]>
Commit | Line | Data |
---|---|---|
1 | /* $FreeBSD: src/sys/netinet6/nd6.c,v 1.20 2002/08/02 20:49:14 rwatson Exp $ */ | |
2 | /* $KAME: nd6.c,v 1.144 2001/05/24 07:44:00 itojun Exp $ */ | |
3 | ||
4 | /* | |
5 | * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. | |
6 | * All rights reserved. | |
7 | * | |
8 | * Redistribution and use in source and binary forms, with or without | |
9 | * modification, are permitted provided that the following conditions | |
10 | * are met: | |
11 | * 1. Redistributions of source code must retain the above copyright | |
12 | * notice, this list of conditions and the following disclaimer. | |
13 | * 2. Redistributions in binary form must reproduce the above copyright | |
14 | * notice, this list of conditions and the following disclaimer in the | |
15 | * documentation and/or other materials provided with the distribution. | |
16 | * 3. Neither the name of the project nor the names of its contributors | |
17 | * may be used to endorse or promote products derived from this software | |
18 | * without specific prior written permission. | |
19 | * | |
20 | * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND | |
21 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
22 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |
23 | * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE | |
24 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | |
25 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | |
26 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | |
27 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | |
28 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | |
29 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | |
30 | * SUCH DAMAGE. | |
31 | */ | |
32 | ||
33 | /* | |
34 | * XXX | |
35 | * KAME 970409 note: | |
36 | * BSD/OS version heavily modifies this code, related to llinfo. | |
37 | * Since we don't have BSD/OS version of net/route.c in our hand, | |
38 | * I left the code mostly as it was in 970310. -- itojun | |
39 | */ | |
40 | ||
41 | #include <sys/param.h> | |
42 | #include <sys/systm.h> | |
43 | #include <sys/malloc.h> | |
44 | #include <sys/mbuf.h> | |
45 | #include <sys/socket.h> | |
46 | #include <sys/sockio.h> | |
47 | #include <sys/time.h> | |
48 | #include <sys/kernel.h> | |
49 | #include <sys/errno.h> | |
50 | #include <sys/syslog.h> | |
51 | #include <sys/protosw.h> | |
52 | #include <kern/queue.h> | |
53 | ||
54 | #define DONT_WARN_OBSOLETE | |
55 | #include <net/if.h> | |
56 | #include <net/if_dl.h> | |
57 | #include <net/if_types.h> | |
58 | #include <net/if_atm.h> | |
59 | #include <net/route.h> | |
60 | #include <net/dlil.h> | |
61 | ||
62 | #include <netinet/in.h> | |
63 | #include <netinet/if_ether.h> | |
64 | #include <netinet/if_fddi.h> | |
65 | #include <netinet6/in6_var.h> | |
66 | #include <netinet/ip6.h> | |
67 | #include <netinet6/ip6_var.h> | |
68 | #include <netinet6/nd6.h> | |
69 | #include <netinet6/in6_prefix.h> | |
70 | #include <netinet/icmp6.h> | |
71 | ||
72 | #include "loop.h" | |
73 | ||
74 | #include <net/net_osdep.h> | |
75 | ||
76 | #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */ | |
77 | #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */ | |
78 | ||
79 | #define SIN6(s) ((struct sockaddr_in6 *)s) | |
80 | #define SDL(s) ((struct sockaddr_dl *)s) | |
81 | ||
82 | /* timer values */ | |
83 | int nd6_prune = 1; /* walk list every 1 seconds */ | |
84 | int nd6_delay = 5; /* delay first probe time 5 second */ | |
85 | int nd6_umaxtries = 3; /* maximum unicast query */ | |
86 | int nd6_mmaxtries = 3; /* maximum multicast query */ | |
87 | int nd6_useloopback = 1; /* use loopback interface for local traffic */ | |
88 | int nd6_gctimer = (60 * 60 * 24); /* 1 day: garbage collection timer */ | |
89 | ||
90 | /* preventing too many loops in ND option parsing */ | |
91 | int nd6_maxndopt = 10; /* max # of ND options allowed */ | |
92 | ||
93 | int nd6_maxnudhint = 0; /* max # of subsequent upper layer hints */ | |
94 | ||
95 | #if ND6_DEBUG | |
96 | int nd6_debug = 1; | |
97 | #else | |
98 | int nd6_debug = 0; | |
99 | #endif | |
100 | ||
101 | /* for debugging? */ | |
102 | static int nd6_inuse, nd6_allocated; | |
103 | ||
104 | struct llinfo_nd6 llinfo_nd6 = {&llinfo_nd6, &llinfo_nd6}; | |
105 | size_t nd_ifinfo_indexlim = 8; | |
106 | struct nd_ifinfo *nd_ifinfo = NULL; | |
107 | struct nd_drhead nd_defrouter; | |
108 | struct nd_prhead nd_prefix = { 0 }; | |
109 | ||
110 | int nd6_recalc_reachtm_interval = ND6_RECALC_REACHTM_INTERVAL; | |
111 | static struct sockaddr_in6 all1_sa; | |
112 | ||
113 | static void nd6_slowtimo_funneled __P((void *)); | |
114 | static int regen_tmpaddr __P((struct in6_ifaddr *)); | |
115 | ||
116 | ||
117 | void | |
118 | nd6_init() | |
119 | { | |
120 | static int nd6_init_done = 0; | |
121 | int i; | |
122 | ||
123 | if (nd6_init_done) { | |
124 | log(LOG_NOTICE, "nd6_init called more than once(ignored)\n"); | |
125 | return; | |
126 | } | |
127 | ||
128 | all1_sa.sin6_family = AF_INET6; | |
129 | all1_sa.sin6_len = sizeof(struct sockaddr_in6); | |
130 | for (i = 0; i < sizeof(all1_sa.sin6_addr); i++) | |
131 | all1_sa.sin6_addr.s6_addr[i] = 0xff; | |
132 | ||
133 | /* initialization of the default router list */ | |
134 | TAILQ_INIT(&nd_defrouter); | |
135 | ||
136 | nd6_init_done = 1; | |
137 | ||
138 | /* start timer */ | |
139 | timeout(nd6_slowtimo_funneled, (caddr_t)0, ND6_SLOWTIMER_INTERVAL * hz); | |
140 | } | |
141 | ||
142 | void | |
143 | nd6_ifattach(ifp) | |
144 | struct ifnet *ifp; | |
145 | { | |
146 | ||
147 | /* | |
148 | * We have some arrays that should be indexed by if_index. | |
149 | * since if_index will grow dynamically, they should grow too. | |
150 | */ | |
151 | if (nd_ifinfo == NULL || if_index >= nd_ifinfo_indexlim) { | |
152 | size_t n; | |
153 | caddr_t q; | |
154 | ||
155 | while (if_index >= nd_ifinfo_indexlim) | |
156 | nd_ifinfo_indexlim <<= 1; | |
157 | ||
158 | /* grow nd_ifinfo */ | |
159 | n = nd_ifinfo_indexlim * sizeof(struct nd_ifinfo); | |
160 | q = (caddr_t)_MALLOC(n, M_IP6NDP, M_WAITOK); | |
161 | bzero(q, n); | |
162 | if (nd_ifinfo) { | |
163 | bcopy((caddr_t)nd_ifinfo, q, n/2); | |
164 | FREE((caddr_t)nd_ifinfo, M_IP6NDP); | |
165 | } | |
166 | nd_ifinfo = (struct nd_ifinfo *)q; | |
167 | } | |
168 | ||
169 | #define ND nd_ifinfo[ifp->if_index] | |
170 | ||
171 | /* | |
172 | * Don't initialize if called twice. | |
173 | * XXX: to detect this, we should choose a member that is never set | |
174 | * before initialization of the ND structure itself. We formaly used | |
175 | * the linkmtu member, which was not suitable because it could be | |
176 | * initialized via "ifconfig mtu". | |
177 | */ | |
178 | if (ND.basereachable) | |
179 | return; | |
180 | ||
181 | ND.linkmtu = ifindex2ifnet[ifp->if_index]->if_mtu; | |
182 | ND.chlim = IPV6_DEFHLIM; | |
183 | ND.basereachable = REACHABLE_TIME; | |
184 | ND.reachable = ND_COMPUTE_RTIME(ND.basereachable); | |
185 | ND.retrans = RETRANS_TIMER; | |
186 | ND.receivedra = 0; | |
187 | ND.flags = ND6_IFF_PERFORMNUD; | |
188 | nd6_setmtu(ifp); | |
189 | #undef ND | |
190 | } | |
191 | ||
192 | /* | |
193 | * Reset ND level link MTU. This function is called when the physical MTU | |
194 | * changes, which means we might have to adjust the ND level MTU. | |
195 | */ | |
196 | void | |
197 | nd6_setmtu(ifp) | |
198 | struct ifnet *ifp; | |
199 | { | |
200 | #ifndef MIN | |
201 | #define MIN(a,b) ((a) < (b) ? (a) : (b)) | |
202 | #endif | |
203 | ||
204 | struct nd_ifinfo *ndi; | |
205 | u_long oldmaxmtu, oldlinkmtu, dl_tag; | |
206 | ||
207 | /* | |
208 | * Make sure IPv6 is enabled for the interface first, | |
209 | * because this can be called directly from SIOCSIFMTU for IPv4 | |
210 | */ | |
211 | ||
212 | if (ifp->if_index >= nd_ifinfo_indexlim) { | |
213 | if (dlil_find_dltag(ifp->if_family, ifp->if_unit, PF_INET6, &dl_tag) != EPROTONOSUPPORT) | |
214 | nd6log((LOG_INFO, "setmtu for ifp=% but nd6 is not attached\n", if_name(ifp))); | |
215 | return; /* we're out of bound for nd_ifinfo */ | |
216 | } | |
217 | ||
218 | ndi = &nd_ifinfo[ifp->if_index]; | |
219 | oldmaxmtu = ndi->maxmtu; | |
220 | oldlinkmtu = ndi->linkmtu; | |
221 | ||
222 | switch (ifp->if_type) { | |
223 | case IFT_ARCNET: /* XXX MTU handling needs more work */ | |
224 | ndi->maxmtu = MIN(60480, ifp->if_mtu); | |
225 | break; | |
226 | case IFT_ETHER: | |
227 | ndi->maxmtu = MIN(ETHERMTU, ifp->if_mtu); | |
228 | break; | |
229 | case IFT_FDDI: | |
230 | ndi->maxmtu = MIN(FDDIIPMTU, ifp->if_mtu); | |
231 | break; | |
232 | case IFT_ATM: | |
233 | ndi->maxmtu = MIN(ATMMTU, ifp->if_mtu); | |
234 | break; | |
235 | case IFT_IEEE1394: /* XXX should be IEEE1394MTU(1500) */ | |
236 | ndi->maxmtu = MIN(ETHERMTU, ifp->if_mtu); | |
237 | break; | |
238 | #if IFT_IEEE80211 | |
239 | case IFT_IEEE80211: /* XXX should be IEEE80211MTU(1500) */ | |
240 | ndi->maxmtu = MIN(ETHERMTU, ifp->if_mtu); | |
241 | break; | |
242 | #endif | |
243 | default: | |
244 | ndi->maxmtu = ifp->if_mtu; | |
245 | break; | |
246 | } | |
247 | ||
248 | if (oldmaxmtu != ndi->maxmtu) { | |
249 | /* | |
250 | * If the ND level MTU is not set yet, or if the maxmtu | |
251 | * is reset to a smaller value than the ND level MTU, | |
252 | * also reset the ND level MTU. | |
253 | */ | |
254 | if (ndi->linkmtu == 0 || | |
255 | ndi->maxmtu < ndi->linkmtu) { | |
256 | ndi->linkmtu = ndi->maxmtu; | |
257 | /* also adjust in6_maxmtu if necessary. */ | |
258 | if (oldlinkmtu == 0) { | |
259 | /* | |
260 | * XXX: the case analysis is grotty, but | |
261 | * it is not efficient to call in6_setmaxmtu() | |
262 | * here when we are during the initialization | |
263 | * procedure. | |
264 | */ | |
265 | if (in6_maxmtu < ndi->linkmtu) | |
266 | in6_maxmtu = ndi->linkmtu; | |
267 | } else | |
268 | in6_setmaxmtu(); | |
