]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Copyright (c) 2000-2005 Apple Computer, Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * The contents of this file constitute Original Code as defined in and | |
7 | * are subject to the Apple Public Source License Version 1.1 (the | |
8 | * "License"). You may not use this file except in compliance with the | |
9 | * License. Please obtain a copy of the License at | |
10 | * http://www.apple.com/publicsource and read it before using this file. | |
11 | * | |
12 | * This Original Code and all software distributed under the License are | |
13 | * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
14 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
15 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
16 | * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the | |
17 | * License for the specific language governing rights and limitations | |
18 | * under the License. | |
19 | * | |
20 | * @APPLE_LICENSE_HEADER_END@ | |
21 | */ | |
22 | ||
23 | #include <mach/mach_types.h> | |
24 | #include <mach/machine.h> | |
25 | #include <mach/processor_info.h> | |
26 | ||
27 | #include <kern/kalloc.h> | |
28 | #include <kern/kern_types.h> | |
29 | #include <kern/machine.h> | |
30 | #include <kern/misc_protos.h> | |
31 | #include <kern/thread.h> | |
32 | #include <kern/sched_prim.h> | |
33 | #include <kern/processor.h> | |
34 | ||
35 | #include <vm/pmap.h> | |
36 | #include <IOKit/IOHibernatePrivate.h> | |
37 | ||
38 | #include <ppc/proc_reg.h> | |
39 | #include <ppc/misc_protos.h> | |
40 | #include <ppc/machine_routines.h> | |
41 | #include <ppc/cpu_internal.h> | |
42 | #include <ppc/exception.h> | |
43 | #include <ppc/asm.h> | |
44 | #include <ppc/hw_perfmon.h> | |
45 | #include <pexpert/pexpert.h> | |
46 | #include <kern/cpu_data.h> | |
47 | #include <ppc/mappings.h> | |
48 | #include <ppc/Diagnostics.h> | |
49 | #include <ppc/trap.h> | |
50 | #include <ppc/machine_cpu.h> | |
51 | #include <ppc/pms.h> | |
52 | #include <ppc/rtclock.h> | |
53 | ||
54 | decl_mutex_data(static,ppt_lock); | |
55 | ||
56 | unsigned int real_ncpus = 1; | |
57 | unsigned int max_ncpus = MAX_CPUS; | |
58 | ||
59 | decl_simple_lock_data(static,rht_lock); | |
60 | ||
61 | static unsigned int rht_state = 0; | |
62 | #define RHT_WAIT 0x01 | |
63 | #define RHT_BUSY 0x02 | |
64 | ||
65 | decl_simple_lock_data(static,SignalReadyLock); | |
66 | ||
67 | struct SIGtimebase { | |
68 | boolean_t avail; | |
69 | boolean_t ready; | |
70 | boolean_t done; | |
71 | uint64_t abstime; | |
72 | }; | |
73 | ||
74 | perfCallback perfCpuSigHook = 0; /* Pointer to CHUD cpu signal hook routine */ | |
75 | ||
76 | extern int debugger_sync; | |
77 | ||
78 | /* | |
79 | * Forward definitions | |
80 | */ | |
81 | ||
82 | void cpu_sync_timebase( | |
83 | void); | |
84 | ||
85 | void cpu_timebase_signal_handler( | |
86 | struct per_proc_info *proc_info, | |
87 | struct SIGtimebase *timebaseAddr); | |
88 | ||
89 | /* | |
90 | * Routine: cpu_bootstrap | |
91 | * Function: | |
92 | */ | |
93 | void | |
94 | cpu_bootstrap( | |
95 | void) | |
96 | { | |
97 | simple_lock_init(&rht_lock,0); | |
98 | simple_lock_init(&SignalReadyLock,0); | |
99 | mutex_init(&ppt_lock,0); | |
100 | } | |
101 | ||
102 | ||
103 | /* | |
104 | * Routine: cpu_init | |
105 | * Function: | |
106 | */ | |
107 | void | |
108 | cpu_init( | |
109 | void) | |
110 | { | |
111 | struct per_proc_info *proc_info; | |
112 | ||
113 | proc_info = getPerProc(); | |
114 | ||
115 | /* | |
116 | * Restore the TBR. | |
117 | */ | |
118 | if (proc_info->save_tbu != 0 || proc_info->save_tbl != 0) { | |
119 | mttb(0); | |
120 | mttbu(proc_info->save_tbu); | |
121 | mttb(proc_info->save_tbl); | |
122 | } | |
123 | ||
124 | setTimerReq(); /* Now that the time base is sort of correct, request the next timer pop */ | |
125 | ||
126 | proc_info->cpu_type = CPU_TYPE_POWERPC; | |
127 | proc_info->cpu_subtype = (cpu_subtype_t)proc_info->pf.rptdProc; | |
128 | proc_info->cpu_threadtype = CPU_THREADTYPE_NONE; | |
129 | proc_info->running = TRUE; | |
130 | ||
131 | } | |
132 | ||
133 | /* | |
134 | * Routine: cpu_machine_init | |
135 | * Function: | |
136 | */ | |
137 | void | |
138 | cpu_machine_init( | |
139 | void) | |
140 | { | |
141 | struct per_proc_info *proc_info; | |
142 | volatile struct per_proc_info *mproc_info; | |
143 | ||
144 | ||
145 | proc_info = getPerProc(); | |
146 | mproc_info = PerProcTable[master_cpu].ppe_vaddr; | |
147 | ||
148 | if (proc_info != mproc_info) { | |
149 | simple_lock(&rht_lock); | |
150 | if (rht_state & RHT_WAIT) | |
151 | thread_wakeup(&rht_state); | |
152 | rht_state &= ~(RHT_BUSY|RHT_WAIT); | |
153 | simple_unlock(&rht_lock); | |
154 | } | |
155 | ||
156 | PE_cpu_machine_init(proc_info->cpu_id, !(proc_info->cpu_flags & BootDone)); | |
157 | ||
158 | if (proc_info->hibernate) { | |
159 | uint32_t tbu, tbl; | |
160 | ||
161 | do { | |
162 | tbu = mftbu(); | |
