]>
Commit | Line | Data |
---|---|---|
1 | /*- | |
2 | * Copyright (c) 2008-2010 Apple Inc. | |
3 | * All rights reserved. | |
4 | * | |
5 | * Redistribution and use in source and binary forms, with or without | |
6 | * modification, are permitted provided that the following conditions | |
7 | * are met: | |
8 | * | |
9 | * 1. Redistributions of source code must retain the above copyright | |
10 | * notice, this list of conditions and the following disclaimer. | |
11 | * 2. Redistributions in binary form must reproduce the above copyright | |
12 | * notice, this list of conditions and the following disclaimer in the | |
13 | * documentation and/or other materials provided with the distribution. | |
14 | * 3. Neither the name of Apple Inc. ("Apple") nor the names of | |
15 | * its contributors may be used to endorse or promote products derived | |
16 | * from this software without specific prior written permission. | |
17 | * | |
18 | * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY | |
19 | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED | |
20 | * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE | |
21 | * DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY | |
22 | * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES | |
23 | * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | |
24 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND | |
25 | * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |
26 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF | |
27 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
28 | */ | |
29 | ||
30 | #include <string.h> | |
31 | ||
32 | #include <sys/kernel.h> | |
33 | #include <sys/proc.h> | |
34 | #include <sys/systm.h> | |
35 | ||
36 | #include <kern/host.h> | |
37 | #include <kern/kalloc.h> | |
38 | #include <kern/locks.h> | |
39 | #include <kern/sched_prim.h> | |
40 | ||
41 | #include <libkern/OSAtomic.h> | |
42 | ||
43 | #include <bsm/audit.h> | |
44 | #include <bsm/audit_internal.h> | |
45 | ||
46 | #include <security/audit/audit_bsd.h> | |
47 | #include <security/audit/audit.h> | |
48 | #include <security/audit/audit_private.h> | |
49 | ||
50 | #include <mach/host_priv.h> | |
51 | #include <mach/host_special_ports.h> | |
52 | #include <mach/audit_triggers_server.h> | |
53 | ||
54 | extern void ipc_port_release_send(ipc_port_t port); | |
55 | ||
56 | #if CONFIG_AUDIT | |
57 | struct mhdr { | |
58 | size_t mh_size; | |
59 | au_malloc_type_t *mh_type; | |
60 | u_long mh_magic; | |
61 | char mh_data[0]; | |
62 | }; | |
63 | ||
64 | /* | |
65 | * The lock group for the audit subsystem. | |
66 | */ | |
67 | static lck_grp_t *audit_lck_grp = NULL; | |
68 | ||
69 | #define AUDIT_MHMAGIC 0x4D656C53 | |
70 | ||
71 | #if AUDIT_MALLOC_DEBUG | |
72 | #define AU_MAX_SHORTDESC 20 | |
73 | #define AU_MAX_LASTCALLER 20 | |
74 | struct au_malloc_debug_info { | |
75 | SInt64 md_size; | |
76 | SInt64 md_maxsize; | |
77 | SInt32 md_inuse; | |
78 | SInt32 md_maxused; | |
79 | unsigned md_type; | |