269 | } | |
270 | } | |
271 | #undef MIN | |
272 | } | |
273 | ||
274 | void | |
275 | nd6_option_init(opt, icmp6len, ndopts) | |
276 | void *opt; | |
277 | int icmp6len; | |
278 | union nd_opts *ndopts; | |
279 | { | |
280 | bzero(ndopts, sizeof(*ndopts)); | |
281 | ndopts->nd_opts_search = (struct nd_opt_hdr *)opt; | |
282 | ndopts->nd_opts_last | |
283 | = (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len); | |
284 | ||
285 | if (icmp6len == 0) { | |
286 | ndopts->nd_opts_done = 1; | |
287 | ndopts->nd_opts_search = NULL; | |
288 | } | |
289 | } | |
290 | ||
291 | /* | |
292 | * Take one ND option. | |
293 | */ | |
294 | struct nd_opt_hdr * | |
295 | nd6_option(ndopts) | |
296 | union nd_opts *ndopts; | |
297 | { | |
298 | struct nd_opt_hdr *nd_opt; | |
299 | int olen; | |
300 | ||
301 | if (!ndopts) | |
302 | panic("ndopts == NULL in nd6_option\n"); | |
303 | if (!ndopts->nd_opts_last) | |
304 | panic("uninitialized ndopts in nd6_option\n"); | |
305 | if (!ndopts->nd_opts_search) | |
306 | return NULL; | |
307 | if (ndopts->nd_opts_done) | |
308 | return NULL; | |
309 | ||
310 | nd_opt = ndopts->nd_opts_search; | |
311 | ||
312 | /* make sure nd_opt_len is inside the buffer */ | |
313 | if ((caddr_t)&nd_opt->nd_opt_len >= (caddr_t)ndopts->nd_opts_last) { | |
314 | bzero(ndopts, sizeof(*ndopts)); | |
315 | return NULL; | |
316 | } | |
317 | ||
318 | olen = nd_opt->nd_opt_len << 3; | |
319 | if (olen == 0) { | |
320 | /* | |
321 | * Message validation requires that all included | |
322 | * options have a length that is greater than zero. | |
323 | */ | |
324 | bzero(ndopts, sizeof(*ndopts)); | |
325 | return NULL; | |
326 | } | |
327 | ||
328 | ndopts->nd_opts_search = (struct nd_opt_hdr *)((caddr_t)nd_opt + olen); | |
329 | if (ndopts->nd_opts_search > ndopts->nd_opts_last) { | |
330 | /* option overruns the end of buffer, invalid */ | |
331 | bzero(ndopts, sizeof(*ndopts)); | |
332 | return NULL; | |
333 | } else if (ndopts->nd_opts_search == ndopts->nd_opts_last) { | |
334 | /* reached the end of options chain */ | |
335 | ndopts->nd_opts_done = 1; | |
336 | ndopts->nd_opts_search = NULL; | |
337 | } | |
338 | return nd_opt; | |
339 | } | |
340 | ||
341 | /* | |
342 | * Parse multiple ND options. | |
343 | * This function is much easier to use, for ND routines that do not need | |
344 | * multiple options of the same type. | |
345 | */ | |
346 | int | |
347 | nd6_options(ndopts) | |
348 | union nd_opts *ndopts; | |
349 | { | |
350 | struct nd_opt_hdr *nd_opt; | |
351 | int i = 0; | |
352 | ||
353 | if (!ndopts) | |
354 | panic("ndopts == NULL in nd6_options\n"); | |
355 | if (!ndopts->nd_opts_last) | |
356 | panic("uninitialized ndopts in nd6_options\n"); | |
357 | if (!ndopts->nd_opts_search) | |
358 | return 0; | |
359 | ||
360 | while (1) { | |
361 | nd_opt = nd6_option(ndopts); | |
362 | if (!nd_opt && !ndopts->nd_opts_last) { | |
363 | /* | |
364 | * Message validation requires that all included | |
365 | * options have a length that is greater than zero. | |
366 | */ | |
367 | icmp6stat.icp6s_nd_badopt++; | |
368 | bzero(ndopts, sizeof(*ndopts)); | |
369 | return -1; | |
370 | } | |
371 | ||
372 | if (!nd_opt) | |
373 | goto skip1; | |
374 | ||
375 | switch (nd_opt->nd_opt_type) { | |
376 | case ND_OPT_SOURCE_LINKADDR: | |
377 | case ND_OPT_TARGET_LINKADDR: | |
378 | case ND_OPT_MTU: | |
379 | case ND_OPT_REDIRECTED_HEADER: | |
380 | if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) { | |
381 | nd6log((LOG_INFO, | |
382 | "duplicated ND6 option found (type=%d)\n", | |
383 | nd_opt->nd_opt_type)); | |
384 | /* XXX bark? */ | |
385 | } else { | |
386 | ndopts->nd_opt_array[nd_opt->nd_opt_type] | |
387 | = nd_opt; | |
388 | } | |
389 | break; | |
390 | case ND_OPT_PREFIX_INFORMATION: | |
391 | if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) { | |
392 | ndopts->nd_opt_array[nd_opt->nd_opt_type] | |
393 | = nd_opt; | |
394 | } | |
395 | ndopts->nd_opts_pi_end = | |
396 | (struct nd_opt_prefix_info *)nd_opt; | |
397 | break; | |
398 | default: | |
399 | /* | |
400 | * Unknown options must be silently ignored, | |
401 | * to accomodate future extension to the protocol. | |
402 | */ | |
403 | nd6log((LOG_DEBUG, | |
404 | "nd6_options: unsupported option %d - " | |
405 | "option ignored\n", nd_opt->nd_opt_type)); | |
406 | } | |
407 | ||
408 | skip1: | |
409 | i++; | |
410 | if (i > nd6_maxndopt) { | |
411 | icmp6stat.icp6s_nd_toomanyopt++; | |
412 | nd6log((LOG_INFO, "too many loop in nd opt\n")); | |
413 | break; | |
414 | } | |
415 | ||
416 | if (ndopts->nd_opts_done) | |
417 | break; | |
418 | } | |
419 | ||
420 | return 0; | |
421 | } | |
422 | ||
423 | /* | |
424 | * ND6 timer routine to expire default route list and prefix list | |
425 | */ | |
426 | void | |
427 | nd6_timer_funneled(ignored_arg) | |
428 | void *ignored_arg; | |
429 | { | |
430 | #ifdef __APPLE__ | |
431 | boolean_t funnel_state; | |
432 | funnel_state = thread_funnel_set(network_flock, TRUE); | |
433 | #endif | |
434 | nd6_timer(ignored_arg); | |
435 | #ifdef __APPLE__ | |
436 | (void) thread_funnel_set(network_flock, FALSE); | |
437 | #endif | |
438 | } | |
439 | void | |
440 | nd6_timer(ignored_arg) | |
441 | void *ignored_arg; | |
442 | { | |
443 | int s; | |
444 | struct llinfo_nd6 *ln; | |
445 | struct nd_defrouter *dr; | |
446 | struct nd_prefix *pr; | |
447 | struct ifnet *ifp; | |
448 | struct in6_ifaddr *ia6, *nia6; | |
449 | struct in6_addrlifetime *lt6; | |
450 | ||
451 | s = splnet(); | |
452 | ||
453 | timeout(nd6_timer_funneled, (caddr_t)0, nd6_prune * hz); | |
454 | ||
455 | ln = llinfo_nd6.ln_next; | |
456 | while (ln && ln != &llinfo_nd6) { | |
457 | struct rtentry *rt; | |
458 | struct sockaddr_in6 *dst; | |
459 | struct llinfo_nd6 *next = ln->ln_next; | |
460 | /* XXX: used for the DELAY case only: */ | |
461 | struct nd_ifinfo *ndi = NULL; | |
462 | ||
463 | if ((rt = ln->ln_rt) == NULL) { | |
464 | ln = next; | |
465 | continue; | |
466 | } | |
467 | if ((ifp = rt->rt_ifp) == NULL) { | |
468 | ln = next; | |
469 | continue; | |
470 | } | |
471 | ndi = &nd_ifinfo[ifp->if_index]; | |
472 | dst = (struct sockaddr_in6 *)rt_key(rt); | |
473 | ||
474 | if (ln->ln_expire > time_second) { | |
475 | ln = next; | |
476 | continue; | |
477 | } | |
478 | ||
479 | /* sanity check */ | |
480 | if (!rt) { | |
481 | printf("rt=0 in nd6_timer(ln=%p)\n", ln); | |
482 | ln = next; | |
483 | continue; | |
484 | } | |
485 | if (rt->rt_llinfo && (struct llinfo_nd6 *)rt->rt_llinfo != ln) { | |
486 | printf("rt_llinfo(%p) is not equal to ln(%p)\n", | |
487 | rt->rt_llinfo, ln); | |
488 | ln = next; | |
489 | continue; | |
490 | } | |
491 | if (!dst) { | |
492 | printf("dst=0 in nd6_timer(ln=%p)\n", ln); | |
493 | ln = next; | |
494 | continue; | |
495 | } | |
496 | ||
497 | switch (ln->ln_state) { | |
498 | case ND6_LLINFO_INCOMPLETE: | |
499 | if (ln->ln_asked < nd6_mmaxtries) { | |
500 | ln->ln_asked++; | |
501 | ln->ln_expire = time_second + | |
502 | nd_ifinfo[ifp->if_index].retrans / 1000; | |
503 | nd6_ns_output(ifp, NULL, &dst->sin6_addr, | |
504 | ln, 0); | |
505 | } else { | |
506 | struct mbuf *m = ln->ln_hold; | |
507 | ln->ln_hold = NULL; | |
508 | if (m) { | |
509 | if (rt->rt_ifp) { | |
510 | /* | |
511 | * Fake rcvif to make ICMP error | |
512 | * more helpful in diagnosing | |
513 | * for the receiver. | |
514 | * XXX: should we consider | |
515 | * older rcvif? | |
516 | */ | |
517 | m->m_pkthdr.rcvif = rt->rt_ifp; | |
518 | } | |
519 | icmp6_error(m, ICMP6_DST_UNREACH, | |
520 | ICMP6_DST_UNREACH_ADDR, 0); | |
521 | ln->ln_hold = NULL; | |
522 | } | |
523 | next = nd6_free(rt); | |
524 | } | |
525 | break; | |
526 | case ND6_LLINFO_REACHABLE: | |
527 | if (ln->ln_expire) { | |
528 | ln->ln_state = ND6_LLINFO_STALE; | |
529 | ln->ln_expire = time_second + nd6_gctimer; | |
530 | } | |
531 | break; | |
532 | ||
533 | case ND6_LLINFO_STALE: | |
534 | /* Garbage Collection(RFC 2461 5.3) */ | |
535 | if (ln->ln_expire) | |
536 | next = nd6_free(rt); | |
537 | break; | |
538 | ||
539 | case ND6_LLINFO_DELAY: | |
540 | if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) { | |
541 | /* We need NUD */ | |
542 | ln->ln_asked = 1; | |
543 | ln->ln_state = ND6_LLINFO_PROBE; | |
544 | ln->ln_expire = time_second + | |
545 | ndi->retrans / 1000; | |
546 | nd6_ns_output(ifp, &dst->sin6_addr, | |
547 | &dst->sin6_addr, | |
548 | ln, 0); | |
549 | } else { | |
550 | ln->ln_state = ND6_LLINFO_STALE; /* XXX */ | |
551 | ln->ln_expire = time_second + nd6_gctimer; | |
552 | } | |
553 | break; | |
554 | case ND6_LLINFO_PROBE: | |
555 | if (ln->ln_asked < nd6_umaxtries) { | |
556 | ln->ln_asked++; | |
557 | ln->ln_expire = time_second + | |
558 | nd_ifinfo[ifp->if_index].retrans / 1000; | |
559 | nd6_ns_output(ifp, &dst->sin6_addr, | |
560 | &dst->sin6_addr, ln, 0); | |
561 | } else { | |
562 | next = nd6_free(rt); | |
563 | } | |
564 | break; | |
565 | } | |
566 | ln = next; | |
567 | } | |
568 | ||
569 | /* expire default router list */ | |
570 | dr = TAILQ_FIRST(&nd_defrouter); | |
571 | while (dr) { | |
572 | if (dr->expire && dr->expire < time_second) { | |
573 | struct nd_defrouter *t; | |
574 | t = TAILQ_NEXT(dr, dr_entry); | |
575 | defrtrlist_del(dr); | |
576 | dr = t; | |
577 | } else { | |
578 | dr = TAILQ_NEXT(dr, dr_entry); | |
579 | } | |
580 | } | |
581 | ||
582 | /* | |
583 | * expire interface addresses. | |
584 | * in the past the loop was inside prefix expiry processing. | |
585 | * However, from a stricter speci-confrmance standpoint, we should | |
586 | * rather separate address lifetimes and prefix lifetimes. | |
587 | */ | |
588 | addrloop: | |
589 | for (ia6 = in6_ifaddr; ia6; ia6 = nia6) { | |
590 | nia6 = ia6->ia_next; | |
591 | /* check address lifetime */ | |
592 | lt6 = &ia6->ia6_lifetime; | |
593 | if (IFA6_IS_INVALID(ia6)) { | |
