]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * CDDL HEADER START | |
3 | * | |
4 | * The contents of this file are subject to the terms of the | |
5 | * Common Development and Distribution License, Version 1.0 only | |
6 | * (the "License"). You may not use this file except in compliance | |
7 | * with the License. | |
8 | * | |
9 | * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE | |
10 | * or http://www.opensolaris.org/os/licensing. | |
11 | * See the License for the specific language governing permissions | |
12 | * and limitations under the License. | |
13 | * | |
14 | * When distributing Covered Code, include this CDDL HEADER in each | |
15 | * file and include the License file at usr/src/OPENSOLARIS.LICENSE. | |
16 | * If applicable, add the following below this CDDL HEADER, with the | |
17 | * fields enclosed by brackets "[]" replaced with your own identifying | |
18 | * information: Portions Copyright [yyyy] [name of copyright owner] | |
19 | * | |
20 | * CDDL HEADER END | |
21 | */ | |
22 | /* | |
23 | * Copyright 2005 Sun Microsystems, Inc. All rights reserved. | |
24 | * Use is subject to license terms. | |
25 | */ | |
26 | ||
27 | /* #pragma ident "@(#)fbt.c 1.15 05/09/19 SMI" */ | |
28 | ||
29 | #ifdef KERNEL | |
30 | #ifndef _KERNEL | |
31 | #define _KERNEL /* Solaris vs. Darwin */ | |
32 | #endif | |
33 | #endif | |
34 | ||
35 | #define MACH__POSIX_C_SOURCE_PRIVATE 1 /* pulls in suitable savearea from mach/ppc/thread_status.h */ | |
36 | #include <kern/thread.h> | |
37 | #include <mach/thread_status.h> | |
38 | #include <mach/vm_param.h> | |
39 | #include <mach-o/loader.h> | |
40 | #include <mach-o/nlist.h> | |
41 | #include <libkern/kernel_mach_header.h> | |
42 | #include <libkern/OSAtomic.h> | |
43 | ||
44 | #include <sys/param.h> | |
45 | #include <sys/systm.h> | |
46 | #include <sys/errno.h> | |
47 | #include <sys/stat.h> | |
48 | #include <sys/ioctl.h> | |
49 | #include <sys/conf.h> | |
50 | #include <sys/fcntl.h> | |
51 | #include <miscfs/devfs/devfs.h> | |
52 | ||
53 | #include <sys/dtrace.h> | |
54 | #include <sys/dtrace_impl.h> | |
55 | #include <sys/fbt.h> | |
56 | ||
57 | #include <sys/dtrace_glue.h> | |
58 | ||
59 | #define DTRACE_INVOP_NOP_SKIP 1 | |
60 | #define DTRACE_INVOP_MOVL_ESP_EBP 10 | |
61 | #define DTRACE_INVOP_MOVL_ESP_EBP_SKIP 2 | |
62 | #define DTRACE_INVOP_MOV_RSP_RBP 11 | |
63 | #define DTRACE_INVOP_MOV_RSP_RBP_SKIP 3 | |
64 | #define DTRACE_INVOP_POP_RBP 12 | |
65 | #define DTRACE_INVOP_POP_RBP_SKIP 1 | |
66 | #define DTRACE_INVOP_LEAVE_SKIP 1 | |
67 | ||
68 | #define FBT_PUSHL_EBP 0x55 | |
69 | #define FBT_MOVL_ESP_EBP0_V0 0x8b | |
70 | #define FBT_MOVL_ESP_EBP1_V0 0xec | |
71 | #define FBT_MOVL_ESP_EBP0_V1 0x89 | |
72 | #define FBT_MOVL_ESP_EBP1_V1 0xe5 | |
73 | ||
74 | #define FBT_PUSH_RBP 0x55 | |
75 | #define FBT_REX_RSP_RBP 0x48 | |
76 | #define FBT_MOV_RSP_RBP0 0x89 | |
77 | #define FBT_MOV_RSP_RBP1 0xe5 | |
78 | #define FBT_POP_RBP 0x5d | |
79 | ||
80 | #define FBT_POPL_EBP 0x5d | |
81 | #define FBT_RET 0xc3 | |
82 | #define FBT_RET_IMM16 0xc2 | |
83 | #define FBT_LEAVE 0xc9 | |
84 | #define FBT_JMP_SHORT_REL 0xeb /* Jump short, relative, displacement relative to next instr. */ | |
85 | #define FBT_JMP_NEAR_REL 0xe9 /* Jump near, relative, displacement relative to next instr. */ | |
86 | #define FBT_JMP_FAR_ABS 0xea /* Jump far, absolute, address given in operand */ | |
87 | #define FBT_RET_LEN 1 | |
88 | #define FBT_RET_IMM16_LEN 3 | |
89 | #define FBT_JMP_SHORT_REL_LEN 2 | |
90 | #define FBT_JMP_NEAR_REL_LEN 5 | |
91 | #define FBT_JMP_FAR_ABS_LEN 5 | |
92 | ||
93 | #define FBT_PATCHVAL 0xf0 | |
94 | #define FBT_AFRAMES_ENTRY 7 | |
95 | #define FBT_AFRAMES_RETURN 6 | |
96 | ||
97 | #define FBT_ENTRY "entry" | |
98 | #define FBT_RETURN "return" | |
99 | #define FBT_ADDR2NDX(addr) ((((uintptr_t)(addr)) >> 4) & fbt_probetab_mask) | |
100 | ||
101 | extern dtrace_provider_id_t fbt_id; | |
102 | extern fbt_probe_t **fbt_probetab; | |
103 | extern int fbt_probetab_mask; | |
104 | ||
105 | extern int gIgnoreFBTBlacklist; /* From fbt_init */ | |
106 | ||
107 | kern_return_t fbt_perfCallback(int, x86_saved_state_t *, uintptr_t *, __unused int); | |
108 | ||
109 | /* | |
110 | * Critical routines that must not be probed. PR_5221096, PR_5379018. | |
111 | * The blacklist must be kept in alphabetic order for purposes of bsearch(). | |
112 | */ | |
113 | ||
114 | static const char * critical_blacklist[] = | |
115 | { | |
116 | "bcopy_phys", | |
117 | "console_cpu_alloc", | |
118 | "console_cpu_free", | |
119 | "cpu_IA32e_disable", | |
120 | "cpu_IA32e_enable", | |
121 | "cpu_NMI_interrupt", | |
122 | "cpu_control", | |
123 | "cpu_data_alloc", | |
124 | "cpu_desc_init", | |
125 | "cpu_desc_init64", | |
126 | "cpu_desc_load", | |
127 | "cpu_desc_load64", | |
128 | "cpu_exit_wait", | |
129 | "cpu_info", | |
130 | "cpu_info_count", | |
131 | "cpu_init", | |
132 | "cpu_interrupt", | |
133 | "cpu_machine_init", | |
134 | "cpu_mode_init", | |
135 | "cpu_processor_alloc", | |
136 | "cpu_processor_free", | |
137 | "cpu_signal_handler", | |
138 | "cpu_sleep", | |
139 | "cpu_start", | |
140 | "cpu_subtype", | |
141 | "cpu_thread_alloc", | |
142 | "cpu_thread_halt", | |
143 | "cpu_thread_init", | |
144 | "cpu_threadtype", | |
145 | "cpu_to_processor", | |
146 | "cpu_topology_sort", | |
147 | "cpu_topology_start_cpu", | |
148 | "cpu_type", | |
149 | "cpuid_cpu_display", | |
150 | "cpuid_extfeatures", | |
151 | "handle_pending_TLB_flushes", | |
152 | "hw_compare_and_store", | |
153 | "machine_idle_cstate", | |
154 | "mca_cpu_alloc", | |
155 | "mca_cpu_init", | |
156 | "ml_nofault_copy", | |
157 | "pmap_cpu_alloc", | |
158 | "pmap_cpu_free", | |
159 | "pmap_cpu_high_map_vaddr", | |
160 | "pmap_cpu_high_shared_remap", | |
161 | "pmap_cpu_init", | |
162 | "register_cpu_setup_func", | |
163 | "unregister_cpu_setup_func", | |
164 | "vstart" | |
165 | }; | |
166 | #define CRITICAL_BLACKLIST_COUNT (sizeof(critical_blacklist)/sizeof(critical_blacklist[0])) | |
167 | ||
168 | /* | |
169 | * The transitive closure of entry points that can be reached from probe context. | |
170 | * (Apart from routines whose names begin with dtrace_). | |
171 | */ | |
172 | static const char * probe_ctx_closure[] = | |
173 | { | |
174 | "Debugger", | |
175 | "IS_64BIT_PROCESS", | |
176 | "OSCompareAndSwap", | |
177 | "absolutetime_to_microtime", | |
178 | "act_set_astbsd", | |
179 | "ast_pending", | |
180 | "clock_get_calendar_nanotime_nowait", | |
181 | "copyin", | |
182 | "copyin_user", | |
183 | "copyinstr", | |
184 | "copyout", | |
185 | "copyoutstr", | |
186 | "cpu_number", | |
187 | "current_proc", | |
188 | "current_processor", | |
189 | "current_task", | |
190 | "current_thread", | |
191 | "debug_enter", | |
192 | "find_user_regs", | |
193 | "flush_tlb64", | |
194 | "get_bsdtask_info", | |
195 | "get_bsdthread_info", | |
196 | "hw_atomic_and", | |
197 | "kauth_cred_get", | |
198 | "kauth_getgid", | |
199 | "kauth_getuid", | |
200 | "kernel_preempt_check", | |
201 | "mach_absolute_time", | |
202 | "max_valid_stack_address", | |
203 | "ml_at_interrupt_context", | |
204 | "ml_phys_write_byte_64", | |
