]> git.saurik.com Git - apple/xnu.git/blame_incremental - osfmk/ppc/rtclock.c
xnu-792.22.5.tar.gz
[apple/xnu.git] / osfmk / ppc / rtclock.c
... / ...
CommitLineData
1/*
2 * Copyright (c) 2000-2005 Apple Computer, Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28/*
29 * @OSF_COPYRIGHT@
30 */
31/*
32 * @APPLE_FREE_COPYRIGHT@
33 */
34/*
35 * File: rtclock.c
36 * Purpose: Routines for handling the machine dependent
37 * real-time clock.
38 */
39
40#include <mach/mach_types.h>
41
42#include <kern/clock.h>
43#include <kern/thread.h>
44#include <kern/processor.h>
45#include <kern/macro_help.h>
46#include <kern/spl.h>
47
48#include <machine/commpage.h>
49#include <machine/machine_routines.h>
50#include <ppc/exception.h>
51#include <ppc/proc_reg.h>
52#include <ppc/pms.h>
53#include <ppc/rtclock.h>
54
55#include <sys/kdebug.h>
56
57int rtclock_config(void);
58
59int rtclock_init(void);
60
61#define NSEC_PER_HZ (NSEC_PER_SEC / 100)
62
63static uint32_t rtclock_sec_divisor;
64
65static mach_timebase_info_data_t rtclock_timebase_const;
66
67static boolean_t rtclock_timebase_initialized;
68
69/* XXX this should really be in a header somewhere */
70extern clock_timer_func_t rtclock_timer_expire;
71
72decl_simple_lock_data(static,rtclock_lock)
73
74/*
75 * Macros to lock/unlock real-time clock device.
76 */
77#define LOCK_RTC(s) \
78MACRO_BEGIN \
79 (s) = splclock(); \
80 simple_lock(&rtclock_lock); \
81MACRO_END
82
83#define UNLOCK_RTC(s) \
84MACRO_BEGIN \
85 simple_unlock(&rtclock_lock); \
86 splx(s); \
87MACRO_END
88
89static void
90timebase_callback(
91 struct timebase_freq_t *freq)
92{
93 uint32_t numer, denom;
94 uint64_t abstime;
95 spl_t s;
96
97 if ( freq->timebase_den < 1 || freq->timebase_den > 4 ||
98 freq->timebase_num < freq->timebase_den )
99 panic("rtclock timebase_callback: invalid constant %d / %d",
100 freq->timebase_num, freq->timebase_den);
101
102 denom = freq->timebase_num;
103 numer = freq->timebase_den * NSEC_PER_SEC;
104
105 LOCK_RTC(s);
106 if (!rtclock_timebase_initialized) {
107 commpage_set_timestamp(0,0,0);
108
109 rtclock_timebase_const.numer = numer;
110 rtclock_timebase_const.denom = denom;
111 rtclock_sec_divisor = freq->timebase_num / freq->timebase_den;
112
113 nanoseconds_to_absolutetime(NSEC_PER_HZ, &abstime);
114 rtclock_tick_interval = abstime;
115
116 ml_init_lock_timeout();
117 }
118 else {
119 UNLOCK_RTC(s);
120 printf("rtclock timebase_callback: late old %d / %d new %d / %d\n",
121 rtclock_timebase_const.numer, rtclock_timebase_const.denom,
122 numer, denom);
123 return;
124 }
125 UNLOCK_RTC(s);
126
127 clock_timebase_init();
128}
129
130/*
131 * Configure the system clock device.
132 */
133int
134rtclock_config(void)
135{
136 simple_lock_init(&rtclock_lock, 0);
137
138 PE_register_timebase_callback(timebase_callback);
139
140 return (1);
141}
142
143/*
144 * Initialize the system clock device.