594 | int regen = 0; | |
595 | ||
596 | /* | |
597 | * If the expiring address is temporary, try | |
598 | * regenerating a new one. This would be useful when | |
599 | * we suspended a laptop PC, then turned it on after a | |
600 | * period that could invalidate all temporary | |
601 | * addresses. Although we may have to restart the | |
602 | * loop (see below), it must be after purging the | |
603 | * address. Otherwise, we'd see an infinite loop of | |
604 | * regeneration. | |
605 | */ | |
606 | if (ip6_use_tempaddr && | |
607 | (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) { | |
608 | if (regen_tmpaddr(ia6) == 0) | |
609 | regen = 1; | |
610 | } | |
611 | ||
612 | in6_purgeaddr(&ia6->ia_ifa); | |
613 | ||
614 | if (regen) | |
615 | goto addrloop; /* XXX: see below */ | |
616 | } | |
617 | if (IFA6_IS_DEPRECATED(ia6)) { | |
618 | int oldflags = ia6->ia6_flags; | |
619 | ||
620 | ia6->ia6_flags |= IN6_IFF_DEPRECATED; | |
621 | ||
622 | /* | |
623 | * If a temporary address has just become deprecated, | |
624 | * regenerate a new one if possible. | |
625 | */ | |
626 | if (ip6_use_tempaddr && | |
627 | (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 && | |
628 | (oldflags & IN6_IFF_DEPRECATED) == 0) { | |
629 | ||
630 | if (regen_tmpaddr(ia6) == 0) { | |
631 | /* | |
632 | * A new temporary address is | |
633 | * generated. | |
634 | * XXX: this means the address chain | |
635 | * has changed while we are still in | |
636 | * the loop. Although the change | |
637 | * would not cause disaster (because | |
638 | * it's not a deletion, but an | |
639 | * addition,) we'd rather restart the | |
640 | * loop just for safety. Or does this | |
641 | * significantly reduce performance?? | |
642 | */ | |
643 | goto addrloop; | |
644 | } | |
645 | } | |
646 | } else { | |
647 | /* | |
648 | * A new RA might have made a deprecated address | |
649 | * preferred. | |
650 | */ | |
651 | ia6->ia6_flags &= ~IN6_IFF_DEPRECATED; | |
652 | } | |
653 | } | |
654 | ||
655 | /* expire prefix list */ | |
656 | pr = nd_prefix.lh_first; | |
657 | while (pr) { | |
658 | /* | |
659 | * check prefix lifetime. | |
660 | * since pltime is just for autoconf, pltime processing for | |
661 | * prefix is not necessary. | |
662 | */ | |
663 | if (pr->ndpr_expire && pr->ndpr_expire < time_second) { | |
664 | struct nd_prefix *t; | |
665 | t = pr->ndpr_next; | |
666 | ||
667 | /* | |
668 | * address expiration and prefix expiration are | |
669 | * separate. NEVER perform in6_purgeaddr here. | |
670 | */ | |
671 | ||
672 | prelist_remove(pr); | |
673 | pr = t; | |
674 | } else | |
675 | pr = pr->ndpr_next; | |
676 | } | |
677 | splx(s); | |
678 | } | |
679 | ||
680 | static int | |
681 | regen_tmpaddr(ia6) | |
682 | struct in6_ifaddr *ia6; /* deprecated/invalidated temporary address */ | |
683 | { | |
684 | struct ifaddr *ifa; | |
685 | struct ifnet *ifp; | |
686 | struct in6_ifaddr *public_ifa6 = NULL; | |
687 | ||
688 | ifp = ia6->ia_ifa.ifa_ifp; | |
689 | for (ifa = ifp->if_addrlist.tqh_first; ifa; | |
690 | ifa = ifa->ifa_list.tqe_next) | |
691 | { | |
692 | struct in6_ifaddr *it6; | |
693 | ||
694 | if (ifa->ifa_addr->sa_family != AF_INET6) | |
695 | continue; | |
696 | ||
697 | it6 = (struct in6_ifaddr *)ifa; | |
698 | ||
699 | /* ignore no autoconf addresses. */ | |
700 | if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0) | |
701 | continue; | |
702 | ||
703 | /* ignore autoconf addresses with different prefixes. */ | |
704 | if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr) | |
705 | continue; | |
706 | ||
707 | /* | |
708 | * Now we are looking at an autoconf address with the same | |
709 | * prefix as ours. If the address is temporary and is still | |
710 | * preferred, do not create another one. It would be rare, but | |
711 | * could happen, for example, when we resume a laptop PC after | |
712 | * a long period. | |
713 | */ | |
714 | if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 && | |
715 | !IFA6_IS_DEPRECATED(it6)) { | |
716 | public_ifa6 = NULL; | |
717 | break; | |
718 | } | |
719 | ||
720 | /* | |
721 | * This is a public autoconf address that has the same prefix | |
722 | * as ours. If it is preferred, keep it. We can't break the | |
723 | * loop here, because there may be a still-preferred temporary | |
724 | * address with the prefix. | |
725 | */ | |
726 | if (!IFA6_IS_DEPRECATED(it6)) | |
727 | public_ifa6 = it6; | |
728 | } | |
729 | ||
730 | if (public_ifa6 != NULL) { | |
731 | int e; | |
732 | ||
733 | if ((e = in6_tmpifadd(public_ifa6, 0)) != 0) { | |
734 | log(LOG_NOTICE, "regen_tmpaddr: failed to create a new" | |
735 | " tmp addr,errno=%d\n", e); | |
736 | return(-1); | |
737 | } | |
738 | return(0); | |
739 | } | |
740 | ||
741 | return(-1); | |
742 | } | |
743 | ||
744 | /* | |
745 | * Nuke neighbor cache/prefix/default router management table, right before | |
746 | * ifp goes away. | |
747 | */ | |
748 | void | |
749 | nd6_purge(ifp) | |
750 | struct ifnet *ifp; | |
751 | { | |
752 | struct llinfo_nd6 *ln, *nln; | |
753 | struct nd_defrouter *dr, *ndr, drany; | |
754 | struct nd_prefix *pr, *npr; | |
755 | ||
756 | /* Nuke default router list entries toward ifp */ | |
757 | if ((dr = TAILQ_FIRST(&nd_defrouter)) != NULL) { | |
758 | /* | |
759 | * The first entry of the list may be stored in | |
760 | * the routing table, so we'll delete it later. | |
761 | */ | |
762 | for (dr = TAILQ_NEXT(dr, dr_entry); dr; dr = ndr) { | |
763 | ndr = TAILQ_NEXT(dr, dr_entry); | |
764 | if (dr->ifp == ifp) | |
765 | defrtrlist_del(dr); | |
766 | } | |
767 | dr = TAILQ_FIRST(&nd_defrouter); | |
768 | if (dr->ifp == ifp) | |
769 | defrtrlist_del(dr); | |
770 | } | |
771 | ||
772 | /* Nuke prefix list entries toward ifp */ | |
773 | for (pr = nd_prefix.lh_first; pr; pr = npr) { | |
774 | npr = pr->ndpr_next; | |
775 | if (pr->ndpr_ifp == ifp) { | |
776 | /* | |
777 | * Previously, pr->ndpr_addr is removed as well, | |
778 | * but I strongly believe we don't have to do it. | |
779 | * nd6_purge() is only called from in6_ifdetach(), | |
780 | * which removes all the associated interface addresses | |
781 | * by itself. | |
782 | * (jinmei@kame.net 20010129) | |
783 | */ | |
784 | prelist_remove(pr); | |
785 | } | |
786 | } | |
787 | ||
788 | /* cancel default outgoing interface setting */ | |
789 | if (nd6_defifindex == ifp->if_index) | |
790 | nd6_setdefaultiface(0); | |
791 | ||
792 | if (!ip6_forwarding && (ip6_accept_rtadv || (ifp->if_eflags & IFEF_ACCEPT_RTADVD))) { | |
793 | /* refresh default router list */ | |
794 | bzero(&drany, sizeof(drany)); | |
795 | defrouter_delreq(&drany, 0); | |
796 | defrouter_select(); | |
797 | } | |
798 | ||
799 | /* | |
800 | * Nuke neighbor cache entries for the ifp. | |
801 | * Note that rt->rt_ifp may not be the same as ifp, | |
802 | * due to KAME goto ours hack. See RTM_RESOLVE case in | |
803 | * nd6_rtrequest(), and ip6_input(). | |
804 | */ | |
805 | ln = llinfo_nd6.ln_next; | |
806 | while (ln && ln != &llinfo_nd6) { | |
807 | struct rtentry *rt; | |
808 | struct sockaddr_dl *sdl; | |
809 | ||
810 | nln = ln->ln_next; | |
811 | rt = ln->ln_rt; | |
812 | if (rt && rt->rt_gateway && | |
813 | rt->rt_gateway->sa_family == AF_LINK) { | |
814 | sdl = (struct sockaddr_dl *)rt->rt_gateway; | |
815 | if (sdl->sdl_index == ifp->if_index) | |
816 | nln = nd6_free(rt); | |
817 | } | |
818 | ln = nln; | |
819 | } | |
820 | } | |
821 | ||
822 | struct rtentry * | |
823 | nd6_lookup(addr6, create, ifp) | |
824 | struct in6_addr *addr6; | |
825 | int create; | |
826 | struct ifnet *ifp; | |
827 | { | |
828 | struct rtentry *rt; | |
829 | struct sockaddr_in6 sin6; | |
830 | ||
831 | bzero(&sin6, sizeof(sin6)); | |
832 | sin6.sin6_len = sizeof(struct sockaddr_in6); | |
833 | sin6.sin6_family = AF_INET6; | |
834 | sin6.sin6_addr = *addr6; | |
835 | #if SCOPEDROUTING | |
836 | sin6.sin6_scope_id = in6_addr2scopeid(ifp, addr6); | |
837 | #endif | |
838 | rt = rtalloc1((struct sockaddr *)&sin6, create, 0UL); | |
839 | if (rt && (rt->rt_flags & RTF_LLINFO) == 0) { | |
840 | /* | |
841 | * This is the case for the default route. | |
842 | * If we want to create a neighbor cache for the address, we | |
843 | * should free the route for the destination and allocate an | |
844 | * interface route. | |
845 | */ | |
846 | if (create) { | |
847 | rtfree(rt); | |
848 | rt = 0; | |
849 | } | |
850 | } | |
851 | if (!rt) { | |
852 | if (create && ifp) { | |
853 | int e; | |
854 | ||
855 | /* | |
856 | * If no route is available and create is set, | |
857 | * we allocate a host route for the destination | |
858 | * and treat it like an interface route. | |
859 | * This hack is necessary for a neighbor which can't | |
860 | * be covered by our own prefix. | |
861 | */ | |
862 | struct ifaddr *ifa = | |
863 | ifaof_ifpforaddr((struct sockaddr *)&sin6, ifp); | |
864 | if (ifa == NULL) | |
865 | return(NULL); | |
866 | ||
867 | /* | |
868 | * Create a new route. RTF_LLINFO is necessary | |
869 | * to create a Neighbor Cache entry for the | |
870 | * destination in nd6_rtrequest which will be | |
871 | * called in rtrequest via ifa->ifa_rtrequest. | |
872 | */ | |
873 | if ((e = rtrequest(RTM_ADD, (struct sockaddr *)&sin6, | |
874 | ifa->ifa_addr, | |
875 | (struct sockaddr *)&all1_sa, | |
876 | (ifa->ifa_flags | | |
877 | RTF_HOST | RTF_LLINFO) & | |
878 | ~RTF_CLONING, | |
879 | &rt)) != 0) | |
880 | log(LOG_ERR, | |
881 | "nd6_lookup: failed to add route for a " | |
882 | "neighbor(%s), errno=%d\n", | |
883 | ip6_sprintf(addr6), e); | |
884 | if (rt == NULL) | |
885 | return(NULL); | |
886 | if (rt->rt_llinfo) { | |
887 | struct llinfo_nd6 *ln = | |
888 | (struct llinfo_nd6 *)rt->rt_llinfo; | |
889 | ln->ln_state = ND6_LLINFO_NOSTATE; | |
890 | } | |
891 | } else | |
892 | return(NULL); | |
893 | } | |
894 | rtunref(rt); | |
895 | /* | |
