]> git.saurik.com Git - apple/xnu.git/blame_incremental - osfmk/vm/vm_fault.c
xnu-3247.1.106.tar.gz
[apple/xnu.git] / osfmk / vm / vm_fault.c
... / ...
CommitLineData
1/*
2 * Copyright (c) 2000-2009 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28/*
29 * @OSF_COPYRIGHT@
30 */
31/*
32 * Mach Operating System
33 * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University
34 * All Rights Reserved.
35 *
36 * Permission to use, copy, modify and distribute this software and its
37 * documentation is hereby granted, provided that both the copyright
38 * notice and this permission notice appear in all copies of the
39 * software, derivative works or modified versions, and any portions
40 * thereof, and that both notices appear in supporting documentation.
41 *
42 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
43 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
44 * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
45 *
46 * Carnegie Mellon requests users of this software to return to
47 *
48 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
49 * School of Computer Science
50 * Carnegie Mellon University
51 * Pittsburgh PA 15213-3890
52 *
53 * any improvements or extensions that they make and grant Carnegie Mellon
54 * the rights to redistribute these changes.
55 */
56/*
57 */
58/*
59 * File: vm_fault.c
60 * Author: Avadis Tevanian, Jr., Michael Wayne Young
61 *
62 * Page fault handling module.
63 */
64
65#include <mach_cluster_stats.h>
66#include <mach_pagemap.h>
67#include <libkern/OSAtomic.h>
68
69#include <mach/mach_types.h>
70#include <mach/kern_return.h>
71#include <mach/message.h> /* for error codes */
72#include <mach/vm_param.h>
73#include <mach/vm_behavior.h>
74#include <mach/memory_object.h>
75 /* For memory_object_data_{request,unlock} */
76#include <mach/sdt.h>
77
78#include <kern/kern_types.h>
79#include <kern/host_statistics.h>
80#include <kern/counters.h>
81#include <kern/task.h>
82#include <kern/thread.h>
83#include <kern/sched_prim.h>
84#include <kern/host.h>
85#include <kern/xpr.h>
86#include <kern/mach_param.h>
87#include <kern/macro_help.h>
88#include <kern/zalloc.h>
89#include <kern/misc_protos.h>
90
91#include <vm/vm_compressor.h>
92#include <vm/vm_compressor_pager.h>
93#include <vm/vm_fault.h>
94#include <vm/vm_map.h>
95#include <vm/vm_object.h>
96#include <vm/vm_page.h>
97#include <vm/vm_kern.h>
98#include <vm/pmap.h>
99#include <vm/vm_pageout.h>
100#include <vm/vm_protos.h>
101#include <vm/vm_external.h>
102#include <vm/memory_object.h>
103#include <vm/vm_purgeable_internal.h> /* Needed by some vm_page.h macros */
104#include <vm/vm_shared_region.h>
105
106#include <sys/codesign.h>
107
108#include <libsa/sys/timers.h> /* for struct timespec */
109
110#define VM_FAULT_CLASSIFY 0
111
112#define TRACEFAULTPAGE 0 /* (TEST/DEBUG) */
113
114unsigned int vm_object_pagein_throttle = 16;
115
116/*
117 * We apply a hard throttle to the demand zero rate of tasks that we believe are running out of control which
118 * kicks in when swap space runs out. 64-bit programs have massive address spaces and can leak enormous amounts
119 * of memory if they're buggy and can run the system completely out of swap space. If this happens, we
120 * impose a hard throttle on them to prevent them from taking the last bit of memory left. This helps
121 * keep the UI active so that the user has a chance to kill the offending task before the system
122 * completely hangs.
123 *
124 * The hard throttle is only applied when the system is nearly completely out of swap space and is only applied
125 * to tasks that appear to be bloated. When swap runs out, any task using more than vm_hard_throttle_threshold
126 * will be throttled. The throttling is done by giving the thread that's trying to demand zero a page a
127 * delay of HARD_THROTTLE_DELAY microseconds before being allowed to try the page fault again.
128 */
129
130extern void throttle_lowpri_io(int);
131
132uint64_t vm_hard_throttle_threshold;
133
134
135
136#define NEED_TO_HARD_THROTTLE_THIS_TASK() (vm_wants_task_throttled(current_task()) || \
137 (vm_page_free_count < vm_page_throttle_limit && \
138 proc_get_effective_thread_policy(current_thread(), TASK_POLICY_IO) > THROTTLE_LEVEL_THROTTLED))
139
140
141#define HARD_THROTTLE_DELAY 5000 /* 5000 us == 5 ms */
142#define SOFT_THROTTLE_DELAY 200 /* 200 us == .2 ms */
143
144#define VM_PAGE_CREATION_THROTTLE_PERIOD_SECS 6
145#define VM_PAGE_CREATION_THROTTLE_RATE_PER_SEC 20000
146
147
148boolean_t current_thread_aborted(void);
149
150/* Forward declarations of internal routines. */
151static kern_return_t vm_fault_wire_fast(
152 vm_map_t map,
153 vm_map_offset_t va,
154 vm_prot_t prot,
155 vm_map_entry_t entry,
156 pmap_t pmap,
157 vm_map_offset_t pmap_addr,
158 ppnum_t *physpage_p);
159
160static kern_return_t vm_fault_internal(
161 vm_map_t map,
162 vm_map_offset_t vaddr,
163 vm_prot_t caller_prot,
164 boolean_t change_wiring,
165 int interruptible,
166 pmap_t pmap,
167 vm_map_offset_t pmap_addr,
168 ppnum_t *physpage_p);
169
170static void vm_fault_copy_cleanup(
171 vm_page_t page,
172 vm_page_t top_page);
173
174static void vm_fault_copy_dst_cleanup(
175 vm_page_t page);
176
177#if VM_FAULT_CLASSIFY
178extern void vm_fault_classify(vm_object_t object,
179 vm_object_offset_t offset,
180 vm_prot_t fault_type);
181
182extern void vm_fault_classify_init(void);
183#endif
184
185unsigned long vm_pmap_enter_blocked = 0;
186unsigned long vm_pmap_enter_retried = 0;
187
188unsigned long vm_cs_validates = 0;
189unsigned long vm_cs_revalidates = 0;
190unsigned long vm_cs_query_modified = 0;
191unsigned long vm_cs_validated_dirtied = 0;
192unsigned long vm_cs_bitmap_validated = 0;
193
194void vm_pre_fault(vm_map_offset_t);
195
196extern int not_in_kdp;
197extern char *kdp_compressor_decompressed_page;
198extern addr64_t kdp_compressor_decompressed_page_paddr;
199extern ppnum_t kdp_compressor_decompressed_page_ppnum;
200
201/*
202 * Routine: vm_fault_init
203 * Purpose:
204 * Initialize our private data structures.
205 */
206void
207vm_fault_init(void)
208{
209 int i, vm_compressor_temp;
210 boolean_t need_default_val = TRUE;
211 /*
212 * Choose a value for the hard throttle threshold based on the amount of ram. The threshold is
213 * computed as a percentage of available memory, and the percentage used is scaled inversely with
214 * the amount of memory. The percentage runs between 10% and 35%. We use 35% for small memory systems
215 * and reduce the value down to 10% for very large memory configurations. This helps give us a
216 * definition of a memory hog that makes more sense relative to the amount of ram in the machine.
217 * The formula here simply uses the number of gigabytes of ram to adjust the percentage.
218 */
219
220 vm_hard_throttle_threshold = sane_size * (35 - MIN((int)(sane_size / (1024*1024*1024)), 25)) / 100;
221
222 /*
223 * Configure compressed pager behavior. A boot arg takes precedence over a device tree entry.
224 */
225
226 if (PE_parse_boot_argn("vm_compressor", &vm_compressor_temp, sizeof (vm_compressor_temp))) {
227 for ( i = 0; i < VM_PAGER_MAX_MODES; i++) {
228 if (vm_compressor_temp > 0 &&
229 ((vm_compressor_temp & ( 1 << i)) == vm_compressor_temp)) {
230 need_default_val = FALSE;
231 vm_compressor_mode = vm_compressor_temp;
232 break;
233 }
234 }
235 if (need_default_val)
236 printf("Ignoring \"vm_compressor\" boot arg %d\n", vm_compressor_temp);
237 }
238 if (need_default_val) {
239 /* If no boot arg or incorrect boot arg, try device tree. */
240 PE_get_default("kern.vm_compressor", &vm_compressor_mode, sizeof(vm_compressor_mode));
241 }
242 PE_parse_boot_argn("vm_compressor_threads", &vm_compressor_thread_count, sizeof (vm_compressor_thread_count));
243
244 if (PE_parse_boot_argn("vm_compressor_immediate", &vm_compressor_temp, sizeof (vm_compressor_temp)))
245 vm_compressor_immediate_preferred_override = TRUE;
246 else {
247 if (PE_get_default("kern.vm_compressor_immediate", &vm_compressor_temp, sizeof(vm_compressor_temp)))
248 vm_compressor_immediate_preferred_override = TRUE;
249 }
250 if (vm_compressor_immediate_preferred_override == TRUE) {
251 if (vm_compressor_temp)
252 vm_compressor_immediate_preferred = TRUE;
253 else
254 vm_compressor_immediate_preferred = FALSE;
255 }
256 printf("\"vm_compressor_mode\" is %d\n", vm_compressor_mode);
257}
258
259/*
260 * Routine: vm_fault_cleanup
261 * Purpose:
262 * Clean up the result of vm_fault_page.
263 * Results:
264 * The paging reference for "object" is released.
265 * "object" is unlocked.
266 * If "top_page" is not null, "top_page" is
267 * freed and the paging reference for the object
268 * containing it is released.
269 *
270 * In/out conditions:
271 * "object" must be locked.
272 */
273void
274vm_fault_cleanup(
275 register vm_object_t object,
276 register vm_page_t top_page)
277{
278 vm_object_paging_end(object);
279 vm_object_unlock(object);
280
281 if (top_page != VM_PAGE_NULL) {
282 object = top_page->object;
283
284 vm_object_lock(object);
285 VM_PAGE_FREE(top_page);
286 vm_object_paging_end(object);
287 vm_object_unlock(object);
288 }
289}
290
291#if MACH_CLUSTER_STATS
292#define MAXCLUSTERPAGES 16
293struct {
294 unsigned long pages_in_cluster;
295 unsigned long pages_at_higher_offsets;
296 unsigned long pages_at_lower_offsets;
297} cluster_stats_in[MAXCLUSTERPAGES];
298#define CLUSTER_STAT(clause) clause
299#define CLUSTER_STAT_HIGHER(x) \
300 ((cluster_stats_in[(x)].pages_at_higher_offsets)++)
301#define CLUSTER_STAT_LOWER(x) \
302 ((cluster_stats_in[(x)].pages_at_lower_offsets)++)
303#define CLUSTER_STAT_CLUSTER(x) \
304 ((cluster_stats_in[(x)].pages_in_cluster)++)
305#else /* MACH_CLUSTER_STATS */
306#define CLUSTER_STAT(clause)
307#endif /* MACH_CLUSTER_STATS */
308
309#define ALIGNED(x) (((x) & (PAGE_SIZE_64 - 1)) == 0)
310
311
312boolean_t vm_page_deactivate_behind = TRUE;
313/*
314 * default sizes given VM_BEHAVIOR_DEFAULT reference behavior
315 */
316#define VM_DEFAULT_DEACTIVATE_BEHIND_WINDOW 128
317#define VM_DEFAULT_DEACTIVATE_BEHIND_CLUSTER 16 /* don't make this too big... */
318 /* we use it to size an array on the stack */
319
320int vm_default_behind = VM_DEFAULT_DEACTIVATE_BEHIND_WINDOW;
321
322#define MAX_SEQUENTIAL_RUN (1024 * 1024 * 1024)
323
324/*
325 * vm_page_is_sequential
326 *
327 * Determine if sequential access is in progress
328 * in accordance with the behavior specified.
329 * Update state to indicate current access pattern.
330 *
331 * object must have at least the shared lock held
332 */
333static
334void
335vm_fault_is_sequential(
336 vm_object_t object,
337 vm_object_offset_t offset,
338 vm_behavior_t behavior)
339{
340 vm_object_offset_t last_alloc;
341 int sequential;
342 int orig_sequential;
343
344 last_alloc = object->last_alloc;
345 sequential = object->sequential;
346 orig_sequential = sequential;
347
348 switch (behavior) {
349 case VM_BEHAVIOR_RANDOM:
350 /*
351 * reset indicator of sequential behavior
352 */
353 sequential = 0;
354 break;
355
356 case VM_BEHAVIOR_SEQUENTIAL:
357 if (offset && last_alloc == offset - PAGE_SIZE_64) {
358 /*
359 * advance indicator of sequential behavior
360 */
361 if (sequential < MAX_SEQUENTIAL_RUN)
362 sequential += PAGE_SIZE;
363 } else {
364 /*
365 * reset indicator of sequential behavior
366 */
367 sequential = 0;
368 }
369 break;
370
371 case VM_BEHAVIOR_RSEQNTL:
372 if (last_alloc && last_alloc == offset + PAGE_SIZE_64) {
373 /*
374 * advance indicator of sequential behavior
375 */
376 if (sequential > -MAX_SEQUENTIAL_RUN)
377 sequential -= PAGE_SIZE;
378 } else {
379 /*
380 * reset indicator of sequential behavior
381 */
382 sequential = 0;
383 }
384 break;
385
386 case VM_BEHAVIOR_DEFAULT:
387 default:
388 if (offset && last_alloc == (offset - PAGE_SIZE_64)) {
389 /*
390 * advance indicator of sequential behavior
391 */
392 if (sequential < 0)
393 sequential = 0;
394 if (sequential < MAX_SEQUENTIAL_RUN)
395 sequential += PAGE_SIZE;
396
397 } else if (last_alloc && last_alloc == (offset + PAGE_SIZE_64)) {
398 /*
399 * advance indicator of sequential behavior
400 */
401 if (sequential > 0)
402 sequential = 0;
403 if (sequential > -MAX_SEQUENTIAL_RUN)
404 sequential -= PAGE_SIZE;
405 } else {
406 /*
407 * reset indicator of sequential behavior
408 */
409 sequential = 0;
410 }
411 break;
412 }
413 if (sequential != orig_sequential) {
414 if (!OSCompareAndSwap(orig_sequential, sequential, (UInt32 *)&object->sequential)) {
415 /*
416 * if someone else has already updated object->sequential
417 * don't bother trying to update it or object->last_alloc
418 */
419 return;
420 }
421 }
422 /*
423 * I'd like to do this with a OSCompareAndSwap64, but that
424 * doesn't exist for PPC... however, it shouldn't matter
425 * that much... last_alloc is maintained so that we can determine
426 * if a sequential access pattern is taking place... if only
427 * one thread is banging on this object, no problem with the unprotected
428 * update... if 2 or more threads are banging away, we run the risk of
429 * someone seeing a mangled update... however, in the face of multiple
430 * accesses, no sequential access pattern can develop anyway, so we
431 * haven't lost any real info.
432 */
433 object->last_alloc = offset;
434}
435
436
437int vm_page_deactivate_behind_count = 0;
438
439/*
440 * vm_page_deactivate_behind
441 *
442 * Determine if sequential access is in progress
443 * in accordance with the behavior specified. If
444 * so, compute a potential page to deactivate and
445 * deactivate it.
446 *
447 * object must be locked.
448 *
449 * return TRUE if we actually deactivate a page
450 */
451static
452boolean_t
453vm_fault_deactivate_behind(
454 vm_object_t object,
455 vm_object_offset_t offset,
456 vm_behavior_t behavior)
457{
458 int n;
459 int pages_in_run = 0;
460 int max_pages_in_run = 0;
461 int sequential_run;
462 int sequential_behavior = VM_BEHAVIOR_SEQUENTIAL;
463 vm_object_offset_t run_offset = 0;
464 vm_object_offset_t pg_offset = 0;
465 vm_page_t m;
466 vm_page_t page_run[VM_DEFAULT_DEACTIVATE_BEHIND_CLUSTER];
467
468 pages_in_run = 0;
469#if TRACEFAULTPAGE
470 dbgTrace(0xBEEF0018, (unsigned int) object, (unsigned int) vm_fault_deactivate_behind); /* (TEST/DEBUG) */
471#endif
472
473 if (object == kernel_object || vm_page_deactivate_behind == FALSE) {
474 /*
475 * Do not deactivate pages from the kernel object: they
476 * are not intended to become pageable.
477 * or we've disabled the deactivate behind mechanism
478 */
479 return FALSE;
480 }
481 if ((sequential_run = object->sequential)) {
482 if (sequential_run < 0) {
483 sequential_behavior = VM_BEHAVIOR_RSEQNTL;
484 sequential_run = 0 - sequential_run;
485 } else {
486 sequential_behavior = VM_BEHAVIOR_SEQUENTIAL;
487 }
488 }
489 switch (behavior) {
490 case VM_BEHAVIOR_RANDOM:
491 break;
492 case VM_BEHAVIOR_SEQUENTIAL:
493 if (sequential_run >= (int)PAGE_SIZE) {
494 run_offset = 0 - PAGE_SIZE_64;
495 max_pages_in_run = 1;
496 }
497 break;
498 case VM_BEHAVIOR_RSEQNTL:
499 if (sequential_run >= (int)PAGE_SIZE) {
500 run_offset = PAGE_SIZE_64;
501 max_pages_in_run = 1;
502 }
503 break;
504 case VM_BEHAVIOR_DEFAULT:
505 default:
506 { vm_object_offset_t behind = vm_default_behind * PAGE_SIZE_64;
507
508 /*
509 * determine if the run of sequential accesss has been
510 * long enough on an object with default access behavior
511 * to consider it for deactivation
512 */
513 if ((uint64_t)sequential_run >= behind && (sequential_run % (VM_DEFAULT_DEACTIVATE_BEHIND_CLUSTER * PAGE_SIZE)) == 0) {
514 /*
515 * the comparisons between offset and behind are done
516 * in this kind of odd fashion in order to prevent wrap around
517 * at the end points
518 */
519 if (sequential_behavior == VM_BEHAVIOR_SEQUENTIAL) {
520 if (offset >= behind) {
521 run_offset = 0 - behind;
522 pg_offset = PAGE_SIZE_64;
523 max_pages_in_run = VM_DEFAULT_DEACTIVATE_BEHIND_CLUSTER;
524 }
525 } else {
526 if (offset < -behind) {
527 run_offset = behind;
528 pg_offset = 0 - PAGE_SIZE_64;
529 max_pages_in_run = VM_DEFAULT_DEACTIVATE_BEHIND_CLUSTER;
530 }
531 }
532 }
533 break;
534 }
535 }
536 for (n = 0; n < max_pages_in_run; n++) {
537 m = vm_page_lookup(object, offset + run_offset + (n * pg_offset));
538
539 if (m && !m->laundry && !m->busy && !m->no_cache && !m->throttled && !m->fictitious && !m->absent) {
540 page_run[pages_in_run++] = m;
541
542 /*
543 * by not passing in a pmap_flush_context we will forgo any TLB flushing, local or otherwise...
544 *
545 * a TLB flush isn't really needed here since at worst we'll miss the reference bit being
546 * updated in the PTE if a remote processor still has this mapping cached in its TLB when the
547 * new reference happens. If no futher references happen on the page after that remote TLB flushes
548 * we'll see a clean, non-referenced page when it eventually gets pulled out of the inactive queue
549 * by pageout_scan, which is just fine since the last reference would have happened quite far
550 * in the past (TLB caches don't hang around for very long), and of course could just as easily
551 * have happened before we did the deactivate_behind.
552 */
553 pmap_clear_refmod_options(m->phys_page, VM_MEM_REFERENCED, PMAP_OPTIONS_NOFLUSH, (void *)NULL);
554 }
555 }
556 if (pages_in_run) {
557 vm_page_lockspin_queues();
558
559 for (n = 0; n < pages_in_run; n++) {
560
561 m = page_run[n];
562
563 vm_page_deactivate_internal(m, FALSE);
564
565 vm_page_deactivate_behind_count++;
566#if TRACEFAULTPAGE
567 dbgTrace(0xBEEF0019, (unsigned int) object, (unsigned int) m); /* (TEST/DEBUG) */
568#endif
569 }
570 vm_page_unlock_queues();
571
572 return TRUE;
573 }
574 return FALSE;
575}
576
577
578#if (DEVELOPMENT || DEBUG)
579uint32_t vm_page_creation_throttled_hard = 0;
580uint32_t vm_page_creation_throttled_soft = 0;
581uint64_t vm_page_creation_throttle_avoided = 0;
582#endif /* DEVELOPMENT || DEBUG */
583
584static int
585vm_page_throttled(boolean_t page_kept)
586{
587 clock_sec_t elapsed_sec;
588 clock_sec_t tv_sec;
589 clock_usec_t tv_usec;
590
591 thread_t thread = current_thread();
592
593 if (thread->options & TH_OPT_VMPRIV)
594 return (0);
595
596 if (thread->t_page_creation_throttled) {
597 thread->t_page_creation_throttled = 0;
598
599 if (page_kept == FALSE)
600 goto no_throttle;
601 }
602 if (NEED_TO_HARD_THROTTLE_THIS_TASK()) {
603#if (DEVELOPMENT || DEBUG)
604 thread->t_page_creation_throttled_hard++;
605 OSAddAtomic(1, &vm_page_creation_throttled_hard);
606#endif /* DEVELOPMENT || DEBUG */
607 return (HARD_THROTTLE_DELAY);
608 }
609
610 if ((vm_page_free_count < vm_page_throttle_limit || ((COMPRESSED_PAGER_IS_ACTIVE || DEFAULT_FREEZER_COMPRESSED_PAGER_IS_ACTIVE) && SWAPPER_NEEDS_TO_UNTHROTTLE())) &&
611 thread->t_page_creation_count > (VM_PAGE_CREATION_THROTTLE_PERIOD_SECS * VM_PAGE_CREATION_THROTTLE_RATE_PER_SEC)) {
612
613 if (vm_page_free_wanted == 0 && vm_page_free_wanted_privileged == 0) {
614#if (DEVELOPMENT || DEBUG)
615 OSAddAtomic64(1, &vm_page_creation_throttle_avoided);
616#endif
617 goto no_throttle;
618 }
619 clock_get_system_microtime(&tv_sec, &tv_usec);
620
621 elapsed_sec = tv_sec - thread->t_page_creation_time;
622
623 if (elapsed_sec <= VM_PAGE_CREATION_THROTTLE_PERIOD_SECS ||
624 (thread->t_page_creation_count / elapsed_sec) >= VM_PAGE_CREATION_THROTTLE_RATE_PER_SEC) {
625
626 if (elapsed_sec >= (3 * VM_PAGE_CREATION_THROTTLE_PERIOD_SECS)) {
627 /*
628 * we'll reset our stats to give a well behaved app
629 * that was unlucky enough to accumulate a bunch of pages
630 * over a long period of time a chance to get out of
631 * the throttled state... we reset the counter and timestamp
632 * so that if it stays under the rate limit for the next second
633 * it will be back in our good graces... if it exceeds it, it
634 * will remain in the throttled state
635 */
636 thread->t_page_creation_time = tv_sec;
637 thread->t_page_creation_count = VM_PAGE_CREATION_THROTTLE_RATE_PER_SEC * (VM_PAGE_CREATION_THROTTLE_PERIOD_SECS - 1);
638 }
639 ++vm_page_throttle_count;
640
641 thread->t_page_creation_throttled = 1;
642
643 if ((COMPRESSED_PAGER_IS_ACTIVE || DEFAULT_FREEZER_COMPRESSED_PAGER_IS_ACTIVE) && HARD_THROTTLE_LIMIT_REACHED()) {
644#if (DEVELOPMENT || DEBUG)
645 thread->t_page_creation_throttled_hard++;
646 OSAddAtomic(1, &vm_page_creation_throttled_hard);
647#endif /* DEVELOPMENT || DEBUG */
648 return (HARD_THROTTLE_DELAY);
649 } else {
650#if (DEVELOPMENT || DEBUG)
651 thread->t_page_creation_throttled_soft++;
652 OSAddAtomic(1, &vm_page_creation_throttled_soft);
653#endif /* DEVELOPMENT || DEBUG */
654 return (SOFT_THROTTLE_DELAY);
655 }
656 }
657 thread->t_page_creation_time = tv_sec;
658 thread->t_page_creation_count = 0;
659 }
660no_throttle:
661 thread->t_page_creation_count++;
662
663 return (0);
664}
665
666
667/*
668 * check for various conditions that would
669 * prevent us from creating a ZF page...
670 * cleanup is based on being called from vm_fault_page
671 *
672 * object must be locked
673 * object == m->object
674 */
675static vm_fault_return_t
676vm_fault_check(vm_object_t object, vm_page_t m, vm_page_t first_m, boolean_t interruptible_state, boolean_t page_throttle)
677{
678 int throttle_delay;
679
680 if (object->shadow_severed ||
681 VM_OBJECT_PURGEABLE_FAULT_ERROR(object)) {
682 /*
683 * Either:
684 * 1. the shadow chain was severed,
685 * 2. the purgeable object is volatile or empty and is marked
686 * to fault on access while volatile.
687 * Just have to return an error at this point
688 */
689 if (m != VM_PAGE_NULL)
690 VM_PAGE_FREE(m);
691 vm_fault_cleanup(object, first_m);
692
693 thread_interrupt_level(interruptible_state);
694
695 return (VM_FAULT_MEMORY_ERROR);
696 }
697 if (vm_backing_store_low) {
698 /*
699 * are we protecting the system from
700 * backing store exhaustion. If so
701 * sleep unless we are privileged.
702 */
703 if (!(current_task()->priv_flags & VM_BACKING_STORE_PRIV)) {
704
705 if (m != VM_PAGE_NULL)
706 VM_PAGE_FREE(m);
707 vm_fault_cleanup(object, first_m);
708
709 assert_wait((event_t)&vm_backing_store_low, THREAD_UNINT);
710
711 thread_block(THREAD_CONTINUE_NULL);
712 thread_interrupt_level(interruptible_state);
713
714 return (VM_FAULT_RETRY);
715 }
716 }
717 if (page_throttle == TRUE) {
718 if ((throttle_delay = vm_page_throttled(FALSE))) {
719 /*
720 * we're throttling zero-fills...
721 * treat this as if we couldn't grab a page
722 */
723 if (m != VM_PAGE_NULL)
724 VM_PAGE_FREE(m);
725 vm_fault_cleanup(object, first_m);
726
727 VM_DEBUG_EVENT(vmf_check_zfdelay, VMF_CHECK_ZFDELAY, DBG_FUNC_NONE, throttle_delay, 0, 0, 0);
728
729 delay(throttle_delay);
730
731 if (current_thread_aborted()) {
732 thread_interrupt_level(interruptible_state);
733 return VM_FAULT_INTERRUPTED;
734 }
735 thread_interrupt_level(interruptible_state);
736
737 return (VM_FAULT_MEMORY_SHORTAGE);
738 }
739 }
740 return (VM_FAULT_SUCCESS);
741}
742
743
744/*
745 * do the work to zero fill a page and
746 * inject it into the correct paging queue
747 *
748 * m->object must be locked
749 * page queue lock must NOT be held
750 */
751static int
752vm_fault_zero_page(vm_page_t m, boolean_t no_zero_fill)
753{
754 int my_fault = DBG_ZERO_FILL_FAULT;
755
756 /*
757 * This is is a zero-fill page fault...
