]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Copyright (c) 2000-2007 Apple Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * This file contains Original Code and/or Modifications of Original Code | |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
14 | * | |
15 | * Please obtain a copy of the License at | |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
25 | * | |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ | |
27 | */ | |
28 | /* | |
29 | * Copyright (c) 1982, 1986, 1988, 1993 | |
30 | * The Regents of the University of California. All rights reserved. | |
31 | * | |
32 | * Redistribution and use in source and binary forms, with or without | |
33 | * modification, are permitted provided that the following conditions | |
34 | * are met: | |
35 | * 1. Redistributions of source code must retain the above copyright | |
36 | * notice, this list of conditions and the following disclaimer. | |
37 | * 2. Redistributions in binary form must reproduce the above copyright | |
38 | * notice, this list of conditions and the following disclaimer in the | |
39 | * documentation and/or other materials provided with the distribution. | |
40 | * 3. All advertising materials mentioning features or use of this software | |
41 | * must display the following acknowledgement: | |
42 | * This product includes software developed by the University of | |
43 | * California, Berkeley and its contributors. | |
44 | * 4. Neither the name of the University nor the names of its contributors | |
45 | * may be used to endorse or promote products derived from this software | |
46 | * without specific prior written permission. | |
47 | * | |
48 | * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND | |
49 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
50 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |
51 | * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE | |
52 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | |
53 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | |
54 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | |
55 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | |
56 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | |
57 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | |
58 | * SUCH DAMAGE. | |
59 | * | |
60 | * @(#)ip_input.c 8.2 (Berkeley) 1/4/94 | |
61 | * $FreeBSD: src/sys/netinet/ip_input.c,v 1.130.2.25 2001/08/29 21:41:37 jesper Exp $ | |
62 | */ | |
63 | /* | |
64 | * NOTICE: This file was modified by SPARTA, Inc. in 2007 to introduce | |
65 | * support for mandatory and extensible security protections. This notice | |
66 | * is included in support of clause 2.2 (b) of the Apple Public License, | |
67 | * Version 2.0. | |
68 | */ | |
69 | ||
70 | #define _IP_VHL | |
71 | ||
72 | #include <sys/param.h> | |
73 | #include <sys/systm.h> | |
74 | #include <sys/mbuf.h> | |
75 | #include <sys/malloc.h> | |
76 | #include <sys/domain.h> | |
77 | #include <sys/protosw.h> | |
78 | #include <sys/socket.h> | |
79 | #include <sys/time.h> | |
80 | #include <sys/kernel.h> | |
81 | #include <sys/syslog.h> | |
82 | #include <sys/sysctl.h> | |
83 | ||
84 | #include <kern/queue.h> | |
85 | #include <kern/locks.h> | |
86 | ||
87 | #include <pexpert/pexpert.h> | |
88 | ||
89 | #include <net/if.h> | |
90 | #include <net/if_var.h> | |
91 | #include <net/if_dl.h> | |
92 | #include <net/route.h> | |
93 | #include <net/kpi_protocol.h> | |
94 | ||
95 | #include <netinet/in.h> | |
96 | #include <netinet/in_systm.h> | |
97 | #include <netinet/in_var.h> | |
98 | #include <netinet/ip.h> | |
99 | #include <netinet/in_pcb.h> | |
100 | #include <netinet/ip_var.h> | |
101 | #include <netinet/ip_icmp.h> | |
102 | #include <sys/socketvar.h> | |
103 | ||
104 | #include <netinet/ip_fw.h> | |
105 | #include <netinet/ip_divert.h> | |
106 | ||
107 | #include <netinet/kpi_ipfilter_var.h> | |
108 | ||
109 | /* needed for AUTOCONFIGURING: */ | |
110 | #include <netinet/udp.h> | |
111 | #include <netinet/udp_var.h> | |
112 | #include <netinet/bootp.h> | |
113 | ||
114 | #if CONFIG_MACF_NET | |
115 | #include <security/mac_framework.h> | |
116 | #endif | |
117 | ||
118 | #include <sys/kdebug.h> | |
119 | #include <libkern/OSAtomic.h> | |
120 | ||
121 | #define DBG_LAYER_BEG NETDBG_CODE(DBG_NETIP, 0) | |
122 | #define DBG_LAYER_END NETDBG_CODE(DBG_NETIP, 2) | |
123 | #define DBG_FNC_IP_INPUT NETDBG_CODE(DBG_NETIP, (2 << 8)) | |
124 | ||
125 | ||
126 | #if IPSEC | |
127 | #include <netinet6/ipsec.h> | |
128 | #include <netkey/key.h> | |
129 | #endif | |
130 | ||
131 | #include "faith.h" | |
132 | #if defined(NFAITH) && NFAITH > 0 | |
133 | #include <net/if_types.h> | |
134 | #endif | |
135 | ||
136 | #if DUMMYNET | |
137 | #include <netinet/ip_dummynet.h> | |
138 | #endif | |
139 | ||
140 | #if IPSEC | |
141 | extern int ipsec_bypass; | |
142 | extern lck_mtx_t *sadb_mutex; | |
143 | #endif | |
144 | ||
145 | int rsvp_on = 0; | |
146 | static int ip_rsvp_on; | |
147 | struct socket *ip_rsvpd; | |
