]> git.saurik.com Git - apple/xnu.git/blame_incremental - osfmk/kern/sync_sema.c
xnu-2422.1.72.tar.gz
[apple/xnu.git] / osfmk / kern / sync_sema.c
... / ...
CommitLineData
1/*
2 * Copyright (c) 2000-2009 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28/*
29 * @OSF_COPYRIGHT@
30 *
31 */
32/*
33 * File: kern/sync_sema.c
34 * Author: Joseph CaraDonna
35 *
36 * Contains RT distributed semaphore synchronization services.
37 */
38
39#include <mach/mach_types.h>
40#include <mach/mach_traps.h>
41#include <mach/kern_return.h>
42#include <mach/semaphore.h>
43#include <mach/sync_policy.h>
44#include <mach/task.h>
45
46#include <kern/misc_protos.h>
47#include <kern/sync_sema.h>
48#include <kern/spl.h>
49#include <kern/ipc_kobject.h>
50#include <kern/ipc_sync.h>
51#include <kern/ipc_tt.h>
52#include <kern/thread.h>
53#include <kern/clock.h>
54#include <ipc/ipc_port.h>
55#include <ipc/ipc_space.h>
56#include <kern/host.h>
57#include <kern/wait_queue.h>
58#include <kern/zalloc.h>
59#include <kern/mach_param.h>
60
61#include <libkern/OSAtomic.h>
62
63static unsigned int semaphore_event;
64#define SEMAPHORE_EVENT CAST_EVENT64_T(&semaphore_event)
65
66zone_t semaphore_zone;
67unsigned int semaphore_max;
68
69/* Forward declarations */
70
71
72kern_return_t
73semaphore_wait_trap_internal(
74 mach_port_name_t name,
75 void (*caller_cont)(kern_return_t));
76
77kern_return_t
78semaphore_wait_signal_trap_internal(
79 mach_port_name_t wait_name,
80 mach_port_name_t signal_name,
81 void (*caller_cont)(kern_return_t));
82
83kern_return_t
84semaphore_timedwait_trap_internal(
85 mach_port_name_t name,
86 unsigned int sec,
87 clock_res_t nsec,
88 void (*caller_cont)(kern_return_t));
89
90kern_return_t
91semaphore_timedwait_signal_trap_internal(
92 mach_port_name_t wait_name,
93 mach_port_name_t signal_name,
94 unsigned int sec,
95 clock_res_t nsec,
96 void (*caller_cont)(kern_return_t));
97
98kern_return_t
99semaphore_signal_internal_trap(mach_port_name_t sema_name);
100
101kern_return_t
102semaphore_signal_internal(
103 semaphore_t semaphore,
104 thread_t thread,
105 int options);
106
107kern_return_t
108semaphore_convert_wait_result(
109 int wait_result);
110
111void
112semaphore_wait_continue(void);
113
114static kern_return_t
115semaphore_wait_internal(
116 semaphore_t wait_semaphore,
117 semaphore_t signal_semaphore,
118 uint64_t deadline,
119 int option,
120 void (*caller_cont)(kern_return_t));
121
122static __inline__ uint64_t
123semaphore_deadline(
124 unsigned int sec,
125 clock_res_t nsec)
126{
127 uint64_t abstime;
128
129 nanoseconds_to_absolutetime((uint64_t)sec * NSEC_PER_SEC + nsec, &abstime);
130 clock_absolutetime_interval_to_deadline(abstime, &abstime);
131
132 return (abstime);
133}
134
135/*
136 * ROUTINE: semaphore_init [private]
137 *
138 * Initialize the semaphore mechanisms.
139 * Right now, we only need to initialize the semaphore zone.
140 */
141void
142semaphore_init(void)
143{
144 semaphore_zone = zinit(sizeof(struct semaphore),
145 semaphore_max * sizeof(struct semaphore),
146 sizeof(struct semaphore),
147 "semaphores");
148 zone_change(semaphore_zone, Z_NOENCRYPT, TRUE);
149}
150
151/*
152 * Routine: semaphore_create
153 *
154 * Creates a semaphore.
155 * The port representing the semaphore is returned as a parameter.
