]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Copyright (c) 2000-2008 Apple Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * This file contains Original Code and/or Modifications of Original Code | |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
14 | * | |
15 | * Please obtain a copy of the License at | |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
25 | * | |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ | |
27 | */ | |
28 | /* | |
29 | * @OSF_COPYRIGHT@ | |
30 | */ | |
31 | /* | |
32 | */ | |
33 | ||
34 | #include <mach/mach_types.h> | |
35 | ||
36 | #include <kern/spl.h> | |
37 | #include <kern/sched_prim.h> | |
38 | #include <kern/thread.h> | |
39 | #include <kern/clock.h> | |
40 | #include <kern/host_notify.h> | |
41 | #include <kern/thread_call.h> | |
42 | #include <libkern/OSAtomic.h> | |
43 | ||
44 | #include <IOKit/IOPlatformExpert.h> | |
45 | ||
46 | #include <machine/commpage.h> | |
47 | ||
48 | #include <mach/mach_traps.h> | |
49 | #include <mach/mach_time.h> | |
50 | ||
51 | #include <sys/kdebug.h> | |
52 | ||
53 | uint32_t hz_tick_interval = 1; | |
54 | ||
55 | ||
56 | decl_simple_lock_data(,clock_lock) | |
57 | ||
58 | #define clock_lock() \ | |
59 | simple_lock(&clock_lock) | |
60 | ||
61 | #define clock_unlock() \ | |
62 | simple_unlock(&clock_lock) | |
63 | ||
64 | #define clock_lock_init() \ | |
65 | simple_lock_init(&clock_lock, 0) | |
66 | ||
67 | #ifdef kdp_simple_lock_is_acquired | |
68 | boolean_t kdp_clock_is_locked() | |
69 | { | |
70 | return kdp_simple_lock_is_acquired(&clock_lock); | |
71 | } | |
72 | #endif | |
73 | ||
74 | /* | |
75 | * Time of day (calendar) variables. | |
76 | * | |
77 | * Algorithm: | |
78 | * | |
79 | * TOD <- (seconds + epoch, fraction) <- CONV(current absolute time + offset) | |
80 | * | |
81 | * where CONV converts absolute time units into seconds and a fraction. | |
82 | */ | |
83 | static struct clock_calend { | |
84 | uint64_t epoch; | |
85 | uint64_t offset; | |
86 | uint64_t epoch_absolute; | |
87 | ||
88 | int32_t adjdelta; /* Nanosecond time delta for this adjustment period */ | |
89 | uint64_t adjstart; /* Absolute time value for start of this adjustment period */ | |
90 | uint32_t adjoffset; /* Absolute time offset for this adjustment period as absolute value */ | |
91 | } clock_calend; | |
92 | ||
93 | #if CONFIG_DTRACE | |
94 | ||
95 | /* | |
96 | * Unlocked calendar flipflop; this is used to track a clock_calend such | |
97 | * that we can safely access a snapshot of a valid clock_calend structure | |
98 | * without needing to take any locks to do it. | |
99 | * | |
100 | * The trick is to use a generation count and set the low bit when it is | |
101 | * being updated/read; by doing this, we guarantee, through use of the | |
102 | * hw_atomic functions, that the generation is incremented when the bit | |
103 | * is cleared atomically (by using a 1 bit add). | |
104 | */ | |
105 | static struct unlocked_clock_calend { | |
106 | struct clock_calend calend; /* copy of calendar */ | |
107 | uint32_t gen; /* generation count */ | |
108 | } flipflop[ 2]; | |
109 | ||
110 | static void clock_track_calend_nowait(void); | |
111 | ||
112 | #endif | |
113 | ||
114 | /* | |
115 | * Calendar adjustment variables and values. | |
116 | */ | |
117 | #define calend_adjperiod (NSEC_PER_SEC / 100) /* adjustment period, ns */ | |
118 | #define calend_adjskew (40 * NSEC_PER_USEC) /* "standard" skew, ns / period */ | |
119 | #define calend_adjbig (NSEC_PER_SEC) /* use 10x skew above adjbig ns */ | |
120 | ||
121 | static int64_t calend_adjtotal; /* Nanosecond remaining total adjustment */ | |
122 | static uint64_t calend_adjdeadline; /* Absolute time value for next adjustment period */ | |
123 | static uint32_t calend_adjinterval; /* Absolute time interval of adjustment period */ | |
124 | ||
125 | static timer_call_data_t calend_adjcall; | |
126 | static uint32_t calend_adjactive; | |
127 | ||
128 | static uint32_t calend_set_adjustment( | |
129 | long *secs, | |
130 | int *microsecs); | |
131 | ||
132 | static void calend_adjust_call(void); | |
133 | static uint32_t calend_adjust(void); | |
134 | ||
135 | void _clock_delay_until_deadline(uint64_t interval, | |
136 | uint64_t deadline); | |
137 | void _clock_delay_until_deadline_with_leeway(uint64_t interval, | |
138 | uint64_t deadline, | |
139 | uint64_t leeway); | |
140 | ||
141 | /* Seconds boottime epoch */ | |
142 | static uint64_t clock_boottime; | |
143 | static uint32_t clock_boottime_usec; | |
144 | ||
145 | #define TIME_ADD(rsecs, secs, rfrac, frac, unit) \ | |
146 | MACRO_BEGIN \ | |
147 | if (((rfrac) += (frac)) >= (unit)) { \ | |
