]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Copyright (c) 2013 Apple Computer, Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * This file contains Original Code and/or Modifications of Original Code | |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
14 | * | |
15 | * Please obtain a copy of the License at | |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
25 | * | |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ | |
27 | */ | |
28 | /* | |
29 | * @OSF_COPYRIGHT@ | |
30 | */ | |
31 | /* | |
32 | * Mach Operating System | |
33 | * Copyright (c) 1991,1990,1989 Carnegie Mellon University | |
34 | * All Rights Reserved. | |
35 | * | |
36 | * Permission to use, copy, modify and distribute this software and its | |
37 | * documentation is hereby granted, provided that both the copyright | |
38 | * notice and this permission notice appear in all copies of the | |
39 | * software, derivative works or modified versions, and any portions | |
40 | * thereof, and that both notices appear in supporting documentation. | |
41 | * | |
42 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" | |
43 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR | |
44 | * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. | |
45 | * | |
46 | * Carnegie Mellon requests users of this software to return to | |
47 | * | |
48 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU | |
49 | * School of Computer Science | |
50 | * Carnegie Mellon University | |
51 | * Pittsburgh PA 15213-3890 | |
52 | * | |
53 | * any improvements or extensions that they make and grant Carnegie Mellon | |
54 | * the rights to redistribute these changes. | |
55 | */ | |
56 | ||
57 | /* | |
58 | * Compressor Pager. | |
59 | * Memory Object Management. | |
60 | */ | |
61 | ||
62 | #include <kern/host_statistics.h> | |
63 | #include <kern/kalloc.h> | |
64 | #include <kern/ipc_kobject.h> | |
65 | ||
66 | #include <mach/memory_object_control.h> | |
67 | #include <mach/memory_object_types.h> | |
68 | #include <mach/upl.h> | |
69 | ||
70 | #include <vm/memory_object.h> | |
71 | #include <vm/vm_compressor_pager.h> | |
72 | #include <vm/vm_external.h> | |
73 | #include <vm/vm_pageout.h> | |
74 | #include <vm/vm_protos.h> | |
75 | ||
76 | /* memory_object interfaces */ | |
77 | void compressor_memory_object_reference(memory_object_t mem_obj); | |
78 | void compressor_memory_object_deallocate(memory_object_t mem_obj); | |
79 | kern_return_t compressor_memory_object_init( | |
80 | memory_object_t mem_obj, | |
81 | memory_object_control_t control, | |
82 | memory_object_cluster_size_t pager_page_size); | |
83 | kern_return_t compressor_memory_object_terminate(memory_object_t mem_obj); | |
84 | kern_return_t compressor_memory_object_data_request( | |
85 | memory_object_t mem_obj, | |
86 | memory_object_offset_t offset, | |
87 | memory_object_cluster_size_t length, | |
88 | __unused vm_prot_t protection_required, | |
89 | memory_object_fault_info_t fault_info); | |
90 | kern_return_t compressor_memory_object_data_return( | |
91 | memory_object_t mem_obj, | |
92 | memory_object_offset_t offset, | |
93 | memory_object_cluster_size_t size, | |
94 | __unused memory_object_offset_t *resid_offset, | |
95 | __unused int *io_error, | |
96 | __unused boolean_t dirty, | |
97 | __unused boolean_t kernel_copy, | |
98 | __unused int upl_flags); | |
99 | kern_return_t compressor_memory_object_data_initialize( | |
100 | memory_object_t mem_obj, | |
101 | memory_object_offset_t offset, | |
102 | memory_object_cluster_size_t size); | |
103 | kern_return_t compressor_memory_object_data_unlock( | |
104 | __unused memory_object_t mem_obj, | |
105 | __unused memory_object_offset_t offset, | |
106 | __unused memory_object_size_t size, | |
107 | __unused vm_prot_t desired_access); | |
108 | kern_return_t compressor_memory_object_synchronize( | |
109 | memory_object_t mem_obj, | |
110 | memory_object_offset_t offset, | |
111 | memory_object_size_t length, | |
112 | __unused vm_sync_t flags); | |
113 | kern_return_t compressor_memory_object_map( | |
114 | __unused memory_object_t mem_obj, | |
115 | __unused vm_prot_t prot); | |
116 | kern_return_t compressor_memory_object_last_unmap(memory_object_t mem_obj); | |
117 | kern_return_t compressor_memory_object_data_reclaim( | |
118 | __unused memory_object_t mem_obj, | |
119 | __unused boolean_t reclaim_backing_store); | |
120 | ||
121 | const struct memory_object_pager_ops compressor_pager_ops = { | |
122 | compressor_memory_object_reference, | |
123 | compressor_memory_object_deallocate, | |
124 | compressor_memory_object_init, | |
125 | compressor_memory_object_terminate, | |
126 | compressor_memory_object_data_request, | |
127 | compressor_memory_object_data_return, | |
128 | compressor_memory_object_data_initialize, | |
129 | compressor_memory_object_data_unlock, | |
130 | compressor_memory_object_synchronize, | |
131 | compressor_memory_object_map, | |