896 | * Validation for the entry. | |
897 | * Note that the check for rt_llinfo is necessary because a cloned | |
898 | * route from a parent route that has the L flag (e.g. the default | |
899 | * route to a p2p interface) may have the flag, too, while the | |
900 | * destination is not actually a neighbor. | |
901 | * XXX: we can't use rt->rt_ifp to check for the interface, since | |
902 | * it might be the loopback interface if the entry is for our | |
903 | * own address on a non-loopback interface. Instead, we should | |
904 | * use rt->rt_ifa->ifa_ifp, which would specify the REAL | |
905 | * interface. | |
906 | */ | |
907 | if ((ifp->if_type !=IFT_PPP) && ((rt->rt_flags & RTF_GATEWAY) || (rt->rt_flags & RTF_LLINFO) == 0 || | |
908 | rt->rt_gateway->sa_family != AF_LINK || rt->rt_llinfo == NULL || | |
909 | ||
910 | (ifp && rt->rt_ifa->ifa_ifp != ifp))) { | |
911 | if (create) { | |
912 | log(LOG_DEBUG, "nd6_lookup: failed to lookup %s (if = %s)\n", | |
913 | ip6_sprintf(addr6), ifp ? if_name(ifp) : "unspec"); | |
914 | /* xxx more logs... kazu */ | |
915 | } | |
916 | return(NULL); | |
917 | } | |
918 | return(rt); | |
919 | } | |
920 | ||
921 | /* | |
922 | * Detect if a given IPv6 address identifies a neighbor on a given link. | |
923 | * XXX: should take care of the destination of a p2p link? | |
924 | */ | |
925 | int | |
926 | nd6_is_addr_neighbor(addr, ifp) | |
927 | struct sockaddr_in6 *addr; | |
928 | struct ifnet *ifp; | |
929 | { | |
930 | struct ifaddr *ifa; | |
931 | int i; | |
932 | ||
933 | #define IFADDR6(a) ((((struct in6_ifaddr *)(a))->ia_addr).sin6_addr) | |
934 | #define IFMASK6(a) ((((struct in6_ifaddr *)(a))->ia_prefixmask).sin6_addr) | |
935 | ||
936 | /* | |
937 | * A link-local address is always a neighbor. | |
938 | * XXX: we should use the sin6_scope_id field rather than the embedded | |
939 | * interface index. | |
940 | */ | |
941 | if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr) && | |
942 | ntohs(*(u_int16_t *)&addr->sin6_addr.s6_addr[2]) == ifp->if_index) | |
943 | return(1); | |
944 | ||
945 | /* | |
946 | * If the address matches one of our addresses, | |
947 | * it should be a neighbor. | |
948 | */ | |
949 | for (ifa = ifp->if_addrlist.tqh_first; | |
950 | ifa; | |
951 | ifa = ifa->ifa_list.tqe_next) | |
952 | { | |
953 | if (ifa->ifa_addr->sa_family != AF_INET6) | |
954 | next: continue; | |
955 | ||
956 | for (i = 0; i < 4; i++) { | |
957 | if ((IFADDR6(ifa).s6_addr32[i] ^ | |
958 | addr->sin6_addr.s6_addr32[i]) & | |
959 | IFMASK6(ifa).s6_addr32[i]) | |
960 | goto next; | |
961 | } | |
962 | return(1); | |
963 | } | |
964 | ||
965 | /* | |
966 | * Even if the address matches none of our addresses, it might be | |
967 | * in the neighbor cache. | |
968 | */ | |
969 | if (nd6_lookup(&addr->sin6_addr, 0, ifp) != NULL) | |
970 | return(1); | |
971 | ||
972 | return(0); | |
973 | #undef IFADDR6 | |
974 | #undef IFMASK6 | |
975 | } | |
976 | ||
977 | /* | |
978 | * Free an nd6 llinfo entry. | |
979 | */ | |
980 | struct llinfo_nd6 * | |
981 | nd6_free(rt) | |
982 | struct rtentry *rt; | |
983 | { | |
984 | struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo, *next; | |
985 | struct in6_addr in6 = ((struct sockaddr_in6 *)rt_key(rt))->sin6_addr; | |
986 | struct nd_defrouter *dr; | |
987 | ||
988 | /* | |
989 | * we used to have pfctlinput(PRC_HOSTDEAD) here. | |
990 | * even though it is not harmful, it was not really necessary. | |
991 | */ | |
992 | ||
993 | if (!ip6_forwarding && (ip6_accept_rtadv || (rt->rt_ifp->if_eflags & IFEF_ACCEPT_RTADVD))) { | |
994 | int s; | |
995 | s = splnet(); | |
996 | dr = defrouter_lookup(&((struct sockaddr_in6 *)rt_key(rt))->sin6_addr, | |
997 | rt->rt_ifp); | |
998 | ||
999 | if (ln && ln->ln_router || dr) { | |
1000 | /* | |
1001 | * rt6_flush must be called whether or not the neighbor | |
1002 | * is in the Default Router List. | |
1003 | * See a corresponding comment in nd6_na_input(). | |
1004 | */ | |
1005 | rt6_flush(&in6, rt->rt_ifp); | |
1006 | } | |
1007 | ||
1008 | if (dr) { | |
1009 | /* | |
1010 | * Unreachablity of a router might affect the default | |
1011 | * router selection and on-link detection of advertised | |
1012 | * prefixes. | |
1013 | */ | |
1014 | ||
1015 | /* | |
1016 | * Temporarily fake the state to choose a new default | |
1017 | * router and to perform on-link determination of | |
1018 | * prefixes correctly. | |
1019 | * Below the state will be set correctly, | |
1020 | * or the entry itself will be deleted. | |
1021 | */ | |
1022 | ln->ln_state = ND6_LLINFO_INCOMPLETE; | |
1023 | ||
1024 | /* | |
1025 | * Since defrouter_select() does not affect the | |
1026 | * on-link determination and MIP6 needs the check | |
1027 | * before the default router selection, we perform | |
1028 | * the check now. | |
1029 | */ | |
1030 | pfxlist_onlink_check(); | |
1031 | ||
1032 | if (dr == TAILQ_FIRST(&nd_defrouter)) { | |
1033 | /* | |
1034 | * It is used as the current default router, | |
1035 | * so we have to move it to the end of the | |
1036 | * list and choose a new one. | |
1037 | * XXX: it is not very efficient if this is | |
1038 | * the only router. | |
1039 | */ | |
1040 | TAILQ_REMOVE(&nd_defrouter, dr, dr_entry); | |
1041 | TAILQ_INSERT_TAIL(&nd_defrouter, dr, dr_entry); | |
1042 | ||
1043 | defrouter_select(); | |
1044 | } | |
1045 | } | |
1046 | splx(s); | |
1047 | } | |
1048 | ||
1049 | /* | |
1050 | * Before deleting the entry, remember the next entry as the | |
1051 | * return value. We need this because pfxlist_onlink_check() above | |
1052 | * might have freed other entries (particularly the old next entry) as | |
1053 | * a side effect (XXX). | |
1054 | */ | |
1055 | if (ln) | |
1056 | next = ln->ln_next; | |
1057 | else | |
1058 | next = 0; | |
1059 | ||
1060 | /* | |
1061 | * Detach the route from the routing tree and the list of neighbor | |
1062 | * caches, and disable the route entry not to be used in already | |
1063 | * cached routes. | |
1064 | */ | |
1065 | rtrequest(RTM_DELETE, rt_key(rt), (struct sockaddr *)0, | |
1066 | rt_mask(rt), 0, (struct rtentry **)0); | |
1067 | ||
1068 | return(next); | |
1069 | } | |
1070 | ||
1071 | /* | |
1072 | * Upper-layer reachability hint for Neighbor Unreachability Detection. | |
1073 | * | |
1074 | * XXX cost-effective metods? | |
1075 | */ | |
1076 | void | |
1077 | nd6_nud_hint(rt, dst6, force) | |
1078 | struct rtentry *rt; | |
1079 | struct in6_addr *dst6; | |
1080 | int force; | |
1081 | { | |
1082 | struct llinfo_nd6 *ln; | |
1083 | ||
1084 | /* | |
1085 | * If the caller specified "rt", use that. Otherwise, resolve the | |
1086 | * routing table by supplied "dst6". | |
1087 | */ | |
1088 | if (!rt) { | |
1089 | if (!dst6) | |
1090 | return; | |
1091 | if (!(rt = nd6_lookup(dst6, 0, NULL))) | |
1092 | return; | |
1093 | } | |
1094 | ||
1095 | if ((rt->rt_flags & RTF_GATEWAY) != 0 || | |
1096 | (rt->rt_flags & RTF_LLINFO) == 0 || | |
1097 | !rt->rt_llinfo || !rt->rt_gateway || | |
1098 | rt->rt_gateway->sa_family != AF_LINK) { | |
1099 | /* This is not a host route. */ | |
1100 | return; | |
1101 | } | |
1102 | ||
1103 | ln = (struct llinfo_nd6 *)rt->rt_llinfo; | |
1104 | if (ln->ln_state < ND6_LLINFO_REACHABLE) | |
1105 | return; | |
1106 | ||
1107 | /* | |
1108 | * if we get upper-layer reachability confirmation many times, | |
1109 | * it is possible we have false information. | |
1110 | */ | |
1111 | if (!force) { | |
1112 | ln->ln_byhint++; | |
1113 | if (ln->ln_byhint > nd6_maxnudhint) | |
1114 | return; | |
1115 | } | |
1116 | ||
1117 | ln->ln_state = ND6_LLINFO_REACHABLE; | |
1118 | if (ln->ln_expire) | |
1119 | ln->ln_expire = time_second + | |
1120 | nd_ifinfo[rt->rt_ifp->if_index].reachable; | |
1121 | } | |
1122 | ||
1123 | void | |
1124 | nd6_rtrequest(req, rt, sa) | |
1125 | int req; | |
1126 | struct rtentry *rt; | |
1127 | struct sockaddr *sa; /* xxx unused */ | |
1128 | { | |
1129 | struct sockaddr *gate = rt->rt_gateway; | |
1130 | struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo; | |
1131 | static struct sockaddr_dl null_sdl = {sizeof(null_sdl), AF_LINK}; | |
1132 | struct ifnet *ifp = rt->rt_ifp; | |
1133 | struct ifaddr *ifa; | |
1134 | ||
1135 | if ((rt->rt_flags & RTF_GATEWAY)) | |
1136 | return; | |
1137 | ||
1138 | if (nd6_need_cache(ifp) == 0 && (rt->rt_flags & RTF_HOST) == 0) { | |
1139 | /* | |
1140 | * This is probably an interface direct route for a link | |
1141 | * which does not need neighbor caches (e.g. fe80::%lo0/64). | |
1142 | * We do not need special treatment below for such a route. | |
1143 | * Moreover, the RTF_LLINFO flag which would be set below | |
1144 | * would annoy the ndp(8) command. | |
1145 | */ | |
1146 | return; | |
1147 | } | |
1148 | ||
1149 | if (req == RTM_RESOLVE && | |
1150 | (nd6_need_cache(ifp) == 0 || /* stf case */ | |
1151 | !nd6_is_addr_neighbor((struct sockaddr_in6 *)rt_key(rt), ifp))) { | |
1152 | /* | |
1153 | * FreeBSD and BSD/OS often make a cloned host route based | |
1154 | * on a less-specific route (e.g. the default route). | |
1155 | * If the less specific route does not have a "gateway" | |
1156 | * (this is the case when the route just goes to a p2p or an | |
1157 | * stf interface), we'll mistakenly make a neighbor cache for | |
1158 | * the host route, and will see strange neighbor solicitation | |
1159 | * for the corresponding destination. In order to avoid the | |
1160 | * confusion, we check if the destination of the route is | |
1161 | * a neighbor in terms of neighbor discovery, and stop the | |
1162 | * process if not. Additionally, we remove the LLINFO flag | |
1163 | * so that ndp(8) will not try to get the neighbor information | |
1164 | * of the destination. | |
1165 | */ | |
1166 | rt->rt_flags &= ~RTF_LLINFO; | |
1167 | return; | |
1168 | } | |
1169 | ||
1170 | switch (req) { | |
1171 | case RTM_ADD: | |