80 | unsigned md_magic; | |
81 | char md_shortdesc[AU_MAX_SHORTDESC]; | |
82 | char md_lastcaller[AU_MAX_LASTCALLER]; | |
83 | }; | |
84 | typedef struct au_malloc_debug_info au_malloc_debug_info_t; | |
85 | ||
86 | au_malloc_type_t *audit_malloc_types[NUM_MALLOC_TYPES]; | |
87 | ||
88 | static int audit_sysctl_malloc_debug(struct sysctl_oid *oidp, void *arg1, | |
89 | int arg2, struct sysctl_req *req); | |
90 | ||
91 | SYSCTL_PROC(_kern, OID_AUTO, audit_malloc_debug, CTLFLAG_RD, NULL, 0, | |
92 | audit_sysctl_malloc_debug, "S,audit_malloc_debug", | |
93 | "Current malloc debug info for auditing."); | |
94 | ||
95 | #define AU_MALLOC_DBINFO_SZ \ | |
96 | (NUM_MALLOC_TYPES * sizeof(au_malloc_debug_info_t)) | |
97 | ||
98 | /* | |
99 | * Copy out the malloc debug info via the sysctl interface. The userland code | |
100 | * is something like the following: | |
101 | * | |
102 | * error = sysctlbyname("kern.audit_malloc_debug", buffer_ptr, &buffer_len, | |
103 | * NULL, 0); | |
104 | */ | |
105 | static int | |
106 | audit_sysctl_malloc_debug(__unused struct sysctl_oid *oidp, __unused void *arg1, | |
107 | __unused int arg2, struct sysctl_req *req) | |
108 | { | |
109 | int i; | |
110 | size_t sz; | |
111 | au_malloc_debug_info_t *amdi_ptr, *nxt_ptr; | |
112 | int err; | |
113 | ||
114 | /* | |
115 | * This provides a read-only node. | |
116 | */ | |
117 | if (req->newptr != USER_ADDR_NULL) | |
118 | return (EPERM); | |
119 | ||
120 | /* | |
121 | * If just querying then return the space required. | |
122 | */ | |
123 | if (req->oldptr == USER_ADDR_NULL) { | |
124 | req->oldidx = AU_MALLOC_DBINFO_SZ; | |
125 | return (0); | |
126 | } | |
127 | ||
128 | /* | |
129 | * Alloc a temporary buffer. | |
130 | */ | |
131 | if (req->oldlen < AU_MALLOC_DBINFO_SZ) | |
132 | return (ENOMEM); | |
133 | amdi_ptr = (au_malloc_debug_info_t *)kalloc(AU_MALLOC_DBINFO_SZ); | |
134 | if (amdi_ptr == NULL) | |
135 | return (ENOMEM); | |
136 | bzero(amdi_ptr, AU_MALLOC_DBINFO_SZ); | |
137 | ||
138 | /* | |
139 | * Build the record array. | |
140 | */ | |
141 | sz = 0; | |
142 | nxt_ptr = amdi_ptr; | |
143 | for(i = 0; i < NUM_MALLOC_TYPES; i++) { | |
144 | if (audit_malloc_types[i] == NULL) | |
145 | continue; | |
146 | if (audit_malloc_types[i]->mt_magic != M_MAGIC) { | |
147 | nxt_ptr->md_magic = audit_malloc_types[i]->mt_magic; | |
148 | continue; | |
149 | } | |
150 | nxt_ptr->md_magic = audit_malloc_types[i]->mt_magic; | |
151 | nxt_ptr->md_size = audit_malloc_types[i]->mt_size; | |
152 | nxt_ptr->md_maxsize = audit_malloc_types[i]->mt_maxsize; | |
153 | nxt_ptr->md_inuse = (int)audit_malloc_types[i]->mt_inuse; | |
154 | nxt_ptr->md_maxused = (int)audit_malloc_types[i]->mt_maxused; | |
155 | strlcpy(nxt_ptr->md_shortdesc, | |
156 | audit_malloc_types[i]->mt_shortdesc, AU_MAX_SHORTDESC - 1); | |
157 | strlcpy(nxt_ptr->md_lastcaller, | |
158 | audit_malloc_types[i]->mt_lastcaller, AU_MAX_LASTCALLER-1); | |
159 | sz += sizeof(au_malloc_debug_info_t); | |
160 | nxt_ptr++; | |
161 | } | |
162 | ||