132 | compressor_memory_object_last_unmap, | |
133 | compressor_memory_object_data_reclaim, | |
134 | "compressor pager" | |
135 | }; | |
136 | ||
137 | /* internal data structures */ | |
138 | ||
139 | struct { | |
140 | uint64_t data_returns; | |
141 | uint64_t data_requests; | |
142 | uint64_t put; | |
143 | uint64_t get; | |
144 | uint64_t state_clr; | |
145 | uint64_t state_get; | |
146 | uint64_t transfer; | |
147 | } compressor_pager_stats; | |
148 | ||
149 | typedef int compressor_slot_t; | |
150 | ||
151 | typedef struct compressor_pager { | |
152 | struct ipc_object_header cpgr_pager_header; /* fake ip_kotype */ | |
153 | memory_object_pager_ops_t cpgr_pager_ops; /* == &compressor_pager_ops */ | |
154 | memory_object_control_t cpgr_control; | |
155 | lck_mtx_t cpgr_lock; | |
156 | ||
157 | unsigned int cpgr_references; | |
158 | unsigned int cpgr_num_slots; | |
159 | unsigned int cpgr_num_slots_occupied; | |
160 | union { | |
161 | compressor_slot_t cpgr_eslots[2]; /* embedded slots */ | |
162 | compressor_slot_t *cpgr_dslots; /* direct slots */ | |
163 | compressor_slot_t **cpgr_islots; /* indirect slots */ | |
164 | } cpgr_slots; | |
165 | } *compressor_pager_t; | |
166 | ||
167 | #define compressor_pager_lookup(_mem_obj_, _cpgr_) \ | |
168 | MACRO_BEGIN \ | |
169 | if (_mem_obj_ == NULL || \ | |
170 | _mem_obj_->mo_pager_ops != &compressor_pager_ops) { \ | |
171 | _cpgr_ = NULL; \ | |
172 | } else { \ | |
173 | _cpgr_ = (compressor_pager_t) _mem_obj_; \ | |
174 | } \ | |
175 | MACRO_END | |
176 | ||
177 | zone_t compressor_pager_zone; | |
178 | ||
179 | lck_grp_t compressor_pager_lck_grp; | |
180 | lck_grp_attr_t compressor_pager_lck_grp_attr; | |
181 | lck_attr_t compressor_pager_lck_attr; | |
182 | ||
183 | #define compressor_pager_lock(_cpgr_) \ | |
184 | lck_mtx_lock(&(_cpgr_)->cpgr_lock) | |
185 | #define compressor_pager_unlock(_cpgr_) \ | |
186 | lck_mtx_unlock(&(_cpgr_)->cpgr_lock) | |
187 | #define compressor_pager_lock_init(_cpgr_) \ | |
188 | lck_mtx_init(&(_cpgr_)->cpgr_lock, &compressor_pager_lck_grp, &compressor_pager_lck_attr) | |
189 | #define compressor_pager_lock_destroy(_cpgr_) \ | |
190 | lck_mtx_destroy(&(_cpgr_)->cpgr_lock, &compressor_pager_lck_grp) | |
191 | ||
192 | #define COMPRESSOR_SLOTS_CHUNK_SIZE (512) | |
193 | #define COMPRESSOR_SLOTS_PER_CHUNK (COMPRESSOR_SLOTS_CHUNK_SIZE / sizeof (compressor_slot_t)) | |
194 | ||
195 | /* forward declarations */ | |
196 | unsigned int compressor_pager_slots_chunk_free(compressor_slot_t *chunk, | |
197 | int num_slots, | |
198 | int flags, | |
199 | int *failures); | |
200 | void compressor_pager_slot_lookup( | |
201 | compressor_pager_t pager, | |
202 | boolean_t do_alloc, | |
203 | memory_object_offset_t offset, | |
204 | compressor_slot_t **slot_pp); | |
205 | ||
206 | kern_return_t | |
207 | compressor_memory_object_init( | |
208 | memory_object_t mem_obj, | |
209 | memory_object_control_t control, | |
210 | __unused memory_object_cluster_size_t pager_page_size) | |
211 | { | |
212 | compressor_pager_t pager; | |
213 | ||
214 | assert(pager_page_size == PAGE_SIZE); | |
215 | ||
216 | memory_object_control_reference(control); | |
217 | ||
218 | compressor_pager_lookup(mem_obj, pager); | |
219 | compressor_pager_lock(pager); | |
220 | ||
221 | if (pager->cpgr_control != MEMORY_OBJECT_CONTROL_NULL) | |
222 | panic("compressor_memory_object_init: bad request"); | |
223 | pager->cpgr_control = control; | |
224 | ||
225 | compressor_pager_unlock(pager); | |
226 | ||
227 | return KERN_SUCCESS; | |
228 | } | |
229 | ||
230 | kern_return_t | |
231 | compressor_memory_object_synchronize( | |
232 | memory_object_t mem_obj, | |
233 | memory_object_offset_t offset, | |
234 | memory_object_size_t length, | |
235 | __unused vm_sync_t flags) | |
236 | { | |
237 | compressor_pager_t pager; | |
238 | ||
239 | compressor_pager_lookup(mem_obj, pager); | |
240 | ||
241 | memory_object_synchronize_completed(pager->cpgr_control, offset, length); | |
242 | ||
243 | return KERN_SUCCESS; | |
244 | } | |
245 | ||
246 | kern_return_t | |
247 | compressor_memory_object_map( | |
248 | __unused memory_object_t mem_obj, | |
249 | __unused vm_prot_t prot) | |
250 | { | |
251 | panic("compressor_memory_object_map"); | |
252 | return KERN_FAILURE; | |
253 | } | |
254 | ||
255 | kern_return_t | |
256 | compressor_memory_object_last_unmap( | |
257 | __unused memory_object_t mem_obj) | |
258 | { | |
259 | panic("compressor_memory_object_last_unmap"); | |
260 | return KERN_FAILURE; | |
261 | } | |
262 | ||
263 | kern_return_t | |
264 | compressor_memory_object_data_reclaim( | |
265 | __unused memory_object_t mem_obj, | |
266 | __unused boolean_t reclaim_backing_store) | |
267 | { | |
268 | panic("compressor_memory_object_data_reclaim"); | |
269 | return KERN_FAILURE; | |
270 | } | |
271 | ||
272 | kern_return_t | |
273 | compressor_memory_object_terminate( | |
274 | memory_object_t mem_obj) | |
