]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Copyright (c) 2004-2006 Apple Computer, Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * This file contains Original Code and/or Modifications of Original Code | |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
14 | * | |
15 | * Please obtain a copy of the License at | |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
25 | * | |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ | |
27 | */ | |
28 | #include <stdarg.h> | |
29 | #include <libsa/stdlib.h> | |
30 | #include <sys/param.h> | |
31 | #include <sys/systm.h> | |
32 | #include <sys/fsevents.h> | |
33 | ||
34 | #if CONFIG_FSE | |
35 | #include <sys/namei.h> | |
36 | #include <sys/filedesc.h> | |
37 | #include <sys/kernel.h> | |
38 | #include <sys/file_internal.h> | |
39 | #include <sys/stat.h> | |
40 | #include <sys/vnode_internal.h> | |
41 | #include <sys/mount_internal.h> | |
42 | #include <sys/proc_internal.h> | |
43 | #include <sys/kauth.h> | |
44 | #include <sys/uio.h> | |
45 | #include <sys/malloc.h> | |
46 | #include <sys/dirent.h> | |
47 | #include <sys/attr.h> | |
48 | #include <sys/sysctl.h> | |
49 | #include <sys/ubc.h> | |
50 | #include <machine/cons.h> | |
51 | #include <miscfs/specfs/specdev.h> | |
52 | #include <miscfs/devfs/devfs.h> | |
53 | #include <sys/filio.h> | |
54 | #include <kern/locks.h> | |
55 | #include <libkern/OSAtomic.h> | |
56 | #include <kern/zalloc.h> | |
57 | #include <mach/mach_time.h> | |
58 | #include <kern/thread_call.h> | |
59 | #include <kern/clock.h> | |
60 | ||
61 | #include <bsm/audit_kernel.h> | |
62 | #include <bsm/audit_kevents.h> | |
63 | ||
64 | ||
65 | ||
66 | typedef struct kfs_event { | |
67 | LIST_ENTRY(kfs_event) kevent_list; | |
68 | int16_t type; // type code of this event | |
69 | u_int16_t flags, // per-event flags | |
70 | len; // the length of the path in "str" | |
71 | int32_t refcount; // number of clients referencing this | |
72 | pid_t pid; // pid of the process that did the op | |
73 | ||
74 | uint64_t abstime; // when this event happened (mach_absolute_time()) | |
75 | ino64_t ino; | |
76 | dev_t dev; | |
77 | int32_t mode; | |
78 | uid_t uid; | |
79 | gid_t gid; | |
80 | ||
81 | const char *str; | |
82 | ||
83 | struct kfs_event *dest; // if this is a two-file op | |
84 | } kfs_event; | |
85 | ||
86 | // flags for the flags field | |
87 | #define KFSE_COMBINED_EVENTS 0x0001 | |
88 | #define KFSE_CONTAINS_DROPPED_EVENTS 0x0002 | |
89 | #define KFSE_RECYCLED_EVENT 0x0004 | |
90 | #define KFSE_BEING_CREATED 0x0008 | |
91 | ||
92 | LIST_HEAD(kfse_list, kfs_event) kfse_list_head = LIST_HEAD_INITIALIZER(x); | |
93 | int num_events_outstanding = 0; | |
94 | int num_pending_rename = 0; | |
95 | ||
96 | ||
97 | struct fsevent_handle; | |
98 | ||
99 | typedef struct fs_event_watcher { | |
100 | int8_t *event_list; // the events we're interested in | |
101 | int32_t num_events; | |
102 | dev_t *devices_to_watch; // only report events from these devices | |
103 | uint32_t num_devices; | |
104 | int32_t flags; | |
105 | kfs_event **event_queue; | |
106 | int32_t eventq_size; // number of event pointers in queue | |
107 | int32_t num_readers; | |
108 | int32_t rd; // read index into the event_queue | |
109 | int32_t wr; // write index into the event_queue | |
110 | int32_t blockers; | |
111 | int32_t my_id; | |
112 | uint32_t num_dropped; | |
113 | struct fsevent_handle *fseh; | |
114 | } fs_event_watcher; | |
115 | ||
116 | // fs_event_watcher flags | |
117 | #define WATCHER_DROPPED_EVENTS 0x0001 | |
118 | #define WATCHER_CLOSING 0x0002 | |
119 | #define WATCHER_WANTS_COMPACT_EVENTS 0x0004 | |
120 | #define WATCHER_WANTS_EXTENDED_INFO 0x0008 | |
121 | ||
122 | ||
123 | #define MAX_WATCHERS 8 | |
124 | static fs_event_watcher *watcher_table[MAX_WATCHERS]; | |
125 | ||
126 | ||
127 | #define MAX_KFS_EVENTS 4096 | |
128 | ||
129 | // we allocate kfs_event structures out of this zone | |
130 | static zone_t event_zone; | |
131 | static int fs_event_init = 0; | |
132 | ||
133 | // | |
134 | // this array records whether anyone is interested in a | |
135 | // particular type of event. if no one is, we bail out | |
136 | // early from the event delivery | |
137 | // | |
138 | static int16_t fs_event_type_watchers[FSE_MAX_EVENTS]; | |
139 | ||
140 | static int watcher_add_event(fs_event_watcher *watcher, kfs_event *kfse); | |
141 | static void fsevents_wakeup(fs_event_watcher *watcher); | |
142 | ||
143 | // | |
144 | // Locks | |
145 | // | |
146 | static lck_grp_attr_t * fsevent_group_attr; | |
147 | static lck_attr_t * fsevent_lock_attr; | |
148 | static lck_grp_t * fsevent_mutex_group; | |
149 | ||
150 | static lck_grp_t * fsevent_rw_group; | |
151 | ||
152 | static lck_rw_t event_handling_lock; // handles locking for event manipulation and recycling | |
153 | static lck_mtx_t watch_table_lock; | |
154 | static lck_mtx_t event_buf_lock; | |
155 | static lck_mtx_t event_writer_lock; | |
156 | ||
157 | static void init_pathbuff(void); | |
158 | ||
159 | ||
160 | static void | |
161 | fsevents_internal_init(void) | |
162 | { | |
163 | int i; | |
164 | ||
165 | if (fs_event_init++ != 0) { | |
166 | return; | |
167 | } | |
168 | ||
169 | for(i=0; i < FSE_MAX_EVENTS; i++) { | |
170 | fs_event_type_watchers[i] = 0; | |
171 | } | |
172 | ||
173 | memset(watcher_table, 0, sizeof(watcher_table)); | |
174 | ||
175 | fsevent_lock_attr = lck_attr_alloc_init(); | |
176 | fsevent_group_attr = lck_grp_attr_alloc_init(); | |
177 | fsevent_mutex_group = lck_grp_alloc_init("fsevent-mutex", fsevent_group_attr); | |
178 | fsevent_rw_group = lck_grp_alloc_init("fsevent-rw", fsevent_group_attr); | |
179 | ||
180 | lck_mtx_init(&watch_table_lock, fsevent_mutex_group, fsevent_lock_attr); | |
181 | lck_mtx_init(&event_buf_lock, fsevent_mutex_group, fsevent_lock_attr); | |
182 | lck_mtx_init(&event_writer_lock, fsevent_mutex_group, fsevent_lock_attr); | |
183 | ||
184 | lck_rw_init(&event_handling_lock, fsevent_rw_group, fsevent_lock_attr); | |
185 | ||
186 | event_zone = zinit(sizeof(kfs_event), | |
187 | MAX_KFS_EVENTS * sizeof(kfs_event), | |
188 | MAX_KFS_EVENTS * sizeof(kfs_event), | |
189 | "fs-event-buf"); | |
190 | if (event_zone == NULL) { | |
191 | printf("fsevents: failed to initialize the event zone.\n"); | |
192 | } | |
193 | ||
194 | if (zfill(event_zone, MAX_KFS_EVENTS) != MAX_KFS_EVENTS) { | |
195 | printf("fsevents: failed to pre-fill the event zone.\n"); | |
196 | } | |
197 | ||
198 | // mark the zone as exhaustible so that it will not | |
199 | // ever grow beyond what we initially filled it with | |
200 | zone_change(event_zone, Z_EXHAUST, TRUE); | |
201 | zone_change(event_zone, Z_COLLECT, FALSE); | |
202 | ||
203 | init_pathbuff(); | |
204 | } | |
205 | ||
206 | static void | |
207 | lock_watch_table(void) | |
208 | { | |
209 | lck_mtx_lock(&watch_table_lock); | |
210 | } | |
211 | ||
212 | static void | |
213 | unlock_watch_table(void) | |
214 | { | |
215 | lck_mtx_unlock(&watch_table_lock); | |
216 | } | |
217 | ||
218 | static void | |
219 | lock_fs_event_list(void) | |
220 | { | |
221 | lck_mtx_lock(&event_buf_lock); | |
222 | } | |
223 | ||
224 | static void | |
225 | unlock_fs_event_list(void) | |
226 | { | |
227 | lck_mtx_unlock(&event_buf_lock); | |
228 | } | |
229 | ||
230 | // forward prototype | |
231 | static void release_event_ref(kfs_event *kfse); | |
232 | ||
233 | static int | |
234 | watcher_cares_about_dev(fs_event_watcher *watcher, dev_t dev) | |
235 | { | |
236 | unsigned int i; | |
237 | ||
238 | // if there is not list of devices to watch, then always | |
239 | // say we're interested so we'll report all events from | |
240 | // all devices | |
241 | if (watcher->devices_to_watch == NULL) { | |
242 | return 1; | |
243 | } | |
244 | ||
245 | for(i=0; i < watcher->num_devices; i++) { | |
246 | if (dev == watcher->devices_to_watch[i]) { | |
247 | // found a match! that means we want events | |
248 | // from this device. | |
249 | return 1; | |
250 | } | |
251 | } | |
252 | ||
253 | // if we're here it's not in the devices_to_watch[] | |
254 | // list so that means we do not care about it | |
255 | return 0; | |
256 | } | |
257 | ||
258 | ||
259 | int | |
260 | need_fsevent(int type, vnode_t vp) | |
261 | { | |
262 | if (type >= 0 && type < FSE_MAX_EVENTS && fs_event_type_watchers[type] == 0) | |
263 | return (0); | |
264 | ||
265 | // events in /dev aren't really interesting... | |
266 | if (vp->v_tag == VT_DEVFS) { | |
267 | return (0); | |
268 | } | |
269 | ||
270 | return 1; | |
271 | } | |
272 | ||
273 | static int | |
274 | prefix_match_len(const char *str1, const char *str2) | |
275 | { | |
276 | int len=0; | |
277 | ||
278 | while(*str1 && *str2 && *str1 == *str2) { | |
279 | len++; | |
280 | str1++; | |
281 | str2++; | |
282 | } | |
283 | ||
284 | if (*str1 == '\0' && *str2 == '\0') { | |
285 | len++; | |
286 | } | |
287 | ||
288 | return len; | |
289 | } | |
290 | ||
291 | ||
292 | struct history_item { | |
293 | kfs_event *kfse; | |
294 | kfs_event *oldest_kfse; | |
295 | int counter; | |
296 | }; | |
297 | ||
298 | static int | |
299 | compare_history_items(const void *_a, const void *_b) | |
300 | { | |
301 | const struct history_item *a = (const struct history_item *)_a; | |
302 | const struct history_item *b = (const struct history_item *)_b; | |
303 | ||
304 | // we want a descending order | |
305 | return (b->counter - a->counter); | |
306 | } | |
307 | ||
308 | #define is_throw_away(x) ((x) == FSE_STAT_CHANGED || (x) == FSE_CONTENT_MODIFIED) | |
309 | ||
310 | ||
311 | // Ways that an event can be reused: | |
312 | // | |
313 | // "combined" events mean that there were two events for | |
314 | // the same vnode or path and we're combining both events | |
315 | // into a single event. The primary event gets a bit that | |
316 | // marks it as having been combined. The secondary event | |
317 | // is essentially dropped and the kfse structure reused. | |
318 | // | |
319 | // "collapsed" means that multiple events below a given | |
320 | // directory are collapsed into a single event. in this | |
321 | // case, the directory that we collapse into and all of | |
322 | // its children must be re-scanned. | |
323 | // | |
324 | // "recycled" means that we're completely blowing away | |
325 | // the event since there are other events that have info | |
326 | // about the same vnode or path (and one of those other | |
327 | // events will be marked as combined or collapsed as | |
328 | // appropriate). | |
329 | // | |
330 | #define KFSE_COMBINED 0x0001 | |
331 | #define KFSE_COLLAPSED 0x0002 | |
332 | #define KFSE_RECYCLED 0x0004 | |
333 | ||
334 | int num_dropped = 0; | |
335 | int num_combined_events = 0; | |
336 | int num_added_to_parent = 0; | |
337 | int num_parent_switch = 0; | |
338 | int num_recycled_rename = 0; | |
339 | ||
340 | // | |
341 | // NOTE: you must call lock_fs_event_list() before calling | |
342 | // this function. | |
343 | // | |