205 | "ml_phys_write_half_64", | |
206 | "ml_phys_write_word_64", | |
207 | "ml_set_interrupts_enabled", | |
208 | "panic", | |
209 | "pmap64_pde", | |
210 | "pmap64_pdpt", | |
211 | "pmap_find_phys", | |
212 | "pmap_get_mapwindow", | |
213 | "pmap_pde", | |
214 | "pmap_pte", | |
215 | "pmap_put_mapwindow", | |
216 | "pmap_valid_page", | |
217 | "prf", | |
218 | "proc_is64bit", | |
219 | "proc_selfname", | |
220 | "proc_selfpid", | |
221 | "proc_selfppid", | |
222 | "psignal_lock", | |
223 | "rtc_nanotime_load", | |
224 | "rtc_nanotime_read", | |
225 | "sdt_getargdesc", | |
226 | "strlcpy", | |
227 | "sync_iss_to_iks_unconditionally", | |
228 | "systrace_stub", | |
229 | "timer_grab" | |
230 | }; | |
231 | #define PROBE_CTX_CLOSURE_COUNT (sizeof(probe_ctx_closure)/sizeof(probe_ctx_closure[0])) | |
232 | ||
233 | ||
234 | static int _cmp(const void *a, const void *b) | |
235 | { | |
236 | return strncmp((const char *)a, *(const char **)b, strlen((const char *)a) + 1); | |
237 | } | |
238 | ||
239 | static const void * bsearch( | |
240 | register const void *key, | |
241 | const void *base0, | |
242 | size_t nmemb, | |
243 | register size_t size, | |
244 | register int (*compar)(const void *, const void *)) { | |
245 | ||
246 | register const char *base = base0; | |
247 | register size_t lim; | |
248 | register int cmp; | |
249 | register const void *p; | |
250 | ||
251 | for (lim = nmemb; lim != 0; lim >>= 1) { | |
252 | p = base + (lim >> 1) * size; | |
253 | cmp = (*compar)(key, p); | |
254 | if (cmp == 0) | |
255 | return p; | |
256 | if (cmp > 0) { /* key > p: move right */ | |
257 | base = (const char *)p + size; | |
258 | lim--; | |
259 | } /* else move left */ | |
260 | } | |
261 | return (NULL); | |
262 | } | |
263 | ||
264 | /* | |
265 | * Module validation | |
266 | */ | |
267 | static int | |
268 | is_module_valid(struct modctl* ctl) | |
269 | { | |
270 | ASSERT(!MOD_FBT_PROBES_PROVIDED(ctl)); | |
271 | ASSERT(!MOD_FBT_INVALID(ctl)); | |
272 | ||
273 | if (0 == ctl->mod_address || 0 == ctl->mod_size) { | |
274 | return FALSE; | |
275 | } | |
276 | ||
277 | if (0 == ctl->mod_loaded) { | |
278 | return FALSE; | |
279 | } | |
280 | ||
281 | if (strstr(ctl->mod_modname, "CHUD") != NULL) | |
282 | return FALSE; | |
283 | ||
284 | /* | |
285 | * If the user sets this, trust they know what they are doing. | |
286 | */ | |
287 | if (gIgnoreFBTBlacklist) /* per boot-arg set in fbt_init() */ | |
288 | return TRUE; | |
289 | ||
290 | /* | |
291 | * These drivers control low level functions that when traced | |
292 | * cause problems, especially in the sleep/wake paths. | |
293 | * If somebody really wants to drill in on one of these kexts, then | |
294 | * they can override blacklisting using the boot-arg above. | |
295 | */ | |
296 | ||
297 | if (strstr(ctl->mod_modname, "AppleACPIEC") != NULL) | |
298 | return FALSE; | |
299 | ||
300 | if (strstr(ctl->mod_modname, "AppleACPIPlatform") != NULL) | |
301 | return FALSE; | |
302 | ||
303 | if (strstr(ctl->mod_modname, "AppleRTC") != NULL) | |
304 | return FALSE; | |
305 | ||
306 | if (strstr(ctl->mod_modname, "IOACPIFamily") != NULL) | |
307 | return FALSE; | |
308 | ||
309 | if (strstr(ctl->mod_modname, "AppleIntelCPUPowerManagement") != NULL) | |
310 | return FALSE; | |
311 | ||
312 | if (strstr(ctl->mod_modname, "AppleProfile") != NULL) | |
313 | return FALSE; | |
314 | ||
315 | if (strstr(ctl->mod_modname, "AppleIntelProfile") != NULL) | |
316 | return FALSE; | |
317 | ||
318 | ||
319 | ||
320 | return TRUE; | |
321 | } | |
322 | ||
323 | /* | |
324 | * FBT probe name validation | |
325 | */ | |
326 | static int | |
327 | is_symbol_valid(const char* name) | |
328 | { | |
329 | /* | |
330 | * If the user set this, trust they know what they are doing. | |
331 | */ | |
332 | if (gIgnoreFBTBlacklist) | |
333 | return TRUE; | |
334 | ||
335 | if (LIT_STRNSTART(name, "dtrace_") && !LIT_STRNSTART(name, "dtrace_safe_")) { | |
336 | /* | |
337 | * Anything beginning with "dtrace_" may be called | |
338 | * from probe context unless it explitly indicates | |
339 | * that it won't be called from probe context by | |
340 | * using the prefix "dtrace_safe_". | |
341 | */ | |
342 | return FALSE; | |
343 | } | |
344 | ||
345 | if (LIT_STRNSTART(name, "fasttrap_") || | |
346 | LIT_STRNSTART(name, "fuword") || | |
347 | LIT_STRNSTART(name, "suword") || | |
348 | LIT_STRNEQL(name, "sprlock") || | |
349 | LIT_STRNEQL(name, "sprunlock") || | |
350 | LIT_STRNEQL(name, "uread") || | |
351 | LIT_STRNEQL(name, "uwrite")) { | |
352 | return FALSE; /* Fasttrap inner-workings. */ | |
353 | } | |
354 | ||
355 | if (LIT_STRNSTART(name, "dsmos_")) | |
356 | return FALSE; /* Don't Steal Mac OS X! */ | |
357 | ||
358 | if (LIT_STRNSTART(name, "_dtrace")) | |
359 | return FALSE; /* Shims in dtrace.c */ | |
360 | ||
361 | if (LIT_STRNSTART(name, "chud")) | |
362 | return FALSE; /* Professional courtesy. */ | |
363 | ||
364 | if (LIT_STRNSTART(name, "hibernate_")) | |
365 | return FALSE; /* Let sleeping dogs lie. */ | |
366 | ||
367 | if (LIT_STRNEQL(name, "_ZNK6OSData14getBytesNoCopyEv")) | |
368 | return FALSE; /* Data::getBytesNoCopy, IOHibernateSystemWake path */ | |
369 | ||
370 | if (LIT_STRNEQL(name, "_ZN9IOService14newTemperatureElPS_") || /* IOService::newTemperature */ | |
371 | LIT_STRNEQL(name, "_ZN9IOService26temperatureCriticalForZoneEPS_")) { /* IOService::temperatureCriticalForZone */ | |
372 | return FALSE; /* Per the fire code */ | |
373 | } | |
374 | ||
375 | /* | |
376 | * Place no probes (illegal instructions) in the exception handling path! | |
377 | */ | |
378 | if (LIT_STRNEQL(name, "t_invop") || | |
379 | LIT_STRNEQL(name, "enter_lohandler") || | |
380 | LIT_STRNEQL(name, "lo_alltraps") || | |
381 | LIT_STRNEQL(name, "kernel_trap") || | |
382 | LIT_STRNEQL(name, "interrupt") || | |
383 | LIT_STRNEQL(name, "i386_astintr")) { | |
384 | return FALSE; | |
385 | } | |
386 | ||
387 | if (LIT_STRNEQL(name, "current_thread") || | |
388 | LIT_STRNEQL(name, "ast_pending") || | |
389 | LIT_STRNEQL(name, "fbt_perfCallback") || | |
390 | LIT_STRNEQL(name, "machine_thread_get_kern_state") || | |
391 | LIT_STRNEQL(name, "get_threadtask") || | |
392 | LIT_STRNEQL(name, "ml_set_interrupts_enabled") || | |
393 | LIT_STRNEQL(name, "dtrace_invop") || | |
394 | LIT_STRNEQL(name, "fbt_invop") || | |
395 | LIT_STRNEQL(name, "sdt_invop") || | |
396 | LIT_STRNEQL(name, "max_valid_stack_address")) { | |
397 | return FALSE; | |
398 | } | |
399 | ||
400 | /* | |
401 | * Voodoo. | |
402 | */ | |
403 | if (LIT_STRNSTART(name, "machine_stack_") || | |
404 | LIT_STRNSTART(name, "mapping_") || | |
405 | LIT_STRNEQL(name, "tmrCvt") || | |
406 | ||
407 | LIT_STRNSTART(name, "tsc_") || | |
408 | ||
409 | LIT_STRNSTART(name, "pmCPU") || | |
410 | LIT_STRNEQL(name, "pmKextRegister") || | |
411 | LIT_STRNEQL(name, "pmMarkAllCPUsOff") || | |
412 | LIT_STRNEQL(name, "pmSafeMode") || | |
413 | LIT_STRNEQL(name, "pmTimerSave") || | |
414 | LIT_STRNEQL(name, "pmTimerRestore") || | |
415 | LIT_STRNEQL(name, "pmUnRegister") || | |
416 | LIT_STRNSTART(name, "pms") || | |
417 | LIT_STRNEQL(name, "power_management_init") || | |