275 | { | |
276 | memory_object_control_t control; | |
277 | compressor_pager_t pager; | |
278 | ||
279 | /* | |
280 | * control port is a receive right, not a send right. | |
281 | */ | |
282 | ||
283 | compressor_pager_lookup(mem_obj, pager); | |
284 | compressor_pager_lock(pager); | |
285 | ||
286 | /* | |
287 | * After memory_object_terminate both memory_object_init | |
288 | * and a no-senders notification are possible, so we need | |
289 | * to clean up our reference to the memory_object_control | |
290 | * to prepare for a new init. | |
291 | */ | |
292 | ||
293 | control = pager->cpgr_control; | |
294 | pager->cpgr_control = MEMORY_OBJECT_CONTROL_NULL; | |
295 | ||
296 | compressor_pager_unlock(pager); | |
297 | ||
298 | /* | |
299 | * Now we deallocate our reference on the control. | |
300 | */ | |
301 | memory_object_control_deallocate(control); | |
302 | return KERN_SUCCESS; | |
303 | } | |
304 | ||
305 | void | |
306 | compressor_memory_object_reference( | |
307 | memory_object_t mem_obj) | |
308 | { | |
309 | compressor_pager_t pager; | |
310 | ||
311 | compressor_pager_lookup(mem_obj, pager); | |
312 | if (pager == NULL) | |
313 | return; | |
314 | ||
315 | compressor_pager_lock(pager); | |
316 | assert(pager->cpgr_references > 0); | |
317 | pager->cpgr_references++; | |
318 | compressor_pager_unlock(pager); | |
319 | } | |
320 | ||
321 | void | |
322 | compressor_memory_object_deallocate( | |
323 | memory_object_t mem_obj) | |
324 | { | |
325 | compressor_pager_t pager; | |
326 | unsigned int num_slots_freed; | |
327 | ||
328 | /* | |
329 | * Because we don't give out multiple first references | |
330 | * for a memory object, there can't be a race | |
331 | * between getting a deallocate call and creating | |
332 | * a new reference for the object. | |
333 | */ | |
334 | ||
335 | compressor_pager_lookup(mem_obj, pager); | |
336 | if (pager == NULL) | |
337 | return; | |
338 | ||
339 | compressor_pager_lock(pager); | |
340 | if (--pager->cpgr_references > 0) { | |
341 | compressor_pager_unlock(pager); | |
342 | return; | |
343 | } | |
344 | ||
345 | /* | |
346 | * We shouldn't get a deallocation call | |
347 | * when the kernel has the object cached. | |
348 | */ | |
349 | if (pager->cpgr_control != MEMORY_OBJECT_CONTROL_NULL) | |
350 | panic("compressor_memory_object_deallocate(): bad request"); | |
351 | ||
352 | /* | |
353 | * Unlock the pager (though there should be no one | |
354 | * waiting for it). | |
355 | */ | |
356 | compressor_pager_unlock(pager); | |
357 | ||
358 | /* free the compressor slots */ | |
359 | int num_chunks; | |
360 | int i; | |
361 | compressor_slot_t *chunk; | |
362 | ||
363 | num_chunks = (pager->cpgr_num_slots + COMPRESSOR_SLOTS_PER_CHUNK -1) / COMPRESSOR_SLOTS_PER_CHUNK; | |
364 | if (num_chunks > 1) { | |
365 | /* we have an array of chunks */ | |
366 | for (i = 0; i < num_chunks; i++) { | |
367 | chunk = pager->cpgr_slots.cpgr_islots[i]; | |
368 | if (chunk != NULL) { | |
369 | num_slots_freed = | |
370 | compressor_pager_slots_chunk_free( | |
371 | chunk, | |
372 | COMPRESSOR_SLOTS_PER_CHUNK, | |
373 | 0, | |
374 | NULL); | |
375 | pager->cpgr_slots.cpgr_islots[i] = NULL; | |
376 | kfree(chunk, COMPRESSOR_SLOTS_CHUNK_SIZE); | |
377 | } | |
378 | } | |
379 | kfree(pager->cpgr_slots.cpgr_islots, | |
380 | num_chunks * sizeof (pager->cpgr_slots.cpgr_islots[0])); | |
381 | pager->cpgr_slots.cpgr_islots = NULL; | |
382 | } else if (pager->cpgr_num_slots > 2) { | |
383 | chunk = pager->cpgr_slots.cpgr_dslots; | |
384 | num_slots_freed = | |
385 | compressor_pager_slots_chunk_free( | |
386 | chunk, | |
387 | pager->cpgr_num_slots, | |
388 | 0, | |
389 | NULL); | |
390 | pager->cpgr_slots.cpgr_dslots = NULL; | |
391 | kfree(chunk, | |
392 | (pager->cpgr_num_slots * | |
393 | sizeof (pager->cpgr_slots.cpgr_dslots[0]))); | |
394 | } else { | |
395 | chunk = &pager->cpgr_slots.cpgr_eslots[0]; | |
396 | num_slots_freed = | |
397 | compressor_pager_slots_chunk_free( | |
398 | chunk, | |
399 | pager->cpgr_num_slots, | |
400 | 0, | |
401 | NULL); | |
402 | } | |
403 | ||
404 | compressor_pager_lock_destroy(pager); | |
405 | zfree(compressor_pager_zone, pager); | |
406 | } | |
407 | ||
408 | kern_return_t | |
409 | compressor_memory_object_data_request( | |
410 | memory_object_t mem_obj, | |
411 | memory_object_offset_t offset, | |
412 | memory_object_cluster_size_t length, | |
413 | __unused vm_prot_t protection_required, | |
414 | __unused memory_object_fault_info_t fault_info) | |
415 | { | |
416 | compressor_pager_t pager; | |
417 | kern_return_t kr; | |
418 | compressor_slot_t *slot_p; | |
419 | ||
420 | compressor_pager_stats.data_requests++; | |
421 | ||
422 | /* | |
423 | * Request must be on a page boundary and a multiple of pages. | |
424 | */ | |
425 | if ((offset & PAGE_MASK) != 0 || (length & PAGE_MASK) != 0) | |
426 | panic("compressor_memory_object_data_request(): bad alignment"); | |