163 | tbl = mftb(); | |
164 | } while (mftbu() != tbu); | |
165 | ||
166 | proc_info->hibernate = 0; | |
167 | hibernate_machine_init(); | |
168 | ||
169 | // hibernate_machine_init() could take minutes and we don't want timeouts | |
170 | // to fire as soon as scheduling starts. Reset timebase so it appears | |
171 | // no time has elapsed, as it would for regular sleep. | |
172 | mttb(0); | |
173 | mttbu(tbu); | |
174 | mttb(tbl); | |
175 | } | |
176 | ||
177 | if (proc_info != mproc_info) { | |
178 | while (!((mproc_info->cpu_flags) & SignalReady)) | |
179 | continue; | |
180 | cpu_sync_timebase(); | |
181 | } | |
182 | ||
183 | ml_init_interrupt(); | |
184 | if (proc_info != mproc_info) | |
185 | simple_lock(&SignalReadyLock); | |
186 | proc_info->cpu_flags |= BootDone|SignalReady; | |
187 | if (proc_info != mproc_info) { | |
188 | if (proc_info->ppXFlags & SignalReadyWait) { | |
189 | hw_atomic_and(&proc_info->ppXFlags, ~SignalReadyWait); | |
190 | thread_wakeup(&proc_info->cpu_flags); | |
191 | } | |
192 | simple_unlock(&SignalReadyLock); | |
193 | pmsPark(); /* Timers should be cool now, park the power management stepper */ | |
194 | } | |
195 | } | |
196 | ||
197 | ||
198 | /* | |
199 | * Routine: cpu_per_proc_alloc | |
200 | * Function: | |
201 | */ | |
202 | struct per_proc_info * | |
203 | cpu_per_proc_alloc( | |
204 | void) | |
205 | { | |
206 | struct per_proc_info *proc_info=0; | |
207 | void *interrupt_stack=0; | |
208 | void *debugger_stack=0; | |
209 | ||
210 | if ((proc_info = (struct per_proc_info*)kalloc(sizeof(struct per_proc_info))) == (struct per_proc_info*)0) | |
211 | return (struct per_proc_info *)NULL; | |
212 | if ((interrupt_stack = kalloc(INTSTACK_SIZE)) == 0) { | |
213 | kfree(proc_info, sizeof(struct per_proc_info)); | |
214 | return (struct per_proc_info *)NULL; | |
215 | } | |
216 | ||
217 | if ((debugger_stack = kalloc(KERNEL_STACK_SIZE)) == 0) { | |
218 | kfree(proc_info, sizeof(struct per_proc_info)); | |
219 | kfree(interrupt_stack, INTSTACK_SIZE); | |
220 | return (struct per_proc_info *)NULL; | |
221 | } | |
222 | ||
223 | bzero((void *)proc_info, sizeof(struct per_proc_info)); | |
224 | ||
225 | proc_info->pp2ndPage = (addr64_t)pmap_find_phys(kernel_pmap, (addr64_t)proc_info + 0x1000) << PAGE_SHIFT; /* Set physical address of the second page */ | |
226 | proc_info->next_savearea = (uint64_t)save_get_init(); | |
227 | proc_info->pf = BootProcInfo.pf; | |
228 | proc_info->istackptr = (vm_offset_t)interrupt_stack + INTSTACK_SIZE - FM_SIZE; | |
229 | proc_info->intstack_top_ss = proc_info->istackptr; | |
230 | proc_info->debstackptr = (vm_offset_t)debugger_stack + KERNEL_STACK_SIZE - FM_SIZE; | |
231 | proc_info->debstack_top_ss = proc_info->debstackptr; | |
232 | ||
233 | return proc_info; | |
234 | ||
235 | } | |
236 | ||
237 | ||
238 | /* | |
239 | * Routine: cpu_per_proc_free | |
240 | * Function: | |
241 | */ | |
242 | void | |
243 | cpu_per_proc_free( | |
244 | struct per_proc_info *proc_info | |
245 | ) | |
246 | { | |
247 | if (proc_info->cpu_number == master_cpu) | |
248 | return; | |
249 | kfree((void *)(proc_info->intstack_top_ss - INTSTACK_SIZE + FM_SIZE), INTSTACK_SIZE); | |
250 | kfree((void *)(proc_info->debstack_top_ss - KERNEL_STACK_SIZE + FM_SIZE), KERNEL_STACK_SIZE); | |
251 | kfree((void *)proc_info, sizeof(struct per_proc_info)); /* Release the per_proc */ | |
252 | } | |
253 | ||
254 | ||
255 | /* | |
256 | * Routine: cpu_per_proc_register | |
257 | * Function: | |
258 | */ | |
259 | kern_return_t | |
260 | cpu_per_proc_register( | |
261 | struct per_proc_info *proc_info | |
262 | ) | |
263 | { | |
264 | int cpu; | |
265 | ||
266 | mutex_lock(&ppt_lock); | |
267 | if (real_ncpus >= max_ncpus) { | |
268 | mutex_unlock(&ppt_lock); | |
269 | return KERN_FAILURE; | |
270 | } | |
271 | cpu = real_ncpus; | |
272 | proc_info->cpu_number = cpu; | |
273 | PerProcTable[cpu].ppe_vaddr = proc_info; | |
274 | PerProcTable[cpu].ppe_paddr = (addr64_t)pmap_find_phys(kernel_pmap, (addr64_t)proc_info) << PAGE_SHIFT; | |
275 | eieio(); | |
276 | real_ncpus++; | |
277 | mutex_unlock(&ppt_lock); | |
278 | return KERN_SUCCESS; | |
279 | } | |
280 | ||
281 | ||
282 | /* | |
283 | * Routine: cpu_start | |
284 | * Function: | |
285 | */ | |
286 | kern_return_t | |
287 | cpu_start( | |
288 | int cpu) | |
289 | { | |
290 | struct per_proc_info *proc_info; | |
291 | kern_return_t ret; | |
292 | mapping_t *mp; | |
293 | ||
294 | proc_info = PerProcTable[cpu].ppe_vaddr; | |
295 | ||
296 | if (cpu == cpu_number()) { | |
297 | PE_cpu_machine_init(proc_info->cpu_id, !(proc_info->cpu_flags & BootDone)); | |
298 | ml_init_interrupt(); | |
299 | proc_info->cpu_flags |= BootDone|SignalReady; | |
300 | ||
301 | return KERN_SUCCESS; | |
302 | } else { | |
303 | proc_info->cpu_flags &= BootDone; | |
304 | proc_info->interrupts_enabled = 0; | |
305 | proc_info->pending_ast = AST_NONE; | |
306 | proc_info->istackptr = proc_info->intstack_top_ss; | |