163 | req->oldlen = sz; | |
164 | err = SYSCTL_OUT(req, amdi_ptr, sz); | |
165 | kfree(amdi_ptr, AU_MALLOC_DBINFO_SZ); | |
166 | ||
167 | return (err); | |
168 | } | |
169 | #endif /* AUDIT_MALLOC_DEBUG */ | |
170 | ||
171 | /* | |
172 | * BSD malloc() | |
173 | * | |
174 | * If the M_NOWAIT flag is set then it may not block and return NULL. | |
175 | * If the M_ZERO flag is set then zero out the buffer. | |
176 | */ | |
177 | void * | |
178 | #if AUDIT_MALLOC_DEBUG | |
179 | _audit_malloc(size_t size, au_malloc_type_t *type, int flags, const char *fn) | |
180 | #else | |
181 | _audit_malloc(size_t size, au_malloc_type_t *type, int flags) | |
182 | #endif | |
183 | { | |
184 | struct mhdr *hdr; | |
185 | size_t memsize = sizeof (*hdr) + size; | |
186 | ||
187 | if (size == 0) | |
188 | return (NULL); | |
189 | if (flags & M_NOWAIT) { | |
190 | hdr = (void *)kalloc_noblock(memsize); | |
191 | } else { | |
192 | hdr = (void *)kalloc(memsize); | |
193 | if (hdr == NULL) | |
194 | panic("_audit_malloc: kernel memory exhausted"); | |
195 | } | |
196 | if (hdr == NULL) | |
197 | return (NULL); | |
198 | hdr->mh_size = memsize; | |
199 | hdr->mh_type = type; | |
200 | hdr->mh_magic = AUDIT_MHMAGIC; | |
201 | if (flags & M_ZERO) | |
202 | memset(hdr->mh_data, 0, size); | |
203 | #if AUDIT_MALLOC_DEBUG | |
204 | if (type != NULL && type->mt_type < NUM_MALLOC_TYPES) { | |
205 | OSAddAtomic64(memsize, &type->mt_size); | |
206 | type->mt_maxsize = max(type->mt_size, type->mt_maxsize); | |
207 | OSAddAtomic(1, &type->mt_inuse); | |
208 | type->mt_maxused = max(type->mt_inuse, type->mt_maxused); | |
209 | type->mt_lastcaller = fn; | |
210 | audit_malloc_types[type->mt_type] = type; | |
211 | } | |
212 | #endif /* AUDIT_MALLOC_DEBUG */ | |
213 | return (hdr->mh_data); | |
214 | } | |
215 | ||
216 | /* | |
217 | * BSD free() | |
218 | */ | |
219 | void | |
220 | #if AUDIT_MALLOC_DEBUG | |
221 | _audit_free(void *addr, au_malloc_type_t *type) | |
222 | #else | |
223 | _audit_free(void *addr, __unused au_malloc_type_t *type) | |
224 | #endif | |
225 | { | |
226 | struct mhdr *hdr; | |
227 | ||
228 | if (addr == NULL) | |
229 | return; | |
230 | hdr = addr; hdr--; | |
231 | ||
232 | KASSERT(hdr->mh_magic == AUDIT_MHMAGIC, | |
233 | ("_audit_free(): hdr->mh_magic != AUDIT_MHMAGIC")); | |
234 | ||
235 | #if AUDIT_MALLOC_DEBUG | |
236 | if (type != NULL) { | |
237 | OSAddAtomic64(-hdr->mh_size, &type->mt_size); | |
238 | OSAddAtomic(-1, &type->mt_inuse); | |
239 | } | |
240 | #endif /* AUDIT_MALLOC_DEBUG */ | |
241 | kfree(hdr, hdr->mh_size); | |
242 | } | |
243 | ||
244 | /* | |
245 | * Initialize a condition variable. Must be called before use. | |
246 | */ | |
247 | void | |
248 | _audit_cv_init(struct cv *cvp, const char *desc) | |
249 | { | |
250 | ||
251 | if (desc == NULL) | |
252 | cvp->cv_description = "UNKNOWN"; | |
253 | else | |
254 | cvp->cv_description = desc; | |
255 | cvp->cv_waiters = 0; | |
256 | } | |
257 | ||
258 | /* | |
259 | * Destory a condition variable. | |
260 | */ | |