427 | ||
428 | if ((uint32_t)(offset/PAGE_SIZE) != (offset/PAGE_SIZE)) { | |
429 | panic("%s: offset 0x%llx overflow\n", | |
430 | __FUNCTION__, (uint64_t) offset); | |
431 | return KERN_FAILURE; | |
432 | } | |
433 | ||
434 | compressor_pager_lookup(mem_obj, pager); | |
435 | ||
436 | if (length == 0) { | |
437 | /* we're only querying the pager for this page */ | |
438 | } else { | |
439 | panic("compressor: data_request"); | |
440 | } | |
441 | ||
442 | /* find the compressor slot for that page */ | |
443 | compressor_pager_slot_lookup(pager, FALSE, offset, &slot_p); | |
444 | ||
445 | if (offset / PAGE_SIZE > pager->cpgr_num_slots) { | |
446 | /* out of range */ | |
447 | kr = KERN_FAILURE; | |
448 | } else if (slot_p == NULL || *slot_p == 0) { | |
449 | /* compressor does not have this page */ | |
450 | kr = KERN_FAILURE; | |
451 | } else { | |
452 | /* compressor does have this page */ | |
453 | kr = KERN_SUCCESS; | |
454 | } | |
455 | return kr; | |
456 | } | |
457 | ||
458 | /* | |
459 | * memory_object_data_initialize: check whether we already have each page, and | |
460 | * write it if we do not. The implementation is far from optimized, and | |
461 | * also assumes that the default_pager is single-threaded. | |
462 | */ | |
463 | /* It is questionable whether or not a pager should decide what is relevant */ | |
464 | /* and what is not in data sent from the kernel. Data initialize has been */ | |
465 | /* changed to copy back all data sent to it in preparation for its eventual */ | |
466 | /* merge with data return. It is the kernel that should decide what pages */ | |
467 | /* to write back. As of the writing of this note, this is indeed the case */ | |
468 | /* the kernel writes back one page at a time through this interface */ | |
469 | ||
470 | kern_return_t | |
471 | compressor_memory_object_data_initialize( | |
472 | memory_object_t mem_obj, | |
473 | memory_object_offset_t offset, | |
474 | memory_object_cluster_size_t size) | |
475 | { | |
476 | compressor_pager_t pager; | |
477 | memory_object_offset_t cur_offset; | |
478 | ||
479 | compressor_pager_lookup(mem_obj, pager); | |
480 | compressor_pager_lock(pager); | |
481 | ||
482 | for (cur_offset = offset; | |
483 | cur_offset < offset + size; | |
484 | cur_offset += PAGE_SIZE) { | |
485 | panic("do a data_return() if slot for this page is empty"); | |
486 | } | |
487 | ||
488 | compressor_pager_unlock(pager); | |
489 | ||
490 | return KERN_SUCCESS; | |
491 | } | |
492 | ||
493 | kern_return_t | |
494 | compressor_memory_object_data_unlock( | |
495 | __unused memory_object_t mem_obj, | |
496 | __unused memory_object_offset_t offset, | |
497 | __unused memory_object_size_t size, | |
498 | __unused vm_prot_t desired_access) | |
499 | { | |
500 | panic("compressor_memory_object_data_unlock()"); | |
501 | return KERN_FAILURE; | |
502 | } | |
503 | ||
504 | ||
505 | /*ARGSUSED*/ | |
506 | kern_return_t | |
507 | compressor_memory_object_data_return( | |
508 | __unused memory_object_t mem_obj, | |
509 | __unused memory_object_offset_t offset, | |
510 | __unused memory_object_cluster_size_t size, | |
511 | __unused memory_object_offset_t *resid_offset, | |
512 | __unused int *io_error, | |
513 | __unused boolean_t dirty, | |
514 | __unused boolean_t kernel_copy, | |
515 | __unused int upl_flags) | |
516 | { | |
517 | panic("compressor: data_return"); | |
518 | return KERN_FAILURE; | |
519 | } | |
520 | ||
521 | /* | |
522 | * Routine: default_pager_memory_object_create | |
523 | * Purpose: | |
524 | * Handle requests for memory objects from the | |
525 | * kernel. | |
526 | * Notes: | |
527 | * Because we only give out the default memory | |
528 | * manager port to the kernel, we don't have to | |
529 | * be so paranoid about the contents. | |
530 | */ | |
531 | kern_return_t | |
532 | compressor_memory_object_create( | |
533 | memory_object_size_t new_size, | |
534 | memory_object_t *new_mem_obj) | |
535 | { | |
536 | compressor_pager_t pager; | |
537 | int num_chunks; | |
538 | ||
539 | if ((uint32_t)(new_size/PAGE_SIZE) != (new_size/PAGE_SIZE)) { | |
540 | /* 32-bit overflow for number of pages */ | |
541 | panic("%s: size 0x%llx overflow\n", | |
542 | __FUNCTION__, (uint64_t) new_size); | |
543 | return KERN_INVALID_ARGUMENT; | |
544 | } | |
545 | ||
546 | pager = (compressor_pager_t) zalloc(compressor_pager_zone); | |
547 | if (pager == NULL) { | |
548 | return KERN_RESOURCE_SHORTAGE; | |
549 | } | |
550 | ||
551 | compressor_pager_lock_init(pager); | |
552 | pager->cpgr_control = MEMORY_OBJECT_CONTROL_NULL; | |
553 | pager->cpgr_references = 1; | |
554 | pager->cpgr_num_slots = (uint32_t)(new_size/PAGE_SIZE); | |
555 | pager->cpgr_num_slots_occupied = 0; | |
556 | ||
557 | num_chunks = (pager->cpgr_num_slots + COMPRESSOR_SLOTS_PER_CHUNK - 1) / COMPRESSOR_SLOTS_PER_CHUNK; | |
558 | if (num_chunks > 1) { | |
559 | pager->cpgr_slots.cpgr_islots = kalloc(num_chunks * sizeof (pager->cpgr_slots.cpgr_islots[0])); | |