307 | proc_info->rtcPop = EndOfAllTime; | |
308 | proc_info->FPU_owner = 0; | |
309 | proc_info->VMX_owner = 0; | |
310 | proc_info->pms.pmsStamp = 0; /* Dummy transition time */ | |
311 | proc_info->pms.pmsPop = EndOfAllTime; /* Set the pop way into the future */ | |
312 | proc_info->pms.pmsState = pmsParked; /* Park the stepper */ | |
313 | proc_info->pms.pmsCSetCmd = pmsCInit; /* Set dummy initial hardware state */ | |
314 | mp = (mapping_t *)(&proc_info->ppUMWmp); | |
315 | mp->mpFlags = 0x01000000 | mpLinkage | mpPerm | 1; | |
316 | mp->mpSpace = invalSpace; | |
317 | ||
318 | if (proc_info->start_paddr == EXCEPTION_VECTOR(T_RESET)) { | |
319 | ||
320 | simple_lock(&rht_lock); | |
321 | while (rht_state & RHT_BUSY) { | |
322 | rht_state |= RHT_WAIT; | |
323 | thread_sleep_usimple_lock((event_t)&rht_state, | |
324 | &rht_lock, THREAD_UNINT); | |
325 | } | |
326 | rht_state |= RHT_BUSY; | |
327 | simple_unlock(&rht_lock); | |
328 | ||
329 | ml_phys_write((vm_offset_t)&ResetHandler + 0, | |
330 | RESET_HANDLER_START); | |
331 | ml_phys_write((vm_offset_t)&ResetHandler + 4, | |
332 | (vm_offset_t)_start_cpu); | |
333 | ml_phys_write((vm_offset_t)&ResetHandler + 8, | |
334 | (vm_offset_t)&PerProcTable[cpu]); | |
335 | } | |
336 | /* | |
337 | * Note: we pass the current time to the other processor here. He will load it | |
338 | * as early as possible so that there is a chance that it is close to accurate. | |
339 | * After the machine is up a while, we will officially resync the clocks so | |
340 | * that all processors are the same. This is just to get close. | |
341 | */ | |
342 | ||
343 | ml_get_timebase((unsigned long long *)&proc_info->ruptStamp); | |
344 | ||
345 | __asm__ volatile("sync"); /* Commit to storage */ | |
346 | __asm__ volatile("isync"); /* Wait a second */ | |
347 | ret = PE_cpu_start(proc_info->cpu_id, | |
348 | proc_info->start_paddr, (vm_offset_t)proc_info); | |
349 | ||
350 | if (ret != KERN_SUCCESS) { | |
351 | if (proc_info->start_paddr == EXCEPTION_VECTOR(T_RESET)) { | |
352 | simple_lock(&rht_lock); | |
353 | if (rht_state & RHT_WAIT) | |
354 | thread_wakeup(&rht_state); | |
355 | rht_state &= ~(RHT_BUSY|RHT_WAIT); | |
356 | simple_unlock(&rht_lock); | |
357 | }; | |
358 | } else { | |
359 | simple_lock(&SignalReadyLock); | |
360 | if (!((*(volatile short *)&proc_info->cpu_flags) & SignalReady)) { | |
361 | hw_atomic_or(&proc_info->ppXFlags, SignalReadyWait); | |
362 | thread_sleep_simple_lock((event_t)&proc_info->cpu_flags, | |
363 | &SignalReadyLock, THREAD_UNINT); | |
364 | } | |
365 | simple_unlock(&SignalReadyLock); | |
366 | ||
367 | } | |
368 | return(ret); | |
369 | } | |
370 | } | |
371 | ||
372 | /* | |
373 | * Routine: cpu_exit_wait | |
374 | * Function: | |
375 | */ | |
376 | void | |
377 | cpu_exit_wait( | |
378 | int cpu) | |
379 | { | |
380 | struct per_proc_info *tpproc; | |
381 | ||
382 | if ( cpu != master_cpu) { | |
383 | tpproc = PerProcTable[cpu].ppe_vaddr; | |
384 | while (!((*(volatile short *)&tpproc->cpu_flags) & SleepState)) {}; | |
385 | } | |
386 | } | |
387 | ||
388 | ||
389 | /* | |
390 | * Routine: cpu_doshutdown | |
391 | * Function: | |
392 | */ | |
393 | void | |
394 | cpu_doshutdown( | |
395 | void) | |
396 | { | |
397 | enable_preemption(); | |
398 | processor_offline(current_processor()); | |
399 | } | |
400 | ||
401 | ||
402 | /* | |
403 | * Routine: cpu_sleep | |
404 | * Function: | |
405 | */ | |
406 | void | |
407 | cpu_sleep( | |
408 | void) | |
409 | { | |
410 | struct per_proc_info *proc_info; | |
411 | unsigned int i; | |
412 | unsigned int wait_ncpus_sleep, ncpus_sleep; | |
413 | facility_context *fowner; | |
414 | ||
415 | proc_info = getPerProc(); | |
416 | ||
417 | proc_info->running = FALSE; | |
418 | ||
419 | fowner = proc_info->FPU_owner; /* Cache this */ | |
420 | if(fowner) fpu_save(fowner); /* If anyone owns FPU, save it */ | |
421 | proc_info->FPU_owner = 0; /* Set no fpu owner now */ | |
422 | ||
423 | fowner = proc_info->VMX_owner; /* Cache this */ | |
424 | if(fowner) vec_save(fowner); /* If anyone owns vectors, save it */ | |
425 | proc_info->VMX_owner = 0; /* Set no vector owner now */ | |
426 | ||
427 | if (proc_info->cpu_number == master_cpu) { | |
428 | proc_info->cpu_flags &= BootDone; | |
429 | proc_info->interrupts_enabled = 0; | |
430 | proc_info->pending_ast = AST_NONE; | |
431 | ||
432 | if (proc_info->start_paddr == EXCEPTION_VECTOR(T_RESET)) { | |
433 | ml_phys_write((vm_offset_t)&ResetHandler + 0, | |
434 | RESET_HANDLER_START); | |
435 | ml_phys_write((vm_offset_t)&ResetHandler + 4, | |
436 | (vm_offset_t)_start_cpu); | |
437 | ml_phys_write((vm_offset_t)&ResetHandler + 8, | |
438 | (vm_offset_t)&PerProcTable[master_cpu]); | |
439 | ||
440 | __asm__ volatile("sync"); | |
441 | __asm__ volatile("isync"); | |
442 | } | |
443 | ||
444 | wait_ncpus_sleep = real_ncpus-1; | |
445 | ncpus_sleep = 0; | |
446 | while (wait_ncpus_sleep != ncpus_sleep) { | |