418 | LIT_STRNSTART(name, "usimple_") || | |
419 | LIT_STRNSTART(name, "lck_spin_lock") || | |
420 | LIT_STRNSTART(name, "lck_spin_unlock") || | |
421 | ||
422 | LIT_STRNSTART(name, "rtc_") || | |
423 | LIT_STRNSTART(name, "_rtc_") || | |
424 | LIT_STRNSTART(name, "rtclock_") || | |
425 | LIT_STRNSTART(name, "clock_") || | |
426 | LIT_STRNSTART(name, "absolutetime_to_") || | |
427 | LIT_STRNEQL(name, "setPop") || | |
428 | LIT_STRNEQL(name, "nanoseconds_to_absolutetime") || | |
429 | LIT_STRNEQL(name, "nanotime_to_absolutetime") || | |
430 | ||
431 | LIT_STRNSTART(name, "etimer_") || | |
432 | ||
433 | LIT_STRNSTART(name, "commpage_") || | |
434 | LIT_STRNSTART(name, "pmap_") || | |
435 | LIT_STRNSTART(name, "ml_") || | |
436 | LIT_STRNSTART(name, "PE_") || | |
437 | LIT_STRNEQL(name, "kprintf") || | |
438 | LIT_STRNSTART(name, "lapic_") || | |
439 | LIT_STRNSTART(name, "act_machine") || | |
440 | LIT_STRNSTART(name, "acpi_") || | |
441 | LIT_STRNSTART(name, "pal_")){ | |
442 | return FALSE; | |
443 | } | |
444 | ||
445 | /* | |
446 | * Avoid machine_ routines. PR_5346750. | |
447 | */ | |
448 | if (LIT_STRNSTART(name, "machine_")) | |
449 | return FALSE; | |
450 | ||
451 | if (LIT_STRNEQL(name, "handle_pending_TLB_flushes")) | |
452 | return FALSE; | |
453 | ||
454 | /* | |
455 | * Place no probes on critical routines. PR_5221096 | |
456 | */ | |
457 | if (bsearch( name, critical_blacklist, CRITICAL_BLACKLIST_COUNT, sizeof(name), _cmp ) != NULL) | |
458 | return FALSE; | |
459 | ||
460 | /* | |
461 | * Place no probes that could be hit in probe context. | |
462 | */ | |
463 | if (bsearch( name, probe_ctx_closure, PROBE_CTX_CLOSURE_COUNT, sizeof(name), _cmp ) != NULL) { | |
464 | return FALSE; | |
465 | } | |
466 | ||
467 | /* | |
468 | * Place no probes that could be hit on the way to the debugger. | |
469 | */ | |
470 | if (LIT_STRNSTART(name, "kdp_") || | |
471 | LIT_STRNSTART(name, "kdb_") || | |
472 | LIT_STRNSTART(name, "kdbg_") || | |
473 | LIT_STRNSTART(name, "kdebug_") || | |
474 | LIT_STRNSTART(name, "kernel_debug") || | |
475 | LIT_STRNEQL(name, "Debugger") || | |
476 | LIT_STRNEQL(name, "Call_DebuggerC") || | |
477 | LIT_STRNEQL(name, "lock_debugger") || | |
478 | LIT_STRNEQL(name, "unlock_debugger") || | |
479 | LIT_STRNEQL(name, "SysChoked")) { | |
480 | return FALSE; | |
481 | } | |
482 | ||
483 | ||
484 | /* | |
485 | * Place no probes that could be hit on the way to a panic. | |
486 | */ | |
487 | if (NULL != strstr(name, "panic_") || | |
488 | LIT_STRNEQL(name, "panic") || | |
489 | LIT_STRNEQL(name, "preemption_underflow_panic")) { | |
490 | return FALSE; | |
491 | } | |
492 | ||
493 | return TRUE; | |
494 | } | |
495 | ||
496 | #if defined(__i386__) | |
497 | int | |
498 | fbt_invop(uintptr_t addr, uintptr_t *stack, uintptr_t rval) | |
499 | { | |
500 | uintptr_t stack0 = 0, stack1 = 0, stack2 = 0, stack3 = 0, stack4 = 0; | |
501 | fbt_probe_t *fbt = fbt_probetab[FBT_ADDR2NDX(addr)]; | |
502 | ||
503 | for (; fbt != NULL; fbt = fbt->fbtp_hashnext) { | |
504 | if ((uintptr_t)fbt->fbtp_patchpoint == addr) { | |
505 | ||
506 | if (fbt->fbtp_roffset == 0) { | |
507 | uintptr_t *stacktop; | |
508 | if (CPU_ON_INTR(CPU)) | |
509 | stacktop = (uintptr_t *)dtrace_get_cpu_int_stack_top(); | |
510 | else | |
511 | stacktop = (uintptr_t *)(dtrace_get_kernel_stack(current_thread()) + kernel_stack_size); | |
512 | ||
513 | stack += 1; /* skip over the target's pushl'd %ebp */ | |
514 | ||
515 | if (stack <= stacktop) | |
516 | CPU->cpu_dtrace_caller = *stack++; | |
517 | if (stack <= stacktop) | |
518 | stack0 = *stack++; | |
519 | if (stack <= stacktop) | |
520 | stack1 = *stack++; | |
521 | if (stack <= stacktop) | |
522 | stack2 = *stack++; | |
523 | if (stack <= stacktop) | |
524 | stack3 = *stack++; | |
525 | if (stack <= stacktop) | |
526 | stack4 = *stack++; | |
527 | ||
528 | /* 32-bit ABI, arguments passed on stack. */ | |
529 | dtrace_probe(fbt->fbtp_id, stack0, stack1, stack2, stack3, stack4); | |
530 | CPU->cpu_dtrace_caller = 0; | |
531 | } else { | |
532 | dtrace_probe(fbt->fbtp_id, fbt->fbtp_roffset, rval, 0, 0, 0); | |
533 | CPU->cpu_dtrace_caller = 0; | |
534 | } | |
535 | ||
536 | return (fbt->fbtp_rval); | |
537 | } | |
538 | } | |
539 | ||
540 | return (0); | |
541 | } | |
542 | ||
543 | #define IS_USER_TRAP(regs) (regs && (((regs)->cs & 3) != 0)) | |
544 | #define T_INVALID_OPCODE 6 | |
545 | #define FBT_EXCEPTION_CODE T_INVALID_OPCODE | |
546 | #define T_PREEMPT 255 | |
547 | ||
548 | kern_return_t | |
549 | fbt_perfCallback( | |
550 | int trapno, | |
551 | x86_saved_state_t *tagged_regs, | |
552 | uintptr_t *lo_spp, | |
553 | __unused int unused ) | |
554 | { | |
555 | kern_return_t retval = KERN_FAILURE; | |
556 | x86_saved_state32_t *saved_state = saved_state32(tagged_regs); | |
557 | struct x86_saved_state32_from_kernel *regs = (struct x86_saved_state32_from_kernel *)saved_state; | |
558 | ||
559 | if (FBT_EXCEPTION_CODE == trapno && !IS_USER_TRAP(saved_state)) { | |
560 | boolean_t oldlevel, cpu_64bit; | |
561 | uint32_t esp_probe, fp, *pDst, delta = 0; | |
562 | uintptr_t old_sp; | |
563 | int emul; | |
564 | ||
565 | cpu_64bit = ml_is64bit(); | |
566 | oldlevel = ml_set_interrupts_enabled(FALSE); | |
567 | ||
568 | /* Calculate where the stack pointer was when the probe instruction "fired." */ | |
569 | if (cpu_64bit) { | |
570 | esp_probe = saved_state->uesp; /* Easy, x86_64 establishes this value in idt64.s */ | |
571 | } else { | |
572 | esp_probe = (uint32_t)&(regs[1]); /* Nasty, infer the location above the save area */ | |
573 | } | |
574 | ||
575 | __asm__ volatile( | |
576 | "Ldtrace_invop_callsite_pre_label:\n" | |
577 | ".data\n" | |
578 | ".private_extern _dtrace_invop_callsite_pre\n" | |
579 | "_dtrace_invop_callsite_pre:\n" | |
580 | " .long Ldtrace_invop_callsite_pre_label\n" | |
581 | ".text\n" | |
582 | ); | |
583 | ||
584 | emul = dtrace_invop( saved_state->eip, (uintptr_t *)esp_probe, saved_state->eax ); | |
585 | ||
586 | __asm__ volatile( | |
587 | "Ldtrace_invop_callsite_post_label:\n" | |
588 | ".data\n" | |
589 | ".private_extern _dtrace_invop_callsite_post\n" | |
590 | "_dtrace_invop_callsite_post:\n" | |
591 | " .long Ldtrace_invop_callsite_post_label\n" | |
592 | ".text\n" | |
593 | ); | |
594 | ||
595 | switch (emul) { | |
596 | case DTRACE_INVOP_NOP: | |
597 | saved_state->eip += DTRACE_INVOP_NOP_SKIP; /* Skip over the patched NOP (planted by sdt.) */ | |
598 | retval = KERN_SUCCESS; | |
599 | break; | |
600 | ||
601 | case DTRACE_INVOP_MOVL_ESP_EBP: | |
602 | saved_state->ebp = esp_probe; /* Emulate patched movl %esp,%ebp */ | |
603 | saved_state->eip += DTRACE_INVOP_MOVL_ESP_EBP_SKIP; /* Skip over the bytes of the patched movl %esp,%ebp */ | |
604 | retval = KERN_SUCCESS; | |
605 | break; | |
606 | ||
607 | case DTRACE_INVOP_POPL_EBP: | |
608 | case DTRACE_INVOP_LEAVE: | |
609 | /* | |
610 | * Emulate first micro-op of patched leave: movl %ebp,%esp | |
611 | * fp points just below the return address slot for target's ret | |
612 | * and at the slot holding the frame pointer saved by the target's prologue. | |
613 | */ | |
