]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Copyright (c) 2000 Apple Computer, Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * Copyright (c) 1999-2003 Apple Computer, Inc. All Rights Reserved. | |
7 | * | |
8 | * This file contains Original Code and/or Modifications of Original Code | |
9 | * as defined in and that are subject to the Apple Public Source License | |
10 | * Version 2.0 (the 'License'). You may not use this file except in | |
11 | * compliance with the License. Please obtain a copy of the License at | |
12 | * http://www.opensource.apple.com/apsl/ and read it before using this | |
13 | * file. | |
14 | * | |
15 | * The Original Code and all software distributed under the License are | |
16 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
17 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
18 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
19 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
20 | * Please see the License for the specific language governing rights and | |
21 | * limitations under the License. | |
22 | * | |
23 | * @APPLE_LICENSE_HEADER_END@ | |
24 | */ | |
25 | /* | |
26 | * File: ppc/cpu.c | |
27 | * | |
28 | * cpu specific routines | |
29 | */ | |
30 | ||
31 | #include <kern/machine.h> | |
32 | #include <kern/misc_protos.h> | |
33 | #include <kern/thread.h> | |
34 | #include <kern/processor.h> | |
35 | #include <mach/machine.h> | |
36 | #include <mach/processor_info.h> | |
37 | #include <mach/mach_types.h> | |
38 | #include <ppc/proc_reg.h> | |
39 | #include <ppc/misc_protos.h> | |
40 | #include <ppc/machine_routines.h> | |
41 | #include <ppc/machine_cpu.h> | |
42 | #include <ppc/exception.h> | |
43 | #include <ppc/asm.h> | |
44 | #include <pexpert/pexpert.h> | |
45 | #include <kern/cpu_data.h> | |
46 | ||
47 | /* TODO: BOGUS TO BE REMOVED */ | |
48 | int real_ncpus = 1; | |
49 | ||
50 | int wncpu = NCPUS; | |
51 | resethandler_t resethandler_target; | |
52 | ||
53 | #define MMCR0_SUPPORT_MASK 0xf83f1fff | |
54 | #define MMCR1_SUPPORT_MASK 0xffc00000 | |
55 | #define MMCR2_SUPPORT_MASK 0x80000000 | |
56 | ||
57 | extern int debugger_pending[NCPUS]; | |
58 | extern int debugger_is_slave[NCPUS]; | |
59 | extern int debugger_holdoff[NCPUS]; | |
60 | extern int debugger_sync; | |
61 | ||
62 | struct SIGtimebase { | |
63 | boolean_t avail; | |
64 | boolean_t ready; | |
65 | boolean_t done; | |
66 | uint64_t abstime; | |
67 | }; | |
68 | ||
69 | struct per_proc_info *pper_proc_info = per_proc_info; | |
70 | ||
71 | extern struct SIGtimebase syncClkSpot; | |
72 | ||
73 | void cpu_sync_timebase(void); | |
74 | ||
75 | kern_return_t | |
76 | cpu_control( | |
77 | int slot_num, | |
78 | processor_info_t info, | |
79 | unsigned int count) | |
80 | { | |
81 | cpu_type_t cpu_type; | |
82 | cpu_subtype_t cpu_subtype; | |
83 | processor_pm_regs_t perf_regs; | |
84 | processor_control_cmd_t cmd; | |
85 | boolean_t oldlevel; | |
86 | ||
87 | cpu_type = machine_slot[slot_num].cpu_type; | |
88 | cpu_subtype = machine_slot[slot_num].cpu_subtype; | |
89 | cmd = (processor_control_cmd_t) info; | |
90 | ||
91 | if (count < PROCESSOR_CONTROL_CMD_COUNT) | |
92 | return(KERN_FAILURE); | |
93 | ||
94 | if ( cpu_type != cmd->cmd_cpu_type || | |
95 | cpu_subtype != cmd->cmd_cpu_subtype) | |
96 | return(KERN_FAILURE); | |
97 | ||
98 | switch (cmd->cmd_op) | |
99 | { | |
100 | case PROCESSOR_PM_CLR_PMC: /* Clear Performance Monitor Counters */ | |
101 | switch (cpu_subtype) | |
102 | { | |
103 | case CPU_SUBTYPE_POWERPC_604: | |
104 | { | |
105 | oldlevel = ml_set_interrupts_enabled(FALSE); /* disable interrupts */ | |
106 | mtpmc1(0x0); | |
107 | mtpmc2(0x0); | |
108 | ml_set_interrupts_enabled(oldlevel); /* enable interrupts */ | |
109 | return(KERN_SUCCESS); | |
110 | } | |
111 | case CPU_SUBTYPE_POWERPC_604e: | |
112 | case CPU_SUBTYPE_POWERPC_750: | |
113 | case CPU_SUBTYPE_POWERPC_7400: | |