758 *
759 * Checking the page lock is a waste of
760 * time; this page was absent, so
761 * it can't be page locked by a pager.
762 *
763 * we also consider it undefined
764 * with respect to instruction
765 * execution. i.e. it is the responsibility
766 * of higher layers to call for an instruction
767 * sync after changing the contents and before
768 * sending a program into this area. We
769 * choose this approach for performance
770 */
771 m->pmapped = TRUE;
772
773 m->cs_validated = FALSE;
774 m->cs_tainted = FALSE;
775 m->cs_nx = FALSE;
776
777 if (no_zero_fill == TRUE) {
778 my_fault = DBG_NZF_PAGE_FAULT;
779
780 if (m->absent && m->busy)
781 return (my_fault);
782 } else {
783 vm_page_zero_fill(m);
784
785 VM_STAT_INCR(zero_fill_count);
786 DTRACE_VM2(zfod, int, 1, (uint64_t *), NULL);
787 }
788 assert(!m->laundry);
789 assert(m->object != kernel_object);
790 //assert(m->pageq.next == NULL && m->pageq.prev == NULL);
791
792 if (!VM_DYNAMIC_PAGING_ENABLED(memory_manager_default) &&
793 (m->object->purgable == VM_PURGABLE_DENY ||
794 m->object->purgable == VM_PURGABLE_NONVOLATILE ||
795 m->object->purgable == VM_PURGABLE_VOLATILE )) {
796
797 vm_page_lockspin_queues();
798
799 if (!VM_DYNAMIC_PAGING_ENABLED(memory_manager_default)) {
800 assert(!VM_PAGE_WIRED(m));
801
802 /*
803 * can't be on the pageout queue since we don't
804 * have a pager to try and clean to
805 */
806 assert(!m->pageout_queue);
807
808 vm_page_queues_remove(m);
809 vm_page_check_pageable_safe(m);
810 queue_enter(&vm_page_queue_throttled, m, vm_page_t, pageq);
811 m->throttled = TRUE;
812 vm_page_throttled_count++;
813 }
814 vm_page_unlock_queues();
815 }
816 return (my_fault);
817}
818
819
820/*
821 * Routine: vm_fault_page
822 * Purpose:
823 * Find the resident page for the virtual memory
824 * specified by the given virtual memory object
825 * and offset.
826 * Additional arguments:
827 * The required permissions for the page is given
828 * in "fault_type". Desired permissions are included
829 * in "protection".
830 * fault_info is passed along to determine pagein cluster
831 * limits... it contains the expected reference pattern,
832 * cluster size if available, etc...
833 *
834 * If the desired page is known to be resident (for
835 * example, because it was previously wired down), asserting
836 * the "unwiring" parameter will speed the search.
837 *
838 * If the operation can be interrupted (by thread_abort
839 * or thread_terminate), then the "interruptible"
840 * parameter should be asserted.
841 *
842 * Results:
843 * The page containing the proper data is returned
844 * in "result_page".
845 *
846 * In/out conditions:
847 * The source object must be locked and referenced,
848 * and must donate one paging reference. The reference
849 * is not affected. The paging reference and lock are
850 * consumed.
851 *
852 * If the call succeeds, the object in which "result_page"
853 * resides is left locked and holding a paging reference.
854 * If this is not the original object, a busy page in the
855 * original object is returned in "top_page", to prevent other
856 * callers from pursuing this same data, along with a paging
857 * reference for the original object. The "top_page" should
858 * be destroyed when this guarantee is no longer required.
859 * The "result_page" is also left busy. It is not removed
860 * from the pageout queues.
861 * Special Case:
862 * A return value of VM_FAULT_SUCCESS_NO_PAGE means that the
863 * fault succeeded but there's no VM page (i.e. the VM object
864 * does not actually hold VM pages, but device memory or
865 * large pages). The object is still locked and we still hold a
866 * paging_in_progress reference.
867 */
868unsigned int vm_fault_page_blocked_access = 0;
869unsigned int vm_fault_page_forced_retry = 0;
870
871vm_fault_return_t
872vm_fault_page(
873 /* Arguments: */
874 vm_object_t first_object, /* Object to begin search */
875 vm_object_offset_t first_offset, /* Offset into object */
876 vm_prot_t fault_type, /* What access is requested */
877 boolean_t must_be_resident,/* Must page be resident? */
878 boolean_t caller_lookup, /* caller looked up page */
879 /* Modifies in place: */
880 vm_prot_t *protection, /* Protection for mapping */
881 vm_page_t *result_page, /* Page found, if successful */
882 /* Returns: */
883 vm_page_t *top_page, /* Page in top object, if
884 * not result_page. */
885 int *type_of_fault, /* if non-null, fill in with type of fault
886 * COW, zero-fill, etc... returned in trace point */
887 /* More arguments: */
888 kern_return_t *error_code, /* code if page is in error */
889 boolean_t no_zero_fill, /* don't zero fill absent pages */
890 boolean_t data_supply, /* treat as data_supply if
891 * it is a write fault and a full
892 * page is provided */
893 vm_object_fault_info_t fault_info)
894{
895 vm_page_t m;
896 vm_object_t object;
897 vm_object_offset_t offset;
898 vm_page_t first_m;
899 vm_object_t next_object;
900 vm_object_t copy_object;
901 boolean_t look_for_page;
902 boolean_t force_fault_retry = FALSE;
903 vm_prot_t access_required = fault_type;
904 vm_prot_t wants_copy_flag;
905 CLUSTER_STAT(int pages_at_higher_offsets;)
906 CLUSTER_STAT(int pages_at_lower_offsets;)
907 kern_return_t wait_result;
908 boolean_t interruptible_state;
909 boolean_t data_already_requested = FALSE;
910 vm_behavior_t orig_behavior;
911 vm_size_t orig_cluster_size;
912 vm_fault_return_t error;
913 int my_fault;
914 uint32_t try_failed_count;
915 int interruptible; /* how may fault be interrupted? */
916 int external_state = VM_EXTERNAL_STATE_UNKNOWN;
917 memory_object_t pager;
918 vm_fault_return_t retval;
919
920/*
921 * MACH page map - an optional optimization where a bit map is maintained
922 * by the VM subsystem for internal objects to indicate which pages of
923 * the object currently reside on backing store. This existence map
924 * duplicates information maintained by the vnode pager. It is
925 * created at the time of the first pageout against the object, i.e.
926 * at the same time pager for the object is created. The optimization
927 * is designed to eliminate pager interaction overhead, if it is
928 * 'known' that the page does not exist on backing store.
929 *
930 * MUST_ASK_PAGER() evaluates to TRUE if the page specified by object/offset is
931 * either marked as paged out in the existence map for the object or no
932 * existence map exists for the object. MUST_ASK_PAGER() is one of the
933 * criteria in the decision to invoke the pager. It is also used as one
934 * of the criteria to terminate the scan for adjacent pages in a clustered
935 * pagein operation. Note that MUST_ASK_PAGER() always evaluates to TRUE for
936 * permanent objects. Note also that if the pager for an internal object
937 * has not been created, the pager is not invoked regardless of the value
938 * of MUST_ASK_PAGER() and that clustered pagein scans are only done on an object
939 * for which a pager has been created.
940 *
941 * PAGED_OUT() evaluates to TRUE if the page specified by the object/offset
942 * is marked as paged out in the existence map for the object. PAGED_OUT()
943 * PAGED_OUT() is used to determine if a page has already been pushed
944 * into a copy object in order to avoid a redundant page out operation.
945 */
946#if MACH_PAGEMAP
947#define MUST_ASK_PAGER(o, f, s) \
948 ((vm_external_state_get((o)->existence_map, (f)) \
949 != VM_EXTERNAL_STATE_ABSENT) && \
950 (s = (VM_COMPRESSOR_PAGER_STATE_GET((o), (f)))) \
951 != VM_EXTERNAL_STATE_ABSENT)
952#define PAGED_OUT(o, f) \
953 ((vm_external_state_get((o)->existence_map, (f)) \
954 == VM_EXTERNAL_STATE_EXISTS) || \
955 (VM_COMPRESSOR_PAGER_STATE_GET((o), (f)) \
956 == VM_EXTERNAL_STATE_EXISTS))
957#else /* MACH_PAGEMAP */
958#define MUST_ASK_PAGER(o, f, s) \
959 ((s = VM_COMPRESSOR_PAGER_STATE_GET((o), (f))) != VM_EXTERNAL_STATE_ABSENT)
960#define PAGED_OUT(o, f) \
961 (VM_COMPRESSOR_PAGER_STATE_GET((o), (f)) == VM_EXTERNAL_STATE_EXISTS)
962#endif /* MACH_PAGEMAP */
963
964/*
965 * Recovery actions
966 */
967#define RELEASE_PAGE(m) \
968 MACRO_BEGIN \
969 PAGE_WAKEUP_DONE(m); \
970 if (!m->active && !m->inactive && !m->throttled) { \
971 vm_page_lockspin_queues(); \
972 if (!m->active && !m->inactive && !m->throttled) { \
973 if (COMPRESSED_PAGER_IS_ACTIVE) \
974 vm_page_deactivate(m); \
975 else \
976 vm_page_activate(m); \
977 } \
978 vm_page_unlock_queues(); \
979 } \
980 MACRO_END
981
982#if TRACEFAULTPAGE
983 dbgTrace(0xBEEF0002, (unsigned int) first_object, (unsigned int) first_offset); /* (TEST/DEBUG) */
984#endif
985
986 interruptible = fault_info->interruptible;
987 interruptible_state = thread_interrupt_level(interruptible);
988
989 /*
990 * INVARIANTS (through entire routine):
991 *
992 * 1) At all times, we must either have the object
993 * lock or a busy page in some object to prevent
994 * some other thread from trying to bring in
995 * the same page.
996 *
997 * Note that we cannot hold any locks during the
998 * pager access or when waiting for memory, so
999 * we use a busy page then.
1000 *
1001 * 2) To prevent another thread from racing us down the
1002 * shadow chain and entering a new page in the top
1003 * object before we do, we must keep a busy page in
1004 * the top object while following the shadow chain.
1005 *
1006 * 3) We must increment paging_in_progress on any object
1007 * for which we have a busy page before dropping
1008 * the object lock
1009 *
1010 * 4) We leave busy pages on the pageout queues.
1011 * If the pageout daemon comes across a busy page,
1012 * it will remove the page from the pageout queues.
1013 */
1014
1015 object = first_object;
1016 offset = first_offset;
1017 first_m = VM_PAGE_NULL;
1018 access_required = fault_type;
1019
1020
1021 XPR(XPR_VM_FAULT,
1022 "vm_f_page: obj 0x%X, offset 0x%X, type %d, prot %d\n",
1023 object, offset, fault_type, *protection, 0);
1024
1025 /*
1026 * default type of fault
1027 */
1028 my_fault = DBG_CACHE_HIT_FAULT;
1029
1030 while (TRUE) {
1031#if TRACEFAULTPAGE
1032 dbgTrace(0xBEEF0003, (unsigned int) 0, (unsigned int) 0); /* (TEST/DEBUG) */
1033#endif
1034 if (!object->alive) {
1035 /*
1036 * object is no longer valid
1037 * clean up and return error
1038 */
1039 vm_fault_cleanup(object, first_m);
1040 thread_interrupt_level(interruptible_state);
1041
1042 return (VM_FAULT_MEMORY_ERROR);
1043 }
1044
1045 if (!object->pager_created && object->phys_contiguous) {
1046 /*
1047 * A physically-contiguous object without a pager:
1048 * must be a "large page" object. We do not deal
1049 * with VM pages for this object.
1050 */
1051 caller_lookup = FALSE;
1052 m = VM_PAGE_NULL;
1053 goto phys_contig_object;
1054 }
1055
1056 if (object->blocked_access) {
1057 /*
1058 * Access to this VM object has been blocked.
1059 * Replace our "paging_in_progress" reference with
1060 * a "activity_in_progress" reference and wait for
1061 * access to be unblocked.
1062 */
1063 caller_lookup = FALSE; /* no longer valid after sleep */
1064 vm_object_activity_begin(object);
1065 vm_object_paging_end(object);
1066 while (object->blocked_access) {
1067 vm_object_sleep(object,
1068 VM_OBJECT_EVENT_UNBLOCKED,
1069 THREAD_UNINT);
1070 }
1071 vm_fault_page_blocked_access++;
1072 vm_object_paging_begin(object);
1073 vm_object_activity_end(object);
1074 }
1075
1076 /*
1077 * See whether the page at 'offset' is resident
1078 */
1079 if (caller_lookup == TRUE) {
1080 /*
1081 * The caller has already looked up the page
1082 * and gave us the result in "result_page".
1083 * We can use this for the first lookup but
1084 * it loses its validity as soon as we unlock
1085 * the object.
1086 */
1087 m = *result_page;
1088 caller_lookup = FALSE; /* no longer valid after that */
1089 } else {
1090 m = vm_page_lookup(object, offset);
1091 }
1092#if TRACEFAULTPAGE
1093 dbgTrace(0xBEEF0004, (unsigned int) m, (unsigned int) object); /* (TEST/DEBUG) */
1094#endif
1095 if (m != VM_PAGE_NULL) {
1096
1097 if (m->busy) {
1098 /*
1099 * The page is being brought in,
1100 * wait for it and then retry.
1101 */
1102#if TRACEFAULTPAGE
1103 dbgTrace(0xBEEF0005, (unsigned int) m, (unsigned int) 0); /* (TEST/DEBUG) */
1104#endif
1105 wait_result = PAGE_SLEEP(object, m, interruptible);
1106
1107 XPR(XPR_VM_FAULT,
1108 "vm_f_page: block busy obj 0x%X, offset 0x%X, page 0x%X\n",
1109 object, offset,
1110 m, 0, 0);
1111 counter(c_vm_fault_page_block_busy_kernel++);
1112
1113 if (wait_result != THREAD_AWAKENED) {
1114 vm_fault_cleanup(object, first_m);
1115 thread_interrupt_level(interruptible_state);
1116
1117 if (wait_result == THREAD_RESTART)
1118 return (VM_FAULT_RETRY);
1119 else
1120 return (VM_FAULT_INTERRUPTED);
1121 }
1122 continue;
1123 }
1124 if (m->laundry) {
1125 m->pageout = FALSE;
1126
1127 if (!m->cleaning)
1128 vm_pageout_steal_laundry(m, FALSE);
1129 }
1130 if (m->phys_page == vm_page_guard_addr) {
1131 /*
1132 * Guard page: off limits !
1133 */
1134 if (fault_type == VM_PROT_NONE) {
1135 /*
1136 * The fault is not requesting any
1137 * access to the guard page, so it must
1138 * be just to wire or unwire it.
1139 * Let's pretend it succeeded...
1140 */
1141 m->busy = TRUE;
1142 *result_page = m;
1143 assert(first_m == VM_PAGE_NULL);
1144 *top_page = first_m;
1145 if (type_of_fault)
1146 *type_of_fault = DBG_GUARD_FAULT;
1147 thread_interrupt_level(interruptible_state);
1148 return VM_FAULT_SUCCESS;
1149 } else {
1150 /*
1151 * The fault requests access to the
1152 * guard page: let's deny that !
1153 */
1154 vm_fault_cleanup(object, first_m);
1155 thread_interrupt_level(interruptible_state);
1156 return VM_FAULT_MEMORY_ERROR;
1157 }
1158 }
1159
1160 if (m->error) {
1161 /*
1162 * The page is in error, give up now.
1163 */
1164#if TRACEFAULTPAGE
1165 dbgTrace(0xBEEF0006, (unsigned int) m, (unsigned int) error_code); /* (TEST/DEBUG) */
1166#endif
1167 if (error_code)
1168 *error_code = KERN_MEMORY_ERROR;
1169 VM_PAGE_FREE(m);
1170
1171 vm_fault_cleanup(object, first_m);
1172 thread_interrupt_level(interruptible_state);
1173
1174 return (VM_FAULT_MEMORY_ERROR);
1175 }
1176 if (m->restart) {
1177 /*
1178 * The pager wants us to restart
1179 * at the top of the chain,
1180 * typically because it has moved the
1181 * page to another pager, then do so.
1182 */
1183#if TRACEFAULTPAGE
1184 dbgTrace(0xBEEF0007, (unsigned int) m, (unsigned int) 0); /* (TEST/DEBUG) */
1185#endif
1186 VM_PAGE_FREE(m);
1187
1188 vm_fault_cleanup(object, first_m);
1189 thread_interrupt_level(interruptible_state);
1190
1191 return (VM_FAULT_RETRY);
1192 }
1193 if (m->absent) {
1194 /*
1195 * The page isn't busy, but is absent,
1196 * therefore it's deemed "unavailable".
1197 *
1198 * Remove the non-existent page (unless it's
1199 * in the top object) and move on down to the
1200 * next object (if there is one).
1201 */
1202#if TRACEFAULTPAGE
1203 dbgTrace(0xBEEF0008, (unsigned int) m, (unsigned int) object->shadow); /* (TEST/DEBUG) */
1204#endif
1205 next_object = object->shadow;
1206
1207 if (next_object == VM_OBJECT_NULL) {
1208 /*
1209 * Absent page at bottom of shadow
1210 * chain; zero fill the page we left
1211 * busy in the first object, and free
1212 * the absent page.
1213 */
1214 assert(!must_be_resident);
1215
1216 /*
1217 * check for any conditions that prevent
1218 * us from creating a new zero-fill page
1219 * vm_fault_check will do all of the
1220 * fault cleanup in the case of an error condition
1221 * including resetting the thread_interrupt_level
1222 */
1223 error = vm_fault_check(object, m, first_m, interruptible_state, (type_of_fault == NULL) ? TRUE : FALSE);
1224
1225 if (error != VM_FAULT_SUCCESS)
1226 return (error);
1227
1228 XPR(XPR_VM_FAULT,
1229 "vm_f_page: zero obj 0x%X, off 0x%X, page 0x%X, first_obj 0x%X\n",
1230 object, offset,
1231 m,
1232 first_object, 0);
1233
1234 if (object != first_object) {
1235 /*
1236 * free the absent page we just found
1237 */
1238 VM_PAGE_FREE(m);
1239
1240 /*
1241 * drop reference and lock on current object
1242 */
1243 vm_object_paging_end(object);
1244 vm_object_unlock(object);
1245
1246 /*
1247 * grab the original page we
1248 * 'soldered' in place and
1249 * retake lock on 'first_object'
1250 */
1251 m = first_m;
1252 first_m = VM_PAGE_NULL;
1253
1254 object = first_object;
1255 offset = first_offset;
1256
1257 vm_object_lock(object);
1258 } else {
1259 /*
1260 * we're going to use the absent page we just found
1261 * so convert it to a 'busy' page
1262 */
1263 m->absent = FALSE;
1264 m->busy = TRUE;
1265 }
1266 if (fault_info->mark_zf_absent && no_zero_fill == TRUE)
1267 m->absent = TRUE;
1268 /*
1269 * zero-fill the page and put it on
1270 * the correct paging queue
1271 */
1272 my_fault = vm_fault_zero_page(m, no_zero_fill);
1273
1274 break;
1275 } else {
1276 if (must_be_resident)
1277 vm_object_paging_end(object);
1278 else if (object != first_object) {
1279 vm_object_paging_end(object);
1280 VM_PAGE_FREE(m);
1281 } else {
1282 first_m = m;
1283 m->absent = FALSE;
1284 m->busy = TRUE;
1285
1286 vm_page_lockspin_queues();
1287
1288 assert(!m->pageout_queue);
1289 vm_page_queues_remove(m);
1290
1291 vm_page_unlock_queues();
1292 }
1293 XPR(XPR_VM_FAULT,
1294 "vm_f_page: unavail obj 0x%X, off 0x%X, next_obj 0x%X, newoff 0x%X\n",
1295 object, offset,
1296 next_object,
1297 offset+object->vo_shadow_offset,0);
1298
1299 offset += object->vo_shadow_offset;
1300 fault_info->lo_offset += object->vo_shadow_offset;
1301 fault_info->hi_offset += object->vo_shadow_offset;
1302 access_required = VM_PROT_READ;
1303
1304 vm_object_lock(next_object);
1305 vm_object_unlock(object);
1306 object = next_object;
1307 vm_object_paging_begin(object);
1308
1309 /*
1310 * reset to default type of fault
1311 */
1312 my_fault = DBG_CACHE_HIT_FAULT;
1313
1314 continue;
1315 }
1316 }
1317 if ((m->cleaning)
1318 && ((object != first_object) || (object->copy != VM_OBJECT_NULL))
1319 && (fault_type & VM_PROT_WRITE)) {
1320 /*
1321 * This is a copy-on-write fault that will
1322 * cause us to revoke access to this page, but
1323 * this page is in the process of being cleaned
1324 * in a clustered pageout. We must wait until
1325 * the cleaning operation completes before
1326 * revoking access to the original page,
1327 * otherwise we might attempt to remove a
1328 * wired mapping.
1329 */
1330#if TRACEFAULTPAGE
1331 dbgTrace(0xBEEF0009, (unsigned int) m, (unsigned int) offset); /* (TEST/DEBUG) */
1332#endif
1333 XPR(XPR_VM_FAULT,
1334 "vm_f_page: cleaning obj 0x%X, offset 0x%X, page 0x%X\n",
1335 object, offset,
1336 m, 0, 0);
1337 /*
1338 * take an extra ref so that object won't die
1339 */
1340 vm_object_reference_locked(object);
1341
1342 vm_fault_cleanup(object, first_m);
1343
1344 counter(c_vm_fault_page_block_backoff_kernel++);
1345 vm_object_lock(object);
1346 assert(object->ref_count > 0);
1347
1348 m = vm_page_lookup(object, offset);
1349
1350 if (m != VM_PAGE_NULL && m->cleaning) {
1351 PAGE_ASSERT_WAIT(m, interruptible);
1352
1353 vm_object_unlock(object);
1354 wait_result = thread_block(THREAD_CONTINUE_NULL);
1355 vm_object_deallocate(object);
1356
1357 goto backoff;
1358 } else {
1359 vm_object_unlock(object);
1360
1361 vm_object_deallocate(object);
1362 thread_interrupt_level(interruptible_state);
1363
1364 return (VM_FAULT_RETRY);
1365 }
1366 }
1367 if (type_of_fault == NULL && m->speculative &&
1368 !(fault_info != NULL && fault_info->stealth)) {
1369 /*
1370 * If we were passed a non-NULL pointer for
1371 * "type_of_fault", than we came from
1372 * vm_fault... we'll let it deal with
1373 * this condition, since it
1374 * needs to see m->speculative to correctly
1375 * account the pageins, otherwise...
1376 * take it off the speculative queue, we'll
1377 * let the caller of vm_fault_page deal
1378 * with getting it onto the correct queue
1379 *
1380 * If the caller specified in fault_info that
1381 * it wants a "stealth" fault, we also leave
1382 * the page in the speculative queue.
1383 */
1384 vm_page_lockspin_queues();
1385 if (m->speculative)
1386 vm_page_queues_remove(m);
1387 vm_page_unlock_queues();
1388 }
1389
1390 if (m->encrypted) {
1391 /*
1392 * ENCRYPTED SWAP:
1393 * the user needs access to a page that we
1394 * encrypted before paging it out.
1395 * Decrypt the page now.
1396 * Keep it busy to prevent anyone from
1397 * accessing it during the decryption.
1398 */
1399 m->busy = TRUE;
1400 vm_page_decrypt(m, 0);
1401 assert(object == m->object);
1402 assert(m->busy);
1403 PAGE_WAKEUP_DONE(m);
1404
1405 /*
1406 * Retry from the top, in case
1407 * something changed while we were
1408 * decrypting.
1409 */
1410 continue;
1411 }
1412 ASSERT_PAGE_DECRYPTED(m);
1413
1414 if (m->object->code_signed) {
1415 /*
1416 * CODE SIGNING:
1417 * We just paged in a page from a signed
1418 * memory object but we don't need to
1419 * validate it now. We'll validate it if
1420 * when it gets mapped into a user address
1421 * space for the first time or when the page
1422 * gets copied to another object as a result
1423 * of a copy-on-write.
1424 */
1425 }
1426
1427 /*
1428 * We mark the page busy and leave it on
1429 * the pageout queues. If the pageout
1430 * deamon comes across it, then it will
1431 * remove the page from the queue, but not the object
1432 */
1433#if TRACEFAULTPAGE
1434 dbgTrace(0xBEEF000B, (unsigned int) m, (unsigned int) 0); /* (TEST/DEBUG) */
1435#endif
1436 XPR(XPR_VM_FAULT,
1437 "vm_f_page: found page obj 0x%X, offset 0x%X, page 0x%X\n",
1438 object, offset, m, 0, 0);
1439 assert(!m->busy);
1440 assert(!m->absent);
1441
1442 m->busy = TRUE;
1443 break;
1444 }
1445
1446
1447 /*
1448 * we get here when there is no page present in the object at
1449 * the offset we're interested in... we'll allocate a page
1450 * at this point if the pager associated with
1451 * this object can provide the data or we're the top object...
1452 * object is locked; m == NULL
1453 */
1454 if (must_be_resident) {
1455 if (fault_type == VM_PROT_NONE &&
1456 object == kernel_object) {
1457 /*
1458 * We've been called from vm_fault_unwire()
1459 * while removing a map entry that was allocated
1460 * with KMA_KOBJECT and KMA_VAONLY. This page
1461 * is not present and there's nothing more to
1462 * do here (nothing to unwire).
1463 */
1464 vm_fault_cleanup(object, first_m);
1465 thread_interrupt_level(interruptible_state);
1466
1467 return VM_FAULT_MEMORY_ERROR;
1468 }
1469
1470 goto dont_look_for_page;
1471 }
1472
1473#if !MACH_PAGEMAP
1474 data_supply = FALSE;
1475#endif /* !MACH_PAGEMAP */
1476
1477 look_for_page = (object->pager_created && (MUST_ASK_PAGER(object, offset, external_state) == TRUE) && !data_supply);
1478
1479#if TRACEFAULTPAGE
1480 dbgTrace(0xBEEF000C, (unsigned int) look_for_page, (unsigned int) object); /* (TEST/DEBUG) */
1481#endif
1482 if (!look_for_page && object == first_object && !object->phys_contiguous) {
1483 /*
1484 * Allocate a new page for this object/offset pair as a placeholder
1485 */
1486 m = vm_page_grab();
1487#if TRACEFAULTPAGE
1488 dbgTrace(0xBEEF000D, (unsigned int) m, (unsigned int) object); /* (TEST/DEBUG) */
1489#endif
1490 if (m == VM_PAGE_NULL) {
1491
1492 vm_fault_cleanup(object, first_m);
1493 thread_interrupt_level(interruptible_state);
1494
1495 return (VM_FAULT_MEMORY_SHORTAGE);
1496 }
1497
1498 if (fault_info && fault_info->batch_pmap_op == TRUE) {
1499 vm_page_insert_internal(m, object, offset, VM_KERN_MEMORY_NONE, FALSE, TRUE, TRUE, FALSE, NULL);
1500 } else {
1501 vm_page_insert(m, object, offset);
1502 }
1503 }
1504 if (look_for_page) {
1505 kern_return_t rc;
1506 int my_fault_type;
1507
1508 /*
1509 * If the memory manager is not ready, we
1510 * cannot make requests.