148 | ||
149 | int ipforwarding = 0; | |
150 | SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW, | |
151 | &ipforwarding, 0, "Enable IP forwarding between interfaces"); | |
152 | ||
153 | static int ipsendredirects = 1; /* XXX */ | |
154 | SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW, | |
155 | &ipsendredirects, 0, "Enable sending IP redirects"); | |
156 | ||
157 | int ip_defttl = IPDEFTTL; | |
158 | SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW, | |
159 | &ip_defttl, 0, "Maximum TTL on IP packets"); | |
160 | ||
161 | static int ip_dosourceroute = 0; | |
162 | SYSCTL_INT(_net_inet_ip, IPCTL_SOURCEROUTE, sourceroute, CTLFLAG_RW, | |
163 | &ip_dosourceroute, 0, "Enable forwarding source routed IP packets"); | |
164 | ||
165 | static int ip_acceptsourceroute = 0; | |
166 | SYSCTL_INT(_net_inet_ip, IPCTL_ACCEPTSOURCEROUTE, accept_sourceroute, | |
167 | CTLFLAG_RW, &ip_acceptsourceroute, 0, | |
168 | "Enable accepting source routed IP packets"); | |
169 | ||
170 | static int ip_keepfaith = 0; | |
171 | SYSCTL_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW, | |
172 | &ip_keepfaith, 0, | |
173 | "Enable packet capture for FAITH IPv4->IPv6 translater daemon"); | |
174 | ||
175 | static int nipq = 0; /* total # of reass queues */ | |
176 | static int maxnipq; | |
177 | SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragpackets, CTLFLAG_RW, | |
178 | &maxnipq, 0, | |
179 | "Maximum number of IPv4 fragment reassembly queue entries"); | |
180 | ||
181 | static int maxfragsperpacket; | |
182 | SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragsperpacket, CTLFLAG_RW, | |
183 | &maxfragsperpacket, 0, | |
184 | "Maximum number of IPv4 fragments allowed per packet"); | |
185 | ||
186 | static int maxfrags; | |
187 | SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfrags, CTLFLAG_RW, | |
188 | &maxfrags, 0, "Maximum number of IPv4 fragments allowed"); | |
189 | ||
190 | static int currentfrags = 0; | |
191 | ||
192 | /* | |
193 | * XXX - Setting ip_checkinterface mostly implements the receive side of | |
194 | * the Strong ES model described in RFC 1122, but since the routing table | |
195 | * and transmit implementation do not implement the Strong ES model, | |
196 | * setting this to 1 results in an odd hybrid. | |
197 | * | |
198 | * XXX - ip_checkinterface currently must be disabled if you use ipnat | |
199 | * to translate the destination address to another local interface. | |
200 | * | |
201 | * XXX - ip_checkinterface must be disabled if you add IP aliases | |
202 | * to the loopback interface instead of the interface where the | |
203 | * packets for those addresses are received. | |
204 | */ | |
205 | static int ip_checkinterface = 0; | |
206 | SYSCTL_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW, | |
207 | &ip_checkinterface, 0, "Verify packet arrives on correct interface"); | |
208 | ||
209 | ||
210 | #if DIAGNOSTIC | |
211 | static int ipprintfs = 0; | |
212 | #endif | |
213 | ||
214 | extern int in_proto_count; | |
215 | extern struct domain inetdomain; | |
216 | extern struct protosw inetsw[]; | |
217 | struct protosw *ip_protox[IPPROTO_MAX]; | |
218 | static int ipqmaxlen = IFQ_MAXLEN; | |
219 | struct in_ifaddrhead in_ifaddrhead; /* first inet address */ | |
220 | struct ifqueue ipintrq; | |
221 | SYSCTL_INT(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen, CTLFLAG_RW, | |
222 | &ipintrq.ifq_maxlen, 0, "Maximum size of the IP input queue"); | |
223 | SYSCTL_INT(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops, CTLFLAG_RD, | |
224 | &ipintrq.ifq_drops, 0, "Number of packets dropped from the IP input queue"); | |
225 | ||
226 | struct ipstat ipstat; | |
227 | SYSCTL_STRUCT(_net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RD, | |
228 | &ipstat, ipstat, "IP statistics (struct ipstat, netinet/ip_var.h)"); | |
229 | ||
230 | /* Packet reassembly stuff */ | |
231 | #define IPREASS_NHASH_LOG2 6 | |
232 | #define IPREASS_NHASH (1 << IPREASS_NHASH_LOG2) | |
233 | #define IPREASS_HMASK (IPREASS_NHASH - 1) | |
234 | #define IPREASS_HASH(x,y) \ | |
235 | (((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK) | |
236 | ||
237 | static struct ipq ipq[IPREASS_NHASH]; | |
238 | static TAILQ_HEAD(ipq_list, ipq) ipq_list = | |
239 | TAILQ_HEAD_INITIALIZER(ipq_list); | |
240 | const int ipintrq_present = 1; | |
241 | lck_mtx_t *ip_mutex; | |
242 | lck_attr_t *ip_mutex_attr; | |
243 | lck_grp_t *ip_mutex_grp; | |
244 | lck_grp_attr_t *ip_mutex_grp_attr; | |
245 | lck_mtx_t *inet_domain_mutex; | |
246 | extern lck_mtx_t *domain_proto_mtx; | |
247 | ||
248 | #if IPCTL_DEFMTU | |
249 | SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW, | |
250 | &ip_mtu, 0, "Default MTU"); | |
251 | #endif | |
252 | ||
253 | #if IPSTEALTH | |
254 | static int ipstealth = 0; | |
255 | SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW, | |
256 | &ipstealth, 0, ""); | |
257 | #endif | |
258 | ||
259 | ||
260 | /* Firewall hooks */ | |