1172 | /* | |
1173 | * There is no backward compatibility :) | |
1174 | * | |
1175 | * if ((rt->rt_flags & RTF_HOST) == 0 && | |
1176 | * SIN(rt_mask(rt))->sin_addr.s_addr != 0xffffffff) | |
1177 | * rt->rt_flags |= RTF_CLONING; | |
1178 | */ | |
1179 | if (rt->rt_flags & (RTF_CLONING | RTF_LLINFO)) { | |
1180 | /* | |
1181 | * Case 1: This route should come from | |
1182 | * a route to interface. RTF_LLINFO flag is set | |
1183 | * for a host route whose destination should be | |
1184 | * treated as on-link. | |
1185 | */ | |
1186 | rt_setgate(rt, rt_key(rt), | |
1187 | (struct sockaddr *)&null_sdl); | |
1188 | gate = rt->rt_gateway; | |
1189 | SDL(gate)->sdl_type = ifp->if_type; | |
1190 | SDL(gate)->sdl_index = ifp->if_index; | |
1191 | if (ln) | |
1192 | ln->ln_expire = time_second; | |
1193 | #if 1 | |
1194 | if (ln && ln->ln_expire == 0) { | |
1195 | /* kludge for desktops */ | |
1196 | #if 0 | |
1197 | printf("nd6_rtequest: time.tv_sec is zero; " | |
1198 | "treat it as 1\n"); | |
1199 | #endif | |
1200 | ln->ln_expire = 1; | |
1201 | } | |
1202 | #endif | |
1203 | if ((rt->rt_flags & RTF_CLONING)) | |
1204 | break; | |
1205 | } | |
1206 | /* | |
1207 | * In IPv4 code, we try to annonuce new RTF_ANNOUNCE entry here. | |
1208 | * We don't do that here since llinfo is not ready yet. | |
1209 | * | |
1210 | * There are also couple of other things to be discussed: | |
1211 | * - unsolicited NA code needs improvement beforehand | |
1212 | * - RFC2461 says we MAY send multicast unsolicited NA | |
1213 | * (7.2.6 paragraph 4), however, it also says that we | |
1214 | * SHOULD provide a mechanism to prevent multicast NA storm. | |
1215 | * we don't have anything like it right now. | |
1216 | * note that the mechanism needs a mutual agreement | |
1217 | * between proxies, which means that we need to implement | |
1218 | * a new protocol, or a new kludge. | |
1219 | * - from RFC2461 6.2.4, host MUST NOT send an unsolicited NA. | |
1220 | * we need to check ip6forwarding before sending it. | |
1221 | * (or should we allow proxy ND configuration only for | |
1222 | * routers? there's no mention about proxy ND from hosts) | |
1223 | */ | |
1224 | #if 0 | |
1225 | /* XXX it does not work */ | |
1226 | if (rt->rt_flags & RTF_ANNOUNCE) | |
1227 | nd6_na_output(ifp, | |
1228 | &SIN6(rt_key(rt))->sin6_addr, | |
1229 | &SIN6(rt_key(rt))->sin6_addr, | |
1230 | ip6_forwarding ? ND_NA_FLAG_ROUTER : 0, | |
1231 | 1, NULL); | |
1232 | #endif | |
1233 | /* FALLTHROUGH */ | |
1234 | case RTM_RESOLVE: | |
1235 | if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) == 0) { | |
1236 | /* | |
1237 | * Address resolution isn't necessary for a point to | |
1238 | * point link, so we can skip this test for a p2p link. | |
1239 | */ | |
1240 | if (gate->sa_family != AF_LINK || | |
1241 | gate->sa_len < sizeof(null_sdl)) { | |
1242 | log(LOG_DEBUG, | |
1243 | "nd6_rtrequest: bad gateway value: %s\n", | |
1244 | if_name(ifp)); | |
1245 | break; | |
1246 | } | |
1247 | SDL(gate)->sdl_type = ifp->if_type; | |
1248 | SDL(gate)->sdl_index = ifp->if_index; | |
1249 | } | |
1250 | if (ln != NULL) | |
1251 | break; /* This happens on a route change */ | |
1252 | /* | |
1253 | * Case 2: This route may come from cloning, or a manual route | |
1254 | * add with a LL address. | |
1255 | */ | |
1256 | R_Malloc(ln, struct llinfo_nd6 *, sizeof(*ln)); | |
1257 | rt->rt_llinfo = (caddr_t)ln; | |
1258 | if (!ln) { | |
1259 | log(LOG_DEBUG, "nd6_rtrequest: malloc failed\n"); | |
1260 | break; | |
1261 | } | |
1262 | nd6_inuse++; | |
1263 | nd6_allocated++; | |
1264 | Bzero(ln, sizeof(*ln)); | |
1265 | ln->ln_rt = rt; | |
1266 | /* this is required for "ndp" command. - shin */ | |
1267 | if (req == RTM_ADD) { | |
1268 | /* | |
1269 | * gate should have some valid AF_LINK entry, | |
1270 | * and ln->ln_expire should have some lifetime | |
1271 | * which is specified by ndp command. | |
1272 | */ | |
1273 | ln->ln_state = ND6_LLINFO_REACHABLE; | |
1274 | ln->ln_byhint = 0; | |
1275 | } else { | |
1276 | /* | |
1277 | * When req == RTM_RESOLVE, rt is created and | |
1278 | * initialized in rtrequest(), so rt_expire is 0. | |
1279 | */ | |
1280 | ln->ln_state = ND6_LLINFO_NOSTATE; | |
1281 | ln->ln_expire = time_second; | |
1282 | } | |
1283 | rt->rt_flags |= RTF_LLINFO; | |
1284 | ln->ln_next = llinfo_nd6.ln_next; | |
1285 | llinfo_nd6.ln_next = ln; | |
1286 | ln->ln_prev = &llinfo_nd6; | |
1287 | ln->ln_next->ln_prev = ln; | |
1288 | ||
1289 | /* | |
1290 | * check if rt_key(rt) is one of my address assigned | |
1291 | * to the interface. | |
1292 | */ | |
1293 | ifa = (struct ifaddr *)in6ifa_ifpwithaddr(rt->rt_ifp, | |
1294 | &SIN6(rt_key(rt))->sin6_addr); | |
1295 | if (ifa) { | |
1296 | caddr_t macp = nd6_ifptomac(ifp); | |
1297 | ln->ln_expire = 0; | |
1298 | ln->ln_state = ND6_LLINFO_REACHABLE; | |
1299 | ln->ln_byhint = 0; | |
1300 | if (macp) { | |
1301 | Bcopy(macp, LLADDR(SDL(gate)), ifp->if_addrlen); | |
1302 | SDL(gate)->sdl_alen = ifp->if_addrlen; | |
1303 | } | |
1304 | if (nd6_useloopback) { | |
1305 | rt->rt_ifp = &loif[0]; /* XXX */ | |
1306 | /* | |
1307 | * Make sure rt_ifa be equal to the ifaddr | |
1308 | * corresponding to the address. | |
1309 | * We need this because when we refer | |
1310 | * rt_ifa->ia6_flags in ip6_input, we assume | |
1311 | * that the rt_ifa points to the address instead | |
1312 | * of the loopback address. | |
1313 | */ | |
1314 | if (ifa != rt->rt_ifa) { | |
1315 | rtsetifa(rt, ifa); | |
1316 | } | |
1317 | } | |
1318 | } else if (rt->rt_flags & RTF_ANNOUNCE) { | |
1319 | ln->ln_expire = 0; | |
1320 | ln->ln_state = ND6_LLINFO_REACHABLE; | |
1321 | ln->ln_byhint = 0; | |
1322 | ||
1323 | /* join solicited node multicast for proxy ND */ | |
1324 | if (ifp->if_flags & IFF_MULTICAST) { | |
1325 | struct in6_addr llsol; | |
1326 | int error; | |
1327 | ||
1328 | llsol = SIN6(rt_key(rt))->sin6_addr; | |
1329 | llsol.s6_addr16[0] = htons(0xff02); | |
1330 | llsol.s6_addr16[1] = htons(ifp->if_index); | |
1331 | llsol.s6_addr32[1] = 0; | |
1332 | llsol.s6_addr32[2] = htonl(1); | |
1333 | llsol.s6_addr8[12] = 0xff; | |
1334 | ||
1335 | if (!in6_addmulti(&llsol, ifp, &error)) { | |
1336 | nd6log((LOG_ERR, "%s: failed to join " | |
1337 | "%s (errno=%d)\n", if_name(ifp), | |
1338 | ip6_sprintf(&llsol), error)); | |
1339 | } | |
1340 | } | |
1341 | } | |
1342 | break; | |
1343 | ||
1344 | case RTM_DELETE: | |
1345 | if (!ln) | |
1346 | break; | |
1347 | /* leave from solicited node multicast for proxy ND */ | |
1348 | if ((rt->rt_flags & RTF_ANNOUNCE) != 0 && | |
1349 | (ifp->if_flags & IFF_MULTICAST) != 0) { | |
1350 | struct in6_addr llsol; | |
1351 | struct in6_multi *in6m; | |
1352 | ||
1353 | llsol = SIN6(rt_key(rt))->sin6_addr; | |
1354 | llsol.s6_addr16[0] = htons(0xff02); | |
1355 | llsol.s6_addr16[1] = htons(ifp->if_index); | |
1356 | llsol.s6_addr32[1] = 0; | |
1357 | llsol.s6_addr32[2] = htonl(1); | |
1358 | llsol.s6_addr8[12] = 0xff; | |
1359 | ||
1360 | IN6_LOOKUP_MULTI(llsol, ifp, in6m); | |
1361 | if (in6m) | |
1362 | in6_delmulti(in6m); | |
1363 | } | |
1364 | nd6_inuse--; | |
1365 | ln->ln_next->ln_prev = ln->ln_prev; | |
1366 | ln->ln_prev->ln_next = ln->ln_next; | |
1367 | ln->ln_prev = NULL; | |
1368 | rt->rt_llinfo = 0; | |
1369 | rt->rt_flags &= ~RTF_LLINFO; | |
1370 | if (ln->ln_hold) | |
1371 | m_freem(ln->ln_hold); | |
1372 | ln->ln_hold = NULL; | |
1373 | Free((caddr_t)ln); | |
1374 | } | |
1375 | } | |
1376 | ||
1377 | int | |
1378 | nd6_ioctl(cmd, data, ifp) | |
1379 | u_long cmd; | |
1380 | caddr_t data; | |
1381 | struct ifnet *ifp; | |
1382 | { | |
1383 | struct in6_drlist *drl = (struct in6_drlist *)data; | |
1384 | struct in6_prlist *prl = (struct in6_prlist *)data; | |
1385 | struct in6_ndireq *ndi = (struct in6_ndireq *)data; | |
1386 | struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data; | |
1387 | struct in6_ndifreq *ndif = (struct in6_ndifreq *)data; | |
1388 | struct nd_defrouter *dr, any; | |
1389 | struct nd_prefix *pr; | |
1390 | struct rtentry *rt; | |
1391 | int i = 0, error = 0; | |
1392 | int s; | |
1393 | ||
1394 | switch (cmd) { | |
1395 | case SIOCGDRLST_IN6: | |
1396 | /* | |
1397 | * obsolete API, use sysctl under net.inet6.icmp6 | |
1398 | */ | |
1399 | bzero(drl, sizeof(*drl)); | |
1400 | s = splnet(); | |
1401 | dr = TAILQ_FIRST(&nd_defrouter); | |
1402 | while (dr && i < DRLSTSIZ) { | |
1403 | drl->defrouter[i].rtaddr = dr->rtaddr; | |
1404 | if (IN6_IS_ADDR_LINKLOCAL(&drl->defrouter[i].rtaddr)) { | |
1405 | /* XXX: need to this hack for KAME stack */ | |
1406 | drl->defrouter[i].rtaddr.s6_addr16[1] = 0; | |
1407 | } else | |
1408 | log(LOG_ERR, | |
1409 | "default router list contains a " | |
1410 | "non-linklocal address(%s)\n", | |
1411 | ip6_sprintf(&drl->defrouter[i].rtaddr)); | |
1412 | ||
1413 | drl->defrouter[i].flags = dr->flags; | |
1414 | drl->defrouter[i].rtlifetime = dr->rtlifetime; | |
1415 | drl->defrouter[i].expire = dr->expire; | |
1416 | drl->defrouter[i].if_index = dr->ifp->if_index; | |
1417 | i++; | |
1418 | dr = TAILQ_NEXT(dr, dr_entry); | |
1419 | } | |
1420 | splx(s); | |
1421 | break; | |
1422 | case SIOCGPRLST_IN6: | |
1423 | /* | |
1424 | * obsolete API, use sysctl under net.inet6.icmp6 | |
1425 | */ | |
1426 | /* | |
1427 | * XXX meaning of fields, especialy "raflags", is very | |
1428 | * differnet between RA prefix list and RR/static prefix list. | |
1429 | * how about separating ioctls into two? | |
1430 | */ | |
1431 | bzero(prl, sizeof(*prl)); | |
1432 | s = splnet(); | |
1433 | pr = nd_prefix.lh_first; | |
1434 | while (pr && i < PRLSTSIZ) { | |
1435 | struct nd_pfxrouter *pfr; | |
1436 | int j; | |
1437 | ||
1438 | (void)in6_embedscope(&prl->prefix[i].prefix, | |
1439 | &pr->ndpr_prefix, NULL, NULL); | |
1440 | prl->prefix[i].raflags = pr->ndpr_raf; | |