114 | case CPU_SUBTYPE_POWERPC_7450: | |
115 | { | |
116 | oldlevel = ml_set_interrupts_enabled(FALSE); /* disable interrupts */ | |
117 | mtpmc1(0x0); | |
118 | mtpmc2(0x0); | |
119 | mtpmc3(0x0); | |
120 | mtpmc4(0x0); | |
121 | ml_set_interrupts_enabled(oldlevel); /* enable interrupts */ | |
122 | return(KERN_SUCCESS); | |
123 | } | |
124 | default: | |
125 | return(KERN_FAILURE); | |
126 | } /* cpu_subtype */ | |
127 | case PROCESSOR_PM_SET_REGS: /* Set Performance Monitor Registors */ | |
128 | switch (cpu_subtype) | |
129 | { | |
130 | case CPU_SUBTYPE_POWERPC_604: | |
131 | if (count < (PROCESSOR_CONTROL_CMD_COUNT | |
132 | + PROCESSOR_PM_REGS_COUNT_POWERPC_604)) | |
133 | return(KERN_FAILURE); | |
134 | else | |
135 | { | |
136 | perf_regs = (processor_pm_regs_t)cmd->cmd_pm_regs; | |
137 | oldlevel = ml_set_interrupts_enabled(FALSE); /* disable interrupts */ | |
138 | mtmmcr0(PERFMON_MMCR0(perf_regs) & MMCR0_SUPPORT_MASK); | |
139 | mtpmc1(PERFMON_PMC1(perf_regs)); | |
140 | mtpmc2(PERFMON_PMC2(perf_regs)); | |
141 | ml_set_interrupts_enabled(oldlevel); /* enable interrupts */ | |
142 | return(KERN_SUCCESS); | |
143 | } | |
144 | case CPU_SUBTYPE_POWERPC_604e: | |
145 | case CPU_SUBTYPE_POWERPC_750: | |
146 | if (count < (PROCESSOR_CONTROL_CMD_COUNT + | |
147 | PROCESSOR_PM_REGS_COUNT_POWERPC_750)) | |
148 | return(KERN_FAILURE); | |
149 | else | |
150 | { | |
151 | perf_regs = (processor_pm_regs_t)cmd->cmd_pm_regs; | |
152 | oldlevel = ml_set_interrupts_enabled(FALSE); /* disable interrupts */ | |
153 | mtmmcr0(PERFMON_MMCR0(perf_regs) & MMCR0_SUPPORT_MASK); | |
154 | mtpmc1(PERFMON_PMC1(perf_regs)); | |
155 | mtpmc2(PERFMON_PMC2(perf_regs)); | |
156 | mtmmcr1(PERFMON_MMCR1(perf_regs) & MMCR1_SUPPORT_MASK); | |
157 | mtpmc3(PERFMON_PMC3(perf_regs)); | |
158 | mtpmc4(PERFMON_PMC4(perf_regs)); | |
159 | ml_set_interrupts_enabled(oldlevel); /* enable interrupts */ | |
160 | return(KERN_SUCCESS); | |
161 | } | |
162 | case CPU_SUBTYPE_POWERPC_7400: | |
163 | case CPU_SUBTYPE_POWERPC_7450: | |
164 | if (count < (PROCESSOR_CONTROL_CMD_COUNT + | |
165 | PROCESSOR_PM_REGS_COUNT_POWERPC_7400)) | |
166 | return(KERN_FAILURE); | |
167 | else | |
168 | { | |
169 | perf_regs = (processor_pm_regs_t)cmd->cmd_pm_regs; | |
170 | oldlevel = ml_set_interrupts_enabled(FALSE); /* disable interrupts */ | |
171 | mtmmcr0(PERFMON_MMCR0(perf_regs) & MMCR0_SUPPORT_MASK); | |
172 | mtpmc1(PERFMON_PMC1(perf_regs)); | |
173 | mtpmc2(PERFMON_PMC2(perf_regs)); | |
174 | mtmmcr1(PERFMON_MMCR1(perf_regs) & MMCR1_SUPPORT_MASK); | |
175 | mtpmc3(PERFMON_PMC3(perf_regs)); | |
176 | mtpmc4(PERFMON_PMC4(perf_regs)); | |
177 | mtmmcr2(PERFMON_MMCR2(perf_regs) & MMCR2_SUPPORT_MASK); | |
178 | ml_set_interrupts_enabled(oldlevel); /* enable interrupts */ | |
179 | return(KERN_SUCCESS); | |
180 | } | |
181 | default: | |
182 | return(KERN_FAILURE); | |
183 | } /* switch cpu_subtype */ | |
184 | case PROCESSOR_PM_SET_MMCR: | |
185 | switch (cpu_subtype) | |
186 | { | |
187 | case CPU_SUBTYPE_POWERPC_604: | |
188 | if (count < (PROCESSOR_CONTROL_CMD_COUNT + | |
189 | PROCESSOR_PM_REGS_COUNT_POWERPC_604)) | |
190 | return(KERN_FAILURE); | |
191 | else | |
192 | { | |
193 | perf_regs = (processor_pm_regs_t)cmd->cmd_pm_regs; | |
194 | mtmmcr0(PERFMON_MMCR0(perf_regs) & MMCR0_SUPPORT_MASK); | |
195 | return(KERN_SUCCESS); | |
196 | } | |
197 | case CPU_SUBTYPE_POWERPC_604e: | |
198 | case CPU_SUBTYPE_POWERPC_750: | |
199 | if (count < (PROCESSOR_CONTROL_CMD_COUNT + | |
200 | PROCESSOR_PM_REGS_COUNT_POWERPC_750)) | |
201 | return(KERN_FAILURE); | |
202 | else | |
203 | { | |
204 | perf_regs = (processor_pm_regs_t)cmd->cmd_pm_regs; | |
205 | oldlevel = ml_set_interrupts_enabled(FALSE); /* disable interrupts */ | |
206 | mtmmcr0(PERFMON_MMCR0(perf_regs) & MMCR0_SUPPORT_MASK); | |
207 | mtmmcr1(PERFMON_MMCR1(perf_regs) & MMCR1_SUPPORT_MASK); | |