261 | ip_fw_chk_t *ip_fw_chk_ptr; | |
262 | int fw_enable = 1; | |
263 | int fw_bypass = 1; | |
264 | int fw_one_pass = 0; | |
265 | ||
266 | #if DUMMYNET | |
267 | ip_dn_io_t *ip_dn_io_ptr; | |
268 | #endif | |
269 | ||
270 | int (*fr_checkp)(struct ip *, int, struct ifnet *, int, struct mbuf **) = NULL; | |
271 | ||
272 | SYSCTL_NODE(_net_inet_ip, OID_AUTO, linklocal, CTLFLAG_RW|CTLFLAG_LOCKED, 0, "link local"); | |
273 | ||
274 | struct ip_linklocal_stat ip_linklocal_stat; | |
275 | SYSCTL_STRUCT(_net_inet_ip_linklocal, OID_AUTO, stat, CTLFLAG_RD, | |
276 | &ip_linklocal_stat, ip_linklocal_stat, | |
277 | "Number of link local packets with TTL less than 255"); | |
278 | ||
279 | SYSCTL_NODE(_net_inet_ip_linklocal, OID_AUTO, in, CTLFLAG_RW|CTLFLAG_LOCKED, 0, "link local input"); | |
280 | ||
281 | int ip_linklocal_in_allowbadttl = 1; | |
282 | SYSCTL_INT(_net_inet_ip_linklocal_in, OID_AUTO, allowbadttl, CTLFLAG_RW, | |
283 | &ip_linklocal_in_allowbadttl, 0, | |
284 | "Allow incoming link local packets with TTL less than 255"); | |
285 | ||
286 | ||
287 | /* | |
288 | * We need to save the IP options in case a protocol wants to respond | |
289 | * to an incoming packet over the same route if the packet got here | |
290 | * using IP source routing. This allows connection establishment and | |
291 | * maintenance when the remote end is on a network that is not known | |
292 | * to us. | |
293 | */ | |
294 | static int ip_nhops = 0; | |
295 | static struct ip_srcrt { | |
296 | struct in_addr dst; /* final destination */ | |
297 | char nop; /* one NOP to align */ | |
298 | char srcopt[IPOPT_OFFSET + 1]; /* OPTVAL, OLEN and OFFSET */ | |
299 | struct in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)]; | |
300 | } ip_srcrt; | |
301 | ||
302 | ||
303 | static void save_rte(u_char *, struct in_addr); | |
304 | static int ip_dooptions(struct mbuf *, int, struct sockaddr_in *, struct route *ipforward_rt); | |
305 | static void ip_forward(struct mbuf *, int, struct sockaddr_in *, struct route *ipforward_rt); | |
306 | static void ip_freef(struct ipq *); | |
307 | #if IPDIVERT | |
308 | #ifdef IPDIVERT_44 | |
309 | static struct mbuf *ip_reass(struct mbuf *, | |
310 | struct ipq *, struct ipq *, u_int32_t *, u_int16_t *); | |
311 | #else | |
312 | static struct mbuf *ip_reass(struct mbuf *, | |
313 | struct ipq *, struct ipq *, u_int16_t *, u_int16_t *); | |
314 | #endif | |
315 | #else | |
316 | static struct mbuf *ip_reass(struct mbuf *, struct ipq *, struct ipq *); | |
317 | #endif | |
318 | void ipintr(void); | |
319 | void in_dinit(void); | |
320 | ||
321 | #if RANDOM_IP_ID | |
322 | extern u_short ip_id; | |
323 | ||
324 | int ip_use_randomid = 1; | |
325 | SYSCTL_INT(_net_inet_ip, OID_AUTO, random_id, CTLFLAG_RW, | |
326 | &ip_use_randomid, 0, "Randomize IP packets IDs"); | |
327 | #endif | |
328 | ||
329 | extern u_long route_generation; | |
330 | ||
331 | /* | |
332 | * IP initialization: fill in IP protocol switch table. | |
333 | * All protocols not implemented in kernel go to raw IP protocol handler. | |
334 | */ | |
335 | void | |
336 | ip_init(void) | |
337 | { | |
338 | struct protosw *pr; | |
339 | int i; | |
340 | static int ip_initialized = 0; | |
341 | ||
342 | ||
343 | if (!ip_initialized) | |
344 | { | |
345 | TAILQ_INIT(&in_ifaddrhead); | |
346 | pr = pffindproto_locked(PF_INET, IPPROTO_RAW, SOCK_RAW); | |
347 | if (pr == 0) | |
348 | panic("ip_init"); | |
349 | for (i = 0; i < IPPROTO_MAX; i++) | |
350 | ip_protox[i] = pr; | |
351 | for (pr = inetdomain.dom_protosw; pr; pr = pr->pr_next) | |
352 | { if(!((unsigned int)pr->pr_domain)) continue; /* If uninitialized, skip */ | |
353 | if (pr->pr_domain->dom_family == PF_INET && | |
354 | pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW) | |
355 | ip_protox[pr->pr_protocol] = pr; | |
356 | } | |
357 | for (i = 0; i < IPREASS_NHASH; i++) | |
358 | ipq[i].next = ipq[i].prev = &ipq[i]; | |
359 | ||
360 | maxnipq = nmbclusters / 32; | |
361 | maxfrags = maxnipq * 2; | |
362 | maxfragsperpacket = 128; /* enough for 64k in 512 byte fragments */ | |
363 | ||
364 | #if RANDOM_IP_ID | |
365 | { | |
366 | struct timeval timenow; | |
367 | getmicrotime(&timenow); | |
368 | ip_id = timenow.tv_sec & 0xffff; | |
369 | } | |
370 | #endif | |
371 | ipintrq.ifq_maxlen = ipqmaxlen; | |
372 | ||
373 | ipf_init(); | |
374 | ||
375 | ip_mutex_grp_attr = lck_grp_attr_alloc_init(); | |
376 | ||
377 | ip_mutex_grp = lck_grp_alloc_init("ip", ip_mutex_grp_attr); | |
378 | ||
379 | ip_mutex_attr = lck_attr_alloc_init(); | |
380 | ||
381 | if ((ip_mutex = lck_mtx_alloc_init(ip_mutex_grp, ip_mutex_attr)) == NULL) { | |
382 | printf("ip_init: can't alloc ip_mutex\n"); | |
383 | return; | |
384 | } | |
385 | ||
386 | #if IPSEC | |
387 | ||
388 | sadb_stat_mutex_grp_attr = lck_grp_attr_alloc_init(); | |
389 | sadb_stat_mutex_grp = lck_grp_alloc_init("sadb_stat", sadb_stat_mutex_grp_attr); | |
390 | sadb_stat_mutex_attr = lck_attr_alloc_init(); | |
391 | ||