344 | static kfs_event * | |
345 | find_an_event(const char *str, int len, kfs_event *do_not_reuse, int *reuse_type, int *longest_match_len) | |
346 | { | |
347 | kfs_event *kfse, *best_kfse=NULL; | |
348 | ||
349 | // this seems to be enough to find most duplicate events for the same vnode | |
350 | #define MAX_HISTORY 12 | |
351 | struct history_item history[MAX_HISTORY]; | |
352 | int i; | |
353 | ||
354 | *longest_match_len = 0; | |
355 | *reuse_type = 0; | |
356 | ||
357 | memset(history, 0, sizeof(history)); | |
358 | ||
359 | // | |
360 | // now walk the list of events and try to find the best match | |
361 | // for this event. if we have a vnode, we look for an event | |
362 | // that already references the vnode. if we don't find one | |
363 | // we'll also take the parent of this vnode (in which case it | |
364 | // will be marked as having dropped events within it). | |
365 | // | |
366 | // if we have a string we look for the longest match on the | |
367 | // path we have. | |
368 | // | |
369 | ||
370 | LIST_FOREACH(kfse, &kfse_list_head, kevent_list) { | |
371 | int match_len; | |
372 | ||
373 | // | |
374 | // don't look at events that are still in the process of being | |
375 | // created, have a null vnode ptr or rename/exchange events. | |
376 | // | |
377 | if ( (kfse->flags & KFSE_BEING_CREATED) || kfse->type == FSE_RENAME || kfse->type == FSE_EXCHANGE) { | |
378 | ||
379 | continue; | |
380 | } | |
381 | ||
382 | if (str != NULL) { | |
383 | if (kfse->len != 0 && kfse->str != NULL) { | |
384 | match_len = prefix_match_len(str, kfse->str); | |
385 | if (match_len > *longest_match_len) { | |
386 | best_kfse = kfse; | |
387 | *longest_match_len = match_len; | |
388 | } | |
389 | } | |
390 | } | |
391 | ||
392 | if (kfse == do_not_reuse) { | |
393 | continue; | |
394 | } | |
395 | ||
396 | for(i=0; i < MAX_HISTORY; i++) { | |
397 | if (history[i].kfse == NULL) { | |
398 | break; | |
399 | } | |
400 | ||
401 | // | |
402 | // do a quick check to see if we've got two simple events | |
403 | // that we can cheaply combine. if the event we're looking | |
404 | // at and one of the events in the history table are for the | |
405 | // same path then we'll just mark the newer event as combined | |
406 | // and recyle the older event. | |
407 | // | |
408 | if (history[i].kfse->str == kfse->str) { | |
409 | ||
410 | OSBitOrAtomic16(KFSE_COMBINED_EVENTS, &kfse->flags); | |
411 | *reuse_type = KFSE_RECYCLED; | |
412 | history[i].kfse->flags |= KFSE_RECYCLED_EVENT; | |
413 | return history[i].kfse; | |
414 | } | |
415 | } | |
416 | ||
417 | if (i < MAX_HISTORY && history[i].kfse == NULL) { | |
418 | history[i].kfse = kfse; | |
419 | history[i].counter = 1; | |
420 | } else if (i >= MAX_HISTORY) { | |
421 | qsort(history, MAX_HISTORY, sizeof(struct history_item), compare_history_items); | |
422 | ||
423 | // pluck off the lowest guy if he's only got a count of 1 | |
424 | if (history[MAX_HISTORY-1].counter == 1) { | |
425 | history[MAX_HISTORY-1].kfse = kfse; | |
426 | } | |
427 | } | |
428 | } | |
429 | ||
430 | ||
431 | if (str != NULL && best_kfse) { | |
432 | if (*longest_match_len <= 1) { | |
433 | // if the best match we had was "/" then basically we're toast... | |
434 | *longest_match_len = 0; | |
435 | best_kfse = NULL; | |
436 | } else if (*longest_match_len != len) { | |
437 | OSBitOrAtomic16(KFSE_CONTAINS_DROPPED_EVENTS, &best_kfse->flags); | |
438 | *reuse_type = KFSE_COLLAPSED; | |
439 | } else { | |
440 | OSBitOrAtomic16(KFSE_COMBINED_EVENTS, &best_kfse->flags); | |
441 | *reuse_type = KFSE_COMBINED; | |
442 | } | |
443 | } | |
444 | ||
445 | return best_kfse; | |
446 | } | |
447 | ||
448 | ||
449 | static struct timeval last_print; | |
450 | ||
451 | // | |
452 | // These variables are used to track coalescing multiple identical | |
453 | // events for the same vnode/pathname. If we get the same event | |
454 | // type and same vnode/pathname as the previous event, we just drop | |
455 | // the event since it's superfluous. This improves some micro- | |
456 | // benchmarks considerably and actually has a real-world impact on | |
457 | // tests like a Finder copy where multiple stat-changed events can | |
458 | // get coalesced. | |
459 | // | |
460 | static int last_event_type=-1; | |
461 | static void *last_ptr=NULL; | |
462 | static char last_str[MAXPATHLEN]; | |
463 | static int last_nlen=0; | |
464 | static int last_vid=-1; | |
465 | static uint64_t last_coalesced_time=0; | |
466 | int last_coalesced = 0; | |
467 | static mach_timebase_info_data_t sTimebaseInfo = { 0, 0 }; | |
468 | ||
469 | ||
470 | int | |
471 | add_fsevent(int type, vfs_context_t ctx, ...) | |
472 | { | |
473 | struct proc *p = vfs_context_proc(ctx); | |
474 | int i, arg_type, skip_init=0, longest_match_len, ret; | |
475 | kfs_event *kfse, *kfse_dest=NULL, *cur; | |
476 | fs_event_watcher *watcher; | |
477 | va_list ap; | |
478 | int error = 0, did_alloc=0, need_event_unlock = 0; | |
479 | dev_t dev = 0; | |
480 | uint64_t now, elapsed; | |
481 | int reuse_type = 0; | |
482 | char *pathbuff=NULL; | |
483 | int pathbuff_len; | |
484 | ||
485 | ||
486 | va_start(ap, ctx); | |
487 | ||
488 | // ignore bogus event types.. | |
489 | if (type < 0 || type >= FSE_MAX_EVENTS) { | |
490 | return EINVAL; | |
491 | } | |
492 | ||
493 | // if no one cares about this type of event, bail out | |
494 | if (fs_event_type_watchers[type] == 0) { | |
495 | va_end(ap); | |
496 | return 0; | |
497 | } | |
498 | ||
499 | now = mach_absolute_time(); | |
500 | ||
501 | // find a free event and snag it for our use | |
502 | // NOTE: do not do anything that would block until | |
503 | // the lock is dropped. | |
504 | lock_fs_event_list(); | |
505 | ||
506 | // | |
507 | // check if this event is identical to the previous one... | |
508 | // (as long as it's not an event type that can never be the | |
509 | // same as a previous event) | |
510 | // | |
511 | if (type != FSE_CREATE_FILE && type != FSE_DELETE && type != FSE_RENAME && type != FSE_EXCHANGE) { | |
512 | void *ptr=NULL; | |
513 | int vid=0, was_str=0, nlen=0; | |
514 | ||
515 | for(arg_type=va_arg(ap, int32_t); arg_type != FSE_ARG_DONE; arg_type=va_arg(ap, int32_t)) { | |
516 | switch(arg_type) { | |
517 | case FSE_ARG_VNODE: { | |
518 | ptr = va_arg(ap, void *); | |
519 | vid = vnode_vid((struct vnode *)ptr); | |
520 | last_str[0] = '\0'; | |
521 | break; | |
522 | } | |
523 | case FSE_ARG_STRING: { | |
524 | nlen = va_arg(ap, int32_t); | |
525 | ptr = va_arg(ap, void *); | |
526 | was_str = 1; | |
527 | break; | |
528 | } | |
529 | } | |
530 | if (ptr != NULL) { | |
531 | break; | |
532 | } | |
533 | } | |
534 | ||
535 | if ( sTimebaseInfo.denom == 0 ) { | |
536 | (void) clock_timebase_info(&sTimebaseInfo); | |
537 | } | |
538 | ||
539 | elapsed = (now - last_coalesced_time); | |
540 | if (sTimebaseInfo.denom != sTimebaseInfo.numer) { | |
541 | if (sTimebaseInfo.denom == 1) { | |
542 | elapsed *= sTimebaseInfo.numer; | |
543 | } else { | |
544 | // this could overflow... the worst that will happen is that we'll | |
545 | // send (or not send) an extra event so I'm not going to worry about | |
546 | // doing the math right like dtrace_abs_to_nano() does. | |
547 | elapsed = (elapsed * sTimebaseInfo.numer) / (uint64_t)sTimebaseInfo.denom; | |
548 | } | |
549 | } | |
550 | ||
551 | if (type == last_event_type | |
552 | && (elapsed < 1000000000) | |
553 | && | |
554 | ((vid && vid == last_vid && last_ptr == ptr) | |
555 | || | |
556 | (last_str[0] && last_nlen == nlen && ptr && strcmp(last_str, ptr) == 0)) | |
557 | ) { | |
558 | ||
559 | last_coalesced++; | |
560 | unlock_fs_event_list(); | |
561 | va_end(ap); | |
562 | return 0; | |
563 | } else { | |
564 | last_ptr = ptr; | |
565 | if (was_str) { | |
566 | strlcpy(last_str, ptr, sizeof(last_str)); | |
567 | } | |
568 | last_nlen = nlen; | |
569 | last_vid = vid; | |
570 | last_event_type = type; | |
571 | last_coalesced_time = now; | |
572 | } | |
573 | } | |
574 | va_start(ap, ctx); | |
575 | ||
576 | ||
577 | kfse = zalloc_noblock(event_zone); | |
578 | if (kfse && (type == FSE_RENAME || type == FSE_EXCHANGE)) { | |
579 | kfse_dest = zalloc_noblock(event_zone); | |
580 | if (kfse_dest == NULL) { | |
581 | did_alloc = 1; | |
582 | zfree(event_zone, kfse); | |
583 | kfse = NULL; | |
584 | } | |
585 | } | |
586 | ||
587 | ||
588 | if (kfse == NULL) { // yikes! no free events | |
589 | int len=0; | |
590 | char *str; | |
591 | ||
592 | // | |
593 | // Figure out what kind of reference we have to the | |
594 | // file in this event. This helps us find an event | |
595 | // to combine/collapse into to make room. | |
596 | // | |
597 | // If we have a rename or exchange event then we | |
598 | // don't want to go through the normal path, we | |
599 | // want to "steal" an event instead (which is what | |
600 | // find_an_event() will do if str is null). | |
601 | // | |
602 | arg_type = va_arg(ap, int32_t); | |
603 | if (type == FSE_RENAME || type == FSE_EXCHANGE) { | |
604 | str = NULL; | |
605 | } else if (arg_type == FSE_ARG_STRING) { | |
606 | len = va_arg(ap, int32_t); | |
607 | str = va_arg(ap, char *); | |
608 | } else if (arg_type == FSE_ARG_VNODE) { | |
609 | struct vnode *vp; | |
610 | ||
611 | vp = va_arg(ap, struct vnode *); | |
612 | pathbuff = get_pathbuff(); | |
613 | pathbuff_len = MAXPATHLEN; | |
614 | if (vn_getpath(vp, pathbuff, &pathbuff_len) != 0 || pathbuff[0] == '\0') { | |
615 | release_pathbuff(pathbuff); | |
616 | pathbuff = NULL; | |
617 | } | |
618 | str = pathbuff; | |
619 | } else { | |
620 | str = NULL; | |
621 | } | |
622 | ||
623 | // | |
624 | // This will go through all events and find one that we | |
625 | // can combine with (hopefully), or "collapse" into (i.e | |
626 | // it has the same parent) or in the worst case we have | |
627 | // to "recycle" an event which means that it will combine | |
628 | // two other events and return us the now unused event. | |
629 | // failing all that, find_an_event() could still return | |
630 | // null and if it does then we have a catastrophic dropped | |
631 | // events scenario. | |
632 | // | |
633 | kfse = find_an_event(str, len, NULL, &reuse_type, &longest_match_len); | |
634 | ||
635 | if (kfse == NULL) { | |
636 | bail_early: | |
637 | ||
638 | unlock_fs_event_list(); | |
639 | lock_watch_table(); | |
640 | ||
641 | for(i=0; i < MAX_WATCHERS; i++) { | |
642 | watcher = watcher_table[i]; | |
643 | if (watcher == NULL) { | |
644 | continue; | |
645 | } | |
646 | ||
647 | watcher->flags |= WATCHER_DROPPED_EVENTS; | |
648 | fsevents_wakeup(watcher); | |
649 | } | |
650 | unlock_watch_table(); | |
651 | ||
652 | { | |
653 | struct timeval current_tv; | |
654 | ||
655 | num_dropped++; | |
656 | ||
657 | // only print a message at most once every 5 seconds | |
658 | microuptime(¤t_tv); | |
659 | if ((current_tv.tv_sec - last_print.tv_sec) > 10) { | |
660 | int ii; | |
661 | void *junkptr=zalloc_noblock(event_zone), *listhead=kfse_list_head.lh_first; | |
