]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Copyright (c) 2000-2004 Apple Computer, Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * The contents of this file constitute Original Code as defined in and | |
7 | * are subject to the Apple Public Source License Version 1.1 (the | |
8 | * "License"). You may not use this file except in compliance with the | |
9 | * License. Please obtain a copy of the License at | |
10 | * http://www.apple.com/publicsource and read it before using this file. | |
11 | * | |
12 | * This Original Code and all software distributed under the License are | |
13 | * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
14 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
15 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
16 | * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the | |
17 | * License for the specific language governing rights and limitations | |
18 | * under the License. | |
19 | * | |
20 | * @APPLE_LICENSE_HEADER_END@ | |
21 | */ | |
22 | /* | |
23 | * Implementation of SVID semaphores | |
24 | * | |
25 | * Author: Daniel Boulet | |
26 | * | |
27 | * This software is provided ``AS IS'' without any warranties of any kind. | |
28 | */ | |
29 | /* | |
30 | * John Bellardo modified the implementation for Darwin. 12/2000 | |
31 | */ | |
32 | ||
33 | #include <sys/param.h> | |
34 | #include <sys/systm.h> | |
35 | #include <sys/kernel.h> | |
36 | #include <sys/proc_internal.h> | |
37 | #include <sys/kauth.h> | |
38 | #include <sys/sem_internal.h> | |
39 | #include <sys/malloc.h> | |
40 | #include <mach/mach_types.h> | |
41 | ||
42 | #include <sys/filedesc.h> | |
43 | #include <sys/file_internal.h> | |
44 | #include <sys/sysctl.h> | |
45 | #include <sys/ipcs.h> | |
46 | #include <sys/sysent.h> | |
47 | #include <sys/sysproto.h> | |
48 | ||
49 | #include <bsm/audit_kernel.h> | |
50 | ||
51 | ||
52 | /* Uncomment this line to see the debugging output */ | |
53 | /* #define SEM_DEBUG */ | |
54 | ||
55 | #define M_SYSVSEM M_TEMP | |
56 | ||
57 | ||
58 | /* Hard system limits to avoid resource starvation / DOS attacks. | |
59 | * These are not needed if we can make the semaphore pages swappable. | |
60 | */ | |
61 | static struct seminfo limitseminfo = { | |
62 | SEMMAP, /* # of entries in semaphore map */ | |
63 | SEMMNI, /* # of semaphore identifiers */ | |
64 | SEMMNS, /* # of semaphores in system */ | |
65 | SEMMNU, /* # of undo structures in system */ | |
66 | SEMMSL, /* max # of semaphores per id */ | |
67 | SEMOPM, /* max # of operations per semop call */ | |
68 | SEMUME, /* max # of undo entries per process */ | |
69 | SEMUSZ, /* size in bytes of undo structure */ | |
70 | SEMVMX, /* semaphore maximum value */ | |
71 | SEMAEM /* adjust on exit max value */ | |
72 | }; | |
73 | ||
74 | /* Current system allocations. We use this structure to track how many | |
75 | * resources we have allocated so far. This way we can set large hard limits | |
76 | * and not allocate the memory for them up front. | |
77 | */ | |
78 | struct seminfo seminfo = { | |
79 | SEMMAP, /* Unused, # of entries in semaphore map */ | |
80 | 0, /* # of semaphore identifiers */ | |
81 | 0, /* # of semaphores in system */ | |
82 | 0, /* # of undo entries in system */ | |
83 | SEMMSL, /* max # of semaphores per id */ | |
84 | SEMOPM, /* max # of operations per semop call */ | |
85 | SEMUME, /* max # of undo entries per process */ | |
86 | SEMUSZ, /* size in bytes of undo structure */ | |
87 | SEMVMX, /* semaphore maximum value */ | |
88 | SEMAEM /* adjust on exit max value */ | |
89 | }; | |
90 | ||
91 | ||
92 | static struct sem_undo *semu_alloc(struct proc *p); | |
93 | static int semundo_adjust(struct proc *p, struct sem_undo **supptr, | |
94 | int semid, int semnum, int adjval); | |
95 | static void semundo_clear(int semid, int semnum); | |
96 | ||
97 | /* XXX casting to (sy_call_t *) is bogus, as usual. */ | |
98 | static sy_call_t *semcalls[] = { | |
99 | (sy_call_t *)semctl, (sy_call_t *)semget, | |
100 | (sy_call_t *)semop, (sy_call_t *)semconfig | |
101 | }; | |
102 | ||
103 | static int semtot = 0; /* # of used semaphores */ | |
104 | struct user_semid_ds *sema = NULL; /* semaphore id pool */ | |
105 | struct sem *sem_pool = NULL; /* semaphore pool */ | |
106 | static struct sem_undo *semu_list = NULL; /* active undo structures */ | |
107 | struct sem_undo *semu = NULL; /* semaphore undo pool */ | |
108 | ||
109 | ||
110 | void sysv_sem_lock_init(void); | |
111 | static lck_grp_t *sysv_sem_subsys_lck_grp; | |
112 | static lck_grp_attr_t *sysv_sem_subsys_lck_grp_attr; | |
113 | static lck_attr_t *sysv_sem_subsys_lck_attr; | |
114 | static lck_mtx_t sysv_sem_subsys_mutex; | |
115 | ||
116 | #define SYSV_SEM_SUBSYS_LOCK() lck_mtx_lock(&sysv_sem_subsys_mutex) | |
117 | #define SYSV_SEM_SUBSYS_UNLOCK() lck_mtx_unlock(&sysv_sem_subsys_mutex) | |
118 | ||
119 | ||
120 | __private_extern__ void | |
121 | sysv_sem_lock_init( void ) | |
122 | { | |
123 | ||
124 | sysv_sem_subsys_lck_grp_attr = lck_grp_attr_alloc_init(); | |
125 | lck_grp_attr_setstat(sysv_sem_subsys_lck_grp_attr); | |
126 | ||
127 | sysv_sem_subsys_lck_grp = lck_grp_alloc_init("sysv_shm_subsys_lock", sysv_sem_subsys_lck_grp_attr); | |
128 | ||
129 | sysv_sem_subsys_lck_attr = lck_attr_alloc_init(); | |
130 | lck_attr_setdebug(sysv_sem_subsys_lck_attr); | |
131 | lck_mtx_init(&sysv_sem_subsys_mutex, sysv_sem_subsys_lck_grp, sysv_sem_subsys_lck_attr); | |
132 | } | |
133 | ||
134 | static __inline__ user_time_t | |
135 | sysv_semtime(void) | |
136 | { | |
137 | struct timeval tv; | |
138 | microtime(&tv); | |
139 | return (tv.tv_sec); | |
140 | } | |
141 | ||
142 | /* | |
143 | * XXX conversion of internal user_time_t to external tume_t loses | |
144 | * XXX precision; not an issue for us now, since we are only ever | |
145 | * XXX setting 32 bits worth of time into it. | |
146 | * | |
147 | * pad field contents are not moved correspondingly; contents will be lost | |
148 | * | |
149 | * NOTE: Source and target may *NOT* overlap! (target is smaller) | |
150 | */ | |
151 | static void | |
152 | semid_ds_64to32(struct user_semid_ds *in, struct semid_ds *out) | |
153 | { | |
154 | out->sem_perm = in->sem_perm; | |
155 | out->sem_base = (__int32_t)in->sem_base; | |
156 | out->sem_nsems = in->sem_nsems; | |
157 | out->sem_otime = in->sem_otime; /* XXX loses precision */ | |
158 | out->sem_ctime = in->sem_ctime; /* XXX loses precision */ | |
159 | } | |
160 | ||
161 | /* | |
162 | * pad field contents are not moved correspondingly; contents will be lost | |
163 | * | |
164 | * NOTE: Source and target may are permitted to overlap! (source is smaller); | |
165 | * this works because we copy fields in order from the end of the struct to | |