392 | if ((sadb_stat_mutex = lck_mtx_alloc_init(sadb_stat_mutex_grp, sadb_stat_mutex_attr)) == NULL) { | |
393 | printf("ip_init: can't alloc sadb_stat_mutex\n"); | |
394 | return; | |
395 | } | |
396 | ||
397 | #endif | |
398 | ip_initialized = 1; | |
399 | } | |
400 | } | |
401 | ||
402 | static void | |
403 | ip_proto_input( | |
404 | protocol_family_t __unused protocol, | |
405 | mbuf_t packet_list) | |
406 | { | |
407 | mbuf_t packet; | |
408 | int how_many = 0 ; | |
409 | ||
410 | /* ip_input should handle a list of packets but does not yet */ | |
411 | ||
412 | for (packet = packet_list; packet; packet = packet_list) { | |
413 | how_many++; | |
414 | packet_list = mbuf_nextpkt(packet); | |
415 | mbuf_setnextpkt(packet, NULL); | |
416 | ip_input(packet); | |
417 | } | |
418 | } | |
419 | ||
420 | /* Initialize the PF_INET domain, and add in the pre-defined protos */ | |
421 | void | |
422 | in_dinit(void) | |
423 | { | |
424 | int i; | |
425 | struct protosw *pr; | |
426 | struct domain *dp; | |
427 | static int inetdomain_initted = 0; | |
428 | ||
429 | if (!inetdomain_initted) | |
430 | { | |
431 | #if 0 | |
432 | kprintf("Initing %d protosw entries\n", in_proto_count); | |
433 | #endif | |
434 | dp = &inetdomain; | |
435 | dp->dom_flags = DOM_REENTRANT; | |
436 | ||
437 | for (i=0, pr = &inetsw[0]; i<in_proto_count; i++, pr++) | |
438 | net_add_proto(pr, dp); | |
439 | inet_domain_mutex = dp->dom_mtx; | |
440 | inetdomain_initted = 1; | |
441 | ||
442 | lck_mtx_unlock(domain_proto_mtx); | |
443 | proto_register_input(PF_INET, ip_proto_input, NULL, 1); | |
444 | lck_mtx_lock(domain_proto_mtx); | |
445 | } | |
446 | } | |
447 | ||
448 | __private_extern__ void | |
449 | ip_proto_dispatch_in( | |
450 | struct mbuf *m, | |
451 | int hlen, | |
452 | u_int8_t proto, | |
453 | ipfilter_t inject_ipfref) | |
454 | { | |
455 | struct ipfilter *filter; | |
456 | int seen = (inject_ipfref == 0); | |
457 | int changed_header = 0; | |
458 | struct ip *ip; | |
459 | ||
460 | if (!TAILQ_EMPTY(&ipv4_filters)) { | |
461 | ipf_ref(); | |
462 | TAILQ_FOREACH(filter, &ipv4_filters, ipf_link) { | |
463 | if (seen == 0) { | |
464 | if ((struct ipfilter *)inject_ipfref == filter) | |
465 | seen = 1; | |
466 | } else if (filter->ipf_filter.ipf_input) { | |
467 | errno_t result; | |
468 | ||
469 | if (changed_header == 0) { | |
470 | changed_header = 1; | |
471 | ip = mtod(m, struct ip *); | |
472 | ip->ip_len = htons(ip->ip_len + hlen); | |
473 | ip->ip_off = htons(ip->ip_off); | |
474 | ip->ip_sum = 0; | |
475 | ip->ip_sum = in_cksum(m, hlen); | |
476 | } | |
477 | result = filter->ipf_filter.ipf_input( | |
478 | filter->ipf_filter.cookie, (mbuf_t*)&m, hlen, proto); | |
479 | if (result == EJUSTRETURN) { | |
480 | ipf_unref(); | |
481 | return; | |
482 | } | |
483 | if (result != 0) { | |
484 | ipf_unref(); | |
485 | m_freem(m); | |
486 | return; | |
487 | } | |
488 | } | |
489 | } | |
490 | ipf_unref(); | |
491 | } | |
492 | /* | |
493 | * If there isn't a specific lock for the protocol | |
494 | * we're about to call, use the generic lock for AF_INET. | |
495 | * otherwise let the protocol deal with its own locking | |
496 | */ | |
497 | ip = mtod(m, struct ip *); | |
498 | ||
499 | if (changed_header) { | |
500 | ip->ip_len = ntohs(ip->ip_len) - hlen; | |
501 | ip->ip_off = ntohs(ip->ip_off); | |
502 | } | |
503 | ||
504 | if (!(ip_protox[ip->ip_p]->pr_flags & PR_PROTOLOCK)) { | |
505 | lck_mtx_lock(inet_domain_mutex); | |
506 | (*ip_protox[ip->ip_p]->pr_input)(m, hlen); | |
507 | lck_mtx_unlock(inet_domain_mutex); | |
508 | } | |
509 | else | |
510 | (*ip_protox[ip->ip_p]->pr_input)(m, hlen); | |
511 | ||
512 | } | |
513 | ||
514 | /* | |
515 | * ipforward_rt cleared in in_addroute() | |
516 | * when a new route is successfully created. | |
517 | */ | |
518 | static struct sockaddr_in ipaddr = { sizeof(ipaddr), AF_INET , 0 , {0}, {0,0,0,0,0,0,0,0} }; | |
519 | ||
520 | /* | |
521 | * Ip input routine. Checksum and byte swap header. If fragmented | |
522 | * try to reassemble. Process options. Pass to next level. | |
523 | */ | |
524 | void | |
525 | ip_input(struct mbuf *m) | |
526 | { | |
527 | struct ip *ip; | |
528 | struct ipq *fp; | |
529 | struct in_ifaddr *ia = NULL; | |
530 | int i, hlen, checkif; | |
531 | u_short sum; | |
532 | struct in_addr pkt_dst; | |
533 | u_int32_t div_info = 0; /* packet divert/tee info */ | |
534 | struct ip_fw_args args; | |
535 | ipfilter_t inject_filter_ref = 0; | |
536 | struct m_tag *tag; | |
537 | struct route ipforward_rt; | |
538 | ||
539 | bzero(&ipforward_rt, sizeof(struct route)); | |
540 | ||
541 | #if IPFIREWALL | |
542 | args.eh = NULL; | |
543 | args.oif = NULL; | |
544 | args.rule = NULL; | |
545 | args.divert_rule = 0; /* divert cookie */ | |
546 | args.next_hop = NULL; | |
547 | ||
548 | /* Grab info from mtags prepended to the chain */ | |
549 | #if DUMMYNET | |
550 | if ((tag = m_tag_locate(m, KERNEL_MODULE_TAG_ID, KERNEL_TAG_TYPE_DUMMYNET, NULL)) != NULL) { | |
551 | struct dn_pkt_tag *dn_tag; | |
552 | ||