261 | void | |
262 | _audit_cv_destroy(struct cv *cvp) | |
263 | { | |
264 | ||
265 | cvp->cv_description = NULL; | |
266 | cvp->cv_waiters = 0; | |
267 | } | |
268 | ||
269 | /* | |
270 | * Signal a condition variable, wakes up one waiting thread. | |
271 | */ | |
272 | void | |
273 | _audit_cv_signal(struct cv *cvp) | |
274 | { | |
275 | ||
276 | if (cvp->cv_waiters > 0) { | |
277 | wakeup_one((caddr_t)cvp); | |
278 | cvp->cv_waiters--; | |
279 | } | |
280 | } | |
281 | ||
282 | /* | |
283 | * Broadcast a signal to a condition variable. | |
284 | */ | |
285 | void | |
286 | _audit_cv_broadcast(struct cv *cvp) | |
287 | { | |
288 | ||
289 | if (cvp->cv_waiters > 0) { | |
290 | wakeup((caddr_t)cvp); | |
291 | cvp->cv_waiters = 0; | |
292 | } | |
293 | } | |
294 | ||
295 | /* | |
296 | * Wait on a condition variable. A cv_signal or cv_broadcast on the same | |
297 | * condition variable will resume the thread. It is recommended that the mutex | |
298 | * be held when cv_signal or cv_broadcast are called. | |
299 | */ | |
300 | void | |
301 | _audit_cv_wait(struct cv *cvp, lck_mtx_t *mp, const char *desc) | |
302 | { | |
303 | ||
304 | cvp->cv_waiters++; | |
305 | (void) msleep(cvp, mp, PZERO, desc, 0); | |
306 | } | |
307 | ||
308 | /* | |
309 | * Wait on a condition variable, allowing interruption by signals. Return 0 | |
310 | * if the thread was resumed with cv_signal or cv_broadcast, EINTR or | |
311 | * ERESTART if a signal was caught. If ERESTART is returned the system call | |
312 | * should be restarted if possible. | |
313 | */ | |
314 | int | |
315 | _audit_cv_wait_sig(struct cv *cvp, lck_mtx_t *mp, const char *desc) | |
316 | { | |
317 | ||
318 | cvp->cv_waiters++; | |
319 | return (msleep(cvp, mp, PSOCK | PCATCH, desc, 0)); | |
320 | } | |
321 | ||
322 | /* | |
323 | * BSD Mutexes. | |
324 | */ | |
325 | void | |
326 | #if DIAGNOSTIC | |
327 | _audit_mtx_init(struct mtx *mp, const char *lckname) | |
328 | #else | |
329 | _audit_mtx_init(struct mtx *mp, __unused const char *lckname) | |
330 | #endif | |
331 | { | |
332 | mp->mtx_lock = lck_mtx_alloc_init(audit_lck_grp, LCK_ATTR_NULL); | |
333 | KASSERT(mp->mtx_lock != NULL, | |
334 | ("_audit_mtx_init: Could not allocate a mutex.")); | |
335 | #if DIAGNOSTIC | |
336 | strlcpy(mp->mtx_name, lckname, AU_MAX_LCK_NAME); | |
337 | #endif | |
338 | } | |
339 | ||
340 | void | |
341 | _audit_mtx_destroy(struct mtx *mp) | |
342 | { | |
343 | ||
344 | if (mp->mtx_lock) { | |
345 | lck_mtx_free(mp->mtx_lock, audit_lck_grp); | |
346 | mp->mtx_lock = NULL; | |
347 | } | |
348 | } | |
349 | ||
350 | /* | |
351 | * BSD rw locks. | |
352 | */ | |
353 | void | |
354 | #if DIAGNOSTIC | |
355 | _audit_rw_init(struct rwlock *lp, const char *lckname) | |
356 | #else | |
357 | _audit_rw_init(struct rwlock *lp, __unused const char *lckname) | |
358 | #endif | |
359 | { | |
360 | lp->rw_lock = lck_rw_alloc_init(audit_lck_grp, LCK_ATTR_NULL); | |
361 | KASSERT(lp->rw_lock != NULL, | |
362 | ("_audit_rw_init: Could not allocate a rw lock.")); | |