1441 | prl->prefix[i].prefixlen = pr->ndpr_plen; | |
1442 | prl->prefix[i].vltime = pr->ndpr_vltime; | |
1443 | prl->prefix[i].pltime = pr->ndpr_pltime; | |
1444 | prl->prefix[i].if_index = pr->ndpr_ifp->if_index; | |
1445 | prl->prefix[i].expire = pr->ndpr_expire; | |
1446 | ||
1447 | pfr = pr->ndpr_advrtrs.lh_first; | |
1448 | j = 0; | |
1449 | while (pfr) { | |
1450 | if (j < DRLSTSIZ) { | |
1451 | #define RTRADDR prl->prefix[i].advrtr[j] | |
1452 | RTRADDR = pfr->router->rtaddr; | |
1453 | if (IN6_IS_ADDR_LINKLOCAL(&RTRADDR)) { | |
1454 | /* XXX: hack for KAME */ | |
1455 | RTRADDR.s6_addr16[1] = 0; | |
1456 | } else | |
1457 | log(LOG_ERR, | |
1458 | "a router(%s) advertises " | |
1459 | "a prefix with " | |
1460 | "non-link local address\n", | |
1461 | ip6_sprintf(&RTRADDR)); | |
1462 | #undef RTRADDR | |
1463 | } | |
1464 | j++; | |
1465 | pfr = pfr->pfr_next; | |
1466 | } | |
1467 | prl->prefix[i].advrtrs = j; | |
1468 | prl->prefix[i].origin = PR_ORIG_RA; | |
1469 | ||
1470 | i++; | |
1471 | pr = pr->ndpr_next; | |
1472 | } | |
1473 | { | |
1474 | struct rr_prefix *rpp; | |
1475 | ||
1476 | for (rpp = LIST_FIRST(&rr_prefix); rpp; | |
1477 | rpp = LIST_NEXT(rpp, rp_entry)) { | |
1478 | if (i >= PRLSTSIZ) | |
1479 | break; | |
1480 | (void)in6_embedscope(&prl->prefix[i].prefix, | |
1481 | &pr->ndpr_prefix, NULL, NULL); | |
1482 | prl->prefix[i].raflags = rpp->rp_raf; | |
1483 | prl->prefix[i].prefixlen = rpp->rp_plen; | |
1484 | prl->prefix[i].vltime = rpp->rp_vltime; | |
1485 | prl->prefix[i].pltime = rpp->rp_pltime; | |
1486 | prl->prefix[i].if_index = rpp->rp_ifp->if_index; | |
1487 | prl->prefix[i].expire = rpp->rp_expire; | |
1488 | prl->prefix[i].advrtrs = 0; | |
1489 | prl->prefix[i].origin = rpp->rp_origin; | |
1490 | i++; | |
1491 | } | |
1492 | } | |
1493 | splx(s); | |
1494 | ||
1495 | break; | |
1496 | case OSIOCGIFINFO_IN6: | |
1497 | if (!nd_ifinfo || i >= nd_ifinfo_indexlim) { | |
1498 | error = EINVAL; | |
1499 | break; | |
1500 | } | |
1501 | ndi->ndi.linkmtu = nd_ifinfo[ifp->if_index].linkmtu; | |
1502 | ndi->ndi.maxmtu = nd_ifinfo[ifp->if_index].maxmtu; | |
1503 | ndi->ndi.basereachable = | |
1504 | nd_ifinfo[ifp->if_index].basereachable; | |
1505 | ndi->ndi.reachable = nd_ifinfo[ifp->if_index].reachable; | |
1506 | ndi->ndi.retrans = nd_ifinfo[ifp->if_index].retrans; | |
1507 | ndi->ndi.flags = nd_ifinfo[ifp->if_index].flags; | |
1508 | ndi->ndi.recalctm = nd_ifinfo[ifp->if_index].recalctm; | |
1509 | ndi->ndi.chlim = nd_ifinfo[ifp->if_index].chlim; | |
1510 | ndi->ndi.receivedra = nd_ifinfo[ifp->if_index].receivedra; | |
1511 | break; | |
1512 | case SIOCGIFINFO_IN6: | |
1513 | if (!nd_ifinfo || i >= nd_ifinfo_indexlim) { | |
1514 | error = EINVAL; | |
1515 | break; | |
1516 | } | |
1517 | ndi->ndi = nd_ifinfo[ifp->if_index]; | |
1518 | break; | |
1519 | case SIOCSIFINFO_FLAGS: | |
1520 | /* XXX: almost all other fields of ndi->ndi is unused */ | |
1521 | if (!nd_ifinfo || i >= nd_ifinfo_indexlim) { | |
1522 | error = EINVAL; | |
1523 | break; | |
1524 | } | |
1525 | nd_ifinfo[ifp->if_index].flags = ndi->ndi.flags; | |
1526 | break; | |
1527 | case SIOCSNDFLUSH_IN6: /* XXX: the ioctl name is confusing... */ | |
1528 | /* flush default router list */ | |
1529 | /* | |
1530 | * xxx sumikawa: should not delete route if default | |
1531 | * route equals to the top of default router list | |
1532 | */ | |
1533 | bzero(&any, sizeof(any)); | |
1534 | defrouter_delreq(&any, 0); | |
1535 | defrouter_select(); | |
1536 | /* xxx sumikawa: flush prefix list */ | |
1537 | break; | |
1538 | case SIOCSPFXFLUSH_IN6: | |
1539 | { | |
1540 | /* flush all the prefix advertised by routers */ | |
1541 | struct nd_prefix *pr, *next; | |
1542 | ||
1543 | s = splnet(); | |
1544 | for (pr = nd_prefix.lh_first; pr; pr = next) { | |
1545 | struct in6_ifaddr *ia, *ia_next; | |
1546 | ||
1547 | next = pr->ndpr_next; | |
1548 | ||
1549 | if (IN6_IS_ADDR_LINKLOCAL(&pr->ndpr_prefix.sin6_addr)) | |
1550 | continue; /* XXX */ | |
1551 | ||
1552 | /* do we really have to remove addresses as well? */ | |
1553 | for (ia = in6_ifaddr; ia; ia = ia_next) { | |
1554 | /* ia might be removed. keep the next ptr. */ | |
1555 | ia_next = ia->ia_next; | |
1556 | ||
1557 | if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0) | |
1558 | continue; | |
1559 | ||
1560 | if (ia->ia6_ndpr == pr) | |
1561 | in6_purgeaddr(&ia->ia_ifa); | |
1562 | } | |
1563 | prelist_remove(pr); | |
1564 | } | |
1565 | splx(s); | |
1566 | break; | |
1567 | } | |
1568 | case SIOCSRTRFLUSH_IN6: | |
1569 | { | |
1570 | /* flush all the default routers */ | |
1571 | struct nd_defrouter *dr, *next; | |
1572 | ||
1573 | s = splnet(); | |
1574 | if ((dr = TAILQ_FIRST(&nd_defrouter)) != NULL) { | |
1575 | /* | |
1576 | * The first entry of the list may be stored in | |
1577 | * the routing table, so we'll delete it later. | |
1578 | */ | |
1579 | for (dr = TAILQ_NEXT(dr, dr_entry); dr; dr = next) { | |
1580 | next = TAILQ_NEXT(dr, dr_entry); | |
1581 | defrtrlist_del(dr); | |
1582 | } | |
1583 | defrtrlist_del(TAILQ_FIRST(&nd_defrouter)); | |
1584 | } | |
1585 | splx(s); | |
1586 | break; | |
1587 | } | |
1588 | case SIOCGNBRINFO_IN6: | |
1589 | { | |
1590 | struct llinfo_nd6 *ln; | |
1591 | struct in6_addr nb_addr = nbi->addr; /* make local for safety */ | |
1592 | ||
1593 | /* | |
1594 | * XXX: KAME specific hack for scoped addresses | |
1595 | * XXXX: for other scopes than link-local? | |
1596 | */ | |
1597 | if (IN6_IS_ADDR_LINKLOCAL(&nbi->addr) || | |
1598 | IN6_IS_ADDR_MC_LINKLOCAL(&nbi->addr)) { | |
1599 | u_int16_t *idp = (u_int16_t *)&nb_addr.s6_addr[2]; | |
1600 | ||
1601 | if (*idp == 0) | |
1602 | *idp = htons(ifp->if_index); | |
1603 | } | |
1604 | ||
1605 | s = splnet(); | |
1606 | if ((rt = nd6_lookup(&nb_addr, 0, ifp)) == NULL) { | |
1607 | error = EINVAL; | |
1608 | splx(s); | |
1609 | break; | |
1610 | } | |
1611 | ln = (struct llinfo_nd6 *)rt->rt_llinfo; | |
1612 | nbi->state = ln->ln_state; | |
1613 | nbi->asked = ln->ln_asked; | |
1614 | nbi->isrouter = ln->ln_router; | |
1615 | nbi->expire = ln->ln_expire; | |
1616 | splx(s); | |
1617 | ||
1618 | break; | |
1619 | } | |
1620 | case SIOCGDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */ | |
1621 | ndif->ifindex = nd6_defifindex; | |
1622 | break; | |
1623 | case SIOCSDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */ | |
1624 | return(nd6_setdefaultiface(ndif->ifindex)); | |
1625 | break; | |
1626 | } | |
1627 | return(error); | |
1628 | } | |
1629 | ||
1630 | /* | |
1631 | * Create neighbor cache entry and cache link-layer address, | |
1632 | * on reception of inbound ND6 packets. (RS/RA/NS/redirect) | |
1633 | */ | |
1634 | struct rtentry * | |
1635 | nd6_cache_lladdr(ifp, from, lladdr, lladdrlen, type, code) | |
1636 | struct ifnet *ifp; | |
1637 | struct in6_addr *from; | |
1638 | char *lladdr; | |
1639 | int lladdrlen; | |
1640 | int type; /* ICMP6 type */ | |
1641 | int code; /* type dependent information */ | |
1642 | { | |
1643 | struct rtentry *rt = NULL; | |
1644 | struct llinfo_nd6 *ln = NULL; | |
1645 | int is_newentry; | |
1646 | struct sockaddr_dl *sdl = NULL; | |
1647 | int do_update; | |
1648 | int olladdr; | |
1649 | int llchange; | |
1650 | int newstate = 0; | |
1651 | ||
1652 | if (!ifp) | |
1653 | panic("ifp == NULL in nd6_cache_lladdr"); | |
1654 | if (!from) | |
1655 | panic("from == NULL in nd6_cache_lladdr"); | |
1656 | ||
1657 | /* nothing must be updated for unspecified address */ | |
1658 | if (IN6_IS_ADDR_UNSPECIFIED(from)) | |
1659 | return NULL; | |
1660 | ||
1661 | /* | |
1662 | * Validation about ifp->if_addrlen and lladdrlen must be done in | |
1663 | * the caller. | |
1664 | * | |
1665 | * XXX If the link does not have link-layer adderss, what should | |
1666 | * we do? (ifp->if_addrlen == 0) | |
1667 | * Spec says nothing in sections for RA, RS and NA. There's small | |
1668 | * description on it in NS section (RFC 2461 7.2.3). | |
1669 | */ | |
1670 | ||
1671 | rt = nd6_lookup(from, 0, ifp); | |
1672 | if (!rt) { | |
1673 | #if 0 | |
1674 | /* nothing must be done if there's no lladdr */ | |
1675 | if (!lladdr || !lladdrlen) | |
1676 | return NULL; | |
1677 | #endif | |
1678 | ||
1679 | rt = nd6_lookup(from, 1, ifp); | |
1680 | is_newentry = 1; | |
1681 | } else { | |
1682 | /* do nothing if static ndp is set */ | |
1683 | if (rt->rt_flags & RTF_STATIC) | |
1684 | return NULL; | |
1685 | is_newentry = 0; | |
1686 | } | |
1687 | ||
1688 | if (!rt) | |
1689 | return NULL; | |
1690 | if ((rt->rt_flags & (RTF_GATEWAY | RTF_LLINFO)) != RTF_LLINFO) { | |
1691 | fail: | |
1692 | (void)nd6_free(rt); | |
1693 | return NULL; | |
1694 | } | |
1695 | ln = (struct llinfo_nd6 *)rt->rt_llinfo; | |
1696 | if (!ln) | |
1697 | goto fail; | |
1698 | if (!rt->rt_gateway) | |
1699 | goto fail; | |
1700 | if (rt->rt_gateway->sa_family != AF_LINK) | |
1701 | goto fail; | |
1702 | sdl = SDL(rt->rt_gateway); | |
1703 | ||
1704 | olladdr = (sdl->sdl_alen) ? 1 : 0; | |
1705 | if (olladdr && lladdr) { | |
1706 | if (bcmp(lladdr, LLADDR(sdl), ifp->if_addrlen)) | |
1707 | llchange = 1; | |
1708 | else | |
1709 | llchange = 0; | |
1710 | } else | |
1711 | llchange = 0; | |
1712 | ||
1713 | /* | |
1714 | * newentry olladdr lladdr llchange (*=record) | |
1715 | * 0 n n -- (1) | |
1716 | * 0 y n -- (2) | |
1717 | * 0 n y -- (3) * STALE | |
1718 | * 0 y y n (4) * | |
1719 | * 0 y y y (5) * STALE | |
1720 | * 1 -- n -- (6) NOSTATE(= PASSIVE) | |
1721 | * 1 -- y -- (7) * STALE | |
1722 | */ | |
1723 | ||
1724 | if (lladdr) { /* (3-5) and (7) */ | |
1725 | /* | |
1726 | * Record source link-layer address | |
1727 | * XXX is it dependent to ifp->if_type? | |
1728 | */ | |
1729 | sdl->sdl_alen = ifp->if_addrlen; | |
1730 | bcopy(lladdr, LLADDR(sdl), ifp->if_addrlen); | |
1731 | } | |
1732 | ||
1733 | if (!is_newentry) { | |
1734 | if ((!olladdr && lladdr) /* (3) */ | |