553 | dn_tag = (struct dn_pkt_tag *)(tag+1); | |
554 | args.rule = dn_tag->rule; | |
555 | ||
556 | m_tag_delete(m, tag); | |
557 | } | |
558 | #endif /* DUMMYNET */ | |
559 | ||
560 | if ((tag = m_tag_locate(m, KERNEL_MODULE_TAG_ID, KERNEL_TAG_TYPE_DIVERT, NULL)) != NULL) { | |
561 | struct divert_tag *div_tag; | |
562 | ||
563 | div_tag = (struct divert_tag *)(tag+1); | |
564 | args.divert_rule = div_tag->cookie; | |
565 | ||
566 | m_tag_delete(m, tag); | |
567 | } | |
568 | if ((tag = m_tag_locate(m, KERNEL_MODULE_TAG_ID, KERNEL_TAG_TYPE_IPFORWARD, NULL)) != NULL) { | |
569 | struct ip_fwd_tag *ipfwd_tag; | |
570 | ||
571 | ipfwd_tag = (struct ip_fwd_tag *)(tag+1); | |
572 | args.next_hop = ipfwd_tag->next_hop; | |
573 | ||
574 | m_tag_delete(m, tag); | |
575 | } | |
576 | ||
577 | #if DIAGNOSTIC | |
578 | if (m == NULL || (m->m_flags & M_PKTHDR) == 0) | |
579 | panic("ip_input no HDR"); | |
580 | #endif | |
581 | ||
582 | if (args.rule) { /* dummynet already filtered us */ | |
583 | ip = mtod(m, struct ip *); | |
584 | hlen = IP_VHL_HL(ip->ip_vhl) << 2; | |
585 | inject_filter_ref = ipf_get_inject_filter(m); | |
586 | goto iphack ; | |
587 | } | |
588 | #endif /* IPFIREWALL */ | |
589 | ||
590 | /* | |
591 | * No need to proccess packet twice if we've | |
592 | * already seen it | |
593 | */ | |
594 | inject_filter_ref = ipf_get_inject_filter(m); | |
595 | if (inject_filter_ref != 0) { | |
596 | ip = mtod(m, struct ip *); | |
597 | hlen = IP_VHL_HL(ip->ip_vhl) << 2; | |
598 | ip->ip_len = ntohs(ip->ip_len) - hlen; | |
599 | ip->ip_off = ntohs(ip->ip_off); | |
600 | ip_proto_dispatch_in(m, hlen, ip->ip_p, inject_filter_ref); | |
601 | return; | |
602 | } | |
603 | ||
604 | OSAddAtomic(1, (SInt32*)&ipstat.ips_total); | |
605 | ||
606 | if (m->m_pkthdr.len < sizeof(struct ip)) | |
607 | goto tooshort; | |
608 | ||
609 | if (m->m_len < sizeof (struct ip) && | |
610 | (m = m_pullup(m, sizeof (struct ip))) == 0) { | |
611 | OSAddAtomic(1, (SInt32*)&ipstat.ips_toosmall); | |
612 | return; | |
613 | } | |
614 | ip = mtod(m, struct ip *); | |
615 | ||
616 | KERNEL_DEBUG(DBG_LAYER_BEG, ip->ip_dst.s_addr, | |
617 | ip->ip_src.s_addr, ip->ip_p, ip->ip_off, ip->ip_len); | |
618 | ||
619 | if (IP_VHL_V(ip->ip_vhl) != IPVERSION) { | |
620 | OSAddAtomic(1, (SInt32*)&ipstat.ips_badvers); | |
621 | goto bad; | |
622 | } | |
623 | ||
624 | hlen = IP_VHL_HL(ip->ip_vhl) << 2; | |
625 | if (hlen < sizeof(struct ip)) { /* minimum header length */ | |
626 | OSAddAtomic(1, (SInt32*)&ipstat.ips_badhlen); | |
627 | goto bad; | |
628 | } | |
629 | if (hlen > m->m_len) { | |
630 | if ((m = m_pullup(m, hlen)) == 0) { | |
631 | OSAddAtomic(1, (SInt32*)&ipstat.ips_badhlen); | |
632 | return; | |
633 | } | |
634 | ip = mtod(m, struct ip *); | |
635 | } | |
636 | ||
637 | /* 127/8 must not appear on wire - RFC1122 */ | |
638 | if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET || | |
639 | (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) { | |
640 | if ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) { | |
641 | OSAddAtomic(1, (SInt32*)&ipstat.ips_badaddr); | |
642 | goto bad; | |
643 | } | |
644 | } | |
645 | ||
646 | /* IPv4 Link-Local Addresses as defined in <draft-ietf-zeroconf-ipv4-linklocal-05.txt> */ | |
647 | if ((IN_LINKLOCAL(ntohl(ip->ip_dst.s_addr)) || | |
648 | IN_LINKLOCAL(ntohl(ip->ip_src.s_addr)))) { | |
649 | ip_linklocal_stat.iplls_in_total++; | |
650 | if (ip->ip_ttl != MAXTTL) { | |
651 | OSAddAtomic(1, (SInt32*)&ip_linklocal_stat.iplls_in_badttl); | |
652 | /* Silently drop link local traffic with bad TTL */ | |
653 | if (!ip_linklocal_in_allowbadttl) | |
654 | goto bad; | |
655 | } | |
656 | } | |
657 | if ((IF_HWASSIST_CSUM_FLAGS(m->m_pkthdr.rcvif->if_hwassist) == 0) | |
658 | || (apple_hwcksum_rx == 0) || | |
659 | ((m->m_pkthdr.csum_flags & CSUM_TCP_SUM16) && ip->ip_p != IPPROTO_TCP)) { | |
660 | m->m_pkthdr.csum_flags = 0; /* invalidate HW generated checksum flags */ | |
661 | } | |
662 | ||
663 | if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) { | |
664 | sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID); | |
665 | } else if (!(m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) || | |
666 | apple_hwcksum_tx == 0) { | |
667 | /* | |
668 | * Either this is not loopback packet coming from an interface | |
669 | * that does not support checksum offloading, or it is loopback | |
670 | * packet that has undergone software checksumming at the send | |
671 | * side because apple_hwcksum_tx was set to 0. In this case, | |
672 | * calculate the checksum in software to validate the packet. | |
673 | */ | |
674 | sum = in_cksum(m, hlen); | |
675 | } else { | |
676 | /* | |
677 | * This is a loopback packet without any valid checksum since | |
678 | * the send side has bypassed it (apple_hwcksum_tx set to 1). | |
679 | * We get here because apple_hwcksum_rx was set to 0, and so | |
680 | * we pretend that all is well. | |
681 | */ | |
682 | sum = 0; | |