560 | bzero(pager->cpgr_slots.cpgr_islots, num_chunks * sizeof (pager->cpgr_slots.cpgr_islots[0])); | |
561 | } else if (pager->cpgr_num_slots > 2) { | |
562 | pager->cpgr_slots.cpgr_dslots = kalloc(pager->cpgr_num_slots * sizeof (pager->cpgr_slots.cpgr_dslots[0])); | |
563 | bzero(pager->cpgr_slots.cpgr_dslots, pager->cpgr_num_slots * sizeof (pager->cpgr_slots.cpgr_dslots[0])); | |
564 | } else { | |
565 | pager->cpgr_slots.cpgr_eslots[0] = 0; | |
566 | pager->cpgr_slots.cpgr_eslots[1] = 0; | |
567 | } | |
568 | ||
569 | /* | |
570 | * Set up associations between this memory object | |
571 | * and this compressor_pager structure | |
572 | */ | |
573 | ||
574 | pager->cpgr_pager_ops = &compressor_pager_ops; | |
575 | pager->cpgr_pager_header.io_bits = IKOT_MEMORY_OBJECT; | |
576 | ||
577 | *new_mem_obj = (memory_object_t) pager; | |
578 | return KERN_SUCCESS; | |
579 | } | |
580 | ||
581 | ||
582 | unsigned int | |
583 | compressor_pager_slots_chunk_free( | |
584 | compressor_slot_t *chunk, | |
585 | int num_slots, | |
586 | int flags, | |
587 | int *failures) | |
588 | { | |
589 | int i; | |
590 | int retval; | |
591 | unsigned int num_slots_freed; | |
592 | ||
593 | if (failures) | |
594 | *failures = 0; | |
595 | num_slots_freed = 0; | |
596 | for (i = 0; i < num_slots; i++) { | |
597 | if (chunk[i] != 0) { | |
598 | retval = vm_compressor_free(&chunk[i], flags); | |
599 | ||
600 | if (retval == 0) | |
601 | num_slots_freed++; | |
602 | else { | |
603 | if (retval == -2) | |
604 | assert(flags & C_DONT_BLOCK); | |
605 | ||
606 | if (failures) | |
607 | *failures += 1; | |
608 | } | |
609 | } | |
610 | } | |
611 | return num_slots_freed; | |
612 | } | |
613 | ||
614 | void | |
615 | compressor_pager_slot_lookup( | |
616 | compressor_pager_t pager, | |
617 | boolean_t do_alloc, | |
618 | memory_object_offset_t offset, | |
619 | compressor_slot_t **slot_pp) | |
620 | { | |
621 | int num_chunks; | |
622 | uint32_t page_num; | |
623 | int chunk_idx; | |
624 | int slot_idx; | |
625 | compressor_slot_t *chunk; | |
626 | compressor_slot_t *t_chunk; | |
627 | ||
628 | page_num = (uint32_t)(offset/PAGE_SIZE); | |
629 | if (page_num != (offset/PAGE_SIZE)) { | |
630 | /* overflow */ | |
631 | panic("%s: offset 0x%llx overflow\n", | |
632 | __FUNCTION__, (uint64_t) offset); | |
633 | *slot_pp = NULL; | |
634 | return; | |
635 | } | |
636 | if (page_num > pager->cpgr_num_slots) { | |
637 | /* out of range */ | |
638 | *slot_pp = NULL; | |
639 | return; | |
640 | } | |
641 | num_chunks = (pager->cpgr_num_slots + COMPRESSOR_SLOTS_PER_CHUNK - 1) / COMPRESSOR_SLOTS_PER_CHUNK; | |
642 | if (num_chunks > 1) { | |
643 | /* we have an array of chunks */ | |
644 | chunk_idx = page_num / COMPRESSOR_SLOTS_PER_CHUNK; | |
645 | chunk = pager->cpgr_slots.cpgr_islots[chunk_idx]; | |
646 | ||
647 | if (chunk == NULL && do_alloc) { | |
648 | t_chunk = kalloc(COMPRESSOR_SLOTS_CHUNK_SIZE); | |
649 | bzero(t_chunk, COMPRESSOR_SLOTS_CHUNK_SIZE); | |
650 | ||
651 | compressor_pager_lock(pager); | |
652 | ||
653 | if ((chunk = pager->cpgr_slots.cpgr_islots[chunk_idx]) == NULL) { | |
654 | chunk = pager->cpgr_slots.cpgr_islots[chunk_idx] = t_chunk; | |
655 | t_chunk = NULL; | |
656 | } | |
657 | compressor_pager_unlock(pager); | |
658 | ||
659 | if (t_chunk) | |
660 | kfree(t_chunk, COMPRESSOR_SLOTS_CHUNK_SIZE); | |
661 | } | |
662 | if (chunk == NULL) { | |
663 | *slot_pp = NULL; | |
664 | } else { | |
665 | slot_idx = page_num % COMPRESSOR_SLOTS_PER_CHUNK; | |
666 | *slot_pp = &chunk[slot_idx]; | |
667 | } | |
668 | } else if (pager->cpgr_num_slots > 2) { | |
669 | slot_idx = page_num; | |
670 | *slot_pp = &pager->cpgr_slots.cpgr_dslots[slot_idx]; | |
671 | } else { | |
672 | slot_idx = page_num; | |
673 | *slot_pp = &pager->cpgr_slots.cpgr_eslots[slot_idx]; | |
674 | } | |
675 | } | |
676 | ||
677 | void | |
678 | vm_compressor_pager_init(void) | |
679 | { | |
680 | lck_grp_attr_setdefault(&compressor_pager_lck_grp_attr); | |
681 | lck_grp_init(&compressor_pager_lck_grp, "compressor_pager", &compressor_pager_lck_grp_attr); | |
682 | lck_attr_setdefault(&compressor_pager_lck_attr); | |
683 | ||
684 | compressor_pager_zone = zinit(sizeof (struct compressor_pager), | |
685 | 10000 * sizeof (struct compressor_pager), | |
686 | 8192, "compressor_pager"); | |
687 | zone_change(compressor_pager_zone, Z_CALLERACCT, FALSE); | |
688 | zone_change(compressor_pager_zone, Z_NOENCRYPT, TRUE); | |
689 | ||
690 | vm_compressor_init(); | |
691 | } | |
692 | ||
693 | kern_return_t | |
694 | vm_compressor_pager_put( | |
695 | memory_object_t mem_obj, | |
696 | memory_object_offset_t offset, | |
697 | ppnum_t ppnum, | |
698 | void **current_chead, | |
699 | char *scratch_buf, | |
700 | int *compressed_count_delta_p) | |
701 | { | |
702 | compressor_pager_t pager; | |
703 | compressor_slot_t *slot_p; | |
704 | ||
705 | compressor_pager_stats.put++; | |