156 */
157kern_return_t
158semaphore_create(
159 task_t task,
160 semaphore_t *new_semaphore,
161 int policy,
162 int value)
163{
164 semaphore_t s = SEMAPHORE_NULL;
165 kern_return_t kret;
166
167
168 *new_semaphore = SEMAPHORE_NULL;
169 if (task == TASK_NULL || value < 0 || policy > SYNC_POLICY_MAX)
170 return KERN_INVALID_ARGUMENT;
171
172 s = (semaphore_t) zalloc (semaphore_zone);
173
174 if (s == SEMAPHORE_NULL)
175 return KERN_RESOURCE_SHORTAGE;
176
177 kret = wait_queue_init(&s->wait_queue, policy); /* also inits lock */
178 if (kret != KERN_SUCCESS) {
179 zfree(semaphore_zone, s);
180 return kret;
181 }
182
183 s->count = value;
184
185 /*
186 * One reference for caller, one for port, and one for owner
187 * task (if not the kernel itself).
188 */
189 s->ref_count = (task == kernel_task) ? 2 : 3;
190
191 /*
192 * Create and initialize the semaphore port
193 */
194 s->port = ipc_port_alloc_kernel();
195 if (s->port == IP_NULL) {
196 zfree(semaphore_zone, s);
197 return KERN_RESOURCE_SHORTAGE;
198 }
199
200 ipc_kobject_set (s->port, (ipc_kobject_t) s, IKOT_SEMAPHORE);
201
202 /*
203 * Associate the new semaphore with the task by adding
204 * the new semaphore to the task's semaphore list.
205 *
206 * Associate the task with the new semaphore by having the
207 * semaphores task pointer point to the owning task's structure.
208 */
209 task_lock(task);
210 enqueue_head(&task->semaphore_list, (queue_entry_t) s);
211 task->semaphores_owned++;
212 s->owner = task;
213 s->active = TRUE;
214 task_unlock(task);
215
216 *new_semaphore = s;
217
218 return KERN_SUCCESS;
219}
220
221/*
222 * Routine: semaphore_destroy
223 *
224 * Destroys a semaphore. This call will only succeed if the
225 * specified task is the SAME task name specified at the semaphore's
226 * creation.
227 *
228 * All threads currently blocked on the semaphore are awoken. These
229 * threads will return with the KERN_TERMINATED error.
230 */
231kern_return_t
232semaphore_destroy(
233 task_t task,
234 semaphore_t semaphore)
235{
236 int old_count;
237 spl_t spl_level;
238
239
240 if (task == TASK_NULL || semaphore == SEMAPHORE_NULL)
241 return KERN_INVALID_ARGUMENT;
242
243 /*
244 * Disown semaphore
245 */
246 task_lock(task);
247 if (semaphore->owner != task) {
248 task_unlock(task);
249 return KERN_INVALID_ARGUMENT;
250 }
251 remqueue((queue_entry_t) semaphore);
252 semaphore->owner = TASK_NULL;
253 task->semaphores_owned--;
254 task_unlock(task);
255
256 spl_level = splsched();
257 semaphore_lock(semaphore);
258
259 /*
260 * Deactivate semaphore
261 */
262 assert(semaphore->active);
263 semaphore->active = FALSE;
264
265 /*
266 * Wakeup blocked threads
267 */
268 old_count = semaphore->count;
269 semaphore->count = 0;
270
271 if (old_count < 0) {
272 wait_queue_wakeup64_all_locked(&semaphore->wait_queue,
273 SEMAPHORE_EVENT,
274 THREAD_RESTART,
275 TRUE); /* unlock? */
276 } else {
277 semaphore_unlock(semaphore);
278 }
279 splx(spl_level);
280
281 /*
282 * Deallocate
283 *
284 * Drop the task's semaphore reference, which in turn deallocates
285 * the semaphore structure if the reference count goes to zero.
286 */
287 semaphore_dereference(semaphore);
288 return KERN_SUCCESS;
289}
290
291/*
292 * Routine: semaphore_signal_internal
293 *
294 * Signals the semaphore as direct.
295 * Assumptions:
296 * Semaphore is locked.