662 | ||
663 | printf("add_fsevent: event queue is full! dropping events (num dropped events: %d; num events outstanding: %d).\n", num_dropped, num_events_outstanding); | |
664 | printf("add_fsevent: kfse_list head %p ; num_pending_rename %d\n", listhead, num_pending_rename); | |
665 | printf("add_fsevent: zalloc sez: %p\n", junkptr); | |
666 | printf("add_fsevent: event_zone info: %d %p\n", ((int *)event_zone)[0], (void *)((int *)event_zone)[1]); | |
667 | for(ii=0; ii < MAX_WATCHERS; ii++) { | |
668 | if (watcher_table[ii] == NULL) { | |
669 | continue; | |
670 | } | |
671 | ||
672 | printf("add_fsevent: watcher %p: num dropped %d rd %4d wr %4d q_size %4d flags 0x%x\n", | |
673 | watcher_table[ii], watcher_table[ii]->num_dropped, | |
674 | watcher_table[ii]->rd, watcher_table[ii]->wr, | |
675 | watcher_table[ii]->eventq_size, watcher_table[ii]->flags); | |
676 | } | |
677 | ||
678 | last_print = current_tv; | |
679 | if (junkptr) { | |
680 | zfree(event_zone, junkptr); | |
681 | } | |
682 | } | |
683 | } | |
684 | ||
685 | if (pathbuff) { | |
686 | release_pathbuff(pathbuff); | |
687 | pathbuff = NULL; | |
688 | } | |
689 | ||
690 | return ENOSPC; | |
691 | } | |
692 | ||
693 | if ((type == FSE_RENAME || type == FSE_EXCHANGE) && reuse_type != KFSE_RECYCLED) { | |
694 | panic("add_fsevent: type == %d but reuse type == %d!\n", type, reuse_type); | |
695 | } else if ((kfse->type == FSE_RENAME || kfse->type == FSE_EXCHANGE) && kfse->dest == NULL) { | |
696 | panic("add_fsevent: bogus kfse %p (type %d, but dest is NULL)\n", kfse, kfse->type); | |
697 | } else if (kfse->type == FSE_RENAME || kfse->type == FSE_EXCHANGE) { | |
698 | panic("add_fsevent: we should never re-use rename events (kfse %p reuse type %d)!\n", kfse, reuse_type); | |
699 | } | |
700 | ||
701 | if (reuse_type == KFSE_COLLAPSED) { | |
702 | if (str) { | |
703 | const char *tmp_ptr, *new_str; | |
704 | ||
705 | // | |
706 | // if we collapsed and have a string we have to chop off the | |
707 | // tail component of the pathname to get the parent. | |
708 | // | |
709 | // NOTE: it is VERY IMPORTANT that we leave the trailing slash | |
710 | // on the pathname. user-level code depends on this. | |
711 | // | |
712 | if (str[0] == '\0' || longest_match_len <= 1) { | |
713 | printf("add_fsevent: strange state (str %s / longest_match_len %d)\n", str, longest_match_len); | |
714 | if (longest_match_len < 0) { | |
715 | panic("add_fsevent: longest_match_len %d\n", longest_match_len); | |
716 | } | |
717 | } | |
718 | // chop off the tail component if it's not the | |
719 | // first character... | |
720 | if (longest_match_len > 1) { | |
721 | str[longest_match_len] = '\0'; | |
722 | } else if (longest_match_len == 0) { | |
723 | longest_match_len = 1; | |
724 | } | |
725 | ||
726 | new_str = vfs_addname(str, longest_match_len, 0, 0); | |
727 | if (new_str == NULL || new_str[0] == '\0') { | |
728 | panic("add_fsevent: longest match is strange (new_str %p).\n", new_str); | |
729 | } | |
730 | ||
731 | lck_rw_lock_exclusive(&event_handling_lock); | |
732 | ||
733 | kfse->len = longest_match_len; | |
734 | tmp_ptr = kfse->str; | |
735 | kfse->str = new_str; | |
736 | kfse->ino = 0; | |
737 | kfse->mode = 0; | |
738 | kfse->uid = 0; | |
739 | kfse->gid = 0; | |
740 | ||
741 | lck_rw_unlock_exclusive(&event_handling_lock); | |
742 | ||
743 | vfs_removename(tmp_ptr); | |
744 | } else { | |
745 | panic("add_fsevent: don't have a vnode or a string pointer (kfse %p)\n", kfse); | |
746 | } | |
747 | } | |
748 | ||
749 | if (reuse_type == KFSE_RECYCLED && (type == FSE_RENAME || type == FSE_EXCHANGE)) { | |
750 | ||
751 | // if we're recycling this kfse and we have a rename or | |
752 | // exchange event then we need to also get an event for | |
753 | // kfse_dest. | |
754 | // | |
755 | if (did_alloc) { | |
756 | // only happens if we allocated one but then failed | |
757 | // for kfse_dest (and thus free'd the first one we | |
758 | // allocated) | |
759 | kfse_dest = zalloc_noblock(event_zone); | |
760 | if (kfse_dest != NULL) { | |
761 | memset(kfse_dest, 0, sizeof(kfs_event)); | |
762 | kfse_dest->refcount = 1; | |
763 | OSBitOrAtomic16(KFSE_BEING_CREATED, &kfse_dest->flags); | |
764 | } else { | |
765 | did_alloc = 0; | |
766 | } | |
767 | } | |
768 | ||
769 | if (kfse_dest == NULL) { | |
770 | int dest_reuse_type, dest_match_len; | |
771 | ||
772 | kfse_dest = find_an_event(NULL, 0, kfse, &dest_reuse_type, &dest_match_len); | |
773 | ||
774 | if (kfse_dest == NULL) { | |
775 | // nothing we can do... gotta bail out | |
776 | goto bail_early; | |
777 | } | |
778 | ||
779 | if (dest_reuse_type != KFSE_RECYCLED) { | |
780 | panic("add_fsevent: type == %d but dest_reuse type == %d!\n", type, dest_reuse_type); | |
781 | } | |
782 | } | |
783 | } | |
784 | ||
785 | ||
786 | // | |
787 | // Here we check for some fast-path cases so that we can | |
788 | // jump over the normal initialization and just get on | |
789 | // with delivering the event. These cases are when we're | |
790 | // combining/collapsing an event and so basically there is | |
791 | // no more work to do (aside from a little book-keeping) | |
792 | // | |
793 | if (str && kfse->len != 0) { | |
794 | kfse->abstime = now; | |
795 | OSAddAtomic(1, (SInt32 *)&kfse->refcount); | |
796 | skip_init = 1; | |
797 | ||
798 | if (reuse_type == KFSE_COMBINED) { | |
799 | num_combined_events++; | |
800 | } else if (reuse_type == KFSE_COLLAPSED) { | |
801 | num_added_to_parent++; | |
802 | } | |
803 | } else if (reuse_type != KFSE_RECYCLED) { | |
804 | panic("add_fsevent: I'm so confused! (reuse_type %d str %p kfse->len %d)\n", | |
805 | reuse_type, str, kfse->len); | |
806 | } | |
807 | ||
808 | va_end(ap); | |
809 | ||
810 | ||
811 | if (skip_init) { | |
812 | if (kfse->refcount < 1) { | |
813 | panic("add_fsevent: line %d: kfse recount %d but should be at least 1\n", __LINE__, kfse->refcount); | |
814 | } | |
815 | ||
816 | unlock_fs_event_list(); | |
817 | goto normal_delivery; | |
818 | ||
819 | } else if (reuse_type == KFSE_RECYCLED || reuse_type == KFSE_COMBINED) { | |
820 | ||
821 | // | |
822 | // If we're here we have to clear out the kfs_event(s) | |
823 | // that we were given by find_an_event() and set it | |
824 | // up to be re-filled in by the normal code path. | |
825 | // | |
826 | va_start(ap, ctx); | |
827 | ||
828 | need_event_unlock = 1; | |
829 | lck_rw_lock_exclusive(&event_handling_lock); | |
830 | ||
831 | OSAddAtomic(1, (SInt32 *)&kfse->refcount); | |
832 | ||
833 | if (kfse->refcount < 1) { | |
834 | panic("add_fsevent: line %d: kfse recount %d but should be at least 1\n", __LINE__, kfse->refcount); | |
835 | } | |
836 | ||
837 | if (kfse->len == 0) { | |
838 | panic("%s:%d: no more fref.vp\n", __FILE__, __LINE__); | |
839 | // vnode_rele_ext(kfse->fref.vp, O_EVTONLY, 0); | |
840 | } else { | |
841 | vfs_removename(kfse->str); | |
842 | kfse->len = 0; | |
843 | } | |
844 | kfse->str = NULL; | |
845 | ||
846 | if (kfse->kevent_list.le_prev != NULL) { | |
847 | num_events_outstanding--; | |
848 | if (kfse->type == FSE_RENAME) { | |
849 | num_pending_rename--; | |
850 | } | |
851 | LIST_REMOVE(kfse, kevent_list); | |
852 | memset(&kfse->kevent_list, 0, sizeof(kfse->kevent_list)); | |
853 | } | |
854 | ||
855 | kfse->flags = 0 | KFSE_RECYCLED_EVENT; | |
856 | ||
857 | if (kfse_dest) { | |
858 | OSAddAtomic(1, (SInt32 *)&kfse_dest->refcount); | |
859 | kfse_dest->flags = 0 | KFSE_RECYCLED_EVENT; | |
860 | ||
861 | if (did_alloc == 0) { | |
862 | if (kfse_dest->len == 0) { | |
863 | panic("%s:%d: no more fref.vp\n", __FILE__, __LINE__); | |
864 | // vnode_rele_ext(kfse_dest->fref.vp, O_EVTONLY, 0); | |
865 | } else { | |
866 | vfs_removename(kfse_dest->str); | |
867 | kfse_dest->len = 0; | |
868 | } | |
869 | kfse_dest->str = NULL; | |
870 | ||
871 | if (kfse_dest->kevent_list.le_prev != NULL) { | |
872 | num_events_outstanding--; | |
873 | LIST_REMOVE(kfse_dest, kevent_list); | |
874 | memset(&kfse_dest->kevent_list, 0, sizeof(kfse_dest->kevent_list)); | |
875 | } | |
876 | ||
877 | if (kfse_dest->dest) { | |
878 | panic("add_fsevent: should never recycle a rename event! kfse %p\n", kfse); | |
879 | } | |
880 | } | |
881 | } | |
882 | ||
883 | OSBitOrAtomic16(KFSE_BEING_CREATED, &kfse->flags); | |
884 | if (kfse_dest) { | |
885 | OSBitOrAtomic16(KFSE_BEING_CREATED, &kfse_dest->flags); | |
886 | } | |
887 | ||
888 | goto process_normally; | |
889 | } | |
890 | } | |
891 | ||
892 | if (reuse_type != 0) { | |
893 | panic("fsevents: we have a reuse_type (%d) but are about to clear out kfse %p\n", reuse_type, kfse); | |
894 | } | |
895 | ||
896 | // | |
897 | // we only want to do this for brand new events, not | |
898 | // events which have been recycled. | |
899 | // | |
900 | memset(kfse, 0, sizeof(kfs_event)); | |
901 | kfse->refcount = 1; | |
902 | OSBitOrAtomic16(KFSE_BEING_CREATED, &kfse->flags); | |
903 | ||
904 | process_normally: | |
905 | kfse->type = type; | |
906 | kfse->abstime = now; | |
907 | kfse->pid = p->p_pid; | |
908 | if (type == FSE_RENAME || type == FSE_EXCHANGE) { | |
909 | if (need_event_unlock == 0) { | |
910 | memset(kfse_dest, 0, sizeof(kfs_event)); | |
911 | kfse_dest->refcount = 1; | |
912 | OSBitOrAtomic16(KFSE_BEING_CREATED, &kfse_dest->flags); | |
913 | } | |
914 | kfse_dest->type = type; | |
915 | kfse_dest->pid = p->p_pid; | |
916 | kfse_dest->abstime = now; | |
917 | ||
918 | kfse->dest = kfse_dest; | |
919 | } | |
920 | ||
921 | num_events_outstanding++; | |
922 | if (kfse->type == FSE_RENAME) { | |
923 | num_pending_rename++; | |
924 | } | |
925 | LIST_INSERT_HEAD(&kfse_list_head, kfse, kevent_list); | |
926 | ||
927 | if (kfse->refcount < 1) { | |
928 | panic("add_fsevent: line %d: kfse recount %d but should be at least 1\n", __LINE__, kfse->refcount); | |
929 | } | |
930 | ||
931 | unlock_fs_event_list(); // at this point it's safe to unlock | |
932 | ||
933 | // | |
934 | // now process the arguments passed in and copy them into | |
935 | // the kfse | |
936 | // | |
937 | if (need_event_unlock == 0) { | |
938 | lck_rw_lock_shared(&event_handling_lock); | |
939 | } | |
940 | ||
941 | cur = kfse; | |
942 | for(arg_type=va_arg(ap, int32_t); arg_type != FSE_ARG_DONE; arg_type=va_arg(ap, int32_t)) | |
943 | ||
944 | switch(arg_type) { | |
945 | case FSE_ARG_VNODE: { | |
946 | // this expands out into multiple arguments to the client | |
947 | struct vnode *vp; | |
948 | struct vnode_attr va; | |
949 | ||
950 | if (kfse->str != NULL) { | |
951 | cur = kfse_dest; | |
952 | } | |
953 | ||
954 | vp = va_arg(ap, struct vnode *); | |
955 | if (vp == NULL) { | |
956 | panic("add_fsevent: you can't pass me a NULL vnode ptr (type %d)!\n", | |
957 | cur->type); | |
958 | } | |
959 | ||
960 | VATTR_INIT(&va); | |
961 | VATTR_WANTED(&va, va_fsid); | |
962 | VATTR_WANTED(&va, va_fileid); | |
963 | VATTR_WANTED(&va, va_mode); | |
964 | VATTR_WANTED(&va, va_uid); | |
965 | VATTR_WANTED(&va, va_gid); | |