706 | ||
707 | *compressed_count_delta_p = 0; | |
708 | ||
709 | /* This routine is called by the pageout thread. The pageout thread */ | |
710 | /* cannot be blocked by read activities unless the read activities */ | |
711 | /* Therefore the grant of vs lock must be done on a try versus a */ | |
712 | /* blocking basis. The code below relies on the fact that the */ | |
713 | /* interface is synchronous. Should this interface be again async */ | |
714 | /* for some type of pager in the future the pages will have to be */ | |
715 | /* returned through a separate, asynchronous path. */ | |
716 | ||
717 | compressor_pager_lookup(mem_obj, pager); | |
718 | ||
719 | if ((uint32_t)(offset/PAGE_SIZE) != (offset/PAGE_SIZE)) { | |
720 | /* overflow */ | |
721 | panic("%s: offset 0x%llx overflow\n", | |
722 | __FUNCTION__, (uint64_t) offset); | |
723 | return KERN_RESOURCE_SHORTAGE; | |
724 | } | |
725 | ||
726 | compressor_pager_slot_lookup(pager, TRUE, offset, &slot_p); | |
727 | ||
728 | if (slot_p == NULL) { | |
729 | /* out of range ? */ | |
730 | panic("vm_compressor_pager_put: out of range"); | |
731 | } | |
732 | if (*slot_p != 0) { | |
733 | /* | |
734 | * Already compressed: forget about the old one. | |
735 | * | |
736 | * This can happen after a vm_object_do_collapse() when | |
737 | * the "backing_object" had some pages paged out and the | |
738 | * "object" had an equivalent page resident. | |
739 | */ | |
740 | vm_compressor_free(slot_p, 0); | |
741 | *compressed_count_delta_p -= 1; | |
742 | } | |
743 | if (vm_compressor_put(ppnum, slot_p, current_chead, scratch_buf)) | |
744 | return (KERN_RESOURCE_SHORTAGE); | |
745 | *compressed_count_delta_p += 1; | |
746 | ||
747 | return (KERN_SUCCESS); | |
748 | } | |
749 | ||
750 | ||
751 | kern_return_t | |
752 | vm_compressor_pager_get( | |
753 | memory_object_t mem_obj, | |
754 | memory_object_offset_t offset, | |
755 | ppnum_t ppnum, | |
756 | int *my_fault_type, | |
757 | int flags, | |
758 | int *compressed_count_delta_p) | |
759 | { | |
760 | compressor_pager_t pager; | |
761 | kern_return_t kr; | |
762 | compressor_slot_t *slot_p; | |
763 | ||
764 | compressor_pager_stats.get++; | |
765 | ||
766 | *compressed_count_delta_p = 0; | |
767 | ||
768 | if ((uint32_t)(offset/PAGE_SIZE) != (offset/PAGE_SIZE)) { | |
769 | panic("%s: offset 0x%llx overflow\n", | |
770 | __FUNCTION__, (uint64_t) offset); | |
771 | return KERN_MEMORY_ERROR; | |
772 | } | |
773 | ||
774 | compressor_pager_lookup(mem_obj, pager); | |
775 | ||
776 | /* find the compressor slot for that page */ | |
777 | compressor_pager_slot_lookup(pager, FALSE, offset, &slot_p); | |
778 | ||
779 | if (offset / PAGE_SIZE > pager->cpgr_num_slots) { | |
780 | /* out of range */ | |
781 | kr = KERN_MEMORY_FAILURE; | |
782 | } else if (slot_p == NULL || *slot_p == 0) { | |
783 | /* compressor does not have this page */ | |
784 | kr = KERN_MEMORY_ERROR; | |
785 | } else { | |
786 | /* compressor does have this page */ | |
787 | kr = KERN_SUCCESS; | |
788 | } | |
789 | *my_fault_type = DBG_COMPRESSOR_FAULT; | |
790 | ||
791 | if (kr == KERN_SUCCESS) { | |
792 | int retval; | |
793 | ||
794 | /* get the page from the compressor */ | |
795 | retval = vm_compressor_get(ppnum, slot_p, flags); | |
796 | if (retval == -1) | |
797 | kr = KERN_MEMORY_FAILURE; | |
798 | else if (retval == 1) | |
799 | *my_fault_type = DBG_COMPRESSOR_SWAPIN_FAULT; | |
800 | else if (retval == -2) { | |
801 | assert((flags & C_DONT_BLOCK)); | |
802 | kr = KERN_FAILURE; | |
803 | } | |
804 | } | |
805 | ||
806 | if (kr == KERN_SUCCESS) { | |
807 | assert(slot_p != NULL); | |
808 | if (*slot_p != 0) { | |
809 | /* | |
810 | * We got the page for a copy-on-write fault | |
811 | * and we kept the original in place. Slot | |
812 | * is still occupied. | |
813 | */ | |
814 | } else { | |
815 | *compressed_count_delta_p -= 1; | |
816 | } | |
817 | } | |
818 | ||
819 | return kr; | |
820 | } | |
821 | ||
822 | unsigned int | |
823 | vm_compressor_pager_state_clr( | |
824 | memory_object_t mem_obj, | |
825 | memory_object_offset_t offset) | |
826 | { | |
827 | compressor_pager_t pager; | |
828 | compressor_slot_t *slot_p; | |
829 | unsigned int num_slots_freed; | |
830 | ||
831 | assert(VM_CONFIG_COMPRESSOR_IS_PRESENT); | |
832 | ||
833 | compressor_pager_stats.state_clr++; | |
834 | ||
835 | if ((uint32_t)(offset/PAGE_SIZE) != (offset/PAGE_SIZE)) { | |
836 | /* overflow */ | |
837 | panic("%s: offset 0x%llx overflow\n", | |
838 | __FUNCTION__, (uint64_t) offset); | |
839 | return 0; | |
840 | } | |
841 | ||
842 | compressor_pager_lookup(mem_obj, pager); | |
843 | ||
844 | /* find the compressor slot for that page */ | |
845 | compressor_pager_slot_lookup(pager, FALSE, offset, &slot_p); | |
846 | ||
847 | num_slots_freed = 0; | |
848 | if (slot_p && *slot_p != 0) { | |
849 | vm_compressor_free(slot_p, 0); | |
850 | num_slots_freed++; | |
851 | assert(*slot_p == 0); | |