297 */
298kern_return_t
299semaphore_signal_internal(
300 semaphore_t semaphore,
301 thread_t thread,
302 int options)
303{
304 kern_return_t kr;
305 spl_t spl_level;
306
307 spl_level = splsched();
308 semaphore_lock(semaphore);
309
310 if (!semaphore->active) {
311 semaphore_unlock(semaphore);
312 splx(spl_level);
313 return KERN_TERMINATED;
314 }
315
316 if (thread != THREAD_NULL) {
317 if (semaphore->count < 0) {
318 kr = wait_queue_wakeup64_thread_locked(
319 &semaphore->wait_queue,
320 SEMAPHORE_EVENT,
321 thread,
322 THREAD_AWAKENED,
323 TRUE); /* unlock? */
324 } else {
325 semaphore_unlock(semaphore);
326 kr = KERN_NOT_WAITING;
327 }
328 splx(spl_level);
329 return kr;
330 }
331
332 if (options & SEMAPHORE_SIGNAL_ALL) {
333 int old_count = semaphore->count;
334
335 if (old_count < 0) {
336 semaphore->count = 0; /* always reset */
337 kr = wait_queue_wakeup64_all_locked(
338 &semaphore->wait_queue,
339 SEMAPHORE_EVENT,
340 THREAD_AWAKENED,
341 TRUE); /* unlock? */
342 } else {
343 if (options & SEMAPHORE_SIGNAL_PREPOST)
344 semaphore->count++;
345 semaphore_unlock(semaphore);
346 kr = KERN_SUCCESS;
347 }
348 splx(spl_level);
349 return kr;
350 }
351
352 if (semaphore->count < 0) {
353 if (wait_queue_wakeup64_one_locked(
354 &semaphore->wait_queue,
355 SEMAPHORE_EVENT,
356 THREAD_AWAKENED,
357 FALSE) == KERN_SUCCESS) {
358 semaphore_unlock(semaphore);
359 splx(spl_level);
360 return KERN_SUCCESS;
361 } else
362 semaphore->count = 0; /* all waiters gone */
363 }
364
365 if (options & SEMAPHORE_SIGNAL_PREPOST) {
366 semaphore->count++;
367 }
368
369 semaphore_unlock(semaphore);
370 splx(spl_level);
371 return KERN_NOT_WAITING;
372}
373
374/*
375 * Routine: semaphore_signal_thread
376 *
377 * If the specified thread is blocked on the semaphore, it is
378 * woken up. If a NULL thread was supplied, then any one
379 * thread is woken up. Otherwise the caller gets KERN_NOT_WAITING
380 * and the semaphore is unchanged.
381 */
382kern_return_t
383semaphore_signal_thread(
384 semaphore_t semaphore,
385 thread_t thread)
386{
387 kern_return_t ret;
388
389 if (semaphore == SEMAPHORE_NULL)
390 return KERN_INVALID_ARGUMENT;
391
392 ret = semaphore_signal_internal(semaphore,
393 thread,
394 SEMAPHORE_OPTION_NONE);
395 return ret;
396}
397
398/*
399 * Routine: semaphore_signal_thread_trap
400 *
401 * Trap interface to the semaphore_signal_thread function.
402 */
403kern_return_t
404semaphore_signal_thread_trap(
405 struct semaphore_signal_thread_trap_args *args)
406{
407 mach_port_name_t sema_name = args->signal_name;
408 mach_port_name_t thread_name = args->thread_name;
409 semaphore_t semaphore;
410 thread_t thread;
411 kern_return_t kr;
412
413 /*
414 * MACH_PORT_NULL is not an error. It means that we want to
415 * select any one thread that is already waiting, but not to
416 * pre-post the semaphore.
417 */
418 if (thread_name != MACH_PORT_NULL) {
419 thread = port_name_to_thread(thread_name);
420 if (thread == THREAD_NULL)
421 return KERN_INVALID_ARGUMENT;
422 } else
423 thread = THREAD_NULL;
424
425 kr = port_name_to_semaphore(sema_name, &semaphore);
426 if (kr == KERN_SUCCESS) {
427 kr = semaphore_signal_internal(semaphore,
428 thread,
429 SEMAPHORE_OPTION_NONE);
430 semaphore_dereference(semaphore);
431 }
432 if (thread != THREAD_NULL) {
433 thread_deallocate(thread);
434 }
435 return kr;
436}
437
438
439
440/*
441 * Routine: semaphore_signal
442 *
443 * Traditional (in-kernel client and MIG interface) semaphore
444 * signal routine. Most users will access the trap version.