966 | if ((ret = vnode_getattr(vp, &va, ctx)) != 0) { | |
967 | // printf("add_fsevent: failed to getattr on vp %p (%d)\n", cur->fref.vp, ret); | |
968 | cur->str = NULL; | |
969 | error = EINVAL; | |
970 | if (need_event_unlock == 0) { | |
971 | // then we only grabbed it shared | |
972 | lck_rw_unlock_shared(&event_handling_lock); | |
973 | } | |
974 | goto clean_up; | |
975 | } | |
976 | ||
977 | cur->dev = dev = (dev_t)va.va_fsid; | |
978 | cur->ino = (ino_t)va.va_fileid; | |
979 | cur->mode = (int32_t)vnode_vttoif(vnode_vtype(vp)) | va.va_mode; | |
980 | cur->uid = va.va_uid; | |
981 | cur->gid = va.va_gid; | |
982 | ||
983 | // if we haven't gotten the path yet, get it. | |
984 | if (pathbuff == NULL) { | |
985 | pathbuff = get_pathbuff(); | |
986 | pathbuff_len = MAXPATHLEN; | |
987 | ||
988 | pathbuff[0] = '\0'; | |
989 | if (vn_getpath(vp, pathbuff, &pathbuff_len) != 0 || pathbuff[0] == '\0') { | |
990 | printf("add_fsevent: no name hard-link! dropping the event. (event %d vp == %p (%s)). \n", | |
991 | type, vp, vp->v_name ? vp->v_name : "-UNKNOWN-FILE"); | |
992 | error = ENOENT; | |
993 | release_pathbuff(pathbuff); | |
994 | pathbuff = NULL; | |
995 | if (need_event_unlock == 0) { | |
996 | // then we only grabbed it shared | |
997 | lck_rw_unlock_shared(&event_handling_lock); | |
998 | } | |
999 | goto clean_up; | |
1000 | } | |
1001 | } | |
1002 | ||
1003 | // store the path by adding it to the global string table | |
1004 | cur->len = pathbuff_len; | |
1005 | cur->str = vfs_addname(pathbuff, pathbuff_len, 0, 0); | |
1006 | if (cur->str == NULL || cur->str[0] == '\0') { | |
1007 | panic("add_fsevent: was not able to add path %s to event %p.\n", pathbuff, cur); | |
1008 | } | |
1009 | ||
1010 | release_pathbuff(pathbuff); | |
1011 | pathbuff = NULL; | |
1012 | ||
1013 | break; | |
1014 | } | |
1015 | ||
1016 | case FSE_ARG_FINFO: { | |
1017 | fse_info *fse; | |
1018 | ||
1019 | fse = va_arg(ap, fse_info *); | |
1020 | ||
1021 | cur->dev = dev = (dev_t)fse->dev; | |
1022 | cur->ino = (ino_t)fse->ino; | |
1023 | cur->mode = (int32_t)fse->mode; | |
1024 | cur->uid = (uid_t)fse->uid; | |
1025 | cur->gid = (uid_t)fse->gid; | |
1026 | // if it's a hard-link and this is the last link, flag it | |
1027 | if ((fse->mode & FSE_MODE_HLINK) && fse->nlink == 0) { | |
1028 | cur->mode |= FSE_MODE_LAST_HLINK; | |
1029 | } | |
1030 | break; | |
1031 | } | |
1032 | ||
1033 | case FSE_ARG_STRING: | |
1034 | if (kfse->str != NULL) { | |
1035 | cur = kfse_dest; | |
1036 | } | |
1037 | ||
1038 | cur->len = (int16_t)(va_arg(ap, int32_t) & 0x7fff); | |
1039 | if (cur->len >= 1) { | |
1040 | cur->str = vfs_addname(va_arg(ap, char *), cur->len, 0, 0); | |
1041 | } else { | |
1042 | printf("add_fsevent: funny looking string length: %d\n", (int)cur->len); | |
1043 | cur->len = 2; | |
1044 | cur->str = vfs_addname("/", cur->len, 0, 0); | |
1045 | } | |
1046 | if (cur->str[0] == 0) { | |
1047 | printf("add_fsevent: bogus looking string (len %d)\n", cur->len); | |
1048 | } | |
1049 | break; | |
1050 | ||
1051 | default: | |
1052 | printf("add_fsevent: unknown type %d\n", arg_type); | |
1053 | // just skip one 32-bit word and hope we sync up... | |
1054 | (void)va_arg(ap, int32_t); | |
1055 | } | |
1056 | ||
1057 | va_end(ap); | |
1058 | ||
1059 | OSBitAndAtomic16(~KFSE_BEING_CREATED, &kfse->flags); | |
1060 | if (kfse_dest) { | |
1061 | OSBitAndAtomic16(~KFSE_BEING_CREATED, &kfse_dest->flags); | |
1062 | } | |
1063 | ||
1064 | if (need_event_unlock == 0) { | |
1065 | // then we only grabbed it shared | |
1066 | lck_rw_unlock_shared(&event_handling_lock); | |
1067 | } | |
1068 | ||
1069 | normal_delivery: | |
1070 | // unlock this here so we don't hold it across the | |
1071 | // event delivery loop. | |
1072 | if (need_event_unlock) { | |
1073 | lck_rw_unlock_exclusive(&event_handling_lock); | |
1074 | need_event_unlock = 0; | |
1075 | } | |
1076 | ||
1077 | // | |
1078 | // now we have to go and let everyone know that | |
1079 | // is interested in this type of event | |
1080 | // | |
1081 | lock_watch_table(); | |
1082 | ||
1083 | for(i=0; i < MAX_WATCHERS; i++) { | |
1084 | watcher = watcher_table[i]; | |
1085 | if (watcher == NULL) { | |
1086 | continue; | |
1087 | } | |
1088 | ||
1089 | if ( watcher->event_list[type] == FSE_REPORT | |
1090 | && watcher_cares_about_dev(watcher, dev)) { | |
1091 | ||
1092 | if (watcher_add_event(watcher, kfse) != 0) { | |
1093 | watcher->num_dropped++; | |
1094 | } | |
1095 | } | |
1096 | ||
1097 | if (kfse->refcount < 1) { | |
1098 | panic("add_fsevent: line %d: kfse recount %d but should be at least 1\n", __LINE__, kfse->refcount); | |
1099 | } | |
1100 | } | |
1101 | ||
1102 | unlock_watch_table(); | |
1103 | ||
1104 | clean_up: | |
1105 | // have to check if this needs to be unlocked (in | |
1106 | // case we came here from an error handling path) | |
1107 | if (need_event_unlock) { | |
1108 | lck_rw_unlock_exclusive(&event_handling_lock); | |
1109 | need_event_unlock = 0; | |
1110 | } | |
1111 | ||
1112 | if (pathbuff) { | |
1113 | release_pathbuff(pathbuff); | |
1114 | pathbuff = NULL; | |
1115 | } | |
1116 | ||
1117 | release_event_ref(kfse); | |
1118 | ||
1119 | return error; | |
1120 | } | |
1121 | ||
1122 | ||
1123 | static void | |
1124 | release_event_ref(kfs_event *kfse) | |
1125 | { | |
1126 | int old_refcount; | |
1127 | kfs_event copy, dest_copy; | |
1128 | ||
1129 | ||
1130 | old_refcount = OSAddAtomic(-1, (SInt32 *)&kfse->refcount); | |
1131 | if (old_refcount > 1) { | |
1132 | return; | |
1133 | } | |
1134 | ||
1135 | lock_fs_event_list(); | |
1136 | if (kfse->refcount < 0) { | |
1137 | panic("release_event_ref: bogus kfse refcount %d\n", kfse->refcount); | |
1138 | } | |
1139 | ||
1140 | if (kfse->refcount > 0 || kfse->type == FSE_INVALID) { | |
1141 | // This is very subtle. Either of these conditions can | |
1142 | // be true if an event got recycled while we were waiting | |
1143 | // on the fs_event_list lock or the event got recycled, | |
1144 | // delivered, _and_ free'd by someone else while we were | |
1145 | // waiting on the fs event list lock. In either case | |
1146 | // we need to just unlock the list and return without | |
1147 | // doing anything because if the refcount is > 0 then | |
1148 | // someone else will take care of free'ing it and when | |
1149 | // the kfse->type is invalid then someone else already | |
1150 | // has handled free'ing the event (while we were blocked | |
1151 | // on the event list lock). | |
1152 | // | |
1153 | unlock_fs_event_list(); | |
1154 | return; | |
1155 | } | |
1156 | ||
1157 | // | |
1158 | // make a copy of this so we can free things without | |
1159 | // holding the fs_event_buf lock | |
1160 | // | |
1161 | copy = *kfse; | |
1162 | if (kfse->dest && OSAddAtomic(-1, (SInt32 *)&kfse->dest->refcount) == 1) { | |
1163 | dest_copy = *kfse->dest; | |
1164 | } else { | |
1165 | dest_copy.str = NULL; | |
1166 | dest_copy.len = 0; | |
1167 | dest_copy.type = FSE_INVALID; | |
1168 | } | |
1169 | ||
1170 | kfse->pid = kfse->type; // save this off for debugging... | |
1171 | kfse->uid = (uid_t)kfse->str; // save this off for debugging... | |
1172 | kfse->gid = (gid_t)current_thread(); | |
1173 | ||
1174 | kfse->str = (char *)0xdeadbeef; // XXXdbg - catch any cheaters... | |
1175 | ||
1176 | if (dest_copy.type != FSE_INVALID) { | |
1177 | kfse->dest->str = (char *)0xbadc0de; // XXXdbg - catch any cheaters... | |
1178 | kfse->dest->type = FSE_INVALID; | |
1179 | ||
1180 | if (kfse->dest->kevent_list.le_prev != NULL) { | |
1181 | num_events_outstanding--; | |
1182 | LIST_REMOVE(kfse->dest, kevent_list); | |
1183 | memset(&kfse->dest->kevent_list, 0xa5, sizeof(kfse->dest->kevent_list)); | |
1184 | } | |
1185 | ||
1186 | zfree(event_zone, kfse->dest); | |
1187 | } | |
1188 | ||
1189 | // mark this fsevent as invalid | |
1190 | { | |
1191 | int otype; | |
1192 | ||
1193 | otype = kfse->type; | |
1194 | kfse->type = FSE_INVALID; | |
1195 | ||
1196 | if (kfse->kevent_list.le_prev != NULL) { | |
1197 | num_events_outstanding--; | |
1198 | if (otype == FSE_RENAME) { | |
1199 | num_pending_rename--; | |
1200 | } | |
1201 | LIST_REMOVE(kfse, kevent_list); | |
1202 | memset(&kfse->kevent_list, 0, sizeof(kfse->kevent_list)); | |
1203 | } | |
1204 | } | |
1205 | ||
1206 | zfree(event_zone, kfse); | |
1207 | ||
1208 | unlock_fs_event_list(); | |
1209 | ||
1210 | // if we have a pointer in the union | |
1211 | if (copy.str) { | |
1212 | if (copy.len == 0) { // and it's not a string | |
1213 | panic("%s:%d: no more fref.vp!\n", __FILE__, __LINE__); | |
1214 | // vnode_rele_ext(copy.fref.vp, O_EVTONLY, 0); | |
1215 | } else { // else it's a string | |
1216 | vfs_removename(copy.str); | |
1217 | } | |
1218 | } | |
1219 | ||
1220 | if (dest_copy.type != FSE_INVALID && dest_copy.str) { | |
1221 | if (dest_copy.len == 0) { | |
1222 | panic("%s:%d: no more fref.vp!\n", __FILE__, __LINE__); | |
1223 | // vnode_rele_ext(dest_copy.fref.vp, O_EVTONLY, 0); | |
1224 | } else { | |
1225 | vfs_removename(dest_copy.str); | |
1226 | } | |
1227 | } | |
1228 | } | |
1229 | ||
1230 | ||
1231 | static int | |
1232 | add_watcher(int8_t *event_list, int32_t num_events, int32_t eventq_size, fs_event_watcher **watcher_out) | |
1233 | { | |
1234 | int i; | |
1235 | fs_event_watcher *watcher; | |
1236 | ||
1237 | if (eventq_size <= 0 || eventq_size > 100*MAX_KFS_EVENTS) { | |
1238 | eventq_size = MAX_KFS_EVENTS; | |
1239 | } | |
1240 | ||
1241 | // Note: the event_queue follows the fs_event_watcher struct | |
1242 | // in memory so we only have to do one allocation | |
1243 | MALLOC(watcher, | |
1244 | fs_event_watcher *, | |
1245 | sizeof(fs_event_watcher) + eventq_size * sizeof(kfs_event *), | |
1246 | M_TEMP, M_WAITOK); | |
1247 | if (watcher == NULL) { | |
1248 | return ENOMEM; | |
1249 | } | |
1250 | ||
1251 | watcher->event_list = event_list; | |
1252 | watcher->num_events = num_events; | |
1253 | watcher->devices_to_watch = NULL; | |
1254 | watcher->num_devices = 0; | |
1255 | watcher->flags = 0; | |
1256 | watcher->event_queue = (kfs_event **)&watcher[1]; | |
1257 | watcher->eventq_size = eventq_size; | |
1258 | watcher->rd = 0; | |
1259 | watcher->wr = 0; | |
1260 | watcher->blockers = 0; | |
1261 | watcher->num_readers = 0; | |
1262 | watcher->fseh = NULL; | |
1263 | ||
1264 | watcher->num_dropped = 0; // XXXdbg - debugging | |
1265 | ||
1266 | lock_watch_table(); | |
1267 | ||
1268 | // now update the global list of who's interested in | |
1269 | // events of a particular type... | |
1270 | for(i=0; i < num_events; i++) { | |
1271 | if (event_list[i] != FSE_IGNORE && i < FSE_MAX_EVENTS) { | |
1272 | fs_event_type_watchers[i]++; | |
1273 | } | |
1274 | } | |
1275 | ||
1276 | for(i=0; i < MAX_WATCHERS; i++) { | |
1277 | if (watcher_table[i] == NULL) { | |
1278 | watcher->my_id = i; | |
1279 | watcher_table[i] = watcher; | |
1280 | break; | |
1281 | } | |
1282 | } | |
1283 | ||
1284 | if (i > MAX_WATCHERS) { | |