1511 */
1512 if (!object->pager_ready) {
1513#if TRACEFAULTPAGE
1514 dbgTrace(0xBEEF000E, (unsigned int) 0, (unsigned int) 0); /* (TEST/DEBUG) */
1515#endif
1516 if (m != VM_PAGE_NULL)
1517 VM_PAGE_FREE(m);
1518
1519 XPR(XPR_VM_FAULT,
1520 "vm_f_page: ready wait obj 0x%X, offset 0x%X\n",
1521 object, offset, 0, 0, 0);
1522
1523 /*
1524 * take an extra ref so object won't die
1525 */
1526 vm_object_reference_locked(object);
1527 vm_fault_cleanup(object, first_m);
1528 counter(c_vm_fault_page_block_backoff_kernel++);
1529
1530 vm_object_lock(object);
1531 assert(object->ref_count > 0);
1532
1533 if (!object->pager_ready) {
1534 wait_result = vm_object_assert_wait(object, VM_OBJECT_EVENT_PAGER_READY, interruptible);
1535
1536 vm_object_unlock(object);
1537 if (wait_result == THREAD_WAITING)
1538 wait_result = thread_block(THREAD_CONTINUE_NULL);
1539 vm_object_deallocate(object);
1540
1541 goto backoff;
1542 } else {
1543 vm_object_unlock(object);
1544 vm_object_deallocate(object);
1545 thread_interrupt_level(interruptible_state);
1546
1547 return (VM_FAULT_RETRY);
1548 }
1549 }
1550 if (!object->internal && !object->phys_contiguous && object->paging_in_progress > vm_object_pagein_throttle) {
1551 /*
1552 * If there are too many outstanding page
1553 * requests pending on this external object, we
1554 * wait for them to be resolved now.
1555 */
1556#if TRACEFAULTPAGE
1557 dbgTrace(0xBEEF0010, (unsigned int) m, (unsigned int) 0); /* (TEST/DEBUG) */
1558#endif
1559 if (m != VM_PAGE_NULL)
1560 VM_PAGE_FREE(m);
1561 /*
1562 * take an extra ref so object won't die
1563 */
1564 vm_object_reference_locked(object);
1565
1566 vm_fault_cleanup(object, first_m);
1567
1568 counter(c_vm_fault_page_block_backoff_kernel++);
1569
1570 vm_object_lock(object);
1571 assert(object->ref_count > 0);
1572
1573 if (object->paging_in_progress >= vm_object_pagein_throttle) {
1574 vm_object_assert_wait(object, VM_OBJECT_EVENT_PAGING_ONLY_IN_PROGRESS, interruptible);
1575
1576 vm_object_unlock(object);
1577 wait_result = thread_block(THREAD_CONTINUE_NULL);
1578 vm_object_deallocate(object);
1579
1580 goto backoff;
1581 } else {
1582 vm_object_unlock(object);
1583 vm_object_deallocate(object);
1584 thread_interrupt_level(interruptible_state);
1585
1586 return (VM_FAULT_RETRY);
1587 }
1588 }
1589 if (object->internal &&
1590 (COMPRESSED_PAGER_IS_ACTIVE
1591 || DEFAULT_FREEZER_COMPRESSED_PAGER_IS_ACTIVE)) {
1592 int compressed_count_delta;
1593
1594 if (m == VM_PAGE_NULL) {
1595 /*
1596 * Allocate a new page for this object/offset pair as a placeholder
1597 */
1598 m = vm_page_grab();
1599#if TRACEFAULTPAGE
1600 dbgTrace(0xBEEF000D, (unsigned int) m, (unsigned int) object); /* (TEST/DEBUG) */
1601#endif
1602 if (m == VM_PAGE_NULL) {
1603
1604 vm_fault_cleanup(object, first_m);
1605 thread_interrupt_level(interruptible_state);
1606
1607 return (VM_FAULT_MEMORY_SHORTAGE);
1608 }
1609
1610 m->absent = TRUE;
1611 if (fault_info && fault_info->batch_pmap_op == TRUE) {
1612 vm_page_insert_internal(m, object, offset, VM_KERN_MEMORY_NONE, FALSE, TRUE, TRUE, FALSE, NULL);
1613 } else {
1614 vm_page_insert(m, object, offset);
1615 }
1616 }
1617 assert(m->busy);
1618
1619 m->absent = TRUE;
1620 pager = object->pager;
1621
1622 assert(object->paging_in_progress > 0);
1623 vm_object_unlock(object);
1624
1625 rc = vm_compressor_pager_get(
1626 pager,
1627 offset + object->paging_offset,
1628 m->phys_page,
1629 &my_fault_type,
1630 0,
1631 &compressed_count_delta);
1632
1633 if (type_of_fault == NULL) {
1634 int throttle_delay;
1635
1636 /*
1637 * we weren't called from vm_fault, so we
1638 * need to apply page creation throttling
1639 * do it before we re-acquire any locks
1640 */
1641 if (my_fault_type == DBG_COMPRESSOR_FAULT) {
1642 if ((throttle_delay = vm_page_throttled(TRUE))) {
1643 VM_DEBUG_EVENT(vmf_compressordelay, VMF_COMPRESSORDELAY, DBG_FUNC_NONE, throttle_delay, 0, 1, 0);
1644 delay(throttle_delay);
1645 }
1646 }
1647 }
1648 vm_object_lock(object);
1649 assert(object->paging_in_progress > 0);
1650
1651 vm_compressor_pager_count(
1652 pager,
1653 compressed_count_delta,
1654 FALSE, /* shared_lock */
1655 object);
1656
1657 switch (rc) {
1658 case KERN_SUCCESS:
1659 m->absent = FALSE;
1660 m->dirty = TRUE;
1661 if ((m->object->wimg_bits &
1662 VM_WIMG_MASK) !=
1663 VM_WIMG_USE_DEFAULT) {
1664 /*
1665 * If the page is not cacheable,
1666 * we can't let its contents
1667 * linger in the data cache
1668 * after the decompression.
1669 */
1670 pmap_sync_page_attributes_phys(
1671 m->phys_page);
1672 } else {
1673 m->written_by_kernel = TRUE;
1674 }
1675
1676 /*
1677 * If the object is purgeable, its
1678 * owner's purgeable ledgers have been
1679 * updated in vm_page_insert() but the
1680 * page was also accounted for in a
1681 * "compressed purgeable" ledger, so
1682 * update that now.
1683 */
1684 if ((object->purgable !=
1685 VM_PURGABLE_DENY) &&
1686 (object->vo_purgeable_owner !=
1687 NULL)) {
1688 /*
1689 * One less compressed
1690 * purgeable page.
1691 */
1692 vm_purgeable_compressed_update(
1693 object,
1694 -1);
1695 }
1696
1697 break;
1698 case KERN_MEMORY_FAILURE:
1699 m->unusual = TRUE;
1700 m->error = TRUE;
1701 m->absent = FALSE;
1702 break;
1703 case KERN_MEMORY_ERROR:
1704 assert(m->absent);
1705 break;
1706 default:
1707 panic("vm_fault_page(): unexpected "
1708 "error %d from "
1709 "vm_compressor_pager_get()\n",
1710 rc);
1711 }
1712 PAGE_WAKEUP_DONE(m);
1713
1714 rc = KERN_SUCCESS;
1715 goto data_requested;
1716 }
1717 my_fault_type = DBG_PAGEIN_FAULT;
1718
1719 if (m != VM_PAGE_NULL) {
1720 VM_PAGE_FREE(m);
1721 m = VM_PAGE_NULL;
1722 }
1723
1724#if TRACEFAULTPAGE
1725 dbgTrace(0xBEEF0012, (unsigned int) object, (unsigned int) 0); /* (TEST/DEBUG) */
1726#endif
1727
1728 /*
1729 * It's possible someone called vm_object_destroy while we weren't
1730 * holding the object lock. If that has happened, then bail out
1731 * here.
1732 */
1733
1734 pager = object->pager;
1735
1736 if (pager == MEMORY_OBJECT_NULL) {
1737 vm_fault_cleanup(object, first_m);
1738 thread_interrupt_level(interruptible_state);
1739 return VM_FAULT_MEMORY_ERROR;
1740 }
1741
1742 /*
1743 * We have an absent page in place for the faulting offset,
1744 * so we can release the object lock.
1745 */
1746
1747 vm_object_unlock(object);
1748
1749 /*
1750 * If this object uses a copy_call strategy,
1751 * and we are interested in a copy of this object
1752 * (having gotten here only by following a
1753 * shadow chain), then tell the memory manager
1754 * via a flag added to the desired_access
1755 * parameter, so that it can detect a race
1756 * between our walking down the shadow chain
1757 * and its pushing pages up into a copy of
1758 * the object that it manages.
1759 */
1760 if (object->copy_strategy == MEMORY_OBJECT_COPY_CALL && object != first_object)
1761 wants_copy_flag = VM_PROT_WANTS_COPY;
1762 else
1763 wants_copy_flag = VM_PROT_NONE;
1764
1765 XPR(XPR_VM_FAULT,
1766 "vm_f_page: data_req obj 0x%X, offset 0x%X, page 0x%X, acc %d\n",
1767 object, offset, m,
1768 access_required | wants_copy_flag, 0);
1769
1770 if (object->copy == first_object) {
1771 /*
1772 * if we issue the memory_object_data_request in
1773 * this state, we are subject to a deadlock with
1774 * the underlying filesystem if it is trying to
1775 * shrink the file resulting in a push of pages
1776 * into the copy object... that push will stall
1777 * on the placeholder page, and if the pushing thread
1778 * is holding a lock that is required on the pagein
1779 * path (such as a truncate lock), we'll deadlock...
1780 * to avoid this potential deadlock, we throw away
1781 * our placeholder page before calling memory_object_data_request
1782 * and force this thread to retry the vm_fault_page after
1783 * we have issued the I/O. the second time through this path
1784 * we will find the page already in the cache (presumably still
1785 * busy waiting for the I/O to complete) and then complete
1786 * the fault w/o having to go through memory_object_data_request again
1787 */
1788 assert(first_m != VM_PAGE_NULL);
1789 assert(first_m->object == first_object);
1790
1791 vm_object_lock(first_object);
1792 VM_PAGE_FREE(first_m);
1793 vm_object_paging_end(first_object);
1794 vm_object_unlock(first_object);
1795
1796 first_m = VM_PAGE_NULL;
1797 force_fault_retry = TRUE;
1798
1799 vm_fault_page_forced_retry++;
1800 }
1801
1802 if (data_already_requested == TRUE) {
1803 orig_behavior = fault_info->behavior;
1804 orig_cluster_size = fault_info->cluster_size;
1805
1806 fault_info->behavior = VM_BEHAVIOR_RANDOM;
1807 fault_info->cluster_size = PAGE_SIZE;
1808 }
1809 /*
1810 * Call the memory manager to retrieve the data.
1811 */
1812 rc = memory_object_data_request(
1813 pager,
1814 offset + object->paging_offset,
1815 PAGE_SIZE,
1816 access_required | wants_copy_flag,
1817 (memory_object_fault_info_t)fault_info);
1818
1819 if (data_already_requested == TRUE) {
1820 fault_info->behavior = orig_behavior;
1821 fault_info->cluster_size = orig_cluster_size;
1822 } else
1823 data_already_requested = TRUE;
1824
1825 DTRACE_VM2(maj_fault, int, 1, (uint64_t *), NULL);
1826#if TRACEFAULTPAGE
1827 dbgTrace(0xBEEF0013, (unsigned int) object, (unsigned int) rc); /* (TEST/DEBUG) */
1828#endif
1829 vm_object_lock(object);
1830
1831 data_requested:
1832 if (rc != KERN_SUCCESS) {
1833
1834 vm_fault_cleanup(object, first_m);
1835 thread_interrupt_level(interruptible_state);
1836
1837 return ((rc == MACH_SEND_INTERRUPTED) ?
1838 VM_FAULT_INTERRUPTED :
1839 VM_FAULT_MEMORY_ERROR);
1840 } else {
1841 clock_sec_t tv_sec;
1842 clock_usec_t tv_usec;
1843
1844 if (my_fault_type == DBG_PAGEIN_FAULT) {
1845 clock_get_system_microtime(&tv_sec, &tv_usec);
1846 current_thread()->t_page_creation_time = tv_sec;
1847 current_thread()->t_page_creation_count = 0;
1848 }
1849 }
1850 if ((interruptible != THREAD_UNINT) && (current_thread()->sched_flags & TH_SFLAG_ABORT)) {
1851
1852 vm_fault_cleanup(object, first_m);
1853 thread_interrupt_level(interruptible_state);
1854
1855 return (VM_FAULT_INTERRUPTED);
1856 }
1857 if (force_fault_retry == TRUE) {
1858
1859 vm_fault_cleanup(object, first_m);
1860 thread_interrupt_level(interruptible_state);
1861
1862 return (VM_FAULT_RETRY);
1863 }
1864 if (m == VM_PAGE_NULL && object->phys_contiguous) {
1865 /*
1866 * No page here means that the object we
1867 * initially looked up was "physically
1868 * contiguous" (i.e. device memory). However,
1869 * with Virtual VRAM, the object might not
1870 * be backed by that device memory anymore,
1871 * so we're done here only if the object is
1872 * still "phys_contiguous".
1873 * Otherwise, if the object is no longer
1874 * "phys_contiguous", we need to retry the
1875 * page fault against the object's new backing
1876 * store (different memory object).
1877 */
1878 phys_contig_object:
1879 goto done;
1880 }
1881 /*
1882 * potentially a pagein fault
1883 * if we make it through the state checks
1884 * above, than we'll count it as such
1885 */
1886 my_fault = my_fault_type;
1887
1888 /*
1889 * Retry with same object/offset, since new data may
1890 * be in a different page (i.e., m is meaningless at
1891 * this point).
1892 */
1893 continue;
1894 }
1895dont_look_for_page:
1896 /*
1897 * We get here if the object has no pager, or an existence map
1898 * exists and indicates the page isn't present on the pager
1899 * or we're unwiring a page. If a pager exists, but there
1900 * is no existence map, then the m->absent case above handles
1901 * the ZF case when the pager can't provide the page
1902 */
1903#if TRACEFAULTPAGE
1904 dbgTrace(0xBEEF0014, (unsigned int) object, (unsigned int) m); /* (TEST/DEBUG) */
1905#endif
1906 if (object == first_object)
1907 first_m = m;
1908 else
1909 assert(m == VM_PAGE_NULL);
1910
1911 XPR(XPR_VM_FAULT,
1912 "vm_f_page: no pager obj 0x%X, offset 0x%X, page 0x%X, next_obj 0x%X\n",
1913 object, offset, m,
1914 object->shadow, 0);
1915
1916 next_object = object->shadow;
1917
1918 if (next_object == VM_OBJECT_NULL) {
1919 /*
1920 * we've hit the bottom of the shadown chain,
1921 * fill the page in the top object with zeros.
1922 */
1923 assert(!must_be_resident);
1924
1925 if (object != first_object) {
1926 vm_object_paging_end(object);
1927 vm_object_unlock(object);
1928
1929 object = first_object;
1930 offset = first_offset;
1931 vm_object_lock(object);
1932 }
1933 m = first_m;
1934 assert(m->object == object);
1935 first_m = VM_PAGE_NULL;
1936
1937 /*
1938 * check for any conditions that prevent
1939 * us from creating a new zero-fill page
1940 * vm_fault_check will do all of the
1941 * fault cleanup in the case of an error condition
1942 * including resetting the thread_interrupt_level
1943 */
1944 error = vm_fault_check(object, m, first_m, interruptible_state, (type_of_fault == NULL) ? TRUE : FALSE);
1945
1946 if (error != VM_FAULT_SUCCESS)
1947 return (error);
1948
1949 if (m == VM_PAGE_NULL) {
1950 m = vm_page_grab();
1951
1952 if (m == VM_PAGE_NULL) {
1953 vm_fault_cleanup(object, VM_PAGE_NULL);
1954 thread_interrupt_level(interruptible_state);
1955
1956 return (VM_FAULT_MEMORY_SHORTAGE);
1957 }
1958 vm_page_insert(m, object, offset);
1959 }
1960 if (fault_info->mark_zf_absent && no_zero_fill == TRUE)
1961 m->absent = TRUE;
1962
1963 my_fault = vm_fault_zero_page(m, no_zero_fill);
1964
1965 break;
1966
1967 } else {
1968 /*
1969 * Move on to the next object. Lock the next
1970 * object before unlocking the current one.
1971 */
1972 if ((object != first_object) || must_be_resident)
1973 vm_object_paging_end(object);
1974
1975 offset += object->vo_shadow_offset;
1976 fault_info->lo_offset += object->vo_shadow_offset;
1977 fault_info->hi_offset += object->vo_shadow_offset;
1978 access_required = VM_PROT_READ;
1979
1980 vm_object_lock(next_object);
1981 vm_object_unlock(object);
1982
1983 object = next_object;
1984 vm_object_paging_begin(object);
1985 }
1986 }
1987
1988 /*
1989 * PAGE HAS BEEN FOUND.
1990 *
1991 * This page (m) is:
1992 * busy, so that we can play with it;
1993 * not absent, so that nobody else will fill it;
1994 * possibly eligible for pageout;
1995 *
1996 * The top-level page (first_m) is:
1997 * VM_PAGE_NULL if the page was found in the
1998 * top-level object;
1999 * busy, not absent, and ineligible for pageout.
2000 *
2001 * The current object (object) is locked. A paging
2002 * reference is held for the current and top-level
2003 * objects.
2004 */
2005
2006#if TRACEFAULTPAGE
2007 dbgTrace(0xBEEF0015, (unsigned int) object, (unsigned int) m); /* (TEST/DEBUG) */
2008#endif
2009#if EXTRA_ASSERTIONS
2010 assert(m->busy && !m->absent);
2011 assert((first_m == VM_PAGE_NULL) ||
2012 (first_m->busy && !first_m->absent &&
2013 !first_m->active && !first_m->inactive));
2014#endif /* EXTRA_ASSERTIONS */
2015
2016 /*
2017 * ENCRYPTED SWAP:
2018 * If we found a page, we must have decrypted it before we
2019 * get here...
2020 */
2021 ASSERT_PAGE_DECRYPTED(m);
2022
2023 XPR(XPR_VM_FAULT,
2024 "vm_f_page: FOUND obj 0x%X, off 0x%X, page 0x%X, 1_obj 0x%X, 1_m 0x%X\n",
2025 object, offset, m,
2026 first_object, first_m);
2027
2028 /*
2029 * If the page is being written, but isn't
2030 * already owned by the top-level object,
2031 * we have to copy it into a new page owned
2032 * by the top-level object.
2033 */
2034 if (object != first_object) {
2035
2036#if TRACEFAULTPAGE
2037 dbgTrace(0xBEEF0016, (unsigned int) object, (unsigned int) fault_type); /* (TEST/DEBUG) */
2038#endif
2039 if (fault_type & VM_PROT_WRITE) {
2040 vm_page_t copy_m;
2041
2042 /*
2043 * We only really need to copy if we
2044 * want to write it.
2045 */
2046 assert(!must_be_resident);
2047
2048 /*
2049 * are we protecting the system from
2050 * backing store exhaustion. If so
2051 * sleep unless we are privileged.
2052 */
2053 if (vm_backing_store_low) {
2054 if (!(current_task()->priv_flags & VM_BACKING_STORE_PRIV)) {
2055
2056 RELEASE_PAGE(m);
2057 vm_fault_cleanup(object, first_m);
2058
2059 assert_wait((event_t)&vm_backing_store_low, THREAD_UNINT);
2060
2061 thread_block(THREAD_CONTINUE_NULL);
2062 thread_interrupt_level(interruptible_state);
2063
2064 return (VM_FAULT_RETRY);
2065 }
2066 }
2067 /*
2068 * If we try to collapse first_object at this
2069 * point, we may deadlock when we try to get
2070 * the lock on an intermediate object (since we
2071 * have the bottom object locked). We can't
2072 * unlock the bottom object, because the page
2073 * we found may move (by collapse) if we do.
2074 *
2075 * Instead, we first copy the page. Then, when
2076 * we have no more use for the bottom object,
2077 * we unlock it and try to collapse.
2078 *
2079 * Note that we copy the page even if we didn't
2080 * need to... that's the breaks.
2081 */
2082
2083 /*
2084 * Allocate a page for the copy
2085 */
2086 copy_m = vm_page_grab();
2087
2088 if (copy_m == VM_PAGE_NULL) {
2089 RELEASE_PAGE(m);
2090
2091 vm_fault_cleanup(object, first_m);
2092 thread_interrupt_level(interruptible_state);
2093
2094 return (VM_FAULT_MEMORY_SHORTAGE);
2095 }
2096 XPR(XPR_VM_FAULT,
2097 "vm_f_page: page_copy obj 0x%X, offset 0x%X, m 0x%X, copy_m 0x%X\n",
2098 object, offset,
2099 m, copy_m, 0);
2100
2101 vm_page_copy(m, copy_m);
2102
2103 /*
2104 * If another map is truly sharing this
2105 * page with us, we have to flush all
2106 * uses of the original page, since we
2107 * can't distinguish those which want the
2108 * original from those which need the
2109 * new copy.
2110 *
2111 * XXXO If we know that only one map has
2112 * access to this page, then we could
2113 * avoid the pmap_disconnect() call.
2114 */
2115 if (m->pmapped)
2116 pmap_disconnect(m->phys_page);
2117
2118 if (m->clustered) {
2119 VM_PAGE_COUNT_AS_PAGEIN(m);
2120 VM_PAGE_CONSUME_CLUSTERED(m);
2121 }
2122 assert(!m->cleaning);
2123
2124 /*
2125 * We no longer need the old page or object.
2126 */
2127 RELEASE_PAGE(m);
2128
2129 vm_object_paging_end(object);
2130 vm_object_unlock(object);
2131
2132 my_fault = DBG_COW_FAULT;
2133 VM_STAT_INCR(cow_faults);
2134 DTRACE_VM2(cow_fault, int, 1, (uint64_t *), NULL);
2135 current_task()->cow_faults++;
2136
2137 object = first_object;
2138 offset = first_offset;
2139
2140 vm_object_lock(object);
2141 /*
2142 * get rid of the place holder
2143 * page that we soldered in earlier
2144 */
2145 VM_PAGE_FREE(first_m);
2146 first_m = VM_PAGE_NULL;
2147
2148 /*
2149 * and replace it with the
2150 * page we just copied into
2151 */
2152 assert(copy_m->busy);
2153 vm_page_insert(copy_m, object, offset);
2154 SET_PAGE_DIRTY(copy_m, TRUE);
2155
2156 m = copy_m;
2157 /*
2158 * Now that we've gotten the copy out of the
2159 * way, let's try to collapse the top object.
2160 * But we have to play ugly games with
2161 * paging_in_progress to do that...
2162 */
2163 vm_object_paging_end(object);
2164 vm_object_collapse(object, offset, TRUE);
2165 vm_object_paging_begin(object);
2166
2167 } else
2168 *protection &= (~VM_PROT_WRITE);
2169 }
2170 /*
2171 * Now check whether the page needs to be pushed into the
2172 * copy object. The use of asymmetric copy on write for
2173 * shared temporary objects means that we may do two copies to
2174 * satisfy the fault; one above to get the page from a
2175 * shadowed object, and one here to push it into the copy.
2176 */
2177 try_failed_count = 0;
2178
2179 while ((copy_object = first_object->copy) != VM_OBJECT_NULL) {
2180 vm_object_offset_t copy_offset;
2181 vm_page_t copy_m;
2182
2183#if TRACEFAULTPAGE
2184 dbgTrace(0xBEEF0017, (unsigned int) copy_object, (unsigned int) fault_type); /* (TEST/DEBUG) */
2185#endif
2186 /*
2187 * If the page is being written, but hasn't been
2188 * copied to the copy-object, we have to copy it there.
2189 */
2190 if ((fault_type & VM_PROT_WRITE) == 0) {
2191 *protection &= ~VM_PROT_WRITE;
2192 break;
2193 }
2194
2195 /*
2196 * If the page was guaranteed to be resident,
2197 * we must have already performed the copy.
2198 */
2199 if (must_be_resident)
2200 break;
2201
2202 /*
2203 * Try to get the lock on the copy_object.
2204 */
2205 if (!vm_object_lock_try(copy_object)) {
2206
2207 vm_object_unlock(object);
2208 try_failed_count++;
2209
2210 mutex_pause(try_failed_count); /* wait a bit */
2211 vm_object_lock(object);
2212
2213 continue;
2214 }
2215 try_failed_count = 0;
2216
2217 /*
2218 * Make another reference to the copy-object,
2219 * to keep it from disappearing during the
2220 * copy.
2221 */
2222 vm_object_reference_locked(copy_object);
2223
2224 /*
2225 * Does the page exist in the copy?
2226 */
2227 copy_offset = first_offset - copy_object->vo_shadow_offset;
2228
2229 if (copy_object->vo_size <= copy_offset)
2230 /*
2231 * Copy object doesn't cover this page -- do nothing.
2232 */
2233 ;
2234 else if ((copy_m = vm_page_lookup(copy_object, copy_offset)) != VM_PAGE_NULL) {
2235 /*
2236 * Page currently exists in the copy object
2237 */
2238 if (copy_m->busy) {
2239 /*
2240 * If the page is being brought
2241 * in, wait for it and then retry.
2242 */
2243 RELEASE_PAGE(m);
2244
2245 /*
2246 * take an extra ref so object won't die
2247 */
2248 vm_object_reference_locked(copy_object);
2249 vm_object_unlock(copy_object);
2250 vm_fault_cleanup(object, first_m);
2251 counter(c_vm_fault_page_block_backoff_kernel++);
2252
2253 vm_object_lock(copy_object);
2254 assert(copy_object->ref_count > 0);
2255 VM_OBJ_RES_DECR(copy_object);
2256 vm_object_lock_assert_exclusive(copy_object);
2257 copy_object->ref_count--;
2258 assert(copy_object->ref_count > 0);
2259 copy_m = vm_page_lookup(copy_object, copy_offset);
2260 /*
2261 * ENCRYPTED SWAP:
2262 * it's OK if the "copy_m" page is encrypted,
2263 * because we're not moving it nor handling its
2264 * contents.
2265 */
2266 if (copy_m != VM_PAGE_NULL && copy_m->busy) {
2267 PAGE_ASSERT_WAIT(copy_m, interruptible);
2268
2269 vm_object_unlock(copy_object);
2270 wait_result = thread_block(THREAD_CONTINUE_NULL);
2271 vm_object_deallocate(copy_object);
2272
2273 goto backoff;
2274 } else {
2275 vm_object_unlock(copy_object);
2276 vm_object_deallocate(copy_object);
2277 thread_interrupt_level(interruptible_state);
2278
2279 return (VM_FAULT_RETRY);
2280 }
2281 }
2282 }
2283 else if (!PAGED_OUT(copy_object, copy_offset)) {
2284 /*
2285 * If PAGED_OUT is TRUE, then the page used to exist
2286 * in the copy-object, and has already been paged out.
2287 * We don't need to repeat this. If PAGED_OUT is
2288 * FALSE, then either we don't know (!pager_created,
2289 * for example) or it hasn't been paged out.
2290 * (VM_EXTERNAL_STATE_UNKNOWN||VM_EXTERNAL_STATE_ABSENT)
2291 * We must copy the page to the copy object.