683 | m->m_pkthdr.csum_flags |= CSUM_DATA_VALID | CSUM_PSEUDO_HDR | | |
684 | CSUM_IP_CHECKED | CSUM_IP_VALID; | |
685 | m->m_pkthdr.csum_data = 0xffff; | |
686 | } | |
687 | if (sum) { | |
688 | OSAddAtomic(1, (SInt32*)&ipstat.ips_badsum); | |
689 | goto bad; | |
690 | } | |
691 | ||
692 | /* | |
693 | * Convert fields to host representation. | |
694 | */ | |
695 | NTOHS(ip->ip_len); | |
696 | if (ip->ip_len < hlen) { | |
697 | OSAddAtomic(1, (SInt32*)&ipstat.ips_badlen); | |
698 | goto bad; | |
699 | } | |
700 | NTOHS(ip->ip_off); | |
701 | ||
702 | /* | |
703 | * Check that the amount of data in the buffers | |
704 | * is as at least much as the IP header would have us expect. | |
705 | * Trim mbufs if longer than we expect. | |
706 | * Drop packet if shorter than we expect. | |
707 | */ | |
708 | if (m->m_pkthdr.len < ip->ip_len) { | |
709 | tooshort: | |
710 | OSAddAtomic(1, (SInt32*)&ipstat.ips_tooshort); | |
711 | goto bad; | |
712 | } | |
713 | if (m->m_pkthdr.len > ip->ip_len) { | |
714 | /* Invalidate hwcksuming */ | |
715 | m->m_pkthdr.csum_flags = 0; | |
716 | m->m_pkthdr.csum_data = 0; | |
717 | ||
718 | if (m->m_len == m->m_pkthdr.len) { | |
719 | m->m_len = ip->ip_len; | |
720 | m->m_pkthdr.len = ip->ip_len; | |
721 | } else | |
722 | m_adj(m, ip->ip_len - m->m_pkthdr.len); | |
723 | } | |
724 | ||
725 | #if IPSEC | |
726 | if (ipsec_bypass == 0 && ipsec_gethist(m, NULL)) | |
727 | goto pass; | |
728 | #endif | |
729 | ||
730 | /* | |
731 | * IpHack's section. | |
732 | * Right now when no processing on packet has done | |
733 | * and it is still fresh out of network we do our black | |
734 | * deals with it. | |
735 | * - Firewall: deny/allow/divert | |
736 | * - Xlate: translate packet's addr/port (NAT). | |
737 | * - Pipe: pass pkt through dummynet. | |
738 | * - Wrap: fake packet's addr/port <unimpl.> | |
739 | * - Encapsulate: put it in another IP and send out. <unimp.> | |
740 | */ | |
741 | ||
742 | #if IPFIREWALL | |
743 | #if DUMMYNET | |
744 | iphack: | |
745 | #endif /* DUMMYNET */ | |
746 | /* | |
747 | * Check if we want to allow this packet to be processed. | |
748 | * Consider it to be bad if not. | |
749 | */ | |
750 | if (fr_checkp) { | |
751 | struct mbuf *m1 = m; | |
752 | ||
753 | if (fr_checkp(ip, hlen, m->m_pkthdr.rcvif, 0, &m1) || !m1) { | |
754 | return; | |
755 | } | |
756 | ip = mtod(m = m1, struct ip *); | |
757 | } | |
758 | if (fw_enable && IPFW_LOADED) { | |
759 | #if IPFIREWALL_FORWARD | |
760 | /* | |
761 | * If we've been forwarded from the output side, then | |
762 | * skip the firewall a second time | |
763 | */ | |
764 | if (args.next_hop) | |
765 | goto ours; | |
766 | #endif /* IPFIREWALL_FORWARD */ | |
767 | ||
768 | args.m = m; | |
769 | ||
770 | i = ip_fw_chk_ptr(&args); | |
771 | m = args.m; | |
772 | ||
773 | if ( (i & IP_FW_PORT_DENY_FLAG) || m == NULL) { /* drop */ | |
774 | if (m) | |
775 | m_freem(m); | |
776 | return; | |
777 | } | |
778 | ip = mtod(m, struct ip *); /* just in case m changed */ | |
779 | ||
780 | if (i == 0 && args.next_hop == NULL) { /* common case */ | |
781 | goto pass; | |
782 | } | |
783 | #if DUMMYNET | |
784 | if (DUMMYNET_LOADED && (i & IP_FW_PORT_DYNT_FLAG) != 0) { | |
785 | /* Send packet to the appropriate pipe */ | |
786 | ip_dn_io_ptr(m, i&0xffff, DN_TO_IP_IN, &args); | |
787 | return; | |
788 | } | |
789 | #endif /* DUMMYNET */ | |
790 | #if IPDIVERT | |
791 | if (i != 0 && (i & IP_FW_PORT_DYNT_FLAG) == 0) { | |
792 | /* Divert or tee packet */ | |
793 | div_info = i; | |
794 | goto ours; | |
795 | } | |
796 | #endif | |
797 | #if IPFIREWALL_FORWARD | |
798 | if (i == 0 && args.next_hop != NULL) { | |
799 | goto pass; | |
800 | } | |
801 | #endif | |
802 | /* | |
803 | * if we get here, the packet must be dropped | |
804 | */ | |
805 | m_freem(m); | |
806 | return; | |
807 | } | |
808 | #endif /* IPFIREWALL */ | |
809 | pass: | |
810 | ||
811 | /* | |
812 | * Process options and, if not destined for us, | |
813 | * ship it on. ip_dooptions returns 1 when an | |
814 | * error was detected (causing an icmp message | |
815 | * to be sent and the original packet to be freed). | |
816 | */ | |
817 | ip_nhops = 0; /* for source routed packets */ | |
818 | if (hlen > sizeof (struct ip) && ip_dooptions(m, 0, args.next_hop, &ipforward_rt)) { | |
819 | return; | |
820 | } | |
821 | ||
822 | /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no | |
823 | * matter if it is destined to another node, or whether it is | |
824 | * a multicast one, RSVP wants it! and prevents it from being forwarded | |
825 | * anywhere else. Also checks if the rsvp daemon is running before | |
826 | * grabbing the packet. | |
827 | */ | |
828 | if (rsvp_on && ip->ip_p==IPPROTO_RSVP) | |
829 | goto ours; | |
830 | ||
831 | /* | |
832 | * Check our list of addresses, to see if the packet is for us. | |
833 | * If we don't have any addresses, assume any unicast packet | |
834 | * we receive might be for us (and let the upper layers deal | |
835 | * with it). | |
836 | */ | |