1285 | printf("fsevents: too many watchers!\n"); | |
1286 | unlock_watch_table(); | |
1287 | return ENOSPC; | |
1288 | } | |
1289 | ||
1290 | unlock_watch_table(); | |
1291 | ||
1292 | *watcher_out = watcher; | |
1293 | ||
1294 | return 0; | |
1295 | } | |
1296 | ||
1297 | ||
1298 | ||
1299 | static void | |
1300 | remove_watcher(fs_event_watcher *target) | |
1301 | { | |
1302 | int i, j, counter=0; | |
1303 | fs_event_watcher *watcher; | |
1304 | kfs_event *kfse; | |
1305 | ||
1306 | lock_watch_table(); | |
1307 | ||
1308 | for(j=0; j < MAX_WATCHERS; j++) { | |
1309 | watcher = watcher_table[j]; | |
1310 | if (watcher != target) { | |
1311 | continue; | |
1312 | } | |
1313 | ||
1314 | watcher_table[j] = NULL; | |
1315 | ||
1316 | for(i=0; i < watcher->num_events; i++) { | |
1317 | if (watcher->event_list[i] != FSE_IGNORE && i < FSE_MAX_EVENTS) { | |
1318 | fs_event_type_watchers[i]--; | |
1319 | } | |
1320 | } | |
1321 | ||
1322 | if (watcher->flags & WATCHER_CLOSING) { | |
1323 | unlock_watch_table(); | |
1324 | return; | |
1325 | } | |
1326 | ||
1327 | // printf("fsevents: removing watcher %p (rd %d wr %d num_readers %d flags 0x%x)\n", watcher, watcher->rd, watcher->wr, watcher->num_readers, watcher->flags); | |
1328 | watcher->flags |= WATCHER_CLOSING; | |
1329 | OSAddAtomic(1, (SInt32 *)&watcher->num_readers); | |
1330 | ||
1331 | unlock_watch_table(); | |
1332 | ||
1333 | while (watcher->num_readers > 1 && counter++ < 5000) { | |
1334 | fsevents_wakeup(watcher); // in case they're asleep | |
1335 | ||
1336 | tsleep(watcher, PRIBIO, "fsevents-close", 1); | |
1337 | } | |
1338 | if (counter++ >= 5000) { | |
1339 | // printf("fsevents: close: still have readers! (%d)\n", watcher->num_readers); | |
1340 | panic("fsevents: close: still have readers! (%d)\n", watcher->num_readers); | |
1341 | } | |
1342 | ||
1343 | // drain the event_queue | |
1344 | while(watcher->rd != watcher->wr) { | |
1345 | lck_rw_lock_shared(&event_handling_lock); | |
1346 | ||
1347 | kfse = watcher->event_queue[watcher->rd]; | |
1348 | if (kfse->type == FSE_INVALID || kfse->refcount < 1) { | |
1349 | panic("remove_watcher: bogus kfse %p during cleanup (type %d refcount %d rd %d wr %d)\n", kfse, kfse->type, kfse->refcount, watcher->rd, watcher->wr); | |
1350 | } | |
1351 | ||
1352 | lck_rw_unlock_shared(&event_handling_lock); | |
1353 | ||
1354 | watcher->rd = (watcher->rd+1) % watcher->eventq_size; | |
1355 | ||
1356 | if (kfse != NULL) { | |
1357 | release_event_ref(kfse); | |
1358 | } | |
1359 | } | |
1360 | ||
1361 | if (watcher->event_list) { | |
1362 | FREE(watcher->event_list, M_TEMP); | |
1363 | watcher->event_list = NULL; | |
1364 | } | |
1365 | if (watcher->devices_to_watch) { | |
1366 | FREE(watcher->devices_to_watch, M_TEMP); | |
1367 | watcher->devices_to_watch = NULL; | |
1368 | } | |
1369 | FREE(watcher, M_TEMP); | |
1370 | ||
1371 | return; | |
1372 | } | |
1373 | ||
1374 | unlock_watch_table(); | |
1375 | } | |
1376 | ||
1377 | ||
1378 | #define EVENT_DELAY_IN_MS 10 | |
1379 | static thread_call_t event_delivery_timer = NULL; | |
1380 | static int timer_set = 0; | |
1381 | ||
1382 | ||
1383 | static void | |
1384 | delayed_event_delivery(__unused void *param0, __unused void *param1) | |
1385 | { | |
1386 | int i; | |
1387 | ||
1388 | lock_watch_table(); | |
1389 | ||
1390 | for(i=0; i < MAX_WATCHERS; i++) { | |
1391 | if (watcher_table[i] != NULL && watcher_table[i]->rd != watcher_table[i]->wr) { | |
1392 | fsevents_wakeup(watcher_table[i]); | |
1393 | } | |
1394 | } | |
1395 | ||
1396 | timer_set = 0; | |
1397 | ||
1398 | unlock_watch_table(); | |
1399 | } | |
1400 | ||
1401 | ||
1402 | // | |
1403 | // The watch table must be locked before calling this function. | |
1404 | // | |
1405 | static void | |
1406 | schedule_event_wakeup(void) | |
1407 | { | |
1408 | uint64_t deadline; | |
1409 | ||
1410 | if (event_delivery_timer == NULL) { | |
1411 | event_delivery_timer = thread_call_allocate((thread_call_func_t)delayed_event_delivery, NULL); | |
1412 | } | |
1413 | ||
1414 | clock_interval_to_deadline(EVENT_DELAY_IN_MS, 1000 * 1000, &deadline); | |
1415 | ||
1416 | thread_call_enter_delayed(event_delivery_timer, deadline); | |
1417 | timer_set = 1; | |
1418 | } | |
1419 | ||
1420 | ||
1421 | ||
1422 | #define MAX_NUM_PENDING 16 | |
1423 | ||
1424 | // | |
1425 | // NOTE: the watch table must be locked before calling | |
1426 | // this routine. | |
1427 | // | |
1428 | static int | |
1429 | watcher_add_event(fs_event_watcher *watcher, kfs_event *kfse) | |
1430 | { | |
1431 | if (((watcher->wr + 1) % watcher->eventq_size) == watcher->rd) { | |
1432 | watcher->flags |= WATCHER_DROPPED_EVENTS; | |
1433 | fsevents_wakeup(watcher); | |
1434 | return ENOSPC; | |
1435 | } | |
1436 | ||
1437 | OSAddAtomic(1, (SInt32 *)&kfse->refcount); | |
1438 | watcher->event_queue[watcher->wr] = kfse; | |
1439 | OSSynchronizeIO(); | |
1440 | watcher->wr = (watcher->wr + 1) % watcher->eventq_size; | |
1441 | ||
1442 | // | |
1443 | // wake up the watcher if there are more than MAX_NUM_PENDING events. | |
1444 | // otherwise schedule a timer (if one isn't already set) which will | |
1445 | // send any pending events if no more are received in the next | |
1446 | // EVENT_DELAY_IN_MS milli-seconds. | |
1447 | // | |
1448 | if ( (watcher->rd < watcher->wr && (watcher->wr - watcher->rd) > MAX_NUM_PENDING) | |
1449 | || (watcher->rd > watcher->wr && (watcher->wr + watcher->eventq_size - watcher->rd) > MAX_NUM_PENDING)) { | |
1450 | ||
1451 | fsevents_wakeup(watcher); | |
1452 | ||
1453 | } else if (timer_set == 0) { | |
1454 | ||
1455 | schedule_event_wakeup(); | |
1456 | } | |
1457 | ||
1458 | return 0; | |
1459 | } | |
1460 | ||
1461 | ||
1462 | // check if the next chunk of data will fit in the user's | |
1463 | // buffer. if not, just goto get_out which will return | |
1464 | // the number of bytes worth of events that we did read. | |
1465 | // this leaves the event that didn't fit in the queue. | |
1466 | // | |
1467 | // LP64todo - fix this | |
1468 | #define CHECK_UPTR(size) if (size > (unsigned)uio_resid(uio)) { \ | |
1469 | uio_setresid(uio, last_full_event_resid); \ | |
1470 | goto get_out; \ | |
1471 | } | |
1472 | ||
1473 | static int | |
1474 | fill_buff(uint16_t type, int32_t size, const void *data, | |
1475 | char *buff, int32_t *_buff_idx, int32_t buff_sz, | |
1476 | struct uio *uio) | |
1477 | { | |
1478 | int32_t amt, error = 0, buff_idx = *_buff_idx; | |
1479 | uint16_t tmp; | |
1480 | ||
1481 | // | |
1482 | // the +1 on the size is to guarantee that the main data | |
1483 | // copy loop will always copy at least 1 byte | |
1484 | // | |
1485 | if ((buff_sz - buff_idx) <= (int)(2*sizeof(uint16_t) + 1)) { | |
1486 | if (buff_idx > uio_resid(uio)) { | |
1487 | error = ENOSPC; | |
1488 | goto get_out; | |
1489 | } | |
1490 | ||
1491 | error = uiomove(buff, buff_idx, uio); | |
1492 | if (error) { | |
1493 | goto get_out; | |
1494 | } | |
1495 | buff_idx = 0; | |
1496 | } | |
1497 | ||
1498 | // copy out the header (type & size) | |
1499 | memcpy(&buff[buff_idx], &type, sizeof(uint16_t)); | |
1500 | buff_idx += sizeof(uint16_t); | |
1501 | ||
1502 | tmp = size & 0xffff; | |
1503 | memcpy(&buff[buff_idx], &tmp, sizeof(uint16_t)); | |
1504 | buff_idx += sizeof(uint16_t); | |
1505 | ||
1506 | // now copy the body of the data, flushing along the way | |
1507 | // if the buffer fills up. | |
1508 | // | |
1509 | while(size > 0) { | |
1510 | amt = (size < (buff_sz - buff_idx)) ? size : (buff_sz - buff_idx); | |
1511 | memcpy(&buff[buff_idx], data, amt); | |
1512 | ||
1513 | size -= amt; | |
1514 | buff_idx += amt; | |
1515 | data = (const char *)data + amt; | |
1516 | if (size > (buff_sz - buff_idx)) { | |
1517 | if (buff_idx > uio_resid(uio)) { | |
1518 | error = ENOSPC; | |
1519 | goto get_out; | |
1520 | } | |
1521 | error = uiomove(buff, buff_idx, uio); | |
1522 | if (error) { | |
1523 | goto get_out; | |
1524 | } | |
1525 | buff_idx = 0; | |
1526 | } | |
1527 | ||
1528 | if (amt == 0) { // just in case... | |
1529 | break; | |
1530 | } | |
1531 | } | |
1532 | ||
1533 | get_out: | |
1534 | *_buff_idx = buff_idx; | |
1535 | ||
1536 | return error; | |
1537 | } | |
1538 | ||
1539 | ||
1540 | static int copy_out_kfse(fs_event_watcher *watcher, kfs_event *kfse, struct uio *uio) __attribute__((noinline)); | |
1541 | ||
1542 | static int | |
1543 | copy_out_kfse(fs_event_watcher *watcher, kfs_event *kfse, struct uio *uio) | |
1544 | { | |
1545 | int error; | |
1546 | uint16_t tmp16; | |
1547 | int32_t type; | |
1548 | kfs_event *cur; | |
1549 | char evbuff[512]; | |
1550 | int evbuff_idx = 0; | |
1551 | ||
1552 | if (kfse->type == FSE_INVALID) { | |
1553 | panic("fsevents: copy_out_kfse: asked to copy out an invalid event (kfse %p, refcount %d fref ptr %p)\n", kfse, kfse->refcount, kfse->str); | |
1554 | } | |
1555 | ||
1556 | if (kfse->flags & KFSE_BEING_CREATED) { | |
1557 | return 0; | |
1558 | } | |
1559 | ||
1560 | if (kfse->type == FSE_RENAME && kfse->dest == NULL) { | |
1561 | // | |
1562 | // This can happen if an event gets recycled but we had a | |
1563 | // pointer to it in our event queue. The event is the | |
1564 | // destination of a rename which we'll process separately | |
1565 | // (that is, another kfse points to this one so it's ok | |
1566 | // to skip this guy because we'll process it when we process | |
1567 | // the other one) | |
1568 | error = 0; | |
1569 | goto get_out; | |
1570 | } | |
1571 | ||
1572 | if (watcher->flags & WATCHER_WANTS_EXTENDED_INFO) { | |
1573 | ||
1574 | type = (kfse->type & 0xfff); | |
1575 | ||
1576 | if (kfse->flags & KFSE_CONTAINS_DROPPED_EVENTS) { | |
1577 | type |= (FSE_CONTAINS_DROPPED_EVENTS << FSE_FLAG_SHIFT); | |
1578 | } else if (kfse->flags & KFSE_COMBINED_EVENTS) { | |
1579 | type |= (FSE_COMBINED_EVENTS << FSE_FLAG_SHIFT); | |
1580 | } | |
1581 | ||
1582 | } else { | |
1583 | type = (int32_t)kfse->type; | |
1584 | } | |
1585 | ||
1586 | // copy out the type of the event | |
1587 | memcpy(evbuff, &type, sizeof(int32_t)); | |
1588 | evbuff_idx += sizeof(int32_t); | |
1589 | ||
1590 | // copy out the pid of the person that generated the event | |
1591 | memcpy(&evbuff[evbuff_idx], &kfse->pid, sizeof(pid_t)); | |
1592 | evbuff_idx += sizeof(pid_t); | |
1593 | ||
1594 | cur = kfse; | |
1595 | ||
1596 | copy_again: | |
1597 | ||
1598 | if (cur->str == NULL || cur->str[0] == '\0') { | |
1599 | printf("copy_out_kfse:2: empty/short path (%s)\n", cur->str); | |
1600 | error = fill_buff(FSE_ARG_STRING, 2, "/", evbuff, &evbuff_idx, sizeof(evbuff), uio); | |
1601 | } else { | |
1602 | error = fill_buff(FSE_ARG_STRING, cur->len, cur->str, evbuff, &evbuff_idx, sizeof(evbuff), uio); | |
1603 | } | |
1604 | if (error != 0) { | |
1605 | goto get_out; | |
1606 | } | |
1607 | ||
1608 | if (cur->dev == 0 && cur->ino == 0) { | |
1609 | // this happens when a rename event happens and the | |
1610 | // destination of the rename did not previously exist. | |
