]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Copyright (c) 2000-2005 Apple Computer, Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * This file contains Original Code and/or Modifications of Original Code | |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
14 | * | |
15 | * Please obtain a copy of the License at | |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
25 | * | |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ | |
27 | */ | |
28 | /* | |
29 | * @OSF_COPYRIGHT@ | |
30 | */ | |
31 | /* | |
32 | */ | |
33 | ||
34 | #include <mach/mach_types.h> | |
35 | ||
36 | #include <kern/lock.h> | |
37 | #include <kern/spl.h> | |
38 | #include <kern/sched_prim.h> | |
39 | #include <kern/thread.h> | |
40 | #include <kern/clock.h> | |
41 | #include <kern/host_notify.h> | |
42 | ||
43 | #include <IOKit/IOPlatformExpert.h> | |
44 | ||
45 | #include <machine/commpage.h> | |
46 | ||
47 | #include <mach/mach_traps.h> | |
48 | #include <mach/mach_time.h> | |
49 | ||
50 | decl_simple_lock_data(static,clock_lock) | |
51 | ||
52 | /* | |
53 | * Time of day (calendar) variables. | |
54 | * | |
55 | * Algorithm: | |
56 | * | |
57 | * TOD <- (seconds + epoch, fraction) <- CONV(current absolute time + offset) | |
58 | * | |
59 | * where CONV converts absolute time units into seconds and a fraction. | |
60 | */ | |
61 | static struct clock_calend { | |
62 | uint64_t epoch; | |
63 | uint64_t offset; | |
64 | } clock_calend; | |
65 | ||
66 | /* | |
67 | * Calendar adjustment variables and values. | |
68 | */ | |
69 | #define calend_adjperiod (NSEC_PER_SEC / 100) /* adjustment period, ns */ | |
70 | #define calend_adjskew (40 * NSEC_PER_USEC) /* "standard" skew, ns / period */ | |
71 | #define calend_adjbig (NSEC_PER_SEC) /* use 10x skew above adjbig ns */ | |
72 | ||
73 | static uint64_t calend_adjstart; /* Absolute time value for start of this adjustment period */ | |
74 | static uint32_t calend_adjoffset; /* Absolute time offset for this adjustment period as absolute value */ | |
75 | ||
76 | static int32_t calend_adjdelta; /* Nanosecond time delta for this adjustment period */ | |
77 | static int64_t calend_adjtotal; /* Nanosecond remaining total adjustment */ | |
78 | ||
79 | static uint64_t calend_adjdeadline; /* Absolute time value for next adjustment period */ | |
80 | static uint32_t calend_adjinterval; /* Absolute time interval of adjustment period */ | |
81 | ||
82 | static timer_call_data_t calend_adjcall; | |
83 | static uint32_t calend_adjactive; | |
84 | ||
85 | static uint32_t calend_set_adjustment( | |
86 | int32_t *secs, | |
87 | int32_t *microsecs); | |
88 | ||
89 | static void calend_adjust_call(void); | |
90 | static uint32_t calend_adjust(void); | |
91 | ||
92 | static thread_call_data_t calend_wakecall; | |
93 | ||
94 | extern void IOKitResetTime(void); | |
95 | ||
96 | static uint64_t clock_boottime; /* Seconds boottime epoch */ | |
97 | ||
98 | #define TIME_ADD(rsecs, secs, rfrac, frac, unit) \ | |
99 | MACRO_BEGIN \ | |
100 | if (((rfrac) += (frac)) >= (unit)) { \ | |
101 | (rfrac) -= (unit); \ | |
102 | (rsecs) += 1; \ | |
103 | } \ | |
104 | (rsecs) += (secs); \ | |
105 | MACRO_END | |
106 | ||
107 | #define TIME_SUB(rsecs, secs, rfrac, frac, unit) \ | |
108 | MACRO_BEGIN \ | |
109 | if ((int32_t)((rfrac) -= (frac)) < 0) { \ | |
110 | (rfrac) += (unit); \ | |
111 | (rsecs) -= 1; \ | |
112 | } \ | |
113 | (rsecs) -= (secs); \ | |
114 | MACRO_END | |