166 | * the beginning. | |
167 | * | |
168 | * XXX use CAST_USER_ADDR_T() for lack of a CAST_USER_TIME_T(); net effect | |
169 | * XXX is the same. | |
170 | */ | |
171 | static void | |
172 | semid_ds_32to64(struct semid_ds *in, struct user_semid_ds *out) | |
173 | { | |
174 | out->sem_ctime = in->sem_ctime; | |
175 | out->sem_otime = in->sem_otime; | |
176 | out->sem_nsems = in->sem_nsems; | |
177 | out->sem_base = (void *)in->sem_base; | |
178 | out->sem_perm = in->sem_perm; | |
179 | } | |
180 | ||
181 | ||
182 | /* | |
183 | * Entry point for all SEM calls | |
184 | * | |
185 | * In Darwin this is no longer the entry point. It will be removed after | |
186 | * the code has been tested better. | |
187 | */ | |
188 | /* XXX actually varargs. */ | |
189 | int | |
190 | semsys(struct proc *p, struct semsys_args *uap, register_t *retval) | |
191 | { | |
192 | ||
193 | /* The individual calls handling the locking now */ | |
194 | ||
195 | if (uap->which >= sizeof(semcalls)/sizeof(semcalls[0])) | |
196 | return (EINVAL); | |
197 | return ((*semcalls[uap->which])(p, &uap->a2, retval)); | |
198 | } | |
199 | ||
200 | /* | |
201 | * Lock or unlock the entire semaphore facility. | |
202 | * | |
203 | * This will probably eventually evolve into a general purpose semaphore | |
204 | * facility status enquiry mechanism (I don't like the "read /dev/kmem" | |
205 | * approach currently taken by ipcs and the amount of info that we want | |
206 | * to be able to extract for ipcs is probably beyond what the capability | |
207 | * of the getkerninfo facility. | |
208 | * | |
209 | * At the time that the current version of semconfig was written, ipcs is | |
210 | * the only user of the semconfig facility. It uses it to ensure that the | |
211 | * semaphore facility data structures remain static while it fishes around | |
212 | * in /dev/kmem. | |
213 | */ | |
214 | ||
215 | int | |
216 | semconfig(__unused struct proc *p, struct semconfig_args *uap, register_t *retval) | |
217 | { | |
218 | int eval = 0; | |
219 | ||
220 | switch (uap->flag) { | |
221 | case SEM_CONFIG_FREEZE: | |
222 | SYSV_SEM_SUBSYS_LOCK(); | |
223 | break; | |
224 | ||
225 | case SEM_CONFIG_THAW: | |
226 | SYSV_SEM_SUBSYS_UNLOCK(); | |
227 | break; | |
228 | ||
229 | default: | |
230 | printf("semconfig: unknown flag parameter value (%d) - ignored\n", | |
231 | uap->flag); | |
232 | eval = EINVAL; | |
233 | break; | |
234 | } | |
235 | ||
236 | *retval = 0; | |
237 | return(eval); | |
238 | } | |
239 | ||
240 | /* | |
241 | * Expand the semu array to the given capacity. If the expansion fails | |
242 | * return 0, otherwise return 1. | |
243 | * | |
244 | * Assumes we already have the subsystem lock. | |
245 | */ | |
246 | static int | |
247 | grow_semu_array(int newSize) | |
248 | { | |
249 | register int i; | |
250 | register struct sem_undo *newSemu; | |
251 | ||
252 | if (newSize <= seminfo.semmnu) | |
253 | return 1; | |
254 | if (newSize > limitseminfo.semmnu) /* enforce hard limit */ | |
255 | { | |
256 | #ifdef SEM_DEBUG | |
257 | printf("undo structure hard limit of %d reached, requested %d\n", | |
258 | limitseminfo.semmnu, newSize); | |
259 | #endif | |
260 | return 0; | |
261 | } | |
262 | newSize = (newSize/SEMMNU_INC + 1) * SEMMNU_INC; | |
263 | newSize = newSize > limitseminfo.semmnu ? limitseminfo.semmnu : newSize; | |
264 | ||
265 | #ifdef SEM_DEBUG | |
266 | printf("growing semu[] from %d to %d\n", seminfo.semmnu, newSize); | |
267 | #endif | |
268 | MALLOC(newSemu, struct sem_undo *, sizeof (struct sem_undo) * newSize, | |
269 | M_SYSVSEM, M_WAITOK | M_ZERO); | |
270 | if (NULL == newSemu) | |
271 | { | |
272 | #ifdef SEM_DEBUG | |
273 | printf("allocation failed. no changes made.\n"); | |
274 | #endif | |
275 | return 0; | |
276 | } | |
277 | ||
278 | /* copy the old data to the new array */ | |
279 | for (i = 0; i < seminfo.semmnu; i++) | |
280 | { | |
281 | newSemu[i] = semu[i]; | |
282 | } | |
283 | /* | |
284 | * The new elements (from newSemu[i] to newSemu[newSize-1]) have their | |
285 | * "un_proc" set to 0 (i.e. NULL) by the M_ZERO flag to MALLOC() above, | |
286 | * so they're already marked as "not in use". | |
287 | */ | |
288 | ||
289 | /* Clean up the old array */ | |
290 | if (semu) | |
291 | FREE(semu, M_SYSVSEM); | |
292 | ||
293 | semu = newSemu; | |
294 | seminfo.semmnu = newSize; | |
295 | #ifdef SEM_DEBUG | |
296 | printf("expansion successful\n"); | |
297 | #endif | |
298 | return 1; | |
299 | } | |
300 | ||
301 | /* | |
302 | * Expand the sema array to the given capacity. If the expansion fails | |
303 | * we return 0, otherwise we return 1. | |
304 | * | |
305 | * Assumes we already have the subsystem lock. | |
306 | */ | |
307 | static int | |
308 | grow_sema_array(int newSize) | |
309 | { | |
310 | register struct user_semid_ds *newSema; | |
311 | register int i; | |
312 | ||
313 | if (newSize <= seminfo.semmni) | |
314 | return 0; | |
315 | if (newSize > limitseminfo.semmni) /* enforce hard limit */ | |
316 | { | |
317 | #ifdef SEM_DEBUG | |
318 | printf("identifier hard limit of %d reached, requested %d\n", | |
319 | limitseminfo.semmni, newSize); | |
320 | #endif | |
321 | return 0; | |
322 | } | |
323 | newSize = (newSize/SEMMNI_INC + 1) * SEMMNI_INC; | |
324 | newSize = newSize > limitseminfo.semmni ? limitseminfo.semmni : newSize; | |
325 | ||
326 | #ifdef SEM_DEBUG | |
327 | printf("growing sema[] from %d to %d\n", seminfo.semmni, newSize); | |
328 | #endif | |
329 | MALLOC(newSema, struct user_semid_ds *, | |
330 | sizeof (struct user_semid_ds) * newSize, | |
331 | M_SYSVSEM, M_WAITOK | M_ZERO); | |
332 | if (NULL == newSema) | |
333 | { | |
334 | #ifdef SEM_DEBUG | |
335 | printf("allocation failed. no changes made.\n"); | |
336 | #endif | |
337 | return 0; | |
338 | } | |
339 | ||
340 | /* copy over the old ids */ | |
341 | for (i = 0; i < seminfo.semmni; i++) | |
342 | { | |
343 | newSema[i] = sema[i]; | |
344 | /* This is a hack. What we really want to be able to | |
345 | * do is change the value a process is waiting on | |
346 | * without waking it up, but I don't know how to do | |
347 | * this with the existing code, so we wake up the | |
348 | * process and let it do a lot of work to determine the | |
349 | * semaphore set is really not available yet, and then | |
350 | * sleep on the correct, reallocated user_semid_ds pointer. | |
351 | */ | |
352 | if (sema[i].sem_perm.mode & SEM_ALLOC) | |
353 | wakeup((caddr_t)&sema[i]); | |
354 | } | |
355 | /* | |
356 | * The new elements (from newSema[i] to newSema[newSize-1]) have their | |
357 | * "sem_base" and "sem_perm.mode" set to 0 (i.e. NULL) by the M_ZERO | |