208 | ml_set_interrupts_enabled(oldlevel); /* enable interrupts */ | |
209 | return(KERN_SUCCESS); | |
210 | } | |
211 | case CPU_SUBTYPE_POWERPC_7400: | |
212 | case CPU_SUBTYPE_POWERPC_7450: | |
213 | if (count < (PROCESSOR_CONTROL_CMD_COUNT + | |
214 | PROCESSOR_PM_REGS_COUNT_POWERPC_7400)) | |
215 | return(KERN_FAILURE); | |
216 | else | |
217 | { | |
218 | perf_regs = (processor_pm_regs_t)cmd->cmd_pm_regs; | |
219 | oldlevel = ml_set_interrupts_enabled(FALSE); /* disable interrupts */ | |
220 | mtmmcr0(PERFMON_MMCR0(perf_regs) & MMCR0_SUPPORT_MASK); | |
221 | mtmmcr1(PERFMON_MMCR1(perf_regs) & MMCR1_SUPPORT_MASK); | |
222 | mtmmcr2(PERFMON_MMCR2(perf_regs) & MMCR2_SUPPORT_MASK); | |
223 | ml_set_interrupts_enabled(oldlevel); /* enable interrupts */ | |
224 | return(KERN_SUCCESS); | |
225 | } | |
226 | default: | |
227 | return(KERN_FAILURE); | |
228 | } /* cpu_subtype */ | |
229 | default: | |
230 | return(KERN_FAILURE); | |
231 | } /* switch cmd_op */ | |
232 | } | |
233 | ||
234 | kern_return_t | |
235 | cpu_info_count( | |
236 | processor_flavor_t flavor, | |
237 | unsigned int *count) | |
238 | { | |
239 | cpu_subtype_t cpu_subtype; | |
240 | ||
241 | /* | |
242 | * For now, we just assume that all CPUs are of the same type | |
243 | */ | |
244 | cpu_subtype = machine_slot[0].cpu_subtype; | |
245 | switch (flavor) { | |
246 | case PROCESSOR_PM_REGS_INFO: | |
247 | switch (cpu_subtype) { | |
248 | case CPU_SUBTYPE_POWERPC_604: | |
249 | *count = PROCESSOR_PM_REGS_COUNT_POWERPC_604; | |
250 | return(KERN_SUCCESS); | |
251 | ||
252 | case CPU_SUBTYPE_POWERPC_604e: | |
253 | case CPU_SUBTYPE_POWERPC_750: | |
254 | ||
255 | *count = PROCESSOR_PM_REGS_COUNT_POWERPC_750; | |
256 | return(KERN_SUCCESS); | |
257 | ||
258 | case CPU_SUBTYPE_POWERPC_7400: | |
259 | case CPU_SUBTYPE_POWERPC_7450: | |
260 | ||
261 | *count = PROCESSOR_PM_REGS_COUNT_POWERPC_7400; | |
262 | return(KERN_SUCCESS); | |
263 | ||
264 | default: | |
265 | *count = 0; | |
266 | return(KERN_INVALID_ARGUMENT); | |
267 | } /* switch cpu_subtype */ | |
268 | ||
269 | case PROCESSOR_TEMPERATURE: | |
270 | *count = PROCESSOR_TEMPERATURE_COUNT; | |
271 | return (KERN_SUCCESS); | |
272 | ||
273 | default: | |
274 | *count = 0; | |
275 | return(KERN_INVALID_ARGUMENT); | |
276 | ||
277 | } | |
278 | } | |
279 | ||
280 | kern_return_t | |
281 | cpu_info( | |
282 | processor_flavor_t flavor, | |
283 | int slot_num, | |
284 | processor_info_t info, | |
285 | unsigned int *count) | |
286 | { | |
287 | cpu_subtype_t cpu_subtype; | |
288 | processor_pm_regs_t perf_regs; | |
289 | boolean_t oldlevel; | |
290 | unsigned int temp[2]; | |
291 | ||
292 | cpu_subtype = machine_slot[slot_num].cpu_subtype; | |
293 | ||
294 | switch (flavor) { | |
295 | case PROCESSOR_PM_REGS_INFO: | |
296 | ||
297 | perf_regs = (processor_pm_regs_t) info; | |
298 | ||
299 | switch (cpu_subtype) { | |
300 | case CPU_SUBTYPE_POWERPC_604: | |
301 | ||
302 | if (*count < PROCESSOR_PM_REGS_COUNT_POWERPC_604) | |
303 | return(KERN_FAILURE); | |
304 | ||
305 | oldlevel = ml_set_interrupts_enabled(FALSE); /* disable interrupts */ | |
306 | PERFMON_MMCR0(perf_regs) = mfmmcr0(); | |
307 | PERFMON_PMC1(perf_regs) = mfpmc1(); | |
308 | PERFMON_PMC2(perf_regs) = mfpmc2(); | |
309 | ml_set_interrupts_enabled(oldlevel); /* enable interrupts */ | |
310 | ||
311 | *count = PROCESSOR_PM_REGS_COUNT_POWERPC_604; | |
312 | return(KERN_SUCCESS); | |
313 | ||
314 | case CPU_SUBTYPE_POWERPC_604e: | |
315 | case CPU_SUBTYPE_POWERPC_750: | |
316 | ||
317 | if (*count < PROCESSOR_PM_REGS_COUNT_POWERPC_750) | |
318 | return(KERN_FAILURE); | |
319 | ||
320 | oldlevel = ml_set_interrupts_enabled(FALSE); /* disable interrupts */ | |
321 | PERFMON_MMCR0(perf_regs) = mfmmcr0(); | |
322 | PERFMON_PMC1(perf_regs) = mfpmc1(); | |
323 | PERFMON_PMC2(perf_regs) = mfpmc2(); | |
324 | PERFMON_MMCR1(perf_regs) = mfmmcr1(); | |