614 | fp = saved_state->ebp; | |
615 | /* Emulate second micro-op of patched leave: patched popl %ebp | |
616 | * savearea ebp is set for the frame of the caller to target | |
617 | * The *live* %esp will be adjusted below for pop increment(s) | |
618 | */ | |
619 | saved_state->ebp = *(uint32_t *)fp; | |
620 | /* Skip over the patched leave */ | |
621 | saved_state->eip += DTRACE_INVOP_LEAVE_SKIP; | |
622 | /* | |
623 | * Lift the stack to account for the emulated leave | |
624 | * Account for words local in this frame | |
625 | * (in "case DTRACE_INVOP_POPL_EBP:" this is zero.) | |
626 | */ | |
627 | delta = ((uint32_t *)fp) - ((uint32_t *)esp_probe); | |
628 | /* Account for popping off the ebp (just accomplished by the emulation | |
629 | * above...) | |
630 | */ | |
631 | delta += 1; | |
632 | ||
633 | if (cpu_64bit) | |
634 | saved_state->uesp += (delta << 2); | |
635 | /* Obtain the stack pointer recorded by the trampolines */ | |
636 | old_sp = *lo_spp; | |
637 | /* Shift contents of stack */ | |
638 | for (pDst = (uint32_t *)fp; | |
639 | pDst > (((uint32_t *)old_sp)); | |
640 | pDst--) | |
641 | *pDst = pDst[-delta]; | |
642 | ||
643 | /* Track the stack lift in "saved_state". */ | |
644 | saved_state = (x86_saved_state32_t *) (((uintptr_t)saved_state) + (delta << 2)); | |
645 | /* Adjust the stack pointer utilized by the trampolines */ | |
646 | *lo_spp = old_sp + (delta << 2); | |
647 | ||
648 | retval = KERN_SUCCESS; | |
649 | break; | |
650 | ||
651 | default: | |
652 | retval = KERN_FAILURE; | |
653 | break; | |
654 | } | |
655 | saved_state->trapno = T_PREEMPT; /* Avoid call to i386_astintr()! */ | |
656 | ||
657 | ml_set_interrupts_enabled(oldlevel); | |
658 | } | |
659 | ||
660 | return retval; | |
661 | } | |
662 | ||
663 | /*ARGSUSED*/ | |
664 | static void | |
665 | __provide_probe_32(struct modctl *ctl, uintptr_t instrLow, uintptr_t instrHigh, char *modname, char* symbolName, machine_inst_t* symbolStart) | |
666 | { | |
667 | unsigned int j; | |
668 | unsigned int doenable = 0; | |
669 | dtrace_id_t thisid; | |
670 | ||
671 | fbt_probe_t *newfbt, *retfbt, *entryfbt; | |
672 | machine_inst_t *instr, *limit, theInstr, i1, i2; | |
673 | int size; | |
674 | ||
675 | for (j = 0, instr = symbolStart, theInstr = 0; | |
676 | (j < 4) && ((uintptr_t)instr >= instrLow) && (instrHigh > (uintptr_t)(instr + 2)); | |
677 | j++) { | |
678 | theInstr = instr[0]; | |
679 | if (theInstr == FBT_PUSHL_EBP || theInstr == FBT_RET || theInstr == FBT_RET_IMM16) | |
680 | break; | |
681 | ||
682 | if ((size = dtrace_instr_size(instr)) <= 0) | |
683 | break; | |
684 | ||
685 | instr += size; | |
686 | } | |
687 | ||
688 | if (theInstr != FBT_PUSHL_EBP) | |
689 | return; | |
690 | ||
691 | i1 = instr[1]; | |
692 | i2 = instr[2]; | |
693 | ||
694 | limit = (machine_inst_t *)instrHigh; | |
695 | ||
696 | if ((i1 == FBT_MOVL_ESP_EBP0_V0 && i2 == FBT_MOVL_ESP_EBP1_V0) || | |
697 | (i1 == FBT_MOVL_ESP_EBP0_V1 && i2 == FBT_MOVL_ESP_EBP1_V1)) { | |
698 | instr += 1; /* Advance to the movl %esp,%ebp */ | |
699 | theInstr = i1; | |
700 | } else { | |
701 | /* | |
702 | * Sometimes, the compiler will schedule an intervening instruction | |
703 | * in the function prologue. Example: | |
704 | * | |
705 | * _mach_vm_read: | |
706 | * 000006d8 pushl %ebp | |
707 | * 000006d9 movl $0x00000004,%edx | |
708 | * 000006de movl %esp,%ebp | |
709 | * | |
710 | * Try the next instruction, to see if it is a movl %esp,%ebp | |
711 | */ | |
712 | ||
713 | instr += 1; /* Advance past the pushl %ebp */ | |
714 | if ((size = dtrace_instr_size(instr)) <= 0) | |
715 | return; | |
716 | ||
717 | instr += size; | |
718 | ||
719 | if ((instr + 1) >= limit) | |
720 | return; | |
721 | ||
722 | i1 = instr[0]; | |
723 | i2 = instr[1]; | |
724 | ||
725 | if (!(i1 == FBT_MOVL_ESP_EBP0_V0 && i2 == FBT_MOVL_ESP_EBP1_V0) && | |
726 | !(i1 == FBT_MOVL_ESP_EBP0_V1 && i2 == FBT_MOVL_ESP_EBP1_V1)) | |
727 | return; | |
728 | ||
729 | /* instr already points at the movl %esp,%ebp */ | |
730 | theInstr = i1; | |
731 | } | |
732 | ||
733 | thisid = dtrace_probe_lookup(fbt_id, modname, symbolName, FBT_ENTRY); | |
734 | newfbt = kmem_zalloc(sizeof (fbt_probe_t), KM_SLEEP); | |
735 | strlcpy( (char *)&(newfbt->fbtp_name), symbolName, MAX_FBTP_NAME_CHARS ); | |
736 | ||
737 | if (thisid != 0) { | |
738 | /* | |
739 | * The dtrace_probe previously existed, so we have to hook | |
740 | * the newfbt entry onto the end of the existing fbt's chain. | |
741 | * If we find an fbt entry that was previously patched to | |
742 | * fire, (as indicated by the current patched value), then | |
743 | * we want to enable this newfbt on the spot. | |
744 | */ | |
745 | entryfbt = dtrace_probe_arg (fbt_id, thisid); | |
746 | ASSERT (entryfbt != NULL); | |
747 | for(; entryfbt != NULL; entryfbt = entryfbt->fbtp_next) { | |
748 | if (entryfbt->fbtp_currentval == entryfbt->fbtp_patchval) | |
749 | doenable++; | |
750 | ||
751 | if (entryfbt->fbtp_next == NULL) { | |
752 | entryfbt->fbtp_next = newfbt; | |
753 | newfbt->fbtp_id = entryfbt->fbtp_id; | |
754 | break; | |
755 | } | |
756 | } | |
757 | } | |
758 | else { | |
759 | /* | |
760 | * The dtrace_probe did not previously exist, so we | |
761 | * create it and hook in the newfbt. Since the probe is | |
762 | * new, we obviously do not need to enable it on the spot. | |
763 | */ | |
764 | newfbt->fbtp_id = dtrace_probe_create(fbt_id, modname, symbolName, FBT_ENTRY, FBT_AFRAMES_ENTRY, newfbt); | |
765 | doenable = 0; | |
766 | } | |
767 | ||
768 | ||
769 | newfbt->fbtp_patchpoint = instr; | |
770 | newfbt->fbtp_ctl = ctl; | |
771 | newfbt->fbtp_loadcnt = ctl->mod_loadcnt; | |
772 | newfbt->fbtp_rval = DTRACE_INVOP_MOVL_ESP_EBP; | |
773 | newfbt->fbtp_savedval = theInstr; | |
774 | newfbt->fbtp_patchval = FBT_PATCHVAL; | |
775 | newfbt->fbtp_currentval = 0; | |
776 | newfbt->fbtp_hashnext = fbt_probetab[FBT_ADDR2NDX(instr)]; | |
777 | fbt_probetab[FBT_ADDR2NDX(instr)] = newfbt; | |
778 | ||
779 | if (doenable) | |
780 | fbt_enable(NULL, newfbt->fbtp_id, newfbt); | |
781 | ||
782 | /* | |
783 | * The fbt entry chain is in place, one entry point per symbol. | |
784 | * The fbt return chain can have multiple return points per symbol. | |
785 | * Here we find the end of the fbt return chain. | |
786 | */ | |
787 | ||
788 | doenable=0; | |
789 | ||
790 | thisid = dtrace_probe_lookup(fbt_id, modname, symbolName, FBT_RETURN); | |
791 | if (thisid != 0) { | |
792 | /* The dtrace_probe previously existed, so we have to | |
793 | * find the end of the existing fbt chain. If we find | |
794 | * an fbt return that was previously patched to fire, | |
795 | * (as indicated by the currrent patched value), then | |
796 | * we want to enable any new fbts on the spot. | |
797 | */ | |
798 | retfbt = dtrace_probe_arg (fbt_id, thisid); | |
799 | ASSERT(retfbt != NULL); | |
800 | for (; retfbt != NULL; retfbt = retfbt->fbtp_next) { | |
801 | if (retfbt->fbtp_currentval == retfbt->fbtp_patchval) | |
802 | doenable++; | |
803 | if(retfbt->fbtp_next == NULL) | |
804 | break; | |
805 | } | |
806 | } | |
807 | else { | |
808 | doenable = 0; | |
809 | retfbt = NULL; | |
810 | } | |