2292 */
2293
2294 if (vm_backing_store_low) {
2295 /*
2296 * we are protecting the system from
2297 * backing store exhaustion. If so
2298 * sleep unless we are privileged.
2299 */
2300 if (!(current_task()->priv_flags & VM_BACKING_STORE_PRIV)) {
2301 assert_wait((event_t)&vm_backing_store_low, THREAD_UNINT);
2302
2303 RELEASE_PAGE(m);
2304 VM_OBJ_RES_DECR(copy_object);
2305 vm_object_lock_assert_exclusive(copy_object);
2306 copy_object->ref_count--;
2307 assert(copy_object->ref_count > 0);
2308
2309 vm_object_unlock(copy_object);
2310 vm_fault_cleanup(object, first_m);
2311 thread_block(THREAD_CONTINUE_NULL);
2312 thread_interrupt_level(interruptible_state);
2313
2314 return (VM_FAULT_RETRY);
2315 }
2316 }
2317 /*
2318 * Allocate a page for the copy
2319 */
2320 copy_m = vm_page_alloc(copy_object, copy_offset);
2321
2322 if (copy_m == VM_PAGE_NULL) {
2323 RELEASE_PAGE(m);
2324
2325 VM_OBJ_RES_DECR(copy_object);
2326 vm_object_lock_assert_exclusive(copy_object);
2327 copy_object->ref_count--;
2328 assert(copy_object->ref_count > 0);
2329
2330 vm_object_unlock(copy_object);
2331 vm_fault_cleanup(object, first_m);
2332 thread_interrupt_level(interruptible_state);
2333
2334 return (VM_FAULT_MEMORY_SHORTAGE);
2335 }
2336 /*
2337 * Must copy page into copy-object.
2338 */
2339 vm_page_copy(m, copy_m);
2340
2341 /*
2342 * If the old page was in use by any users
2343 * of the copy-object, it must be removed
2344 * from all pmaps. (We can't know which
2345 * pmaps use it.)
2346 */
2347 if (m->pmapped)
2348 pmap_disconnect(m->phys_page);
2349
2350 if (m->clustered) {
2351 VM_PAGE_COUNT_AS_PAGEIN(m);
2352 VM_PAGE_CONSUME_CLUSTERED(m);
2353 }
2354 /*
2355 * If there's a pager, then immediately
2356 * page out this page, using the "initialize"
2357 * option. Else, we use the copy.
2358 */
2359 if ((!copy_object->pager_ready)
2360#if MACH_PAGEMAP
2361 || vm_external_state_get(copy_object->existence_map, copy_offset) == VM_EXTERNAL_STATE_ABSENT
2362#endif
2363 || VM_COMPRESSOR_PAGER_STATE_GET(copy_object, copy_offset) == VM_EXTERNAL_STATE_ABSENT
2364 ) {
2365
2366 vm_page_lockspin_queues();
2367 assert(!m->cleaning);
2368 vm_page_activate(copy_m);
2369 vm_page_unlock_queues();
2370
2371 SET_PAGE_DIRTY(copy_m, TRUE);
2372 PAGE_WAKEUP_DONE(copy_m);
2373
2374 } else if (copy_object->internal &&
2375 (DEFAULT_PAGER_IS_ACTIVE || DEFAULT_FREEZER_IS_ACTIVE)) {
2376 /*
2377 * For internal objects check with the pager to see
2378 * if the page already exists in the backing store.
2379 * If yes, then we can drop the copy page. If not,
2380 * then we'll activate it, mark it dirty and keep it
2381 * around.
2382 */
2383
2384 kern_return_t kr = KERN_SUCCESS;
2385
2386 memory_object_t copy_pager = copy_object->pager;
2387 assert(copy_pager != MEMORY_OBJECT_NULL);
2388 vm_object_paging_begin(copy_object);
2389
2390 vm_object_unlock(copy_object);
2391
2392 kr = memory_object_data_request(
2393 copy_pager,
2394 copy_offset + copy_object->paging_offset,
2395 0, /* Only query the pager. */
2396 VM_PROT_READ,
2397 NULL);
2398
2399 vm_object_lock(copy_object);
2400
2401 vm_object_paging_end(copy_object);
2402
2403 /*
2404 * Since we dropped the copy_object's lock,
2405 * check whether we'll have to deallocate
2406 * the hard way.
2407 */
2408 if ((copy_object->shadow != object) || (copy_object->ref_count == 1)) {
2409 vm_object_unlock(copy_object);
2410 vm_object_deallocate(copy_object);
2411 vm_object_lock(object);
2412
2413 continue;
2414 }
2415 if (kr == KERN_SUCCESS) {
2416 /*
2417 * The pager has the page. We don't want to overwrite
2418 * that page by sending this one out to the backing store.
2419 * So we drop the copy page.
2420 */
2421 VM_PAGE_FREE(copy_m);
2422
2423 } else {
2424 /*
2425 * The pager doesn't have the page. We'll keep this one
2426 * around in the copy object. It might get sent out to
2427 * the backing store under memory pressure.
2428 */
2429 vm_page_lockspin_queues();
2430 assert(!m->cleaning);
2431 vm_page_activate(copy_m);
2432 vm_page_unlock_queues();
2433
2434 SET_PAGE_DIRTY(copy_m, TRUE);
2435 PAGE_WAKEUP_DONE(copy_m);
2436 }
2437 } else {
2438
2439 assert(copy_m->busy == TRUE);
2440 assert(!m->cleaning);
2441
2442 /*
2443 * dirty is protected by the object lock
2444 */
2445 SET_PAGE_DIRTY(copy_m, TRUE);
2446
2447 /*
2448 * The page is already ready for pageout:
2449 * not on pageout queues and busy.
2450 * Unlock everything except the
2451 * copy_object itself.
2452 */
2453 vm_object_unlock(object);
2454
2455 /*
2456 * Write the page to the copy-object,
2457 * flushing it from the kernel.
2458 */
2459 vm_pageout_initialize_page(copy_m);
2460
2461 /*
2462 * Since the pageout may have
2463 * temporarily dropped the
2464 * copy_object's lock, we
2465 * check whether we'll have
2466 * to deallocate the hard way.
2467 */
2468 if ((copy_object->shadow != object) || (copy_object->ref_count == 1)) {
2469 vm_object_unlock(copy_object);
2470 vm_object_deallocate(copy_object);
2471 vm_object_lock(object);
2472
2473 continue;
2474 }
2475 /*
2476 * Pick back up the old object's
2477 * lock. [It is safe to do so,
2478 * since it must be deeper in the
2479 * object tree.]
2480 */
2481 vm_object_lock(object);
2482 }
2483
2484 /*
2485 * Because we're pushing a page upward
2486 * in the object tree, we must restart
2487 * any faults that are waiting here.
2488 * [Note that this is an expansion of
2489 * PAGE_WAKEUP that uses the THREAD_RESTART
2490 * wait result]. Can't turn off the page's
2491 * busy bit because we're not done with it.
2492 */
2493 if (m->wanted) {
2494 m->wanted = FALSE;
2495 thread_wakeup_with_result((event_t) m, THREAD_RESTART);
2496 }
2497 }
2498 /*
2499 * The reference count on copy_object must be
2500 * at least 2: one for our extra reference,
2501 * and at least one from the outside world
2502 * (we checked that when we last locked
2503 * copy_object).
2504 */
2505 vm_object_lock_assert_exclusive(copy_object);
2506 copy_object->ref_count--;
2507 assert(copy_object->ref_count > 0);
2508
2509 VM_OBJ_RES_DECR(copy_object);
2510 vm_object_unlock(copy_object);
2511
2512 break;
2513 }
2514
2515done:
2516 *result_page = m;
2517 *top_page = first_m;
2518
2519 XPR(XPR_VM_FAULT,
2520 "vm_f_page: DONE obj 0x%X, offset 0x%X, m 0x%X, first_m 0x%X\n",
2521 object, offset, m, first_m, 0);
2522
2523 if (m != VM_PAGE_NULL) {
2524 retval = VM_FAULT_SUCCESS;
2525
2526 if (my_fault == DBG_PAGEIN_FAULT) {
2527
2528 VM_PAGE_COUNT_AS_PAGEIN(m);
2529
2530 if (m->object->internal)
2531 my_fault = DBG_PAGEIND_FAULT;
2532 else
2533 my_fault = DBG_PAGEINV_FAULT;
2534
2535 /*
2536 * evaluate access pattern and update state
2537 * vm_fault_deactivate_behind depends on the
2538 * state being up to date
2539 */
2540 vm_fault_is_sequential(object, offset, fault_info->behavior);
2541
2542 vm_fault_deactivate_behind(object, offset, fault_info->behavior);
2543 } else if (my_fault == DBG_COMPRESSOR_FAULT || my_fault == DBG_COMPRESSOR_SWAPIN_FAULT) {
2544
2545 VM_STAT_INCR(decompressions);
2546 }
2547 if (type_of_fault)
2548 *type_of_fault = my_fault;
2549 } else {
2550 retval = VM_FAULT_SUCCESS_NO_VM_PAGE;
2551 assert(first_m == VM_PAGE_NULL);
2552 assert(object == first_object);
2553 }
2554
2555 thread_interrupt_level(interruptible_state);
2556
2557#if TRACEFAULTPAGE
2558 dbgTrace(0xBEEF001A, (unsigned int) VM_FAULT_SUCCESS, 0); /* (TEST/DEBUG) */
2559#endif
2560 return retval;
2561
2562backoff:
2563 thread_interrupt_level(interruptible_state);
2564
2565 if (wait_result == THREAD_INTERRUPTED)
2566 return (VM_FAULT_INTERRUPTED);
2567 return (VM_FAULT_RETRY);
2568
2569#undef RELEASE_PAGE
2570}
2571
2572
2573
2574/*
2575 * CODE SIGNING:
2576 * When soft faulting a page, we have to validate the page if:
2577 * 1. the page is being mapped in user space
2578 * 2. the page hasn't already been found to be "tainted"
2579 * 3. the page belongs to a code-signed object
2580 * 4. the page has not been validated yet or has been mapped for write.
2581 */
2582#define VM_FAULT_NEED_CS_VALIDATION(pmap, page) \
2583 ((pmap) != kernel_pmap /*1*/ && \
2584 !(page)->cs_tainted /*2*/ && \
2585 (page)->object->code_signed /*3*/ && \
2586 (!(page)->cs_validated || (page)->wpmapped /*4*/))
2587
2588
2589/*
2590 * page queue lock must NOT be held
2591 * m->object must be locked
2592 *
2593 * NOTE: m->object could be locked "shared" only if we are called
2594 * from vm_fault() as part of a soft fault. If so, we must be
2595 * careful not to modify the VM object in any way that is not
2596 * legal under a shared lock...
2597 */
2598extern int proc_selfpid(void);
2599extern char *proc_name_address(void *p);
2600unsigned long cs_enter_tainted_rejected = 0;
2601unsigned long cs_enter_tainted_accepted = 0;
2602kern_return_t
2603vm_fault_enter(vm_page_t m,
2604 pmap_t pmap,
2605 vm_map_offset_t vaddr,
2606 vm_prot_t prot,
2607 vm_prot_t caller_prot,
2608 boolean_t wired,
2609 boolean_t change_wiring,
2610 boolean_t no_cache,
2611 boolean_t cs_bypass,
2612 __unused int user_tag,
2613 int pmap_options,
2614 boolean_t *need_retry,
2615 int *type_of_fault)
2616{
2617 kern_return_t kr, pe_result;
2618 boolean_t previously_pmapped = m->pmapped;
2619 boolean_t must_disconnect = 0;
2620 boolean_t map_is_switched, map_is_switch_protected;
2621 int cs_enforcement_enabled;
2622 vm_prot_t fault_type;
2623
2624 fault_type = change_wiring ? VM_PROT_NONE : caller_prot;
2625
2626 vm_object_lock_assert_held(m->object);
2627#if DEBUG
2628 lck_mtx_assert(&vm_page_queue_lock, LCK_MTX_ASSERT_NOTOWNED);
2629#endif /* DEBUG */
2630
2631 if (m->phys_page == vm_page_guard_addr) {
2632 assert(m->fictitious);
2633 return KERN_SUCCESS;
2634 }
2635
2636 if (*type_of_fault == DBG_ZERO_FILL_FAULT) {
2637
2638 vm_object_lock_assert_exclusive(m->object);
2639
2640 } else if ((fault_type & VM_PROT_WRITE) == 0) {
2641 /*
2642 * This is not a "write" fault, so we
2643 * might not have taken the object lock
2644 * exclusively and we might not be able
2645 * to update the "wpmapped" bit in
2646 * vm_fault_enter().
2647 * Let's just grant read access to
2648 * the page for now and we'll
2649 * soft-fault again if we need write
2650 * access later...
2651 */
2652 prot &= ~VM_PROT_WRITE;
2653 }
2654 if (m->pmapped == FALSE) {
2655
2656 if (m->clustered) {
2657 if (*type_of_fault == DBG_CACHE_HIT_FAULT) {
2658 /*
2659 * found it in the cache, but this
2660 * is the first fault-in of the page (m->pmapped == FALSE)
2661 * so it must have come in as part of
2662 * a cluster... account 1 pagein against it
2663 */
2664 if (m->object->internal)
2665 *type_of_fault = DBG_PAGEIND_FAULT;
2666 else
2667 *type_of_fault = DBG_PAGEINV_FAULT;
2668
2669 VM_PAGE_COUNT_AS_PAGEIN(m);
2670 }
2671 VM_PAGE_CONSUME_CLUSTERED(m);
2672 }
2673 }
2674
2675 if (*type_of_fault != DBG_COW_FAULT) {
2676 DTRACE_VM2(as_fault, int, 1, (uint64_t *), NULL);
2677
2678 if (pmap == kernel_pmap) {
2679 DTRACE_VM2(kernel_asflt, int, 1, (uint64_t *), NULL);
2680 }
2681 }
2682
2683 /* Validate code signature if necessary. */
2684 if (VM_FAULT_NEED_CS_VALIDATION(pmap, m)) {
2685 vm_object_lock_assert_exclusive(m->object);
2686
2687 if (m->cs_validated) {
2688 vm_cs_revalidates++;
2689 }
2690
2691 /* VM map is locked, so 1 ref will remain on VM object -
2692 * so no harm if vm_page_validate_cs drops the object lock */
2693 vm_page_validate_cs(m);
2694 }
2695
2696#define page_immutable(m,prot) ((m)->cs_validated /*&& ((prot) & VM_PROT_EXECUTE)*/)
2697#define page_nx(m) ((m)->cs_nx)
2698
2699 map_is_switched = ((pmap != vm_map_pmap(current_task()->map)) &&
2700 (pmap == vm_map_pmap(current_thread()->map)));
2701 map_is_switch_protected = current_thread()->map->switch_protect;
2702
2703 /* If the map is switched, and is switch-protected, we must protect
2704 * some pages from being write-faulted: immutable pages because by
2705 * definition they may not be written, and executable pages because that
2706 * would provide a way to inject unsigned code.
2707 * If the page is immutable, we can simply return. However, we can't
2708 * immediately determine whether a page is executable anywhere. But,
2709 * we can disconnect it everywhere and remove the executable protection
2710 * from the current map. We do that below right before we do the
2711 * PMAP_ENTER.
2712 */
2713 cs_enforcement_enabled = cs_enforcement(NULL);
2714
2715 if(cs_enforcement_enabled && map_is_switched &&
2716 map_is_switch_protected && page_immutable(m, prot) &&
2717 (prot & VM_PROT_WRITE))
2718 {
2719 return KERN_CODESIGN_ERROR;
2720 }
2721
2722 if (cs_enforcement_enabled && page_nx(m) && (prot & VM_PROT_EXECUTE)) {
2723 if (cs_debug)
2724 printf("page marked to be NX, not letting it be mapped EXEC\n");
2725 return KERN_CODESIGN_ERROR;
2726 }
2727
2728 /* A page could be tainted, or pose a risk of being tainted later.
2729 * Check whether the receiving process wants it, and make it feel
2730 * the consequences (that hapens in cs_invalid_page()).
2731 * For CS Enforcement, two other conditions will
2732 * cause that page to be tainted as well:
2733 * - pmapping an unsigned page executable - this means unsigned code;
2734 * - writeable mapping of a validated page - the content of that page
2735 * can be changed without the kernel noticing, therefore unsigned
2736 * code can be created
2737 */
2738 if (!cs_bypass &&
2739 (m->cs_tainted ||
2740 (cs_enforcement_enabled &&
2741 (/* The page is unsigned and wants to be executable */
2742 (!m->cs_validated && (prot & VM_PROT_EXECUTE)) ||
2743 /* The page should be immutable, but is in danger of being modified
2744 * This is the case where we want policy from the code directory -
2745 * is the page immutable or not? For now we have to assume that
2746 * code pages will be immutable, data pages not.
2747 * We'll assume a page is a code page if it has a code directory
2748 * and we fault for execution.
2749 * That is good enough since if we faulted the code page for
2750 * writing in another map before, it is wpmapped; if we fault
2751 * it for writing in this map later it will also be faulted for executing
2752 * at the same time; and if we fault for writing in another map
2753 * later, we will disconnect it from this pmap so we'll notice
2754 * the change.
2755 */
2756 (page_immutable(m, prot) && ((prot & VM_PROT_WRITE) || m->wpmapped))
2757 ))
2758 ))
2759 {
2760 /* We will have a tainted page. Have to handle the special case
2761 * of a switched map now. If the map is not switched, standard
2762 * procedure applies - call cs_invalid_page().
2763 * If the map is switched, the real owner is invalid already.
2764 * There is no point in invalidating the switching process since
2765 * it will not be executing from the map. So we don't call
2766 * cs_invalid_page() in that case. */
2767 boolean_t reject_page;
2768 if(map_is_switched) {
2769 assert(pmap==vm_map_pmap(current_thread()->map));
2770 assert(!(prot & VM_PROT_WRITE) || (map_is_switch_protected == FALSE));
2771 reject_page = FALSE;
2772 } else {
2773 if (cs_debug > 5)
2774 printf("vm_fault: signed: %s validate: %s tainted: %s wpmapped: %s slid: %s prot: 0x%x\n",
2775 m->object->code_signed ? "yes" : "no",
2776 m->cs_validated ? "yes" : "no",
2777 m->cs_tainted ? "yes" : "no",
2778 m->wpmapped ? "yes" : "no",
2779 m->slid ? "yes" : "no",
2780 (int)prot);
2781 reject_page = cs_invalid_page((addr64_t) vaddr);
2782 }
2783
2784 if (reject_page) {
2785 /* reject the invalid page: abort the page fault */
2786 int pid;
2787 const char *procname;
2788 task_t task;
2789 vm_object_t file_object, shadow;
2790 vm_object_offset_t file_offset;
2791 char *pathname, *filename;
2792 vm_size_t pathname_len, filename_len;
2793 boolean_t truncated_path;
2794#define __PATH_MAX 1024
2795 struct timespec mtime, cs_mtime;
2796
2797 kr = KERN_CODESIGN_ERROR;
2798 cs_enter_tainted_rejected++;
2799
2800 /* get process name and pid */
2801 procname = "?";
2802 task = current_task();
2803 pid = proc_selfpid();
2804 if (task->bsd_info != NULL)
2805 procname = proc_name_address(task->bsd_info);
2806
2807 /* get file's VM object */
2808 file_object = m->object;
2809 file_offset = m->offset;
2810 for (shadow = file_object->shadow;
2811 shadow != VM_OBJECT_NULL;
2812 shadow = file_object->shadow) {
2813 vm_object_lock_shared(shadow);
2814 if (file_object != m->object) {
2815 vm_object_unlock(file_object);
2816 }
2817 file_offset += file_object->vo_shadow_offset;
2818 file_object = shadow;
2819 }
2820
2821 mtime.tv_sec = 0;
2822 mtime.tv_nsec = 0;
2823 cs_mtime.tv_sec = 0;
2824 cs_mtime.tv_nsec = 0;
2825
2826 /* get file's pathname and/or filename */
2827 pathname = NULL;
2828 filename = NULL;
2829 pathname_len = 0;
2830 filename_len = 0;
2831 truncated_path = FALSE;
2832 /* no pager -> no file -> no pathname, use "<nil>" in that case */
2833 if (file_object->pager != NULL) {
2834 pathname = (char *)kalloc(__PATH_MAX * 2);
2835 if (pathname) {
2836 pathname[0] = '\0';
2837 pathname_len = __PATH_MAX;
2838 filename = pathname + pathname_len;
2839 filename_len = __PATH_MAX;
2840 }
2841 vnode_pager_get_object_name(file_object->pager,
2842 pathname,
2843 pathname_len,
2844 filename,
2845 filename_len,
2846 &truncated_path);
2847 if (pathname) {
2848 /* safety first... */
2849 pathname[__PATH_MAX-1] = '\0';
2850 filename[__PATH_MAX-1] = '\0';
2851 }
2852 vnode_pager_get_object_mtime(file_object->pager,
2853 &mtime,
2854 &cs_mtime);
2855 }
2856 printf("CODE SIGNING: process %d[%s]: "
2857 "rejecting invalid page at address 0x%llx "
2858 "from offset 0x%llx in file \"%s%s%s\" "
2859 "(cs_mtime:%lu.%ld %s mtime:%lu.%ld) "
2860 "(signed:%d validated:%d tainted:%d "
2861 "wpmapped:%d slid:%d)\n",
2862 pid, procname, (addr64_t) vaddr,
2863 file_offset,
2864 (pathname ? pathname : "<nil>"),
2865 (truncated_path ? "/.../" : ""),
2866 (truncated_path ? filename : ""),
2867 cs_mtime.tv_sec, cs_mtime.tv_nsec,
2868 ((cs_mtime.tv_sec == mtime.tv_sec &&
2869 cs_mtime.tv_nsec == mtime.tv_nsec)
2870 ? "=="
2871 : "!="),
2872 mtime.tv_sec, mtime.tv_nsec,
2873 m->object->code_signed,
2874 m->cs_validated,
2875 m->cs_tainted,
2876 m->wpmapped,
2877 m->slid);
2878 if (file_object != m->object) {
2879 vm_object_unlock(file_object);
2880 }
2881 if (pathname_len != 0) {
2882 kfree(pathname, __PATH_MAX * 2);
2883 pathname = NULL;
2884 filename = NULL;
2885 }
2886 } else {
2887 /* proceed with the invalid page */
2888 kr = KERN_SUCCESS;
2889 if (!m->cs_validated) {
2890 /*
2891 * This page has not been validated, so it
2892 * must not belong to a code-signed object
2893 * and should not be forcefully considered
2894 * as tainted.
2895 * We're just concerned about it here because
2896 * we've been asked to "execute" it but that
2897 * does not mean that it should cause other
2898 * accesses to fail.
2899 * This happens when a debugger sets a
2900 * breakpoint and we then execute code in
2901 * that page. Marking the page as "tainted"
2902 * would cause any inspection tool ("leaks",
2903 * "vmmap", "CrashReporter", ...) to get killed
2904 * due to code-signing violation on that page,
2905 * even though they're just reading it and not
2906 * executing from it.
2907 */
2908 assert(!m->object->code_signed);
2909 } else {
2910 /*
2911 * Page might have been tainted before or not;
2912 * now it definitively is. If the page wasn't
2913 * tainted, we must disconnect it from all
2914 * pmaps later, to force existing mappings
2915 * through that code path for re-consideration
2916 * of the validity of that page.
2917 */
2918 must_disconnect = !m->cs_tainted;
2919 m->cs_tainted = TRUE;
2920 }
2921 cs_enter_tainted_accepted++;
2922 }
2923 if (kr != KERN_SUCCESS) {
2924 if (cs_debug) {
2925 printf("CODESIGNING: vm_fault_enter(0x%llx): "
2926 "*** INVALID PAGE ***\n",
2927 (long long)vaddr);
2928 }
2929#if !SECURE_KERNEL
2930 if (cs_enforcement_panic) {
2931 panic("CODESIGNING: panicking on invalid page\n");
2932 }
2933#endif
2934 }
2935
2936 } else {
2937 /* proceed with the valid page */
2938 kr = KERN_SUCCESS;
2939 }
2940
2941 boolean_t page_queues_locked = FALSE;
2942#define __VM_PAGE_LOCKSPIN_QUEUES_IF_NEEDED() \
2943MACRO_BEGIN \
2944 if (! page_queues_locked) { \
2945 page_queues_locked = TRUE; \
2946 vm_page_lockspin_queues(); \
2947 } \
2948MACRO_END
2949#define __VM_PAGE_UNLOCK_QUEUES_IF_NEEDED() \
2950MACRO_BEGIN \
2951 if (page_queues_locked) { \
2952 page_queues_locked = FALSE; \
2953 vm_page_unlock_queues(); \
2954 } \
2955MACRO_END
2956
2957 /*
2958 * Hold queues lock to manipulate
2959 * the page queues. Change wiring
2960 * case is obvious.
2961 */
2962 assert(m->compressor || m->object != compressor_object);
2963 if (m->compressor) {
2964 /*
2965 * Compressor pages are neither wired
2966 * nor pageable and should never change.
2967 */
2968 assert(m->object == compressor_object);
2969 } else if (change_wiring) {
2970 __VM_PAGE_LOCKSPIN_QUEUES_IF_NEEDED();
2971
2972 if (wired) {
2973 if (kr == KERN_SUCCESS) {
2974 vm_page_wire(m, VM_PROT_MEMORY_TAG(caller_prot), TRUE);
2975 }
2976 } else {
2977 vm_page_unwire(m, TRUE);
2978 }
2979 /* we keep the page queues lock, if we need it later */
2980
2981 } else {
2982 if (kr != KERN_SUCCESS) {
2983 __VM_PAGE_LOCKSPIN_QUEUES_IF_NEEDED();
2984 vm_page_deactivate(m);
2985 /* we keep the page queues lock, if we need it later */
2986 } else if (((!m->active && !m->inactive) ||
2987 m->clean_queue ||
2988 no_cache) &&
2989 !VM_PAGE_WIRED(m) && !m->throttled) {
2990
2991 if (vm_page_local_q &&
2992 !no_cache &&
2993 (*type_of_fault == DBG_COW_FAULT ||
2994 *type_of_fault == DBG_ZERO_FILL_FAULT) ) {
2995 struct vpl *lq;
2996 uint32_t lid;
2997
2998 __VM_PAGE_UNLOCK_QUEUES_IF_NEEDED();
2999 vm_object_lock_assert_exclusive(m->object);
3000
3001 /*
3002 * we got a local queue to stuff this
3003 * new page on...
3004 * its safe to manipulate local and
3005 * local_id at this point since we're
3006 * behind an exclusive object lock and
3007 * the page is not on any global queue.