325 | PERFMON_PMC3(perf_regs) = mfpmc3(); | |
326 | PERFMON_PMC4(perf_regs) = mfpmc4(); | |
327 | ml_set_interrupts_enabled(oldlevel); /* enable interrupts */ | |
328 | ||
329 | *count = PROCESSOR_PM_REGS_COUNT_POWERPC_750; | |
330 | return(KERN_SUCCESS); | |
331 | ||
332 | case CPU_SUBTYPE_POWERPC_7400: | |
333 | case CPU_SUBTYPE_POWERPC_7450: | |
334 | ||
335 | if (*count < PROCESSOR_PM_REGS_COUNT_POWERPC_7400) | |
336 | return(KERN_FAILURE); | |
337 | ||
338 | oldlevel = ml_set_interrupts_enabled(FALSE); /* disable interrupts */ | |
339 | PERFMON_MMCR0(perf_regs) = mfmmcr0(); | |
340 | PERFMON_PMC1(perf_regs) = mfpmc1(); | |
341 | PERFMON_PMC2(perf_regs) = mfpmc2(); | |
342 | PERFMON_MMCR1(perf_regs) = mfmmcr1(); | |
343 | PERFMON_PMC3(perf_regs) = mfpmc3(); | |
344 | PERFMON_PMC4(perf_regs) = mfpmc4(); | |
345 | PERFMON_MMCR2(perf_regs) = mfmmcr2(); | |
346 | ml_set_interrupts_enabled(oldlevel); /* enable interrupts */ | |
347 | ||
348 | *count = PROCESSOR_PM_REGS_COUNT_POWERPC_7400; | |
349 | return(KERN_SUCCESS); | |
350 | ||
351 | default: | |
352 | return(KERN_FAILURE); | |
353 | } /* switch cpu_subtype */ | |
354 | ||
355 | case PROCESSOR_TEMPERATURE: /* Get the temperature of a processor */ | |
356 | ||
357 | disable_preemption(); /* Don't move me now */ | |
358 | ||
359 | if(slot_num == cpu_number()) { /* Is this for the local CPU? */ | |
360 | *info = ml_read_temp(); /* Get the temperature */ | |
361 | } | |
362 | else { /* For another CPU */ | |
363 | temp[0] = -1; /* Set sync flag */ | |
364 | eieio(); | |
365 | sync(); | |
366 | temp[1] = -1; /* Set invalid temperature */ | |
367 | (void)cpu_signal(slot_num, SIGPcpureq, CPRQtemp ,(unsigned int)&temp); /* Ask him to take his temperature */ | |
368 | (void)hw_cpu_sync(temp, LockTimeOut); /* Wait for the other processor to get its temperature */ | |
369 | *info = temp[1]; /* Pass it back */ | |
370 | } | |
371 | ||
372 | enable_preemption(); /* Ok to move now */ | |
373 | return(KERN_SUCCESS); | |
374 | ||
375 | default: | |
376 | return(KERN_INVALID_ARGUMENT); | |
377 | ||
378 | } /* flavor */ | |
379 | } | |
380 | ||
381 | void | |
382 | cpu_init( | |
383 | void) | |
384 | { | |
385 | int cpu; | |
386 | ||
387 | cpu = cpu_number(); | |
388 | ||
389 | machine_slot[cpu].running = TRUE; | |
390 | machine_slot[cpu].cpu_type = CPU_TYPE_POWERPC; | |
391 | machine_slot[cpu].cpu_subtype = (cpu_subtype_t)per_proc_info[cpu].pf.rptdProc; | |
392 | ||
393 | } | |
394 | ||
395 | void | |
396 | cpu_machine_init( | |
397 | void) | |
398 | { | |
399 | struct per_proc_info *tproc_info; | |
400 | volatile struct per_proc_info *mproc_info; | |
401 | int cpu; | |
402 | ||
403 | /* TODO: realese mutex lock reset_handler_lock */ | |
404 | ||
405 | cpu = cpu_number(); | |
406 | tproc_info = &per_proc_info[cpu]; | |
407 | mproc_info = &per_proc_info[master_cpu]; | |
408 | PE_cpu_machine_init(tproc_info->cpu_id, !(tproc_info->cpu_flags & BootDone)); | |
409 | if (cpu != master_cpu) { | |
410 | while (!((mproc_info->cpu_flags) & SignalReady)) | |
411 | continue; | |
412 | cpu_sync_timebase(); | |
413 | } | |
414 | ml_init_interrupt(); | |
415 | tproc_info->cpu_flags |= BootDone|SignalReady; | |
416 | } | |
417 | ||
418 | kern_return_t | |
419 | cpu_register( | |
420 | int *target_cpu | |
421 | ) | |
422 | { | |
423 | int cpu; | |
424 | ||
425 | /* | |
426 | * TODO: | |
427 | * - Run cpu_register() in exclusion mode | |
428 | */ | |
429 | ||
430 | *target_cpu = -1; | |
431 | for(cpu=0; cpu < wncpu; cpu++) { | |
432 | if(!machine_slot[cpu].is_cpu) { | |
433 | machine_slot[cpu].is_cpu = TRUE; | |
434 | *target_cpu = cpu; | |
435 | break; | |
436 | } | |
437 | } | |
438 | if (*target_cpu != -1) { | |
439 | real_ncpus++; | |
440 | return KERN_SUCCESS; | |
441 | } else | |
442 | return KERN_FAILURE; | |
443 | } | |
444 | ||
445 | kern_return_t | |
446 | cpu_start( | |
