]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Copyright (c) 2000 Apple Computer, Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * Copyright (c) 1999-2003 Apple Computer, Inc. All Rights Reserved. | |
7 | * | |
8 | * This file contains Original Code and/or Modifications of Original Code | |
9 | * as defined in and that are subject to the Apple Public Source License | |
10 | * Version 2.0 (the 'License'). You may not use this file except in | |
11 | * compliance with the License. Please obtain a copy of the License at | |
12 | * http://www.opensource.apple.com/apsl/ and read it before using this | |
13 | * file. | |
14 | * | |
15 | * The Original Code and all software distributed under the License are | |
16 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
17 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
18 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
19 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
20 | * Please see the License for the specific language governing rights and | |
21 | * limitations under the License. | |
22 | * | |
23 | * @APPLE_LICENSE_HEADER_END@ | |
24 | */ | |
25 | /* | |
26 | * @OSF_COPYRIGHT@ | |
27 | */ | |
28 | /* | |
29 | * Mach Operating System | |
30 | * Copyright (c) 1991,1990 Carnegie Mellon University | |
31 | * All Rights Reserved. | |
32 | * | |
33 | * Permission to use, copy, modify and distribute this software and its | |
34 | * documentation is hereby granted, provided that both the copyright | |
35 | * notice and this permission notice appear in all copies of the | |
36 | * software, derivative works or modified versions, and any portions | |
37 | * thereof, and that both notices appear in supporting documentation. | |
38 | * | |
39 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" | |
40 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR | |
41 | * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. | |
42 | * | |
43 | * Carnegie Mellon requests users of this software to return to | |
44 | * | |
45 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU | |
46 | * School of Computer Science | |
47 | * Carnegie Mellon University | |
48 | * Pittsburgh PA 15213-3890 | |
49 | * | |
50 | * any improvements or extensions that they make and grant Carnegie Mellon | |
51 | * the rights to redistribute these changes. | |
52 | */ | |
53 | /* | |
54 | */ | |
55 | ||
56 | /* | |
57 | * Clock interrupt. | |
58 | */ | |
59 | #include <cpus.h> | |
60 | #include <time_stamp.h> | |
61 | #include <mach_kdb.h> | |
62 | #include <kern/cpu_number.h> | |
63 | #include <kern/cpu_data.h> | |
64 | #include <kern/kern_types.h> | |
65 | #include <platforms.h> | |
66 | #include <mp_v1_1.h> | |
67 | #include <mach_kprof.h> | |
68 | #include <mach_mp_debug.h> | |
69 | #include <mach/std_types.h> | |
70 | ||
71 | #include <mach/clock_types.h> | |
72 | #include <mach/boolean.h> | |
73 | #include <i386/thread.h> | |
74 | #include <i386/eflags.h> | |
75 | #include <kern/assert.h> | |
76 | #include <kern/misc_protos.h> | |
77 | #include <i386/misc_protos.h> | |
78 | #include <kern/time_out.h> | |
79 | ||
80 | #include <i386/ipl.h> | |
81 | ||
82 | #include <i386/hardclock_entries.h> | |
83 | #include <i386/rtclock_entries.h> | |
84 | ||
85 | #if MACH_MP_DEBUG | |
86 | #include <i386/mach_param.h> /* for HZ */ | |
87 | #endif /* MACH_MP_DEBUG */ | |
88 | ||
89 | extern char return_to_iret[]; | |
90 | ||
91 | #if TIME_STAMP && NCPUS > 1 | |
92 | extern unsigned time_stamp; | |
93 | unsigned old_time_stamp, time_stamp_cum, nstamps; | |