358 | * flag to MALLOC() above, so they're already marked as "not in use". | |
359 | */ | |
360 | ||
361 | /* Clean up the old array */ | |
362 | if (sema) | |
363 | FREE(sema, M_SYSVSEM); | |
364 | ||
365 | sema = newSema; | |
366 | seminfo.semmni = newSize; | |
367 | #ifdef SEM_DEBUG | |
368 | printf("expansion successful\n"); | |
369 | #endif | |
370 | return 1; | |
371 | } | |
372 | ||
373 | /* | |
374 | * Expand the sem_pool array to the given capacity. If the expansion fails | |
375 | * we return 0 (fail), otherwise we return 1 (success). | |
376 | * | |
377 | * Assumes we already hold the subsystem lock. | |
378 | */ | |
379 | static int | |
380 | grow_sem_pool(int new_pool_size) | |
381 | { | |
382 | struct sem *new_sem_pool = NULL; | |
383 | struct sem *sem_free; | |
384 | int i; | |
385 | ||
386 | if (new_pool_size < semtot) | |
387 | return 0; | |
388 | /* enforce hard limit */ | |
389 | if (new_pool_size > limitseminfo.semmns) { | |
390 | #ifdef SEM_DEBUG | |
391 | printf("semaphore hard limit of %d reached, requested %d\n", | |
392 | limitseminfo.semmns, new_pool_size); | |
393 | #endif | |
394 | return 0; | |
395 | } | |
396 | ||
397 | new_pool_size = (new_pool_size/SEMMNS_INC + 1) * SEMMNS_INC; | |
398 | new_pool_size = new_pool_size > limitseminfo.semmns ? limitseminfo.semmns : new_pool_size; | |
399 | ||
400 | #ifdef SEM_DEBUG | |
401 | printf("growing sem_pool array from %d to %d\n", seminfo.semmns, new_pool_size); | |
402 | #endif | |
403 | MALLOC(new_sem_pool, struct sem *, sizeof (struct sem) * new_pool_size, | |
404 | M_SYSVSEM, M_WAITOK | M_ZERO); | |
405 | if (NULL == new_sem_pool) { | |
406 | #ifdef SEM_DEBUG | |
407 | printf("allocation failed. no changes made.\n"); | |
408 | #endif | |
409 | return 0; | |
410 | } | |
411 | ||
412 | /* We have our new memory, now copy the old contents over */ | |
413 | if (sem_pool) | |
414 | for(i = 0; i < seminfo.semmns; i++) | |
415 | new_sem_pool[i] = sem_pool[i]; | |
416 | ||
417 | /* Update our id structures to point to the new semaphores */ | |
418 | for(i = 0; i < seminfo.semmni; i++) { | |
419 | if (sema[i].sem_perm.mode & SEM_ALLOC) /* ID in use */ | |
420 | sema[i].sem_base += (new_sem_pool - sem_pool); | |
421 | } | |
422 | ||
423 | sem_free = sem_pool; | |
424 | sem_pool = new_sem_pool; | |
425 | ||
426 | /* clean up the old array */ | |
427 | if (sem_free != NULL) | |
428 | FREE(sem_free, M_SYSVSEM); | |
429 | ||
430 | seminfo.semmns = new_pool_size; | |
431 | #ifdef SEM_DEBUG | |
432 | printf("expansion complete\n"); | |
433 | #endif | |
434 | return 1; | |
435 | } | |
436 | ||
437 | /* | |
438 | * Allocate a new sem_undo structure for a process | |
439 | * (returns ptr to structure or NULL if no more room) | |
440 | * | |
441 | * Assumes we already hold the subsystem lock. | |
442 | */ | |
443 | ||
444 | static struct sem_undo * | |
445 | semu_alloc(struct proc *p) | |
446 | { | |
447 | register int i; | |
448 | register struct sem_undo *suptr; | |
449 | register struct sem_undo **supptr; | |
450 | int attempt; | |
451 | ||
452 | /* | |
453 | * Try twice to allocate something. | |
454 | * (we'll purge any empty structures after the first pass so | |
455 | * two passes are always enough) | |
456 | */ | |
457 | ||
458 | for (attempt = 0; attempt < 2; attempt++) { | |
459 | /* | |
460 | * Look for a free structure. | |
461 | * Fill it in and return it if we find one. | |
462 | */ | |
463 | ||
464 | for (i = 0; i < seminfo.semmnu; i++) { | |
465 | suptr = SEMU(i); | |
466 | if (suptr->un_proc == NULL) { | |
467 | suptr->un_next = semu_list; | |
468 | semu_list = suptr; | |
469 | suptr->un_cnt = 0; | |
470 | suptr->un_ent = NULL; | |
471 | suptr->un_proc = p; | |
472 | return(suptr); | |
473 | } | |
474 | } | |
475 | ||
476 | /* | |
477 | * We didn't find a free one, if this is the first attempt | |
478 | * then try to free some structures. | |
479 | */ | |
480 | ||
481 | if (attempt == 0) { | |
482 | /* All the structures are in use - try to free some */ | |
483 | int did_something = 0; | |
484 | ||
485 | supptr = &semu_list; | |
486 | while ((suptr = *supptr) != NULL) { | |
487 | if (suptr->un_cnt == 0) { | |
488 | suptr->un_proc = NULL; | |
489 | *supptr = suptr->un_next; | |
490 | did_something = 1; | |
491 | } else | |
492 | supptr = &(suptr->un_next); | |
493 | } | |
494 | ||
495 | /* If we didn't free anything. Try expanding | |
496 | * the semu[] array. If that doesn't work | |
497 | * then fail. We expand last to get the | |
498 | * most reuse out of existing resources. | |
499 | */ | |
500 | if (!did_something) | |
501 | if (!grow_semu_array(seminfo.semmnu + 1)) | |
502 | return(NULL); | |
503 | } else { | |
504 | /* | |
505 | * The second pass failed even though we freed | |
506 | * something after the first pass! | |
507 | * This is IMPOSSIBLE! | |
508 | */ | |
509 | panic("semu_alloc - second attempt failed"); | |
510 | } | |
511 | } | |
512 | return (NULL); | |
513 | } | |
514 | ||
515 | /* | |
516 | * Adjust a particular entry for a particular proc | |
517 | * | |
518 | * Assumes we already hold the subsystem lock. | |
519 | */ | |
520 | static int | |
521 | semundo_adjust(struct proc *p, struct sem_undo **supptr, int semid, | |
522 | int semnum, int adjval) | |
523 | { | |
524 | register struct sem_undo *suptr; | |
525 | register struct undo *sueptr, **suepptr, *new_sueptr; | |
526 | int i; | |
527 | ||
528 | /* | |
529 | * Look for and remember the sem_undo if the caller doesn't provide it | |
530 | */ | |
531 | ||
532 | suptr = *supptr; | |
533 | if (suptr == NULL) { | |
534 | for (suptr = semu_list; suptr != NULL; | |
535 | suptr = suptr->un_next) { | |
536 | if (suptr->un_proc == p) { | |
537 | *supptr = suptr; | |
538 | break; | |
539 | } | |
540 | } | |
541 | if (suptr == NULL) { | |
542 | if (adjval == 0) | |
543 | return(0); | |
544 | suptr = semu_alloc(p); | |
545 | if (suptr == NULL) | |
546 | return(ENOSPC); | |
547 | *supptr = suptr; | |
548 | } | |
549 | } | |
550 | ||
551 | /* | |
552 | * Look for the requested entry and adjust it (delete if adjval becomes | |
553 | * 0). | |
554 | */ | |
555 | new_sueptr = NULL; | |
556 | for (i = 0, suepptr = &suptr->un_ent, sueptr = suptr->un_ent; | |
557 | i < suptr->un_cnt; | |
558 | i++, suepptr = &sueptr->une_next, sueptr = sueptr->une_next) { | |
559 | if (sueptr->une_id != semid || sueptr->une_num != semnum) | |
560 | continue; | |
561 | if (adjval == 0) | |
562 | sueptr->une_adjval = 0; | |
563 | else | |
564 | sueptr->une_adjval += adjval; | |
565 | if (sueptr->une_adjval == 0) { | |
566 | suptr->un_cnt--; | |
567 | *suepptr = sueptr->une_next; | |
568 | FREE(sueptr, M_SYSVSEM); | |
569 | sueptr = NULL; | |
570 | } | |
571 | return 0; | |
572 | } | |
573 | ||