447 | int cpu) | |
448 | { | |
449 | struct per_proc_info *proc_info; | |
450 | kern_return_t ret; | |
451 | ||
452 | extern void (*exception_handlers[])(void); | |
453 | extern vm_offset_t intstack; | |
454 | extern vm_offset_t debstack; | |
455 | ||
456 | proc_info = &per_proc_info[cpu]; | |
457 | ||
458 | if (cpu == cpu_number()) { | |
459 | PE_cpu_machine_init(proc_info->cpu_id, !(proc_info->cpu_flags & BootDone)); | |
460 | ml_init_interrupt(); | |
461 | proc_info->cpu_flags |= BootDone|SignalReady; | |
462 | ||
463 | return KERN_SUCCESS; | |
464 | } else { | |
465 | extern void _start_cpu(void); | |
466 | ||
467 | proc_info->cpu_number = cpu; | |
468 | proc_info->cpu_flags &= BootDone; | |
469 | proc_info->istackptr = (vm_offset_t)&intstack + (INTSTACK_SIZE*(cpu+1)) - FM_SIZE; | |
470 | proc_info->intstack_top_ss = proc_info->istackptr; | |
471 | #if MACH_KDP || MACH_KDB | |
472 | proc_info->debstackptr = (vm_offset_t)&debstack + (KERNEL_STACK_SIZE*(cpu+1)) - FM_SIZE; | |
473 | proc_info->debstack_top_ss = proc_info->debstackptr; | |
474 | #endif /* MACH_KDP || MACH_KDB */ | |
475 | proc_info->interrupts_enabled = 0; | |
476 | proc_info->active_kloaded = (unsigned int)&active_kloaded[cpu]; | |
477 | proc_info->active_stacks = (unsigned int)&active_stacks[cpu]; | |
478 | proc_info->need_ast = (unsigned int)&need_ast[cpu]; | |
479 | proc_info->FPU_owner = 0; | |
480 | proc_info->VMX_owner = 0; | |
481 | ||
482 | ||
483 | if (proc_info->start_paddr == EXCEPTION_VECTOR(T_RESET)) { | |
484 | ||
485 | /* TODO: get mutex lock reset_handler_lock */ | |
486 | ||
487 | resethandler_target.type = RESET_HANDLER_START; | |
488 | resethandler_target.call_paddr = kvtophys((vm_offset_t)_start_cpu); | |
489 | resethandler_target.arg__paddr = kvtophys((vm_offset_t)proc_info); | |
490 | ||
491 | ml_phys_write((vm_offset_t)&ResetHandler + 0, | |
492 | resethandler_target.type); | |
493 | ml_phys_write((vm_offset_t)&ResetHandler + 4, | |
494 | resethandler_target.call_paddr); | |
495 | ml_phys_write((vm_offset_t)&ResetHandler + 8, | |
496 | resethandler_target.arg__paddr); | |
497 | ||
498 | } | |
499 | /* | |
500 | * Note: we pass the current time to the other processor here. He will load it | |
501 | * as early as possible so that there is a chance that it is close to accurate. | |
502 | * After the machine is up a while, we will officially resync the clocks so | |
503 | * that all processors are the same. This is just to get close. | |
504 | */ | |
505 | ||
506 | ml_get_timebase((unsigned long long *)&proc_info->ruptStamp); /* Pass our current time to the other guy */ | |
507 | ||
508 | __asm__ volatile("sync"); /* Commit to storage */ | |
509 | __asm__ volatile("isync"); /* Wait a second */ | |
510 | ret = PE_cpu_start(proc_info->cpu_id, | |
511 | proc_info->start_paddr, (vm_offset_t)proc_info); | |
512 | ||
513 | if (ret != KERN_SUCCESS && | |
514 | proc_info->start_paddr == EXCEPTION_VECTOR(T_RESET)) { | |
515 | ||
516 | /* TODO: realese mutex lock reset_handler_lock */ | |
517 | } | |
518 | return(ret); | |
519 | } | |
520 | } | |
521 | ||
522 | /* | |
523 | * Here is where we implement the receiver of the signaling protocol. | |
524 | * We wait for the signal status area to be passed to us. Then we snarf | |
525 | * up the status, the sender, and the 3 potential parms. Next we release | |
526 | * the lock and signal the other guy. | |
527 | */ | |
528 | ||
529 | void | |
530 | cpu_signal_handler( | |
531 | void) | |
532 | { | |
533 | ||
534 | unsigned int holdStat, holdParm0, holdParm1, holdParm2, mtype; | |
535 | unsigned int *parmAddr; | |
536 | struct per_proc_info *pproc; /* Area for my per_proc address */ | |
537 | int cpu; | |
538 | struct SIGtimebase *timebaseAddr; | |
539 | natural_t tbu, tbu2, tbl; | |
540 | ||
541 | cpu = cpu_number(); /* Get the CPU number */ | |
542 | pproc = &per_proc_info[cpu]; /* Point to our block */ | |