145 */
146int
147rtclock_init(void)
148{
149 uint64_t abstime;
150 struct per_proc_info *pp;
151
152 pp = getPerProc();
153
154 abstime = mach_absolute_time();
155 pp->rtclock_intr_deadline = abstime + rtclock_tick_interval; /* Get the time we need to pop */
156
157 etimer_resync_deadlines(); /* Start the timers going */
158
159 return (1);
160}
161
162void
163clock_get_system_microtime(
164 uint32_t *secs,
165 uint32_t *microsecs)
166{
167 uint64_t now, t64;
168 uint32_t divisor;
169
170 now = mach_absolute_time();
171
172 *secs = t64 = now / (divisor = rtclock_sec_divisor);
173 now -= (t64 * divisor);
174 *microsecs = (now * USEC_PER_SEC) / divisor;
175}
176
177void
178clock_get_system_nanotime(
179 uint32_t *secs,
180 uint32_t *nanosecs)
181{
182 uint64_t now, t64;
183 uint32_t divisor;
184
185 now = mach_absolute_time();
186
187 *secs = t64 = now / (divisor = rtclock_sec_divisor);
188 now -= (t64 * divisor);
189 *nanosecs = (now * NSEC_PER_SEC) / divisor;
190}
191
192void
193clock_gettimeofday_set_commpage(
194 uint64_t abstime,
195 uint64_t epoch,
196 uint64_t offset,
197 uint32_t *secs,
198 uint32_t *microsecs)
199{
200 uint64_t t64, now = abstime;
201
202 simple_lock(&rtclock_lock);
203
204 now += offset;
205
206 *secs = t64 = now / rtclock_sec_divisor;
207 now -= (t64 * rtclock_sec_divisor);
208 *microsecs = (now * USEC_PER_SEC) / rtclock_sec_divisor;
209
210 *secs += epoch;
211
212 commpage_set_timestamp(abstime - now, *secs, rtclock_sec_divisor);
213
214 simple_unlock(&rtclock_lock);
215}
216
217void
218clock_timebase_info(
219 mach_timebase_info_t info)
220{
221 spl_t s;
222
223 LOCK_RTC(s);
224 *info = rtclock_timebase_const;
225 rtclock_timebase_initialized = TRUE;
226 UNLOCK_RTC(s);
227}
228
229void
230clock_set_timer_func(
231 clock_timer_func_t func)
232{
233 spl_t s;
234
235 LOCK_RTC(s);
236 if (rtclock_timer_expire == NULL)
237 rtclock_timer_expire = func;
238 UNLOCK_RTC(s);
239}
240
241void
242clock_interval_to_absolutetime_interval(
243 uint32_t interval,
244 uint32_t scale_factor,
245 uint64_t *result)
246{
247 uint64_t nanosecs = (uint64_t)interval * scale_factor;
248 uint64_t t64;
249 uint32_t divisor;
250
251 *result = (t64 = nanosecs / NSEC_PER_SEC) *
252 (divisor = rtclock_sec_divisor);
253 nanosecs -= (t64 * NSEC_PER_SEC);
254 *result += (nanosecs * divisor) / NSEC_PER_SEC;
255}
256
257void
258absolutetime_to_microtime(
259 uint64_t abstime,
260 uint32_t *secs,
261 uint32_t *microsecs)
262{
263 uint64_t t64;
264 uint32_t divisor;
265
266 *secs = t64 = abstime / (divisor = rtclock_sec_divisor);
267 abstime -= (t64 * divisor);
268 *microsecs = (abstime * USEC_PER_SEC) / divisor;
269}
270
271void
272absolutetime_to_nanotime(
273 uint64_t abstime,
274 uint32_t *secs,
275 uint32_t *nanosecs)
276{
277 uint64_t t64;
278 uint32_t divisor;
279
280 *secs = t64 = abstime / (divisor = rtclock_sec_divisor);
281 abstime -= (t64 * divisor);
282 *nanosecs = (abstime * NSEC_PER_SEC) / divisor;
283}
284
285void
286nanotime_to_absolutetime(
287 uint32_t secs,
288 uint32_t nanosecs,
289 uint64_t *result)
290{
291 uint32_t divisor = rtclock_sec_divisor;
292
293 *result = ((uint64_t)secs * divisor) +
294 ((uint64_t)nanosecs * divisor) / NSEC_PER_SEC;
295}
296
297void
298absolutetime_to_nanoseconds(
299 uint64_t abstime,
300 uint64_t *result)
301{
302 uint64_t t64;
303 uint32_t divisor;
304
305 *result = (t64 = abstime / (divisor = rtclock_sec_divisor)) * NSEC_PER_SEC;
306 abstime -= (t64 * divisor);
307 *result += (abstime * NSEC_PER_SEC) / divisor;
308}
309
310void
311nanoseconds_to_absolutetime(
312 uint64_t nanosecs,
313 uint64_t *result)
314{
315 uint64_t t64;
316 uint32_t divisor;
317
318 *result = (t64 = nanosecs / NSEC_PER_SEC) *
319 (divisor = rtclock_sec_divisor);
320 nanosecs -= (t64 * NSEC_PER_SEC);
321 *result += (nanosecs * divisor) / NSEC_PER_SEC;
322}
323
324void
325machine_delay_until(
326 uint64_t deadline)
327{
328 uint64_t now;
329
330 do {
331 now = mach_absolute_time();
332 } while (now < deadline);
333}