852 | } | |
853 | ||
854 | return num_slots_freed; | |
855 | } | |
856 | ||
857 | vm_external_state_t | |
858 | vm_compressor_pager_state_get( | |
859 | memory_object_t mem_obj, | |
860 | memory_object_offset_t offset) | |
861 | { | |
862 | compressor_pager_t pager; | |
863 | compressor_slot_t *slot_p; | |
864 | ||
865 | assert(VM_CONFIG_COMPRESSOR_IS_PRESENT); | |
866 | ||
867 | compressor_pager_stats.state_get++; | |
868 | ||
869 | if ((uint32_t)(offset/PAGE_SIZE) != (offset/PAGE_SIZE)) { | |
870 | /* overflow */ | |
871 | panic("%s: offset 0x%llx overflow\n", | |
872 | __FUNCTION__, (uint64_t) offset); | |
873 | return VM_EXTERNAL_STATE_ABSENT; | |
874 | } | |
875 | ||
876 | compressor_pager_lookup(mem_obj, pager); | |
877 | ||
878 | /* find the compressor slot for that page */ | |
879 | compressor_pager_slot_lookup(pager, FALSE, offset, &slot_p); | |
880 | ||
881 | if (offset / PAGE_SIZE > pager->cpgr_num_slots) { | |
882 | /* out of range */ | |
883 | return VM_EXTERNAL_STATE_ABSENT; | |
884 | } else if (slot_p == NULL || *slot_p == 0) { | |
885 | /* compressor does not have this page */ | |
886 | return VM_EXTERNAL_STATE_ABSENT; | |
887 | } else { | |
888 | /* compressor does have this page */ | |
889 | return VM_EXTERNAL_STATE_EXISTS; | |
890 | } | |
891 | } | |
892 | ||
893 | unsigned int | |
894 | vm_compressor_pager_reap_pages( | |
895 | memory_object_t mem_obj, | |
896 | int flags) | |
897 | { | |
898 | compressor_pager_t pager; | |
899 | int num_chunks; | |
900 | int failures; | |
901 | int i; | |
902 | compressor_slot_t *chunk; | |
903 | unsigned int num_slots_freed; | |
904 | ||
905 | compressor_pager_lookup(mem_obj, pager); | |
906 | if (pager == NULL) | |
907 | return 0; | |
908 | ||
909 | compressor_pager_lock(pager); | |
910 | ||
911 | /* reap the compressor slots */ | |
912 | num_slots_freed = 0; | |
913 | ||
914 | num_chunks = (pager->cpgr_num_slots + COMPRESSOR_SLOTS_PER_CHUNK -1) / COMPRESSOR_SLOTS_PER_CHUNK; | |
915 | if (num_chunks > 1) { | |
916 | /* we have an array of chunks */ | |
917 | for (i = 0; i < num_chunks; i++) { | |
918 | chunk = pager->cpgr_slots.cpgr_islots[i]; | |
919 | if (chunk != NULL) { | |
920 | num_slots_freed += | |
921 | compressor_pager_slots_chunk_free( | |
922 | chunk, | |
923 | COMPRESSOR_SLOTS_PER_CHUNK, | |
924 | flags, | |
925 | &failures); | |
926 | if (failures == 0) { | |
927 | pager->cpgr_slots.cpgr_islots[i] = NULL; | |
928 | kfree(chunk, COMPRESSOR_SLOTS_CHUNK_SIZE); | |
929 | } | |
930 | } | |
931 | } | |
932 | } else if (pager->cpgr_num_slots > 2) { | |
933 | chunk = pager->cpgr_slots.cpgr_dslots; | |
934 | num_slots_freed += | |
935 | compressor_pager_slots_chunk_free( | |
936 | chunk, | |
937 | pager->cpgr_num_slots, | |
938 | flags, | |
939 | NULL); | |
940 | } else { | |
941 | chunk = &pager->cpgr_slots.cpgr_eslots[0]; | |
942 | num_slots_freed += | |
943 | compressor_pager_slots_chunk_free( | |
944 | chunk, | |
945 | pager->cpgr_num_slots, | |
946 | flags, | |
947 | NULL); | |
948 | } | |
949 | ||
950 | compressor_pager_unlock(pager); | |
951 | ||
952 | return num_slots_freed; | |
953 | } | |
954 | ||
955 | void | |
956 | vm_compressor_pager_transfer( | |
957 | memory_object_t dst_mem_obj, | |
958 | memory_object_offset_t dst_offset, | |
959 | memory_object_t src_mem_obj, | |
960 | memory_object_offset_t src_offset) | |
961 | { | |
962 | compressor_pager_t src_pager, dst_pager; | |
963 | compressor_slot_t *src_slot_p, *dst_slot_p; | |
964 | ||
965 | compressor_pager_stats.transfer++; | |
966 | ||
967 | /* find the compressor slot for the destination */ | |
968 | assert((uint32_t) dst_offset == dst_offset); | |
969 | compressor_pager_lookup(dst_mem_obj, dst_pager); | |
970 | assert(dst_offset / PAGE_SIZE <= dst_pager->cpgr_num_slots); | |
971 | compressor_pager_slot_lookup(dst_pager, TRUE, (uint32_t) dst_offset, | |
972 | &dst_slot_p); | |
973 | assert(dst_slot_p != NULL); | |
974 | assert(*dst_slot_p == 0); | |
975 | ||
976 | /* find the compressor slot for the source */ | |
977 | assert((uint32_t) src_offset == src_offset); | |
978 | compressor_pager_lookup(src_mem_obj, src_pager); | |
979 | assert(src_offset / PAGE_SIZE <= src_pager->cpgr_num_slots); | |
980 | compressor_pager_slot_lookup(src_pager, FALSE, (uint32_t) src_offset, | |
981 | &src_slot_p); | |
982 | assert(src_slot_p != NULL); | |
983 | assert(*src_slot_p != 0); | |
984 | ||
985 | /* transfer the slot from source to destination */ | |
986 | vm_compressor_transfer(dst_slot_p, src_slot_p); | |
987 | OSAddAtomic(-1, &src_pager->cpgr_num_slots_occupied); | |
988 | OSAddAtomic(+1, &dst_pager->cpgr_num_slots_occupied); | |
989 | } | |
990 | ||
991 | memory_object_offset_t | |
992 | vm_compressor_pager_next_compressed( | |
993 | memory_object_t mem_obj, | |
994 | memory_object_offset_t offset) | |
995 | { | |
996 | compressor_pager_t pager; | |
997 | uint32_t num_chunks; | |
998 | uint32_t page_num; | |