1611 | // it thus has no other file info so skip copying out | |
1612 | // the stuff below since it isn't initialized | |
1613 | goto done; | |
1614 | } | |
1615 | ||
1616 | ||
1617 | if (watcher->flags & WATCHER_WANTS_COMPACT_EVENTS) { | |
1618 | int32_t finfo_size; | |
1619 | ||
1620 | finfo_size = sizeof(dev_t) + sizeof(ino64_t) + sizeof(int32_t) + sizeof(uid_t) + sizeof(gid_t); | |
1621 | error = fill_buff(FSE_ARG_FINFO, finfo_size, &cur->ino, evbuff, &evbuff_idx, sizeof(evbuff), uio); | |
1622 | if (error != 0) { | |
1623 | goto get_out; | |
1624 | } | |
1625 | } else { | |
1626 | ino_t ino; | |
1627 | ||
1628 | error = fill_buff(FSE_ARG_DEV, sizeof(dev_t), &cur->dev, evbuff, &evbuff_idx, sizeof(evbuff), uio); | |
1629 | if (error != 0) { | |
1630 | goto get_out; | |
1631 | } | |
1632 | ||
1633 | ino = (ino_t)cur->ino; | |
1634 | error = fill_buff(FSE_ARG_INO, sizeof(ino_t), &ino, evbuff, &evbuff_idx, sizeof(evbuff), uio); | |
1635 | if (error != 0) { | |
1636 | goto get_out; | |
1637 | } | |
1638 | ||
1639 | error = fill_buff(FSE_ARG_MODE, sizeof(int32_t), &cur->mode, evbuff, &evbuff_idx, sizeof(evbuff), uio); | |
1640 | if (error != 0) { | |
1641 | goto get_out; | |
1642 | } | |
1643 | ||
1644 | error = fill_buff(FSE_ARG_UID, sizeof(uid_t), &cur->uid, evbuff, &evbuff_idx, sizeof(evbuff), uio); | |
1645 | if (error != 0) { | |
1646 | goto get_out; | |
1647 | } | |
1648 | ||
1649 | error = fill_buff(FSE_ARG_GID, sizeof(gid_t), &cur->gid, evbuff, &evbuff_idx, sizeof(evbuff), uio); | |
1650 | if (error != 0) { | |
1651 | goto get_out; | |
1652 | } | |
1653 | } | |
1654 | ||
1655 | ||
1656 | if (cur->dest) { | |
1657 | cur = cur->dest; | |
1658 | goto copy_again; | |
1659 | } | |
1660 | ||
1661 | done: | |
1662 | // very last thing: the time stamp | |
1663 | error = fill_buff(FSE_ARG_INT64, sizeof(uint64_t), &cur->abstime, evbuff, &evbuff_idx, sizeof(evbuff), uio); | |
1664 | if (error != 0) { | |
1665 | goto get_out; | |
1666 | } | |
1667 | ||
1668 | // check if the FSE_ARG_DONE will fit | |
1669 | if (sizeof(uint16_t) > sizeof(evbuff) - evbuff_idx) { | |
1670 | if (evbuff_idx > uio_resid(uio)) { | |
1671 | error = ENOSPC; | |
1672 | goto get_out; | |
1673 | } | |
1674 | error = uiomove(evbuff, evbuff_idx, uio); | |
1675 | if (error) { | |
1676 | goto get_out; | |
1677 | } | |
1678 | evbuff_idx = 0; | |
1679 | } | |
1680 | ||
1681 | tmp16 = FSE_ARG_DONE; | |
1682 | memcpy(&evbuff[evbuff_idx], &tmp16, sizeof(uint16_t)); | |
1683 | evbuff_idx += sizeof(uint16_t); | |
1684 | ||
1685 | // flush any remaining data in the buffer (and hopefully | |
1686 | // in most cases this is the only uiomove we'll do) | |
1687 | if (evbuff_idx > uio_resid(uio)) { | |
1688 | error = ENOSPC; | |
1689 | } else { | |
1690 | error = uiomove(evbuff, evbuff_idx, uio); | |
1691 | } | |
1692 | ||
1693 | get_out: | |
1694 | ||
1695 | return error; | |
1696 | } | |
1697 | ||
1698 | ||
1699 | ||
1700 | static int | |
1701 | fmod_watch(fs_event_watcher *watcher, struct uio *uio) | |
1702 | { | |
1703 | int error=0, last_full_event_resid; | |
1704 | kfs_event *kfse; | |
1705 | uint16_t tmp16; | |
1706 | ||
1707 | // LP64todo - fix this | |
1708 | last_full_event_resid = uio_resid(uio); | |
1709 | ||
1710 | // need at least 2048 bytes of space (maxpathlen + 1 event buf) | |
1711 | if (uio_resid(uio) < 2048 || watcher == NULL) { | |
1712 | return EINVAL; | |
1713 | } | |
1714 | ||
1715 | if (watcher->flags & WATCHER_CLOSING) { | |
1716 | return 0; | |
1717 | } | |
1718 | ||
1719 | if (OSAddAtomic(1, (SInt32 *)&watcher->num_readers) != 0) { | |
1720 | // don't allow multiple threads to read from the fd at the same time | |
1721 | OSAddAtomic(-1, (SInt32 *)&watcher->num_readers); | |
1722 | return EAGAIN; | |
1723 | } | |
1724 | ||
1725 | if (watcher->rd == watcher->wr) { | |
1726 | if (watcher->flags & WATCHER_CLOSING) { | |
1727 | OSAddAtomic(-1, (SInt32 *)&watcher->num_readers); | |
1728 | return 0; | |
1729 | } | |
1730 | OSAddAtomic(1, (SInt32 *)&watcher->blockers); | |
1731 | ||
1732 | // there's nothing to do, go to sleep | |
1733 | error = tsleep((caddr_t)watcher, PUSER|PCATCH, "fsevents_empty", 0); | |
1734 | ||
1735 | OSAddAtomic(-1, (SInt32 *)&watcher->blockers); | |
1736 | ||
1737 | if (error != 0 || (watcher->flags & WATCHER_CLOSING)) { | |
1738 | OSAddAtomic(-1, (SInt32 *)&watcher->num_readers); | |
1739 | return error; | |
1740 | } | |
1741 | } | |
1742 | ||
1743 | // if we dropped events, return that as an event first | |
1744 | if (watcher->flags & WATCHER_DROPPED_EVENTS) { | |
1745 | int32_t val = FSE_EVENTS_DROPPED; | |
1746 | ||
1747 | error = uiomove((caddr_t)&val, sizeof(int32_t), uio); | |
1748 | if (error == 0) { | |
1749 | val = 0; // a fake pid | |
1750 | error = uiomove((caddr_t)&val, sizeof(int32_t), uio); | |
1751 | ||
1752 | tmp16 = FSE_ARG_DONE; // makes it a consistent msg | |
1753 | error = uiomove((caddr_t)&tmp16, sizeof(int16_t), uio); | |
1754 | ||
1755 | // LP64todo - fix this | |
1756 | last_full_event_resid = uio_resid(uio); | |
1757 | } | |
1758 | ||
1759 | if (error) { | |
1760 | OSAddAtomic(-1, (SInt32 *)&watcher->num_readers); | |
1761 | return error; | |
1762 | } | |
1763 | ||
1764 | watcher->flags &= ~WATCHER_DROPPED_EVENTS; | |
1765 | } | |
1766 | ||
1767 | while (uio_resid(uio) > 0 && watcher->rd != watcher->wr) { | |
1768 | if (watcher->flags & WATCHER_CLOSING) { | |
1769 | break; | |
1770 | } | |
1771 | ||
1772 | // | |
1773 | // check if the event is something of interest to us | |
1774 | // (since it may have been recycled/reused and changed | |
1775 | // its type or which device it is for) | |
1776 | // | |
1777 | lck_rw_lock_shared(&event_handling_lock); | |
1778 | ||
1779 | kfse = watcher->event_queue[watcher->rd]; | |
1780 | if (kfse->type == FSE_INVALID || kfse->refcount < 1) { | |
1781 | panic("fmod_watch: someone left me a bogus kfse %p (type %d refcount %d rd %d wr %d)\n", kfse, kfse->type, kfse->refcount, watcher->rd, watcher->wr); | |
1782 | } | |
1783 | ||
1784 | if (watcher->event_list[kfse->type] == FSE_REPORT && watcher_cares_about_dev(watcher, kfse->dev)) { | |
1785 | ||
1786 | error = copy_out_kfse(watcher, kfse, uio); | |
1787 | if (error != 0) { | |
1788 | // if an event won't fit or encountered an error while | |
1789 | // we were copying it out, then backup to the last full | |
1790 | // event and just bail out. if the error was ENOENT | |
1791 | // then we can continue regular processing, otherwise | |
1792 | // we should unlock things and return. | |
1793 | uio_setresid(uio, last_full_event_resid); | |
1794 | if (error != ENOENT) { | |
1795 | lck_rw_unlock_shared(&event_handling_lock); | |
1796 | error = 0; | |
1797 | goto get_out; | |
1798 | } | |
1799 | } | |
1800 | ||
1801 | // LP64todo - fix this | |
1802 | last_full_event_resid = uio_resid(uio); | |
1803 | } | |
1804 | ||
1805 | lck_rw_unlock_shared(&event_handling_lock); | |
1806 | ||
1807 | watcher->rd = (watcher->rd + 1) % watcher->eventq_size; | |
1808 | OSSynchronizeIO(); | |
1809 | ||
1810 | if (kfse->type == FSE_INVALID || kfse->refcount < 1) { | |
1811 | panic("fmod_watch:2: my kfse became bogus! kfse %p (type %d refcount %d rd %d wr %d)\n", kfse, kfse->type, kfse->refcount, watcher->rd, watcher->wr); | |
1812 | } | |
1813 | ||
1814 | release_event_ref(kfse); | |
1815 | } | |
1816 | ||
1817 | get_out: | |
1818 | OSAddAtomic(-1, (SInt32 *)&watcher->num_readers); | |
1819 | ||
1820 | return error; | |
1821 | } | |
1822 | ||
1823 | ||
1824 | // release any references we might have on vnodes which are | |
1825 | // the mount point passed to us (so that it can be cleanly | |
1826 | // unmounted). | |
1827 | // | |
1828 | // since we don't want to lose the events we'll convert the | |
1829 | // vnode refs to full paths. | |
1830 | // | |
1831 | void | |
1832 | fsevent_unmount(__unused struct mount *mp) | |
1833 | { | |
1834 | // we no longer maintain pointers to vnodes so | |
1835 | // there is nothing to do... | |
1836 | } | |
1837 | ||
1838 | ||
1839 | // | |
1840 | // /dev/fsevents device code | |
1841 | // | |
1842 | static int fsevents_installed = 0; | |
1843 | ||
1844 | typedef struct fsevent_handle { | |
1845 | UInt32 flags; | |
1846 | SInt32 active; | |
1847 | fs_event_watcher *watcher; | |
1848 | struct selinfo si; | |
1849 | } fsevent_handle; | |
1850 | ||
1851 | #define FSEH_CLOSING 0x0001 | |
1852 | ||
1853 | static int | |
1854 | fseventsf_read(struct fileproc *fp, struct uio *uio, | |
1855 | __unused int flags, __unused vfs_context_t ctx) | |
1856 | { | |
1857 | fsevent_handle *fseh = (struct fsevent_handle *)fp->f_fglob->fg_data; | |
1858 | int error; | |
1859 | ||
1860 | error = fmod_watch(fseh->watcher, uio); | |
1861 | ||
1862 | return error; | |
1863 | } | |
1864 | ||
1865 | ||
1866 | static int | |
1867 | fseventsf_write(__unused struct fileproc *fp, __unused struct uio *uio, | |
1868 | __unused int flags, __unused vfs_context_t ctx) | |
1869 | { | |
1870 | return EIO; | |
1871 | } | |
1872 | ||
1873 | typedef struct ext_fsevent_dev_filter_args { | |
1874 | uint32_t num_devices; | |
1875 | user_addr_t devices; | |
1876 | } ext_fsevent_dev_filter_args; | |
1877 | ||
1878 | typedef struct old_fsevent_dev_filter_args { | |
1879 | uint32_t num_devices; | |
1880 | int32_t devices; | |
1881 | } old_fsevent_dev_filter_args; | |
1882 | ||
1883 | #define OLD_FSEVENTS_DEVICE_FILTER _IOW('s', 100, old_fsevent_dev_filter_args) | |
1884 | #define NEW_FSEVENTS_DEVICE_FILTER _IOW('s', 100, ext_fsevent_dev_filter_args) | |
1885 | ||
1886 | ||
1887 | static int | |
1888 | fseventsf_ioctl(struct fileproc *fp, u_long cmd, caddr_t data, vfs_context_t ctx) | |
1889 | { | |
1890 | fsevent_handle *fseh = (struct fsevent_handle *)fp->f_fglob->fg_data; | |
1891 | int ret = 0; | |
1892 | ext_fsevent_dev_filter_args *devfilt_args, _devfilt_args; | |
1893 | ||
1894 | if (proc_is64bit(vfs_context_proc(ctx))) { | |
1895 | devfilt_args = (ext_fsevent_dev_filter_args *)data; | |
1896 | } else if (cmd == OLD_FSEVENTS_DEVICE_FILTER) { | |
1897 | old_fsevent_dev_filter_args *udev_filt_args = (old_fsevent_dev_filter_args *)data; | |
1898 | ||
1899 | devfilt_args = &_devfilt_args; | |
1900 | memset(devfilt_args, 0, sizeof(ext_fsevent_dev_filter_args)); | |
1901 | ||
1902 | devfilt_args->num_devices = udev_filt_args->num_devices; | |
1903 | devfilt_args->devices = CAST_USER_ADDR_T(udev_filt_args->devices); | |
1904 | } else { | |
1905 | fsevent_dev_filter_args *udev_filt_args = (fsevent_dev_filter_args *)data; | |
1906 | ||
1907 | devfilt_args = &_devfilt_args; | |
1908 | memset(devfilt_args, 0, sizeof(ext_fsevent_dev_filter_args)); | |
1909 | ||
1910 | devfilt_args->num_devices = udev_filt_args->num_devices; | |
1911 | devfilt_args->devices = CAST_USER_ADDR_T(udev_filt_args->devices); | |
1912 | } | |
1913 | ||
1914 | OSAddAtomic(1, &fseh->active); | |
1915 | if (fseh->flags & FSEH_CLOSING) { | |
1916 | OSAddAtomic(-1, &fseh->active); | |
1917 | return 0; | |
1918 | } | |
1919 | ||