3008 *
3009 * we'll use the current cpu number to
3010 * select the queue note that we don't
3011 * need to disable preemption... we're
3012 * going to behind the local queue's
3013 * lock to do the real work
3014 */
3015 lid = cpu_number();
3016
3017 lq = &vm_page_local_q[lid].vpl_un.vpl;
3018
3019 VPL_LOCK(&lq->vpl_lock);
3020
3021 vm_page_check_pageable_safe(m);
3022 queue_enter(&lq->vpl_queue, m,
3023 vm_page_t, pageq);
3024 m->local = TRUE;
3025 m->local_id = lid;
3026 lq->vpl_count++;
3027
3028 if (m->object->internal)
3029 lq->vpl_internal_count++;
3030 else
3031 lq->vpl_external_count++;
3032
3033 VPL_UNLOCK(&lq->vpl_lock);
3034
3035 if (lq->vpl_count > vm_page_local_q_soft_limit)
3036 {
3037 /*
3038 * we're beyond the soft limit
3039 * for the local queue
3040 * vm_page_reactivate_local will
3041 * 'try' to take the global page
3042 * queue lock... if it can't
3043 * that's ok... we'll let the
3044 * queue continue to grow up
3045 * to the hard limit... at that
3046 * point we'll wait for the
3047 * lock... once we've got the
3048 * lock, we'll transfer all of
3049 * the pages from the local
3050 * queue to the global active
3051 * queue
3052 */
3053 vm_page_reactivate_local(lid, FALSE, FALSE);
3054 }
3055 } else {
3056
3057 __VM_PAGE_LOCKSPIN_QUEUES_IF_NEEDED();
3058
3059 /*
3060 * test again now that we hold the
3061 * page queue lock
3062 */
3063 if (!VM_PAGE_WIRED(m)) {
3064 if (m->clean_queue) {
3065 vm_page_queues_remove(m);
3066
3067 vm_pageout_cleaned_reactivated++;
3068 vm_pageout_cleaned_fault_reactivated++;
3069 }
3070
3071 if ((!m->active &&
3072 !m->inactive) ||
3073 no_cache) {
3074 /*
3075 * If this is a no_cache mapping
3076 * and the page has never been
3077 * mapped before or was
3078 * previously a no_cache page,
3079 * then we want to leave pages
3080 * in the speculative state so
3081 * that they can be readily
3082 * recycled if free memory runs
3083 * low. Otherwise the page is
3084 * activated as normal.
3085 */
3086
3087 if (no_cache &&
3088 (!previously_pmapped ||
3089 m->no_cache)) {
3090 m->no_cache = TRUE;
3091
3092 if (!m->speculative)
3093 vm_page_speculate(m, FALSE);
3094
3095 } else if (!m->active &&
3096 !m->inactive) {
3097
3098 vm_page_activate(m);
3099 }
3100 }
3101 }
3102 /* we keep the page queues lock, if we need it later */
3103 }
3104 }
3105 }
3106 /* we're done with the page queues lock, if we ever took it */
3107 __VM_PAGE_UNLOCK_QUEUES_IF_NEEDED();
3108
3109
3110 /* If we have a KERN_SUCCESS from the previous checks, we either have
3111 * a good page, or a tainted page that has been accepted by the process.
3112 * In both cases the page will be entered into the pmap.
3113 * If the page is writeable, we need to disconnect it from other pmaps
3114 * now so those processes can take note.
3115 */
3116 if (kr == KERN_SUCCESS) {
3117
3118 /*
3119 * NOTE: we may only hold the vm_object lock SHARED
3120 * at this point, so we need the phys_page lock to
3121 * properly serialize updating the pmapped and
3122 * xpmapped bits
3123 */
3124 if ((prot & VM_PROT_EXECUTE) && !m->xpmapped) {
3125
3126 pmap_lock_phys_page(m->phys_page);
3127 /*
3128 * go ahead and take the opportunity
3129 * to set 'pmapped' here so that we don't
3130 * need to grab this lock a 2nd time
3131 * just below
3132 */
3133 m->pmapped = TRUE;
3134
3135 if (!m->xpmapped) {
3136
3137 m->xpmapped = TRUE;
3138
3139 pmap_unlock_phys_page(m->phys_page);
3140
3141 if (!m->object->internal)
3142 OSAddAtomic(1, &vm_page_xpmapped_external_count);
3143
3144 if ((COMPRESSED_PAGER_IS_ACTIVE) &&
3145 m->object->internal &&
3146 m->object->pager != NULL) {
3147 /*
3148 * This page could have been
3149 * uncompressed by the
3150 * compressor pager and its
3151 * contents might be only in
3152 * the data cache.
3153 * Since it's being mapped for
3154 * "execute" for the fist time,
3155 * make sure the icache is in
3156 * sync.
3157 */
3158 pmap_sync_page_data_phys(m->phys_page);
3159 }
3160 } else
3161 pmap_unlock_phys_page(m->phys_page);
3162 } else {
3163 if (m->pmapped == FALSE) {
3164 pmap_lock_phys_page(m->phys_page);
3165 m->pmapped = TRUE;
3166 pmap_unlock_phys_page(m->phys_page);
3167 }
3168 }
3169 if (vm_page_is_slideable(m)) {
3170 boolean_t was_busy = m->busy;
3171
3172 vm_object_lock_assert_exclusive(m->object);
3173
3174 m->busy = TRUE;
3175 kr = vm_page_slide(m, 0);
3176 assert(m->busy);
3177 if(!was_busy) {
3178 PAGE_WAKEUP_DONE(m);
3179 }
3180 if (kr != KERN_SUCCESS) {
3181 /*
3182 * This page has not been slid correctly,
3183 * do not do the pmap_enter() !
3184 * Let vm_fault_enter() return the error
3185 * so the caller can fail the fault.
3186 */
3187 goto after_the_pmap_enter;
3188 }
3189 }
3190
3191 if (fault_type & VM_PROT_WRITE) {
3192
3193 if (m->wpmapped == FALSE) {
3194 vm_object_lock_assert_exclusive(m->object);
3195
3196 m->wpmapped = TRUE;
3197 }
3198 if (must_disconnect) {
3199 /*
3200 * We can only get here
3201 * because of the CSE logic
3202 */
3203 assert(cs_enforcement_enabled);
3204 pmap_disconnect(m->phys_page);
3205 /*
3206 * If we are faulting for a write, we can clear
3207 * the execute bit - that will ensure the page is
3208 * checked again before being executable, which
3209 * protects against a map switch.
3210 * This only happens the first time the page
3211 * gets tainted, so we won't get stuck here
3212 * to make an already writeable page executable.
3213 */
3214 if (!cs_bypass){
3215 prot &= ~VM_PROT_EXECUTE;
3216 }
3217 }
3218 }
3219
3220 /* Prevent a deadlock by not
3221 * holding the object lock if we need to wait for a page in
3222 * pmap_enter() - <rdar://problem/7138958> */
3223 PMAP_ENTER_OPTIONS(pmap, vaddr, m, prot, fault_type, 0,
3224 wired,
3225 pmap_options | PMAP_OPTIONS_NOWAIT,
3226 pe_result);
3227
3228 if(pe_result == KERN_RESOURCE_SHORTAGE) {
3229
3230 if (need_retry) {
3231 /*
3232 * this will be non-null in the case where we hold the lock
3233 * on the top-object in this chain... we can't just drop
3234 * the lock on the object we're inserting the page into
3235 * and recall the PMAP_ENTER since we can still cause
3236 * a deadlock if one of the critical paths tries to
3237 * acquire the lock on the top-object and we're blocked
3238 * in PMAP_ENTER waiting for memory... our only recourse
3239 * is to deal with it at a higher level where we can
3240 * drop both locks.
3241 */
3242 *need_retry = TRUE;
3243 vm_pmap_enter_retried++;
3244 goto after_the_pmap_enter;
3245 }
3246 /* The nonblocking version of pmap_enter did not succeed.
3247 * and we don't need to drop other locks and retry
3248 * at the level above us, so
3249 * use the blocking version instead. Requires marking
3250 * the page busy and unlocking the object */
3251 boolean_t was_busy = m->busy;
3252
3253 vm_object_lock_assert_exclusive(m->object);
3254
3255 m->busy = TRUE;
3256 vm_object_unlock(m->object);
3257
3258 PMAP_ENTER_OPTIONS(pmap, vaddr, m, prot, fault_type,
3259 0, wired,
3260 pmap_options, pe_result);
3261
3262 /* Take the object lock again. */
3263 vm_object_lock(m->object);
3264
3265 /* If the page was busy, someone else will wake it up.
3266 * Otherwise, we have to do it now. */
3267 assert(m->busy);
3268 if(!was_busy) {
3269 PAGE_WAKEUP_DONE(m);
3270 }
3271 vm_pmap_enter_blocked++;
3272 }
3273 }
3274
3275after_the_pmap_enter:
3276 return kr;
3277}
3278
3279void
3280vm_pre_fault(vm_map_offset_t vaddr)
3281{
3282 if (pmap_find_phys(current_map()->pmap, vaddr) == 0) {
3283
3284 vm_fault(current_map(), /* map */
3285 vaddr, /* vaddr */
3286 VM_PROT_READ, /* fault_type */
3287 FALSE, /* change_wiring */
3288 THREAD_UNINT, /* interruptible */
3289 NULL, /* caller_pmap */
3290 0 /* caller_pmap_addr */);
3291 }
3292}
3293
3294
3295/*
3296 * Routine: vm_fault
3297 * Purpose:
3298 * Handle page faults, including pseudo-faults
3299 * used to change the wiring status of pages.
3300 * Returns:
3301 * Explicit continuations have been removed.
3302 * Implementation:
3303 * vm_fault and vm_fault_page save mucho state
3304 * in the moral equivalent of a closure. The state
3305 * structure is allocated when first entering vm_fault
3306 * and deallocated when leaving vm_fault.
3307 */
3308
3309extern int _map_enter_debug;
3310
3311unsigned long vm_fault_collapse_total = 0;
3312unsigned long vm_fault_collapse_skipped = 0;
3313
3314
3315kern_return_t
3316vm_fault(
3317 vm_map_t map,
3318 vm_map_offset_t vaddr,
3319 vm_prot_t fault_type,
3320 boolean_t change_wiring,
3321 int interruptible,
3322 pmap_t caller_pmap,
3323 vm_map_offset_t caller_pmap_addr)
3324{
3325 return vm_fault_internal(map, vaddr, fault_type, change_wiring,
3326 interruptible, caller_pmap, caller_pmap_addr,
3327 NULL);
3328}
3329
3330
3331kern_return_t
3332vm_fault_internal(
3333 vm_map_t map,
3334 vm_map_offset_t vaddr,
3335 vm_prot_t caller_prot,
3336 boolean_t change_wiring,
3337 int interruptible,
3338 pmap_t caller_pmap,
3339 vm_map_offset_t caller_pmap_addr,
3340 ppnum_t *physpage_p)
3341{
3342 vm_map_version_t version; /* Map version for verificiation */
3343 boolean_t wired; /* Should mapping be wired down? */
3344 vm_object_t object; /* Top-level object */
3345 vm_object_offset_t offset; /* Top-level offset */
3346 vm_prot_t prot; /* Protection for mapping */
3347 vm_object_t old_copy_object; /* Saved copy object */
3348 vm_page_t result_page; /* Result of vm_fault_page */
3349 vm_page_t top_page; /* Placeholder page */
3350 kern_return_t kr;
3351
3352 vm_page_t m; /* Fast access to result_page */
3353 kern_return_t error_code;
3354 vm_object_t cur_object;
3355 vm_object_offset_t cur_offset;
3356 vm_page_t cur_m;
3357 vm_object_t new_object;
3358 int type_of_fault;
3359 pmap_t pmap;
3360 boolean_t interruptible_state;
3361 vm_map_t real_map = map;
3362 vm_map_t original_map = map;
3363 vm_prot_t fault_type;
3364 vm_prot_t original_fault_type;
3365 struct vm_object_fault_info fault_info;
3366 boolean_t need_collapse = FALSE;
3367 boolean_t need_retry = FALSE;
3368 boolean_t *need_retry_ptr = NULL;
3369 int object_lock_type = 0;
3370 int cur_object_lock_type;
3371 vm_object_t top_object = VM_OBJECT_NULL;
3372 int throttle_delay;
3373 int compressed_count_delta;
3374
3375
3376 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
3377 (MACHDBG_CODE(DBG_MACH_VM, 2)) | DBG_FUNC_START,
3378 ((uint64_t)vaddr >> 32),
3379 vaddr,
3380 (map == kernel_map),
3381 0,
3382 0);
3383
3384 if (get_preemption_level() != 0) {
3385 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
3386 (MACHDBG_CODE(DBG_MACH_VM, 2)) | DBG_FUNC_END,
3387 ((uint64_t)vaddr >> 32),
3388 vaddr,
3389 KERN_FAILURE,
3390 0,
3391 0);
3392
3393 return (KERN_FAILURE);
3394 }
3395
3396 interruptible_state = thread_interrupt_level(interruptible);
3397
3398 fault_type = (change_wiring ? VM_PROT_NONE : caller_prot);
3399
3400 VM_STAT_INCR(faults);
3401 current_task()->faults++;
3402 original_fault_type = fault_type;
3403
3404 if (fault_type & VM_PROT_WRITE)
3405 object_lock_type = OBJECT_LOCK_EXCLUSIVE;
3406 else
3407 object_lock_type = OBJECT_LOCK_SHARED;
3408
3409 cur_object_lock_type = OBJECT_LOCK_SHARED;
3410
3411RetryFault:
3412 /*
3413 * assume we will hit a page in the cache
3414 * otherwise, explicitly override with
3415 * the real fault type once we determine it
3416 */
3417 type_of_fault = DBG_CACHE_HIT_FAULT;
3418
3419 /*
3420 * Find the backing store object and offset into
3421 * it to begin the search.
3422 */
3423 fault_type = original_fault_type;
3424 map = original_map;
3425 vm_map_lock_read(map);
3426
3427 kr = vm_map_lookup_locked(&map, vaddr, fault_type,
3428 object_lock_type, &version,
3429 &object, &offset, &prot, &wired,
3430 &fault_info,
3431 &real_map);
3432
3433
3434 if (kr != KERN_SUCCESS) {
3435 vm_map_unlock_read(map);
3436 goto done;
3437 }
3438 pmap = real_map->pmap;
3439 fault_info.interruptible = interruptible;
3440 fault_info.stealth = FALSE;
3441 fault_info.io_sync = FALSE;
3442 fault_info.mark_zf_absent = FALSE;
3443 fault_info.batch_pmap_op = FALSE;
3444
3445 /*
3446 * If the page is wired, we must fault for the current protection
3447 * value, to avoid further faults.
3448 */
3449 if (wired) {
3450 fault_type = prot | VM_PROT_WRITE;
3451 /*
3452 * since we're treating this fault as a 'write'
3453 * we must hold the top object lock exclusively
3454 */
3455 if (object_lock_type == OBJECT_LOCK_SHARED) {
3456
3457 object_lock_type = OBJECT_LOCK_EXCLUSIVE;
3458
3459 if (vm_object_lock_upgrade(object) == FALSE) {
3460 /*
3461 * couldn't upgrade, so explictly
3462 * take the lock exclusively
3463 */
3464 vm_object_lock(object);
3465 }
3466 }
3467 }
3468
3469#if VM_FAULT_CLASSIFY
3470 /*
3471 * Temporary data gathering code
3472 */
3473 vm_fault_classify(object, offset, fault_type);
3474#endif
3475 /*
3476 * Fast fault code. The basic idea is to do as much as
3477 * possible while holding the map lock and object locks.
3478 * Busy pages are not used until the object lock has to
3479 * be dropped to do something (copy, zero fill, pmap enter).
3480 * Similarly, paging references aren't acquired until that
3481 * point, and object references aren't used.
3482 *
3483 * If we can figure out what to do
3484 * (zero fill, copy on write, pmap enter) while holding
3485 * the locks, then it gets done. Otherwise, we give up,
3486 * and use the original fault path (which doesn't hold
3487 * the map lock, and relies on busy pages).
3488 * The give up cases include:
3489 * - Have to talk to pager.
3490 * - Page is busy, absent or in error.
3491 * - Pager has locked out desired access.
3492 * - Fault needs to be restarted.
3493 * - Have to push page into copy object.
3494 *
3495 * The code is an infinite loop that moves one level down
3496 * the shadow chain each time. cur_object and cur_offset
3497 * refer to the current object being examined. object and offset
3498 * are the original object from the map. The loop is at the
3499 * top level if and only if object and cur_object are the same.
3500 *
3501 * Invariants: Map lock is held throughout. Lock is held on
3502 * original object and cur_object (if different) when
3503 * continuing or exiting loop.
3504 *
3505 */
3506
3507
3508 /*
3509 * If this page is to be inserted in a copy delay object
3510 * for writing, and if the object has a copy, then the
3511 * copy delay strategy is implemented in the slow fault page.
3512 */
3513 if (object->copy_strategy == MEMORY_OBJECT_COPY_DELAY &&
3514 object->copy != VM_OBJECT_NULL && (fault_type & VM_PROT_WRITE))
3515 goto handle_copy_delay;
3516
3517 cur_object = object;
3518 cur_offset = offset;
3519
3520 while (TRUE) {
3521 if (!cur_object->pager_created &&
3522 cur_object->phys_contiguous) /* superpage */
3523 break;
3524
3525 if (cur_object->blocked_access) {
3526 /*
3527 * Access to this VM object has been blocked.
3528 * Let the slow path handle it.
3529 */
3530 break;
3531 }
3532
3533 m = vm_page_lookup(cur_object, cur_offset);
3534
3535 if (m != VM_PAGE_NULL) {
3536 if (m->busy) {
3537 wait_result_t result;
3538
3539 /*
3540 * in order to do the PAGE_ASSERT_WAIT, we must
3541 * have object that 'm' belongs to locked exclusively
3542 */
3543 if (object != cur_object) {
3544
3545 if (cur_object_lock_type == OBJECT_LOCK_SHARED) {
3546
3547 cur_object_lock_type = OBJECT_LOCK_EXCLUSIVE;
3548
3549 if (vm_object_lock_upgrade(cur_object) == FALSE) {
3550 /*
3551 * couldn't upgrade so go do a full retry
3552 * immediately since we can no longer be
3553 * certain about cur_object (since we
3554 * don't hold a reference on it)...
3555 * first drop the top object lock
3556 */
3557 vm_object_unlock(object);
3558
3559 vm_map_unlock_read(map);
3560 if (real_map != map)
3561 vm_map_unlock(real_map);
3562
3563 goto RetryFault;
3564 }
3565 }
3566 } else if (object_lock_type == OBJECT_LOCK_SHARED) {
3567
3568 object_lock_type = OBJECT_LOCK_EXCLUSIVE;
3569
3570 if (vm_object_lock_upgrade(object) == FALSE) {
3571 /*
3572 * couldn't upgrade, so explictly take the lock
3573 * exclusively and go relookup the page since we
3574 * will have dropped the object lock and
3575 * a different thread could have inserted
3576 * a page at this offset
3577 * no need for a full retry since we're
3578 * at the top level of the object chain
3579 */
3580 vm_object_lock(object);
3581
3582 continue;
3583 }
3584 }
3585 if (m->pageout_queue && m->object->internal && COMPRESSED_PAGER_IS_ACTIVE) {
3586 /*
3587 * m->busy == TRUE and the object is locked exclusively
3588 * if m->pageout_queue == TRUE after we acquire the
3589 * queues lock, we are guaranteed that it is stable on
3590 * the pageout queue and therefore reclaimable
3591 *
3592 * NOTE: this is only true for the internal pageout queue
3593 * in the compressor world
3594 */
3595 vm_page_lock_queues();
3596
3597 if (m->pageout_queue) {
3598 vm_pageout_throttle_up(m);
3599 vm_page_unlock_queues();
3600
3601 PAGE_WAKEUP_DONE(m);
3602 goto reclaimed_from_pageout;
3603 }
3604 vm_page_unlock_queues();
3605 }
3606 if (object != cur_object)
3607 vm_object_unlock(object);
3608
3609 vm_map_unlock_read(map);
3610 if (real_map != map)
3611 vm_map_unlock(real_map);
3612
3613 result = PAGE_ASSERT_WAIT(m, interruptible);
3614
3615 vm_object_unlock(cur_object);
3616
3617 if (result == THREAD_WAITING) {
3618 result = thread_block(THREAD_CONTINUE_NULL);
3619
3620 counter(c_vm_fault_page_block_busy_kernel++);
3621 }
3622 if (result == THREAD_AWAKENED || result == THREAD_RESTART)
3623 goto RetryFault;
3624
3625 kr = KERN_ABORTED;
3626 goto done;
3627 }
3628reclaimed_from_pageout:
3629 if (m->laundry) {
3630 if (object != cur_object) {
3631 if (cur_object_lock_type == OBJECT_LOCK_SHARED) {
3632 cur_object_lock_type = OBJECT_LOCK_EXCLUSIVE;
3633
3634 vm_object_unlock(object);
3635 vm_object_unlock(cur_object);
3636
3637 vm_map_unlock_read(map);
3638 if (real_map != map)
3639 vm_map_unlock(real_map);
3640
3641 goto RetryFault;
3642 }
3643
3644 } else if (object_lock_type == OBJECT_LOCK_SHARED) {
3645
3646 object_lock_type = OBJECT_LOCK_EXCLUSIVE;
3647
3648 if (vm_object_lock_upgrade(object) == FALSE) {
3649 /*
3650 * couldn't upgrade, so explictly take the lock
3651 * exclusively and go relookup the page since we
3652 * will have dropped the object lock and
3653 * a different thread could have inserted
3654 * a page at this offset
3655 * no need for a full retry since we're
3656 * at the top level of the object chain
3657 */
3658 vm_object_lock(object);
3659
3660 continue;
3661 }
3662 }
3663 m->pageout = FALSE;
3664
3665 vm_pageout_steal_laundry(m, FALSE);
3666 }
3667
3668 if (m->phys_page == vm_page_guard_addr) {
3669 /*
3670 * Guard page: let the slow path deal with it
3671 */
3672 break;
3673 }
3674 if (m->unusual && (m->error || m->restart || m->private || m->absent)) {
3675 /*
3676 * Unusual case... let the slow path deal with it
3677 */
3678 break;
3679 }
3680 if (VM_OBJECT_PURGEABLE_FAULT_ERROR(m->object)) {
3681 if (object != cur_object)
3682 vm_object_unlock(object);
3683 vm_map_unlock_read(map);
3684 if (real_map != map)
3685 vm_map_unlock(real_map);
3686 vm_object_unlock(cur_object);
3687 kr = KERN_MEMORY_ERROR;
3688 goto done;
3689 }
3690
3691 if (m->encrypted) {
3692 /*
3693 * ENCRYPTED SWAP:
3694 * We've soft-faulted (because it's not in the page
3695 * table) on an encrypted page.
3696 * Keep the page "busy" so that no one messes with
3697 * it during the decryption.
3698 * Release the extra locks we're holding, keep only
3699 * the page's VM object lock.
3700 *
3701 * in order to set 'busy' on 'm', we must
3702 * have object that 'm' belongs to locked exclusively
3703 */
3704 if (object != cur_object) {
3705 vm_object_unlock(object);
3706
3707 if (cur_object_lock_type == OBJECT_LOCK_SHARED) {
3708
3709 cur_object_lock_type = OBJECT_LOCK_EXCLUSIVE;
3710
3711 if (vm_object_lock_upgrade(cur_object) == FALSE) {
3712 /*
3713 * couldn't upgrade so go do a full retry
3714 * immediately since we've already dropped
3715 * the top object lock associated with this page
3716 * and the current one got dropped due to the
3717 * failed upgrade... the state is no longer valid
3718 */
3719 vm_map_unlock_read(map);
3720 if (real_map != map)
3721 vm_map_unlock(real_map);
3722
3723 goto RetryFault;
3724 }
3725 }
3726 } else if (object_lock_type == OBJECT_LOCK_SHARED) {
3727
3728 object_lock_type = OBJECT_LOCK_EXCLUSIVE;
3729
3730 if (vm_object_lock_upgrade(object) == FALSE) {
3731 /*
3732 * couldn't upgrade, so explictly take the lock
3733 * exclusively and go relookup the page since we
3734 * will have dropped the object lock and
3735 * a different thread could have inserted
3736 * a page at this offset
3737 * no need for a full retry since we're
3738 * at the top level of the object chain
3739 */
3740 vm_object_lock(object);
3741
3742 continue;
3743 }
3744 }
3745 m->busy = TRUE;
3746
3747 vm_map_unlock_read(map);
3748 if (real_map != map)
3749 vm_map_unlock(real_map);
3750
3751 vm_page_decrypt(m, 0);
3752
3753 assert(m->busy);
3754 PAGE_WAKEUP_DONE(m);
3755
3756 vm_object_unlock(cur_object);
3757 /*
3758 * Retry from the top, in case anything
3759 * changed while we were decrypting...
3760 */
3761 goto RetryFault;
3762 }
3763 ASSERT_PAGE_DECRYPTED(m);
3764
3765 if(vm_page_is_slideable(m)) {
3766 /*
3767 * We might need to slide this page, and so,
3768 * we want to hold the VM object exclusively.
3769 */
3770 if (object != cur_object) {
3771 if (cur_object_lock_type == OBJECT_LOCK_SHARED) {
3772 vm_object_unlock(object);
3773 vm_object_unlock(cur_object);
3774
3775 cur_object_lock_type = OBJECT_LOCK_EXCLUSIVE;
3776
3777 vm_map_unlock_read(map);
3778 if (real_map != map)
3779 vm_map_unlock(real_map);
3780
3781 goto RetryFault;
3782 }
3783 } else if (object_lock_type == OBJECT_LOCK_SHARED) {
3784
3785 vm_object_unlock(object);
3786 object_lock_type = OBJECT_LOCK_EXCLUSIVE;
3787 vm_map_unlock_read(map);
3788 goto RetryFault;
3789 }
3790 }
3791
3792 if (VM_FAULT_NEED_CS_VALIDATION(map->pmap, m) ||
3793 (physpage_p != NULL && (prot & VM_PROT_WRITE))) {
3794upgrade_for_validation:
3795 /*
3796 * We might need to validate this page
3797 * against its code signature, so we
3798 * want to hold the VM object exclusively.
3799 */
3800 if (object != cur_object) {
3801 if (cur_object_lock_type == OBJECT_LOCK_SHARED) {
3802 vm_object_unlock(object);
3803 vm_object_unlock(cur_object);
3804
3805 cur_object_lock_type = OBJECT_LOCK_EXCLUSIVE;
3806
3807 vm_map_unlock_read(map);
3808 if (real_map != map)
3809 vm_map_unlock(real_map);
3810
3811 goto RetryFault;
3812 }
3813
3814 } else if (object_lock_type == OBJECT_LOCK_SHARED) {
3815
3816 object_lock_type = OBJECT_LOCK_EXCLUSIVE;
3817
3818 if (vm_object_lock_upgrade(object) == FALSE) {
3819 /*
3820 * couldn't upgrade, so explictly take the lock
3821 * exclusively and go relookup the page since we
3822 * will have dropped the object lock and
3823 * a different thread could have inserted
3824 * a page at this offset
3825 * no need for a full retry since we're
3826 * at the top level of the object chain
3827 */
3828 vm_object_lock(object);
3829
3830 continue;
3831 }
3832 }
3833 }
3834 /*
3835 * Two cases of map in faults:
3836 * - At top level w/o copy object.
3837 * - Read fault anywhere.
3838 * --> must disallow write.
3839 */
3840
3841 if (object == cur_object && object->copy == VM_OBJECT_NULL) {
3842
3843 goto FastPmapEnter;
3844 }
3845
3846 if ((fault_type & VM_PROT_WRITE) == 0) {
3847
3848 if (object != cur_object) {
3849 /*
3850 * We still need to hold the top object
3851 * lock here to prevent a race between
3852 * a read fault (taking only "shared"
3853 * locks) and a write fault (taking
3854 * an "exclusive" lock on the top
3855 * object.