574 | /* Didn't find the right entry - create it */ | |
575 | if (adjval == 0) { | |
576 | /* no adjustment: no need for a new entry */ | |
577 | return 0; | |
578 | } | |
579 | ||
580 | if (suptr->un_cnt == limitseminfo.semume) { | |
581 | /* reached the limit number of semaphore undo entries */ | |
582 | return EINVAL; | |
583 | } | |
584 | ||
585 | /* allocate a new semaphore undo entry */ | |
586 | MALLOC(new_sueptr, struct undo *, sizeof (struct undo), | |
587 | M_SYSVSEM, M_WAITOK); | |
588 | if (new_sueptr == NULL) { | |
589 | return ENOMEM; | |
590 | } | |
591 | ||
592 | /* fill in the new semaphore undo entry */ | |
593 | new_sueptr->une_next = suptr->un_ent; | |
594 | suptr->un_ent = new_sueptr; | |
595 | suptr->un_cnt++; | |
596 | new_sueptr->une_adjval = adjval; | |
597 | new_sueptr->une_id = semid; | |
598 | new_sueptr->une_num = semnum; | |
599 | ||
600 | return 0; | |
601 | } | |
602 | ||
603 | /* Assumes we already hold the subsystem lock. | |
604 | */ | |
605 | static void | |
606 | semundo_clear(int semid, int semnum) | |
607 | { | |
608 | struct sem_undo *suptr; | |
609 | ||
610 | for (suptr = semu_list; suptr != NULL; suptr = suptr->un_next) { | |
611 | struct undo *sueptr; | |
612 | struct undo **suepptr; | |
613 | int i = 0; | |
614 | ||
615 | sueptr = suptr->un_ent; | |
616 | suepptr = &suptr->un_ent; | |
617 | while (i < suptr->un_cnt) { | |
618 | if (sueptr->une_id == semid) { | |
619 | if (semnum == -1 || sueptr->une_num == semnum) { | |
620 | suptr->un_cnt--; | |
621 | *suepptr = sueptr->une_next; | |
622 | FREE(sueptr, M_SYSVSEM); | |
623 | sueptr = *suepptr; | |
624 | continue; | |
625 | } | |
626 | if (semnum != -1) | |
627 | break; | |
628 | } | |
629 | i++; | |
630 | suepptr = &sueptr->une_next; | |
631 | sueptr = sueptr->une_next; | |
632 | } | |
633 | } | |
634 | } | |
635 | ||
636 | /* | |
637 | * Note that the user-mode half of this passes a union coerced to a | |
638 | * user_addr_t. The union contains either an int or a pointer, and | |
639 | * so we have to coerce it back, variant on whether the calling | |
640 | * process is 64 bit or not. The coercion works for the 'val' element | |
641 | * because the alignment is the same in user and kernel space. | |
642 | */ | |
643 | int | |
644 | semctl(struct proc *p, struct semctl_args *uap, register_t *retval) | |
645 | { | |
646 | int semid = uap->semid; | |
647 | int semnum = uap->semnum; | |
648 | int cmd = uap->cmd; | |
649 | user_semun_t user_arg = (user_semun_t)uap->arg; | |
650 | kauth_cred_t cred = kauth_cred_get(); | |
651 | int i, rval, eval; | |
652 | struct user_semid_ds sbuf; | |
653 | struct user_semid_ds *semaptr; | |
654 | struct user_semid_ds uds; | |
655 | ||
656 | ||
657 | AUDIT_ARG(svipc_cmd, cmd); | |
658 | AUDIT_ARG(svipc_id, semid); | |
659 | ||
660 | SYSV_SEM_SUBSYS_LOCK(); | |
661 | ||
662 | #ifdef SEM_DEBUG | |
663 | printf("call to semctl(%d, %d, %d, 0x%qx)\n", semid, semnum, cmd, user_arg); | |
664 | #endif | |
665 | ||
666 | semid = IPCID_TO_IX(semid); | |
667 | ||
668 | if (semid < 0 || semid >= seminfo.semmni) { | |
669 | #ifdef SEM_DEBUG | |
670 | printf("Invalid semid\n"); | |
671 | #endif | |
672 | eval = EINVAL; | |
673 | goto semctlout; | |
674 | } | |
675 | ||
676 | semaptr = &sema[semid]; | |
677 | if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0 || | |
678 | semaptr->sem_perm.seq != IPCID_TO_SEQ(uap->semid)) { | |
679 | eval = EINVAL; | |
680 | goto semctlout; | |
681 | } | |
682 | ||
683 | eval = 0; | |
684 | rval = 0; | |
685 | ||
686 | switch (cmd) { | |
687 | case IPC_RMID: | |
688 | if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_M))) | |
689 | goto semctlout; | |
690 | ||
691 | semaptr->sem_perm.cuid = kauth_cred_getuid(cred); | |
692 | semaptr->sem_perm.uid = kauth_cred_getuid(cred); | |
693 | semtot -= semaptr->sem_nsems; | |
694 | for (i = semaptr->sem_base - sem_pool; i < semtot; i++) | |
695 | sem_pool[i] = sem_pool[i + semaptr->sem_nsems]; | |
696 | for (i = 0; i < seminfo.semmni; i++) { | |
697 | if ((sema[i].sem_perm.mode & SEM_ALLOC) && | |
698 | sema[i].sem_base > semaptr->sem_base) | |
699 | sema[i].sem_base -= semaptr->sem_nsems; | |
700 | } | |
701 | semaptr->sem_perm.mode = 0; | |
702 | semundo_clear(semid, -1); | |
703 | wakeup((caddr_t)semaptr); | |
704 | break; | |
705 | ||
706 | case IPC_SET: | |
707 | if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_M))) | |
708 | goto semctlout; | |
709 | ||
710 | if (IS_64BIT_PROCESS(p)) { | |
711 | eval = copyin(user_arg.buf, &sbuf, sizeof(struct user_semid_ds)); | |
712 | } else { | |
713 | eval = copyin(user_arg.buf, &sbuf, sizeof(struct semid_ds)); | |
714 | /* convert in place; ugly, but safe */ | |
715 | semid_ds_32to64((struct semid_ds *)&sbuf, &sbuf); | |
716 | } | |
717 | ||
718 | if (eval != 0) { | |
719 | goto semctlout; | |
720 | } | |
721 | ||
722 | semaptr->sem_perm.uid = sbuf.sem_perm.uid; | |
723 | semaptr->sem_perm.gid = sbuf.sem_perm.gid; | |
724 | semaptr->sem_perm.mode = (semaptr->sem_perm.mode & ~0777) | | |
725 | (sbuf.sem_perm.mode & 0777); | |
726 | semaptr->sem_ctime = sysv_semtime(); | |
727 | break; | |
728 | ||
729 | case IPC_STAT: | |
730 | if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_R))) | |
731 | goto semctlout; | |
732 | bcopy(semaptr, &uds, sizeof(struct user_semid_ds)); | |
733 | if (IS_64BIT_PROCESS(p)) { | |
734 | eval = copyout(&uds, user_arg.buf, sizeof(struct user_semid_ds)); | |
735 | } else { | |
736 | struct semid_ds semid_ds32; | |
737 | semid_ds_64to32(&uds, &semid_ds32); | |
738 | eval = copyout(&semid_ds32, user_arg.buf, sizeof(struct semid_ds)); | |
739 | } | |
740 | break; | |
741 | ||
742 | case GETNCNT: | |
743 | if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_R))) | |
744 | goto semctlout; | |
745 | if (semnum < 0 || semnum >= semaptr->sem_nsems) { | |
746 | eval = EINVAL; | |
747 | goto semctlout; | |
748 | } | |
749 | rval = semaptr->sem_base[semnum].semncnt; | |
750 | break; | |
751 | ||
752 | case GETPID: | |
753 | if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_R))) | |
754 | goto semctlout; | |
755 | if (semnum < 0 || semnum >= semaptr->sem_nsems) { | |
756 | eval = EINVAL; | |
757 | goto semctlout; | |
758 | } | |
759 | rval = semaptr->sem_base[semnum].sempid; | |
760 | break; | |
761 | ||
762 | case GETVAL: | |
763 | if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_R))) | |
764 | goto semctlout; | |
765 | if (semnum < 0 || semnum >= semaptr->sem_nsems) { | |
766 | eval = EINVAL; | |
767 | goto semctlout; | |
768 | } | |
769 | rval = semaptr->sem_base[semnum].semval; | |
770 | break; | |
771 | ||
772 | case GETALL: | |
773 | if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_R))) | |
774 | goto semctlout; | |