115 | ||
116 | /* | |
117 | * clock_config: | |
118 | * | |
119 | * Called once at boot to configure the clock subsystem. | |
120 | */ | |
121 | void | |
122 | clock_config(void) | |
123 | { | |
124 | simple_lock_init(&clock_lock, 0); | |
125 | ||
126 | timer_call_setup(&calend_adjcall, (timer_call_func_t)calend_adjust_call, NULL); | |
127 | thread_call_setup(&calend_wakecall, (thread_call_func_t)IOKitResetTime, NULL); | |
128 | ||
129 | clock_oldconfig(); | |
130 | ||
131 | /* | |
132 | * Initialize the timer callouts. | |
133 | */ | |
134 | timer_call_initialize(); | |
135 | } | |
136 | ||
137 | /* | |
138 | * clock_init: | |
139 | * | |
140 | * Called on a processor each time started. | |
141 | */ | |
142 | void | |
143 | clock_init(void) | |
144 | { | |
145 | clock_oldinit(); | |
146 | } | |
147 | ||
148 | /* | |
149 | * clock_timebase_init: | |
150 | * | |
151 | * Called by machine dependent code | |
152 | * to initialize areas dependent on the | |
153 | * timebase value. May be called multiple | |
154 | * times during start up. | |
155 | */ | |
156 | void | |
157 | clock_timebase_init(void) | |
158 | { | |
159 | uint64_t abstime; | |
160 | ||
161 | nanoseconds_to_absolutetime(calend_adjperiod, &abstime); | |
162 | calend_adjinterval = abstime; | |
163 | ||
164 | sched_timebase_init(); | |
165 | } | |
166 | ||
167 | /* | |
168 | * mach_timebase_info_trap: | |
169 | * | |
170 | * User trap returns timebase constant. | |
171 | */ | |
172 | kern_return_t | |
173 | mach_timebase_info_trap( | |
174 | struct mach_timebase_info_trap_args *args) | |
175 | { | |
176 | mach_vm_address_t out_info_addr = args->info; | |
177 | mach_timebase_info_data_t info; | |
178 | ||
179 | clock_timebase_info(&info); | |
180 | ||
181 | copyout((void *)&info, out_info_addr, sizeof (info)); | |
182 | ||
183 | return (KERN_SUCCESS); | |
184 | } | |
185 | ||
186 | /* | |
187 | * Calendar routines. | |
188 | */ | |
189 | ||
190 | /* | |
191 | * clock_get_calendar_microtime: | |
192 | * | |
193 | * Returns the current calendar value, | |
194 | * microseconds as the fraction. | |
195 | */ | |
196 | void | |
197 | clock_get_calendar_microtime( | |
198 | uint32_t *secs, | |
199 | uint32_t *microsecs) | |
200 | { | |
201 | uint64_t now; | |
202 | spl_t s; | |
203 | ||
204 | s = splclock(); | |
205 | simple_lock(&clock_lock); | |
206 | ||
207 | now = mach_absolute_time(); | |
208 | ||
209 | if (calend_adjdelta < 0) { | |
210 | uint32_t t32; | |
211 | ||
212 | if (now > calend_adjstart) { | |
213 | t32 = now - calend_adjstart; | |
214 | ||
215 | if (t32 > calend_adjoffset) | |
216 | now -= calend_adjoffset; | |
217 | else | |
218 | now = calend_adjstart; | |
219 | } | |
220 | } | |
221 | ||
222 | now += clock_calend.offset; | |
223 | ||
224 | absolutetime_to_microtime(now, secs, microsecs); | |
225 | ||
226 | *secs += clock_calend.epoch; | |
227 | ||
228 | simple_unlock(&clock_lock); | |
229 | splx(s); | |
230 | } | |
231 | ||
232 | /* | |
233 | * clock_get_calendar_nanotime: | |
234 | * | |
235 | * Returns the current calendar value, | |
236 | * nanoseconds as the fraction. | |
237 | * | |
238 | * Since we do not have an interface to | |
239 | * set the calendar with resolution greater | |
240 | * than a microsecond, we honor that here. | |
241 | */ | |
242 | void | |
243 | clock_get_calendar_nanotime( | |
244 | uint32_t *secs, | |
245 | uint32_t *nanosecs) | |
246 | { | |
247 | uint64_t now; | |
248 | spl_t s; | |