445 *
446 * This interface in not defined to return info about whether
447 * this call found a thread waiting or not. The internal
448 * routines (and future external routines) do. We have to
449 * convert those into plain KERN_SUCCESS returns.
450 */
451kern_return_t
452semaphore_signal(
453 semaphore_t semaphore)
454{
455 kern_return_t kr;
456
457 if (semaphore == SEMAPHORE_NULL)
458 return KERN_INVALID_ARGUMENT;
459
460 kr = semaphore_signal_internal(semaphore,
461 THREAD_NULL,
462 SEMAPHORE_SIGNAL_PREPOST);
463 if (kr == KERN_NOT_WAITING)
464 return KERN_SUCCESS;
465 return kr;
466}
467
468/*
469 * Routine: semaphore_signal_trap
470 *
471 * Trap interface to the semaphore_signal function.
472 */
473kern_return_t
474semaphore_signal_trap(
475 struct semaphore_signal_trap_args *args)
476{
477 mach_port_name_t sema_name = args->signal_name;
478
479 return (semaphore_signal_internal_trap(sema_name));
480}
481
482kern_return_t
483semaphore_signal_internal_trap(mach_port_name_t sema_name)
484{
485 semaphore_t semaphore;
486 kern_return_t kr;
487
488 kr = port_name_to_semaphore(sema_name, &semaphore);
489 if (kr == KERN_SUCCESS) {
490 kr = semaphore_signal_internal(semaphore,
491 THREAD_NULL,
492 SEMAPHORE_SIGNAL_PREPOST);
493 semaphore_dereference(semaphore);
494 if (kr == KERN_NOT_WAITING)
495 kr = KERN_SUCCESS;
496 }
497 return kr;
498}
499
500/*
501 * Routine: semaphore_signal_all
502 *
503 * Awakens ALL threads currently blocked on the semaphore.
504 * The semaphore count returns to zero.
505 */
506kern_return_t
507semaphore_signal_all(
508 semaphore_t semaphore)
509{
510 kern_return_t kr;
511
512 if (semaphore == SEMAPHORE_NULL)
513 return KERN_INVALID_ARGUMENT;
514
515 kr = semaphore_signal_internal(semaphore,
516 THREAD_NULL,
517 SEMAPHORE_SIGNAL_ALL);
518 if (kr == KERN_NOT_WAITING)
519 return KERN_SUCCESS;
520 return kr;
521}
522
523/*
524 * Routine: semaphore_signal_all_trap
525 *
526 * Trap interface to the semaphore_signal_all function.
527 */
528kern_return_t
529semaphore_signal_all_trap(
530 struct semaphore_signal_all_trap_args *args)
531{
532 mach_port_name_t sema_name = args->signal_name;
533 semaphore_t semaphore;
534 kern_return_t kr;
535
536 kr = port_name_to_semaphore(sema_name, &semaphore);
537 if (kr == KERN_SUCCESS) {
538 kr = semaphore_signal_internal(semaphore,
539 THREAD_NULL,
540 SEMAPHORE_SIGNAL_ALL);
541 semaphore_dereference(semaphore);
542 if (kr == KERN_NOT_WAITING)
543 kr = KERN_SUCCESS;
544 }
545 return kr;
546}
547
548/*
549 * Routine: semaphore_convert_wait_result
550 *
551 * Generate the return code after a semaphore wait/block. It
552 * takes the wait result as an input and coverts that to an
553 * appropriate result.
554 */
555kern_return_t
556semaphore_convert_wait_result(int wait_result)
557{
558 switch (wait_result) {
559 case THREAD_AWAKENED:
560 return KERN_SUCCESS;
561
562 case THREAD_TIMED_OUT:
563 return KERN_OPERATION_TIMED_OUT;
564
565 case THREAD_INTERRUPTED:
566 return KERN_ABORTED;
567
568 case THREAD_RESTART:
569 return KERN_TERMINATED;
570
571 default:
572 panic("semaphore_block\n");
573 return KERN_FAILURE;
574 }
575}
576
577/*
578 * Routine: semaphore_wait_continue
579 *
580 * Common continuation routine after waiting on a semphore.
581 * It returns directly to user space.