363 | #if DIAGNOSTIC | |
364 | strlcpy(lp->rw_name, lckname, AU_MAX_LCK_NAME); | |
365 | #endif | |
366 | } | |
367 | ||
368 | void | |
369 | _audit_rw_destroy(struct rwlock *lp) | |
370 | { | |
371 | ||
372 | if (lp->rw_lock) { | |
373 | lck_rw_free(lp->rw_lock, audit_lck_grp); | |
374 | lp->rw_lock = NULL; | |
375 | } | |
376 | } | |
377 | /* | |
378 | * Wait on a condition variable in a continuation (i.e. yield kernel stack). | |
379 | * A cv_signal or cv_broadcast on the same condition variable will cause | |
380 | * the thread to be scheduled. | |
381 | */ | |
382 | int | |
383 | _audit_cv_wait_continuation(struct cv *cvp, lck_mtx_t *mp, thread_continue_t function) | |
384 | { | |
385 | int status = KERN_SUCCESS; | |
386 | ||
387 | cvp->cv_waiters++; | |
388 | assert_wait(cvp, THREAD_UNINT); | |
389 | lck_mtx_unlock(mp); | |
390 | ||
391 | status = thread_block(function); | |
392 | ||
393 | /* should not be reached, but just in case, re-lock */ | |
394 | lck_mtx_lock(mp); | |
395 | ||
396 | return status; | |
397 | } | |
398 | ||
399 | /* | |
400 | * Simple recursive lock. | |
401 | */ | |
402 | void | |
403 | #if DIAGNOSTIC | |
404 | _audit_rlck_init(struct rlck *lp, const char *lckname) | |
405 | #else | |
406 | _audit_rlck_init(struct rlck *lp, __unused const char *lckname) | |
407 | #endif | |
408 | { | |
409 | ||
410 | lp->rl_mtx = lck_mtx_alloc_init(audit_lck_grp, LCK_ATTR_NULL); | |
411 | KASSERT(lp->rl_mtx != NULL, | |
412 | ("_audit_rlck_init: Could not allocate a recursive lock.")); | |
413 | #if DIAGNOSTIC | |
414 | strlcpy(lp->rl_name, lckname, AU_MAX_LCK_NAME); | |
415 | #endif | |
416 | lp->rl_thread = 0; | |
417 | lp->rl_recurse = 0; | |
418 | } | |
419 | ||
420 | /* | |
421 | * Recursive lock. Allow same thread to recursively lock the same lock. | |
422 | */ | |
423 | void | |
424 | _audit_rlck_lock(struct rlck *lp) | |
425 | { | |
426 | ||
427 | if (lp->rl_thread == current_thread()) { | |
428 | OSAddAtomic(1, &lp->rl_recurse); | |
429 | KASSERT(lp->rl_recurse < 10000, | |
430 | ("_audit_rlck_lock: lock nested too deep.")); | |
431 | } else { | |
432 | lck_mtx_lock(lp->rl_mtx); | |
433 | lp->rl_thread = current_thread(); | |
434 | lp->rl_recurse = 1; | |
435 | } | |
436 | } | |
437 | ||
438 | /* | |
439 | * Recursive unlock. It should be the same thread that does the unlock. | |
440 | */ | |
441 | void | |
442 | _audit_rlck_unlock(struct rlck *lp) | |
443 | { | |
444 | KASSERT(lp->rl_thread == current_thread(), | |
445 | ("_audit_rlck_unlock(): Don't own lock.")); | |
446 | ||
447 | /* Note: OSAddAtomic returns old value. */ | |
448 | if (OSAddAtomic(-1, &lp->rl_recurse) == 1) { | |
449 | lp->rl_thread = 0; | |
450 | lck_mtx_unlock(lp->rl_mtx); | |
451 | } | |
452 | } | |
453 | ||
454 | void | |
455 | _audit_rlck_destroy(struct rlck *lp) | |
456 | { | |
457 | ||
458 | if (lp->rl_mtx) { | |
459 | lck_mtx_free(lp->rl_mtx, audit_lck_grp); | |
460 | lp->rl_mtx = NULL; | |
461 | } | |
462 | } | |
463 | ||
464 | /* | |
465 | * Recursive lock assert. | |