148 | (rfrac) -= (unit); \ | |
149 | (rsecs) += 1; \ | |
150 | } \ | |
151 | (rsecs) += (secs); \ | |
152 | MACRO_END | |
153 | ||
154 | #define TIME_SUB(rsecs, secs, rfrac, frac, unit) \ | |
155 | MACRO_BEGIN \ | |
156 | if ((int)((rfrac) -= (frac)) < 0) { \ | |
157 | (rfrac) += (unit); \ | |
158 | (rsecs) -= 1; \ | |
159 | } \ | |
160 | (rsecs) -= (secs); \ | |
161 | MACRO_END | |
162 | ||
163 | /* | |
164 | * clock_config: | |
165 | * | |
166 | * Called once at boot to configure the clock subsystem. | |
167 | */ | |
168 | void | |
169 | clock_config(void) | |
170 | { | |
171 | clock_lock_init(); | |
172 | ||
173 | timer_call_setup(&calend_adjcall, (timer_call_func_t)calend_adjust_call, NULL); | |
174 | ||
175 | clock_oldconfig(); | |
176 | } | |
177 | ||
178 | /* | |
179 | * clock_init: | |
180 | * | |
181 | * Called on a processor each time started. | |
182 | */ | |
183 | void | |
184 | clock_init(void) | |
185 | { | |
186 | clock_oldinit(); | |
187 | } | |
188 | ||
189 | /* | |
190 | * clock_timebase_init: | |
191 | * | |
192 | * Called by machine dependent code | |
193 | * to initialize areas dependent on the | |
194 | * timebase value. May be called multiple | |
195 | * times during start up. | |
196 | */ | |
197 | void | |
198 | clock_timebase_init(void) | |
199 | { | |
200 | uint64_t abstime; | |
201 | ||
202 | nanoseconds_to_absolutetime(calend_adjperiod, &abstime); | |
203 | calend_adjinterval = (uint32_t)abstime; | |
204 | ||
205 | nanoseconds_to_absolutetime(NSEC_PER_SEC / 100, &abstime); | |
206 | hz_tick_interval = (uint32_t)abstime; | |
207 | ||
208 | sched_timebase_init(); | |
209 | } | |
210 | ||
211 | /* | |
212 | * mach_timebase_info_trap: | |
213 | * | |
214 | * User trap returns timebase constant. | |
215 | */ | |
216 | kern_return_t | |
217 | mach_timebase_info_trap( | |
218 | struct mach_timebase_info_trap_args *args) | |
219 | { | |
220 | mach_vm_address_t out_info_addr = args->info; | |
221 | mach_timebase_info_data_t info; | |
222 | ||
223 | clock_timebase_info(&info); | |
224 | ||
225 | copyout((void *)&info, out_info_addr, sizeof (info)); | |
226 | ||
227 | return (KERN_SUCCESS); | |
228 | } | |
229 | ||
230 | /* | |
231 | * Calendar routines. | |
232 | */ | |
233 | ||
234 | /* | |
235 | * clock_get_calendar_microtime: | |
236 | * | |
237 | * Returns the current calendar value, | |
238 | * microseconds as the fraction. | |
239 | */ | |
240 | void | |
241 | clock_get_calendar_microtime( | |
242 | clock_sec_t *secs, | |
243 | clock_usec_t *microsecs) | |
244 | { | |
245 | clock_get_calendar_absolute_and_microtime(secs, microsecs, NULL); | |
246 | } | |
247 | ||
248 | static void | |
249 | clock_get_calendar_absolute_and_microtime_locked( | |
250 | clock_sec_t *secs, | |
251 | clock_usec_t *microsecs, | |
252 | uint64_t *abstime) | |
253 | { | |
254 | uint64_t now = mach_absolute_time(); | |
255 | if (abstime) | |
256 | *abstime = now; | |
257 | ||
258 | if (clock_calend.adjdelta < 0) { | |
259 | uint32_t t32; | |
260 | ||
261 | /* | |
262 | * Since offset is decremented during a negative adjustment, | |
263 | * ensure that time increases monotonically without going | |
264 | * temporarily backwards. | |
265 | * If the delta has not yet passed, now is set to the start | |
266 | * of the current adjustment period; otherwise, we're between | |
267 | * the expiry of the delta and the next call to calend_adjust(), | |
268 | * and we offset accordingly. | |
269 | */ | |
270 | if (now > clock_calend.adjstart) { | |
271 | t32 = (uint32_t)(now - clock_calend.adjstart); | |
272 | ||
273 | if (t32 > clock_calend.adjoffset) | |
274 | now -= clock_calend.adjoffset; | |
275 | else | |
276 | now = clock_calend.adjstart; | |
277 | } | |
278 | } | |
279 | ||
280 | now += clock_calend.offset; | |
281 | ||
282 | absolutetime_to_microtime(now, secs, microsecs); | |
283 | ||
284 | *secs += (clock_sec_t)clock_calend.epoch; | |
285 | } | |
286 | ||
287 | /* | |
288 | * clock_get_calendar_absolute_and_microtime: | |
289 | * | |
290 | * Returns the current calendar value, | |
291 | * microseconds as the fraction. Also | |
292 | * returns mach_absolute_time if abstime | |
293 | * is not NULL. | |
294 | */ | |
295 | void | |
296 | clock_get_calendar_absolute_and_microtime( | |
297 | clock_sec_t *secs, | |
298 | clock_usec_t *microsecs, | |
299 | uint64_t *abstime) | |
300 | { | |
301 | spl_t s; | |
302 | ||
303 | s = splclock(); | |
304 | clock_lock(); | |
305 | ||
306 | clock_get_calendar_absolute_and_microtime_locked(secs, microsecs, abstime); | |
307 | ||
308 | clock_unlock(); | |
309 | splx(s); | |
310 | } | |
311 | ||
312 | /* | |
313 | * clock_get_calendar_nanotime: | |