94 | ||
95 | /* | |
96 | * If H/W provides a counter, record number of ticks and cumulated | |
97 | * time stamps to know timestamps rate. | |
98 | * This should go away when ALARMCLOCKS installed | |
99 | */ | |
100 | #define time_stamp_stat() \ | |
101 | if (my_cpu == 0) \ | |
102 | if (!old_time_stamp) { \ | |
103 | old_time_stamp = time_stamp; \ | |
104 | nstamps = 0; \ | |
105 | } else { \ | |
106 | nstamps++; \ | |
107 | time_stamp_cum = (time_stamp - old_time_stamp); \ | |
108 | } | |
109 | #else /* TIME_STAMP && AT386 && NCPUS > 1 */ | |
110 | #define time_stamp_stat() | |
111 | #endif /* TIME_STAMP && AT386 && NCPUS > 1 */ | |
112 | ||
113 | #if MACH_KPROF | |
114 | int masked_pc[NCPUS]; | |
115 | int missed_clock[NCPUS]; | |
116 | int detect_lost_tick = 0; | |
117 | #endif /* MACH_KPROF */ | |
118 | ||
119 | #if MACH_MP_DEBUG | |
120 | int masked_state_cnt[NCPUS]; | |
121 | int masked_state_max = 10*HZ; | |
122 | #endif /* MACH_MP_DEBUG */ | |
123 | ||
124 | /* | |
125 | * In the interest of a fast clock interrupt service path, | |
126 | * this routine should be folded into assembly language with | |
127 | * a direct interrupt vector on the i386. The "pit" interrupt | |
128 | * should always call the rtclock_intr() routine on the master | |
129 | * processor. The return value of the rtclock_intr() routine | |
130 | * indicates whether HZ rate clock processing should be | |
131 | * performed. (On the Sequent, all slave processors will | |
132 | * run at HZ rate). For now, we'll leave this routine in C | |
133 | * (with TIME_STAMP, MACH_MP_DEBUG and MACH_KPROF code this | |
134 | * routine is way too large for assembler anyway). | |
135 | */ | |
136 | ||
137 | #ifdef PARANOID_KDB | |
138 | int paranoid_debugger = TRUE; | |
139 | int paranoid_count = 1000; | |
140 | int paranoid_current = 0; | |
141 | int paranoid_cpu = 0; | |
142 | #endif /* PARANOID_KDB */ | |
143 | ||
144 | void | |
145 | hardclock(struct i386_interrupt_state *regs) /* saved registers */ | |
146 | { | |
147 | int mycpu; | |
148 | register unsigned pc; | |
149 | register boolean_t usermode; | |
150 | ||
151 | mp_disable_preemption(); | |
152 | mycpu = cpu_number(); | |
153 | ||
154 | #ifdef PARANOID_KDB | |
155 | if (paranoid_cpu == mycpu && | |
156 | paranoid_current++ >= paranoid_count) { | |
157 | paranoid_current = 0; | |
158 | if (paranoid_debugger) | |
159 | Debugger("hardclock"); | |
160 | } | |
161 | #endif /* PARANOID_KDB */ | |
162 | ||
163 | #if 0 | |
164 | #if MACH_MP_DEBUG | |
165 | /* | |
166 | * Increments counter of clock ticks handled under a masked state. | |
167 | * Debugger() is called if masked state is kept during 1 sec. | |
168 | * The counter is reset by splx() when ipl mask is set back to SPL0, | |
169 | * and by spl0(). | |
170 | */ | |
171 | if (SPL_CMP_GT((old_ipl & 0xFF), SPL0)) { | |
172 | if (masked_state_cnt[mycpu]++ >= masked_state_max) { | |
173 | int max_save = masked_state_max; | |
174 | ||
175 | masked_state_cnt[mycpu] = 0; | |
176 | masked_state_max = 0x7fffffff; | |
177 | ||
178 | if (ret_addr == return_to_iret) { | |
179 | usermode = (regs->efl & EFL_VM) || | |
180 | ((regs->cs & 0x03) != 0); | |
181 | pc = (unsigned)regs->eip; | |
182 | } else { | |
183 | usermode = FALSE; | |
184 | pc = (unsigned) | |
185 | ((struct i386_interrupt_state *)&old_ipl)->eip; | |
186 | } | |
187 | printf("looping at high IPL, usermode=%d pc=0x%x\n", | |
188 | usermode, pc); | |
189 | Debugger(""); | |
190 | ||
191 | masked_state_cnt[mycpu] = 0; | |