466 | */ | |
467 | void | |
468 | _audit_rlck_assert(struct rlck *lp, u_int assert) | |
469 | { | |
470 | thread_t cthd = current_thread(); | |
471 | ||
472 | if (assert == LCK_MTX_ASSERT_OWNED && lp->rl_thread == cthd) | |
473 | panic("recursive lock (%p) not held by this thread (%p).", | |
474 | lp, cthd); | |
475 | if (assert == LCK_MTX_ASSERT_NOTOWNED && lp->rl_thread != 0) | |
476 | panic("recursive lock (%p) held by thread (%p).", | |
477 | lp, cthd); | |
478 | } | |
479 | ||
480 | /* | |
481 | * Simple sleep lock. | |
482 | */ | |
483 | void | |
484 | #if DIAGNOSTIC | |
485 | _audit_slck_init(struct slck *lp, const char *lckname) | |
486 | #else | |
487 | _audit_slck_init(struct slck *lp, __unused const char *lckname) | |
488 | #endif | |
489 | { | |
490 | ||
491 | lp->sl_mtx = lck_mtx_alloc_init(audit_lck_grp, LCK_ATTR_NULL); | |
492 | KASSERT(lp->sl_mtx != NULL, | |
493 | ("_audit_slck_init: Could not allocate a sleep lock.")); | |
494 | #if DIAGNOSTIC | |
495 | strlcpy(lp->sl_name, lckname, AU_MAX_LCK_NAME); | |
496 | #endif | |
497 | lp->sl_locked = 0; | |
498 | lp->sl_waiting = 0; | |
499 | } | |
500 | ||
501 | /* | |
502 | * Sleep lock lock. The 'intr' flag determines if the lock is interruptible. | |
503 | * If 'intr' is true then signals or other events can interrupt the sleep lock. | |
504 | */ | |
505 | wait_result_t | |
506 | _audit_slck_lock(struct slck *lp, int intr) | |
507 | { | |
508 | wait_result_t res = THREAD_AWAKENED; | |
509 | ||
510 | lck_mtx_lock(lp->sl_mtx); | |
511 | while (lp->sl_locked && res == THREAD_AWAKENED) { | |
512 | lp->sl_waiting = 1; | |
513 | res = lck_mtx_sleep(lp->sl_mtx, LCK_SLEEP_DEFAULT, | |
514 | (event_t) lp, (intr) ? THREAD_INTERRUPTIBLE : THREAD_UNINT); | |
515 | } | |
516 | if (res == THREAD_AWAKENED) | |
517 | lp->sl_locked = 1; | |
518 | lck_mtx_unlock(lp->sl_mtx); | |
519 | ||
520 | return (res); | |
521 | } | |
522 | ||
523 | /* | |
524 | * Sleep lock unlock. Wake up all the threads waiting for this lock. | |
525 | */ | |
526 | void | |
527 | _audit_slck_unlock(struct slck *lp) | |
528 | { | |
529 | ||
530 | lck_mtx_lock(lp->sl_mtx); | |
531 | lp->sl_locked = 0; | |
532 | if (lp->sl_waiting) { | |
533 | lp->sl_waiting = 0; | |
534 | ||
535 | /* Wake up *all* sleeping threads. */ | |
536 | wakeup((event_t) lp); | |
537 | } | |
538 | lck_mtx_unlock(lp->sl_mtx); | |
539 | } | |
540 | ||
541 | /* | |
542 | * Sleep lock try. Don't sleep if it doesn't get the lock. | |
543 | */ | |
544 | int | |
545 | _audit_slck_trylock(struct slck *lp) | |
546 | { | |
547 | int result; | |
548 | ||
549 | lck_mtx_lock(lp->sl_mtx); | |
550 | result = !lp->sl_locked; | |
551 | if (result) | |
552 | lp->sl_locked = 1; | |
553 | lck_mtx_unlock(lp->sl_mtx); | |
554 | ||
555 | return (result); | |
556 | } | |
557 | ||
558 | /* | |
559 | * Sleep lock assert. | |
560 | */ | |
561 | void | |
562 | _audit_slck_assert(struct slck *lp, u_int assert) | |
563 | { | |
564 | ||
565 | if (assert == LCK_MTX_ASSERT_OWNED && lp->sl_locked == 0) | |