314 | * | |
315 | * Returns the current calendar value, | |
316 | * nanoseconds as the fraction. | |
317 | * | |
318 | * Since we do not have an interface to | |
319 | * set the calendar with resolution greater | |
320 | * than a microsecond, we honor that here. | |
321 | */ | |
322 | void | |
323 | clock_get_calendar_nanotime( | |
324 | clock_sec_t *secs, | |
325 | clock_nsec_t *nanosecs) | |
326 | { | |
327 | spl_t s; | |
328 | ||
329 | s = splclock(); | |
330 | clock_lock(); | |
331 | ||
332 | clock_get_calendar_absolute_and_microtime_locked(secs, nanosecs, NULL); | |
333 | ||
334 | *nanosecs *= NSEC_PER_USEC; | |
335 | ||
336 | clock_unlock(); | |
337 | splx(s); | |
338 | } | |
339 | ||
340 | /* | |
341 | * clock_gettimeofday: | |
342 | * | |
343 | * Kernel interface for commpage implementation of | |
344 | * gettimeofday() syscall. | |
345 | * | |
346 | * Returns the current calendar value, and updates the | |
347 | * commpage info as appropriate. Because most calls to | |
348 | * gettimeofday() are handled in user mode by the commpage, | |
349 | * this routine should be used infrequently. | |
350 | */ | |
351 | void | |
352 | clock_gettimeofday( | |
353 | clock_sec_t *secs, | |
354 | clock_usec_t *microsecs) | |
355 | { | |
356 | clock_gettimeofday_and_absolute_time(secs, microsecs, NULL); | |
357 | } | |
358 | ||
359 | void | |
360 | clock_gettimeofday_and_absolute_time( | |
361 | clock_sec_t *secs, | |
362 | clock_usec_t *microsecs, | |
363 | uint64_t *mach_time) | |
364 | { | |
365 | uint64_t now; | |
366 | spl_t s; | |
367 | ||
368 | s = splclock(); | |
369 | clock_lock(); | |
370 | ||
371 | now = mach_absolute_time(); | |
372 | ||
373 | if (clock_calend.adjdelta >= 0) { | |
374 | clock_gettimeofday_set_commpage(now, clock_calend.epoch, clock_calend.offset, secs, microsecs); | |
375 | } | |
376 | else { | |
377 | uint32_t t32; | |
378 | ||
379 | if (now > clock_calend.adjstart) { | |
380 | t32 = (uint32_t)(now - clock_calend.adjstart); | |
381 | ||
382 | if (t32 > clock_calend.adjoffset) | |
383 | now -= clock_calend.adjoffset; | |
384 | else | |
385 | now = clock_calend.adjstart; | |
386 | } | |
387 | ||
388 | now += clock_calend.offset; | |
389 | ||
390 | absolutetime_to_microtime(now, secs, microsecs); | |
391 | ||
392 | *secs += (clock_sec_t)clock_calend.epoch; | |
393 | } | |
394 | ||
395 | clock_unlock(); | |
396 | splx(s); | |
397 | ||
398 | if (mach_time) { | |
399 | *mach_time = now; | |
400 | } | |
401 | } | |
402 | ||
403 | /* | |
404 | * clock_set_calendar_microtime: | |
405 | * | |
406 | * Sets the current calendar value by | |
407 | * recalculating the epoch and offset | |
408 | * from the system clock. | |
409 | * | |
410 | * Also adjusts the boottime to keep the | |
411 | * value consistent, writes the new | |
412 | * calendar value to the platform clock, | |
413 | * and sends calendar change notifications. | |
414 | */ | |
415 | void | |
416 | clock_set_calendar_microtime( | |
417 | clock_sec_t secs, | |
418 | clock_usec_t microsecs) | |
419 | { | |
420 | clock_sec_t sys; | |
421 | clock_usec_t microsys; | |
422 | uint64_t absolutesys; | |
423 | clock_sec_t newsecs; | |
424 | clock_sec_t oldsecs; | |
425 | clock_usec_t newmicrosecs; | |
426 | clock_usec_t oldmicrosecs; | |
427 | uint64_t commpage_value; | |
428 | spl_t s; | |
429 | ||
430 | newsecs = secs; | |
431 | newmicrosecs = microsecs; | |
432 | ||
433 | s = splclock(); | |
434 | clock_lock(); | |
435 | ||
436 | commpage_disable_timestamp(); | |
437 | ||
438 | /* | |
439 | * Adjust the boottime based on the delta. | |
440 | */ | |
441 | clock_get_calendar_absolute_and_microtime_locked(&oldsecs, &oldmicrosecs, &absolutesys); | |
442 | if (oldsecs < secs || (oldsecs == secs && oldmicrosecs < microsecs)){ | |
443 | // moving forwards | |
444 | long deltasecs = secs, deltamicrosecs = microsecs; | |
445 | TIME_SUB(deltasecs, oldsecs, deltamicrosecs, oldmicrosecs, USEC_PER_SEC); | |
446 | TIME_ADD(clock_boottime, deltasecs, clock_boottime_usec, deltamicrosecs, USEC_PER_SEC); | |
447 | } else { | |
448 | // moving backwards | |
449 | long deltasecs = oldsecs, deltamicrosecs = oldmicrosecs; | |
450 | TIME_SUB(deltasecs, secs, deltamicrosecs, microsecs, USEC_PER_SEC); | |
451 | TIME_SUB(clock_boottime, deltasecs, clock_boottime_usec, deltamicrosecs, USEC_PER_SEC); | |
452 | } | |
453 | commpage_value = clock_boottime * USEC_PER_SEC + clock_boottime_usec; | |
454 | ||
455 | /* | |
456 | * Calculate the new calendar epoch based on | |
457 | * the new value and the system clock. | |
458 | */ | |
459 | absolutetime_to_microtime(absolutesys, &sys, µsys); | |
460 | TIME_SUB(secs, sys, microsecs, microsys, USEC_PER_SEC); | |