3856 * Otherwise, as soon as we release the
3857 * top lock, the write fault could
3858 * proceed and actually complete before
3859 * the read fault, and the copied page's
3860 * translation could then be overwritten
3861 * by the read fault's translation for
3862 * the original page.
3863 *
3864 * Let's just record what the top object
3865 * is and we'll release it later.
3866 */
3867 top_object = object;
3868
3869 /*
3870 * switch to the object that has the new page
3871 */
3872 object = cur_object;
3873 object_lock_type = cur_object_lock_type;
3874 }
3875FastPmapEnter:
3876 /*
3877 * prepare for the pmap_enter...
3878 * object and map are both locked
3879 * m contains valid data
3880 * object == m->object
3881 * cur_object == NULL or it's been unlocked
3882 * no paging references on either object or cur_object
3883 */
3884 if (top_object != VM_OBJECT_NULL || object_lock_type != OBJECT_LOCK_EXCLUSIVE)
3885 need_retry_ptr = &need_retry;
3886 else
3887 need_retry_ptr = NULL;
3888
3889 if (caller_pmap) {
3890 kr = vm_fault_enter(m,
3891 caller_pmap,
3892 caller_pmap_addr,
3893 prot,
3894 caller_prot,
3895 wired,
3896 change_wiring,
3897 fault_info.no_cache,
3898 fault_info.cs_bypass,
3899 fault_info.user_tag,
3900 fault_info.pmap_options,
3901 need_retry_ptr,
3902 &type_of_fault);
3903 } else {
3904 kr = vm_fault_enter(m,
3905 pmap,
3906 vaddr,
3907 prot,
3908 caller_prot,
3909 wired,
3910 change_wiring,
3911 fault_info.no_cache,
3912 fault_info.cs_bypass,
3913 fault_info.user_tag,
3914 fault_info.pmap_options,
3915 need_retry_ptr,
3916 &type_of_fault);
3917 }
3918
3919 if (kr == KERN_SUCCESS &&
3920 physpage_p != NULL) {
3921 /* for vm_map_wire_and_extract() */
3922 *physpage_p = m->phys_page;
3923 if (prot & VM_PROT_WRITE) {
3924 vm_object_lock_assert_exclusive(
3925 m->object);
3926 m->dirty = TRUE;
3927 }
3928 }
3929
3930 if (top_object != VM_OBJECT_NULL) {
3931 /*
3932 * It's safe to drop the top object
3933 * now that we've done our
3934 * vm_fault_enter(). Any other fault
3935 * in progress for that virtual
3936 * address will either find our page
3937 * and translation or put in a new page
3938 * and translation.
3939 */
3940 vm_object_unlock(top_object);
3941 top_object = VM_OBJECT_NULL;
3942 }
3943
3944 if (need_collapse == TRUE)
3945 vm_object_collapse(object, offset, TRUE);
3946
3947 if (need_retry == FALSE &&
3948 (type_of_fault == DBG_PAGEIND_FAULT || type_of_fault == DBG_PAGEINV_FAULT || type_of_fault == DBG_CACHE_HIT_FAULT)) {
3949 /*
3950 * evaluate access pattern and update state
3951 * vm_fault_deactivate_behind depends on the
3952 * state being up to date
3953 */
3954 vm_fault_is_sequential(object, cur_offset, fault_info.behavior);
3955
3956 vm_fault_deactivate_behind(object, cur_offset, fault_info.behavior);
3957 }
3958 /*
3959 * That's it, clean up and return.
3960 */
3961 if (m->busy)
3962 PAGE_WAKEUP_DONE(m);
3963
3964 vm_object_unlock(object);
3965
3966 vm_map_unlock_read(map);
3967 if (real_map != map)
3968 vm_map_unlock(real_map);
3969
3970 if (need_retry == TRUE) {
3971 /*
3972 * vm_fault_enter couldn't complete the PMAP_ENTER...
3973 * at this point we don't hold any locks so it's safe
3974 * to ask the pmap layer to expand the page table to
3975 * accommodate this mapping... once expanded, we'll
3976 * re-drive the fault which should result in vm_fault_enter
3977 * being able to successfully enter the mapping this time around
3978 */
3979 (void)pmap_enter_options(
3980 pmap, vaddr, 0, 0, 0, 0, 0,
3981 PMAP_OPTIONS_NOENTER, NULL);
3982
3983 need_retry = FALSE;
3984 goto RetryFault;
3985 }
3986 goto done;
3987 }
3988 /*
3989 * COPY ON WRITE FAULT
3990 */
3991 assert(object_lock_type == OBJECT_LOCK_EXCLUSIVE);
3992
3993 /*
3994 * If objects match, then
3995 * object->copy must not be NULL (else control
3996 * would be in previous code block), and we
3997 * have a potential push into the copy object
3998 * with which we can't cope with here.
3999 */
4000 if (cur_object == object) {
4001 /*
4002 * must take the slow path to
4003 * deal with the copy push
4004 */
4005 break;
4006 }
4007
4008 /*
4009 * This is now a shadow based copy on write
4010 * fault -- it requires a copy up the shadow
4011 * chain.
4012 */
4013
4014 if ((cur_object_lock_type == OBJECT_LOCK_SHARED) &&
4015 VM_FAULT_NEED_CS_VALIDATION(NULL, m)) {
4016 goto upgrade_for_validation;
4017 }
4018
4019 /*
4020 * Allocate a page in the original top level
4021 * object. Give up if allocate fails. Also
4022 * need to remember current page, as it's the
4023 * source of the copy.
4024 *
4025 * at this point we hold locks on both
4026 * object and cur_object... no need to take
4027 * paging refs or mark pages BUSY since
4028 * we don't drop either object lock until
4029 * the page has been copied and inserted
4030 */
4031 cur_m = m;
4032 m = vm_page_grab();
4033
4034 if (m == VM_PAGE_NULL) {
4035 /*
4036 * no free page currently available...
4037 * must take the slow path
4038 */
4039 break;
4040 }
4041 /*
4042 * Now do the copy. Mark the source page busy...
4043 *
4044 * NOTE: This code holds the map lock across
4045 * the page copy.
4046 */
4047 vm_page_copy(cur_m, m);
4048 vm_page_insert(m, object, offset);
4049 SET_PAGE_DIRTY(m, FALSE);
4050
4051 /*
4052 * Now cope with the source page and object
4053 */
4054 if (object->ref_count > 1 && cur_m->pmapped)
4055 pmap_disconnect(cur_m->phys_page);
4056
4057 if (cur_m->clustered) {
4058 VM_PAGE_COUNT_AS_PAGEIN(cur_m);
4059 VM_PAGE_CONSUME_CLUSTERED(cur_m);
4060 }
4061 need_collapse = TRUE;
4062
4063 if (!cur_object->internal &&
4064 cur_object->copy_strategy == MEMORY_OBJECT_COPY_DELAY) {
4065 /*
4066 * The object from which we've just
4067 * copied a page is most probably backed
4068 * by a vnode. We don't want to waste too
4069 * much time trying to collapse the VM objects
4070 * and create a bottleneck when several tasks
4071 * map the same file.
4072 */
4073 if (cur_object->copy == object) {
4074 /*
4075 * Shared mapping or no COW yet.
4076 * We can never collapse a copy
4077 * object into its backing object.
4078 */
4079 need_collapse = FALSE;
4080 } else if (cur_object->copy == object->shadow &&
4081 object->shadow->resident_page_count == 0) {
4082 /*
4083 * Shared mapping after a COW occurred.
4084 */
4085 need_collapse = FALSE;
4086 }
4087 }
4088 vm_object_unlock(cur_object);
4089
4090 if (need_collapse == FALSE)
4091 vm_fault_collapse_skipped++;
4092 vm_fault_collapse_total++;
4093
4094 type_of_fault = DBG_COW_FAULT;
4095 VM_STAT_INCR(cow_faults);
4096 DTRACE_VM2(cow_fault, int, 1, (uint64_t *), NULL);
4097 current_task()->cow_faults++;
4098
4099 goto FastPmapEnter;
4100
4101 } else {
4102 /*
4103 * No page at cur_object, cur_offset... m == NULL
4104 */
4105 if (cur_object->pager_created) {
4106 int compressor_external_state = VM_EXTERNAL_STATE_UNKNOWN;
4107
4108 if (MUST_ASK_PAGER(cur_object, cur_offset, compressor_external_state) == TRUE) {
4109 int my_fault_type;
4110 int c_flags = C_DONT_BLOCK;
4111 boolean_t insert_cur_object = FALSE;
4112
4113 /*
4114 * May have to talk to a pager...
4115 * if so, take the slow path by
4116 * doing a 'break' from the while (TRUE) loop
4117 *
4118 * external_state will only be set to VM_EXTERNAL_STATE_EXISTS
4119 * if the compressor is active and the page exists there
4120 */
4121 if (compressor_external_state != VM_EXTERNAL_STATE_EXISTS)
4122 break;
4123
4124 if (map == kernel_map || real_map == kernel_map) {
4125 /*
4126 * can't call into the compressor with the kernel_map
4127 * lock held, since the compressor may try to operate
4128 * on the kernel map in order to return an empty c_segment
4129 */
4130 break;
4131 }
4132 if (object != cur_object) {
4133 if (fault_type & VM_PROT_WRITE)
4134 c_flags |= C_KEEP;
4135 else
4136 insert_cur_object = TRUE;
4137 }
4138 if (insert_cur_object == TRUE) {
4139
4140 if (cur_object_lock_type == OBJECT_LOCK_SHARED) {
4141
4142 cur_object_lock_type = OBJECT_LOCK_EXCLUSIVE;
4143
4144 if (vm_object_lock_upgrade(cur_object) == FALSE) {
4145 /*
4146 * couldn't upgrade so go do a full retry
4147 * immediately since we can no longer be
4148 * certain about cur_object (since we
4149 * don't hold a reference on it)...
4150 * first drop the top object lock
4151 */
4152 vm_object_unlock(object);
4153
4154 vm_map_unlock_read(map);
4155 if (real_map != map)
4156 vm_map_unlock(real_map);
4157
4158 goto RetryFault;
4159 }
4160 }
4161 } else if (object_lock_type == OBJECT_LOCK_SHARED) {
4162
4163 object_lock_type = OBJECT_LOCK_EXCLUSIVE;
4164
4165 if (object != cur_object) {
4166 /*
4167 * we can't go for the upgrade on the top
4168 * lock since the upgrade may block waiting
4169 * for readers to drain... since we hold
4170 * cur_object locked at this point, waiting
4171 * for the readers to drain would represent
4172 * a lock order inversion since the lock order
4173 * for objects is the reference order in the
4174 * shadown chain
4175 */
4176 vm_object_unlock(object);
4177 vm_object_unlock(cur_object);
4178
4179 vm_map_unlock_read(map);
4180 if (real_map != map)
4181 vm_map_unlock(real_map);
4182
4183 goto RetryFault;
4184 }
4185 if (vm_object_lock_upgrade(object) == FALSE) {
4186 /*
4187 * couldn't upgrade, so explictly take the lock
4188 * exclusively and go relookup the page since we
4189 * will have dropped the object lock and
4190 * a different thread could have inserted
4191 * a page at this offset
4192 * no need for a full retry since we're
4193 * at the top level of the object chain
4194 */
4195 vm_object_lock(object);
4196
4197 continue;
4198 }
4199 }
4200 m = vm_page_grab();
4201
4202 if (m == VM_PAGE_NULL) {
4203 /*
4204 * no free page currently available...
4205 * must take the slow path
4206 */
4207 break;
4208 }
4209
4210 /*
4211 * The object is and remains locked
4212 * so no need to take a
4213 * "paging_in_progress" reference.
4214 */
4215 boolean_t shared_lock;
4216 if ((object == cur_object &&
4217 object_lock_type == OBJECT_LOCK_EXCLUSIVE) ||
4218 (object != cur_object &&
4219 cur_object_lock_type == OBJECT_LOCK_EXCLUSIVE)) {
4220 shared_lock = FALSE;
4221 } else {
4222 shared_lock = TRUE;
4223 }
4224
4225 kr = vm_compressor_pager_get(
4226 cur_object->pager,
4227 (cur_offset +
4228 cur_object->paging_offset),
4229 m->phys_page,
4230 &my_fault_type,
4231 c_flags,
4232 &compressed_count_delta);
4233
4234 vm_compressor_pager_count(
4235 cur_object->pager,
4236 compressed_count_delta,
4237 shared_lock,
4238 cur_object);
4239
4240 if (kr != KERN_SUCCESS) {
4241 vm_page_release(m);
4242 break;
4243 }
4244 m->dirty = TRUE;
4245
4246 /*
4247 * If the object is purgeable, its
4248 * owner's purgeable ledgers will be
4249 * updated in vm_page_insert() but the
4250 * page was also accounted for in a
4251 * "compressed purgeable" ledger, so
4252 * update that now.
4253 */
4254 if (object != cur_object &&
4255 !insert_cur_object) {
4256 /*
4257 * We're not going to insert
4258 * the decompressed page into
4259 * the object it came from.
4260 *
4261 * We're dealing with a
4262 * copy-on-write fault on
4263 * "object".
4264 * We're going to decompress
4265 * the page directly into the
4266 * target "object" while
4267 * keepin the compressed
4268 * page for "cur_object", so
4269 * no ledger update in that
4270 * case.
4271 */
4272 } else if ((cur_object->purgable ==
4273 VM_PURGABLE_DENY) ||
4274 (cur_object->vo_purgeable_owner ==
4275 NULL)) {
4276 /*
4277 * "cur_object" is not purgeable
4278 * or is not owned, so no
4279 * purgeable ledgers to update.
4280 */
4281 } else {
4282 /*
4283 * One less compressed
4284 * purgeable page for
4285 * cur_object's owner.
4286 */
4287 vm_purgeable_compressed_update(
4288 cur_object,
4289 -1);
4290 }
4291
4292 if (insert_cur_object) {
4293 vm_page_insert(m, cur_object, cur_offset);
4294 } else {
4295 vm_page_insert(m, object, offset);
4296 }
4297
4298 if ((m->object->wimg_bits & VM_WIMG_MASK) != VM_WIMG_USE_DEFAULT) {
4299 /*
4300 * If the page is not cacheable,
4301 * we can't let its contents
4302 * linger in the data cache
4303 * after the decompression.
4304 */
4305 pmap_sync_page_attributes_phys(m->phys_page);
4306 }
4307
4308 type_of_fault = my_fault_type;
4309
4310 VM_STAT_INCR(decompressions);
4311
4312 if (cur_object != object) {
4313 if (insert_cur_object) {
4314 top_object = object;
4315 /*
4316 * switch to the object that has the new page
4317 */
4318 object = cur_object;
4319 object_lock_type = cur_object_lock_type;
4320 } else {
4321 vm_object_unlock(cur_object);
4322 cur_object = object;
4323 }
4324 }
4325 goto FastPmapEnter;
4326 }
4327 /*
4328 * existence map present and indicates
4329 * that the pager doesn't have this page
4330 */
4331 }
4332 if (cur_object->shadow == VM_OBJECT_NULL) {
4333 /*
4334 * Zero fill fault. Page gets
4335 * inserted into the original object.
4336 */
4337 if (cur_object->shadow_severed ||
4338 VM_OBJECT_PURGEABLE_FAULT_ERROR(cur_object))
4339 {
4340 if (object != cur_object)
4341 vm_object_unlock(cur_object);
4342 vm_object_unlock(object);
4343
4344 vm_map_unlock_read(map);
4345 if (real_map != map)
4346 vm_map_unlock(real_map);
4347
4348 kr = KERN_MEMORY_ERROR;
4349 goto done;
4350 }
4351 if (vm_backing_store_low) {
4352 /*
4353 * we are protecting the system from
4354 * backing store exhaustion...
4355 * must take the slow path if we're
4356 * not privileged
4357 */
4358 if (!(current_task()->priv_flags & VM_BACKING_STORE_PRIV))
4359 break;
4360 }
4361 if (cur_object != object) {
4362 vm_object_unlock(cur_object);
4363
4364 cur_object = object;
4365 }
4366 if (object_lock_type == OBJECT_LOCK_SHARED) {
4367
4368 object_lock_type = OBJECT_LOCK_EXCLUSIVE;
4369
4370 if (vm_object_lock_upgrade(object) == FALSE) {
4371 /*
4372 * couldn't upgrade so do a full retry on the fault
4373 * since we dropped the object lock which
4374 * could allow another thread to insert
4375 * a page at this offset
4376 */
4377 vm_map_unlock_read(map);
4378 if (real_map != map)
4379 vm_map_unlock(real_map);
4380
4381 goto RetryFault;
4382 }
4383 }
4384 m = vm_page_alloc(object, offset);
4385
4386 if (m == VM_PAGE_NULL) {
4387 /*
4388 * no free page currently available...
4389 * must take the slow path
4390 */
4391 break;
4392 }
4393
4394 /*
4395 * Now zero fill page...
4396 * the page is probably going to
4397 * be written soon, so don't bother
4398 * to clear the modified bit
4399 *
4400 * NOTE: This code holds the map
4401 * lock across the zero fill.
4402 */
4403 type_of_fault = vm_fault_zero_page(m, map->no_zero_fill);
4404
4405 goto FastPmapEnter;
4406 }
4407 /*
4408 * On to the next level in the shadow chain
4409 */
4410 cur_offset += cur_object->vo_shadow_offset;
4411 new_object = cur_object->shadow;
4412
4413 /*
4414 * take the new_object's lock with the indicated state
4415 */
4416 if (cur_object_lock_type == OBJECT_LOCK_SHARED)
4417 vm_object_lock_shared(new_object);
4418 else
4419 vm_object_lock(new_object);
4420
4421 if (cur_object != object)
4422 vm_object_unlock(cur_object);
4423
4424 cur_object = new_object;
4425
4426 continue;
4427 }
4428 }
4429 /*
4430 * Cleanup from fast fault failure. Drop any object
4431 * lock other than original and drop map lock.
4432 */
4433 if (object != cur_object)
4434 vm_object_unlock(cur_object);
4435
4436 /*
4437 * must own the object lock exclusively at this point
4438 */
4439 if (object_lock_type == OBJECT_LOCK_SHARED) {
4440 object_lock_type = OBJECT_LOCK_EXCLUSIVE;
4441
4442 if (vm_object_lock_upgrade(object) == FALSE) {
4443 /*
4444 * couldn't upgrade, so explictly
4445 * take the lock exclusively
4446 * no need to retry the fault at this
4447 * point since "vm_fault_page" will
4448 * completely re-evaluate the state
4449 */
4450 vm_object_lock(object);
4451 }
4452 }
4453
4454handle_copy_delay:
4455 vm_map_unlock_read(map);
4456 if (real_map != map)
4457 vm_map_unlock(real_map);
4458
4459 /*
4460 * Make a reference to this object to
4461 * prevent its disposal while we are messing with
4462 * it. Once we have the reference, the map is free
4463 * to be diddled. Since objects reference their
4464 * shadows (and copies), they will stay around as well.
4465 */
4466 vm_object_reference_locked(object);
4467 vm_object_paging_begin(object);
4468
4469 XPR(XPR_VM_FAULT,"vm_fault -> vm_fault_page\n",0,0,0,0,0);
4470
4471 error_code = 0;
4472
4473 result_page = VM_PAGE_NULL;
4474 kr = vm_fault_page(object, offset, fault_type,
4475 (change_wiring && !wired),
4476 FALSE, /* page not looked up */
4477 &prot, &result_page, &top_page,
4478 &type_of_fault,
4479 &error_code, map->no_zero_fill,
4480 FALSE, &fault_info);
4481
4482 /*
4483 * if kr != VM_FAULT_SUCCESS, then the paging reference
4484 * has been dropped and the object unlocked... the ref_count
4485 * is still held
4486 *
4487 * if kr == VM_FAULT_SUCCESS, then the paging reference
4488 * is still held along with the ref_count on the original object
4489 *
4490 * the object is returned locked with a paging reference
4491 *
4492 * if top_page != NULL, then it's BUSY and the
4493 * object it belongs to has a paging reference
4494 * but is returned unlocked
4495 */
4496 if (kr != VM_FAULT_SUCCESS &&
4497 kr != VM_FAULT_SUCCESS_NO_VM_PAGE) {
4498 /*
4499 * we didn't succeed, lose the object reference immediately.
4500 */
4501 vm_object_deallocate(object);
4502
4503 /*
4504 * See why we failed, and take corrective action.
4505 */
4506 switch (kr) {
4507 case VM_FAULT_MEMORY_SHORTAGE:
4508 if (vm_page_wait((change_wiring) ?
4509 THREAD_UNINT :
4510 THREAD_ABORTSAFE))
4511 goto RetryFault;
4512 /*
4513 * fall thru
4514 */
4515 case VM_FAULT_INTERRUPTED:
4516 kr = KERN_ABORTED;
4517 goto done;
4518 case VM_FAULT_RETRY:
4519 goto RetryFault;
4520 case VM_FAULT_MEMORY_ERROR:
4521 if (error_code)
4522 kr = error_code;
4523 else
4524 kr = KERN_MEMORY_ERROR;
4525 goto done;
4526 default:
4527 panic("vm_fault: unexpected error 0x%x from "
4528 "vm_fault_page()\n", kr);
4529 }
4530 }
4531 m = result_page;
4532
4533 if (m != VM_PAGE_NULL) {
4534 assert((change_wiring && !wired) ?
4535 (top_page == VM_PAGE_NULL) :
4536 ((top_page == VM_PAGE_NULL) == (m->object == object)));
4537 }
4538
4539 /*
4540 * What to do with the resulting page from vm_fault_page
4541 * if it doesn't get entered into the physical map:
4542 */
4543#define RELEASE_PAGE(m) \
4544 MACRO_BEGIN \
4545 PAGE_WAKEUP_DONE(m); \
4546 if (!m->active && !m->inactive && !m->throttled) { \
4547 vm_page_lockspin_queues(); \
4548 if (!m->active && !m->inactive && !m->throttled) \
4549 vm_page_activate(m); \
4550 vm_page_unlock_queues(); \
4551 } \
4552 MACRO_END
4553
4554 /*
4555 * We must verify that the maps have not changed
4556 * since our last lookup.
4557 */
4558 if (m != VM_PAGE_NULL) {
4559 old_copy_object = m->object->copy;
4560 vm_object_unlock(m->object);
4561 } else {
4562 old_copy_object = VM_OBJECT_NULL;
4563 vm_object_unlock(object);
4564 }
4565
4566 /*
4567 * no object locks are held at this point
4568 */
4569 if ((map != original_map) || !vm_map_verify(map, &version)) {
4570 vm_object_t retry_object;
4571 vm_object_offset_t retry_offset;
4572 vm_prot_t retry_prot;
4573
4574 /*
4575 * To avoid trying to write_lock the map while another
4576 * thread has it read_locked (in vm_map_pageable), we
4577 * do not try for write permission. If the page is
4578 * still writable, we will get write permission. If it
4579 * is not, or has been marked needs_copy, we enter the
4580 * mapping without write permission, and will merely
4581 * take another fault.
4582 */
4583 map = original_map;
4584 vm_map_lock_read(map);
4585
4586 kr = vm_map_lookup_locked(&map, vaddr,
4587 fault_type & ~VM_PROT_WRITE,
4588 OBJECT_LOCK_EXCLUSIVE, &version,
4589 &retry_object, &retry_offset, &retry_prot,
4590 &wired,
4591 &fault_info,
4592 &real_map);
4593 pmap = real_map->pmap;
4594
4595 if (kr != KERN_SUCCESS) {
4596 vm_map_unlock_read(map);
4597
4598 if (m != VM_PAGE_NULL) {
4599 /*
4600 * retake the lock so that
4601 * we can drop the paging reference
4602 * in vm_fault_cleanup and do the
4603 * PAGE_WAKEUP_DONE in RELEASE_PAGE
4604 */
4605 vm_object_lock(m->object);
4606
4607 RELEASE_PAGE(m);
4608
4609 vm_fault_cleanup(m->object, top_page);
4610 } else {
4611 /*
4612 * retake the lock so that
4613 * we can drop the paging reference
4614 * in vm_fault_cleanup
4615 */
4616 vm_object_lock(object);
4617
4618 vm_fault_cleanup(object, top_page);
4619 }
4620 vm_object_deallocate(object);
4621
4622 goto done;
4623 }
4624 vm_object_unlock(retry_object);
4625
4626 if ((retry_object != object) || (retry_offset != offset)) {
4627
4628 vm_map_unlock_read(map);
4629 if (real_map != map)
4630 vm_map_unlock(real_map);
4631
4632 if (m != VM_PAGE_NULL) {
4633 /*
4634 * retake the lock so that
4635 * we can drop the paging reference
4636 * in vm_fault_cleanup and do the
4637 * PAGE_WAKEUP_DONE in RELEASE_PAGE
4638 */
4639 vm_object_lock(m->object);
4640
4641 RELEASE_PAGE(m);
4642
4643 vm_fault_cleanup(m->object, top_page);
4644 } else {
4645 /*
4646 * retake the lock so that
4647 * we can drop the paging reference
4648 * in vm_fault_cleanup
4649 */
4650 vm_object_lock(object);
4651
4652 vm_fault_cleanup(object, top_page);
4653 }
4654 vm_object_deallocate(object);
4655
4656 goto RetryFault;
4657 }
4658 /*
4659 * Check whether the protection has changed or the object
4660 * has been copied while we left the map unlocked.
4661 */
4662 prot &= retry_prot;
4663 }
4664 if (m != VM_PAGE_NULL) {
4665 vm_object_lock(m->object);
4666
4667 if (m->object->copy != old_copy_object) {
4668 /*
4669 * The copy object changed while the top-level object
4670 * was unlocked, so take away write permission.
4671 */
4672 prot &= ~VM_PROT_WRITE;
4673 }
4674 } else
4675 vm_object_lock(object);
4676
4677 /*
4678 * If we want to wire down this page, but no longer have
4679 * adequate permissions, we must start all over.
4680 */
4681 if (wired && (fault_type != (prot | VM_PROT_WRITE))) {
4682
4683 vm_map_verify_done(map, &version);
4684 if (real_map != map)
4685 vm_map_unlock(real_map);
4686
4687 if (m != VM_PAGE_NULL) {
4688 RELEASE_PAGE(m);
4689
4690 vm_fault_cleanup(m->object, top_page);
4691 } else
4692 vm_fault_cleanup(object, top_page);
4693
4694 vm_object_deallocate(object);
4695
4696 goto RetryFault;
4697 }
4698 if (m != VM_PAGE_NULL) {
4699 /*
4700 * Put this page into the physical map.
4701 * We had to do the unlock above because pmap_enter
4702 * may cause other faults. The page may be on
4703 * the pageout queues. If the pageout daemon comes
4704 * across the page, it will remove it from the queues.