582 */
583void
584semaphore_wait_continue(void)
585{
586 thread_t self = current_thread();
587 int wait_result = self->wait_result;
588 void (*caller_cont)(kern_return_t) = self->sth_continuation;
589
590 assert(self->sth_waitsemaphore != SEMAPHORE_NULL);
591 semaphore_dereference(self->sth_waitsemaphore);
592 if (self->sth_signalsemaphore != SEMAPHORE_NULL)
593 semaphore_dereference(self->sth_signalsemaphore);
594
595 assert(caller_cont != (void (*)(kern_return_t))0);
596 (*caller_cont)(semaphore_convert_wait_result(wait_result));
597}
598
599/*
600 * Routine: semaphore_wait_internal
601 *
602 * Decrements the semaphore count by one. If the count is
603 * negative after the decrement, the calling thread blocks
604 * (possibly at a continuation and/or with a timeout).
605 *
606 * Assumptions:
607 * The reference
608 * A reference is held on the signal semaphore.
609 */
610static kern_return_t
611semaphore_wait_internal(
612 semaphore_t wait_semaphore,
613 semaphore_t signal_semaphore,
614 uint64_t deadline,
615 int option,
616 void (*caller_cont)(kern_return_t))
617{
618 int wait_result;
619 spl_t spl_level;
620 kern_return_t kr = KERN_ALREADY_WAITING;
621
622 spl_level = splsched();
623 semaphore_lock(wait_semaphore);
624
625 if (!wait_semaphore->active) {
626 kr = KERN_TERMINATED;
627 } else if (wait_semaphore->count > 0) {
628 wait_semaphore->count--;
629 kr = KERN_SUCCESS;
630 } else if (option & SEMAPHORE_TIMEOUT_NOBLOCK) {
631 kr = KERN_OPERATION_TIMED_OUT;
632 } else {
633 thread_t self = current_thread();
634
635 wait_semaphore->count = -1; /* we don't keep an actual count */
636 thread_lock(self);
637 (void)wait_queue_assert_wait64_locked(
638 &wait_semaphore->wait_queue,
639 SEMAPHORE_EVENT,
640 THREAD_ABORTSAFE,
641 TIMEOUT_URGENCY_USER_NORMAL,
642 deadline, 0,
643 self);
644 thread_unlock(self);
645 }
646 semaphore_unlock(wait_semaphore);
647 splx(spl_level);
648
649 /*
650 * wait_semaphore is unlocked so we are free to go ahead and
651 * signal the signal_semaphore (if one was provided).
652 */
653 if (signal_semaphore != SEMAPHORE_NULL) {
654 kern_return_t signal_kr;
655
656 /*
657 * lock the signal semaphore reference we got and signal it.
658 * This will NOT block (we cannot block after having asserted
659 * our intention to wait above).
660 */
661 signal_kr = semaphore_signal_internal(signal_semaphore,
662 THREAD_NULL,
663 SEMAPHORE_SIGNAL_PREPOST);
664
665 if (signal_kr == KERN_NOT_WAITING)
666 signal_kr = KERN_SUCCESS;
667 else if (signal_kr == KERN_TERMINATED) {
668 /*
669 * Uh!Oh! The semaphore we were to signal died.
670 * We have to get ourselves out of the wait in
671 * case we get stuck here forever (it is assumed
672 * that the semaphore we were posting is gating
673 * the decision by someone else to post the
674 * semaphore we are waiting on). People will
675 * discover the other dead semaphore soon enough.
676 * If we got out of the wait cleanly (someone
677 * already posted a wakeup to us) then return that
678 * (most important) result. Otherwise,
679 * return the KERN_TERMINATED status.
680 */
681 thread_t self = current_thread();
682
683 clear_wait(self, THREAD_INTERRUPTED);
684 kr = semaphore_convert_wait_result(self->wait_result);
685 if (kr == KERN_ABORTED)
686 kr = KERN_TERMINATED;
687 }
688 }
689
690 /*
691 * If we had an error, or we didn't really need to wait we can
692 * return now that we have signalled the signal semaphore.
693 */
694 if (kr != KERN_ALREADY_WAITING)
695 return kr;
696
697 /*
698 * Now, we can block. If the caller supplied a continuation
699 * pointer of his own for after the block, block with the
700 * appropriate semaphore continuation. Thiswill gather the
701 * semaphore results, release references on the semaphore(s),
702 * and then call the caller's continuation.