461 | ||
462 | /* | |
463 | * Set the new calendar epoch. | |
464 | */ | |
465 | clock_calend.epoch = secs; | |
466 | ||
467 | nanoseconds_to_absolutetime((uint64_t)microsecs * NSEC_PER_USEC, &clock_calend.offset); | |
468 | ||
469 | clock_interval_to_absolutetime_interval((uint32_t) secs, NSEC_PER_SEC, &clock_calend.epoch_absolute); | |
470 | clock_calend.epoch_absolute += clock_calend.offset; | |
471 | ||
472 | /* | |
473 | * Cancel any adjustment in progress. | |
474 | */ | |
475 | calend_adjtotal = clock_calend.adjdelta = 0; | |
476 | ||
477 | clock_unlock(); | |
478 | ||
479 | /* | |
480 | * Set the new value for the platform clock. | |
481 | */ | |
482 | PESetUTCTimeOfDay(newsecs, newmicrosecs); | |
483 | ||
484 | splx(s); | |
485 | ||
486 | commpage_update_boottime(commpage_value); | |
487 | ||
488 | /* | |
489 | * Send host notifications. | |
490 | */ | |
491 | host_notify_calendar_change(); | |
492 | host_notify_calendar_set(); | |
493 | ||
494 | #if CONFIG_DTRACE | |
495 | clock_track_calend_nowait(); | |
496 | #endif | |
497 | } | |
498 | ||
499 | /* | |
500 | * clock_initialize_calendar: | |
501 | * | |
502 | * Set the calendar and related clocks | |
503 | * from the platform clock at boot or | |
504 | * wake event. | |
505 | * | |
506 | * Also sends host notifications. | |
507 | */ | |
508 | ||
509 | uint64_t mach_absolutetime_asleep; | |
510 | uint64_t mach_absolutetime_last_sleep; | |
511 | ||
512 | void | |
513 | clock_initialize_calendar(void) | |
514 | { | |
515 | clock_sec_t sys; // sleepless time since boot in seconds | |
516 | clock_sec_t secs; // Current UTC time | |
517 | clock_sec_t utc_offset_secs; // Difference in current UTC time and sleepless time since boot | |
518 | clock_usec_t microsys; | |
519 | clock_usec_t microsecs; | |
520 | clock_usec_t utc_offset_microsecs; | |
521 | uint64_t new_epoch; // utc_offset_secs in mach absolute time units | |
522 | spl_t s; | |
523 | ||
524 | PEGetUTCTimeOfDay(&secs, µsecs); | |
525 | ||
526 | s = splclock(); | |
527 | clock_lock(); | |
528 | ||
529 | commpage_disable_timestamp(); | |
530 | ||
531 | if ((long)secs >= (long)clock_boottime) { | |
532 | /* | |
533 | * Initialize the boot time based on the platform clock. | |
534 | */ | |
535 | if (clock_boottime == 0){ | |
536 | clock_boottime = secs; | |
537 | clock_boottime_usec = microsecs; | |
538 | commpage_update_boottime(clock_boottime * USEC_PER_SEC + clock_boottime_usec); | |
539 | } | |
540 | ||
541 | /* | |
542 | * Calculate the new calendar epoch based on | |
543 | * the platform clock and the system clock. | |
544 | */ | |
545 | clock_get_system_microtime(&sys, µsys); | |
546 | utc_offset_secs = secs; | |
547 | utc_offset_microsecs = microsecs; | |
548 | ||
549 | // This macro mutates utc_offset_secs and micro_utc_offset | |
550 | TIME_SUB(utc_offset_secs, sys, utc_offset_microsecs, microsys, USEC_PER_SEC); | |
551 | ||
552 | /* | |
553 | * Set the new calendar epoch. | |
554 | */ | |
555 | ||
556 | clock_calend.epoch = utc_offset_secs; | |
557 | ||
558 | nanoseconds_to_absolutetime((uint64_t)utc_offset_microsecs * NSEC_PER_USEC, &clock_calend.offset); | |
559 | ||
560 | clock_interval_to_absolutetime_interval((uint32_t) utc_offset_secs, NSEC_PER_SEC, &new_epoch); | |
561 | new_epoch += clock_calend.offset; | |
562 | ||
563 | if (clock_calend.epoch_absolute) | |
564 | { | |
565 | /* new_epoch is the difference between absolute_time and utc_time | |
566 | * this value will remain constant until the system sleeps. | |
567 | * Then, difference between values would go up by the time the system sleeps. | |
568 | * epoch_absolute is the last difference between the two values | |
569 | * so the difference in the differences would be the time of the last sleep | |
570 | */ | |
571 | ||
572 | if(new_epoch > clock_calend.epoch_absolute) { | |
573 | mach_absolutetime_last_sleep = new_epoch - clock_calend.epoch_absolute; | |
574 | } | |
575 | else { | |
576 | mach_absolutetime_last_sleep = 0; | |
577 | } | |
578 | mach_absolutetime_asleep += mach_absolutetime_last_sleep; | |
579 | KERNEL_DEBUG_CONSTANT( | |
580 | MACHDBG_CODE(DBG_MACH_CLOCK,MACH_EPOCH_CHANGE) | DBG_FUNC_NONE, | |
581 | (uintptr_t) mach_absolutetime_last_sleep, | |
582 | (uintptr_t) mach_absolutetime_asleep, | |
583 | (uintptr_t) (mach_absolutetime_last_sleep >> 32), | |
584 | (uintptr_t) (mach_absolutetime_asleep >> 32), | |
585 | 0); | |
586 | } | |
587 | clock_calend.epoch_absolute = new_epoch; | |
588 | ||
589 | /* | |
590 | * Cancel any adjustment in progress. | |
591 | */ | |
592 | calend_adjtotal = clock_calend.adjdelta = 0; | |
593 | } | |
594 | ||