811 | ||
812 | again: | |
813 | if (instr >= limit) | |
814 | return; | |
815 | ||
816 | /* | |
817 | * If this disassembly fails, then we've likely walked off into | |
818 | * a jump table or some other unsuitable area. Bail out of the | |
819 | * disassembly now. | |
820 | */ | |
821 | if ((size = dtrace_instr_size(instr)) <= 0) | |
822 | return; | |
823 | ||
824 | /* | |
825 | * We (desperately) want to avoid erroneously instrumenting a | |
826 | * jump table, especially given that our markers are pretty | |
827 | * short: two bytes on x86, and just one byte on amd64. To | |
828 | * determine if we're looking at a true instruction sequence | |
829 | * or an inline jump table that happens to contain the same | |
830 | * byte sequences, we resort to some heuristic sleeze: we | |
831 | * treat this instruction as being contained within a pointer, | |
832 | * and see if that pointer points to within the body of the | |
833 | * function. If it does, we refuse to instrument it. | |
834 | */ | |
835 | for (j = 0; j < sizeof (uintptr_t); j++) { | |
836 | uintptr_t check = (uintptr_t)instr - j; | |
837 | uint8_t *ptr; | |
838 | ||
839 | if (check < (uintptr_t)symbolStart) | |
840 | break; | |
841 | ||
842 | if (check + sizeof (uintptr_t) > (uintptr_t)limit) | |
843 | continue; | |
844 | ||
845 | ptr = *(uint8_t **)check; | |
846 | ||
847 | if (ptr >= (uint8_t *)symbolStart && ptr < limit) { | |
848 | instr += size; | |
849 | goto again; | |
850 | } | |
851 | } | |
852 | ||
853 | /* | |
854 | * OK, it's an instruction. | |
855 | */ | |
856 | theInstr = instr[0]; | |
857 | ||
858 | /* Walked onto the start of the next routine? If so, bail out of this function. */ | |
859 | if (theInstr == FBT_PUSHL_EBP) | |
860 | return; | |
861 | ||
862 | if (!(size == 1 && (theInstr == FBT_POPL_EBP || theInstr == FBT_LEAVE))) { | |
863 | instr += size; | |
864 | goto again; | |
865 | } | |
866 | ||
867 | /* | |
868 | * Found the popl %ebp; or leave. | |
869 | */ | |
870 | machine_inst_t *patch_instr = instr; | |
871 | ||
872 | /* | |
873 | * Scan forward for a "ret", or "jmp". | |
874 | */ | |
875 | instr += size; | |
876 | if (instr >= limit) | |
877 | return; | |
878 | ||
879 | size = dtrace_instr_size(instr); | |
880 | if (size <= 0) /* Failed instruction decode? */ | |
881 | return; | |
882 | ||
883 | theInstr = instr[0]; | |
884 | ||
885 | if (!(size == FBT_RET_LEN && (theInstr == FBT_RET)) && | |
886 | !(size == FBT_RET_IMM16_LEN && (theInstr == FBT_RET_IMM16)) && | |
887 | !(size == FBT_JMP_SHORT_REL_LEN && (theInstr == FBT_JMP_SHORT_REL)) && | |
888 | !(size == FBT_JMP_NEAR_REL_LEN && (theInstr == FBT_JMP_NEAR_REL)) && | |
889 | !(size == FBT_JMP_FAR_ABS_LEN && (theInstr == FBT_JMP_FAR_ABS))) | |
890 | return; | |
891 | ||
892 | /* | |
893 | * popl %ebp; ret; or leave; ret; or leave; jmp tailCalledFun; -- We have a winner! | |
894 | */ | |
895 | newfbt = kmem_zalloc(sizeof (fbt_probe_t), KM_SLEEP); | |
896 | strlcpy( (char *)&(newfbt->fbtp_name), symbolName, MAX_FBTP_NAME_CHARS ); | |
897 | ||
898 | if (retfbt == NULL) { | |
899 | newfbt->fbtp_id = dtrace_probe_create(fbt_id, modname, | |
900 | symbolName, FBT_RETURN, FBT_AFRAMES_RETURN, newfbt); | |
901 | } else { | |
902 | retfbt->fbtp_next = newfbt; | |
903 | newfbt->fbtp_id = retfbt->fbtp_id; | |
904 | } | |
905 | ||
906 | retfbt = newfbt; | |
907 | newfbt->fbtp_patchpoint = patch_instr; | |
908 | newfbt->fbtp_ctl = ctl; | |
909 | newfbt->fbtp_loadcnt = ctl->mod_loadcnt; | |
910 | ||
911 | if (*patch_instr == FBT_POPL_EBP) { | |
912 | newfbt->fbtp_rval = DTRACE_INVOP_POPL_EBP; | |
913 | } else { | |
914 | ASSERT(*patch_instr == FBT_LEAVE); | |
915 | newfbt->fbtp_rval = DTRACE_INVOP_LEAVE; | |
916 | } | |
917 | newfbt->fbtp_roffset = | |
918 | (uintptr_t)(patch_instr - (uint8_t *)symbolStart); | |
919 | ||
920 | newfbt->fbtp_savedval = *patch_instr; | |
921 | newfbt->fbtp_patchval = FBT_PATCHVAL; | |
922 | newfbt->fbtp_currentval = 0; | |
923 | newfbt->fbtp_hashnext = fbt_probetab[FBT_ADDR2NDX(patch_instr)]; | |
924 | fbt_probetab[FBT_ADDR2NDX(patch_instr)] = newfbt; | |
925 | ||
926 | if (doenable) | |
927 | fbt_enable(NULL, newfbt->fbtp_id, newfbt); | |
928 | ||
929 | instr += size; | |
930 | goto again; | |
931 | } | |
932 | ||
933 | static void | |
934 | __kernel_syms_provide_module(void *arg, struct modctl *ctl) | |
935 | { | |
936 | #pragma unused(arg) | |
937 | kernel_mach_header_t *mh; | |
938 | struct load_command *cmd; | |
939 | kernel_segment_command_t *orig_ts = NULL, *orig_le = NULL; | |
940 | struct symtab_command *orig_st = NULL; | |
941 | struct nlist *sym = NULL; | |
942 | char *strings; | |
943 | uintptr_t instrLow, instrHigh; | |
944 | char *modname; | |
945 | unsigned int i; | |
946 | ||
947 | mh = (kernel_mach_header_t *)(ctl->mod_address); | |
948 | modname = ctl->mod_modname; | |
949 | ||
950 | if (mh->magic != MH_MAGIC) | |
951 | return; | |
952 | ||
953 | cmd = (struct load_command *) &mh[1]; | |
954 | for (i = 0; i < mh->ncmds; i++) { | |
955 | if (cmd->cmd == LC_SEGMENT_KERNEL) { | |
956 | kernel_segment_command_t *orig_sg = (kernel_segment_command_t *) cmd; | |
957 | ||
958 | if (LIT_STRNEQL(orig_sg->segname, SEG_TEXT)) | |
959 | orig_ts = orig_sg; | |
960 | else if (LIT_STRNEQL(orig_sg->segname, SEG_LINKEDIT)) | |
961 | orig_le = orig_sg; | |
962 | else if (LIT_STRNEQL(orig_sg->segname, "")) | |
963 | orig_ts = orig_sg; /* kexts have a single unnamed segment */ | |
964 | } | |
965 | else if (cmd->cmd == LC_SYMTAB) | |
966 | orig_st = (struct symtab_command *) cmd; | |
967 | ||
968 | cmd = (struct load_command *) ((caddr_t) cmd + cmd->cmdsize); | |
969 | } | |
970 | ||
971 | if ((orig_ts == NULL) || (orig_st == NULL) || (orig_le == NULL)) | |
972 | return; | |
973 | ||
974 | sym = (struct nlist *)(orig_le->vmaddr + orig_st->symoff - orig_le->fileoff); | |
975 | strings = (char *)(orig_le->vmaddr + orig_st->stroff - orig_le->fileoff); | |
976 | ||
977 | /* Find extent of the TEXT section */ | |
978 | instrLow = (uintptr_t)orig_ts->vmaddr; | |
979 | instrHigh = (uintptr_t)(orig_ts->vmaddr + orig_ts->vmsize); | |
980 | ||
981 | for (i = 0; i < orig_st->nsyms; i++) { | |
982 | uint8_t n_type = sym[i].n_type & (N_TYPE | N_EXT); | |
983 | char *name = strings + sym[i].n_un.n_strx; | |
984 | ||
985 | /* Check that the symbol is a global and that it has a name. */ | |
986 | if (((N_SECT | N_EXT) != n_type && (N_ABS | N_EXT) != n_type)) | |
987 | continue; | |
988 | ||
989 | if (0 == sym[i].n_un.n_strx) /* iff a null, "", name. */ | |
990 | continue; | |
991 | ||
992 | /* Lop off omnipresent leading underscore. */ | |
993 | if (*name == '_') | |
994 | name += 1; | |
995 | ||
996 | /* | |
997 | * We're only blacklisting functions in the kernel for now. | |
998 | */ | |
999 | if (MOD_IS_MACH_KERNEL(ctl) && !is_symbol_valid(name)) | |
1000 | continue; | |
1001 | ||
1002 | __provide_probe_32(ctl, instrLow, instrHigh, modname, name, (machine_inst_t*)sym[i].n_value); | |
1003 | } | |
1004 | } | |
1005 | ||
1006 | static void | |
1007 | __user_syms_provide_module(void *arg, struct modctl *ctl) | |
1008 | { | |
1009 | #pragma unused(arg) | |
1010 | char *modname; | |