703 */
704 if (caller_cont) {
705 thread_t self = current_thread();
706
707 self->sth_continuation = caller_cont;
708 self->sth_waitsemaphore = wait_semaphore;
709 self->sth_signalsemaphore = signal_semaphore;
710 wait_result = thread_block((thread_continue_t)semaphore_wait_continue);
711 }
712 else {
713 wait_result = thread_block(THREAD_CONTINUE_NULL);
714 }
715
716 return (semaphore_convert_wait_result(wait_result));
717}
718
719
720/*
721 * Routine: semaphore_wait
722 *
723 * Traditional (non-continuation) interface presented to
724 * in-kernel clients to wait on a semaphore.
725 */
726kern_return_t
727semaphore_wait(
728 semaphore_t semaphore)
729{
730
731 if (semaphore == SEMAPHORE_NULL)
732 return KERN_INVALID_ARGUMENT;
733
734 return(semaphore_wait_internal(semaphore,
735 SEMAPHORE_NULL,
736 0ULL, SEMAPHORE_OPTION_NONE,
737 (void (*)(kern_return_t))0));
738}
739
740kern_return_t
741semaphore_wait_noblock(
742 semaphore_t semaphore)
743{
744
745 if (semaphore == SEMAPHORE_NULL)
746 return KERN_INVALID_ARGUMENT;
747
748 return(semaphore_wait_internal(semaphore,
749 SEMAPHORE_NULL,
750 0ULL, SEMAPHORE_TIMEOUT_NOBLOCK,
751 (void (*)(kern_return_t))0));
752}
753
754kern_return_t
755semaphore_wait_deadline(
756 semaphore_t semaphore,
757 uint64_t deadline)
758{
759
760 if (semaphore == SEMAPHORE_NULL)
761 return KERN_INVALID_ARGUMENT;
762
763 return(semaphore_wait_internal(semaphore,
764 SEMAPHORE_NULL,
765 deadline, SEMAPHORE_OPTION_NONE,
766 (void (*)(kern_return_t))0));
767}
768
769/*
770 * Trap: semaphore_wait_trap
771 *
772 * Trap version of semaphore wait. Called on behalf of user-level
773 * clients.
774 */
775
776kern_return_t
777semaphore_wait_trap(
778 struct semaphore_wait_trap_args *args)
779{
780 return(semaphore_wait_trap_internal(args->wait_name, thread_syscall_return));
781}
782
783
784
785kern_return_t
786semaphore_wait_trap_internal(
787 mach_port_name_t name,
788 void (*caller_cont)(kern_return_t))
789{
790 semaphore_t semaphore;
791 kern_return_t kr;
792
793 kr = port_name_to_semaphore(name, &semaphore);
794 if (kr == KERN_SUCCESS) {
795 kr = semaphore_wait_internal(semaphore,
796 SEMAPHORE_NULL,
797 0ULL, SEMAPHORE_OPTION_NONE,
798 caller_cont);
799 semaphore_dereference(semaphore);
800 }
801 return kr;
802}
803
804/*
805 * Routine: semaphore_timedwait
806 *
807 * Traditional (non-continuation) interface presented to
808 * in-kernel clients to wait on a semaphore with a timeout.
809 *
810 * A timeout of {0,0} is considered non-blocking.
811 */
812kern_return_t
813semaphore_timedwait(
814 semaphore_t semaphore,
815 mach_timespec_t wait_time)
816{
817 int option = SEMAPHORE_OPTION_NONE;
818 uint64_t deadline = 0;
819
820 if (semaphore == SEMAPHORE_NULL)
821 return KERN_INVALID_ARGUMENT;
822
823 if(BAD_MACH_TIMESPEC(&wait_time))
824 return KERN_INVALID_VALUE;
825
826 if (wait_time.tv_sec == 0 && wait_time.tv_nsec == 0)
827 option = SEMAPHORE_TIMEOUT_NOBLOCK;
828 else
829 deadline = semaphore_deadline(wait_time.tv_sec, wait_time.tv_nsec);
830
831 return (semaphore_wait_internal(semaphore,
832 SEMAPHORE_NULL,
833 deadline, option,
834 (void(*)(kern_return_t))0));
835
836}
837
838/*
839 * Trap: semaphore_timedwait_trap
840 *
841 * Trap version of a semaphore_timedwait. The timeout parameter
842 * is passed in two distinct parts and re-assembled on this side
843 * of the trap interface (to accomodate calling conventions that
844 * pass structures as pointers instead of inline in registers without
845 * having to add a copyin).