595 | commpage_update_mach_continuous_time(mach_absolutetime_asleep); | |
596 | adjust_cont_time_thread_calls(); | |
597 | ||
598 | clock_unlock(); | |
599 | splx(s); | |
600 | ||
601 | /* | |
602 | * Send host notifications. | |
603 | */ | |
604 | host_notify_calendar_change(); | |
605 | ||
606 | #if CONFIG_DTRACE | |
607 | clock_track_calend_nowait(); | |
608 | #endif | |
609 | } | |
610 | ||
611 | /* | |
612 | * clock_get_boottime_nanotime: | |
613 | * | |
614 | * Return the boottime, used by sysctl. | |
615 | */ | |
616 | void | |
617 | clock_get_boottime_nanotime( | |
618 | clock_sec_t *secs, | |
619 | clock_nsec_t *nanosecs) | |
620 | { | |
621 | spl_t s; | |
622 | ||
623 | s = splclock(); | |
624 | clock_lock(); | |
625 | ||
626 | *secs = (clock_sec_t)clock_boottime; | |
627 | *nanosecs = (clock_nsec_t)clock_boottime_usec * NSEC_PER_USEC; | |
628 | ||
629 | clock_unlock(); | |
630 | splx(s); | |
631 | } | |
632 | ||
633 | /* | |
634 | * clock_get_boottime_nanotime: | |
635 | * | |
636 | * Return the boottime, used by sysctl. | |
637 | */ | |
638 | void | |
639 | clock_get_boottime_microtime( | |
640 | clock_sec_t *secs, | |
641 | clock_usec_t *microsecs) | |
642 | { | |
643 | spl_t s; | |
644 | ||
645 | s = splclock(); | |
646 | clock_lock(); | |
647 | ||
648 | *secs = (clock_sec_t)clock_boottime; | |
649 | *microsecs = (clock_nsec_t)clock_boottime_usec; | |
650 | ||
651 | clock_unlock(); | |
652 | splx(s); | |
653 | } | |
654 | ||
655 | /* | |
656 | * clock_adjtime: | |
657 | * | |
658 | * Interface to adjtime() syscall. | |
659 | * | |
660 | * Calculates adjustment variables and | |
661 | * initiates adjustment. | |
662 | */ | |
663 | void | |
664 | clock_adjtime( | |
665 | long *secs, | |
666 | int *microsecs) | |
667 | { | |
668 | uint32_t interval; | |
669 | spl_t s; | |
670 | ||
671 | s = splclock(); | |
672 | clock_lock(); | |
673 | ||
674 | interval = calend_set_adjustment(secs, microsecs); | |
675 | if (interval != 0) { | |
676 | calend_adjdeadline = mach_absolute_time() + interval; | |
677 | if (!timer_call_enter(&calend_adjcall, calend_adjdeadline, TIMER_CALL_SYS_CRITICAL)) | |
678 | calend_adjactive++; | |
679 | } | |
680 | else | |
681 | if (timer_call_cancel(&calend_adjcall)) | |
682 | calend_adjactive--; | |
683 | ||
684 | clock_unlock(); | |
685 | splx(s); | |
686 | } | |
687 | ||
688 | static uint32_t | |
689 | calend_set_adjustment( | |
690 | long *secs, | |
691 | int *microsecs) | |
692 | { | |
693 | uint64_t now, t64; | |
694 | int64_t total, ototal; | |
695 | uint32_t interval = 0; | |
696 | ||
697 | /* | |
698 | * Compute the total adjustment time in nanoseconds. | |
699 | */ | |
700 | total = ((int64_t)*secs * (int64_t)NSEC_PER_SEC) + (*microsecs * (int64_t)NSEC_PER_USEC); | |
701 | ||
702 | /* | |
703 | * Disable commpage gettimeofday(). | |
704 | */ | |
705 | commpage_disable_timestamp(); | |
706 | ||
707 | /* | |
708 | * Get current absolute time. | |
709 | */ | |
710 | now = mach_absolute_time(); | |
711 | ||
712 | /* | |
713 | * Save the old adjustment total for later return. | |
714 | */ | |
715 | ototal = calend_adjtotal; | |
716 | ||
717 | /* | |
718 | * Is a new correction specified? | |
719 | */ | |
720 | if (total != 0) { | |
721 | /* | |
722 | * Set delta to the standard, small, adjustment skew. | |
723 | */ | |
724 | int32_t delta = calend_adjskew; | |
725 | ||
726 | if (total > 0) { | |
727 | /* | |
728 | * Positive adjustment. If greater than the preset 'big' | |
729 | * threshold, slew at a faster rate, capping if necessary. | |
730 | */ | |
731 | if (total > (int64_t) calend_adjbig) | |
732 | delta *= 10; | |
733 | if (delta > total) | |
734 | delta = (int32_t)total; | |
735 | ||
736 | /* | |
737 | * Convert the delta back from ns to absolute time and store in adjoffset. | |
738 | */ | |
739 | nanoseconds_to_absolutetime((uint64_t)delta, &t64); | |
740 | clock_calend.adjoffset = (uint32_t)t64; | |
741 | } | |
742 | else { | |
743 | /* | |
744 | * Negative adjustment; therefore, negate the delta. If | |
745 | * greater than the preset 'big' threshold, slew at a faster | |
746 | * rate, capping if necessary. | |
747 | */ | |
748 | if (total < (int64_t) -calend_adjbig) | |
749 | delta *= 10; | |
750 | delta = -delta; | |
751 | if (delta < total) | |
752 | delta = (int32_t)total; | |
753 | ||
754 | /* | |
755 | * Save the current absolute time. Subsequent time operations occuring | |
756 | * during this negative correction can make use of this value to ensure | |
757 | * that time increases monotonically. | |
758 | */ | |
759 | clock_calend.adjstart = now; | |
760 | ||
761 | /* | |
762 | * Convert the delta back from ns to absolute time and store in adjoffset. | |