1011 | unsigned int i; | |
1012 | ||
1013 | modname = ctl->mod_modname; | |
1014 | ||
1015 | dtrace_module_symbols_t* module_symbols = ctl->mod_user_symbols; | |
1016 | if (module_symbols) { | |
1017 | for (i=0; i<module_symbols->dtmodsyms_count; i++) { | |
1018 | dtrace_symbol_t* symbol = &module_symbols->dtmodsyms_symbols[i]; | |
1019 | char* name = symbol->dtsym_name; | |
1020 | ||
1021 | /* Lop off omnipresent leading underscore. */ | |
1022 | if (*name == '_') | |
1023 | name += 1; | |
1024 | ||
1025 | /* | |
1026 | * We're only blacklisting functions in the kernel for now. | |
1027 | */ | |
1028 | if (MOD_IS_MACH_KERNEL(ctl) && !is_symbol_valid(name)) | |
1029 | continue; | |
1030 | ||
1031 | __provide_probe_32(ctl, (uintptr_t)symbol->dtsym_addr, (uintptr_t)(symbol->dtsym_addr + symbol->dtsym_size), modname, name, (machine_inst_t*)(uintptr_t)symbol->dtsym_addr); | |
1032 | } | |
1033 | } | |
1034 | } | |
1035 | ||
1036 | #elif defined(__x86_64__) | |
1037 | int | |
1038 | fbt_invop(uintptr_t addr, uintptr_t *state, uintptr_t rval) | |
1039 | { | |
1040 | fbt_probe_t *fbt = fbt_probetab[FBT_ADDR2NDX(addr)]; | |
1041 | ||
1042 | for (; fbt != NULL; fbt = fbt->fbtp_hashnext) { | |
1043 | if ((uintptr_t)fbt->fbtp_patchpoint == addr) { | |
1044 | ||
1045 | if (fbt->fbtp_roffset == 0) { | |
1046 | x86_saved_state64_t *regs = (x86_saved_state64_t *)state; | |
1047 | ||
1048 | CPU->cpu_dtrace_caller = *(uintptr_t *)(((uintptr_t)(regs->isf.rsp))+sizeof(uint64_t)); // 8(%rsp) | |
1049 | /* 64-bit ABI, arguments passed in registers. */ | |
1050 | dtrace_probe(fbt->fbtp_id, regs->rdi, regs->rsi, regs->rdx, regs->rcx, regs->r8); | |
1051 | CPU->cpu_dtrace_caller = 0; | |
1052 | } else { | |
1053 | ||
1054 | dtrace_probe(fbt->fbtp_id, fbt->fbtp_roffset, rval, 0, 0, 0); | |
1055 | CPU->cpu_dtrace_caller = 0; | |
1056 | } | |
1057 | ||
1058 | return (fbt->fbtp_rval); | |
1059 | } | |
1060 | } | |
1061 | ||
1062 | return (0); | |
1063 | } | |
1064 | ||
1065 | #define IS_USER_TRAP(regs) (regs && (((regs)->isf.cs & 3) != 0)) | |
1066 | #define T_INVALID_OPCODE 6 | |
1067 | #define FBT_EXCEPTION_CODE T_INVALID_OPCODE | |
1068 | #define T_PREEMPT 255 | |
1069 | ||
1070 | kern_return_t | |
1071 | fbt_perfCallback( | |
1072 | int trapno, | |
1073 | x86_saved_state_t *tagged_regs, | |
1074 | uintptr_t *lo_spp, | |
1075 | __unused int unused2) | |
1076 | { | |
1077 | kern_return_t retval = KERN_FAILURE; | |
1078 | x86_saved_state64_t *saved_state = saved_state64(tagged_regs); | |
1079 | ||
1080 | if (FBT_EXCEPTION_CODE == trapno && !IS_USER_TRAP(saved_state)) { | |
1081 | boolean_t oldlevel; | |
1082 | uint64_t rsp_probe, fp, delta = 0; | |
1083 | uintptr_t old_sp; | |
1084 | uint32_t *pDst; | |
1085 | int emul; | |
1086 | ||
1087 | ||
1088 | oldlevel = ml_set_interrupts_enabled(FALSE); | |
1089 | ||
1090 | /* Calculate where the stack pointer was when the probe instruction "fired." */ | |
1091 | rsp_probe = saved_state->isf.rsp; /* Easy, x86_64 establishes this value in idt64.s */ | |
1092 | ||
1093 | __asm__ volatile( | |
1094 | "Ldtrace_invop_callsite_pre_label:\n" | |
1095 | ".data\n" | |
1096 | ".private_extern _dtrace_invop_callsite_pre\n" | |
1097 | "_dtrace_invop_callsite_pre:\n" | |
1098 | " .quad Ldtrace_invop_callsite_pre_label\n" | |
1099 | ".text\n" | |
1100 | ); | |
1101 | ||
1102 | emul = dtrace_invop( saved_state->isf.rip, (uintptr_t *)saved_state, saved_state->rax ); | |
1103 | ||
1104 | __asm__ volatile( | |
1105 | "Ldtrace_invop_callsite_post_label:\n" | |
1106 | ".data\n" | |
1107 | ".private_extern _dtrace_invop_callsite_post\n" | |
1108 | "_dtrace_invop_callsite_post:\n" | |
1109 | " .quad Ldtrace_invop_callsite_post_label\n" | |
1110 | ".text\n" | |
1111 | ); | |
1112 | ||
1113 | switch (emul) { | |
1114 | case DTRACE_INVOP_NOP: | |
1115 | saved_state->isf.rip += DTRACE_INVOP_NOP_SKIP; /* Skip over the patched NOP (planted by sdt). */ | |
1116 | retval = KERN_SUCCESS; | |
1117 | break; | |
1118 | ||
1119 | case DTRACE_INVOP_MOV_RSP_RBP: | |
1120 | saved_state->rbp = rsp_probe; /* Emulate patched mov %rsp,%rbp */ | |
1121 | saved_state->isf.rip += DTRACE_INVOP_MOV_RSP_RBP_SKIP; /* Skip over the bytes of the patched mov %rsp,%rbp */ | |
1122 | retval = KERN_SUCCESS; | |
1123 | break; | |
1124 | ||
1125 | case DTRACE_INVOP_POP_RBP: | |
1126 | case DTRACE_INVOP_LEAVE: | |
1127 | /* | |
1128 | * Emulate first micro-op of patched leave: mov %rbp,%rsp | |
1129 | * fp points just below the return address slot for target's ret | |
1130 | * and at the slot holding the frame pointer saved by the target's prologue. | |
1131 | */ | |
1132 | fp = saved_state->rbp; | |
1133 | /* Emulate second micro-op of patched leave: patched pop %rbp | |
1134 | * savearea rbp is set for the frame of the caller to target | |
1135 | * The *live* %rsp will be adjusted below for pop increment(s) | |
1136 | */ | |
1137 | saved_state->rbp = *(uint64_t *)fp; | |
1138 | /* Skip over the patched leave */ | |
1139 | saved_state->isf.rip += DTRACE_INVOP_LEAVE_SKIP; | |
1140 | /* | |
1141 | * Lift the stack to account for the emulated leave | |
1142 | * Account for words local in this frame | |
1143 | * (in "case DTRACE_INVOP_POPL_EBP:" this is zero.) | |
1144 | */ | |
1145 | delta = ((uint32_t *)fp) - ((uint32_t *)rsp_probe); /* delta is a *word* increment */ | |
1146 | /* Account for popping off the rbp (just accomplished by the emulation | |
1147 | * above...) | |
1148 | */ | |
1149 | delta += 2; | |
1150 | saved_state->isf.rsp += (delta << 2); | |
1151 | /* Obtain the stack pointer recorded by the trampolines */ | |
1152 | old_sp = *lo_spp; | |
1153 | /* Shift contents of stack */ | |
1154 | for (pDst = (uint32_t *)fp; | |
1155 | pDst > (((uint32_t *)old_sp)); | |
1156 | pDst--) | |
1157 | *pDst = pDst[-delta]; | |
1158 | ||
1159 | /* Track the stack lift in "saved_state". */ | |
1160 | saved_state = (x86_saved_state64_t *) (((uintptr_t)saved_state) + (delta << 2)); | |
1161 | /* Adjust the stack pointer utilized by the trampolines */ | |
1162 | *lo_spp = old_sp + (delta << 2); | |
1163 | ||
1164 | retval = KERN_SUCCESS; | |
1165 | break; | |
1166 | ||
1167 | default: | |
1168 | retval = KERN_FAILURE; | |
1169 | break; | |
1170 | } | |
1171 | saved_state->isf.trapno = T_PREEMPT; /* Avoid call to i386_astintr()! */ | |
1172 | ||
1173 | ml_set_interrupts_enabled(oldlevel); | |
1174 | } | |
1175 | ||
1176 | return retval; | |
1177 | } | |
1178 | ||
1179 | /*ARGSUSED*/ | |
1180 | static void | |
1181 | __provide_probe_64(struct modctl *ctl, uintptr_t instrLow, uintptr_t instrHigh, char *modname, char* symbolName, machine_inst_t* symbolStart) | |
1182 | { | |
1183 | unsigned int j; | |
1184 | unsigned int doenable = 0; | |
1185 | dtrace_id_t thisid; | |
1186 | ||
1187 | fbt_probe_t *newfbt, *retfbt, *entryfbt; | |
1188 | machine_inst_t *instr, *limit, theInstr, i1, i2, i3; | |
1189 | int size; | |
1190 | ||
1191 | for (j = 0, instr = symbolStart, theInstr = 0; | |
1192 | (j < 4) && ((uintptr_t)instr >= instrLow) && (instrHigh > (uintptr_t)(instr + 2)); | |
1193 | j++) { | |
1194 | theInstr = instr[0]; | |