543 | ||
544 | /* | |
545 | * Since we've been signaled, wait about 31 ms for the signal lock to pass | |
546 | */ | |
547 | if(!hw_lock_mbits(&pproc->MPsigpStat, (MPsigpMsgp | MPsigpAck), (MPsigpBusy | MPsigpPass), | |
548 | (MPsigpBusy | MPsigpPass | MPsigpAck), (gPEClockFrequencyInfo.timebase_frequency_hz >> 5))) { | |
549 | panic("cpu_signal_handler: Lock pass timed out\n"); | |
550 | } | |
551 | ||
552 | holdStat = pproc->MPsigpStat; /* Snarf stat word */ | |
553 | holdParm0 = pproc->MPsigpParm0; /* Snarf parameter */ | |
554 | holdParm1 = pproc->MPsigpParm1; /* Snarf parameter */ | |
555 | holdParm2 = pproc->MPsigpParm2; /* Snarf parameter */ | |
556 | ||
557 | __asm__ volatile("isync"); /* Make sure we don't unlock until memory is in */ | |
558 | ||
559 | pproc->MPsigpStat = holdStat & ~(MPsigpMsgp | MPsigpAck | MPsigpFunc); /* Release lock */ | |
560 | ||
561 | switch ((holdStat & MPsigpFunc) >> 8) { /* Decode function code */ | |
562 | ||
563 | case MPsigpIdle: /* Was function cancelled? */ | |
564 | return; /* Yup... */ | |
565 | ||
566 | case MPsigpSigp: /* Signal Processor message? */ | |
567 | ||
568 | switch (holdParm0) { /* Decode SIGP message order */ | |
569 | ||
570 | case SIGPast: /* Should we do an AST? */ | |
571 | pproc->numSIGPast++; /* Count this one */ | |
572 | #if 0 | |
573 | kprintf("cpu_signal_handler: AST check on cpu %x\n", cpu_number()); | |
574 | #endif | |
575 | ast_check(cpu_to_processor(cpu)); | |
576 | return; /* All done... */ | |
577 | ||
578 | case SIGPcpureq: /* CPU specific function? */ | |
579 | ||
580 | pproc->numSIGPcpureq++; /* Count this one */ | |
581 | switch (holdParm1) { /* Select specific function */ | |
582 | ||
583 | case CPRQtemp: /* Get the temperature */ | |
584 | parmAddr = (unsigned int *)holdParm2; /* Get the destination address */ | |
585 | parmAddr[1] = ml_read_temp(); /* Get the core temperature */ | |
586 | eieio(); /* Force order */ | |
587 | sync(); /* Force to memory */ | |
588 | parmAddr[0] = 0; /* Show we're done */ | |
589 | return; | |
590 | ||
591 | case CPRQtimebase: | |
592 | ||
593 | timebaseAddr = (struct SIGtimebase *)holdParm2; | |
594 | ||
595 | if(pproc->time_base_enable != (void(*)(cpu_id_t, boolean_t ))NULL) | |
596 | pproc->time_base_enable(pproc->cpu_id, FALSE); | |
597 | ||
598 | timebaseAddr->abstime = 0; /* Touch to force into cache */ | |
599 | sync(); | |
600 | ||
601 | do { | |
602 | asm volatile(" mftbu %0" : "=r" (tbu)); | |
603 | asm volatile(" mftb %0" : "=r" (tbl)); | |
604 | asm volatile(" mftbu %0" : "=r" (tbu2)); | |
605 | } while (tbu != tbu2); | |
606 | ||
607 | timebaseAddr->abstime = ((uint64_t)tbu << 32) | tbl; | |
608 | sync(); /* Force order */ | |
609 | ||
610 | timebaseAddr->avail = TRUE; | |
611 | ||
612 | while (*(volatile int *)&(syncClkSpot.ready) == FALSE); | |
613 | ||
614 | if(pproc->time_base_enable != (void(*)(cpu_id_t, boolean_t ))NULL) | |
615 | pproc->time_base_enable(pproc->cpu_id, TRUE); | |
616 | ||
617 | timebaseAddr->done = TRUE; | |
618 | ||
619 | return; | |
620 | ||
621 | default: | |
622 | panic("cpu_signal_handler: unknown CPU request - %08X\n", holdParm1); | |
623 | return; | |
624 | } | |
625 | ||
626 | ||
627 | case SIGPdebug: /* Enter the debugger? */ | |
628 | ||
629 | pproc->numSIGPdebug++; /* Count this one */ | |
630 | debugger_is_slave[cpu]++; /* Bump up the count to show we're here */ | |
631 | hw_atomic_sub(&debugger_sync, 1); /* Show we've received the 'rupt */ | |
632 | __asm__ volatile("tw 4,r3,r3"); /* Enter the debugger */ | |
633 | return; /* All done now... */ | |
634 | ||
635 | case SIGPwake: /* Wake up CPU */ | |
636 | pproc->numSIGPwake++; /* Count this one */ | |
637 | return; /* No need to do anything, the interrupt does it all... */ | |
638 | ||
639 | default: | |
640 | panic("cpu_signal_handler: unknown SIGP message order - %08X\n", holdParm0); | |
641 | return; | |