763 | */ | |
764 | nanoseconds_to_absolutetime((uint64_t)-delta, &t64); | |
765 | clock_calend.adjoffset = (uint32_t)t64; | |
766 | } | |
767 | ||
768 | /* | |
769 | * Store the total adjustment time in ns. | |
770 | */ | |
771 | calend_adjtotal = total; | |
772 | ||
773 | /* | |
774 | * Store the delta for this adjustment period in ns. | |
775 | */ | |
776 | clock_calend.adjdelta = delta; | |
777 | ||
778 | /* | |
779 | * Set the interval in absolute time for later return. | |
780 | */ | |
781 | interval = calend_adjinterval; | |
782 | } | |
783 | else { | |
784 | /* | |
785 | * No change; clear any prior adjustment. | |
786 | */ | |
787 | calend_adjtotal = clock_calend.adjdelta = 0; | |
788 | } | |
789 | ||
790 | /* | |
791 | * If an prior correction was in progress, return the | |
792 | * remaining uncorrected time from it. | |
793 | */ | |
794 | if (ototal != 0) { | |
795 | *secs = (long)(ototal / (long)NSEC_PER_SEC); | |
796 | *microsecs = (int)((ototal % (int)NSEC_PER_SEC) / (int)NSEC_PER_USEC); | |
797 | } | |
798 | else | |
799 | *secs = *microsecs = 0; | |
800 | ||
801 | #if CONFIG_DTRACE | |
802 | clock_track_calend_nowait(); | |
803 | #endif | |
804 | ||
805 | return (interval); | |
806 | } | |
807 | ||
808 | static void | |
809 | calend_adjust_call(void) | |
810 | { | |
811 | uint32_t interval; | |
812 | spl_t s; | |
813 | ||
814 | s = splclock(); | |
815 | clock_lock(); | |
816 | ||
817 | if (--calend_adjactive == 0) { | |
818 | interval = calend_adjust(); | |
819 | if (interval != 0) { | |
820 | clock_deadline_for_periodic_event(interval, mach_absolute_time(), &calend_adjdeadline); | |
821 | ||
822 | if (!timer_call_enter(&calend_adjcall, calend_adjdeadline, TIMER_CALL_SYS_CRITICAL)) | |
823 | calend_adjactive++; | |
824 | } | |
825 | } | |
826 | ||
827 | clock_unlock(); | |
828 | splx(s); | |
829 | } | |
830 | ||
831 | static uint32_t | |
832 | calend_adjust(void) | |
833 | { | |
834 | uint64_t now, t64; | |
835 | int32_t delta; | |
836 | uint32_t interval = 0; | |
837 | ||
838 | commpage_disable_timestamp(); | |
839 | ||
840 | now = mach_absolute_time(); | |
841 | ||
842 | delta = clock_calend.adjdelta; | |
843 | ||
844 | if (delta > 0) { | |
845 | clock_calend.offset += clock_calend.adjoffset; | |
846 | ||
847 | calend_adjtotal -= delta; | |
848 | if (delta > calend_adjtotal) { | |
849 | clock_calend.adjdelta = delta = (int32_t)calend_adjtotal; | |
850 | ||
851 | nanoseconds_to_absolutetime((uint64_t)delta, &t64); | |
852 | clock_calend.adjoffset = (uint32_t)t64; | |
853 | } | |
854 | } | |
855 | else | |
856 | if (delta < 0) { | |
857 | clock_calend.offset -= clock_calend.adjoffset; | |
858 | ||
859 | calend_adjtotal -= delta; | |
860 | if (delta < calend_adjtotal) { | |
861 | clock_calend.adjdelta = delta = (int32_t)calend_adjtotal; | |
862 | ||
863 | nanoseconds_to_absolutetime((uint64_t)-delta, &t64); | |
864 | clock_calend.adjoffset = (uint32_t)t64; | |
865 | } | |
866 | ||
867 | if (clock_calend.adjdelta != 0) | |
868 | clock_calend.adjstart = now; | |
869 | } | |
870 | ||
871 | if (clock_calend.adjdelta != 0) | |
872 | interval = calend_adjinterval; | |
873 | ||
874 | #if CONFIG_DTRACE | |
875 | clock_track_calend_nowait(); | |
876 | #endif | |
877 | ||
878 | return (interval); | |
879 | } | |
880 | ||
881 | /* | |
882 | * Wait / delay routines. | |
883 | */ | |
884 | static void | |
885 | mach_wait_until_continue( | |
886 | __unused void *parameter, | |
887 | wait_result_t wresult) | |
888 | { | |
889 | thread_syscall_return((wresult == THREAD_INTERRUPTED)? KERN_ABORTED: KERN_SUCCESS); | |
890 | /*NOTREACHED*/ | |
891 | } | |
892 | ||
893 | /* | |
894 | * mach_wait_until_trap: Suspend execution of calling thread until the specified time has passed | |
895 | * | |
896 | * Parameters: args->deadline Amount of time to wait | |
897 | * | |
898 | * Returns: 0 Success | |
899 | * !0 Not success | |
900 | * | |
901 | */ | |
902 | kern_return_t | |
903 | mach_wait_until_trap( | |
904 | struct mach_wait_until_trap_args *args) | |
905 | { | |
906 | uint64_t deadline = args->deadline; | |
907 | wait_result_t wresult; | |
908 | ||
909 | wresult = assert_wait_deadline_with_leeway((event_t)mach_wait_until_trap, THREAD_ABORTSAFE, | |
910 | TIMEOUT_URGENCY_USER_NORMAL, deadline, 0); | |
911 | if (wresult == THREAD_WAITING) | |
912 | wresult = thread_block(mach_wait_until_continue); | |
913 | ||
914 | return ((wresult == THREAD_INTERRUPTED)? KERN_ABORTED: KERN_SUCCESS); | |
915 | } | |
916 | ||
917 | void | |
918 | clock_delay_until( | |
919 | uint64_t deadline) | |
920 | { | |
921 | uint64_t now = mach_absolute_time(); | |
922 | ||
923 | if (now >= deadline) | |