1735 | || (olladdr && lladdr && llchange)) { /* (5) */ | |
1736 | do_update = 1; | |
1737 | newstate = ND6_LLINFO_STALE; | |
1738 | } else /* (1-2,4) */ | |
1739 | do_update = 0; | |
1740 | } else { | |
1741 | do_update = 1; | |
1742 | if (!lladdr) /* (6) */ | |
1743 | newstate = ND6_LLINFO_NOSTATE; | |
1744 | else /* (7) */ | |
1745 | newstate = ND6_LLINFO_STALE; | |
1746 | } | |
1747 | ||
1748 | if (do_update) { | |
1749 | /* | |
1750 | * Update the state of the neighbor cache. | |
1751 | */ | |
1752 | ln->ln_state = newstate; | |
1753 | ||
1754 | if (ln->ln_state == ND6_LLINFO_STALE) { | |
1755 | /* | |
1756 | * XXX: since nd6_output() below will cause | |
1757 | * state tansition to DELAY and reset the timer, | |
1758 | * we must set the timer now, although it is actually | |
1759 | * meaningless. | |
1760 | */ | |
1761 | ln->ln_expire = time_second + nd6_gctimer; | |
1762 | ||
1763 | if (ln->ln_hold) { | |
1764 | /* | |
1765 | * we assume ifp is not a p2p here, so just | |
1766 | * set the 2nd argument as the 1st one. | |
1767 | */ | |
1768 | nd6_output(ifp, ifp, ln->ln_hold, | |
1769 | (struct sockaddr_in6 *)rt_key(rt), | |
1770 | rt); | |
1771 | ln->ln_hold = NULL; | |
1772 | } | |
1773 | } else if (ln->ln_state == ND6_LLINFO_INCOMPLETE) { | |
1774 | /* probe right away */ | |
1775 | ln->ln_expire = time_second; | |
1776 | } | |
1777 | } | |
1778 | ||
1779 | /* | |
1780 | * ICMP6 type dependent behavior. | |
1781 | * | |
1782 | * NS: clear IsRouter if new entry | |
1783 | * RS: clear IsRouter | |
1784 | * RA: set IsRouter if there's lladdr | |
1785 | * redir: clear IsRouter if new entry | |
1786 | * | |
1787 | * RA case, (1): | |
1788 | * The spec says that we must set IsRouter in the following cases: | |
1789 | * - If lladdr exist, set IsRouter. This means (1-5). | |
1790 | * - If it is old entry (!newentry), set IsRouter. This means (7). | |
1791 | * So, based on the spec, in (1-5) and (7) cases we must set IsRouter. | |
1792 | * A quetion arises for (1) case. (1) case has no lladdr in the | |
1793 | * neighbor cache, this is similar to (6). | |
1794 | * This case is rare but we figured that we MUST NOT set IsRouter. | |
1795 | * | |
1796 | * newentry olladdr lladdr llchange NS RS RA redir | |
1797 | * D R | |
1798 | * 0 n n -- (1) c ? s | |
1799 | * 0 y n -- (2) c s s | |
1800 | * 0 n y -- (3) c s s | |
1801 | * 0 y y n (4) c s s | |
1802 | * 0 y y y (5) c s s | |
1803 | * 1 -- n -- (6) c c c s | |
1804 | * 1 -- y -- (7) c c s c s | |
1805 | * | |
1806 | * (c=clear s=set) | |
1807 | */ | |
1808 | switch (type & 0xff) { | |
1809 | case ND_NEIGHBOR_SOLICIT: | |
1810 | /* | |
1811 | * New entry must have is_router flag cleared. | |
1812 | */ | |
1813 | if (is_newentry) /* (6-7) */ | |
1814 | ln->ln_router = 0; | |
1815 | break; | |
1816 | case ND_REDIRECT: | |
1817 | /* | |
1818 | * If the icmp is a redirect to a better router, always set the | |
1819 | * is_router flag. Otherwise, if the entry is newly created, | |
1820 | * clear the flag. [RFC 2461, sec 8.3] | |
1821 | */ | |
1822 | if (code == ND_REDIRECT_ROUTER) | |
1823 | ln->ln_router = 1; | |
1824 | else if (is_newentry) /* (6-7) */ | |
1825 | ln->ln_router = 0; | |
1826 | break; | |
1827 | case ND_ROUTER_SOLICIT: | |
1828 | /* | |
1829 | * is_router flag must always be cleared. | |
1830 | */ | |
1831 | ln->ln_router = 0; | |
1832 | break; | |
1833 | case ND_ROUTER_ADVERT: | |
1834 | /* | |
1835 | * Mark an entry with lladdr as a router. | |
1836 | */ | |
1837 | if ((!is_newentry && (olladdr || lladdr)) /* (2-5) */ | |
1838 | || (is_newentry && lladdr)) { /* (7) */ | |
1839 | ln->ln_router = 1; | |
1840 | } | |
1841 | break; | |
1842 | } | |
1843 | ||
1844 | /* | |
1845 | * When the link-layer address of a router changes, select the | |
1846 | * best router again. In particular, when the neighbor entry is newly | |
1847 | * created, it might affect the selection policy. | |
1848 | * Question: can we restrict the first condition to the "is_newentry" | |
1849 | * case? | |
1850 | * XXX: when we hear an RA from a new router with the link-layer | |
1851 | * address option, defrouter_select() is called twice, since | |
1852 | * defrtrlist_update called the function as well. However, I believe | |
1853 | * we can compromise the overhead, since it only happens the first | |
1854 | * time. | |
1855 | * XXX: although defrouter_select() should not have a bad effect | |
1856 | * for those are not autoconfigured hosts, we explicitly avoid such | |
1857 | * cases for safety. | |
1858 | */ | |
1859 | if (do_update && ln->ln_router && !ip6_forwarding && (ip6_accept_rtadv || (ifp->if_eflags & IFEF_ACCEPT_RTADVD))) | |
1860 | defrouter_select(); | |
1861 | ||
1862 | return rt; | |
1863 | } | |
1864 | ||
1865 | static void | |
1866 | nd6_slowtimo(ignored_arg) | |
1867 | void *ignored_arg; | |
1868 | { | |
1869 | int s = splnet(); | |
1870 | int i; | |
1871 | struct nd_ifinfo *nd6if; | |
1872 | ||
1873 | s = splnet(); | |
1874 | timeout(nd6_slowtimo_funneled, (caddr_t)0, ND6_SLOWTIMER_INTERVAL * hz); | |
1875 | for (i = 1; i < if_index + 1; i++) { | |
1876 | if (!nd_ifinfo || i >= nd_ifinfo_indexlim) | |
1877 | continue; | |
1878 | nd6if = &nd_ifinfo[i]; | |
1879 | if (nd6if->basereachable && /* already initialized */ | |
1880 | (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) { | |
1881 | /* | |
1882 | * Since reachable time rarely changes by router | |
1883 | * advertisements, we SHOULD insure that a new random | |
1884 | * value gets recomputed at least once every few hours. | |
1885 | * (RFC 2461, 6.3.4) | |
1886 | */ | |
1887 | nd6if->recalctm = nd6_recalc_reachtm_interval; | |
1888 | nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable); | |
1889 | } | |
1890 | } | |
1891 | splx(s); | |
1892 | } | |
1893 | ||
1894 | static void | |
1895 | nd6_slowtimo_funneled(ignored_arg) | |
1896 | void *ignored_arg; | |
1897 | { | |
1898 | #ifdef __APPLE__ | |
1899 | boolean_t funnel_state; | |
1900 | funnel_state = thread_funnel_set(network_flock, TRUE); | |
1901 | #endif | |
1902 | nd6_slowtimo(ignored_arg); | |
1903 | #ifdef __APPLE__ | |
1904 | (void) thread_funnel_set(network_flock, FALSE); | |
1905 | #endif | |
1906 | } | |
1907 | ||
1908 | #define senderr(e) { error = (e); goto bad;} | |
1909 | int | |
1910 | nd6_output(ifp, origifp, m0, dst, rt0) | |
1911 | struct ifnet *ifp; | |
1912 | struct ifnet *origifp; | |
1913 | struct mbuf *m0; | |
1914 | struct sockaddr_in6 *dst; | |
1915 | struct rtentry *rt0; | |
1916 | { | |
1917 | struct mbuf *m = m0; | |
1918 | struct rtentry *rt = rt0; | |
1919 | struct sockaddr_in6 *gw6 = NULL; | |
1920 | struct llinfo_nd6 *ln = NULL; | |
1921 | int error = 0; | |
1922 | ||
1923 | if (IN6_IS_ADDR_MULTICAST(&dst->sin6_addr)) | |
1924 | goto sendpkt; | |
1925 | ||
1926 | if (nd6_need_cache(ifp) == 0) | |
1927 | goto sendpkt; | |
1928 | ||
1929 | /* | |
1930 | * next hop determination. This routine is derived from ether_outpout. | |
1931 | */ | |
1932 | if (rt) { | |
1933 | if ((rt->rt_flags & RTF_UP) == 0) { | |
1934 | if ((rt0 = rt = rtalloc1((struct sockaddr *)dst, 1, 0UL)) != | |
1935 | NULL) | |
1936 | { | |
1937 | rtunref(rt); | |
1938 | if (rt->rt_ifp != ifp) { | |
1939 | /* XXX: loop care? */ | |
1940 | return nd6_output(ifp, origifp, m0, | |
1941 | dst, rt); | |
1942 | } | |
1943 | } else | |
1944 | senderr(EHOSTUNREACH); | |
1945 | } | |
1946 | ||
1947 | if (rt->rt_flags & RTF_GATEWAY) { | |
1948 | gw6 = (struct sockaddr_in6 *)rt->rt_gateway; | |
1949 | ||
1950 | /* | |
1951 | * We skip link-layer address resolution and NUD | |
1952 | * if the gateway is not a neighbor from ND point | |
1953 | * of view, regardless of the value of nd_ifinfo.flags. | |
1954 | * The second condition is a bit tricky; we skip | |
1955 | * if the gateway is our own address, which is | |
1956 | * sometimes used to install a route to a p2p link. | |
1957 | */ | |
1958 | if (!nd6_is_addr_neighbor(gw6, ifp) || | |
1959 | in6ifa_ifpwithaddr(ifp, &gw6->sin6_addr)) { | |
1960 | /* | |
1961 | * We allow this kind of tricky route only | |
1962 | * when the outgoing interface is p2p. | |
1963 | * XXX: we may need a more generic rule here. | |
1964 | */ | |
1965 | if ((ifp->if_flags & IFF_POINTOPOINT) == 0) | |
1966 | senderr(EHOSTUNREACH); | |
1967 | ||
1968 | goto sendpkt; | |
1969 | } | |
1970 | ||
1971 | if (rt->rt_gwroute == 0) | |
1972 | goto lookup; | |
1973 | if (((rt = rt->rt_gwroute)->rt_flags & RTF_UP) == 0) { | |
1974 | rtfree(rt); rt = rt0; | |
1975 | lookup: rt->rt_gwroute = rtalloc1(rt->rt_gateway, 1, 0UL); | |
1976 | if ((rt = rt->rt_gwroute) == 0) | |
1977 | senderr(EHOSTUNREACH); | |
1978 | } | |
1979 | } | |
1980 | } | |
1981 | ||
1982 | /* | |
1983 | * Address resolution or Neighbor Unreachability Detection | |
1984 | * for the next hop. | |
1985 | * At this point, the destination of the packet must be a unicast | |
1986 | * or an anycast address(i.e. not a multicast). | |
1987 | */ | |
1988 | ||
1989 | /* Look up the neighbor cache for the nexthop */ | |
1990 | if (rt && (rt->rt_flags & RTF_LLINFO) != 0) | |
1991 | ln = (struct llinfo_nd6 *)rt->rt_llinfo; | |
1992 | else { | |
1993 | /* | |
1994 | * Since nd6_is_addr_neighbor() internally calls nd6_lookup(), | |
1995 | * the condition below is not very efficient. But we believe | |
1996 | * it is tolerable, because this should be a rare case. | |
1997 | */ | |
1998 | if (nd6_is_addr_neighbor(dst, ifp) && | |
1999 | (rt = nd6_lookup(&dst->sin6_addr, 1, ifp)) != NULL) | |
2000 | ln = (struct llinfo_nd6 *)rt->rt_llinfo; | |
2001 | } | |
2002 | if (!ln || !rt) { | |
2003 | if ((ifp->if_flags & IFF_POINTOPOINT) == 0 && | |
2004 | !(nd_ifinfo[ifp->if_index].flags & ND6_IFF_PERFORMNUD)) { | |
2005 | log(LOG_DEBUG, | |
2006 | "nd6_output: can't allocate llinfo for %s " | |
2007 | "(ln=%p, rt=%p)\n", | |