775 | /* XXXXXXXXXXXXXXXX TBD XXXXXXXXXXXXXXXX */ | |
776 | for (i = 0; i < semaptr->sem_nsems; i++) { | |
777 | /* XXX could be done in one go... */ | |
778 | eval = copyout((caddr_t)&semaptr->sem_base[i].semval, | |
779 | user_arg.array + (i * sizeof(unsigned short)), | |
780 | sizeof(unsigned short)); | |
781 | if (eval != 0) | |
782 | break; | |
783 | } | |
784 | break; | |
785 | ||
786 | case GETZCNT: | |
787 | if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_R))) | |
788 | goto semctlout; | |
789 | if (semnum < 0 || semnum >= semaptr->sem_nsems) { | |
790 | eval = EINVAL; | |
791 | goto semctlout; | |
792 | } | |
793 | rval = semaptr->sem_base[semnum].semzcnt; | |
794 | break; | |
795 | ||
796 | case SETVAL: | |
797 | if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_W))) | |
798 | { | |
799 | #ifdef SEM_DEBUG | |
800 | printf("Invalid credentials for write\n"); | |
801 | #endif | |
802 | goto semctlout; | |
803 | } | |
804 | if (semnum < 0 || semnum >= semaptr->sem_nsems) | |
805 | { | |
806 | #ifdef SEM_DEBUG | |
807 | printf("Invalid number out of range for set\n"); | |
808 | #endif | |
809 | eval = EINVAL; | |
810 | goto semctlout; | |
811 | } | |
812 | /* | |
813 | * Cast down a pointer instead of using 'val' member directly | |
814 | * to avoid introducing endieness and a pad field into the | |
815 | * header file. Ugly, but it works. | |
816 | */ | |
817 | semaptr->sem_base[semnum].semval = CAST_DOWN(int,user_arg.buf); | |
818 | semundo_clear(semid, semnum); | |
819 | wakeup((caddr_t)semaptr); | |
820 | break; | |
821 | ||
822 | case SETALL: | |
823 | if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_W))) | |
824 | goto semctlout; | |
825 | /*** XXXXXXXXXXXX TBD ********/ | |
826 | for (i = 0; i < semaptr->sem_nsems; i++) { | |
827 | /* XXX could be done in one go... */ | |
828 | eval = copyin(user_arg.array + (i * sizeof(unsigned short)), | |
829 | (caddr_t)&semaptr->sem_base[i].semval, | |
830 | sizeof(unsigned short)); | |
831 | if (eval != 0) | |
832 | break; | |
833 | } | |
834 | semundo_clear(semid, -1); | |
835 | wakeup((caddr_t)semaptr); | |
836 | break; | |
837 | ||
838 | default: | |
839 | eval = EINVAL; | |
840 | goto semctlout; | |
841 | } | |
842 | ||
843 | if (eval == 0) | |
844 | *retval = rval; | |
845 | semctlout: | |
846 | SYSV_SEM_SUBSYS_UNLOCK(); | |
847 | return(eval); | |
848 | } | |
849 | ||
850 | int | |
851 | semget(__unused struct proc *p, struct semget_args *uap, register_t *retval) | |
852 | { | |
853 | int semid, eval; | |
854 | int key = uap->key; | |
855 | int nsems = uap->nsems; | |
856 | int semflg = uap->semflg; | |
857 | kauth_cred_t cred = kauth_cred_get(); | |
858 | ||
859 | #ifdef SEM_DEBUG | |
860 | if (key != IPC_PRIVATE) | |
861 | printf("semget(0x%x, %d, 0%o)\n", key, nsems, semflg); | |
862 | else | |
863 | printf("semget(IPC_PRIVATE, %d, 0%o)\n", nsems, semflg); | |
864 | #endif | |
865 | ||
866 | ||
867 | SYSV_SEM_SUBSYS_LOCK(); | |
868 | ||
869 | ||
870 | if (key != IPC_PRIVATE) { | |
871 | for (semid = 0; semid < seminfo.semmni; semid++) { | |
872 | if ((sema[semid].sem_perm.mode & SEM_ALLOC) && | |
873 | sema[semid].sem_perm.key == key) | |
874 | break; | |
875 | } | |
876 | if (semid < seminfo.semmni) { | |
877 | #ifdef SEM_DEBUG | |
878 | printf("found public key\n"); | |
879 | #endif | |
880 | if ((eval = ipcperm(cred, &sema[semid].sem_perm, | |
881 | semflg & 0700))) | |
882 | goto semgetout; | |
883 | if (nsems < 0 || sema[semid].sem_nsems < nsems) { | |
884 | #ifdef SEM_DEBUG | |
885 | printf("too small\n"); | |
886 | #endif | |
887 | eval = EINVAL; | |
888 | goto semgetout; | |
889 | } | |
890 | if ((semflg & IPC_CREAT) && (semflg & IPC_EXCL)) { | |
891 | #ifdef SEM_DEBUG | |
892 | printf("not exclusive\n"); | |
893 | #endif | |
894 | eval = EEXIST; | |
895 | goto semgetout; | |
896 | } | |
897 | goto found; | |
898 | } | |
899 | } | |
900 | ||
901 | #ifdef SEM_DEBUG | |
902 | printf("need to allocate an id for the request\n"); | |
903 | #endif | |
904 | if (key == IPC_PRIVATE || (semflg & IPC_CREAT)) { | |
905 | if (nsems <= 0 || nsems > limitseminfo.semmsl) { | |
906 | #ifdef SEM_DEBUG | |
907 | printf("nsems out of range (0<%d<=%d)\n", nsems, | |
908 | seminfo.semmsl); | |
909 | #endif | |
910 | eval = EINVAL; | |
911 | goto semgetout; | |
912 | } | |
913 | if (nsems > seminfo.semmns - semtot) { | |
914 | #ifdef SEM_DEBUG | |
915 | printf("not enough semaphores left (need %d, got %d)\n", | |
916 | nsems, seminfo.semmns - semtot); | |
917 | #endif | |
918 | if (!grow_sem_pool(semtot + nsems)) { | |
919 | #ifdef SEM_DEBUG | |
920 | printf("failed to grow the sem array\n"); | |
921 | #endif | |
922 | eval = ENOSPC; | |
923 | goto semgetout; | |
924 | } | |
925 | } | |
926 | for (semid = 0; semid < seminfo.semmni; semid++) { | |
927 | if ((sema[semid].sem_perm.mode & SEM_ALLOC) == 0) | |
928 | break; | |
929 | } | |
930 | if (semid == seminfo.semmni) { | |
931 | #ifdef SEM_DEBUG | |
932 | printf("no more id's available\n"); | |
933 | #endif | |
934 | if (!grow_sema_array(seminfo.semmni + 1)) | |
935 | { | |
936 | #ifdef SEM_DEBUG | |
937 | printf("failed to grow sema array\n"); | |
938 | #endif | |
939 | eval = ENOSPC; | |
940 | goto semgetout; | |
941 | } | |
942 | } | |
943 | #ifdef SEM_DEBUG | |
944 | printf("semid %d is available\n", semid); | |
945 | #endif | |
946 | sema[semid].sem_perm.key = key; | |
947 | sema[semid].sem_perm.cuid = kauth_cred_getuid(cred); | |
948 | sema[semid].sem_perm.uid = kauth_cred_getuid(cred); | |
949 | sema[semid].sem_perm.cgid = cred->cr_gid; | |
950 | sema[semid].sem_perm.gid = cred->cr_gid; | |
951 | sema[semid].sem_perm.mode = (semflg & 0777) | SEM_ALLOC; | |
952 | sema[semid].sem_perm.seq = | |
953 | (sema[semid].sem_perm.seq + 1) & 0x7fff; | |
954 | sema[semid].sem_nsems = nsems; | |
955 | sema[semid].sem_otime = 0; | |
956 | sema[semid].sem_ctime = sysv_semtime(); | |
957 | sema[semid].sem_base = &sem_pool[semtot]; | |
958 | semtot += nsems; | |
959 | bzero(sema[semid].sem_base, | |
960 | sizeof(sema[semid].sem_base[0])*nsems); | |
961 | #ifdef SEM_DEBUG | |
962 | printf("sembase = 0x%x, next = 0x%x\n", sema[semid].sem_base, | |
963 | &sem_pool[semtot]); | |
964 | #endif | |
965 | } else { | |
966 | #ifdef SEM_DEBUG | |
967 | printf("didn't find it and wasn't asked to create it\n"); | |
968 | #endif | |
969 | eval = ENOENT; | |
970 | goto semgetout; | |
971 | } | |
972 | ||
973 | found: | |
974 | *retval = IXSEQ_TO_IPCID(semid, sema[semid].sem_perm); | |
975 | AUDIT_ARG(svipc_id, *retval); | |
976 | #ifdef SEM_DEBUG | |
977 | printf("semget is done, returning %d\n", *retval); | |
978 | #endif | |
979 | eval = 0; | |
980 | ||
981 | semgetout: | |
982 | SYSV_SEM_SUBSYS_UNLOCK(); | |