846 *
847 * A timeout of {0,0} is considered non-blocking.
848 */
849kern_return_t
850semaphore_timedwait_trap(
851 struct semaphore_timedwait_trap_args *args)
852{
853
854 return(semaphore_timedwait_trap_internal(args->wait_name, args->sec, args->nsec, thread_syscall_return));
855}
856
857
858kern_return_t
859semaphore_timedwait_trap_internal(
860 mach_port_name_t name,
861 unsigned int sec,
862 clock_res_t nsec,
863 void (*caller_cont)(kern_return_t))
864{
865 semaphore_t semaphore;
866 mach_timespec_t wait_time;
867 kern_return_t kr;
868
869 wait_time.tv_sec = sec;
870 wait_time.tv_nsec = nsec;
871 if(BAD_MACH_TIMESPEC(&wait_time))
872 return KERN_INVALID_VALUE;
873
874 kr = port_name_to_semaphore(name, &semaphore);
875 if (kr == KERN_SUCCESS) {
876 int option = SEMAPHORE_OPTION_NONE;
877 uint64_t deadline = 0;
878
879 if (sec == 0 && nsec == 0)
880 option = SEMAPHORE_TIMEOUT_NOBLOCK;
881 else
882 deadline = semaphore_deadline(sec, nsec);
883
884 kr = semaphore_wait_internal(semaphore,
885 SEMAPHORE_NULL,
886 deadline, option,
887 caller_cont);
888 semaphore_dereference(semaphore);
889 }
890 return kr;
891}
892
893/*
894 * Routine: semaphore_wait_signal
895 *
896 * Atomically register a wait on a semaphore and THEN signal
897 * another. This is the in-kernel entry point that does not
898 * block at a continuation and does not free a signal_semaphore
899 * reference.
900 */
901kern_return_t
902semaphore_wait_signal(
903 semaphore_t wait_semaphore,
904 semaphore_t signal_semaphore)
905{
906 if (wait_semaphore == SEMAPHORE_NULL)
907 return KERN_INVALID_ARGUMENT;
908
909 return(semaphore_wait_internal(wait_semaphore,
910 signal_semaphore,
911 0ULL, SEMAPHORE_OPTION_NONE,
912 (void(*)(kern_return_t))0));
913}
914
915/*
916 * Trap: semaphore_wait_signal_trap
917 *
918 * Atomically register a wait on a semaphore and THEN signal
919 * another. This is the trap version from user space.
920 */
921kern_return_t
922semaphore_wait_signal_trap(
923 struct semaphore_wait_signal_trap_args *args)
924{
925 return(semaphore_wait_signal_trap_internal(args->wait_name, args->signal_name, thread_syscall_return));
926}
927
928kern_return_t
929semaphore_wait_signal_trap_internal(
930 mach_port_name_t wait_name,
931 mach_port_name_t signal_name,
932 void (*caller_cont)(kern_return_t))
933{
934 semaphore_t wait_semaphore;
935 semaphore_t signal_semaphore;
936 kern_return_t kr;
937
938 kr = port_name_to_semaphore(signal_name, &signal_semaphore);
939 if (kr == KERN_SUCCESS) {
940 kr = port_name_to_semaphore(wait_name, &wait_semaphore);
941 if (kr == KERN_SUCCESS) {
942 kr = semaphore_wait_internal(wait_semaphore,
943 signal_semaphore,
944 0ULL, SEMAPHORE_OPTION_NONE,
945 caller_cont);
946 semaphore_dereference(wait_semaphore);
947 }
948 semaphore_dereference(signal_semaphore);
949 }
950 return kr;
951}
952
953
954/*
955 * Routine: semaphore_timedwait_signal
956 *
957 * Atomically register a wait on a semaphore and THEN signal
958 * another. This is the in-kernel entry point that does not
959 * block at a continuation.
960 *
961 * A timeout of {0,0} is considered non-blocking.