447 | ncpus_sleep = 0; | |
448 | for(i=1; i < real_ncpus ; i++) { | |
449 | if ((*(volatile short *)&(PerProcTable[i].ppe_vaddr->cpu_flags)) & SleepState) | |
450 | ncpus_sleep++; | |
451 | } | |
452 | } | |
453 | ||
454 | } | |
455 | ||
456 | /* | |
457 | * Save the TBR before stopping. | |
458 | */ | |
459 | do { | |
460 | proc_info->save_tbu = mftbu(); | |
461 | proc_info->save_tbl = mftb(); | |
462 | } while (mftbu() != proc_info->save_tbu); | |
463 | ||
464 | PE_cpu_machine_quiesce(proc_info->cpu_id); | |
465 | } | |
466 | ||
467 | ||
468 | /* | |
469 | * Routine: cpu_signal | |
470 | * Function: | |
471 | * Here is where we send a message to another processor. So far we only have two: | |
472 | * SIGPast and SIGPdebug. SIGPast is used to preempt and kick off threads (this is | |
473 | * currently disabled). SIGPdebug is used to enter the debugger. | |
474 | * | |
475 | * We set up the SIGP function to indicate that this is a simple message and set the | |
476 | * order code (MPsigpParm0) to SIGPast or SIGPdebug). After finding the per_processor | |
477 | * block for the target, we lock the message block. Then we set the parameter(s). | |
478 | * Next we change the lock (also called "busy") to "passing" and finally signal | |
479 | * the other processor. Note that we only wait about 1ms to get the message lock. | |
480 | * If we time out, we return failure to our caller. It is their responsibility to | |
481 | * recover. | |
482 | */ | |
483 | kern_return_t | |
484 | cpu_signal( | |
485 | int target, | |
486 | int signal, | |
487 | unsigned int p1, | |
488 | unsigned int p2) | |
489 | { | |
490 | ||
491 | unsigned int holdStat; | |
492 | struct per_proc_info *tpproc, *mpproc; | |
493 | int busybitset=0; | |
494 | ||
495 | #if DEBUG | |
496 | if(((unsigned int)target) >= MAX_CPUS) panic("cpu_signal: invalid target CPU - %08X\n", target); | |
497 | #endif | |
498 | ||
499 | mpproc = getPerProc(); /* Point to our block */ | |
500 | tpproc = PerProcTable[target].ppe_vaddr; /* Point to the target's block */ | |
501 | if(mpproc == tpproc) return KERN_FAILURE; /* Cannot signal ourselves */ | |
502 | ||
503 | if(!tpproc->running) return KERN_FAILURE; | |
504 | ||
505 | if (!(tpproc->cpu_flags & SignalReady)) return KERN_FAILURE; | |
506 | ||
507 | if((tpproc->MPsigpStat & MPsigpMsgp) == MPsigpMsgp) { /* Is there an unreceived message already pending? */ | |
508 | ||
509 | if(signal == SIGPwake) { /* SIGPwake can merge into all others... */ | |
510 | mpproc->hwCtr.numSIGPmwake++; /* Account for merged wakes */ | |
511 | return KERN_SUCCESS; | |
512 | } | |
513 | ||
514 | if((signal == SIGPast) && (tpproc->MPsigpParm0 == SIGPast)) { /* We can merge ASTs */ | |
515 | mpproc->hwCtr.numSIGPmast++; /* Account for merged ASTs */ | |
516 | return KERN_SUCCESS; /* Don't bother to send this one... */ | |
517 | } | |
518 | ||
519 | if (tpproc->MPsigpParm0 == SIGPwake) { | |
520 | if (hw_lock_mbits(&tpproc->MPsigpStat, (MPsigpMsgp | MPsigpAck), | |
521 | (MPsigpBusy | MPsigpPass ), MPsigpBusy, 0)) { | |
522 | busybitset = 1; | |
523 | mpproc->hwCtr.numSIGPmwake++; | |
524 | } | |
525 | } | |
526 | } | |
527 | ||
528 | if((busybitset == 0) && | |
529 | (!hw_lock_mbits(&tpproc->MPsigpStat, MPsigpMsgp, 0, MPsigpBusy, | |
530 | (gPEClockFrequencyInfo.timebase_frequency_hz >> 11)))) { /* Try to lock the message block with a .5ms timeout */ | |
531 | mpproc->hwCtr.numSIGPtimo++; /* Account for timeouts */ | |
532 | return KERN_FAILURE; /* Timed out, take your ball and go home... */ | |
533 | } | |
534 | ||
535 | holdStat = MPsigpBusy | MPsigpPass | (MPsigpSigp << 8) | mpproc->cpu_number; /* Set up the signal status word */ | |
536 | tpproc->MPsigpParm0 = signal; /* Set message order */ | |
537 | tpproc->MPsigpParm1 = p1; /* Set additional parm */ | |
538 | tpproc->MPsigpParm2 = p2; /* Set additional parm */ | |
539 | ||
540 | __asm__ volatile("sync"); /* Make sure it's all there */ | |
541 | ||
542 | tpproc->MPsigpStat = holdStat; /* Set status and pass the lock */ | |
543 | __asm__ volatile("eieio"); /* I'm a paraniod freak */ | |
544 | ||
545 | if (busybitset == 0) | |
546 | PE_cpu_signal(mpproc->cpu_id, tpproc->cpu_id); /* Kick the other processor */ | |
547 | ||
548 | return KERN_SUCCESS; /* All is goodness and rainbows... */ | |
549 | } | |
550 | ||
551 | ||
552 | /* | |
553 | * Routine: cpu_signal_handler | |
554 | * Function: | |
555 | * Here is where we implement the receiver of the signaling protocol. | |
556 | * We wait for the signal status area to be passed to us. Then we snarf | |
557 | * up the status, the sender, and the 3 potential parms. Next we release | |
558 | * the lock and signal the other guy. | |
559 | */ | |
560 | void | |
561 | cpu_signal_handler( | |
562 | void) | |
563 | { | |
564 | ||
565 | unsigned int holdStat, holdParm0, holdParm1, holdParm2, mtype; | |
566 | unsigned int *parmAddr; | |
567 | struct per_proc_info *proc_info; | |