642 | ||
643 | } | |
644 | ||
645 | default: | |
646 | panic("cpu_signal_handler: unknown SIGP function - %08X\n", (holdStat & MPsigpFunc) >> 8); | |
647 | return; | |
648 | ||
649 | } | |
650 | panic("cpu_signal_handler: we should never get here\n"); | |
651 | } | |
652 | ||
653 | /* | |
654 | * Here is where we send a message to another processor. So far we only have two: | |
655 | * SIGPast and SIGPdebug. SIGPast is used to preempt and kick off threads (this is | |
656 | * currently disabled). SIGPdebug is used to enter the debugger. | |
657 | * | |
658 | * We set up the SIGP function to indicate that this is a simple message and set the | |
659 | * order code (MPsigpParm0) to SIGPast or SIGPdebug). After finding the per_processor | |
660 | * block for the target, we lock the message block. Then we set the parameter(s). | |
661 | * Next we change the lock (also called "busy") to "passing" and finally signal | |
662 | * the other processor. Note that we only wait about 1ms to get the message lock. | |
663 | * If we time out, we return failure to our caller. It is their responsibility to | |
664 | * recover. | |
665 | */ | |
666 | ||
667 | kern_return_t | |
668 | cpu_signal( | |
669 | int target, | |
670 | int signal, | |
671 | unsigned int p1, | |
672 | unsigned int p2) | |
673 | { | |
674 | ||
675 | unsigned int holdStat, holdParm0, holdParm1, holdParm2, mtype; | |
676 | struct per_proc_info *tpproc, *mpproc; /* Area for per_proc addresses */ | |
677 | int cpu; | |
678 | int busybitset =0; | |
679 | ||
680 | #if DEBUG | |
681 | if(target > NCPUS) panic("cpu_signal: invalid target CPU - %08X\n", target); | |
682 | #endif | |
683 | ||
684 | cpu = cpu_number(); /* Get our CPU number */ | |
685 | if(target == cpu) return KERN_FAILURE; /* Don't play with ourselves */ | |
686 | if(!machine_slot[target].running) return KERN_FAILURE; /* These guys are too young */ | |
687 | ||
688 | mpproc = &per_proc_info[cpu]; /* Point to our block */ | |
689 | tpproc = &per_proc_info[target]; /* Point to the target's block */ | |
690 | ||
691 | if (!(tpproc->cpu_flags & SignalReady)) return KERN_FAILURE; | |
692 | ||
693 | if((tpproc->MPsigpStat & MPsigpMsgp) == MPsigpMsgp) { /* Is there an unreceived message already pending? */ | |
694 | ||
695 | if(signal == SIGPwake) { /* SIGPwake can merge into all others... */ | |
696 | mpproc->numSIGPmwake++; /* Account for merged wakes */ | |
697 | return KERN_SUCCESS; | |
698 | } | |
699 | ||
700 | if((signal == SIGPast) && (tpproc->MPsigpParm0 == SIGPast)) { /* We can merge ASTs */ | |
701 | mpproc->numSIGPmast++; /* Account for merged ASTs */ | |
702 | return KERN_SUCCESS; /* Don't bother to send this one... */ | |
703 | } | |
704 | ||
705 | if (tpproc->MPsigpParm0 == SIGPwake) { | |
706 | if (hw_lock_mbits(&tpproc->MPsigpStat, (MPsigpMsgp | MPsigpAck), | |
707 | (MPsigpBusy | MPsigpPass ), MPsigpBusy, 0)) { | |
708 | busybitset = 1; | |
709 | mpproc->numSIGPmwake++; | |
710 | } | |
711 | } | |
712 | } | |
713 | ||
714 | if((busybitset == 0) && | |
715 | (!hw_lock_mbits(&tpproc->MPsigpStat, MPsigpMsgp, 0, MPsigpBusy, | |
716 | (gPEClockFrequencyInfo.timebase_frequency_hz >> 11)))) { /* Try to lock the message block with a .5ms timeout */ | |
717 | mpproc->numSIGPtimo++; /* Account for timeouts */ | |
718 | return KERN_FAILURE; /* Timed out, take your ball and go home... */ | |
719 | } | |
720 | ||
721 | holdStat = MPsigpBusy | MPsigpPass | (MPsigpSigp << 8) | cpu; /* Set up the signal status word */ | |
722 | tpproc->MPsigpParm0 = signal; /* Set message order */ | |
723 | tpproc->MPsigpParm1 = p1; /* Set additional parm */ | |
724 | tpproc->MPsigpParm2 = p2; /* Set additional parm */ | |
725 | ||
726 | __asm__ volatile("sync"); /* Make sure it's all there */ | |
727 | ||
728 | tpproc->MPsigpStat = holdStat; /* Set status and pass the lock */ | |
729 | __asm__ volatile("eieio"); /* I'm a paraniod freak */ | |