249 | ||
250 | s = splclock(); | |
251 | simple_lock(&clock_lock); | |
252 | ||
253 | now = mach_absolute_time(); | |
254 | ||
255 | if (calend_adjdelta < 0) { | |
256 | uint32_t t32; | |
257 | ||
258 | if (now > calend_adjstart) { | |
259 | t32 = now - calend_adjstart; | |
260 | ||
261 | if (t32 > calend_adjoffset) | |
262 | now -= calend_adjoffset; | |
263 | else | |
264 | now = calend_adjstart; | |
265 | } | |
266 | } | |
267 | ||
268 | now += clock_calend.offset; | |
269 | ||
270 | absolutetime_to_microtime(now, secs, nanosecs); | |
271 | *nanosecs *= NSEC_PER_USEC; | |
272 | ||
273 | *secs += clock_calend.epoch; | |
274 | ||
275 | simple_unlock(&clock_lock); | |
276 | splx(s); | |
277 | } | |
278 | ||
279 | /* | |
280 | * clock_gettimeofday: | |
281 | * | |
282 | * Kernel interface for commpage implementation of | |
283 | * gettimeofday() syscall. | |
284 | * | |
285 | * Returns the current calendar value, and updates the | |
286 | * commpage info as appropriate. Because most calls to | |
287 | * gettimeofday() are handled in user mode by the commpage, | |
288 | * this routine should be used infrequently. | |
289 | */ | |
290 | void | |
291 | clock_gettimeofday( | |
292 | uint32_t *secs, | |
293 | uint32_t *microsecs) | |
294 | { | |
295 | uint64_t now; | |
296 | spl_t s; | |
297 | ||
298 | s = splclock(); | |
299 | simple_lock(&clock_lock); | |
300 | ||
301 | now = mach_absolute_time(); | |
302 | ||
303 | if (calend_adjdelta >= 0) { | |
304 | clock_gettimeofday_set_commpage(now, clock_calend.epoch, clock_calend.offset, secs, microsecs); | |
305 | } | |
306 | else { | |
307 | uint32_t t32; | |
308 | ||
309 | if (now > calend_adjstart) { | |
310 | t32 = now - calend_adjstart; | |
311 | ||
312 | if (t32 > calend_adjoffset) | |
313 | now -= calend_adjoffset; | |
314 | else | |
315 | now = calend_adjstart; | |
316 | } | |
317 | ||
318 | now += clock_calend.offset; | |
319 | ||
320 | absolutetime_to_microtime(now, secs, microsecs); | |
321 | ||
322 | *secs += clock_calend.epoch; | |
323 | } | |
324 | ||
325 | simple_unlock(&clock_lock); | |
326 | splx(s); | |
327 | } | |
328 | ||
329 | /* | |
330 | * clock_set_calendar_microtime: | |
331 | * | |
332 | * Sets the current calendar value by | |
333 | * recalculating the epoch and offset | |
334 | * from the system clock. | |
335 | * | |
336 | * Also adjusts the boottime to keep the | |
337 | * value consistent, writes the new | |
338 | * calendar value to the platform clock, | |
339 | * and sends calendar change notifications. | |
340 | */ | |
341 | void | |
342 | clock_set_calendar_microtime( | |
343 | uint32_t secs, | |
344 | uint32_t microsecs) | |
345 | { | |
346 | uint32_t sys, microsys; | |
347 | uint32_t newsecs; | |
348 | spl_t s; | |
349 | ||
350 | newsecs = (microsecs < 500*USEC_PER_SEC)? | |
351 | secs: secs + 1; | |
352 | ||
353 | s = splclock(); | |
354 | simple_lock(&clock_lock); | |
355 | ||
356 | commpage_set_timestamp(0,0,0); | |
357 | ||
358 | /* | |
359 | * Calculate the new calendar epoch based on | |
360 | * the new value and the system clock. | |
361 | */ | |
362 | clock_get_system_microtime(&sys, µsys); | |
363 | TIME_SUB(secs, sys, microsecs, microsys, USEC_PER_SEC); | |
364 | ||
365 | /* | |
366 | * Adjust the boottime based on the delta. | |
367 | */ | |
368 | clock_boottime += secs - clock_calend.epoch; | |
369 | ||
370 | /* | |
371 | * Set the new calendar epoch. | |
372 | */ | |