568 | int cpu; | |
569 | broadcastFunc xfunc; | |
570 | cpu = cpu_number(); /* Get the CPU number */ | |
571 | ||
572 | proc_info = getPerProc(); | |
573 | ||
574 | /* | |
575 | * Since we've been signaled, wait about 31 ms for the signal lock to pass | |
576 | */ | |
577 | if(!hw_lock_mbits(&proc_info->MPsigpStat, (MPsigpMsgp | MPsigpAck), (MPsigpBusy | MPsigpPass), | |
578 | (MPsigpBusy | MPsigpPass | MPsigpAck), (gPEClockFrequencyInfo.timebase_frequency_hz >> 5))) { | |
579 | panic("cpu_signal_handler: Lock pass timed out\n"); | |
580 | } | |
581 | ||
582 | holdStat = proc_info->MPsigpStat; /* Snarf stat word */ | |
583 | holdParm0 = proc_info->MPsigpParm0; /* Snarf parameter */ | |
584 | holdParm1 = proc_info->MPsigpParm1; /* Snarf parameter */ | |
585 | holdParm2 = proc_info->MPsigpParm2; /* Snarf parameter */ | |
586 | ||
587 | __asm__ volatile("isync"); /* Make sure we don't unlock until memory is in */ | |
588 | ||
589 | proc_info->MPsigpStat = holdStat & ~(MPsigpMsgp | MPsigpAck | MPsigpFunc); /* Release lock */ | |
590 | ||
591 | switch ((holdStat & MPsigpFunc) >> 8) { /* Decode function code */ | |
592 | ||
593 | case MPsigpIdle: /* Was function cancelled? */ | |
594 | return; /* Yup... */ | |
595 | ||
596 | case MPsigpSigp: /* Signal Processor message? */ | |
597 | ||
598 | switch (holdParm0) { /* Decode SIGP message order */ | |
599 | ||
600 | case SIGPast: /* Should we do an AST? */ | |
601 | proc_info->hwCtr.numSIGPast++; /* Count this one */ | |
602 | #if 0 | |
603 | kprintf("cpu_signal_handler: AST check on cpu %x\n", cpu_number()); | |
604 | #endif | |
605 | ast_check((processor_t)proc_info->processor); | |
606 | return; /* All done... */ | |
607 | ||
608 | case SIGPcpureq: /* CPU specific function? */ | |
609 | ||
610 | proc_info->hwCtr.numSIGPcpureq++; /* Count this one */ | |
611 | switch (holdParm1) { /* Select specific function */ | |
612 | ||
613 | case CPRQtimebase: | |
614 | ||
615 | cpu_timebase_signal_handler(proc_info, (struct SIGtimebase *)holdParm2); | |
616 | return; | |
617 | ||
618 | case CPRQsegload: | |
619 | return; | |
620 | ||
621 | case CPRQchud: | |
622 | parmAddr = (unsigned int *)holdParm2; /* Get the destination address */ | |
623 | if(perfCpuSigHook) { | |
624 | struct savearea *ssp = current_thread()->machine.pcb; | |
625 | if(ssp) { | |
626 | (perfCpuSigHook)(parmAddr[1] /* request */, ssp, 0, 0); | |
627 | } | |
628 | } | |
629 | parmAddr[1] = 0; | |
630 | parmAddr[0] = 0; /* Show we're done */ | |
631 | return; | |
632 | ||
633 | case CPRQscom: | |
634 | if(((scomcomm *)holdParm2)->scomfunc) { /* Are we writing */ | |
635 | ((scomcomm *)holdParm2)->scomstat = ml_scom_write(((scomcomm *)holdParm2)->scomreg, ((scomcomm *)holdParm2)->scomdata); /* Write scom */ | |
636 | } | |
637 | else { /* No, reading... */ | |
638 | ((scomcomm *)holdParm2)->scomstat = ml_scom_read(((scomcomm *)holdParm2)->scomreg, &((scomcomm *)holdParm2)->scomdata); /* Read scom */ | |
639 | } | |
640 | return; | |
641 | ||
642 | case CPRQsps: | |
643 | { | |
644 | ml_set_processor_speed_slave(holdParm2); | |
645 | return; | |
646 | } | |
647 | default: | |
648 | panic("cpu_signal_handler: unknown CPU request - %08X\n", holdParm1); | |
649 | return; | |
650 | } | |
651 | ||
652 | ||
653 | case SIGPdebug: /* Enter the debugger? */ | |
654 | ||
655 | proc_info->hwCtr.numSIGPdebug++; /* Count this one */ | |
656 | proc_info->debugger_is_slave++; /* Bump up the count to show we're here */ | |
657 | hw_atomic_sub(&debugger_sync, 1); /* Show we've received the 'rupt */ | |
658 | __asm__ volatile("tw 4,r3,r3"); /* Enter the debugger */ | |
659 | return; /* All done now... */ | |
660 | ||
661 | case SIGPwake: /* Wake up CPU */ | |
662 | proc_info->hwCtr.numSIGPwake++; /* Count this one */ | |
663 | return; /* No need to do anything, the interrupt does it all... */ | |
664 | ||
665 | case SIGPcall: /* Call function on CPU */ | |
666 | proc_info->hwCtr.numSIGPcall++; /* Count this one */ | |
667 | xfunc = holdParm1; /* Do this since I can't seem to figure C out */ | |
668 | xfunc(holdParm2); /* Call the passed function */ | |
669 | return; /* Done... */ | |
670 | ||
671 | default: | |
672 | panic("cpu_signal_handler: unknown SIGP message order - %08X\n", holdParm0); | |
673 | return; | |
674 | ||
675 | } | |
676 | ||
677 | default: | |
678 | panic("cpu_signal_handler: unknown SIGP function - %08X\n", (holdStat & MPsigpFunc) >> 8); | |
679 | return; | |
680 | ||
681 | } | |
682 | panic("cpu_signal_handler: we should never get here\n"); | |
683 | } | |
684 | ||
685 | ||
686 | /* | |
687 | * Routine: cpu_sync_timebase | |
688 | * Function: | |
689 | */ | |
690 | void | |
691 | cpu_sync_timebase( | |
692 | void) | |
693 | { | |
694 | natural_t tbu, tbl; | |
695 | boolean_t intr; | |
696 | struct SIGtimebase syncClkSpot; | |
697 | ||
698 | intr = ml_set_interrupts_enabled(FALSE); /* No interruptions in here */ | |
699 | ||
700 | syncClkSpot.avail = FALSE; | |