1195 | if (theInstr == FBT_PUSH_RBP || theInstr == FBT_RET || theInstr == FBT_RET_IMM16) | |
1196 | break; | |
1197 | ||
1198 | if ((size = dtrace_instr_size(instr)) <= 0) | |
1199 | break; | |
1200 | ||
1201 | instr += size; | |
1202 | } | |
1203 | ||
1204 | if (theInstr != FBT_PUSH_RBP) | |
1205 | return; | |
1206 | ||
1207 | i1 = instr[1]; | |
1208 | i2 = instr[2]; | |
1209 | i3 = instr[3]; | |
1210 | ||
1211 | limit = (machine_inst_t *)instrHigh; | |
1212 | ||
1213 | if (i1 == FBT_REX_RSP_RBP && i2 == FBT_MOV_RSP_RBP0 && i3 == FBT_MOV_RSP_RBP1) { | |
1214 | instr += 1; /* Advance to the mov %rsp,%rbp */ | |
1215 | theInstr = i1; | |
1216 | } else { | |
1217 | return; | |
1218 | } | |
1219 | #if 0 | |
1220 | else { | |
1221 | /* | |
1222 | * Sometimes, the compiler will schedule an intervening instruction | |
1223 | * in the function prologue. Example: | |
1224 | * | |
1225 | * _mach_vm_read: | |
1226 | * 000006d8 pushl %ebp | |
1227 | * 000006d9 movl $0x00000004,%edx | |
1228 | * 000006de movl %esp,%ebp | |
1229 | * | |
1230 | * Try the next instruction, to see if it is a movl %esp,%ebp | |
1231 | */ | |
1232 | ||
1233 | instr += 1; /* Advance past the pushl %ebp */ | |
1234 | if ((size = dtrace_instr_size(instr)) <= 0) | |
1235 | return; | |
1236 | ||
1237 | instr += size; | |
1238 | ||
1239 | if ((instr + 1) >= limit) | |
1240 | return; | |
1241 | ||
1242 | i1 = instr[0]; | |
1243 | i2 = instr[1]; | |
1244 | ||
1245 | if (!(i1 == FBT_MOVL_ESP_EBP0_V0 && i2 == FBT_MOVL_ESP_EBP1_V0) && | |
1246 | !(i1 == FBT_MOVL_ESP_EBP0_V1 && i2 == FBT_MOVL_ESP_EBP1_V1)) | |
1247 | return; | |
1248 | ||
1249 | /* instr already points at the movl %esp,%ebp */ | |
1250 | theInstr = i1; | |
1251 | } | |
1252 | #endif | |
1253 | thisid = dtrace_probe_lookup(fbt_id, modname, symbolName, FBT_ENTRY); | |
1254 | newfbt = kmem_zalloc(sizeof (fbt_probe_t), KM_SLEEP); | |
1255 | strlcpy( (char *)&(newfbt->fbtp_name), symbolName, MAX_FBTP_NAME_CHARS ); | |
1256 | ||
1257 | if (thisid != 0) { | |
1258 | /* | |
1259 | * The dtrace_probe previously existed, so we have to hook | |
1260 | * the newfbt entry onto the end of the existing fbt's chain. | |
1261 | * If we find an fbt entry that was previously patched to | |
1262 | * fire, (as indicated by the current patched value), then | |
1263 | * we want to enable this newfbt on the spot. | |
1264 | */ | |
1265 | entryfbt = dtrace_probe_arg (fbt_id, thisid); | |
1266 | ASSERT (entryfbt != NULL); | |
1267 | for(; entryfbt != NULL; entryfbt = entryfbt->fbtp_next) { | |
1268 | if (entryfbt->fbtp_currentval == entryfbt->fbtp_patchval) | |
1269 | doenable++; | |
1270 | ||
1271 | if (entryfbt->fbtp_next == NULL) { | |
1272 | entryfbt->fbtp_next = newfbt; | |
1273 | newfbt->fbtp_id = entryfbt->fbtp_id; | |
1274 | break; | |
1275 | } | |
1276 | } | |
1277 | } | |
1278 | else { | |
1279 | /* | |
1280 | * The dtrace_probe did not previously exist, so we | |
1281 | * create it and hook in the newfbt. Since the probe is | |
1282 | * new, we obviously do not need to enable it on the spot. | |
1283 | */ | |
1284 | newfbt->fbtp_id = dtrace_probe_create(fbt_id, modname, symbolName, FBT_ENTRY, FBT_AFRAMES_ENTRY, newfbt); | |
1285 | doenable = 0; | |
1286 | } | |
1287 | ||
1288 | newfbt->fbtp_patchpoint = instr; | |
1289 | newfbt->fbtp_ctl = ctl; | |
1290 | newfbt->fbtp_loadcnt = ctl->mod_loadcnt; | |
1291 | newfbt->fbtp_rval = DTRACE_INVOP_MOV_RSP_RBP; | |
1292 | newfbt->fbtp_savedval = theInstr; | |
1293 | newfbt->fbtp_patchval = FBT_PATCHVAL; | |
1294 | newfbt->fbtp_currentval = 0; | |
1295 | newfbt->fbtp_hashnext = fbt_probetab[FBT_ADDR2NDX(instr)]; | |
1296 | fbt_probetab[FBT_ADDR2NDX(instr)] = newfbt; | |
1297 | ||
1298 | if (doenable) | |
1299 | fbt_enable(NULL, newfbt->fbtp_id, newfbt); | |
1300 | ||
1301 | /* | |
1302 | * The fbt entry chain is in place, one entry point per symbol. | |
1303 | * The fbt return chain can have multiple return points per symbol. | |
1304 | * Here we find the end of the fbt return chain. | |
1305 | */ | |
1306 | ||
1307 | doenable=0; | |
1308 | ||
1309 | thisid = dtrace_probe_lookup(fbt_id, modname, symbolName, FBT_RETURN); | |
1310 | if (thisid != 0) { | |
1311 | /* The dtrace_probe previously existed, so we have to | |
1312 | * find the end of the existing fbt chain. If we find | |
1313 | * an fbt return that was previously patched to fire, | |
1314 | * (as indicated by the currrent patched value), then | |
1315 | * we want to enable any new fbts on the spot. | |
1316 | */ | |
1317 | retfbt = dtrace_probe_arg (fbt_id, thisid); | |
1318 | ASSERT(retfbt != NULL); | |
1319 | for (; retfbt != NULL; retfbt = retfbt->fbtp_next) { | |
1320 | if (retfbt->fbtp_currentval == retfbt->fbtp_patchval) | |
1321 | doenable++; | |
1322 | if(retfbt->fbtp_next == NULL) | |
1323 | break; | |
1324 | } | |
1325 | } | |
1326 | else { | |
1327 | doenable = 0; | |
1328 | retfbt = NULL; | |
1329 | } | |
1330 | ||
1331 | again: | |
1332 | if (instr >= limit) | |
1333 | return; | |
1334 | ||
1335 | /* | |
1336 | * If this disassembly fails, then we've likely walked off into | |
1337 | * a jump table or some other unsuitable area. Bail out of the | |
1338 | * disassembly now. | |
1339 | */ | |
1340 | if ((size = dtrace_instr_size(instr)) <= 0) | |
1341 | return; | |
1342 | ||
1343 | /* | |
1344 | * We (desperately) want to avoid erroneously instrumenting a | |
1345 | * jump table, especially given that our markers are pretty | |
1346 | * short: two bytes on x86, and just one byte on amd64. To | |
1347 | * determine if we're looking at a true instruction sequence | |
1348 | * or an inline jump table that happens to contain the same | |
1349 | * byte sequences, we resort to some heuristic sleeze: we | |
1350 | * treat this instruction as being contained within a pointer, | |
1351 | * and see if that pointer points to within the body of the | |
1352 | * function. If it does, we refuse to instrument it. | |
1353 | */ | |
1354 | for (j = 0; j < sizeof (uintptr_t); j++) { | |
1355 | uintptr_t check = (uintptr_t)instr - j; | |
1356 | uint8_t *ptr; | |
1357 | ||
1358 | if (check < (uintptr_t)symbolStart) | |
1359 | break; | |
1360 | ||
1361 | if (check + sizeof (uintptr_t) > (uintptr_t)limit) | |
1362 | continue; | |
1363 | ||
1364 | ptr = *(uint8_t **)check; | |
1365 | ||
1366 | if (ptr >= (uint8_t *)symbolStart && ptr < limit) { | |
1367 | instr += size; | |
1368 | goto again; | |
1369 | } | |
1370 | } | |
1371 | ||
1372 | /* | |
1373 | * OK, it's an instruction. | |
1374 | */ | |
1375 | theInstr = instr[0]; | |
1376 | ||
1377 | /* Walked onto the start of the next routine? If so, bail out of this function. */ | |
1378 | if (theInstr == FBT_PUSH_RBP) | |
1379 | return; | |
1380 | ||
1381 | if (!(size == 1 && (theInstr == FBT_POP_RBP || theInstr == FBT_LEAVE))) { | |
1382 | instr += size; | |
1383 | goto again; | |
1384 | } | |
1385 | ||
1386 | /* | |
1387 | * Found the pop %rbp; or leave. | |
1388 | */ | |
1389 | machine_inst_t *patch_instr = instr; | |
1390 | ||
1391 | /* | |
1392 | * Scan forward for a "ret", or "jmp". | |
1393 | */ | |
1394 | instr += size; | |
1395 | if (instr >= limit) | |
1396 | return; | |
1397 | ||
1398 | size = dtrace_instr_size(instr); | |