2008 | ip6_sprintf(&dst->sin6_addr), ln, rt); | |
2009 | senderr(EIO); /* XXX: good error? */ | |
2010 | } | |
2011 | ||
2012 | goto sendpkt; /* send anyway */ | |
2013 | } | |
2014 | ||
2015 | /* We don't have to do link-layer address resolution on a p2p link. */ | |
2016 | if ((ifp->if_flags & IFF_POINTOPOINT) != 0 && | |
2017 | ln->ln_state < ND6_LLINFO_REACHABLE) { | |
2018 | ln->ln_state = ND6_LLINFO_STALE; | |
2019 | ln->ln_expire = time_second + nd6_gctimer; | |
2020 | } | |
2021 | ||
2022 | /* | |
2023 | * The first time we send a packet to a neighbor whose entry is | |
2024 | * STALE, we have to change the state to DELAY and a sets a timer to | |
2025 | * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do | |
2026 | * neighbor unreachability detection on expiration. | |
2027 | * (RFC 2461 7.3.3) | |
2028 | */ | |
2029 | if (ln->ln_state == ND6_LLINFO_STALE) { | |
2030 | ln->ln_asked = 0; | |
2031 | ln->ln_state = ND6_LLINFO_DELAY; | |
2032 | ln->ln_expire = time_second + nd6_delay; | |
2033 | } | |
2034 | ||
2035 | /* | |
2036 | * If the neighbor cache entry has a state other than INCOMPLETE | |
2037 | * (i.e. its link-layer address is already resolved), just | |
2038 | * send the packet. | |
2039 | */ | |
2040 | if (ln->ln_state > ND6_LLINFO_INCOMPLETE) | |
2041 | goto sendpkt; | |
2042 | ||
2043 | /* | |
2044 | * There is a neighbor cache entry, but no ethernet address | |
2045 | * response yet. Replace the held mbuf (if any) with this | |
2046 | * latest one. | |
2047 | * | |
2048 | * This code conforms to the rate-limiting rule described in Section | |
2049 | * 7.2.2 of RFC 2461, because the timer is set correctly after sending | |
2050 | * an NS below. | |
2051 | */ | |
2052 | if (ln->ln_state == ND6_LLINFO_NOSTATE) | |
2053 | ln->ln_state = ND6_LLINFO_INCOMPLETE; | |
2054 | if (ln->ln_hold) | |
2055 | m_freem(ln->ln_hold); | |
2056 | ln->ln_hold = m; | |
2057 | if (ln->ln_expire) { | |
2058 | if (ln->ln_asked < nd6_mmaxtries && | |
2059 | ln->ln_expire < time_second) { | |
2060 | ln->ln_asked++; | |
2061 | ln->ln_expire = time_second + | |
2062 | nd_ifinfo[ifp->if_index].retrans / 1000; | |
2063 | nd6_ns_output(ifp, NULL, &dst->sin6_addr, ln, 0); | |
2064 | } | |
2065 | } | |
2066 | return(0); | |
2067 | ||
2068 | sendpkt: | |
2069 | #ifdef __APPLE__ | |
2070 | ||
2071 | /* Make sure the HW checksum flags are cleaned before sending the packet */ | |
2072 | ||
2073 | m->m_pkthdr.csum_data = 0; | |
2074 | m->m_pkthdr.csum_flags = 0; | |
2075 | ||
2076 | if ((ifp->if_flags & IFF_LOOPBACK) != 0) { | |
2077 | m->m_pkthdr.rcvif = origifp; /* forwarding rules require the original scope_id */ | |
2078 | return (dlil_output(ifptodlt(origifp, PF_INET6), m, (caddr_t)rt, (struct sockaddr *)dst,0)); | |
2079 | } | |
2080 | ||
2081 | m->m_pkthdr.rcvif = (struct ifnet *)0; | |
2082 | return (dlil_output(ifptodlt(ifp, PF_INET6), m, (caddr_t)rt, (struct sockaddr *)dst, 0)); | |
2083 | #else | |
2084 | if ((ifp->if_flags & IFF_LOOPBACK) != 0) { | |
2085 | return((*ifp->if_output)(origifp, m, (struct sockaddr *)dst, | |
2086 | rt)); | |
2087 | } | |
2088 | return((*ifp->if_output)(ifp, m, (struct sockaddr *)dst, rt)); | |
2089 | #endif | |
2090 | ||
2091 | bad: | |
2092 | if (m) | |
2093 | m_freem(m); | |
2094 | return (error); | |
2095 | } | |
2096 | #undef senderr | |
2097 | ||
2098 | int | |
2099 | nd6_need_cache(ifp) | |
2100 | struct ifnet *ifp; | |
2101 | { | |
2102 | /* | |
2103 | * XXX: we currently do not make neighbor cache on any interface | |
2104 | * other than ARCnet, Ethernet, FDDI and GIF. | |
2105 | * | |
2106 | * RFC2893 says: | |
2107 | * - unidirectional tunnels needs no ND | |
2108 | */ | |
2109 | switch (ifp->if_type) { | |
2110 | case IFT_ARCNET: | |
2111 | case IFT_ETHER: | |
2112 | case IFT_FDDI: | |
2113 | case IFT_IEEE1394: | |
2114 | #if IFT_L2VLAN | |
2115 | case IFT_L2VLAN: | |
2116 | #endif | |
2117 | #if IFT_IEEE80211 | |
2118 | case IFT_IEEE80211: | |
2119 | #endif | |
2120 | case IFT_GIF: /* XXX need more cases? */ | |
2121 | return(1); | |
2122 | default: | |
2123 | return(0); | |
2124 | } | |
2125 | } | |
2126 | ||
2127 | int | |
2128 | nd6_storelladdr(ifp, rt, m, dst, desten) | |
2129 | struct ifnet *ifp; | |
2130 | struct rtentry *rt; | |
2131 | struct mbuf *m; | |
2132 | struct sockaddr *dst; | |
2133 | u_char *desten; | |
2134 | { | |
2135 | int i; | |
2136 | struct sockaddr_dl *sdl; | |
2137 | ||
2138 | if (m->m_flags & M_MCAST) { | |
2139 | switch (ifp->if_type) { | |
2140 | case IFT_ETHER: | |
2141 | case IFT_FDDI: | |
2142 | #if IFT_L2VLAN | |
2143 | case IFT_L2VLAN: | |
2144 | #endif | |
2145 | #if IFT_IEEE80211 | |
2146 | case IFT_IEEE80211: | |
2147 | #endif | |
2148 | ETHER_MAP_IPV6_MULTICAST(&SIN6(dst)->sin6_addr, | |
2149 | desten); | |
2150 | return(1); | |
2151 | case IFT_IEEE1394: | |
2152 | for (i = 0; i < ifp->if_addrlen; i++) | |
2153 | desten[i] = ~0; | |
2154 | return(1); | |
2155 | case IFT_ARCNET: | |
2156 | *desten = 0; | |
2157 | return(1); | |
2158 | default: | |
2159 | return(0); /* caller will free mbuf */ | |
2160 | } | |
2161 | } | |
2162 | ||
2163 | if (rt == NULL) { | |
2164 | /* this could happen, if we could not allocate memory */ | |
2165 | return(0); /* caller will free mbuf */ | |
2166 | } | |
2167 | if (rt->rt_gateway->sa_family != AF_LINK) { | |
2168 | printf("nd6_storelladdr: something odd happens\n"); | |
2169 | return(0); /* caller will free mbuf */ | |
2170 | } | |
2171 | sdl = SDL(rt->rt_gateway); | |
2172 | if (sdl->sdl_alen == 0) { | |
2173 | /* this should be impossible, but we bark here for debugging */ | |
2174 | printf("nd6_storelladdr: sdl_alen == 0\n"); | |
2175 | return(0); /* caller will free mbuf */ | |
2176 | } | |
2177 | ||
2178 | bcopy(LLADDR(sdl), desten, sdl->sdl_alen); | |
2179 | return(1); | |
2180 | } | |
2181 | #ifndef __APPLE__ | |
2182 | static int nd6_sysctl_drlist SYSCTL_HANDLER_ARGS; | |
2183 | static int nd6_sysctl_prlist SYSCTL_HANDLER_ARGS; | |
2184 | SYSCTL_DECL(_net_inet6_icmp6); | |
2185 | SYSCTL_NODE(_net_inet6_icmp6, ICMPV6CTL_ND6_DRLIST, nd6_drlist, | |
2186 | CTLFLAG_RD, nd6_sysctl_drlist, ""); | |
2187 | SYSCTL_NODE(_net_inet6_icmp6, ICMPV6CTL_ND6_PRLIST, nd6_prlist, | |
2188 | CTLFLAG_RD, nd6_sysctl_prlist, ""); | |
2189 | ||
2190 | static int | |
2191 | nd6_sysctl_drlist SYSCTL_HANDLER_ARGS | |
2192 | { | |
2193 | int error; | |
2194 | char buf[1024]; | |
2195 | struct in6_defrouter *d, *de; | |
2196 | struct nd_defrouter *dr; | |
2197 | ||
2198 | if (req->newptr) | |
2199 | return EPERM; | |
2200 | error = 0; | |
2201 | ||
2202 | for (dr = TAILQ_FIRST(&nd_defrouter); | |
2203 | dr; | |
2204 | dr = TAILQ_NEXT(dr, dr_entry)) { | |
2205 | d = (struct in6_defrouter *)buf; | |
2206 | de = (struct in6_defrouter *)(buf + sizeof(buf)); | |
2207 | ||
2208 | if (d + 1 <= de) { | |
2209 | bzero(d, sizeof(*d)); | |
2210 | d->rtaddr.sin6_family = AF_INET6; | |
2211 | d->rtaddr.sin6_len = sizeof(d->rtaddr); | |
2212 | if (in6_recoverscope(&d->rtaddr, &dr->rtaddr, | |
2213 | dr->ifp) != 0) | |
2214 | log(LOG_ERR, | |
2215 | "scope error in " | |
2216 | "default router list (%s)\n", | |
2217 | ip6_sprintf(&dr->rtaddr)); | |
2218 | d->flags = dr->flags; | |
2219 | d->rtlifetime = dr->rtlifetime; | |
2220 | d->expire = dr->expire; | |
2221 | d->if_index = dr->ifp->if_index; | |
2222 | } else | |
2223 | panic("buffer too short"); | |
2224 | ||
2225 | error = SYSCTL_OUT(req, buf, sizeof(*d)); | |
2226 | if (error) | |
2227 | break; | |
2228 | } | |
2229 | return error; | |
2230 | } | |
2231 | ||
2232 | static int | |
2233 | nd6_sysctl_prlist SYSCTL_HANDLER_ARGS | |
2234 | { | |
2235 | int error; | |
2236 | char buf[1024]; | |
2237 | struct in6_prefix *p, *pe; | |
2238 | struct nd_prefix *pr; | |
2239 | ||
2240 | if (req->newptr) | |
2241 | return EPERM; | |
2242 | error = 0; | |
2243 | ||
2244 | for (pr = nd_prefix.lh_first; pr; pr = pr->ndpr_next) { | |
2245 | u_short advrtrs; | |
2246 | size_t advance; | |
2247 | struct sockaddr_in6 *sin6, *s6; | |
2248 | struct nd_pfxrouter *pfr; | |
2249 | ||
2250 | p = (struct in6_prefix *)buf; | |
2251 | pe = (struct in6_prefix *)(buf + sizeof(buf)); | |
2252 | ||
2253 | if (p + 1 <= pe) { | |
2254 | bzero(p, sizeof(*p)); | |
2255 | sin6 = (struct sockaddr_in6 *)(p + 1); | |
2256 | ||
2257 | p->prefix = pr->ndpr_prefix; | |
2258 | if (in6_recoverscope(&p->prefix, | |
2259 | &p->prefix.sin6_addr, pr->ndpr_ifp) != 0) | |
2260 | log(LOG_ERR, | |
2261 | "scope error in prefix list (%s)\n", | |
2262 | ip6_sprintf(&p->prefix.sin6_addr)); | |
2263 | p->raflags = pr->ndpr_raf; | |
2264 | p->prefixlen = pr->ndpr_plen; | |
2265 | p->vltime = pr->ndpr_vltime; | |
2266 | p->pltime = pr->ndpr_pltime; | |
2267 | p->if_index = pr->ndpr_ifp->if_index; | |
2268 | p->expire = pr->ndpr_expire; | |
2269 | p->refcnt = pr->ndpr_refcnt; | |
2270 | p->flags = pr->ndpr_stateflags; | |
2271 | p->origin = PR_ORIG_RA; | |
2272 | advrtrs = 0; | |
2273 | for (pfr = pr->ndpr_advrtrs.lh_first; | |
2274 | pfr; | |
2275 | pfr = pfr->pfr_next) { | |
2276 | if ((void *)&sin6[advrtrs + 1] > | |
2277 | (void *)pe) { | |
2278 | advrtrs++; | |
2279 | continue; | |
2280 | } | |
2281 | s6 = &sin6[advrtrs]; | |
2282 | bzero(s6, sizeof(*s6)); | |
2283 | s6->sin6_family = AF_INET6; | |
2284 | s6->sin6_len = sizeof(*sin6); | |
2285 | if (in6_recoverscope(s6, | |
2286 | &pfr->router->rtaddr, | |
2287 | pfr->router->ifp) != 0) | |
2288 | log(LOG_ERR, | |
2289 | "scope error in " | |
2290 | "prefix list (%s)\n", | |
2291 | ip6_sprintf(&pfr->router->rtaddr)); | |
2292 | advrtrs++; | |
2293 | } | |
2294 | p->advrtrs = advrtrs; | |
2295 | } else | |
2296 | panic("buffer too short"); | |
2297 | ||
2298 | advance = sizeof(*p) + sizeof(*sin6) * advrtrs; | |
2299 | error = SYSCTL_OUT(req, buf, advance); | |
2300 | if (error) | |
2301 | break; | |
2302 | } | |
2303 | return error; | |
2304 | } | |
2305 | #endif |