4705 */
4706 if (caller_pmap) {
4707 kr = vm_fault_enter(m,
4708 caller_pmap,
4709 caller_pmap_addr,
4710 prot,
4711 caller_prot,
4712 wired,
4713 change_wiring,
4714 fault_info.no_cache,
4715 fault_info.cs_bypass,
4716 fault_info.user_tag,
4717 fault_info.pmap_options,
4718 NULL,
4719 &type_of_fault);
4720 } else {
4721 kr = vm_fault_enter(m,
4722 pmap,
4723 vaddr,
4724 prot,
4725 caller_prot,
4726 wired,
4727 change_wiring,
4728 fault_info.no_cache,
4729 fault_info.cs_bypass,
4730 fault_info.user_tag,
4731 fault_info.pmap_options,
4732 NULL,
4733 &type_of_fault);
4734 }
4735 if (kr != KERN_SUCCESS) {
4736 /* abort this page fault */
4737 vm_map_verify_done(map, &version);
4738 if (real_map != map)
4739 vm_map_unlock(real_map);
4740 PAGE_WAKEUP_DONE(m);
4741 vm_fault_cleanup(m->object, top_page);
4742 vm_object_deallocate(object);
4743 goto done;
4744 }
4745 if (physpage_p != NULL) {
4746 /* for vm_map_wire_and_extract() */
4747 *physpage_p = m->phys_page;
4748 if (prot & VM_PROT_WRITE) {
4749 vm_object_lock_assert_exclusive(m->object);
4750 m->dirty = TRUE;
4751 }
4752 }
4753 } else {
4754
4755 vm_map_entry_t entry;
4756 vm_map_offset_t laddr;
4757 vm_map_offset_t ldelta, hdelta;
4758
4759 /*
4760 * do a pmap block mapping from the physical address
4761 * in the object
4762 */
4763
4764#ifdef ppc
4765 /* While we do not worry about execution protection in */
4766 /* general, certian pages may have instruction execution */
4767 /* disallowed. We will check here, and if not allowed */
4768 /* to execute, we return with a protection failure. */
4769
4770 if ((fault_type & VM_PROT_EXECUTE) &&
4771 (!pmap_eligible_for_execute((ppnum_t)(object->vo_shadow_offset >> 12)))) {
4772
4773 vm_map_verify_done(map, &version);
4774
4775 if (real_map != map)
4776 vm_map_unlock(real_map);
4777
4778 vm_fault_cleanup(object, top_page);
4779 vm_object_deallocate(object);
4780
4781 kr = KERN_PROTECTION_FAILURE;
4782 goto done;
4783 }
4784#endif /* ppc */
4785
4786 if (real_map != map)
4787 vm_map_unlock(real_map);
4788
4789 if (original_map != map) {
4790 vm_map_unlock_read(map);
4791 vm_map_lock_read(original_map);
4792 map = original_map;
4793 }
4794 real_map = map;
4795
4796 laddr = vaddr;
4797 hdelta = 0xFFFFF000;
4798 ldelta = 0xFFFFF000;
4799
4800 while (vm_map_lookup_entry(map, laddr, &entry)) {
4801 if (ldelta > (laddr - entry->vme_start))
4802 ldelta = laddr - entry->vme_start;
4803 if (hdelta > (entry->vme_end - laddr))
4804 hdelta = entry->vme_end - laddr;
4805 if (entry->is_sub_map) {
4806
4807 laddr = ((laddr - entry->vme_start)
4808 + VME_OFFSET(entry));
4809 vm_map_lock_read(VME_SUBMAP(entry));
4810
4811 if (map != real_map)
4812 vm_map_unlock_read(map);
4813 if (entry->use_pmap) {
4814 vm_map_unlock_read(real_map);
4815 real_map = VME_SUBMAP(entry);
4816 }
4817 map = VME_SUBMAP(entry);
4818
4819 } else {
4820 break;
4821 }
4822 }
4823
4824 if (vm_map_lookup_entry(map, laddr, &entry) &&
4825 (VME_OBJECT(entry) != NULL) &&
4826 (VME_OBJECT(entry) == object)) {
4827 int superpage;
4828
4829 if (!object->pager_created &&
4830 object->phys_contiguous) {
4831 superpage = VM_MEM_SUPERPAGE;
4832 } else {
4833 superpage = 0;
4834 }
4835
4836 if (superpage && physpage_p) {
4837 /* for vm_map_wire_and_extract() */
4838 *physpage_p = (ppnum_t)
4839 ((((vm_map_offset_t)
4840 object->vo_shadow_offset)
4841 + VME_OFFSET(entry)
4842 + (laddr - entry->vme_start))
4843 >> PAGE_SHIFT);
4844 }
4845
4846 if (caller_pmap) {
4847 /*
4848 * Set up a block mapped area
4849 */
4850 assert((uint32_t)((ldelta + hdelta) >> PAGE_SHIFT) == ((ldelta + hdelta) >> PAGE_SHIFT));
4851 pmap_map_block(caller_pmap,
4852 (addr64_t)(caller_pmap_addr - ldelta),
4853 (ppnum_t)((((vm_map_offset_t) (VME_OBJECT(entry)->vo_shadow_offset)) +
4854 VME_OFFSET(entry) + (laddr - entry->vme_start) - ldelta) >> PAGE_SHIFT),
4855 (uint32_t)((ldelta + hdelta) >> PAGE_SHIFT), prot,
4856 (VM_WIMG_MASK & (int)object->wimg_bits) | superpage, 0);
4857 } else {
4858 /*
4859 * Set up a block mapped area
4860 */
4861 assert((uint32_t)((ldelta + hdelta) >> PAGE_SHIFT) == ((ldelta + hdelta) >> PAGE_SHIFT));
4862 pmap_map_block(real_map->pmap,
4863 (addr64_t)(vaddr - ldelta),
4864 (ppnum_t)((((vm_map_offset_t)(VME_OBJECT(entry)->vo_shadow_offset)) +
4865 VME_OFFSET(entry) + (laddr - entry->vme_start) - ldelta) >> PAGE_SHIFT),
4866 (uint32_t)((ldelta + hdelta) >> PAGE_SHIFT), prot,
4867 (VM_WIMG_MASK & (int)object->wimg_bits) | superpage, 0);
4868 }
4869 }
4870 }
4871
4872 /*
4873 * Unlock everything, and return
4874 */
4875 vm_map_verify_done(map, &version);
4876 if (real_map != map)
4877 vm_map_unlock(real_map);
4878
4879 if (m != VM_PAGE_NULL) {
4880 PAGE_WAKEUP_DONE(m);
4881
4882 vm_fault_cleanup(m->object, top_page);
4883 } else
4884 vm_fault_cleanup(object, top_page);
4885
4886 vm_object_deallocate(object);
4887
4888#undef RELEASE_PAGE
4889
4890 kr = KERN_SUCCESS;
4891done:
4892 thread_interrupt_level(interruptible_state);
4893
4894 /*
4895 * Only I/O throttle on faults which cause a pagein/swapin.
4896 */
4897 if ((type_of_fault == DBG_PAGEIND_FAULT) || (type_of_fault == DBG_PAGEINV_FAULT) || (type_of_fault == DBG_COMPRESSOR_SWAPIN_FAULT)) {
4898 throttle_lowpri_io(1);
4899 } else {
4900 if (kr == KERN_SUCCESS && type_of_fault != DBG_CACHE_HIT_FAULT && type_of_fault != DBG_GUARD_FAULT) {
4901
4902 if ((throttle_delay = vm_page_throttled(TRUE))) {
4903
4904 if (vm_debug_events) {
4905 if (type_of_fault == DBG_COMPRESSOR_FAULT)
4906 VM_DEBUG_EVENT(vmf_compressordelay, VMF_COMPRESSORDELAY, DBG_FUNC_NONE, throttle_delay, 0, 0, 0);
4907 else if (type_of_fault == DBG_COW_FAULT)
4908 VM_DEBUG_EVENT(vmf_cowdelay, VMF_COWDELAY, DBG_FUNC_NONE, throttle_delay, 0, 0, 0);
4909 else
4910 VM_DEBUG_EVENT(vmf_zfdelay, VMF_ZFDELAY, DBG_FUNC_NONE, throttle_delay, 0, 0, 0);
4911 }
4912 delay(throttle_delay);
4913 }
4914 }
4915 }
4916 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
4917 (MACHDBG_CODE(DBG_MACH_VM, 2)) | DBG_FUNC_END,
4918 ((uint64_t)vaddr >> 32),
4919 vaddr,
4920 kr,
4921 type_of_fault,
4922 0);
4923
4924 return (kr);
4925}
4926
4927/*
4928 * vm_fault_wire:
4929 *
4930 * Wire down a range of virtual addresses in a map.
4931 */
4932kern_return_t
4933vm_fault_wire(
4934 vm_map_t map,
4935 vm_map_entry_t entry,
4936 vm_prot_t prot,
4937 pmap_t pmap,
4938 vm_map_offset_t pmap_addr,
4939 ppnum_t *physpage_p)
4940{
4941
4942 register vm_map_offset_t va;
4943 register vm_map_offset_t end_addr = entry->vme_end;
4944 register kern_return_t rc;
4945
4946 assert(entry->in_transition);
4947
4948 if ((VME_OBJECT(entry) != NULL) &&
4949 !entry->is_sub_map &&
4950 VME_OBJECT(entry)->phys_contiguous) {
4951 return KERN_SUCCESS;
4952 }
4953
4954 /*
4955 * Inform the physical mapping system that the
4956 * range of addresses may not fault, so that
4957 * page tables and such can be locked down as well.
4958 */
4959
4960 pmap_pageable(pmap, pmap_addr,
4961 pmap_addr + (end_addr - entry->vme_start), FALSE);
4962
4963 /*
4964 * We simulate a fault to get the page and enter it
4965 * in the physical map.
4966 */
4967
4968 for (va = entry->vme_start; va < end_addr; va += PAGE_SIZE) {
4969 rc = vm_fault_wire_fast(map, va, prot, entry, pmap,
4970 pmap_addr + (va - entry->vme_start),
4971 physpage_p);
4972 if (rc != KERN_SUCCESS) {
4973 rc = vm_fault_internal(map, va, prot, TRUE,
4974 ((pmap == kernel_pmap)
4975 ? THREAD_UNINT
4976 : THREAD_ABORTSAFE),
4977 pmap,
4978 (pmap_addr +
4979 (va - entry->vme_start)),
4980 physpage_p);
4981 DTRACE_VM2(softlock, int, 1, (uint64_t *), NULL);
4982 }
4983
4984 if (rc != KERN_SUCCESS) {
4985 struct vm_map_entry tmp_entry = *entry;
4986
4987 /* unwire wired pages */
4988 tmp_entry.vme_end = va;
4989 vm_fault_unwire(map,
4990 &tmp_entry, FALSE, pmap, pmap_addr);
4991
4992 return rc;
4993 }
4994 }
4995 return KERN_SUCCESS;
4996}
4997
4998/*
4999 * vm_fault_unwire:
5000 *
5001 * Unwire a range of virtual addresses in a map.
5002 */
5003void
5004vm_fault_unwire(
5005 vm_map_t map,
5006 vm_map_entry_t entry,
5007 boolean_t deallocate,
5008 pmap_t pmap,
5009 vm_map_offset_t pmap_addr)
5010{
5011 register vm_map_offset_t va;
5012 register vm_map_offset_t end_addr = entry->vme_end;
5013 vm_object_t object;
5014 struct vm_object_fault_info fault_info;
5015
5016 object = (entry->is_sub_map) ? VM_OBJECT_NULL : VME_OBJECT(entry);
5017
5018 /*
5019 * If it's marked phys_contiguous, then vm_fault_wire() didn't actually
5020 * do anything since such memory is wired by default. So we don't have
5021 * anything to undo here.
5022 */
5023
5024 if (object != VM_OBJECT_NULL && object->phys_contiguous)
5025 return;
5026
5027 fault_info.interruptible = THREAD_UNINT;
5028 fault_info.behavior = entry->behavior;
5029 fault_info.user_tag = VME_ALIAS(entry);
5030 fault_info.pmap_options = 0;
5031 if (entry->iokit_acct ||
5032 (!entry->is_sub_map && !entry->use_pmap)) {
5033 fault_info.pmap_options |= PMAP_OPTIONS_ALT_ACCT;
5034 }
5035 fault_info.lo_offset = VME_OFFSET(entry);
5036 fault_info.hi_offset = (entry->vme_end - entry->vme_start) + VME_OFFSET(entry);
5037 fault_info.no_cache = entry->no_cache;
5038 fault_info.stealth = TRUE;
5039 fault_info.io_sync = FALSE;
5040 fault_info.cs_bypass = FALSE;
5041 fault_info.mark_zf_absent = FALSE;
5042 fault_info.batch_pmap_op = FALSE;
5043
5044 /*
5045 * Since the pages are wired down, we must be able to
5046 * get their mappings from the physical map system.
5047 */
5048
5049 for (va = entry->vme_start; va < end_addr; va += PAGE_SIZE) {
5050
5051 if (object == VM_OBJECT_NULL) {
5052 if (pmap) {
5053 pmap_change_wiring(pmap,
5054 pmap_addr + (va - entry->vme_start), FALSE);
5055 }
5056 (void) vm_fault(map, va, VM_PROT_NONE,
5057 TRUE, THREAD_UNINT, pmap, pmap_addr);
5058 } else {
5059 vm_prot_t prot;
5060 vm_page_t result_page;
5061 vm_page_t top_page;
5062 vm_object_t result_object;
5063 vm_fault_return_t result;
5064
5065 if (end_addr - va > (vm_size_t) -1) {
5066 /* 32-bit overflow */
5067 fault_info.cluster_size = (vm_size_t) (0 - PAGE_SIZE);
5068 } else {
5069 fault_info.cluster_size = (vm_size_t) (end_addr - va);
5070 assert(fault_info.cluster_size == end_addr - va);
5071 }
5072
5073 do {
5074 prot = VM_PROT_NONE;
5075
5076 vm_object_lock(object);
5077 vm_object_paging_begin(object);
5078 XPR(XPR_VM_FAULT,
5079 "vm_fault_unwire -> vm_fault_page\n",
5080 0,0,0,0,0);
5081 result_page = VM_PAGE_NULL;
5082 result = vm_fault_page(
5083 object,
5084 (VME_OFFSET(entry) +
5085 (va - entry->vme_start)),
5086 VM_PROT_NONE, TRUE,
5087 FALSE, /* page not looked up */
5088 &prot, &result_page, &top_page,
5089 (int *)0,
5090 NULL, map->no_zero_fill,
5091 FALSE, &fault_info);
5092 } while (result == VM_FAULT_RETRY);
5093
5094 /*
5095 * If this was a mapping to a file on a device that has been forcibly
5096 * unmounted, then we won't get a page back from vm_fault_page(). Just
5097 * move on to the next one in case the remaining pages are mapped from
5098 * different objects. During a forced unmount, the object is terminated
5099 * so the alive flag will be false if this happens. A forced unmount will
5100 * will occur when an external disk is unplugged before the user does an
5101 * eject, so we don't want to panic in that situation.
5102 */
5103
5104 if (result == VM_FAULT_MEMORY_ERROR && !object->alive)
5105 continue;
5106
5107 if (result == VM_FAULT_MEMORY_ERROR &&
5108 object == kernel_object) {
5109 /*
5110 * This must have been allocated with
5111 * KMA_KOBJECT and KMA_VAONLY and there's
5112 * no physical page at this offset.
5113 * We're done (no page to free).
5114 */
5115 assert(deallocate);
5116 continue;
5117 }
5118
5119 if (result != VM_FAULT_SUCCESS)
5120 panic("vm_fault_unwire: failure");
5121
5122 result_object = result_page->object;
5123
5124 if (deallocate) {
5125 assert(result_page->phys_page !=
5126 vm_page_fictitious_addr);
5127 pmap_disconnect(result_page->phys_page);
5128 VM_PAGE_FREE(result_page);
5129 } else {
5130 if ((pmap) && (result_page->phys_page != vm_page_guard_addr))
5131 pmap_change_wiring(pmap,
5132 pmap_addr + (va - entry->vme_start), FALSE);
5133
5134
5135 if (VM_PAGE_WIRED(result_page)) {
5136 vm_page_lockspin_queues();
5137 vm_page_unwire(result_page, TRUE);
5138 vm_page_unlock_queues();
5139 }
5140 if(entry->zero_wired_pages) {
5141 pmap_zero_page(result_page->phys_page);
5142 entry->zero_wired_pages = FALSE;
5143 }
5144
5145 PAGE_WAKEUP_DONE(result_page);
5146 }
5147 vm_fault_cleanup(result_object, top_page);
5148 }
5149 }
5150
5151 /*
5152 * Inform the physical mapping system that the range
5153 * of addresses may fault, so that page tables and
5154 * such may be unwired themselves.
5155 */
5156
5157 pmap_pageable(pmap, pmap_addr,
5158 pmap_addr + (end_addr - entry->vme_start), TRUE);
5159
5160}
5161
5162/*
5163 * vm_fault_wire_fast:
5164 *
5165 * Handle common case of a wire down page fault at the given address.
5166 * If successful, the page is inserted into the associated physical map.
5167 * The map entry is passed in to avoid the overhead of a map lookup.
5168 *
5169 * NOTE: the given address should be truncated to the
5170 * proper page address.
5171 *
5172 * KERN_SUCCESS is returned if the page fault is handled; otherwise,
5173 * a standard error specifying why the fault is fatal is returned.
5174 *
5175 * The map in question must be referenced, and remains so.
5176 * Caller has a read lock on the map.
5177 *
5178 * This is a stripped version of vm_fault() for wiring pages. Anything
5179 * other than the common case will return KERN_FAILURE, and the caller
5180 * is expected to call vm_fault().
5181 */
5182static kern_return_t
5183vm_fault_wire_fast(
5184 __unused vm_map_t map,
5185 vm_map_offset_t va,
5186 vm_prot_t caller_prot,
5187 vm_map_entry_t entry,
5188 pmap_t pmap,
5189 vm_map_offset_t pmap_addr,
5190 ppnum_t *physpage_p)
5191{
5192 vm_object_t object;
5193 vm_object_offset_t offset;
5194 register vm_page_t m;
5195 vm_prot_t prot;
5196 thread_t thread = current_thread();
5197 int type_of_fault;
5198 kern_return_t kr;
5199
5200 VM_STAT_INCR(faults);
5201
5202 if (thread != THREAD_NULL && thread->task != TASK_NULL)
5203 thread->task->faults++;
5204
5205/*
5206 * Recovery actions
5207 */
5208
5209#undef RELEASE_PAGE
5210#define RELEASE_PAGE(m) { \
5211 PAGE_WAKEUP_DONE(m); \
5212 vm_page_lockspin_queues(); \
5213 vm_page_unwire(m, TRUE); \
5214 vm_page_unlock_queues(); \
5215}
5216
5217
5218#undef UNLOCK_THINGS
5219#define UNLOCK_THINGS { \
5220 vm_object_paging_end(object); \
5221 vm_object_unlock(object); \
5222}
5223
5224#undef UNLOCK_AND_DEALLOCATE
5225#define UNLOCK_AND_DEALLOCATE { \
5226 UNLOCK_THINGS; \
5227 vm_object_deallocate(object); \
5228}
5229/*
5230 * Give up and have caller do things the hard way.
5231 */
5232
5233#define GIVE_UP { \
5234 UNLOCK_AND_DEALLOCATE; \
5235 return(KERN_FAILURE); \
5236}
5237
5238
5239 /*
5240 * If this entry is not directly to a vm_object, bail out.
5241 */
5242 if (entry->is_sub_map) {
5243 assert(physpage_p == NULL);
5244 return(KERN_FAILURE);
5245 }
5246
5247 /*
5248 * Find the backing store object and offset into it.
5249 */
5250
5251 object = VME_OBJECT(entry);
5252 offset = (va - entry->vme_start) + VME_OFFSET(entry);
5253 prot = entry->protection;
5254
5255 /*
5256 * Make a reference to this object to prevent its
5257 * disposal while we are messing with it.
5258 */
5259
5260 vm_object_lock(object);
5261 vm_object_reference_locked(object);
5262 vm_object_paging_begin(object);
5263
5264 /*
5265 * INVARIANTS (through entire routine):
5266 *
5267 * 1) At all times, we must either have the object
5268 * lock or a busy page in some object to prevent
5269 * some other thread from trying to bring in
5270 * the same page.
5271 *
5272 * 2) Once we have a busy page, we must remove it from
5273 * the pageout queues, so that the pageout daemon
5274 * will not grab it away.
5275 *
5276 */
5277
5278 /*
5279 * Look for page in top-level object. If it's not there or
5280 * there's something going on, give up.
5281 * ENCRYPTED SWAP: use the slow fault path, since we'll need to
5282 * decrypt the page before wiring it down.
5283 */
5284 m = vm_page_lookup(object, offset);
5285 if ((m == VM_PAGE_NULL) || (m->busy) || (m->encrypted) ||
5286 (m->unusual && ( m->error || m->restart || m->absent))) {
5287
5288 GIVE_UP;
5289 }
5290 ASSERT_PAGE_DECRYPTED(m);
5291
5292 if (m->fictitious &&
5293 m->phys_page == vm_page_guard_addr) {
5294 /*
5295 * Guard pages are fictitious pages and are never
5296 * entered into a pmap, so let's say it's been wired...
5297 */
5298 kr = KERN_SUCCESS;
5299 goto done;
5300 }
5301
5302 /*
5303 * Wire the page down now. All bail outs beyond this
5304 * point must unwire the page.
5305 */
5306
5307 vm_page_lockspin_queues();
5308 vm_page_wire(m, VM_PROT_MEMORY_TAG(caller_prot), TRUE);
5309 vm_page_unlock_queues();
5310
5311 /*
5312 * Mark page busy for other threads.
5313 */
5314 assert(!m->busy);
5315 m->busy = TRUE;
5316 assert(!m->absent);
5317
5318 /*
5319 * Give up if the page is being written and there's a copy object
5320 */
5321 if ((object->copy != VM_OBJECT_NULL) && (prot & VM_PROT_WRITE)) {
5322 RELEASE_PAGE(m);
5323 GIVE_UP;
5324 }
5325
5326 /*
5327 * Put this page into the physical map.
5328 */
5329 type_of_fault = DBG_CACHE_HIT_FAULT;
5330 kr = vm_fault_enter(m,
5331 pmap,
5332 pmap_addr,
5333 prot,
5334 prot,
5335 TRUE,
5336 FALSE,
5337 FALSE,
5338 FALSE,
5339 VME_ALIAS(entry),
5340 ((entry->iokit_acct ||
5341 (!entry->is_sub_map && !entry->use_pmap))
5342 ? PMAP_OPTIONS_ALT_ACCT
5343 : 0),
5344 NULL,
5345 &type_of_fault);
5346
5347done:
5348 /*
5349 * Unlock everything, and return
5350 */
5351
5352 if (physpage_p) {
5353 /* for vm_map_wire_and_extract() */
5354 if (kr == KERN_SUCCESS) {
5355 *physpage_p = m->phys_page;
5356 if (prot & VM_PROT_WRITE) {
5357 vm_object_lock_assert_exclusive(m->object);
5358 m->dirty = TRUE;
5359 }
5360 } else {
5361 *physpage_p = 0;
5362 }
5363 }
5364
5365 PAGE_WAKEUP_DONE(m);
5366 UNLOCK_AND_DEALLOCATE;
5367
5368 return kr;
5369
5370}
5371
5372/*
5373 * Routine: vm_fault_copy_cleanup
5374 * Purpose:
5375 * Release a page used by vm_fault_copy.
5376 */
5377
5378static void
5379vm_fault_copy_cleanup(
5380 vm_page_t page,
5381 vm_page_t top_page)
5382{
5383 vm_object_t object = page->object;
5384
5385 vm_object_lock(object);
5386 PAGE_WAKEUP_DONE(page);
5387 if (!page->active && !page->inactive && !page->throttled) {
5388 vm_page_lockspin_queues();
5389 if (!page->active && !page->inactive && !page->throttled)
5390 vm_page_activate(page);
5391 vm_page_unlock_queues();
5392 }
5393 vm_fault_cleanup(object, top_page);
5394}
5395
5396static void
5397vm_fault_copy_dst_cleanup(
5398 vm_page_t page)
5399{
5400 vm_object_t object;
5401
5402 if (page != VM_PAGE_NULL) {
5403 object = page->object;
5404 vm_object_lock(object);
5405 vm_page_lockspin_queues();
5406 vm_page_unwire(page, TRUE);
5407 vm_page_unlock_queues();
5408 vm_object_paging_end(object);
5409 vm_object_unlock(object);
5410 }
5411}
5412
5413/*
5414 * Routine: vm_fault_copy
5415 *
5416 * Purpose:
5417 * Copy pages from one virtual memory object to another --
5418 * neither the source nor destination pages need be resident.
5419 *
5420 * Before actually copying a page, the version associated with
5421 * the destination address map wil be verified.
5422 *
5423 * In/out conditions:
5424 * The caller must hold a reference, but not a lock, to
5425 * each of the source and destination objects and to the
5426 * destination map.
5427 *
5428 * Results:
5429 * Returns KERN_SUCCESS if no errors were encountered in
5430 * reading or writing the data. Returns KERN_INTERRUPTED if
5431 * the operation was interrupted (only possible if the
5432 * "interruptible" argument is asserted). Other return values
5433 * indicate a permanent error in copying the data.
5434 *
5435 * The actual amount of data copied will be returned in the
5436 * "copy_size" argument. In the event that the destination map
5437 * verification failed, this amount may be less than the amount
5438 * requested.
5439 */
5440kern_return_t
5441vm_fault_copy(
5442 vm_object_t src_object,
5443 vm_object_offset_t src_offset,
5444 vm_map_size_t *copy_size, /* INOUT */
5445 vm_object_t dst_object,
5446 vm_object_offset_t dst_offset,
5447 vm_map_t dst_map,
5448 vm_map_version_t *dst_version,
5449 int interruptible)
5450{
5451 vm_page_t result_page;
5452
5453 vm_page_t src_page;
5454 vm_page_t src_top_page;
5455 vm_prot_t src_prot;
5456
5457 vm_page_t dst_page;
5458 vm_page_t dst_top_page;
5459 vm_prot_t dst_prot;
5460
5461 vm_map_size_t amount_left;
5462 vm_object_t old_copy_object;
5463 kern_return_t error = 0;
5464 vm_fault_return_t result;
5465
5466 vm_map_size_t part_size;
5467 struct vm_object_fault_info fault_info_src;
5468 struct vm_object_fault_info fault_info_dst;
5469
5470 /*
5471 * In order not to confuse the clustered pageins, align
5472 * the different offsets on a page boundary.
5473 */
5474
5475#define RETURN(x) \
5476 MACRO_BEGIN \
5477 *copy_size -= amount_left; \
5478 MACRO_RETURN(x); \
5479 MACRO_END
5480
5481 amount_left = *copy_size;
5482
5483 fault_info_src.interruptible = interruptible;
5484 fault_info_src.behavior = VM_BEHAVIOR_SEQUENTIAL;
5485 fault_info_src.user_tag = 0;
5486 fault_info_src.pmap_options = 0;
5487 fault_info_src.lo_offset = vm_object_trunc_page(src_offset);
5488 fault_info_src.hi_offset = fault_info_src.lo_offset + amount_left;
5489 fault_info_src.no_cache = FALSE;
5490 fault_info_src.stealth = TRUE;
5491 fault_info_src.io_sync = FALSE;
5492 fault_info_src.cs_bypass = FALSE;
5493 fault_info_src.mark_zf_absent = FALSE;
5494 fault_info_src.batch_pmap_op = FALSE;
5495
5496 fault_info_dst.interruptible = interruptible;
5497 fault_info_dst.behavior = VM_BEHAVIOR_SEQUENTIAL;
5498 fault_info_dst.user_tag = 0;
5499 fault_info_dst.pmap_options = 0;
5500 fault_info_dst.lo_offset = vm_object_trunc_page(dst_offset);
5501 fault_info_dst.hi_offset = fault_info_dst.lo_offset + amount_left;
5502 fault_info_dst.no_cache = FALSE;
5503 fault_info_dst.stealth = TRUE;
5504 fault_info_dst.io_sync = FALSE;
5505 fault_info_dst.cs_bypass = FALSE;
5506 fault_info_dst.mark_zf_absent = FALSE;
5507 fault_info_dst.batch_pmap_op = FALSE;
5508
5509 do { /* while (amount_left > 0) */
5510 /*
5511 * There may be a deadlock if both source and destination
5512 * pages are the same. To avoid this deadlock, the copy must
5513 * start by getting the destination page in order to apply
5514 * COW semantics if any.