1920 | switch (cmd) { | |
1921 | case FIONBIO: | |
1922 | case FIOASYNC: | |
1923 | break; | |
1924 | ||
1925 | case FSEVENTS_WANT_COMPACT_EVENTS: { | |
1926 | fseh->watcher->flags |= WATCHER_WANTS_COMPACT_EVENTS; | |
1927 | break; | |
1928 | } | |
1929 | ||
1930 | case FSEVENTS_WANT_EXTENDED_INFO: { | |
1931 | fseh->watcher->flags |= WATCHER_WANTS_EXTENDED_INFO; | |
1932 | break; | |
1933 | } | |
1934 | ||
1935 | case OLD_FSEVENTS_DEVICE_FILTER: | |
1936 | case NEW_FSEVENTS_DEVICE_FILTER: { | |
1937 | int new_num_devices; | |
1938 | dev_t *devices_to_watch, *tmp=NULL; | |
1939 | ||
1940 | if (devfilt_args->num_devices > 256) { | |
1941 | ret = EINVAL; | |
1942 | break; | |
1943 | } | |
1944 | ||
1945 | new_num_devices = devfilt_args->num_devices; | |
1946 | if (new_num_devices == 0) { | |
1947 | tmp = fseh->watcher->devices_to_watch; | |
1948 | ||
1949 | lock_watch_table(); | |
1950 | fseh->watcher->devices_to_watch = NULL; | |
1951 | fseh->watcher->num_devices = new_num_devices; | |
1952 | unlock_watch_table(); | |
1953 | ||
1954 | if (tmp) { | |
1955 | FREE(tmp, M_TEMP); | |
1956 | } | |
1957 | break; | |
1958 | } | |
1959 | ||
1960 | MALLOC(devices_to_watch, dev_t *, | |
1961 | new_num_devices * sizeof(dev_t), | |
1962 | M_TEMP, M_WAITOK); | |
1963 | if (devices_to_watch == NULL) { | |
1964 | ret = ENOMEM; | |
1965 | break; | |
1966 | } | |
1967 | ||
1968 | ret = copyin(devfilt_args->devices, | |
1969 | (void *)devices_to_watch, | |
1970 | new_num_devices * sizeof(dev_t)); | |
1971 | if (ret) { | |
1972 | FREE(devices_to_watch, M_TEMP); | |
1973 | break; | |
1974 | } | |
1975 | ||
1976 | lock_watch_table(); | |
1977 | fseh->watcher->num_devices = new_num_devices; | |
1978 | tmp = fseh->watcher->devices_to_watch; | |
1979 | fseh->watcher->devices_to_watch = devices_to_watch; | |
1980 | unlock_watch_table(); | |
1981 | ||
1982 | if (tmp) { | |
1983 | FREE(tmp, M_TEMP); | |
1984 | } | |
1985 | ||
1986 | break; | |
1987 | } | |
1988 | ||
1989 | default: | |
1990 | ret = EINVAL; | |
1991 | break; | |
1992 | } | |
1993 | ||
1994 | OSAddAtomic(-1, &fseh->active); | |
1995 | return (ret); | |
1996 | } | |
1997 | ||
1998 | ||
1999 | static int | |
2000 | fseventsf_select(struct fileproc *fp, int which, __unused void *wql, vfs_context_t ctx) | |
2001 | { | |
2002 | fsevent_handle *fseh = (struct fsevent_handle *)fp->f_fglob->fg_data; | |
2003 | int ready = 0; | |
2004 | ||
2005 | if ((which != FREAD) || (fseh->watcher->flags & WATCHER_CLOSING)) { | |
2006 | return 0; | |
2007 | } | |
2008 | ||
2009 | ||
2010 | // if there's nothing in the queue, we're not ready | |
2011 | if (fseh->watcher->rd != fseh->watcher->wr) { | |
2012 | ready = 1; | |
2013 | } | |
2014 | ||
2015 | if (!ready) { | |
2016 | selrecord(vfs_context_proc(ctx), &fseh->si, wql); | |
2017 | } | |
2018 | ||
2019 | return ready; | |
2020 | } | |
2021 | ||
2022 | ||
2023 | #if NOTUSED | |
2024 | static int | |
2025 | fseventsf_stat(__unused struct fileproc *fp, __unused struct stat *sb, __unused vfs_context_t ctx) | |
2026 | { | |
2027 | return ENOTSUP; | |
2028 | } | |
2029 | #endif | |
2030 | ||
2031 | static int | |
2032 | fseventsf_close(struct fileglob *fg, __unused vfs_context_t ctx) | |
2033 | { | |
2034 | fsevent_handle *fseh = (struct fsevent_handle *)fg->fg_data; | |
2035 | fs_event_watcher *watcher; | |
2036 | ||
2037 | OSBitOrAtomic(FSEH_CLOSING, &fseh->flags); | |
2038 | while (OSAddAtomic(0, &fseh->active) > 0) { | |
2039 | tsleep((caddr_t)fseh->watcher, PRIBIO, "fsevents-close", 1); | |
2040 | } | |
2041 | ||
2042 | watcher = fseh->watcher; | |
2043 | fg->fg_data = NULL; | |
2044 | fseh->watcher = NULL; | |
2045 | ||
2046 | remove_watcher(watcher); | |
2047 | FREE(fseh, M_TEMP); | |
2048 | ||
2049 | return 0; | |
2050 | } | |
2051 | ||
2052 | static int | |
2053 | fseventsf_kqfilter(__unused struct fileproc *fp, __unused struct knote *kn, __unused vfs_context_t ctx) | |
2054 | { | |
2055 | // XXXdbg | |
2056 | return 0; | |
2057 | } | |
2058 | ||
2059 | ||
2060 | static int | |
2061 | fseventsf_drain(struct fileproc *fp, __unused vfs_context_t ctx) | |
2062 | { | |
2063 | int counter = 0; | |
2064 | fsevent_handle *fseh = (struct fsevent_handle *)fp->f_fglob->fg_data; | |
2065 | ||
2066 | fseh->watcher->flags |= WATCHER_CLOSING; | |
2067 | ||
2068 | // if there are people still waiting, sleep for 10ms to | |
2069 | // let them clean up and get out of there. however we | |
2070 | // also don't want to get stuck forever so if they don't | |
2071 | // exit after 5 seconds we're tearing things down anyway. | |
2072 | while(fseh->watcher->blockers && counter++ < 500) { | |
2073 | // issue wakeup in case anyone is blocked waiting for an event | |
2074 | // do this each time we wakeup in case the blocker missed | |
2075 | // the wakeup due to the unprotected test of WATCHER_CLOSING | |
2076 | // and decision to tsleep in fmod_watch... this bit of | |
2077 | // latency is a decent tradeoff against not having to | |
2078 | // take and drop a lock in fmod_watch | |
2079 | fsevents_wakeup(fseh->watcher); | |
2080 | ||
2081 | tsleep((caddr_t)fseh->watcher, PRIBIO, "watcher-close", 1); | |
2082 | } | |
2083 | ||
2084 | return 0; | |
2085 | } | |
2086 | ||
2087 | ||
2088 | static int | |
2089 | fseventsopen(__unused dev_t dev, __unused int flag, __unused int mode, __unused struct proc *p) | |
2090 | { | |
2091 | if (!is_suser()) { | |
2092 | return EPERM; | |
2093 | } | |
2094 | ||
2095 | return 0; | |
2096 | } | |
2097 | ||
2098 | static int | |
2099 | fseventsclose(__unused dev_t dev, __unused int flag, __unused int mode, __unused struct proc *p) | |
2100 | { | |
2101 | return 0; | |
2102 | } | |
2103 | ||
2104 | static int | |
2105 | fseventsread(__unused dev_t dev, __unused struct uio *uio, __unused int ioflag) | |
2106 | { | |
2107 | return EIO; | |
2108 | } | |
2109 | ||
2110 | ||
2111 | static int | |
2112 | parse_buffer_and_add_events(const char *buffer, int bufsize, vfs_context_t ctx, long *remainder) | |
2113 | { | |
2114 | const fse_info *finfo, *dest_finfo; | |
2115 | const char *path, *ptr, *dest_path, *event_start=buffer; | |
2116 | int path_len, type, dest_path_len, err = 0; | |
2117 | ||
2118 | ||
2119 | ptr = buffer; | |
2120 | while ((ptr+sizeof(int)+sizeof(fse_info)+1) < buffer+bufsize) { | |
2121 | type = *(const int *)ptr; | |
2122 | if (type < 0 || type >= FSE_MAX_EVENTS) { | |
2123 | err = EINVAL; | |
2124 | break; | |
2125 | } | |
2126 | ||
2127 | ptr += sizeof(int); | |
2128 | ||
2129 | finfo = (const fse_info *)ptr; | |
2130 | ptr += sizeof(fse_info); | |
2131 | ||
2132 | path = ptr; | |
2133 | while(ptr < buffer+bufsize && *ptr != '\0') { | |
2134 | ptr++; | |
2135 | } | |
2136 | ||
2137 | if (ptr >= buffer+bufsize) { | |
2138 | break; | |
2139 | } | |
2140 | ||
2141 | ptr++; // advance over the trailing '\0' | |
2142 | ||
2143 | path_len = ptr - path; | |
2144 | ||
2145 | if (type != FSE_RENAME && type != FSE_EXCHANGE) { | |
2146 | event_start = ptr; // record where the next event starts | |
2147 | ||
2148 | err = add_fsevent(type, ctx, FSE_ARG_STRING, path_len, path, FSE_ARG_FINFO, finfo, FSE_ARG_DONE); | |
2149 | if (err) { | |
2150 | break; | |
2151 | } | |
2152 | continue; | |
2153 | } | |
2154 | ||
2155 | // | |
2156 | // if we're here we have to slurp up the destination finfo | |
2157 | // and path so that we can pass them to the add_fsevent() | |
2158 | // call. basically it's a copy of the above code. | |
2159 | // | |
2160 | dest_finfo = (const fse_info *)ptr; | |
2161 | ptr += sizeof(fse_info); | |
2162 | ||
2163 | dest_path = ptr; | |
2164 | while(ptr < buffer+bufsize && *ptr != '\0') { | |
2165 | ptr++; | |
2166 | } | |
2167 | ||
2168 | if (ptr >= buffer+bufsize) { | |
2169 | break; | |
2170 | } | |
2171 | ||
2172 | ptr++; // advance over the trailing '\0' | |
2173 | event_start = ptr; // record where the next event starts | |
2174 | ||
2175 | dest_path_len = ptr - dest_path; | |
2176 | err = add_fsevent(type, ctx, | |
2177 | FSE_ARG_STRING, path_len, path, FSE_ARG_FINFO, finfo, | |
2178 | FSE_ARG_STRING, dest_path_len, dest_path, FSE_ARG_FINFO, dest_finfo, | |
2179 | FSE_ARG_DONE); | |
2180 | if (err) { | |
2181 | break; | |
2182 | } | |
2183 | ||
2184 | } | |
2185 | ||
2186 | // if the last event wasn't complete, set the remainder | |
2187 | // to be the last event start boundary. | |
2188 | // | |
2189 | *remainder = (long)((buffer+bufsize) - event_start); | |
2190 | ||
2191 | return err; | |
2192 | } | |
2193 | ||
2194 | ||
2195 | // | |
2196 | // Note: this buffer size can not ever be less than | |
2197 | // 2*MAXPATHLEN + 2*sizeof(fse_info) + sizeof(int) | |
2198 | // because that is the max size for a single event. | |
2199 | // I made it 4k to be a "nice" size. making it | |
2200 | // smaller is not a good idea. | |
2201 | // | |
2202 | #define WRITE_BUFFER_SIZE 4096 | |
2203 | char *write_buffer=NULL; | |
2204 | ||
2205 | static int | |
2206 | fseventswrite(__unused dev_t dev, struct uio *uio, __unused int ioflag) | |
2207 | { | |
2208 | int error=0, count; | |
2209 | vfs_context_t ctx = vfs_context_current(); | |
2210 | long offset=0, remainder; | |
2211 | ||
2212 | lck_mtx_lock(&event_writer_lock); | |
2213 | ||
2214 | if (write_buffer == NULL) { | |
2215 | if (kmem_alloc(kernel_map, (vm_offset_t *)&write_buffer, WRITE_BUFFER_SIZE)) { | |
2216 | lck_mtx_unlock(&event_writer_lock); | |
2217 | return ENOMEM; | |
2218 | } | |
2219 | } | |
2220 | ||
2221 | // | |
2222 | // this loop copies in and processes the events written. | |
2223 | // it takes care to copy in reasonable size chunks and | |
2224 | // process them. if there is an event that spans a chunk | |
2225 | // boundary we're careful to copy those bytes down to the | |
2226 | // beginning of the buffer and read the next chunk in just | |
2227 | // after it. | |
2228 | // | |
2229 | while(uio_resid(uio)) { | |
2230 | if (uio_resid(uio) > (WRITE_BUFFER_SIZE-offset)) { | |
2231 | count = WRITE_BUFFER_SIZE - offset; | |
2232 | } else { | |
2233 | count = uio_resid(uio); | |
2234 | } | |
2235 | ||
2236 | error = uiomove(write_buffer+offset, count, uio); | |
2237 | if (error) { | |
2238 | break; | |
2239 | } | |
2240 | ||
2241 | // printf("fsevents: write: copied in %d bytes (offset: %ld)\n", count, offset); | |
2242 | error = parse_buffer_and_add_events(write_buffer, offset+count, ctx, &remainder); | |
2243 | if (error) { | |
2244 | break; | |
2245 | } | |
2246 | ||
2247 | // | |
2248 | // if there's any remainder, copy it down to the beginning | |
2249 | // of the buffer so that it will get processed the next time | |
2250 | // through the loop. note that the remainder always starts | |
2251 | // at an event boundary. | |
2252 | // | |
2253 | if (remainder != 0) { | |
2254 | // printf("fsevents: write: an event spanned a %d byte boundary. remainder: %ld\n", | |
2255 | // WRITE_BUFFER_SIZE, remainder); | |
2256 | memmove(write_buffer, (write_buffer+count+offset) - remainder, remainder); | |
2257 | offset = remainder; | |