1399 | if (size <= 0) /* Failed instruction decode? */ | |
1400 | return; | |
1401 | ||
1402 | theInstr = instr[0]; | |
1403 | ||
1404 | if (!(size == FBT_RET_LEN && (theInstr == FBT_RET)) && | |
1405 | !(size == FBT_RET_IMM16_LEN && (theInstr == FBT_RET_IMM16)) && | |
1406 | !(size == FBT_JMP_SHORT_REL_LEN && (theInstr == FBT_JMP_SHORT_REL)) && | |
1407 | !(size == FBT_JMP_NEAR_REL_LEN && (theInstr == FBT_JMP_NEAR_REL)) && | |
1408 | !(size == FBT_JMP_FAR_ABS_LEN && (theInstr == FBT_JMP_FAR_ABS))) | |
1409 | return; | |
1410 | ||
1411 | /* | |
1412 | * pop %rbp; ret; or leave; ret; or leave; jmp tailCalledFun; -- We have a winner! | |
1413 | */ | |
1414 | newfbt = kmem_zalloc(sizeof (fbt_probe_t), KM_SLEEP); | |
1415 | strlcpy( (char *)&(newfbt->fbtp_name), symbolName, MAX_FBTP_NAME_CHARS ); | |
1416 | ||
1417 | if (retfbt == NULL) { | |
1418 | newfbt->fbtp_id = dtrace_probe_create(fbt_id, modname, | |
1419 | symbolName, FBT_RETURN, FBT_AFRAMES_RETURN, newfbt); | |
1420 | } else { | |
1421 | retfbt->fbtp_next = newfbt; | |
1422 | newfbt->fbtp_id = retfbt->fbtp_id; | |
1423 | } | |
1424 | ||
1425 | retfbt = newfbt; | |
1426 | newfbt->fbtp_patchpoint = patch_instr; | |
1427 | newfbt->fbtp_ctl = ctl; | |
1428 | newfbt->fbtp_loadcnt = ctl->mod_loadcnt; | |
1429 | ||
1430 | if (*patch_instr == FBT_POP_RBP) { | |
1431 | newfbt->fbtp_rval = DTRACE_INVOP_POP_RBP; | |
1432 | } else { | |
1433 | ASSERT(*patch_instr == FBT_LEAVE); | |
1434 | newfbt->fbtp_rval = DTRACE_INVOP_LEAVE; | |
1435 | } | |
1436 | newfbt->fbtp_roffset = | |
1437 | (uintptr_t)(patch_instr - (uint8_t *)symbolStart); | |
1438 | ||
1439 | newfbt->fbtp_savedval = *patch_instr; | |
1440 | newfbt->fbtp_patchval = FBT_PATCHVAL; | |
1441 | newfbt->fbtp_hashnext = fbt_probetab[FBT_ADDR2NDX(patch_instr)]; | |
1442 | fbt_probetab[FBT_ADDR2NDX(patch_instr)] = newfbt; | |
1443 | ||
1444 | if (doenable) | |
1445 | fbt_enable(NULL, newfbt->fbtp_id, newfbt); | |
1446 | ||
1447 | instr += size; | |
1448 | goto again; | |
1449 | } | |
1450 | ||
1451 | static void | |
1452 | __kernel_syms_provide_module(void *arg, struct modctl *ctl) | |
1453 | { | |
1454 | #pragma unused(arg) | |
1455 | kernel_mach_header_t *mh; | |
1456 | struct load_command *cmd; | |
1457 | kernel_segment_command_t *orig_ts = NULL, *orig_le = NULL; | |
1458 | struct symtab_command *orig_st = NULL; | |
1459 | struct nlist_64 *sym = NULL; | |
1460 | char *strings; | |
1461 | uintptr_t instrLow, instrHigh; | |
1462 | char *modname; | |
1463 | unsigned int i; | |
1464 | ||
1465 | mh = (kernel_mach_header_t *)(ctl->mod_address); | |
1466 | modname = ctl->mod_modname; | |
1467 | ||
1468 | if (mh->magic != MH_MAGIC_64) | |
1469 | return; | |
1470 | ||
1471 | cmd = (struct load_command *) &mh[1]; | |
1472 | for (i = 0; i < mh->ncmds; i++) { | |
1473 | if (cmd->cmd == LC_SEGMENT_KERNEL) { | |
1474 | kernel_segment_command_t *orig_sg = (kernel_segment_command_t *) cmd; | |
1475 | ||
1476 | if (LIT_STRNEQL(orig_sg->segname, SEG_TEXT)) | |
1477 | orig_ts = orig_sg; | |
1478 | else if (LIT_STRNEQL(orig_sg->segname, SEG_LINKEDIT)) | |
1479 | orig_le = orig_sg; | |
1480 | else if (LIT_STRNEQL(orig_sg->segname, "")) | |
1481 | orig_ts = orig_sg; /* kexts have a single unnamed segment */ | |
1482 | } | |
1483 | else if (cmd->cmd == LC_SYMTAB) | |
1484 | orig_st = (struct symtab_command *) cmd; | |
1485 | ||
1486 | cmd = (struct load_command *) ((caddr_t) cmd + cmd->cmdsize); | |
1487 | } | |
1488 | ||
1489 | if ((orig_ts == NULL) || (orig_st == NULL) || (orig_le == NULL)) | |
1490 | return; | |
1491 | ||
1492 | sym = (struct nlist_64 *)(orig_le->vmaddr + orig_st->symoff - orig_le->fileoff); | |
1493 | strings = (char *)(orig_le->vmaddr + orig_st->stroff - orig_le->fileoff); | |
1494 | ||
1495 | /* Find extent of the TEXT section */ | |
1496 | instrLow = (uintptr_t)orig_ts->vmaddr; | |
1497 | instrHigh = (uintptr_t)(orig_ts->vmaddr + orig_ts->vmsize); | |
1498 | ||
1499 | for (i = 0; i < orig_st->nsyms; i++) { | |
1500 | uint8_t n_type = sym[i].n_type & (N_TYPE | N_EXT); | |
1501 | char *name = strings + sym[i].n_un.n_strx; | |
1502 | ||
1503 | /* Check that the symbol is a global and that it has a name. */ | |
1504 | if (((N_SECT | N_EXT) != n_type && (N_ABS | N_EXT) != n_type)) | |
1505 | continue; | |
1506 | ||
1507 | if (0 == sym[i].n_un.n_strx) /* iff a null, "", name. */ | |
1508 | continue; | |
1509 | ||
1510 | /* Lop off omnipresent leading underscore. */ | |
1511 | if (*name == '_') | |
1512 | name += 1; | |
1513 | ||
1514 | /* | |
1515 | * We're only blacklisting functions in the kernel for now. | |
1516 | */ | |
1517 | if (MOD_IS_MACH_KERNEL(ctl) && !is_symbol_valid(name)) | |
1518 | continue; | |
1519 | ||
1520 | __provide_probe_64(ctl, instrLow, instrHigh, modname, name, (machine_inst_t*)sym[i].n_value); | |
1521 | } | |
1522 | } | |
1523 | ||
1524 | static void | |
1525 | __user_syms_provide_module(void *arg, struct modctl *ctl) | |
1526 | { | |
1527 | #pragma unused(arg) | |
1528 | char *modname; | |
1529 | unsigned int i; | |
1530 | ||
1531 | modname = ctl->mod_modname; | |
1532 | ||
1533 | dtrace_module_symbols_t* module_symbols = ctl->mod_user_symbols; | |
1534 | if (module_symbols) { | |
1535 | for (i=0; i<module_symbols->dtmodsyms_count; i++) { | |
1536 | ||
1537 | /* | |
1538 | * symbol->dtsym_addr (the symbol address) passed in from | |
1539 | * user space, is already slid for both kexts and kernel. | |
1540 | */ | |
1541 | dtrace_symbol_t* symbol = &module_symbols->dtmodsyms_symbols[i]; | |
1542 | ||
1543 | char* name = symbol->dtsym_name; | |
1544 | ||
1545 | /* Lop off omnipresent leading underscore. */ | |
1546 | if (*name == '_') | |
1547 | name += 1; | |
1548 | ||
1549 | /* | |
1550 | * We're only blacklisting functions in the kernel for now. | |
1551 | */ | |
1552 | if (MOD_IS_MACH_KERNEL(ctl) && !is_symbol_valid(name)) | |
1553 | continue; | |
1554 | ||
1555 | __provide_probe_64(ctl, (uintptr_t)symbol->dtsym_addr, (uintptr_t)(symbol->dtsym_addr + symbol->dtsym_size), modname, name, (machine_inst_t*)(uintptr_t)symbol->dtsym_addr); | |
1556 | } | |
1557 | } | |
1558 | } | |
1559 | #else | |
1560 | #error Unknown arch | |
1561 | #endif | |
1562 | ||
1563 | extern int dtrace_kernel_symbol_mode; | |
1564 | ||
1565 | /*ARGSUSED*/ | |
1566 | void | |
1567 | fbt_provide_module(void *arg, struct modctl *ctl) | |
1568 | { | |
1569 | ASSERT(ctl != NULL); | |
1570 | ASSERT(dtrace_kernel_symbol_mode != DTRACE_KERNEL_SYMBOLS_NEVER); | |
1571 | lck_mtx_assert(&mod_lock, LCK_MTX_ASSERT_OWNED); | |
1572 | ||
1573 | if (MOD_FBT_DONE(ctl)) | |
1574 | return; | |
1575 | ||
1576 | if (!is_module_valid(ctl)) { | |
1577 | ctl->mod_flags |= MODCTL_FBT_INVALID; | |
1578 | return; | |
1579 | } | |
1580 | ||
1581 | if (MOD_HAS_KERNEL_SYMBOLS(ctl)) { | |
1582 | __kernel_syms_provide_module(arg, ctl); | |
1583 | ctl->mod_flags |= MODCTL_FBT_PROBES_PROVIDED; | |
1584 | return; | |
1585 | } | |
1586 | ||
1587 | if (MOD_HAS_USERSPACE_SYMBOLS(ctl)) { | |
1588 | __user_syms_provide_module(arg, ctl); | |
1589 | ctl->mod_flags |= MODCTL_FBT_PROBES_PROVIDED; | |
1590 | return; | |
1591 | } | |
1592 | } |