837 | if (TAILQ_EMPTY(&in_ifaddrhead) && | |
838 | (m->m_flags & (M_MCAST|M_BCAST)) == 0) | |
839 | goto ours; | |
840 | ||
841 | /* | |
842 | * Cache the destination address of the packet; this may be | |
843 | * changed by use of 'ipfw fwd'. | |
844 | */ | |
845 | pkt_dst = args.next_hop == NULL ? | |
846 | ip->ip_dst : args.next_hop->sin_addr; | |
847 | ||
848 | /* | |
849 | * Enable a consistency check between the destination address | |
850 | * and the arrival interface for a unicast packet (the RFC 1122 | |
851 | * strong ES model) if IP forwarding is disabled and the packet | |
852 | * is not locally generated and the packet is not subject to | |
853 | * 'ipfw fwd'. | |
854 | * | |
855 | * XXX - Checking also should be disabled if the destination | |
856 | * address is ipnat'ed to a different interface. | |
857 | * | |
858 | * XXX - Checking is incompatible with IP aliases added | |
859 | * to the loopback interface instead of the interface where | |
860 | * the packets are received. | |
861 | */ | |
862 | checkif = ip_checkinterface && (ipforwarding == 0) && | |
863 | ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) && | |
864 | (args.next_hop == NULL); | |
865 | ||
866 | lck_mtx_lock(rt_mtx); | |
867 | TAILQ_FOREACH(ia, &in_ifaddrhead, ia_link) { | |
868 | #define satosin(sa) ((struct sockaddr_in *)(sa)) | |
869 | ||
870 | if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY) { | |
871 | lck_mtx_unlock(rt_mtx); | |
872 | goto ours; | |
873 | } | |
874 | ||
875 | /* | |
876 | * If the address matches, verify that the packet | |
877 | * arrived via the correct interface if checking is | |
878 | * enabled. | |
879 | */ | |
880 | if (IA_SIN(ia)->sin_addr.s_addr == pkt_dst.s_addr && | |
881 | (!checkif || ia->ia_ifp == m->m_pkthdr.rcvif)) { | |
882 | lck_mtx_unlock(rt_mtx); | |
883 | goto ours; | |
884 | } | |
885 | /* | |
886 | * Only accept broadcast packets that arrive via the | |
887 | * matching interface. Reception of forwarded directed | |
888 | * broadcasts would be handled via ip_forward() and | |
889 | * ether_output() with the loopback into the stack for | |
890 | * SIMPLEX interfaces handled by ether_output(). | |
891 | */ | |
892 | if ((!checkif || ia->ia_ifp == m->m_pkthdr.rcvif) && | |
893 | ia->ia_ifp && ia->ia_ifp->if_flags & IFF_BROADCAST) { | |
894 | if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr == | |
895 | pkt_dst.s_addr) { | |
896 | lck_mtx_unlock(rt_mtx); | |
897 | goto ours; | |
898 | } | |
899 | if (ia->ia_netbroadcast.s_addr == pkt_dst.s_addr) { | |
900 | lck_mtx_unlock(rt_mtx); | |
901 | goto ours; | |
902 | } | |
903 | } | |
904 | } | |
905 | lck_mtx_unlock(rt_mtx); | |
906 | if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) { | |
907 | struct in_multi *inm; | |
908 | #if MROUTING | |
909 | if (ip_mrouter) { | |
910 | /* | |
911 | * If we are acting as a multicast router, all | |
912 | * incoming multicast packets are passed to the | |
913 | * kernel-level multicast forwarding function. | |
914 | * The packet is returned (relatively) intact; if | |
915 | * ip_mforward() returns a non-zero value, the packet | |
916 | * must be discarded, else it may be accepted below. | |
917 | */ | |
918 | lck_mtx_lock(ip_mutex); | |
919 | if (ip_mforward && | |
920 | ip_mforward(ip, m->m_pkthdr.rcvif, m, 0) != 0) { | |
921 | OSAddAtomic(1, (SInt32*)&ipstat.ips_cantforward); | |
922 | m_freem(m); | |
923 | lck_mtx_unlock(ip_mutex); | |
924 | return; | |
925 | } | |
926 | ||
927 | /* | |
928 | * The process-level routing daemon needs to receive | |
929 | * all multicast IGMP packets, whether or not this | |
930 | * host belongs to their destination groups. | |
931 | */ | |
932 | if (ip->ip_p == IPPROTO_IGMP) | |
933 | goto ours; | |
934 | OSAddAtomic(1, (SInt32*)&ipstat.ips_forward); | |
935 | } | |
936 | #endif /* MROUTING */ | |
937 | /* | |
938 | * See if we belong to the destination multicast group on the | |
939 | * arrival interface. | |
940 | */ | |
941 | IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm); | |
942 | if (inm == NULL) { | |
943 | OSAddAtomic(1, (SInt32*)&ipstat.ips_notmember); | |
944 | m_freem(m); | |
945 | return; | |
946 | } | |
947 | goto ours; | |
948 | } | |
949 | if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST) | |
950 | goto ours; | |
951 | if (ip->ip_dst.s_addr == INADDR_ANY) | |
952 | goto ours; | |
953 | ||
954 | /* Allow DHCP/BootP responses through */ | |
955 | if (m->m_pkthdr.rcvif != NULL | |
956 | && (m->m_pkthdr.rcvif->if_eflags & IFEF_AUTOCONFIGURING) | |
957 | && hlen == sizeof(struct ip) | |
958 | && ip->ip_p == IPPROTO_UDP) { | |
959 | struct udpiphdr *ui; | |
960 | if (m->m_len < sizeof(struct udpiphdr) | |
961 | && (m = m_pullup(m, sizeof(struct udpiphdr))) == 0) { | |
962 | OSAddAtomic(1, (SInt32*)&udpstat.udps_hdrops); | |
963 | return; | |
964 | } | |
965 | ui = mtod(m, struct udpiphdr *); | |
966 | if (ntohs(ui->ui_dport) == IPPORT_BOOTPC) { | |
967 | goto ours; | |
968 | } | |
969 | ip = mtod(m, struct ip *); /* in case it changed */ | |