2258 | } else { | |
2259 | offset = 0; | |
2260 | } | |
2261 | } | |
2262 | ||
2263 | lck_mtx_unlock(&event_writer_lock); | |
2264 | ||
2265 | return error; | |
2266 | } | |
2267 | ||
2268 | ||
2269 | static struct fileops fsevents_fops = { | |
2270 | fseventsf_read, | |
2271 | fseventsf_write, | |
2272 | fseventsf_ioctl, | |
2273 | fseventsf_select, | |
2274 | fseventsf_close, | |
2275 | fseventsf_kqfilter, | |
2276 | fseventsf_drain | |
2277 | }; | |
2278 | ||
2279 | typedef struct ext_fsevent_clone_args { | |
2280 | user_addr_t event_list; | |
2281 | int32_t num_events; | |
2282 | int32_t event_queue_depth; | |
2283 | user_addr_t fd; | |
2284 | } ext_fsevent_clone_args; | |
2285 | ||
2286 | typedef struct old_fsevent_clone_args { | |
2287 | int32_t event_list; | |
2288 | int32_t num_events; | |
2289 | int32_t event_queue_depth; | |
2290 | int32_t fd; | |
2291 | } old_fsevent_clone_args; | |
2292 | ||
2293 | #define OLD_FSEVENTS_CLONE _IOW('s', 1, old_fsevent_clone_args) | |
2294 | ||
2295 | static int | |
2296 | fseventsioctl(__unused dev_t dev, u_long cmd, caddr_t data, __unused int flag, struct proc *p) | |
2297 | { | |
2298 | struct fileproc *f; | |
2299 | int fd, error; | |
2300 | fsevent_handle *fseh = NULL; | |
2301 | ext_fsevent_clone_args *fse_clone_args, _fse_clone; | |
2302 | int8_t *event_list; | |
2303 | int is64bit = proc_is64bit(p); | |
2304 | ||
2305 | switch (cmd) { | |
2306 | case OLD_FSEVENTS_CLONE: { | |
2307 | old_fsevent_clone_args *old_args = (old_fsevent_clone_args *)data; | |
2308 | ||
2309 | fse_clone_args = &_fse_clone; | |
2310 | memset(fse_clone_args, 0, sizeof(ext_fsevent_clone_args)); | |
2311 | ||
2312 | fse_clone_args->event_list = CAST_USER_ADDR_T(old_args->event_list); | |
2313 | fse_clone_args->num_events = old_args->num_events; | |
2314 | fse_clone_args->event_queue_depth = old_args->event_queue_depth; | |
2315 | fse_clone_args->fd = CAST_USER_ADDR_T(old_args->fd); | |
2316 | goto handle_clone; | |
2317 | } | |
2318 | ||
2319 | case FSEVENTS_CLONE: | |
2320 | if (is64bit) { | |
2321 | fse_clone_args = (ext_fsevent_clone_args *)data; | |
2322 | } else { | |
2323 | fsevent_clone_args *ufse_clone = (fsevent_clone_args *)data; | |
2324 | ||
2325 | fse_clone_args = &_fse_clone; | |
2326 | memset(fse_clone_args, 0, sizeof(ext_fsevent_clone_args)); | |
2327 | ||
2328 | fse_clone_args->event_list = CAST_USER_ADDR_T(ufse_clone->event_list); | |
2329 | fse_clone_args->num_events = ufse_clone->num_events; | |
2330 | fse_clone_args->event_queue_depth = ufse_clone->event_queue_depth; | |
2331 | fse_clone_args->fd = CAST_USER_ADDR_T(ufse_clone->fd); | |
2332 | } | |
2333 | ||
2334 | handle_clone: | |
2335 | if (fse_clone_args->num_events < 0 || fse_clone_args->num_events > 4096) { | |
2336 | return EINVAL; | |
2337 | } | |
2338 | ||
2339 | MALLOC(fseh, fsevent_handle *, sizeof(fsevent_handle), | |
2340 | M_TEMP, M_WAITOK); | |
2341 | if (fseh == NULL) { | |
2342 | return ENOMEM; | |
2343 | } | |
2344 | memset(fseh, 0, sizeof(fsevent_handle)); | |
2345 | ||
2346 | MALLOC(event_list, int8_t *, | |
2347 | fse_clone_args->num_events * sizeof(int8_t), | |
2348 | M_TEMP, M_WAITOK); | |
2349 | if (event_list == NULL) { | |
2350 | FREE(fseh, M_TEMP); | |
2351 | return ENOMEM; | |
2352 | } | |
2353 | ||
2354 | error = copyin(fse_clone_args->event_list, | |
2355 | (void *)event_list, | |
2356 | fse_clone_args->num_events * sizeof(int8_t)); | |
2357 | if (error) { | |
2358 | FREE(event_list, M_TEMP); | |
2359 | FREE(fseh, M_TEMP); | |
2360 | return error; | |
2361 | } | |
2362 | ||
2363 | error = add_watcher(event_list, | |
2364 | fse_clone_args->num_events, | |
2365 | fse_clone_args->event_queue_depth, | |
2366 | &fseh->watcher); | |
2367 | if (error) { | |
2368 | FREE(event_list, M_TEMP); | |
2369 | FREE(fseh, M_TEMP); | |
2370 | return error; | |
2371 | } | |
2372 | ||
2373 | // connect up the watcher with this fsevent_handle | |
2374 | fseh->watcher->fseh = fseh; | |
2375 | ||
2376 | error = falloc(p, &f, &fd, vfs_context_current()); | |
2377 | if (error) { | |
2378 | FREE(event_list, M_TEMP); | |
2379 | FREE(fseh, M_TEMP); | |
2380 | return (error); | |
2381 | } | |
2382 | proc_fdlock(p); | |
2383 | f->f_fglob->fg_flag = FREAD | FWRITE; | |
2384 | f->f_fglob->fg_type = DTYPE_FSEVENTS; | |
2385 | f->f_fglob->fg_ops = &fsevents_fops; | |
2386 | f->f_fglob->fg_data = (caddr_t) fseh; | |
2387 | proc_fdunlock(p); | |
2388 | error = copyout((void *)&fd, fse_clone_args->fd, sizeof(int32_t)); | |
2389 | if (error != 0) { | |
2390 | fp_free(p, fd, f); | |
2391 | } else { | |
2392 | proc_fdlock(p); | |
2393 | procfdtbl_releasefd(p, fd, NULL); | |
2394 | fp_drop(p, fd, f, 1); | |
2395 | proc_fdunlock(p); | |
2396 | } | |
2397 | break; | |
2398 | ||
2399 | default: | |
2400 | error = EINVAL; | |
2401 | break; | |
2402 | } | |
2403 | ||
2404 | return error; | |
2405 | } | |
2406 | ||
2407 | static void | |
2408 | fsevents_wakeup(fs_event_watcher *watcher) | |
2409 | { | |
2410 | wakeup((caddr_t)watcher); | |
2411 | selwakeup(&watcher->fseh->si); | |
2412 | } | |
2413 | ||
2414 | ||
2415 | /* | |
2416 | * A struct describing which functions will get invoked for certain | |
2417 | * actions. | |
2418 | */ | |
2419 | static struct cdevsw fsevents_cdevsw = | |
2420 | { | |
2421 | fseventsopen, /* open */ | |
2422 | fseventsclose, /* close */ | |
2423 | fseventsread, /* read */ | |
2424 | fseventswrite, /* write */ | |
2425 | fseventsioctl, /* ioctl */ | |
2426 | (stop_fcn_t *)&nulldev, /* stop */ | |
2427 | (reset_fcn_t *)&nulldev, /* reset */ | |
2428 | NULL, /* tty's */ | |
2429 | eno_select, /* select */ | |
2430 | eno_mmap, /* mmap */ | |
2431 | eno_strat, /* strategy */ | |
2432 | eno_getc, /* getc */ | |
2433 | eno_putc, /* putc */ | |
2434 | 0 /* type */ | |
2435 | }; | |
2436 | ||
2437 | ||
2438 | /* | |
2439 | * Called to initialize our device, | |
2440 | * and to register ourselves with devfs | |
2441 | */ | |
2442 | ||
2443 | void | |
2444 | fsevents_init(void) | |
2445 | { | |
2446 | int ret; | |
2447 | ||
2448 | if (fsevents_installed) { | |
2449 | return; | |
2450 | } | |
2451 | ||
2452 | fsevents_installed = 1; | |
2453 | ||
2454 | ret = cdevsw_add(-1, &fsevents_cdevsw); | |
2455 | if (ret < 0) { | |
2456 | fsevents_installed = 0; | |
2457 | return; | |
2458 | } | |
2459 | ||
2460 | devfs_make_node(makedev (ret, 0), DEVFS_CHAR, | |
2461 | UID_ROOT, GID_WHEEL, 0644, "fsevents", 0); | |
2462 | ||
2463 | fsevents_internal_init(); | |
2464 | } | |
2465 | ||
2466 | ||
2467 | ||
2468 | // | |
2469 | // XXXdbg - temporary path buffer handling | |
2470 | // | |
2471 | #define NUM_PATH_BUFFS 16 | |
2472 | static char path_buff[NUM_PATH_BUFFS][MAXPATHLEN]; | |
2473 | static char path_buff_inuse[NUM_PATH_BUFFS]; | |
2474 | ||
2475 | static lck_grp_attr_t * pathbuff_group_attr; | |
2476 | static lck_attr_t * pathbuff_lock_attr; | |
2477 | static lck_grp_t * pathbuff_mutex_group; | |
2478 | static lck_mtx_t pathbuff_lock; | |
2479 | ||
2480 | static void | |
2481 | init_pathbuff(void) | |
2482 | { | |
2483 | pathbuff_lock_attr = lck_attr_alloc_init(); | |
2484 | pathbuff_group_attr = lck_grp_attr_alloc_init(); | |
2485 | pathbuff_mutex_group = lck_grp_alloc_init("pathbuff-mutex", pathbuff_group_attr); | |
2486 | ||
2487 | lck_mtx_init(&pathbuff_lock, pathbuff_mutex_group, pathbuff_lock_attr); | |
2488 | } | |
2489 | ||
2490 | static void | |
2491 | lock_pathbuff(void) | |
2492 | { | |
2493 | lck_mtx_lock(&pathbuff_lock); | |
2494 | } | |
2495 | ||
2496 | static void | |
2497 | unlock_pathbuff(void) | |
2498 | { | |
2499 | lck_mtx_unlock(&pathbuff_lock); | |
2500 | } | |
2501 | ||
2502 | ||
2503 | char * | |
2504 | get_pathbuff(void) | |
2505 | { | |
2506 | int i; | |
2507 | ||
2508 | lock_pathbuff(); | |
2509 | for(i=0; i < NUM_PATH_BUFFS; i++) { | |
2510 | if (path_buff_inuse[i] == 0) { | |
2511 | break; | |
2512 | } | |
2513 | } | |
2514 | ||
2515 | if (i >= NUM_PATH_BUFFS) { | |
2516 | char *path; | |
2517 | ||
2518 | unlock_pathbuff(); | |
2519 | MALLOC_ZONE(path, char *, MAXPATHLEN, M_NAMEI, M_WAITOK); | |
2520 | return path; | |
2521 | } | |
2522 | ||
2523 | path_buff_inuse[i] = 1; | |
2524 | unlock_pathbuff(); | |
2525 | return &path_buff[i][0]; | |
2526 | } | |
2527 | ||
2528 | void | |
2529 | release_pathbuff(char *path) | |
2530 | { | |
2531 | int i; | |
2532 | ||
2533 | if (path == NULL) { | |
2534 | return; | |
2535 | } | |
2536 | ||
2537 | lock_pathbuff(); | |
2538 | for(i=0; i < NUM_PATH_BUFFS; i++) { | |
2539 | if (path == &path_buff[i][0]) { | |
2540 | path_buff[i][0] = '\0'; | |
2541 | path_buff_inuse[i] = 0; | |
2542 | unlock_pathbuff(); | |
2543 | return; | |
2544 | } | |
2545 | } | |
2546 | ||
2547 | unlock_pathbuff(); | |
2548 | ||
2549 | // if we get here then it wasn't one of our temp buffers | |
2550 | FREE_ZONE(path, MAXPATHLEN, M_NAMEI); | |
2551 | } | |
2552 | ||
2553 | int | |
2554 | get_fse_info(struct vnode *vp, fse_info *fse, vfs_context_t ctx) | |
2555 | { | |
2556 | struct vnode_attr va; | |
2557 | ||
2558 | VATTR_INIT(&va); | |
2559 | VATTR_WANTED(&va, va_fsid); | |
2560 | VATTR_WANTED(&va, va_fileid); | |
2561 | VATTR_WANTED(&va, va_mode); | |
2562 | VATTR_WANTED(&va, va_uid); | |
2563 | VATTR_WANTED(&va, va_gid); | |
2564 | if (vp->v_flag & VISHARDLINK) { | |
2565 | if (vp->v_type == VDIR) { | |
2566 | VATTR_WANTED(&va, va_dirlinkcount); | |
2567 | } else { | |
2568 | VATTR_WANTED(&va, va_nlink); | |
2569 | } | |
2570 | } | |
2571 | ||
2572 | if (vnode_getattr(vp, &va, ctx) != 0) { | |
2573 | memset(fse, 0, sizeof(fse_info)); | |
2574 | return -1; | |
2575 | } | |
2576 | ||
2577 | fse->ino = (ino64_t)va.va_fileid; | |
2578 | fse->dev = (dev_t)va.va_fsid; | |
2579 | fse->mode = (int32_t)vnode_vttoif(vnode_vtype(vp)) | va.va_mode; | |
2580 | fse->uid = (uid_t)va.va_uid; | |
2581 | fse->gid = (gid_t)va.va_gid; | |
2582 | if (vp->v_flag & VISHARDLINK) { | |
2583 | fse->mode |= FSE_MODE_HLINK; | |
2584 | if (vp->v_type == VDIR) { | |
2585 | fse->nlink = (uint64_t)va.va_dirlinkcount; | |
2586 | } else { | |
2587 | fse->nlink = (uint64_t)va.va_nlink; | |
2588 | } | |
2589 | } | |
2590 | ||
2591 | return 0; | |
2592 | } | |
2593 | ||
2594 | #else /* CONFIG_FSE */ | |
2595 | /* | |
2596 | * The get_pathbuff and release_pathbuff routines are used in places not | |
2597 | * related to fsevents, and it's a handy abstraction, so define trivial | |
2598 | * versions that don't cache a pool of buffers. This way, we don't have | |
2599 | * to conditionalize the callers, and they still get the advantage of the | |
2600 | * pool of buffers if CONFIG_FSE is turned on. | |
2601 | */ | |
2602 | char * | |
2603 | get_pathbuff(void) | |
2604 | { | |
2605 | char *path; | |
2606 | MALLOC_ZONE(path, char *, MAXPATHLEN, M_NAMEI, M_WAITOK); | |
2607 | return path; | |
2608 | } | |
2609 | ||
2610 | void | |
2611 | release_pathbuff(char *path) | |
2612 | { | |
2613 | FREE_ZONE(path, MAXPATHLEN, M_NAMEI); | |
2614 | } | |
2615 | #endif /* CONFIG_FSE */ |