983 | return(eval); | |
984 | } | |
985 | ||
986 | int | |
987 | semop(struct proc *p, struct semop_args *uap, register_t *retval) | |
988 | { | |
989 | int semid = uap->semid; | |
990 | int nsops = uap->nsops; | |
991 | struct sembuf sops[MAX_SOPS]; | |
992 | register struct user_semid_ds *semaptr; | |
993 | register struct sembuf *sopptr = NULL; /* protected by 'semptr' */ | |
994 | register struct sem *semptr = NULL; /* protected by 'if' */ | |
995 | struct sem_undo *suptr = NULL; | |
996 | int i, j, eval; | |
997 | int do_wakeup, do_undos; | |
998 | ||
999 | AUDIT_ARG(svipc_id, uap->semid); | |
1000 | ||
1001 | SYSV_SEM_SUBSYS_LOCK(); | |
1002 | ||
1003 | #ifdef SEM_DEBUG | |
1004 | printf("call to semop(%d, 0x%x, %d)\n", semid, sops, nsops); | |
1005 | #endif | |
1006 | ||
1007 | semid = IPCID_TO_IX(semid); /* Convert back to zero origin */ | |
1008 | ||
1009 | if (semid < 0 || semid >= seminfo.semmni) { | |
1010 | eval = EINVAL; | |
1011 | goto semopout; | |
1012 | } | |
1013 | ||
1014 | semaptr = &sema[semid]; | |
1015 | if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0) { | |
1016 | eval = EINVAL; | |
1017 | goto semopout; | |
1018 | } | |
1019 | if (semaptr->sem_perm.seq != IPCID_TO_SEQ(uap->semid)) { | |
1020 | eval = EINVAL; | |
1021 | goto semopout; | |
1022 | } | |
1023 | ||
1024 | if ((eval = ipcperm(kauth_cred_get(), &semaptr->sem_perm, IPC_W))) { | |
1025 | #ifdef SEM_DEBUG | |
1026 | printf("eval = %d from ipaccess\n", eval); | |
1027 | #endif | |
1028 | goto semopout; | |
1029 | } | |
1030 | ||
1031 | if (nsops < 0 || nsops > MAX_SOPS) { | |
1032 | #ifdef SEM_DEBUG | |
1033 | printf("too many sops (max=%d, nsops=%d)\n", MAX_SOPS, nsops); | |
1034 | #endif | |
1035 | eval = E2BIG; | |
1036 | goto semopout; | |
1037 | } | |
1038 | ||
1039 | /* OK for LP64, since sizeof(struct sembuf) is currently invariant */ | |
1040 | if ((eval = copyin(uap->sops, &sops, nsops * sizeof(struct sembuf))) != 0) { | |
1041 | #ifdef SEM_DEBUG | |
1042 | printf("eval = %d from copyin(%08x, %08x, %ld)\n", eval, | |
1043 | uap->sops, &sops, nsops * sizeof(struct sembuf)); | |
1044 | #endif | |
1045 | goto semopout; | |
1046 | } | |
1047 | ||
1048 | /* | |
1049 | * Loop trying to satisfy the vector of requests. | |
1050 | * If we reach a point where we must wait, any requests already | |
1051 | * performed are rolled back and we go to sleep until some other | |
1052 | * process wakes us up. At this point, we start all over again. | |
1053 | * | |
1054 | * This ensures that from the perspective of other tasks, a set | |
1055 | * of requests is atomic (never partially satisfied). | |
1056 | */ | |
1057 | do_undos = 0; | |
1058 | ||
1059 | for (;;) { | |
1060 | do_wakeup = 0; | |
1061 | ||
1062 | for (i = 0; i < nsops; i++) { | |
1063 | sopptr = &sops[i]; | |
1064 | ||
1065 | if (sopptr->sem_num >= semaptr->sem_nsems) { | |
1066 | eval = EFBIG; | |
1067 | goto semopout; | |
1068 | } | |
1069 | ||
1070 | semptr = &semaptr->sem_base[sopptr->sem_num]; | |
1071 | ||
1072 | #ifdef SEM_DEBUG | |
1073 | printf("semop: semaptr=%x, sem_base=%x, semptr=%x, sem[%d]=%d : op=%d, flag=%s\n", | |
1074 | semaptr, semaptr->sem_base, semptr, | |
1075 | sopptr->sem_num, semptr->semval, sopptr->sem_op, | |
1076 | (sopptr->sem_flg & IPC_NOWAIT) ? "nowait" : "wait"); | |
1077 | #endif | |
1078 | ||
1079 | if (sopptr->sem_op < 0) { | |
1080 | if (semptr->semval + sopptr->sem_op < 0) { | |
1081 | #ifdef SEM_DEBUG | |
1082 | printf("semop: can't do it now\n"); | |
1083 | #endif | |
1084 | break; | |
1085 | } else { | |
1086 | semptr->semval += sopptr->sem_op; | |
1087 | if (semptr->semval == 0 && | |
1088 | semptr->semzcnt > 0) | |
1089 | do_wakeup = 1; | |
1090 | } | |
1091 | if (sopptr->sem_flg & SEM_UNDO) | |
1092 | do_undos = 1; | |
1093 | } else if (sopptr->sem_op == 0) { | |
1094 | if (semptr->semval > 0) { | |
1095 | #ifdef SEM_DEBUG | |
1096 | printf("semop: not zero now\n"); | |
1097 | #endif | |
1098 | break; | |
1099 | } | |
1100 | } else { | |
1101 | if (semptr->semncnt > 0) | |
1102 | do_wakeup = 1; | |
1103 | semptr->semval += sopptr->sem_op; | |
1104 | if (sopptr->sem_flg & SEM_UNDO) | |
1105 | do_undos = 1; | |
1106 | } | |
1107 | } | |
1108 | ||
1109 | /* | |
1110 | * Did we get through the entire vector? | |
1111 | */ | |
1112 | if (i >= nsops) | |
1113 | goto done; | |
1114 | ||
1115 | /* | |
1116 | * No ... rollback anything that we've already done | |
1117 | */ | |
1118 | #ifdef SEM_DEBUG | |
1119 | printf("semop: rollback 0 through %d\n", i-1); | |
1120 | #endif | |
1121 | for (j = 0; j < i; j++) | |
1122 | semaptr->sem_base[sops[j].sem_num].semval -= | |
1123 | sops[j].sem_op; | |
1124 | ||
1125 | /* | |
1126 | * If the request that we couldn't satisfy has the | |
1127 | * NOWAIT flag set then return with EAGAIN. | |
1128 | */ | |
1129 | if (sopptr->sem_flg & IPC_NOWAIT) { | |
1130 | eval = EAGAIN; | |
1131 | goto semopout; | |
1132 | } | |
1133 | ||
1134 | if (sopptr->sem_op == 0) | |
1135 | semptr->semzcnt++; | |
1136 | else | |
1137 | semptr->semncnt++; | |
1138 | ||
1139 | #ifdef SEM_DEBUG | |
1140 | printf("semop: good night!\n"); | |
1141 | #endif | |
1142 | /* Release our lock on the semaphore subsystem so | |
1143 | * another thread can get at the semaphore we are | |
1144 | * waiting for. We will get the lock back after we | |
1145 | * wake up. | |
1146 | */ | |
1147 | eval = msleep((caddr_t)semaptr, &sysv_sem_subsys_mutex , (PZERO - 4) | PCATCH, | |
1148 | "semwait", 0); | |
1149 | ||
1150 | #ifdef SEM_DEBUG | |
1151 | printf("semop: good morning (eval=%d)!\n", eval); | |
1152 | #endif | |
1153 | if (eval != 0) { | |
1154 | eval = EINTR; | |
1155 | } | |
1156 | ||
1157 | /* | |
1158 | * IMPORTANT: while we were asleep, the semaphore array might | |
1159 | * have been reallocated somewhere else (see grow_sema_array()). | |
1160 | * When we wake up, we have to re-lookup the semaphore | |
1161 | * structures and re-validate them. | |
1162 | */ | |
1163 | ||
1164 | suptr = NULL; /* sem_undo may have been reallocated */ | |
1165 | semaptr = &sema[semid]; /* sema may have been reallocated */ | |
1166 | ||
1167 | /* | |
1168 | * Make sure that the semaphore still exists | |
1169 | */ | |
1170 | if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0 || | |
1171 | semaptr->sem_perm.seq != IPCID_TO_SEQ(uap->semid) || | |
1172 | sopptr->sem_num >= semaptr->sem_nsems) { | |
1173 | if (eval == EINTR) { | |
1174 | /* | |
1175 | * EINTR takes precedence over the fact that | |
1176 | * the semaphore disappeared while we were | |
1177 | * sleeping... | |
1178 | */ | |
1179 | } else { | |
1180 | /* | |
1181 | * The man page says to return EIDRM. | |
1182 | * Unfortunately, BSD doesn't define that code! | |