730 | ||
731 | if (busybitset == 0) | |
732 | PE_cpu_signal(mpproc->cpu_id, tpproc->cpu_id); /* Kick the other processor */ | |
733 | ||
734 | return KERN_SUCCESS; /* All is goodness and rainbows... */ | |
735 | } | |
736 | ||
737 | void | |
738 | cpu_doshutdown( | |
739 | void) | |
740 | { | |
741 | processor_doshutdown(current_processor()); | |
742 | } | |
743 | ||
744 | void | |
745 | cpu_sleep( | |
746 | void) | |
747 | { | |
748 | struct per_proc_info *proc_info; | |
749 | unsigned int cpu; | |
750 | facility_context *fowner; | |
751 | extern void (*exception_handlers[])(void); | |
752 | extern vm_offset_t intstack; | |
753 | extern vm_offset_t debstack; | |
754 | extern void _restart_cpu(void); | |
755 | ||
756 | cpu = cpu_number(); | |
757 | #if 0 | |
758 | kprintf("******* About to sleep cpu %d\n", cpu); | |
759 | #endif | |
760 | ||
761 | proc_info = &per_proc_info[cpu]; | |
762 | ||
763 | fowner = proc_info->FPU_owner; /* Cache this */ | |
764 | if(fowner) fpu_save(fowner); /* If anyone owns FPU, save it */ | |
765 | proc_info->FPU_owner = 0; /* Set no fpu owner now */ | |
766 | ||
767 | fowner = proc_info->VMX_owner; /* Cache this */ | |
768 | if(fowner) vec_save(fowner); /* If anyone owns vectors, save it */ | |
769 | proc_info->VMX_owner = 0; /* Set no vector owner now */ | |
770 | ||
771 | if (proc_info->cpu_number == 0) { | |
772 | proc_info->cpu_flags &= BootDone; | |
773 | proc_info->istackptr = (vm_offset_t)&intstack + (INTSTACK_SIZE*(cpu+1)) - FM_SIZE; | |
774 | proc_info->intstack_top_ss = proc_info->istackptr; | |
775 | #if MACH_KDP || MACH_KDB | |
776 | proc_info->debstackptr = (vm_offset_t)&debstack + (KERNEL_STACK_SIZE*(cpu+1)) - FM_SIZE; | |
777 | proc_info->debstack_top_ss = proc_info->debstackptr; | |
778 | #endif /* MACH_KDP || MACH_KDB */ | |
779 | proc_info->interrupts_enabled = 0; | |
780 | ||
781 | if (proc_info->start_paddr == EXCEPTION_VECTOR(T_RESET)) { | |
782 | extern void _start_cpu(void); | |
783 | ||
784 | resethandler_target.type = RESET_HANDLER_START; | |
785 | resethandler_target.call_paddr = kvtophys((vm_offset_t)_start_cpu); | |
786 | resethandler_target.arg__paddr = kvtophys((vm_offset_t)proc_info); | |
787 | ||
788 | ml_phys_write((vm_offset_t)&ResetHandler + 0, | |
789 | resethandler_target.type); | |
790 | ml_phys_write((vm_offset_t)&ResetHandler + 4, | |
791 | resethandler_target.call_paddr); | |
792 | ml_phys_write((vm_offset_t)&ResetHandler + 8, | |
793 | resethandler_target.arg__paddr); | |
794 | ||
795 | __asm__ volatile("sync"); | |
796 | __asm__ volatile("isync"); | |
797 | } | |
798 | } | |
799 | ||
800 | PE_cpu_machine_quiesce(proc_info->cpu_id); | |
801 | } | |
802 | ||
803 | void | |
804 | cpu_sync_timebase( | |
805 | void) | |
806 | { | |
807 | natural_t tbu, tbl; | |
808 | boolean_t intr; | |
809 | ||
810 | intr = ml_set_interrupts_enabled(FALSE); /* No interruptions in here */ | |
811 | ||
812 | /* Note that syncClkSpot is in a cache aligned area */ | |
813 | syncClkSpot.avail = FALSE; | |
814 | syncClkSpot.ready = FALSE; | |
815 | syncClkSpot.done = FALSE; | |
816 | ||
817 | while (cpu_signal(master_cpu, SIGPcpureq, CPRQtimebase, | |
818 | (unsigned int)&syncClkSpot) != KERN_SUCCESS) | |
819 | continue; | |
820 | ||
821 | while (*(volatile int *)&(syncClkSpot.avail) == FALSE) | |
822 | continue; | |
823 | ||
824 | isync(); | |
825 | ||
826 | /* | |
827 | * We do the following to keep the compiler from generating extra stuff | |
828 | * in tb set part | |
829 | */ | |
830 | tbu = syncClkSpot.abstime >> 32; | |
831 | tbl = (uint32_t)syncClkSpot.abstime; | |
832 | ||
833 | mttb(0); | |
834 | mttbu(tbu); | |
835 | mttb(tbl); | |
836 | ||
837 | syncClkSpot.ready = TRUE; | |
838 | ||
839 | while (*(volatile int *)&(syncClkSpot.done) == FALSE) | |
840 | continue; | |
841 | ||
842 | (void)ml_set_interrupts_enabled(intr); | |
843 | } |