373 | clock_calend.epoch = secs; | |
374 | nanoseconds_to_absolutetime((uint64_t)microsecs * NSEC_PER_USEC, &clock_calend.offset); | |
375 | ||
376 | /* | |
377 | * Cancel any adjustment in progress. | |
378 | */ | |
379 | calend_adjdelta = calend_adjtotal = 0; | |
380 | ||
381 | simple_unlock(&clock_lock); | |
382 | ||
383 | /* | |
384 | * Set the new value for the platform clock. | |
385 | */ | |
386 | PESetGMTTimeOfDay(newsecs); | |
387 | ||
388 | splx(s); | |
389 | ||
390 | /* | |
391 | * Send host notifications. | |
392 | */ | |
393 | host_notify_calendar_change(); | |
394 | } | |
395 | ||
396 | /* | |
397 | * clock_initialize_calendar: | |
398 | * | |
399 | * Set the calendar and related clocks | |
400 | * from the platform clock at boot or | |
401 | * wake event. | |
402 | * | |
403 | * Also sends host notifications. | |
404 | */ | |
405 | void | |
406 | clock_initialize_calendar(void) | |
407 | { | |
408 | uint32_t sys, microsys; | |
409 | uint32_t microsecs = 0, secs = PEGetGMTTimeOfDay(); | |
410 | spl_t s; | |
411 | ||
412 | s = splclock(); | |
413 | simple_lock(&clock_lock); | |
414 | ||
415 | commpage_set_timestamp(0,0,0); | |
416 | ||
417 | if ((int32_t)secs >= (int32_t)clock_boottime) { | |
418 | /* | |
419 | * Initialize the boot time based on the platform clock. | |
420 | */ | |
421 | if (clock_boottime == 0) | |
422 | clock_boottime = secs; | |
423 | ||
424 | /* | |
425 | * Calculate the new calendar epoch based on | |
426 | * the platform clock and the system clock. | |
427 | */ | |
428 | clock_get_system_microtime(&sys, µsys); | |
429 | TIME_SUB(secs, sys, microsecs, microsys, USEC_PER_SEC); | |
430 | ||
431 | /* | |
432 | * Set the new calendar epoch. | |
433 | */ | |
434 | clock_calend.epoch = secs; | |
435 | nanoseconds_to_absolutetime((uint64_t)microsecs * NSEC_PER_USEC, &clock_calend.offset); | |
436 | ||
437 | /* | |
438 | * Cancel any adjustment in progress. | |
439 | */ | |
440 | calend_adjdelta = calend_adjtotal = 0; | |
441 | } | |
442 | ||
443 | simple_unlock(&clock_lock); | |
444 | splx(s); | |
445 | ||
446 | /* | |
447 | * Send host notifications. | |
448 | */ | |
449 | host_notify_calendar_change(); | |
450 | } | |
451 | ||
452 | /* | |
453 | * clock_get_boottime_nanotime: | |
454 | * | |
455 | * Return the boottime, used by sysctl. | |
456 | */ | |
457 | void | |
458 | clock_get_boottime_nanotime( | |
459 | uint32_t *secs, | |
460 | uint32_t *nanosecs) | |
461 | { | |
462 | *secs = clock_boottime; | |
463 | *nanosecs = 0; | |
464 | } | |
465 | ||
466 | /* | |
467 | * clock_adjtime: | |
468 | * | |
469 | * Interface to adjtime() syscall. | |
470 | * | |
471 | * Calculates adjustment variables and | |
472 | * initiates adjustment. | |
473 | */ | |
474 | void | |
475 | clock_adjtime( | |
476 | int32_t *secs, | |
477 | int32_t *microsecs) | |
478 | { | |
479 | uint32_t interval; | |
480 | spl_t s; | |
481 | ||
482 | s = splclock(); | |
483 | simple_lock(&clock_lock); | |
484 | ||
485 | interval = calend_set_adjustment(secs, microsecs); | |
486 | if (interval != 0) { | |
487 | calend_adjdeadline = mach_absolute_time() + interval; | |
488 | if (!timer_call_enter(&calend_adjcall, calend_adjdeadline)) | |
489 | calend_adjactive++; | |
490 | } | |
491 | else | |
492 | if (timer_call_cancel(&calend_adjcall)) | |
493 | calend_adjactive--; | |
494 | ||
495 | simple_unlock(&clock_lock); | |
496 | splx(s); | |
497 | } | |
498 | ||
499 | static uint32_t | |
500 | calend_set_adjustment( | |