924 | return; | |
925 | ||
926 | _clock_delay_until_deadline(deadline - now, deadline); | |
927 | } | |
928 | ||
929 | /* | |
930 | * Preserve the original precise interval that the client | |
931 | * requested for comparison to the spin threshold. | |
932 | */ | |
933 | void | |
934 | _clock_delay_until_deadline( | |
935 | uint64_t interval, | |
936 | uint64_t deadline) | |
937 | { | |
938 | _clock_delay_until_deadline_with_leeway(interval, deadline, 0); | |
939 | } | |
940 | ||
941 | /* | |
942 | * Like _clock_delay_until_deadline, but it accepts a | |
943 | * leeway value. | |
944 | */ | |
945 | void | |
946 | _clock_delay_until_deadline_with_leeway( | |
947 | uint64_t interval, | |
948 | uint64_t deadline, | |
949 | uint64_t leeway) | |
950 | { | |
951 | ||
952 | if (interval == 0) | |
953 | return; | |
954 | ||
955 | if ( ml_delay_should_spin(interval) || | |
956 | get_preemption_level() != 0 || | |
957 | ml_get_interrupts_enabled() == FALSE ) { | |
958 | machine_delay_until(interval, deadline); | |
959 | } else { | |
960 | /* | |
961 | * For now, assume a leeway request of 0 means the client does not want a leeway | |
962 | * value. We may want to change this interpretation in the future. | |
963 | */ | |
964 | ||
965 | if (leeway) { | |
966 | assert_wait_deadline_with_leeway((event_t)clock_delay_until, THREAD_UNINT, TIMEOUT_URGENCY_LEEWAY, deadline, leeway); | |
967 | } else { | |
968 | assert_wait_deadline((event_t)clock_delay_until, THREAD_UNINT, deadline); | |
969 | } | |
970 | ||
971 | thread_block(THREAD_CONTINUE_NULL); | |
972 | } | |
973 | } | |
974 | ||
975 | void | |
976 | delay_for_interval( | |
977 | uint32_t interval, | |
978 | uint32_t scale_factor) | |
979 | { | |
980 | uint64_t abstime; | |
981 | ||
982 | clock_interval_to_absolutetime_interval(interval, scale_factor, &abstime); | |
983 | ||
984 | _clock_delay_until_deadline(abstime, mach_absolute_time() + abstime); | |
985 | } | |
986 | ||
987 | void | |
988 | delay_for_interval_with_leeway( | |
989 | uint32_t interval, | |
990 | uint32_t leeway, | |
991 | uint32_t scale_factor) | |
992 | { | |
993 | uint64_t abstime_interval; | |
994 | uint64_t abstime_leeway; | |
995 | ||
996 | clock_interval_to_absolutetime_interval(interval, scale_factor, &abstime_interval); | |
997 | clock_interval_to_absolutetime_interval(leeway, scale_factor, &abstime_leeway); | |
998 | ||
999 | _clock_delay_until_deadline_with_leeway(abstime_interval, mach_absolute_time() + abstime_interval, abstime_leeway); | |
1000 | } | |
1001 | ||
1002 | void | |
1003 | delay( | |
1004 | int usec) | |
1005 | { | |
1006 | delay_for_interval((usec < 0)? -usec: usec, NSEC_PER_USEC); | |
1007 | } | |
1008 | ||
1009 | /* | |
1010 | * Miscellaneous routines. | |
1011 | */ | |
1012 | void | |
1013 | clock_interval_to_deadline( | |
1014 | uint32_t interval, | |
1015 | uint32_t scale_factor, | |
1016 | uint64_t *result) | |
1017 | { | |
1018 | uint64_t abstime; | |
1019 | ||
1020 | clock_interval_to_absolutetime_interval(interval, scale_factor, &abstime); | |
1021 | ||
1022 | *result = mach_absolute_time() + abstime; | |
1023 | } | |
1024 | ||
1025 | void | |
1026 | clock_absolutetime_interval_to_deadline( | |
1027 | uint64_t abstime, | |
1028 | uint64_t *result) | |
1029 | { | |
1030 | *result = mach_absolute_time() + abstime; | |
1031 | } | |
1032 | ||
1033 | void | |
1034 | clock_continuoustime_interval_to_deadline( | |
1035 | uint64_t conttime, | |
1036 | uint64_t *result) | |
1037 | { | |
1038 | *result = mach_continuous_time() + conttime; | |
1039 | } | |
1040 | ||
1041 | void | |
1042 | clock_get_uptime( | |
1043 | uint64_t *result) | |
1044 | { | |
1045 | *result = mach_absolute_time(); | |
1046 | } | |
1047 | ||
1048 | void | |
1049 | clock_deadline_for_periodic_event( | |
1050 | uint64_t interval, | |
1051 | uint64_t abstime, | |
1052 | uint64_t *deadline) | |
1053 | { | |
1054 | assert(interval != 0); | |
1055 | ||
1056 | *deadline += interval; | |
1057 | ||
1058 | if (*deadline <= abstime) { | |
1059 | *deadline = abstime + interval; | |
1060 | abstime = mach_absolute_time(); | |
1061 | ||
1062 | if (*deadline <= abstime) | |
1063 | *deadline = abstime + interval; | |
1064 | } | |
1065 | } | |
1066 | ||
1067 | uint64_t | |
1068 | mach_continuous_time(void) | |
1069 | { | |
1070 | while(1) { | |
1071 | uint64_t read1 = mach_absolutetime_asleep; | |
1072 | uint64_t absolute = mach_absolute_time(); | |
1073 | OSMemoryBarrier(); | |
1074 | uint64_t read2 = mach_absolutetime_asleep; | |
1075 | ||
1076 | if(__builtin_expect(read1 == read2, 1)) { | |
1077 | return absolute + read1; | |
1078 | } | |
1079 | } | |
1080 | } | |
1081 | ||
1082 | uint64_t | |