962 */
963kern_return_t
964semaphore_timedwait_signal(
965 semaphore_t wait_semaphore,
966 semaphore_t signal_semaphore,
967 mach_timespec_t wait_time)
968{
969 int option = SEMAPHORE_OPTION_NONE;
970 uint64_t deadline = 0;
971
972 if (wait_semaphore == SEMAPHORE_NULL)
973 return KERN_INVALID_ARGUMENT;
974
975 if(BAD_MACH_TIMESPEC(&wait_time))
976 return KERN_INVALID_VALUE;
977
978 if (wait_time.tv_sec == 0 && wait_time.tv_nsec == 0)
979 option = SEMAPHORE_TIMEOUT_NOBLOCK;
980 else
981 deadline = semaphore_deadline(wait_time.tv_sec, wait_time.tv_nsec);
982
983 return(semaphore_wait_internal(wait_semaphore,
984 signal_semaphore,
985 deadline, option,
986 (void(*)(kern_return_t))0));
987}
988
989/*
990 * Trap: semaphore_timedwait_signal_trap
991 *
992 * Atomically register a timed wait on a semaphore and THEN signal
993 * another. This is the trap version from user space.
994 */
995kern_return_t
996semaphore_timedwait_signal_trap(
997 struct semaphore_timedwait_signal_trap_args *args)
998{
999 return(semaphore_timedwait_signal_trap_internal(args->wait_name, args->signal_name, args->sec, args->nsec, thread_syscall_return));
1000}
1001
1002kern_return_t
1003semaphore_timedwait_signal_trap_internal(
1004 mach_port_name_t wait_name,
1005 mach_port_name_t signal_name,
1006 unsigned int sec,
1007 clock_res_t nsec,
1008 void (*caller_cont)(kern_return_t))
1009{
1010 semaphore_t wait_semaphore;
1011 semaphore_t signal_semaphore;
1012 mach_timespec_t wait_time;
1013 kern_return_t kr;
1014
1015 wait_time.tv_sec = sec;
1016 wait_time.tv_nsec = nsec;
1017 if(BAD_MACH_TIMESPEC(&wait_time))
1018 return KERN_INVALID_VALUE;
1019
1020 kr = port_name_to_semaphore(signal_name, &signal_semaphore);
1021 if (kr == KERN_SUCCESS) {
1022 kr = port_name_to_semaphore(wait_name, &wait_semaphore);
1023 if (kr == KERN_SUCCESS) {
1024 int option = SEMAPHORE_OPTION_NONE;
1025 uint64_t deadline = 0;
1026
1027 if (sec == 0 && nsec == 0)
1028 option = SEMAPHORE_TIMEOUT_NOBLOCK;
1029 else
1030 deadline = semaphore_deadline(sec, nsec);
1031
1032 kr = semaphore_wait_internal(wait_semaphore,
1033 signal_semaphore,
1034 deadline, option,
1035 caller_cont);
1036 semaphore_dereference(wait_semaphore);
1037 }
1038 semaphore_dereference(signal_semaphore);
1039 }
1040 return kr;
1041}
1042
1043
1044/*
1045 * Routine: semaphore_reference
1046 *
1047 * Take out a reference on a semaphore. This keeps the data structure
1048 * in existence (but the semaphore may be deactivated).
1049 */
1050void
1051semaphore_reference(
1052 semaphore_t semaphore)
1053{
1054 (void)hw_atomic_add(&semaphore->ref_count, 1);
1055}
1056
1057/*
1058 * Routine: semaphore_dereference
1059 *
1060 * Release a reference on a semaphore. If this is the last reference,
1061 * the semaphore data structure is deallocated.
1062 */
1063void
1064semaphore_dereference(
1065 semaphore_t semaphore)
1066{
1067 int ref_count;
1068
1069 if (semaphore != NULL) {
1070 ref_count = hw_atomic_sub(&semaphore->ref_count, 1);
1071
1072 if (ref_count == 1) {
1073 ipc_port_t port = semaphore->port;
1074
1075 if (IP_VALID(port) &&
1076 OSCompareAndSwapPtr(port, IP_NULL, &semaphore->port)) {
1077 /*
1078 * We get to disassociate the port from the sema and
1079 * drop the port's reference on the sema.
1080 */
1081 ipc_port_dealloc_kernel(port);
1082 ref_count = hw_atomic_sub(&semaphore->ref_count, 1);
1083 }
1084 }
1085 if (ref_count == 0) {
1086 assert(wait_queue_empty(&semaphore->wait_queue));
1087 zfree(semaphore_zone, semaphore);
1088 }
1089 }
1090}