501 | int32_t *secs, | |
502 | int32_t *microsecs) | |
503 | { | |
504 | uint64_t now, t64; | |
505 | int64_t total, ototal; | |
506 | uint32_t interval = 0; | |
507 | ||
508 | total = (int64_t)*secs * NSEC_PER_SEC + *microsecs * NSEC_PER_USEC; | |
509 | ||
510 | commpage_set_timestamp(0,0,0); | |
511 | ||
512 | now = mach_absolute_time(); | |
513 | ||
514 | ototal = calend_adjtotal; | |
515 | ||
516 | if (total != 0) { | |
517 | int32_t delta = calend_adjskew; | |
518 | ||
519 | if (total > 0) { | |
520 | if (total > calend_adjbig) | |
521 | delta *= 10; | |
522 | if (delta > total) | |
523 | delta = total; | |
524 | ||
525 | nanoseconds_to_absolutetime((uint64_t)delta, &t64); | |
526 | calend_adjoffset = t64; | |
527 | } | |
528 | else { | |
529 | if (total < -calend_adjbig) | |
530 | delta *= 10; | |
531 | delta = -delta; | |
532 | if (delta < total) | |
533 | delta = total; | |
534 | ||
535 | calend_adjstart = now; | |
536 | ||
537 | nanoseconds_to_absolutetime((uint64_t)-delta, &t64); | |
538 | calend_adjoffset = t64; | |
539 | } | |
540 | ||
541 | calend_adjtotal = total; | |
542 | calend_adjdelta = delta; | |
543 | ||
544 | interval = calend_adjinterval; | |
545 | } | |
546 | else | |
547 | calend_adjdelta = calend_adjtotal = 0; | |
548 | ||
549 | if (ototal != 0) { | |
550 | *secs = ototal / NSEC_PER_SEC; | |
551 | *microsecs = (ototal % NSEC_PER_SEC) / NSEC_PER_USEC; | |
552 | } | |
553 | else | |
554 | *secs = *microsecs = 0; | |
555 | ||
556 | return (interval); | |
557 | } | |
558 | ||
559 | static void | |
560 | calend_adjust_call(void) | |
561 | { | |
562 | uint32_t interval; | |
563 | spl_t s; | |
564 | ||
565 | s = splclock(); | |
566 | simple_lock(&clock_lock); | |
567 | ||
568 | if (--calend_adjactive == 0) { | |
569 | interval = calend_adjust(); | |
570 | if (interval != 0) { | |
571 | clock_deadline_for_periodic_event(interval, mach_absolute_time(), | |
572 | &calend_adjdeadline); | |
573 | ||
574 | if (!timer_call_enter(&calend_adjcall, calend_adjdeadline)) | |
575 | calend_adjactive++; | |
576 | } | |
577 | } | |
578 | ||
579 | simple_unlock(&clock_lock); | |
580 | splx(s); | |
581 | } | |
582 | ||
583 | static uint32_t | |
584 | calend_adjust(void) | |
585 | { | |
586 | uint64_t now, t64; | |
587 | int32_t delta; | |
588 | uint32_t interval = 0; | |
589 | ||
590 | commpage_set_timestamp(0,0,0); | |
591 | ||
592 | now = mach_absolute_time(); | |
593 | ||
594 | delta = calend_adjdelta; | |
595 | ||
596 | if (delta > 0) { | |
597 | clock_calend.offset += calend_adjoffset; | |
598 | ||
599 | calend_adjtotal -= delta; | |
600 | if (delta > calend_adjtotal) { | |
601 | calend_adjdelta = delta = calend_adjtotal; | |
602 | ||
603 | nanoseconds_to_absolutetime((uint64_t)delta, &t64); | |
604 | calend_adjoffset = t64; | |
605 | } | |
606 | } | |
607 | else | |
608 | if (delta < 0) { | |
609 | clock_calend.offset -= calend_adjoffset; | |
610 | ||
611 | calend_adjtotal -= delta; | |
612 | if (delta < calend_adjtotal) { | |
613 | calend_adjdelta = delta = calend_adjtotal; | |
614 | ||
615 | nanoseconds_to_absolutetime((uint64_t)-delta, &t64); | |
616 | calend_adjoffset = t64; | |
617 | } | |
618 | ||
619 | if (calend_adjdelta != 0) | |
620 | calend_adjstart = now; | |
621 | } | |
622 | ||
623 | if (calend_adjdelta != 0) | |
624 | interval = calend_adjinterval; | |
625 | ||
626 | return (interval); | |
627 | } | |
628 | ||
629 | /* | |
630 | * clock_wakeup_calendar: | |