701 | syncClkSpot.ready = FALSE; | |
702 | syncClkSpot.done = FALSE; | |
703 | ||
704 | while (cpu_signal(master_cpu, SIGPcpureq, CPRQtimebase, | |
705 | (unsigned int)&syncClkSpot) != KERN_SUCCESS) | |
706 | continue; | |
707 | ||
708 | while (*(volatile int *)&(syncClkSpot.avail) == FALSE) | |
709 | continue; | |
710 | ||
711 | isync(); | |
712 | ||
713 | /* | |
714 | * We do the following to keep the compiler from generating extra stuff | |
715 | * in tb set part | |
716 | */ | |
717 | tbu = syncClkSpot.abstime >> 32; | |
718 | tbl = (uint32_t)syncClkSpot.abstime; | |
719 | ||
720 | mttb(0); | |
721 | mttbu(tbu); | |
722 | mttb(tbl); | |
723 | ||
724 | syncClkSpot.ready = TRUE; | |
725 | ||
726 | while (*(volatile int *)&(syncClkSpot.done) == FALSE) | |
727 | continue; | |
728 | ||
729 | setTimerReq(); /* Start the timer */ | |
730 | ||
731 | (void)ml_set_interrupts_enabled(intr); | |
732 | } | |
733 | ||
734 | ||
735 | /* | |
736 | * Routine: cpu_timebase_signal_handler | |
737 | * Function: | |
738 | */ | |
739 | void | |
740 | cpu_timebase_signal_handler( | |
741 | struct per_proc_info *proc_info, | |
742 | struct SIGtimebase *timebaseAddr) | |
743 | { | |
744 | unsigned int tbu, tbu2, tbl; | |
745 | ||
746 | if(proc_info->time_base_enable != (void(*)(cpu_id_t, boolean_t ))NULL) | |
747 | proc_info->time_base_enable(proc_info->cpu_id, FALSE); | |
748 | ||
749 | timebaseAddr->abstime = 0; /* Touch to force into cache */ | |
750 | sync(); | |
751 | ||
752 | do { | |
753 | asm volatile(" mftbu %0" : "=r" (tbu)); | |
754 | asm volatile(" mftb %0" : "=r" (tbl)); | |
755 | asm volatile(" mftbu %0" : "=r" (tbu2)); | |
756 | } while (tbu != tbu2); | |
757 | ||
758 | timebaseAddr->abstime = ((uint64_t)tbu << 32) | tbl; | |
759 | sync(); /* Force order */ | |
760 | ||
761 | timebaseAddr->avail = TRUE; | |
762 | ||
763 | while (*(volatile int *)&(timebaseAddr->ready) == FALSE); | |
764 | ||
765 | if(proc_info->time_base_enable != (void(*)(cpu_id_t, boolean_t ))NULL) | |
766 | proc_info->time_base_enable(proc_info->cpu_id, TRUE); | |
767 | ||
768 | timebaseAddr->done = TRUE; | |
769 | } | |
770 | ||
771 | ||
772 | /* | |
773 | * Routine: cpu_control | |
774 | * Function: | |
775 | */ | |
776 | kern_return_t | |
777 | cpu_control( | |
778 | int slot_num, | |
779 | processor_info_t info, | |
780 | unsigned int count) | |
781 | { | |
782 | struct per_proc_info *proc_info; | |
783 | cpu_type_t tcpu_type; | |
784 | cpu_subtype_t tcpu_subtype; | |
785 | processor_pm_regs_t perf_regs; | |
786 | processor_control_cmd_t cmd; | |
787 | boolean_t oldlevel; | |
788 | #define MMCR0_SUPPORT_MASK 0xf83f1fff | |
789 | #define MMCR1_SUPPORT_MASK 0xffc00000 | |
790 | #define MMCR2_SUPPORT_MASK 0x80000000 | |
791 | ||
792 | proc_info = PerProcTable[slot_num].ppe_vaddr; | |
793 | tcpu_type = proc_info->cpu_type; | |
794 | tcpu_subtype = proc_info->cpu_subtype; | |
795 | cmd = (processor_control_cmd_t) info; | |
796 | ||
797 | if (count < PROCESSOR_CONTROL_CMD_COUNT) | |
798 | return(KERN_FAILURE); | |
799 | ||
800 | if ( tcpu_type != cmd->cmd_cpu_type || | |
801 | tcpu_subtype != cmd->cmd_cpu_subtype) | |
802 | return(KERN_FAILURE); | |
803 | ||
804 | if (perfmon_acquire_facility(current_task()) != KERN_SUCCESS) { | |
805 | return(KERN_RESOURCE_SHORTAGE); /* cpu performance facility in use by another task */ | |
806 | } | |
807 | ||
808 | switch (cmd->cmd_op) | |
809 | { | |
810 | case PROCESSOR_PM_CLR_PMC: /* Clear Performance Monitor Counters */ | |
811 | switch (tcpu_subtype) | |
812 | { | |
813 | case CPU_SUBTYPE_POWERPC_750: | |
814 | case CPU_SUBTYPE_POWERPC_7400: | |
815 | case CPU_SUBTYPE_POWERPC_7450: | |
816 | { | |
817 | oldlevel = ml_set_interrupts_enabled(FALSE); /* disable interrupts */ | |
818 | mtpmc1(0x0); | |
819 | mtpmc2(0x0); | |
820 | mtpmc3(0x0); | |
821 | mtpmc4(0x0); | |
822 | ml_set_interrupts_enabled(oldlevel); /* enable interrupts */ | |
823 | return(KERN_SUCCESS); | |
824 | } | |
825 | default: | |
826 | return(KERN_FAILURE); | |
827 | } /* tcpu_subtype */ | |
828 | case PROCESSOR_PM_SET_REGS: /* Set Performance Monitor Registors */ | |
829 | switch (tcpu_subtype) | |
830 | { | |
831 | case CPU_SUBTYPE_POWERPC_750: | |
832 | if (count < (PROCESSOR_CONTROL_CMD_COUNT + | |
833 | PROCESSOR_PM_REGS_COUNT_POWERPC_750)) | |
834 | return(KERN_FAILURE); | |
835 | else | |
836 | { | |
837 | perf_regs = (processor_pm_regs_t)cmd->cmd_pm_regs; | |
838 | oldlevel = ml_set_interrupts_enabled(FALSE); /* disable interrupts */ | |
839 | mtmmcr0(PERFMON_MMCR0(perf_regs) & MMCR0_SUPPORT_MASK); | |
840 | mtpmc1(PERFMON_PMC1(perf_regs)); | |
841 | mtpmc2(PERFMON_PMC2(perf_regs)); | |
842 | mtmmcr1(PERFMON_MMCR1(perf_regs) & MMCR1_SUPPORT_MASK); | |
843 | mtpmc3(PERFMON_PMC3(perf_regs)); | |
844 | mtpmc4(PERFMON_PMC4(perf_regs)); | |
845 | ml_set_interrupts_enabled(oldlevel); /* enable interrupts */ | |
846 | return(KERN_SUCCESS); | |
847 | } | |