5515 */
5516
5517 RetryDestinationFault: ;
5518
5519 dst_prot = VM_PROT_WRITE|VM_PROT_READ;
5520
5521 vm_object_lock(dst_object);
5522 vm_object_paging_begin(dst_object);
5523
5524 if (amount_left > (vm_size_t) -1) {
5525 /* 32-bit overflow */
5526 fault_info_dst.cluster_size = (vm_size_t) (0 - PAGE_SIZE);
5527 } else {
5528 fault_info_dst.cluster_size = (vm_size_t) amount_left;
5529 assert(fault_info_dst.cluster_size == amount_left);
5530 }
5531
5532 XPR(XPR_VM_FAULT,"vm_fault_copy -> vm_fault_page\n",0,0,0,0,0);
5533 dst_page = VM_PAGE_NULL;
5534 result = vm_fault_page(dst_object,
5535 vm_object_trunc_page(dst_offset),
5536 VM_PROT_WRITE|VM_PROT_READ,
5537 FALSE,
5538 FALSE, /* page not looked up */
5539 &dst_prot, &dst_page, &dst_top_page,
5540 (int *)0,
5541 &error,
5542 dst_map->no_zero_fill,
5543 FALSE, &fault_info_dst);
5544 switch (result) {
5545 case VM_FAULT_SUCCESS:
5546 break;
5547 case VM_FAULT_RETRY:
5548 goto RetryDestinationFault;
5549 case VM_FAULT_MEMORY_SHORTAGE:
5550 if (vm_page_wait(interruptible))
5551 goto RetryDestinationFault;
5552 /* fall thru */
5553 case VM_FAULT_INTERRUPTED:
5554 RETURN(MACH_SEND_INTERRUPTED);
5555 case VM_FAULT_SUCCESS_NO_VM_PAGE:
5556 /* success but no VM page: fail the copy */
5557 vm_object_paging_end(dst_object);
5558 vm_object_unlock(dst_object);
5559 /*FALLTHROUGH*/
5560 case VM_FAULT_MEMORY_ERROR:
5561 if (error)
5562 return (error);
5563 else
5564 return(KERN_MEMORY_ERROR);
5565 default:
5566 panic("vm_fault_copy: unexpected error 0x%x from "
5567 "vm_fault_page()\n", result);
5568 }
5569 assert ((dst_prot & VM_PROT_WRITE) != VM_PROT_NONE);
5570
5571 old_copy_object = dst_page->object->copy;
5572
5573 /*
5574 * There exists the possiblity that the source and
5575 * destination page are the same. But we can't
5576 * easily determine that now. If they are the
5577 * same, the call to vm_fault_page() for the
5578 * destination page will deadlock. To prevent this we
5579 * wire the page so we can drop busy without having
5580 * the page daemon steal the page. We clean up the
5581 * top page but keep the paging reference on the object
5582 * holding the dest page so it doesn't go away.
5583 */
5584
5585 vm_page_lockspin_queues();
5586 vm_page_wire(dst_page, VM_KERN_MEMORY_OSFMK, TRUE);
5587 vm_page_unlock_queues();
5588 PAGE_WAKEUP_DONE(dst_page);
5589 vm_object_unlock(dst_page->object);
5590
5591 if (dst_top_page != VM_PAGE_NULL) {
5592 vm_object_lock(dst_object);
5593 VM_PAGE_FREE(dst_top_page);
5594 vm_object_paging_end(dst_object);
5595 vm_object_unlock(dst_object);
5596 }
5597
5598 RetrySourceFault: ;
5599
5600 if (src_object == VM_OBJECT_NULL) {
5601 /*
5602 * No source object. We will just
5603 * zero-fill the page in dst_object.
5604 */
5605 src_page = VM_PAGE_NULL;
5606 result_page = VM_PAGE_NULL;
5607 } else {
5608 vm_object_lock(src_object);
5609 src_page = vm_page_lookup(src_object,
5610 vm_object_trunc_page(src_offset));
5611 if (src_page == dst_page) {
5612 src_prot = dst_prot;
5613 result_page = VM_PAGE_NULL;
5614 } else {
5615 src_prot = VM_PROT_READ;
5616 vm_object_paging_begin(src_object);
5617
5618 if (amount_left > (vm_size_t) -1) {
5619 /* 32-bit overflow */
5620 fault_info_src.cluster_size = (vm_size_t) (0 - PAGE_SIZE);
5621 } else {
5622 fault_info_src.cluster_size = (vm_size_t) amount_left;
5623 assert(fault_info_src.cluster_size == amount_left);
5624 }
5625
5626 XPR(XPR_VM_FAULT,
5627 "vm_fault_copy(2) -> vm_fault_page\n",
5628 0,0,0,0,0);
5629 result_page = VM_PAGE_NULL;
5630 result = vm_fault_page(
5631 src_object,
5632 vm_object_trunc_page(src_offset),
5633 VM_PROT_READ, FALSE,
5634 FALSE, /* page not looked up */
5635 &src_prot,
5636 &result_page, &src_top_page,
5637 (int *)0, &error, FALSE,
5638 FALSE, &fault_info_src);
5639
5640 switch (result) {
5641 case VM_FAULT_SUCCESS:
5642 break;
5643 case VM_FAULT_RETRY:
5644 goto RetrySourceFault;
5645 case VM_FAULT_MEMORY_SHORTAGE:
5646 if (vm_page_wait(interruptible))
5647 goto RetrySourceFault;
5648 /* fall thru */
5649 case VM_FAULT_INTERRUPTED:
5650 vm_fault_copy_dst_cleanup(dst_page);
5651 RETURN(MACH_SEND_INTERRUPTED);
5652 case VM_FAULT_SUCCESS_NO_VM_PAGE:
5653 /* success but no VM page: fail */
5654 vm_object_paging_end(src_object);
5655 vm_object_unlock(src_object);
5656 /*FALLTHROUGH*/
5657 case VM_FAULT_MEMORY_ERROR:
5658 vm_fault_copy_dst_cleanup(dst_page);
5659 if (error)
5660 return (error);
5661 else
5662 return(KERN_MEMORY_ERROR);
5663 default:
5664 panic("vm_fault_copy(2): unexpected "
5665 "error 0x%x from "
5666 "vm_fault_page()\n", result);
5667 }
5668
5669
5670 assert((src_top_page == VM_PAGE_NULL) ==
5671 (result_page->object == src_object));
5672 }
5673 assert ((src_prot & VM_PROT_READ) != VM_PROT_NONE);
5674 vm_object_unlock(result_page->object);
5675 }
5676
5677 if (!vm_map_verify(dst_map, dst_version)) {
5678 if (result_page != VM_PAGE_NULL && src_page != dst_page)
5679 vm_fault_copy_cleanup(result_page, src_top_page);
5680 vm_fault_copy_dst_cleanup(dst_page);
5681 break;
5682 }
5683
5684 vm_object_lock(dst_page->object);
5685
5686 if (dst_page->object->copy != old_copy_object) {
5687 vm_object_unlock(dst_page->object);
5688 vm_map_verify_done(dst_map, dst_version);
5689 if (result_page != VM_PAGE_NULL && src_page != dst_page)
5690 vm_fault_copy_cleanup(result_page, src_top_page);
5691 vm_fault_copy_dst_cleanup(dst_page);
5692 break;
5693 }
5694 vm_object_unlock(dst_page->object);
5695
5696 /*
5697 * Copy the page, and note that it is dirty
5698 * immediately.
5699 */
5700
5701 if (!page_aligned(src_offset) ||
5702 !page_aligned(dst_offset) ||
5703 !page_aligned(amount_left)) {
5704
5705 vm_object_offset_t src_po,
5706 dst_po;
5707
5708 src_po = src_offset - vm_object_trunc_page(src_offset);
5709 dst_po = dst_offset - vm_object_trunc_page(dst_offset);
5710
5711 if (dst_po > src_po) {
5712 part_size = PAGE_SIZE - dst_po;
5713 } else {
5714 part_size = PAGE_SIZE - src_po;
5715 }
5716 if (part_size > (amount_left)){
5717 part_size = amount_left;
5718 }
5719
5720 if (result_page == VM_PAGE_NULL) {
5721 assert((vm_offset_t) dst_po == dst_po);
5722 assert((vm_size_t) part_size == part_size);
5723 vm_page_part_zero_fill(dst_page,
5724 (vm_offset_t) dst_po,
5725 (vm_size_t) part_size);
5726 } else {
5727 assert((vm_offset_t) src_po == src_po);
5728 assert((vm_offset_t) dst_po == dst_po);
5729 assert((vm_size_t) part_size == part_size);
5730 vm_page_part_copy(result_page,
5731 (vm_offset_t) src_po,
5732 dst_page,
5733 (vm_offset_t) dst_po,
5734 (vm_size_t)part_size);
5735 if(!dst_page->dirty){
5736 vm_object_lock(dst_object);
5737 SET_PAGE_DIRTY(dst_page, TRUE);
5738 vm_object_unlock(dst_page->object);
5739 }
5740
5741 }
5742 } else {
5743 part_size = PAGE_SIZE;
5744
5745 if (result_page == VM_PAGE_NULL)
5746 vm_page_zero_fill(dst_page);
5747 else{
5748 vm_object_lock(result_page->object);
5749 vm_page_copy(result_page, dst_page);
5750 vm_object_unlock(result_page->object);
5751
5752 if(!dst_page->dirty){
5753 vm_object_lock(dst_object);
5754 SET_PAGE_DIRTY(dst_page, TRUE);
5755 vm_object_unlock(dst_page->object);
5756 }
5757 }
5758
5759 }
5760
5761 /*
5762 * Unlock everything, and return
5763 */
5764
5765 vm_map_verify_done(dst_map, dst_version);
5766
5767 if (result_page != VM_PAGE_NULL && src_page != dst_page)
5768 vm_fault_copy_cleanup(result_page, src_top_page);
5769 vm_fault_copy_dst_cleanup(dst_page);
5770
5771 amount_left -= part_size;
5772 src_offset += part_size;
5773 dst_offset += part_size;
5774 } while (amount_left > 0);
5775
5776 RETURN(KERN_SUCCESS);
5777#undef RETURN
5778
5779 /*NOTREACHED*/
5780}
5781
5782#if VM_FAULT_CLASSIFY
5783/*
5784 * Temporary statistics gathering support.
5785 */
5786
5787/*
5788 * Statistics arrays:
5789 */
5790#define VM_FAULT_TYPES_MAX 5
5791#define VM_FAULT_LEVEL_MAX 8
5792
5793int vm_fault_stats[VM_FAULT_TYPES_MAX][VM_FAULT_LEVEL_MAX];
5794
5795#define VM_FAULT_TYPE_ZERO_FILL 0
5796#define VM_FAULT_TYPE_MAP_IN 1
5797#define VM_FAULT_TYPE_PAGER 2
5798#define VM_FAULT_TYPE_COPY 3
5799#define VM_FAULT_TYPE_OTHER 4
5800
5801
5802void
5803vm_fault_classify(vm_object_t object,
5804 vm_object_offset_t offset,
5805 vm_prot_t fault_type)
5806{
5807 int type, level = 0;
5808 vm_page_t m;
5809
5810 while (TRUE) {
5811 m = vm_page_lookup(object, offset);
5812 if (m != VM_PAGE_NULL) {
5813 if (m->busy || m->error || m->restart || m->absent) {
5814 type = VM_FAULT_TYPE_OTHER;
5815 break;
5816 }
5817 if (((fault_type & VM_PROT_WRITE) == 0) ||
5818 ((level == 0) && object->copy == VM_OBJECT_NULL)) {
5819 type = VM_FAULT_TYPE_MAP_IN;
5820 break;
5821 }
5822 type = VM_FAULT_TYPE_COPY;
5823 break;
5824 }
5825 else {
5826 if (object->pager_created) {
5827 type = VM_FAULT_TYPE_PAGER;
5828 break;
5829 }
5830 if (object->shadow == VM_OBJECT_NULL) {
5831 type = VM_FAULT_TYPE_ZERO_FILL;
5832 break;
5833 }
5834
5835 offset += object->vo_shadow_offset;
5836 object = object->shadow;
5837 level++;
5838 continue;
5839 }
5840 }
5841
5842 if (level > VM_FAULT_LEVEL_MAX)
5843 level = VM_FAULT_LEVEL_MAX;
5844
5845 vm_fault_stats[type][level] += 1;
5846
5847 return;
5848}
5849
5850/* cleanup routine to call from debugger */
5851
5852void
5853vm_fault_classify_init(void)
5854{
5855 int type, level;
5856
5857 for (type = 0; type < VM_FAULT_TYPES_MAX; type++) {
5858 for (level = 0; level < VM_FAULT_LEVEL_MAX; level++) {
5859 vm_fault_stats[type][level] = 0;
5860 }
5861 }
5862
5863 return;
5864}
5865#endif /* VM_FAULT_CLASSIFY */
5866
5867vm_offset_t
5868kdp_lightweight_fault(vm_map_t map, vm_offset_t cur_target_addr, uint32_t *fault_results)
5869{
5870#pragma unused(map, cur_target_addr, fault_results)
5871
5872 return 0;
5873#if 0
5874 vm_map_entry_t entry;
5875 vm_object_t object;
5876 vm_offset_t object_offset;
5877 vm_page_t m;
5878 int compressor_external_state, compressed_count_delta;
5879 int compressor_flags = (C_DONT_BLOCK | C_KEEP | C_KDP);
5880 int my_fault_type = VM_PROT_READ;
5881 kern_return_t kr;
5882
5883
5884 if (not_in_kdp) {
5885 panic("kdp_lightweight_fault called from outside of debugger context");
5886 }
5887
5888 assert(map != VM_MAP_NULL);
5889
5890 assert((cur_target_addr & PAGE_MASK) == 0);
5891 if ((cur_target_addr & PAGE_MASK) != 0) {
5892 return 0;
5893 }
5894
5895 if (kdp_lck_rw_lock_is_acquired_exclusive(&map->lock)) {
5896 return 0;
5897 }
5898
5899 if (!vm_map_lookup_entry(map, cur_target_addr, &entry)) {
5900 return 0;
5901 }
5902
5903 if (entry->is_sub_map) {
5904 return 0;
5905 }
5906
5907 object = VME_OBJECT(entry);
5908 if (object == VM_OBJECT_NULL) {
5909 return 0;
5910 }
5911
5912 object_offset = cur_target_addr - entry->vme_start + VME_OFFSET(entry);
5913
5914 while (TRUE) {
5915 if (kdp_lck_rw_lock_is_acquired_exclusive(&object->Lock)) {
5916 return 0;
5917 }
5918
5919 if (object->pager_created && (object->paging_in_progress ||
5920 object->activity_in_progress)) {
5921 return 0;
5922 }
5923
5924 m = kdp_vm_page_lookup(object, object_offset);
5925
5926 if (m != VM_PAGE_NULL) {
5927
5928 if ((object->wimg_bits & VM_WIMG_MASK) != VM_WIMG_DEFAULT) {
5929 return 0;
5930 }
5931
5932 if (m->laundry || m->busy || m->pageout || m->absent || m->error || m->cleaning ||
5933 m->overwriting || m->restart || m->unusual) {
5934 return 0;
5935 }
5936
5937 assert(!m->private);
5938 if (m->private) {
5939 return 0;
5940 }
5941
5942 assert(!m->fictitious);
5943 if (m->fictitious) {
5944 return 0;
5945 }
5946
5947 assert(!m->encrypted);
5948 if (m->encrypted) {
5949 return 0;
5950 }
5951
5952 assert(!m->encrypted_cleaning);
5953 if (m->encrypted_cleaning) {
5954 return 0;
5955 }
5956
5957 assert(!m->compressor);
5958 if (m->compressor) {
5959 return 0;
5960 }
5961
5962 if (fault_results) {
5963 *fault_results |= kThreadFaultedBT;
5964 }
5965 return ptoa(m->phys_page);
5966 }
5967
5968 compressor_external_state = VM_EXTERNAL_STATE_UNKNOWN;
5969
5970 if (object->pager_created && MUST_ASK_PAGER(object, object_offset, compressor_external_state)) {
5971 if (compressor_external_state == VM_EXTERNAL_STATE_EXISTS) {
5972 kr = vm_compressor_pager_get(object->pager, (object_offset + object->paging_offset),
5973 kdp_compressor_decompressed_page_ppnum, &my_fault_type,
5974 compressor_flags, &compressed_count_delta);
5975 if (kr == KERN_SUCCESS) {
5976 if (fault_results) {
5977 *fault_results |= kThreadDecompressedBT;
5978 }
5979 return kdp_compressor_decompressed_page_paddr;
5980 } else {
5981 return 0;
5982 }
5983 }
5984 }
5985
5986 if (object->shadow == VM_OBJECT_NULL) {
5987 return 0;
5988 }
5989
5990 object_offset += object->vo_shadow_offset;
5991 object = object->shadow;
5992 }
5993#endif /* 0 */
5994}
5995
5996
5997#define CODE_SIGNING_CHUNK_SIZE 4096
5998void
5999vm_page_validate_cs_mapped(
6000 vm_page_t page,
6001 const void *kaddr)
6002{
6003 vm_object_t object;
6004 vm_object_offset_t offset, offset_in_page;
6005 kern_return_t kr;
6006 memory_object_t pager;
6007 void *blobs;
6008 boolean_t validated;
6009 unsigned tainted;
6010 int num_chunks, num_chunks_validated;
6011
6012 assert(page->busy);
6013 vm_object_lock_assert_exclusive(page->object);
6014
6015 if (!cs_validation) {
6016 return;
6017 }
6018
6019 if (page->wpmapped && !page->cs_tainted) {
6020 /*
6021 * This page was mapped for "write" access sometime in the
6022 * past and could still be modifiable in the future.
6023 * Consider it tainted.
6024 * [ If the page was already found to be "tainted", no
6025 * need to re-validate. ]
6026 */
6027 page->cs_validated = TRUE;
6028 page->cs_tainted = TRUE;
6029 if (cs_debug) {
6030 printf("CODESIGNING: vm_page_validate_cs: "
6031 "page %p obj %p off 0x%llx "
6032 "was modified\n",
6033 page, page->object, page->offset);
6034 }
6035 vm_cs_validated_dirtied++;
6036 }
6037
6038 if (page->cs_validated || page->cs_tainted) {
6039 return;
6040 }
6041
6042 vm_cs_validates++;
6043
6044 object = page->object;
6045 assert(object->code_signed);
6046 offset = page->offset;
6047
6048 if (!object->alive || object->terminating || object->pager == NULL) {
6049 /*
6050 * The object is terminating and we don't have its pager
6051 * so we can't validate the data...
6052 */
6053 return;
6054 }
6055 /*
6056 * Since we get here to validate a page that was brought in by
6057 * the pager, we know that this pager is all setup and ready
6058 * by now.
6059 */
6060 assert(!object->internal);
6061 assert(object->pager != NULL);
6062 assert(object->pager_ready);
6063
6064 pager = object->pager;
6065 assert(object->paging_in_progress);
6066 kr = vnode_pager_get_object_cs_blobs(pager, &blobs);
6067 if (kr != KERN_SUCCESS) {
6068 blobs = NULL;
6069 }
6070
6071 /* verify the SHA1 hash for this page */
6072 num_chunks_validated = 0;
6073 for (offset_in_page = 0, num_chunks = 0;
6074 offset_in_page < PAGE_SIZE_64;
6075 offset_in_page += CODE_SIGNING_CHUNK_SIZE, num_chunks++) {
6076 tainted = 0;
6077 validated = cs_validate_page(blobs,
6078 pager,
6079 (object->paging_offset +
6080 offset +
6081 offset_in_page),
6082 (const void *)((const char *)kaddr
6083 + offset_in_page),
6084 &tainted);
6085 if (validated) {
6086 num_chunks_validated++;
6087 }
6088 if (tainted & CS_VALIDATE_TAINTED) {
6089 page->cs_tainted = TRUE;
6090 }
6091 if (tainted & CS_VALIDATE_NX) {
6092 page->cs_nx = TRUE;
6093 }
6094 }
6095 /* page is validated only if all its chunks are */
6096 if (num_chunks_validated == num_chunks) {
6097 page->cs_validated = TRUE;
6098 }
6099}
6100
6101void
6102vm_page_validate_cs(
6103 vm_page_t page)
6104{
6105 vm_object_t object;
6106 vm_object_offset_t offset;
6107 vm_map_offset_t koffset;
6108 vm_map_size_t ksize;
6109 vm_offset_t kaddr;
6110 kern_return_t kr;
6111 boolean_t busy_page;
6112 boolean_t need_unmap;
6113
6114 vm_object_lock_assert_held(page->object);
6115
6116 if (!cs_validation) {
6117 return;
6118 }
6119
6120 if (page->wpmapped && !page->cs_tainted) {
6121 vm_object_lock_assert_exclusive(page->object);
6122
6123 /*
6124 * This page was mapped for "write" access sometime in the
6125 * past and could still be modifiable in the future.
6126 * Consider it tainted.
6127 * [ If the page was already found to be "tainted", no
6128 * need to re-validate. ]
6129 */
6130 page->cs_validated = TRUE;
6131 page->cs_tainted = TRUE;
6132 if (cs_debug) {
6133 printf("CODESIGNING: vm_page_validate_cs: "
6134 "page %p obj %p off 0x%llx "
6135 "was modified\n",
6136 page, page->object, page->offset);
6137 }
6138 vm_cs_validated_dirtied++;
6139 }
6140
6141 if (page->cs_validated || page->cs_tainted) {
6142 return;
6143 }
6144
6145 if (page->slid) {
6146 panic("vm_page_validate_cs(%p): page is slid\n", page);
6147 }
6148 assert(!page->slid);
6149
6150#if CHECK_CS_VALIDATION_BITMAP
6151 if ( vnode_pager_cs_check_validation_bitmap( page->object->pager, trunc_page(page->offset + page->object->paging_offset), CS_BITMAP_CHECK ) == KERN_SUCCESS) {
6152 page->cs_validated = TRUE;
6153 page->cs_tainted = FALSE;
6154 vm_cs_bitmap_validated++;
6155 return;
6156 }
6157#endif
6158 vm_object_lock_assert_exclusive(page->object);
6159
6160 object = page->object;
6161 assert(object->code_signed);
6162 offset = page->offset;
6163
6164 busy_page = page->busy;
6165 if (!busy_page) {
6166 /* keep page busy while we map (and unlock) the VM object */
6167 page->busy = TRUE;
6168 }
6169
6170 /*
6171 * Take a paging reference on the VM object
6172 * to protect it from collapse or bypass,
6173 * and keep it from disappearing too.
6174 */
6175 vm_object_paging_begin(object);
6176
6177 /* map the page in the kernel address space */
6178 ksize = PAGE_SIZE_64;
6179 koffset = 0;
6180 need_unmap = FALSE;
6181 kr = vm_paging_map_object(page,
6182 object,
6183 offset,
6184 VM_PROT_READ,
6185 FALSE, /* can't unlock object ! */
6186 &ksize,
6187 &koffset,
6188 &need_unmap);
6189 if (kr != KERN_SUCCESS) {
6190 panic("vm_page_validate_cs: could not map page: 0x%x\n", kr);
6191 }
6192 kaddr = CAST_DOWN(vm_offset_t, koffset);
6193
6194 /* validate the mapped page */
6195 vm_page_validate_cs_mapped(page, (const void *) kaddr);
6196
6197#if CHECK_CS_VALIDATION_BITMAP
6198 if ( page->cs_validated == TRUE && page->cs_tainted == FALSE ) {
6199 vnode_pager_cs_check_validation_bitmap( object->pager, trunc_page( offset + object->paging_offset), CS_BITMAP_SET );
6200 }
6201#endif
6202 assert(page->busy);
6203 assert(object == page->object);
6204 vm_object_lock_assert_exclusive(object);
6205
6206 if (!busy_page) {
6207 PAGE_WAKEUP_DONE(page);
6208 }
6209 if (need_unmap) {
6210 /* unmap the map from the kernel address space */
6211 vm_paging_unmap_object(object, koffset, koffset + ksize);
6212 koffset = 0;
6213 ksize = 0;
6214 kaddr = 0;
6215 }
6216 vm_object_paging_end(object);
6217}
6218
6219void
6220vm_page_validate_cs_mapped_chunk(
6221 vm_page_t page,
6222 const void *kaddr,
6223 vm_offset_t chunk_offset,
6224 boolean_t *validated_p,
6225 unsigned *tainted_p)
6226{
6227 vm_object_t object;
6228 vm_object_offset_t offset, offset_in_page;
6229 kern_return_t kr;
6230 memory_object_t pager;
6231 void *blobs;
6232 boolean_t validated;
6233 unsigned tainted;
6234
6235 *validated_p = FALSE;
6236 *tainted_p = 0;
6237
6238 assert(page->busy);
6239 vm_object_lock_assert_exclusive(page->object);
6240
6241 if (!cs_validation) {
6242 return;
6243 }
6244
6245 object = page->object;
6246 assert(object->code_signed);
6247 offset = page->offset;
6248
6249 if (!object->alive || object->terminating || object->pager == NULL) {
6250 /*
6251 * The object is terminating and we don't have its pager
6252 * so we can't validate the data...
6253 */
6254 return;
6255 }
6256 /*
6257 * Since we get here to validate a page that was brought in by
6258 * the pager, we know that this pager is all setup and ready
6259 * by now.
6260 */
6261 assert(!object->internal);
6262 assert(object->pager != NULL);
6263 assert(object->pager_ready);
6264
6265 pager = object->pager;
6266 assert(object->paging_in_progress);
6267 kr = vnode_pager_get_object_cs_blobs(pager, &blobs);
6268 if (kr != KERN_SUCCESS) {
6269 blobs = NULL;
6270 }
6271
6272 /* verify the signature for this chunk */
6273 offset_in_page = chunk_offset;
6274 assert(offset_in_page < PAGE_SIZE);
6275 assert((offset_in_page & (CODE_SIGNING_CHUNK_SIZE-1)) == 0);
6276
6277 tainted = 0;
6278 validated = cs_validate_page(blobs,
6279 pager,
6280 (object->paging_offset +
6281 offset +
6282 offset_in_page),
6283 (const void *)((const char *)kaddr
6284 + offset_in_page),
6285 &tainted);
6286 if (validated) {
6287 *validated_p = TRUE;
6288 }
6289 if (tainted) {
6290 *tainted_p = tainted;
6291 }
6292}