631 | * | |
632 | * Interface to power management, used | |
633 | * to initiate the reset of the calendar | |
634 | * on wake from sleep event. | |
635 | */ | |
636 | void | |
637 | clock_wakeup_calendar(void) | |
638 | { | |
639 | thread_call_enter(&calend_wakecall); | |
640 | } | |
641 | ||
642 | /* | |
643 | * Wait / delay routines. | |
644 | */ | |
645 | static void | |
646 | mach_wait_until_continue( | |
647 | __unused void *parameter, | |
648 | wait_result_t wresult) | |
649 | { | |
650 | thread_syscall_return((wresult == THREAD_INTERRUPTED)? KERN_ABORTED: KERN_SUCCESS); | |
651 | /*NOTREACHED*/ | |
652 | } | |
653 | ||
654 | kern_return_t | |
655 | mach_wait_until_trap( | |
656 | struct mach_wait_until_trap_args *args) | |
657 | { | |
658 | uint64_t deadline = args->deadline; | |
659 | wait_result_t wresult; | |
660 | ||
661 | wresult = assert_wait_deadline((event_t)mach_wait_until_trap, THREAD_ABORTSAFE, deadline); | |
662 | if (wresult == THREAD_WAITING) | |
663 | wresult = thread_block(mach_wait_until_continue); | |
664 | ||
665 | return ((wresult == THREAD_INTERRUPTED)? KERN_ABORTED: KERN_SUCCESS); | |
666 | } | |
667 | ||
668 | void | |
669 | clock_delay_until( | |
670 | uint64_t deadline) | |
671 | { | |
672 | uint64_t now = mach_absolute_time(); | |
673 | ||
674 | if (now >= deadline) | |
675 | return; | |
676 | ||
677 | if ( (deadline - now) < (8 * sched_cswtime) || | |
678 | get_preemption_level() != 0 || | |
679 | ml_get_interrupts_enabled() == FALSE ) | |
680 | machine_delay_until(deadline); | |
681 | else { | |
682 | assert_wait_deadline((event_t)clock_delay_until, THREAD_UNINT, deadline - sched_cswtime); | |
683 | ||
684 | thread_block(THREAD_CONTINUE_NULL); | |
685 | } | |
686 | } | |
687 | ||
688 | void | |
689 | delay_for_interval( | |
690 | uint32_t interval, | |
691 | uint32_t scale_factor) | |
692 | { | |
693 | uint64_t end; | |
694 | ||
695 | clock_interval_to_deadline(interval, scale_factor, &end); | |
696 | ||
697 | clock_delay_until(end); | |
698 | } | |
699 | ||
700 | void | |
701 | delay( | |
702 | int usec) | |
703 | { | |
704 | delay_for_interval((usec < 0)? -usec: usec, NSEC_PER_USEC); | |
705 | } | |
706 | ||
707 | /* | |
708 | * Miscellaneous routines. | |
709 | */ | |
710 | void | |
711 | clock_interval_to_deadline( | |
712 | uint32_t interval, | |
713 | uint32_t scale_factor, | |
714 | uint64_t *result) | |
715 | { | |
716 | uint64_t abstime; | |
717 | ||
718 | clock_interval_to_absolutetime_interval(interval, scale_factor, &abstime); | |
719 | ||
720 | *result = mach_absolute_time() + abstime; | |
721 | } | |
722 | ||
723 | void | |
724 | clock_absolutetime_interval_to_deadline( | |
725 | uint64_t abstime, | |
726 | uint64_t *result) | |
727 | { | |
728 | *result = mach_absolute_time() + abstime; | |
729 | } | |
730 | ||
731 | void | |
732 | clock_get_uptime( | |
733 | uint64_t *result) | |
734 | { | |
735 | *result = mach_absolute_time(); | |
736 | } | |
737 | ||
738 | void | |
739 | clock_deadline_for_periodic_event( | |
740 | uint64_t interval, | |
741 | uint64_t abstime, | |
742 | uint64_t *deadline) | |
743 | { | |
744 | assert(interval != 0); | |
745 | ||
746 | *deadline += interval; | |
747 | ||
748 | if (*deadline <= abstime) { | |
749 | *deadline = abstime + interval; | |
750 | abstime = mach_absolute_time(); | |
751 | ||
752 | if (*deadline <= abstime) | |
753 | *deadline = abstime + interval; | |
754 | } | |
755 | } |