999 | uint32_t chunk_idx; | |
1000 | uint32_t slot_idx; | |
1001 | compressor_slot_t *chunk; | |
1002 | ||
1003 | compressor_pager_lookup(mem_obj, pager); | |
1004 | ||
1005 | page_num = (uint32_t)(offset / PAGE_SIZE); | |
1006 | if (page_num != (offset/PAGE_SIZE)) { | |
1007 | /* overflow */ | |
1008 | return (memory_object_offset_t) -1; | |
1009 | } | |
1010 | if (page_num > pager->cpgr_num_slots) { | |
1011 | /* out of range */ | |
1012 | return (memory_object_offset_t) -1; | |
1013 | } | |
1014 | ||
1015 | num_chunks = ((pager->cpgr_num_slots + COMPRESSOR_SLOTS_PER_CHUNK - 1) / | |
1016 | COMPRESSOR_SLOTS_PER_CHUNK); | |
1017 | ||
1018 | if (num_chunks == 1) { | |
1019 | if (pager->cpgr_num_slots > 2) { | |
1020 | chunk = pager->cpgr_slots.cpgr_dslots; | |
1021 | } else { | |
1022 | chunk = &pager->cpgr_slots.cpgr_eslots[0]; | |
1023 | } | |
1024 | for (slot_idx = page_num; | |
1025 | slot_idx < pager->cpgr_num_slots; | |
1026 | slot_idx++) { | |
1027 | if (chunk[slot_idx] != 0) { | |
1028 | /* found a non-NULL slot in this chunk */ | |
1029 | return (memory_object_offset_t) (slot_idx * | |
1030 | PAGE_SIZE); | |
1031 | } | |
1032 | } | |
1033 | return (memory_object_offset_t) -1; | |
1034 | } | |
1035 | ||
1036 | /* we have an array of chunks; find the next non-NULL chunk */ | |
1037 | chunk = NULL; | |
1038 | for (chunk_idx = page_num / COMPRESSOR_SLOTS_PER_CHUNK, | |
1039 | slot_idx = page_num % COMPRESSOR_SLOTS_PER_CHUNK; | |
1040 | chunk_idx < num_chunks; | |
1041 | chunk_idx++, | |
1042 | slot_idx = 0) { | |
1043 | chunk = pager->cpgr_slots.cpgr_islots[chunk_idx]; | |
1044 | if (chunk == NULL) { | |
1045 | /* no chunk here: try the next one */ | |
1046 | continue; | |
1047 | } | |
1048 | /* search for an occupied slot in this chunk */ | |
1049 | for (; | |
1050 | slot_idx < COMPRESSOR_SLOTS_PER_CHUNK; | |
1051 | slot_idx++) { | |
1052 | if (chunk[slot_idx] != 0) { | |
1053 | /* found an occupied slot in this chunk */ | |
1054 | uint32_t next_slot; | |
1055 | ||
1056 | next_slot = ((chunk_idx * | |
1057 | COMPRESSOR_SLOTS_PER_CHUNK) + | |
1058 | slot_idx); | |
1059 | if (next_slot > pager->cpgr_num_slots) { | |
1060 | /* went beyond end of object */ | |
1061 | return (memory_object_offset_t) -1; | |
1062 | } | |
1063 | return (memory_object_offset_t) (next_slot * | |
1064 | PAGE_SIZE); | |
1065 | } | |
1066 | } | |
1067 | } | |
1068 | return (memory_object_offset_t) -1; | |
1069 | } | |
1070 | ||
1071 | unsigned int | |
1072 | vm_compressor_pager_get_count( | |
1073 | memory_object_t mem_obj) | |
1074 | { | |
1075 | compressor_pager_t pager; | |
1076 | ||
1077 | compressor_pager_lookup(mem_obj, pager); | |
1078 | if (pager == NULL) | |
1079 | return 0; | |
1080 | ||
1081 | /* | |
1082 | * The caller should have the VM object locked and one | |
1083 | * needs that lock to do a page-in or page-out, so no | |
1084 | * need to lock the pager here. | |
1085 | */ | |
1086 | assert(pager->cpgr_num_slots_occupied >= 0); | |
1087 | ||
1088 | return pager->cpgr_num_slots_occupied; | |
1089 | } | |
1090 | ||
1091 | void | |
1092 | vm_compressor_pager_count( | |
1093 | memory_object_t mem_obj, | |
1094 | int compressed_count_delta, | |
1095 | boolean_t shared_lock, | |
1096 | vm_object_t object __unused) | |
1097 | { | |
1098 | compressor_pager_t pager; | |
1099 | ||
1100 | if (compressed_count_delta == 0) { | |
1101 | return; | |
1102 | } | |
1103 | ||
1104 | compressor_pager_lookup(mem_obj, pager); | |
1105 | if (pager == NULL) | |
1106 | return; | |
1107 | ||
1108 | if (compressed_count_delta < 0) { | |
1109 | assert(pager->cpgr_num_slots_occupied >= | |
1110 | (unsigned int) -compressed_count_delta); | |
1111 | } | |
1112 | ||
1113 | /* | |
1114 | * The caller should have the VM object locked, | |
1115 | * shared or exclusive. | |
1116 | */ | |
1117 | if (shared_lock) { | |
1118 | vm_object_lock_assert_shared(object); | |
1119 | OSAddAtomic(compressed_count_delta, | |
1120 | &pager->cpgr_num_slots_occupied); | |
1121 | } else { | |
1122 | vm_object_lock_assert_exclusive(object); | |
1123 | pager->cpgr_num_slots_occupied += compressed_count_delta; | |
1124 | } | |
1125 | } | |
1126 | ||
1127 | #if CONFIG_FREEZE | |
1128 | kern_return_t | |
1129 | vm_compressor_pager_relocate( | |
1130 | memory_object_t mem_obj, | |
1131 | memory_object_offset_t offset, | |
1132 | void **current_chead) | |
1133 | { | |
1134 | /* | |
1135 | * Has the page at this offset been compressed? | |
1136 | */ | |
1137 | ||
1138 | compressor_slot_t *slot_p; | |
1139 | compressor_pager_t dst_pager; | |
1140 | ||
1141 | assert(mem_obj); | |
1142 | ||
1143 | compressor_pager_lookup(mem_obj, dst_pager); | |
1144 | if (dst_pager == NULL) | |
1145 | return KERN_FAILURE; | |
1146 | ||
1147 | compressor_pager_slot_lookup(dst_pager, FALSE, offset, &slot_p); | |
1148 | return (vm_compressor_relocate(current_chead, slot_p)); | |
1149 | } | |
1150 | #endif /* CONFIG_FREEZE */ | |
1151 |