192 | masked_state_max = max_save; | |
193 | } | |
194 | } else | |
195 | masked_state_cnt[mycpu] = 0; | |
196 | #endif /* MACH_MP_DEBUG */ | |
197 | #endif | |
198 | ||
199 | #if MACH_KPROF | |
200 | /* | |
201 | * If we were masked against the clock skip call | |
202 | * to rtclock_intr(). When MACH_KPROF is set, the | |
203 | * clock frequency of the master-cpu is confined | |
204 | * to the HZ rate. | |
205 | */ | |
206 | if (SPL_CMP_LT(old_ipl & 0xFF, SPL7)) | |
207 | #endif /* MACH_KPROF */ | |
208 | /* | |
209 | * The master processor executes the rtclock_intr() routine | |
210 | * on every clock tick. The rtclock_intr() routine returns | |
211 | * a zero value on a HZ tick boundary. | |
212 | */ | |
213 | if (mycpu == master_cpu) { | |
214 | if (rtclock_intr() != 0) { | |
215 | mp_enable_preemption(); | |
216 | return; | |
217 | } | |
218 | } | |
219 | ||
220 | /* | |
221 | * The following code is executed at HZ rate by all processors | |
222 | * in the system. This implies that the clock rate on slave | |
223 | * processors must be HZ rate. | |
224 | */ | |
225 | ||
226 | time_stamp_stat(); | |
227 | ||
228 | #if 0 | |
229 | if (ret_addr == return_to_iret) { | |
230 | /* | |
231 | * A kernel-loaded task executing within itself will look like | |
232 | * "kernel mode", here. This is correct with syscalls | |
233 | * implemented using migrating threads, because it means that | |
234 | * the time spent in the server by a client thread will be | |
235 | * treated as "system" time for the client thread (and nothing | |
236 | * for the server). This conforms to the CPU reporting for an | |
237 | * integrated kernel. | |
238 | */ | |
239 | #endif | |
240 | usermode = (regs->efl & EFL_VM) || ((regs->cs & 0x03) != 0); | |
241 | pc = (unsigned)regs->eip; | |
242 | #if 0 | |
243 | } else { | |
244 | usermode = FALSE; | |
245 | pc = (unsigned)((struct i386_interrupt_state *)&old_ipl)->eip; | |
246 | } | |
247 | #endif | |
248 | ||
249 | #if MACH_KPROF | |
250 | /* | |
251 | * If we were masked against the clock, just memorize pc | |
252 | * and the fact that the clock interrupt is delayed | |
253 | */ | |
254 | if (SPL_CMP_GE((old_ipl & 0xFF), SPL7)) { | |
255 | assert(!usermode); | |
256 | if (missed_clock[mycpu]++ && detect_lost_tick > 1) | |
257 | Debugger("Mach_KPROF"); | |
258 | masked_pc[mycpu] = pc; | |
259 | } else | |
260 | #endif /* MACH_KPROF */ | |
261 | ||
262 | hertz_tick(usermode, pc); | |
263 | ||
264 | #if NCPUS >1 | |
265 | /* | |
266 | * Instead of having the master processor interrupt | |
267 | * all active processors, each processor in turn interrupts | |
268 | * the next active one. This avoids all slave processors | |
269 | * accessing the same R/W data simultaneously. | |
270 | */ | |
271 | slave_clock(); | |
272 | #endif /* NCPUS >1 && AT386 */ | |
273 | ||
274 | mp_enable_preemption(); | |
275 | } | |
276 | ||
277 | #if MACH_KPROF | |
278 | void | |
279 | delayed_clock(void) | |
280 | { | |
281 | int i; | |
282 | int my_cpu; | |
283 | ||
284 | mp_disable_preemption(); | |
285 | my_cpu = cpu_number(); | |
286 | ||
287 | if (missed_clock[my_cpu] > 1 && detect_lost_tick) | |
288 | printf("hardclock: missed %d clock interrupt(s) at %x\n", | |
289 | missed_clock[my_cpu]-1, masked_pc[my_cpu]); | |
290 | if (my_cpu == master_cpu) { | |
291 | i = rtclock_intr(); | |
292 | assert(i == 0); | |
293 | } | |
294 | hertz_tick(0, masked_pc[my_cpu]); | |
295 | missed_clock[my_cpu] = 0; | |
296 | ||
297 | mp_enable_preemption(); | |
298 | } | |
299 | #endif /* MACH_KPROF */ |