848 | case CPU_SUBTYPE_POWERPC_7400: | |
849 | case CPU_SUBTYPE_POWERPC_7450: | |
850 | if (count < (PROCESSOR_CONTROL_CMD_COUNT + | |
851 | PROCESSOR_PM_REGS_COUNT_POWERPC_7400)) | |
852 | return(KERN_FAILURE); | |
853 | else | |
854 | { | |
855 | perf_regs = (processor_pm_regs_t)cmd->cmd_pm_regs; | |
856 | oldlevel = ml_set_interrupts_enabled(FALSE); /* disable interrupts */ | |
857 | mtmmcr0(PERFMON_MMCR0(perf_regs) & MMCR0_SUPPORT_MASK); | |
858 | mtpmc1(PERFMON_PMC1(perf_regs)); | |
859 | mtpmc2(PERFMON_PMC2(perf_regs)); | |
860 | mtmmcr1(PERFMON_MMCR1(perf_regs) & MMCR1_SUPPORT_MASK); | |
861 | mtpmc3(PERFMON_PMC3(perf_regs)); | |
862 | mtpmc4(PERFMON_PMC4(perf_regs)); | |
863 | mtmmcr2(PERFMON_MMCR2(perf_regs) & MMCR2_SUPPORT_MASK); | |
864 | ml_set_interrupts_enabled(oldlevel); /* enable interrupts */ | |
865 | return(KERN_SUCCESS); | |
866 | } | |
867 | default: | |
868 | return(KERN_FAILURE); | |
869 | } /* switch tcpu_subtype */ | |
870 | case PROCESSOR_PM_SET_MMCR: | |
871 | switch (tcpu_subtype) | |
872 | { | |
873 | case CPU_SUBTYPE_POWERPC_750: | |
874 | if (count < (PROCESSOR_CONTROL_CMD_COUNT + | |
875 | PROCESSOR_PM_REGS_COUNT_POWERPC_750)) | |
876 | return(KERN_FAILURE); | |
877 | else | |
878 | { | |
879 | perf_regs = (processor_pm_regs_t)cmd->cmd_pm_regs; | |
880 | oldlevel = ml_set_interrupts_enabled(FALSE); /* disable interrupts */ | |
881 | mtmmcr0(PERFMON_MMCR0(perf_regs) & MMCR0_SUPPORT_MASK); | |
882 | mtmmcr1(PERFMON_MMCR1(perf_regs) & MMCR1_SUPPORT_MASK); | |
883 | ml_set_interrupts_enabled(oldlevel); /* enable interrupts */ | |
884 | return(KERN_SUCCESS); | |
885 | } | |
886 | case CPU_SUBTYPE_POWERPC_7400: | |
887 | case CPU_SUBTYPE_POWERPC_7450: | |
888 | if (count < (PROCESSOR_CONTROL_CMD_COUNT + | |
889 | PROCESSOR_PM_REGS_COUNT_POWERPC_7400)) | |
890 | return(KERN_FAILURE); | |
891 | else | |
892 | { | |
893 | perf_regs = (processor_pm_regs_t)cmd->cmd_pm_regs; | |
894 | oldlevel = ml_set_interrupts_enabled(FALSE); /* disable interrupts */ | |
895 | mtmmcr0(PERFMON_MMCR0(perf_regs) & MMCR0_SUPPORT_MASK); | |
896 | mtmmcr1(PERFMON_MMCR1(perf_regs) & MMCR1_SUPPORT_MASK); | |
897 | mtmmcr2(PERFMON_MMCR2(perf_regs) & MMCR2_SUPPORT_MASK); | |
898 | ml_set_interrupts_enabled(oldlevel); /* enable interrupts */ | |
899 | return(KERN_SUCCESS); | |
900 | } | |
901 | default: | |
902 | return(KERN_FAILURE); | |
903 | } /* tcpu_subtype */ | |
904 | default: | |
905 | return(KERN_FAILURE); | |
906 | } /* switch cmd_op */ | |
907 | } | |
908 | ||
909 | ||
910 | /* | |
911 | * Routine: cpu_info_count | |
912 | * Function: | |
913 | */ | |
914 | kern_return_t | |
915 | cpu_info_count( | |
916 | processor_flavor_t flavor, | |
917 | unsigned int *count) | |
918 | { | |
919 | cpu_subtype_t tcpu_subtype; | |
920 | ||
921 | /* | |
922 | * For now, we just assume that all CPUs are of the same type | |
923 | */ | |
924 | tcpu_subtype = PerProcTable[master_cpu].ppe_vaddr->cpu_subtype; | |
925 | switch (flavor) { | |
926 | case PROCESSOR_PM_REGS_INFO: | |
927 | switch (tcpu_subtype) { | |
928 | case CPU_SUBTYPE_POWERPC_750: | |
929 | ||
930 | *count = PROCESSOR_PM_REGS_COUNT_POWERPC_750; | |
931 | return(KERN_SUCCESS); | |
932 | ||
933 | case CPU_SUBTYPE_POWERPC_7400: | |
934 | case CPU_SUBTYPE_POWERPC_7450: | |
935 | ||
936 | *count = PROCESSOR_PM_REGS_COUNT_POWERPC_7400; | |
937 | return(KERN_SUCCESS); | |
938 | ||
939 | default: | |
940 | *count = 0; | |
941 | return(KERN_INVALID_ARGUMENT); | |
942 | } /* switch tcpu_subtype */ | |
943 | ||
944 | case PROCESSOR_TEMPERATURE: | |
945 | *count = PROCESSOR_TEMPERATURE_COUNT; | |
946 | return (KERN_SUCCESS); | |
947 | ||
948 | default: | |
949 | *count = 0; | |
950 | return(KERN_INVALID_ARGUMENT); | |
951 | ||
952 | } | |
953 | } | |
954 | ||
955 | ||
956 | /* | |
957 | * Routine: cpu_info | |
958 | * Function: | |
959 | */ | |
960 | kern_return_t | |
961 | cpu_info( | |
962 | processor_flavor_t flavor, | |
963 | int slot_num, | |
964 | processor_info_t info, | |
965 | unsigned int *count) | |
966 | { | |
967 | cpu_subtype_t tcpu_subtype; | |
968 | processor_pm_regs_t perf_regs; | |
969 | boolean_t oldlevel; | |
970 | ||
971 | tcpu_subtype = PerProcTable[slot_num].ppe_vaddr->cpu_subtype; | |
972 | ||
973 | switch (flavor) { | |
974 | case PROCESSOR_PM_REGS_INFO: | |
975 | ||
976 | perf_regs = (processor_pm_regs_t) info; | |
977 | ||
978 | switch (tcpu_subtype) { | |
979 | case CPU_SUBTYPE_POWERPC_750: | |
980 | ||
981 | if (*count < PROCESSOR_PM_REGS_COUNT_POWERPC_750) | |
982 | return(KERN_FAILURE); | |
983 | ||
984 | oldlevel = ml_set_interrupts_enabled(FALSE); /* disable interrupts */ | |
985 | PERFMON_MMCR0(perf_regs) = mfmmcr0(); | |
986 | PERFMON_PMC1(perf_regs) = mfpmc1(); | |
987 | PERFMON_PMC2(perf_regs) = mfpmc2(); | |
988 | PERFMON_MMCR1(perf_regs) = mfmmcr1(); | |
989 | PERFMON_PMC3(perf_regs) = mfpmc3(); | |
990 | PERFMON_PMC4(perf_regs) = mfpmc4(); | |
