762 | static const char * | |
3763 | inm_state_str(const int state) | |
3764 | { | |
3765 | if (state >= IGMP_NOT_MEMBER && state <= IGMP_LEAVING_MEMBER) { | |
3766 | return inm_statestrs[state]; | |
3767 | } | |
3768 | return "??"; | |
3769 | } | |
3770 | ||
3771 | /* | |
3772 | * Dump an in_multi structure to the console. | |
3773 | */ | |
3774 | void | |
3775 | inm_print(const struct in_multi *inm) | |
3776 | { | |
3777 | int t; | |
3778 | char buf[MAX_IPv4_STR_LEN]; | |
3779 | ||
3780 | INM_LOCK_ASSERT_HELD(__DECONST(struct in_multi *, inm)); | |
3781 | ||
3782 | if (igmp_debug == 0) { | |
3783 | return; | |
3784 | } | |
3785 | ||
3786 | inet_ntop(AF_INET, &inm->inm_addr, buf, sizeof(buf)); | |
3787 | printf("%s: --- begin inm 0x%llx ---\n", __func__, | |
3788 | (uint64_t)VM_KERNEL_ADDRPERM(inm)); | |
3789 | printf("addr %s ifp 0x%llx(%s) ifma 0x%llx\n", | |
3790 | buf, | |
3791 | (uint64_t)VM_KERNEL_ADDRPERM(inm->inm_ifp), | |
3792 | if_name(inm->inm_ifp), | |
3793 | (uint64_t)VM_KERNEL_ADDRPERM(inm->inm_ifma)); | |
3794 | printf("timer %u state %s refcount %u scq.len %u\n", | |
3795 | inm->inm_timer, | |
3796 | inm_state_str(inm->inm_state), | |
3797 | inm->inm_refcount, | |
3798 | inm->inm_scq.ifq_len); | |
3799 | printf("igi 0x%llx nsrc %lu sctimer %u scrv %u\n", | |
3800 | (uint64_t)VM_KERNEL_ADDRPERM(inm->inm_igi), | |
3801 | inm->inm_nsrc, | |
3802 | inm->inm_sctimer, | |
3803 | inm->inm_scrv); | |
3804 | for (t = 0; t < 2; t++) { | |
3805 | printf("t%d: fmode %s asm %u ex %u in %u rec %u\n", t, | |
3806 | inm_mode_str(inm->inm_st[t].iss_fmode), | |
3807 | inm->inm_st[t].iss_asm, | |
3808 | inm->inm_st[t].iss_ex, | |
3809 | inm->inm_st[t].iss_in, | |
3810 | inm->inm_st[t].iss_rec); | |
3811 | } | |
3812 | printf("%s: --- end inm 0x%llx ---\n", __func__, | |
3813 | (uint64_t)VM_KERNEL_ADDRPERM(inm)); | |
3814 | } | |
3815 | ||
3816 | #else | |
3817 | ||
3818 | void | |
3819 | inm_print(__unused const struct in_multi *inm) | |
3820 | { | |
3821 | } | |
3822 | ||
3823 | #endif |