1183 | */ | |
1184 | #ifdef EIDRM | |
1185 | eval = EIDRM; | |
1186 | #else | |
1187 | eval = EINVAL; | |
1188 | #endif | |
1189 | } | |
1190 | goto semopout; | |
1191 | } | |
1192 | ||
1193 | /* | |
1194 | * The semaphore is still alive. Readjust the count of | |
1195 | * waiting processes. semptr needs to be recomputed | |
1196 | * because the sem[] may have been reallocated while | |
1197 | * we were sleeping, updating our sem_base pointer. | |
1198 | */ | |
1199 | semptr = &semaptr->sem_base[sopptr->sem_num]; | |
1200 | if (sopptr->sem_op == 0) | |
1201 | semptr->semzcnt--; | |
1202 | else | |
1203 | semptr->semncnt--; | |
1204 | ||
1205 | if (eval != 0) { /* EINTR */ | |
1206 | goto semopout; | |
1207 | } | |
1208 | } | |
1209 | ||
1210 | done: | |
1211 | /* | |
1212 | * Process any SEM_UNDO requests. | |
1213 | */ | |
1214 | if (do_undos) { | |
1215 | for (i = 0; i < nsops; i++) { | |
1216 | /* | |
1217 | * We only need to deal with SEM_UNDO's for non-zero | |
1218 | * op's. | |
1219 | */ | |
1220 | int adjval; | |
1221 | ||
1222 | if ((sops[i].sem_flg & SEM_UNDO) == 0) | |
1223 | continue; | |
1224 | adjval = sops[i].sem_op; | |
1225 | if (adjval == 0) | |
1226 | continue; | |
1227 | eval = semundo_adjust(p, &suptr, semid, | |
1228 | sops[i].sem_num, -adjval); | |
1229 | if (eval == 0) | |
1230 | continue; | |
1231 | ||
1232 | /* | |
1233 | * Oh-Oh! We ran out of either sem_undo's or undo's. | |
1234 | * Rollback the adjustments to this point and then | |
1235 | * rollback the semaphore ups and down so we can return | |
1236 | * with an error with all structures restored. We | |
1237 | * rollback the undo's in the exact reverse order that | |
1238 | * we applied them. This guarantees that we won't run | |
1239 | * out of space as we roll things back out. | |
1240 | */ | |
1241 | for (j = i - 1; j >= 0; j--) { | |
1242 | if ((sops[j].sem_flg & SEM_UNDO) == 0) | |
1243 | continue; | |
1244 | adjval = sops[j].sem_op; | |
1245 | if (adjval == 0) | |
1246 | continue; | |
1247 | if (semundo_adjust(p, &suptr, semid, | |
1248 | sops[j].sem_num, adjval) != 0) | |
1249 | panic("semop - can't undo undos"); | |
1250 | } | |
1251 | ||
1252 | for (j = 0; j < nsops; j++) | |
1253 | semaptr->sem_base[sops[j].sem_num].semval -= | |
1254 | sops[j].sem_op; | |
1255 | ||
1256 | #ifdef SEM_DEBUG | |
1257 | printf("eval = %d from semundo_adjust\n", eval); | |
1258 | #endif | |
1259 | goto semopout; | |
1260 | } /* loop through the sops */ | |
1261 | } /* if (do_undos) */ | |
1262 | ||
1263 | /* We're definitely done - set the sempid's */ | |
1264 | for (i = 0; i < nsops; i++) { | |
1265 | sopptr = &sops[i]; | |
1266 | semptr = &semaptr->sem_base[sopptr->sem_num]; | |
1267 | semptr->sempid = p->p_pid; | |
1268 | } | |
1269 | ||
1270 | if (do_wakeup) { | |
1271 | #ifdef SEM_DEBUG | |
1272 | printf("semop: doing wakeup\n"); | |
1273 | #ifdef SEM_WAKEUP | |
1274 | sem_wakeup((caddr_t)semaptr); | |
1275 | #else | |
1276 | wakeup((caddr_t)semaptr); | |
1277 | #endif | |
1278 | printf("semop: back from wakeup\n"); | |
1279 | #else | |
1280 | wakeup((caddr_t)semaptr); | |
1281 | #endif | |
1282 | } | |
1283 | #ifdef SEM_DEBUG | |
1284 | printf("semop: done\n"); | |
1285 | #endif | |
1286 | *retval = 0; | |
1287 | eval = 0; | |
1288 | semopout: | |
1289 | SYSV_SEM_SUBSYS_UNLOCK(); | |
1290 | return(eval); | |
1291 | } | |
1292 | ||
1293 | /* | |
1294 | * Go through the undo structures for this process and apply the adjustments to | |
1295 | * semaphores. | |
1296 | */ | |
1297 | void | |
1298 | semexit(struct proc *p) | |
1299 | { | |
1300 | register struct sem_undo *suptr; | |
1301 | register struct sem_undo **supptr; | |
1302 | int did_something; | |
1303 | ||
1304 | /* If we have not allocated our semaphores yet there can't be | |
1305 | * anything to undo, but we need the lock to prevent | |
1306 | * dynamic memory race conditions. | |
1307 | */ | |
1308 | SYSV_SEM_SUBSYS_LOCK(); | |
1309 | ||
1310 | if (!sem_pool) | |
1311 | { | |
1312 | SYSV_SEM_SUBSYS_UNLOCK(); | |
1313 | return; | |
1314 | } | |
1315 | did_something = 0; | |
1316 | ||
1317 | /* | |
1318 | * Go through the chain of undo vectors looking for one | |
1319 | * associated with this process. | |
1320 | */ | |
1321 | ||
1322 | for (supptr = &semu_list; (suptr = *supptr) != NULL; | |
1323 | supptr = &suptr->un_next) { | |
1324 | if (suptr->un_proc == p) | |
1325 | break; | |
1326 | } | |
1327 | ||
1328 | if (suptr == NULL) | |
1329 | goto unlock; | |
1330 | ||
1331 | #ifdef SEM_DEBUG | |
1332 | printf("proc @%08x has undo structure with %d entries\n", p, | |
1333 | suptr->un_cnt); | |
1334 | #endif | |
1335 | ||
1336 | /* | |
1337 | * If there are any active undo elements then process them. | |
1338 | */ | |
1339 | if (suptr->un_cnt > 0) { | |
1340 | while (suptr->un_ent != NULL) { | |
1341 | struct undo *sueptr; | |
1342 | int semid; | |
1343 | int semnum; | |
1344 | int adjval; | |
1345 | struct user_semid_ds *semaptr; | |
1346 | ||
1347 | sueptr = suptr->un_ent; | |
1348 | semid = sueptr->une_id; | |
1349 | semnum = sueptr->une_num; | |
1350 | adjval = sueptr->une_adjval; | |
1351 | ||
1352 | semaptr = &sema[semid]; | |
1353 | if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0) | |
1354 | panic("semexit - semid not allocated"); | |
1355 | if (semnum >= semaptr->sem_nsems) | |
1356 | panic("semexit - semnum out of range"); | |
1357 | ||
1358 | #ifdef SEM_DEBUG | |
1359 | printf("semexit: %08x id=%d num=%d(adj=%d) ; sem=%d\n", | |
1360 | suptr->un_proc, | |
1361 | semid, | |
1362 | semnum, | |
1363 | adjval, | |
1364 | semaptr->sem_base[semnum].semval); | |
1365 | #endif | |
1366 | ||
1367 | if (adjval < 0) { | |
1368 | if (semaptr->sem_base[semnum].semval < -adjval) | |
1369 | semaptr->sem_base[semnum].semval = 0; | |
1370 | else | |
1371 | semaptr->sem_base[semnum].semval += | |
1372 | adjval; | |
1373 | } else | |
1374 | semaptr->sem_base[semnum].semval += adjval; | |
1375 | ||
1376 | /* Maybe we should build a list of semaptr's to wake | |
1377 | * up, finish all access to data structures, release the | |
1378 | * subsystem lock, and wake all the processes. Something | |
1379 | * to think about. It wouldn't buy us anything unless | |
1380 | * wakeup had the potential to block, or the syscall | |
1381 | * funnel state was changed to allow multiple threads | |
1382 | * in the BSD code at once. | |
1383 | */ | |
1384 | #ifdef SEM_WAKEUP | |
1385 | sem_wakeup((caddr_t)semaptr); | |
1386 | #else | |
1387 | wakeup((caddr_t)semaptr); | |
1388 | #endif | |
1389 | #ifdef SEM_DEBUG | |
1390 | printf("semexit: back from wakeup\n"); | |
1391 | #endif | |
1392 | suptr->un_cnt--; | |
1393 | suptr->un_ent = sueptr->une_next; | |