991 | ml_set_interrupts_enabled(oldlevel); /* enable interrupts */ | |
992 | ||
993 | *count = PROCESSOR_PM_REGS_COUNT_POWERPC_750; | |
994 | return(KERN_SUCCESS); | |
995 | ||
996 | case CPU_SUBTYPE_POWERPC_7400: | |
997 | case CPU_SUBTYPE_POWERPC_7450: | |
998 | ||
999 | if (*count < PROCESSOR_PM_REGS_COUNT_POWERPC_7400) | |
1000 | return(KERN_FAILURE); | |
1001 | ||
1002 | oldlevel = ml_set_interrupts_enabled(FALSE); /* disable interrupts */ | |
1003 | PERFMON_MMCR0(perf_regs) = mfmmcr0(); | |
1004 | PERFMON_PMC1(perf_regs) = mfpmc1(); | |
1005 | PERFMON_PMC2(perf_regs) = mfpmc2(); | |
1006 | PERFMON_MMCR1(perf_regs) = mfmmcr1(); | |
1007 | PERFMON_PMC3(perf_regs) = mfpmc3(); | |
1008 | PERFMON_PMC4(perf_regs) = mfpmc4(); | |
1009 | PERFMON_MMCR2(perf_regs) = mfmmcr2(); | |
1010 | ml_set_interrupts_enabled(oldlevel); /* enable interrupts */ | |
1011 | ||
1012 | *count = PROCESSOR_PM_REGS_COUNT_POWERPC_7400; | |
1013 | return(KERN_SUCCESS); | |
1014 | ||
1015 | default: | |
1016 | return(KERN_FAILURE); | |
1017 | } /* switch tcpu_subtype */ | |
1018 | ||
1019 | case PROCESSOR_TEMPERATURE: /* Get the temperature of a processor */ | |
1020 | ||
1021 | *info = -1; /* Get the temperature */ | |
1022 | return(KERN_FAILURE); | |
1023 | ||
1024 | default: | |
1025 | return(KERN_INVALID_ARGUMENT); | |
1026 | ||
1027 | } /* flavor */ | |
1028 | } | |
1029 | ||
1030 | ||
1031 | /* | |
1032 | * Routine: cpu_to_processor | |
1033 | * Function: | |
1034 | */ | |
1035 | processor_t | |
1036 | cpu_to_processor( | |
1037 | int cpu) | |
1038 | { | |
1039 | return ((processor_t)PerProcTable[cpu].ppe_vaddr->processor); | |
1040 | } | |
1041 | ||
1042 | ||
1043 | /* | |
1044 | * Routine: slot_type | |
1045 | * Function: | |
1046 | */ | |
1047 | cpu_type_t | |
1048 | slot_type( | |
1049 | int slot_num) | |
1050 | { | |
1051 | return (PerProcTable[slot_num].ppe_vaddr->cpu_type); | |
1052 | } | |
1053 | ||
1054 | ||
1055 | /* | |
1056 | * Routine: slot_subtype | |
1057 | * Function: | |
1058 | */ | |
1059 | cpu_subtype_t | |
1060 | slot_subtype( | |
1061 | int slot_num) | |
1062 | { | |
1063 | return (PerProcTable[slot_num].ppe_vaddr->cpu_subtype); | |
1064 | } | |
1065 | ||
1066 | ||
1067 | /* | |
1068 | * Routine: slot_threadtype | |
1069 | * Function: | |
1070 | */ | |
1071 | cpu_threadtype_t | |
1072 | slot_threadtype( | |
1073 | int slot_num) | |
1074 | { | |
1075 | return (PerProcTable[slot_num].ppe_vaddr->cpu_threadtype); | |
1076 | } | |
1077 | ||
1078 | ||
1079 | /* | |
1080 | * Routine: cpu_type | |
1081 | * Function: | |
1082 | */ | |
1083 | cpu_type_t | |
1084 | cpu_type(void) | |
1085 | { | |
1086 | return (getPerProc()->cpu_type); | |
1087 | } | |
1088 | ||
1089 | ||
1090 | /* | |
1091 | * Routine: cpu_subtype | |
1092 | * Function: | |
1093 | */ | |
1094 | cpu_subtype_t | |
1095 | cpu_subtype(void) | |
1096 | { | |
1097 | return (getPerProc()->cpu_subtype); | |
1098 | } | |
1099 | ||
1100 | ||
1101 | /* | |
1102 | * Routine: cpu_threadtype | |
1103 | * Function: | |
1104 | */ | |
1105 | cpu_threadtype_t | |
1106 | cpu_threadtype(void) | |
1107 | { | |
1108 | return (getPerProc()->cpu_threadtype); | |
1109 | } | |
1110 | ||
1111 | /* | |
1112 | * Call a function on all running processors | |
1113 | * | |
1114 | * Note that the synch paramter is used to wait until all functions are complete. | |
1115 | * It is not passed to the other processor and must be known by the called function. | |
1116 | * The called function must do a thread_wakeup on the synch if it decrements the | |
1117 | * synch count to 0. | |
1118 | */ | |
1119 | ||
1120 | ||
1121 | int32_t cpu_broadcast(uint32_t *synch, broadcastFunc func, uint32_t parm) { | |
1122 | ||
1123 | int sigproc, cpu, ocpu; | |
1124 | ||
1125 | cpu = cpu_number(); /* Who are we? */ | |
1126 | sigproc = 0; /* Clear called processor count */ | |
1127 | ||
1128 | if(real_ncpus > 1) { /* Are we just a uni? */ | |
1129 | ||
1130 | assert_wait((event_t)synch, THREAD_UNINT); /* If more than one processor, we may have to wait */ | |
1131 | ||
1132 | for(ocpu = 0; ocpu < real_ncpus; ocpu++) { /* Tell everyone to call */ | |
1133 | if(ocpu == cpu) continue; /* If we talk to ourselves, people will wonder... */ | |
1134 | hw_atomic_add(synch, 1); /* Tentatively bump synchronizer */ | |
1135 | sigproc++; /* Tentatively bump signal sent count */ | |
1136 | if(KERN_SUCCESS != cpu_signal(ocpu, SIGPcall, (uint32_t)func, parm)) { /* Call the function on the other processor */ | |
1137 | hw_atomic_sub(synch, 1); /* Other guy isn't really there, ignore it */ | |
1138 | sigproc--; /* and don't count it */ | |
1139 | } | |
1140 | } | |
1141 | ||
1142 | if(!sigproc) clear_wait(current_thread(), THREAD_AWAKENED); /* Clear wait if we never signalled */ | |
1143 | else thread_block(THREAD_CONTINUE_NULL); /* Wait for everyone to get into step... */ | |
1144 | } | |
1145 | ||
1146 | return sigproc; /* Return the number of guys actually signalled */ | |
1147 | ||
1148 | } |