1083 | mach_continuous_approximate_time(void) | |
1084 | { | |
1085 | while(1) { | |
1086 | uint64_t read1 = mach_absolutetime_asleep; | |
1087 | uint64_t absolute = mach_approximate_time(); | |
1088 | OSMemoryBarrier(); | |
1089 | uint64_t read2 = mach_absolutetime_asleep; | |
1090 | ||
1091 | if(__builtin_expect(read1 == read2, 1)) { | |
1092 | return absolute + read1; | |
1093 | } | |
1094 | } | |
1095 | } | |
1096 | ||
1097 | /* | |
1098 | * continuoustime_to_absolutetime | |
1099 | * Must be called with interrupts disabled | |
1100 | * Returned value is only valid until the next update to | |
1101 | * mach_continuous_time | |
1102 | */ | |
1103 | uint64_t | |
1104 | continuoustime_to_absolutetime(uint64_t conttime) { | |
1105 | if (conttime <= mach_absolutetime_asleep) | |
1106 | return 0; | |
1107 | else | |
1108 | return conttime - mach_absolutetime_asleep; | |
1109 | } | |
1110 | ||
1111 | /* | |
1112 | * absolutetime_to_continuoustime | |
1113 | * Must be called with interrupts disabled | |
1114 | * Returned value is only valid until the next update to | |
1115 | * mach_continuous_time | |
1116 | */ | |
1117 | uint64_t | |
1118 | absolutetime_to_continuoustime(uint64_t abstime) { | |
1119 | return abstime + mach_absolutetime_asleep; | |
1120 | } | |
1121 | ||
1122 | #if CONFIG_DTRACE | |
1123 | ||
1124 | /* | |
1125 | * clock_get_calendar_nanotime_nowait | |
1126 | * | |
1127 | * Description: Non-blocking version of clock_get_calendar_nanotime() | |
1128 | * | |
1129 | * Notes: This function operates by separately tracking calendar time | |
1130 | * updates using a two element structure to copy the calendar | |
1131 | * state, which may be asynchronously modified. It utilizes | |
1132 | * barrier instructions in the tracking process and in the local | |
1133 | * stable snapshot process in order to ensure that a consistent | |
1134 | * snapshot is used to perform the calculation. | |
1135 | */ | |
1136 | void | |
1137 | clock_get_calendar_nanotime_nowait( | |
1138 | clock_sec_t *secs, | |
1139 | clock_nsec_t *nanosecs) | |
1140 | { | |
1141 | int i = 0; | |
1142 | uint64_t now; | |
1143 | struct unlocked_clock_calend stable; | |
1144 | ||
1145 | for (;;) { | |
1146 | stable = flipflop[i]; /* take snapshot */ | |
1147 | ||
1148 | /* | |
1149 | * Use a barrier instructions to ensure atomicity. We AND | |
1150 | * off the "in progress" bit to get the current generation | |
1151 | * count. | |
1152 | */ | |
1153 | (void)hw_atomic_and(&stable.gen, ~(uint32_t)1); | |
1154 | ||
1155 | /* | |
1156 | * If an update _is_ in progress, the generation count will be | |
1157 | * off by one, if it _was_ in progress, it will be off by two, | |
1158 | * and if we caught it at a good time, it will be equal (and | |
1159 | * our snapshot is threfore stable). | |
1160 | */ | |
1161 | if (flipflop[i].gen == stable.gen) | |
1162 | break; | |
1163 | ||
1164 | /* Switch to the oher element of the flipflop, and try again. */ | |
1165 | i ^= 1; | |
1166 | } | |
1167 | ||
1168 | now = mach_absolute_time(); | |
1169 | ||
1170 | if (stable.calend.adjdelta < 0) { | |
1171 | uint32_t t32; | |
1172 | ||
1173 | if (now > stable.calend.adjstart) { | |
1174 | t32 = (uint32_t)(now - stable.calend.adjstart); | |
1175 | ||
1176 | if (t32 > stable.calend.adjoffset) | |
1177 | now -= stable.calend.adjoffset; | |
1178 | else | |
1179 | now = stable.calend.adjstart; | |
1180 | } | |
1181 | } | |
1182 | ||
1183 | now += stable.calend.offset; | |
1184 | ||
1185 | absolutetime_to_microtime(now, secs, nanosecs); | |
1186 | *nanosecs *= NSEC_PER_USEC; | |
1187 | ||
1188 | *secs += (clock_sec_t)stable.calend.epoch; | |
1189 | } | |
1190 | ||
1191 | static void | |
1192 | clock_track_calend_nowait(void) | |
1193 | { | |
1194 | int i; | |
1195 | ||
1196 | for (i = 0; i < 2; i++) { | |
1197 | struct clock_calend tmp = clock_calend; | |
1198 | ||
1199 | /* | |
1200 | * Set the low bit if the generation count; since we use a | |
1201 | * barrier instruction to do this, we are guaranteed that this | |
1202 | * will flag an update in progress to an async caller trying | |
1203 | * to examine the contents. | |
1204 | */ | |
1205 | (void)hw_atomic_or(&flipflop[i].gen, 1); | |
1206 | ||
1207 | flipflop[i].calend = tmp; | |
1208 | ||
1209 | /* | |
1210 | * Increment the generation count to clear the low bit to | |
1211 | * signal completion. If a caller compares the generation | |
1212 | * count after taking a copy while in progress, the count | |
1213 | * will be off by two. | |
1214 | */ | |
1215 | (void)hw_atomic_add(&flipflop[i].gen, 1); | |
1216 | } | |
1217 | } | |
1218 | ||
1219 | #endif /* CONFIG_DTRACE */ | |
1220 |