566 | panic("sleep lock (%p) not held.", lp); | |
567 | if (assert == LCK_MTX_ASSERT_NOTOWNED && lp->sl_locked == 1) | |
568 | panic("sleep lock (%p) held.", lp); | |
569 | } | |
570 | ||
571 | void | |
572 | _audit_slck_destroy(struct slck *lp) | |
573 | { | |
574 | ||
575 | if (lp->sl_mtx) { | |
576 | lck_mtx_free(lp->sl_mtx, audit_lck_grp); | |
577 | lp->sl_mtx = NULL; | |
578 | } | |
579 | } | |
580 | ||
581 | /* | |
582 | * XXXss - This code was taken from bsd/netinet6/icmp6.c. Maybe ppsratecheck() | |
583 | * should be made global in icmp6.c. | |
584 | */ | |
585 | #ifndef timersub | |
586 | #define timersub(tvp, uvp, vvp) \ | |
587 | do { \ | |
588 | (vvp)->tv_sec = (tvp)->tv_sec - (uvp)->tv_sec; \ | |
589 | (vvp)->tv_usec = (tvp)->tv_usec - (uvp)->tv_usec; \ | |
590 | if ((vvp)->tv_usec < 0) { \ | |
591 | (vvp)->tv_sec--; \ | |
592 | (vvp)->tv_usec += 1000000; \ | |
593 | } \ | |
594 | } while (0) | |
595 | #endif | |
596 | ||
597 | /* | |
598 | * Packets (or events) per second limitation. | |
599 | */ | |
600 | int | |
601 | _audit_ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps) | |
602 | { | |
603 | struct timeval tv, delta; | |
604 | int rv; | |
605 | ||
606 | microtime(&tv); | |
607 | ||
608 | timersub(&tv, lasttime, &delta); | |
609 | ||
610 | /* | |
611 | * Check for 0,0 so that the message will be seen at least once. | |
612 | * If more than one second has passed since the last update of | |
613 | * lasttime, reset the counter. | |
614 | * | |
615 | * we do increment *curpps even in *curpps < maxpps case, as some may | |
616 | * try to use *curpps for stat purposes as well. | |
617 | */ | |
618 | if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) || | |
619 | delta.tv_sec >= 1) { | |
620 | *lasttime = tv; | |
621 | *curpps = 0; | |
622 | rv = 1; | |
623 | } else if (maxpps < 0) | |
624 | rv = 1; | |
625 | else if (*curpps < maxpps) | |
626 | rv = 1; | |
627 | else | |
628 | rv = 0; | |
629 | if (*curpps + 1 > 0) | |
630 | *curpps = *curpps + 1; | |
631 | ||
632 | return (rv); | |
633 | } | |
634 | ||
635 | /* | |
636 | * Initialize lock group for audit related locks/mutexes. | |
637 | */ | |
638 | void | |
639 | _audit_lck_grp_init(void) | |
640 | { | |
641 | audit_lck_grp = lck_grp_alloc_init("Audit", LCK_GRP_ATTR_NULL); | |
642 | ||
643 | KASSERT(audit_lck_grp != NULL, | |
644 | ("audit_get_lck_grp: Could not allocate the audit lock group.")); | |
645 | } | |
646 | ||
647 | int | |
648 | audit_send_trigger(unsigned int trigger) | |
649 | { | |
650 | mach_port_t audit_port; | |
651 | int error; | |
652 | ||
653 | error = host_get_audit_control_port(host_priv_self(), &audit_port); | |
654 | if (error == KERN_SUCCESS && audit_port != MACH_PORT_NULL) { | |
655 | (void)audit_triggers(audit_port, trigger); | |
656 | ipc_port_release_send(audit_port); | |
657 | return (0); | |
658 | } else { | |
659 | printf("Cannot get audit control port\n"); | |
660 | return (error); | |
661 | } | |
662 | } | |
663 | #endif /* CONFIG_AUDIT */ |