1394 | FREE(sueptr, M_SYSVSEM); | |
1395 | sueptr = NULL; | |
1396 | } | |
1397 | } | |
1398 | ||
1399 | /* | |
1400 | * Deallocate the undo vector. | |
1401 | */ | |
1402 | #ifdef SEM_DEBUG | |
1403 | printf("removing vector\n"); | |
1404 | #endif | |
1405 | suptr->un_proc = NULL; | |
1406 | *supptr = suptr->un_next; | |
1407 | ||
1408 | unlock: | |
1409 | /* | |
1410 | * There is a semaphore leak (i.e. memory leak) in this code. | |
1411 | * We should be deleting the IPC_PRIVATE semaphores when they are | |
1412 | * no longer needed, and we dont. We would have to track which processes | |
1413 | * know about which IPC_PRIVATE semaphores, updating the list after | |
1414 | * every fork. We can't just delete them semaphore when the process | |
1415 | * that created it dies, because that process may well have forked | |
1416 | * some children. So we need to wait until all of it's children have | |
1417 | * died, and so on. Maybe we should tag each IPC_PRIVATE sempahore | |
1418 | * with the creating group ID, count the number of processes left in | |
1419 | * that group, and delete the semaphore when the group is gone. | |
1420 | * Until that code gets implemented we will leak IPC_PRIVATE semaphores. | |
1421 | * There is an upper bound on the size of our semaphore array, so | |
1422 | * leaking the semaphores should not work as a DOS attack. | |
1423 | * | |
1424 | * Please note that the original BSD code this file is based on had the | |
1425 | * same leaky semaphore problem. | |
1426 | */ | |
1427 | ||
1428 | SYSV_SEM_SUBSYS_UNLOCK(); | |
1429 | } | |
1430 | ||
1431 | ||
1432 | /* (struct sysctl_oid *oidp, void *arg1, int arg2, \ | |
1433 | struct sysctl_req *req) */ | |
1434 | static int | |
1435 | sysctl_seminfo(__unused struct sysctl_oid *oidp, void *arg1, | |
1436 | __unused int arg2, struct sysctl_req *req) | |
1437 | { | |
1438 | int error = 0; | |
1439 | ||
1440 | error = SYSCTL_OUT(req, arg1, sizeof(int)); | |
1441 | if (error || req->newptr == USER_ADDR_NULL) | |
1442 | return(error); | |
1443 | ||
1444 | SYSV_SEM_SUBSYS_LOCK(); | |
1445 | ||
1446 | /* Set the values only if shared memory is not initialised */ | |
1447 | if ((sem_pool == NULL) && | |
1448 | (sema == NULL) && | |
1449 | (semu == NULL) && | |
1450 | (semu_list == NULL)) { | |
1451 | if ((error = SYSCTL_IN(req, arg1, sizeof(int)))) { | |
1452 | goto out; | |
1453 | } | |
1454 | } else | |
1455 | error = EINVAL; | |
1456 | out: | |
1457 | SYSV_SEM_SUBSYS_UNLOCK(); | |
1458 | return(error); | |
1459 | ||
1460 | } | |
1461 | ||
1462 | /* SYSCTL_NODE(_kern, KERN_SYSV, sysv, CTLFLAG_RW, 0, "SYSV"); */ | |
1463 | extern struct sysctl_oid_list sysctl__kern_sysv_children; | |
1464 | SYSCTL_PROC(_kern_sysv, KSYSV_SEMMNI, semmni, CTLTYPE_INT | CTLFLAG_RW, | |
1465 | &limitseminfo.semmni, 0, &sysctl_seminfo ,"I","semmni"); | |
1466 | ||
1467 | SYSCTL_PROC(_kern_sysv, KSYSV_SEMMNS, semmns, CTLTYPE_INT | CTLFLAG_RW, | |
1468 | &limitseminfo.semmns, 0, &sysctl_seminfo ,"I","semmns"); | |
1469 | ||
1470 | SYSCTL_PROC(_kern_sysv, KSYSV_SEMMNU, semmnu, CTLTYPE_INT | CTLFLAG_RW, | |
1471 | &limitseminfo.semmnu, 0, &sysctl_seminfo ,"I","semmnu"); | |
1472 | ||
1473 | SYSCTL_PROC(_kern_sysv, KSYSV_SEMMSL, semmsl, CTLTYPE_INT | CTLFLAG_RW, | |
1474 | &limitseminfo.semmsl, 0, &sysctl_seminfo ,"I","semmsl"); | |
1475 | ||
1476 | SYSCTL_PROC(_kern_sysv, KSYSV_SEMUNE, semume, CTLTYPE_INT | CTLFLAG_RW, | |
1477 | &limitseminfo.semume, 0, &sysctl_seminfo ,"I","semume"); | |
1478 | ||
1479 | ||
1480 | static int | |
1481 | IPCS_sem_sysctl(__unused struct sysctl_oid *oidp, __unused void *arg1, | |
1482 | __unused int arg2, struct sysctl_req *req) | |
1483 | { | |
1484 | int error; | |
1485 | int cursor; | |
1486 | union { | |
1487 | struct IPCS_command u32; | |
1488 | struct user_IPCS_command u64; | |
1489 | } ipcs; | |
1490 | struct semid_ds semid_ds32; /* post conversion, 32 bit version */ | |
1491 | void *semid_dsp; | |
1492 | size_t ipcs_sz = sizeof(struct user_IPCS_command); | |
1493 | size_t semid_ds_sz = sizeof(struct user_semid_ds); | |
1494 | struct proc *p = current_proc(); | |
1495 | ||
1496 | /* Copy in the command structure */ | |
1497 | if ((error = SYSCTL_IN(req, &ipcs, ipcs_sz)) != 0) { | |
1498 | return(error); | |
1499 | } | |
1500 | ||
1501 | if (!IS_64BIT_PROCESS(p)) { | |
1502 | ipcs_sz = sizeof(struct IPCS_command); | |
1503 | semid_ds_sz = sizeof(struct semid_ds); | |
1504 | } | |
1505 | ||
1506 | /* Let us version this interface... */ | |
1507 | if (ipcs.u64.ipcs_magic != IPCS_MAGIC) { | |
1508 | return(EINVAL); | |
1509 | } | |
1510 | ||
1511 | SYSV_SEM_SUBSYS_LOCK(); | |
1512 | switch(ipcs.u64.ipcs_op) { | |
1513 | case IPCS_SEM_CONF: /* Obtain global configuration data */ | |
1514 | if (ipcs.u64.ipcs_datalen != sizeof(struct seminfo)) { | |
1515 | error = ERANGE; | |
1516 | break; | |
1517 | } | |
1518 | if (ipcs.u64.ipcs_cursor != 0) { /* fwd. compat. */ | |
1519 | error = EINVAL; | |
1520 | break; | |
1521 | } | |
1522 | error = copyout(&seminfo, ipcs.u64.ipcs_data, ipcs.u64.ipcs_datalen); | |
1523 | break; | |
1524 | ||
1525 | case IPCS_SEM_ITER: /* Iterate over existing segments */ | |
1526 | cursor = ipcs.u64.ipcs_cursor; | |
1527 | if (cursor < 0 || cursor >= seminfo.semmni) { | |
1528 | error = ERANGE; | |
1529 | break; | |
1530 | } | |
1531 | if (ipcs.u64.ipcs_datalen != (int)semid_ds_sz ) { | |
1532 | error = EINVAL; | |
1533 | break; | |
1534 | } | |
1535 | for( ; cursor < seminfo.semmni; cursor++) { | |
1536 | if (sema[cursor].sem_perm.mode & SEM_ALLOC) | |
1537 | break; | |
1538 | continue; | |
1539 | } | |
1540 | if (cursor == seminfo.semmni) { | |
1541 | error = ENOENT; | |
1542 | break; | |
1543 | } | |
1544 | ||
1545 | semid_dsp = &sema[cursor]; /* default: 64 bit */ | |
1546 | ||
1547 | /* | |
1548 | * If necessary, convert the 64 bit kernel segment | |
1549 | * descriptor to a 32 bit user one. | |
1550 | */ | |
1551 | if (!IS_64BIT_PROCESS(p)) { | |
1552 | semid_ds_64to32(semid_dsp, &semid_ds32); | |
1553 | semid_dsp = &semid_ds32; | |
1554 | } | |
1555 | error = copyout(semid_dsp, ipcs.u64.ipcs_data, ipcs.u64.ipcs_datalen); | |
1556 | if (!error) { | |
1557 | /* update cursor */ | |
1558 | ipcs.u64.ipcs_cursor = cursor + 1; | |
1559 | error = SYSCTL_OUT(req, &ipcs, ipcs_sz); | |
1560 | } | |
1561 | break; | |
1562 | ||
1563 | default: | |
1564 | error = EINVAL; | |
1565 | break; | |
1566 | } | |
1567 | SYSV_SEM_SUBSYS_UNLOCK(); | |
1568 | return(error); | |
1569 | } | |
1570 | ||
1571 | SYSCTL_DECL(_kern_sysv_ipcs); | |
1572 | SYSCTL_PROC(_kern_sysv_ipcs, OID_AUTO, sem, CTLFLAG_RW|CTLFLAG_ANYBODY, | |
1573 | 0, 0, IPCS_sem_sysctl, | |
1574 | "S,IPCS_sem_command", | |
1575 | "ipcs sem command interface"); |