970 | } | |
971 | ||
972 | #if defined(NFAITH) && 0 < NFAITH | |
973 | /* | |
974 | * FAITH(Firewall Aided Internet Translator) | |
975 | */ | |
976 | if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_type == IFT_FAITH) { | |
977 | if (ip_keepfaith) { | |
978 | if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP) | |
979 | goto ours; | |
980 | } | |
981 | m_freem(m); | |
982 | return; | |
983 | } | |
984 | #endif | |
985 | /* | |
986 | * Not for us; forward if possible and desirable. | |
987 | */ | |
988 | if (ipforwarding == 0) { | |
989 | OSAddAtomic(1, (SInt32*)&ipstat.ips_cantforward); | |
990 | m_freem(m); | |
991 | } else { | |
992 | ip_forward(m, 0, args.next_hop, &ipforward_rt); | |
993 | if (ipforward_rt.ro_rt != NULL) { | |
994 | rtfree(ipforward_rt.ro_rt); | |
995 | ipforward_rt.ro_rt = NULL; | |
996 | } | |
997 | } | |
998 | return; | |
999 | ||
1000 | ours: | |
1001 | /* | |
1002 | * If offset or IP_MF are set, must reassemble. | |
1003 | * Otherwise, nothing need be done. | |
1004 | * (We could look in the reassembly queue to see | |
1005 | * if the packet was previously fragmented, | |
1006 | * but it's not worth the time; just let them time out.) | |
1007 | */ | |
1008 | if (ip->ip_off & (IP_MF | IP_OFFMASK | IP_RF)) { | |
1009 | ||
1010 | /* If maxnipq is 0, never accept fragments. */ | |
1011 | if (maxnipq == 0) { | |
1012 | ||
1013 | OSAddAtomic(1, (SInt32*)&ipstat.ips_fragments); | |
1014 | OSAddAtomic(1, (SInt32*)&ipstat.ips_fragdropped); | |
1015 | goto bad; | |
1016 | } | |
1017 | ||
1018 | /* | |
1019 | * If we will exceed the number of fragments in queues, timeout the | |
1020 | * oldest fragemented packet to make space. | |
1021 | */ | |
1022 | lck_mtx_lock(ip_mutex); | |
1023 | if (currentfrags >= maxfrags) { | |
1024 | fp = TAILQ_LAST(&ipq_list, ipq_list); | |
1025 | OSAddAtomic(fp->ipq_nfrags, (SInt32*)&ipstat.ips_fragtimeout); | |
1026 | ||
1027 | if (ip->ip_id == fp->ipq_id && | |
1028 | ip->ip_src.s_addr == fp->ipq_src.s_addr && | |
1029 | ip->ip_dst.s_addr == fp->ipq_dst.s_addr && | |
1030 | ip->ip_p == fp->ipq_p) { | |
1031 | /* | |
1032 | * If we match the fragment queue we were going to | |
1033 | * discard, drop this packet too. | |
1034 | */ | |
1035 | OSAddAtomic(1, (SInt32*)&ipstat.ips_fragdropped); | |
1036 | ip_freef(fp); | |
1037 | lck_mtx_unlock(ip_mutex); | |
1038 | goto bad; | |
1039 | } | |
1040 | ||
1041 | ip_freef(fp); | |
1042 | } | |
1043 | ||
1044 | sum = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id); | |
1045 | /* | |
1046 | * Look for queue of fragments | |
1047 | * of this datagram. | |
1048 | */ | |
1049 | for (fp = ipq[sum].next; fp != &ipq[sum]; fp = fp->next) | |
1050 | if (ip->ip_id == fp->ipq_id && | |
1051 | ip->ip_src.s_addr == fp->ipq_src.s_addr && | |
1052 | ip->ip_dst.s_addr == fp->ipq_dst.s_addr && | |
1053 | #if CONFIG_MACF_NET | |
1054 | mac_ipq_label_compare(m, fp) && | |
1055 | #endif | |
1056 | ip->ip_p == fp->ipq_p) | |
1057 | goto found; | |
1058 | ||
1059 | /* | |
1060 | * Enforce upper bound on number of fragmented packets | |
1061 | * for which we attempt reassembly; | |
1062 | * If maxnipq is -1, accept all fragments without limitation. | |
1063 | */ | |
1064 | if ((nipq > maxnipq) && (maxnipq > 0)) { | |
1065 | /* | |
1066 | * drop the oldest fragment before proceeding further | |
1067 | */ | |
1068 | fp = TAILQ_LAST(&ipq_list, ipq_list); | |
1069 | OSAddAtomic(fp->ipq_nfrags, (SInt32*)&ipstat.ips_fragtimeout); | |
1070 | ip_freef(fp); | |
1071 | } | |
1072 | ||
1073 | fp = NULL; | |
1074 | ||
1075 | found: | |
1076 | /* | |
1077 | * Adjust ip_len to not reflect header, | |
1078 | * convert offset of this to bytes. | |
1079 | */ | |
1080 | ip->ip_len -= hlen; | |
1081 | if (ip->ip_off & IP_MF) { | |
1082 | /* | |
1083 | * Make sure that fragments have a data length | |
1084 | * that's a non-zero multiple of 8 bytes. | |
1085 | */ | |
1086 | if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) { | |
1087 | OSAddAtomic(1, (SInt32*)&ipstat.ips_toosmall); | |
1088 | lck_mtx_unlock(ip_mutex); | |
1089 | goto bad; | |
1090 | } | |
1091 | m->m_flags |= M_FRAG; | |
1092 | } else { | |
1093 | /* Clear the flag in case packet comes from loopback */ | |
1094 | m->m_flags &= ~M_FRAG; | |
1095 | } | |
1096 | ip->ip_off <<= 3; | |
1097 | ||
1098 | /* | |
1099 | * Attempt reassembly; if it succeeds, proceed. | |
1100 | * ip_reass() will return a different mbuf, and update | |
1101 | * the divert info in div_info and args.divert_rule. | |
1102 | */ | |
1103 | OSAddAtomic(1, (SInt32*)&ipstat.ips_fragments); | |
1104 | m->m_pkthdr.header = ip; | |
1105 | #if IPDIVERT | |
1106 | m = ip_reass(m, | |
1107 | fp, &ipq[sum], &div_info, &args.divert_rule); | |
1108 | #else | |
1109 | m = ip_reass(m, fp, &ipq[sum]); | |
1110 | #endif | |
1111 | if (m == 0) { | |
1112 | lck_mtx_unlock(ip_mutex); | |
1113 | return; | |
1114 | } | |
1115 | OSAddAtomic(1, (SInt32*)&ipstat.ips_reassembled); | |
1116 | ip = mtod(m, struct ip *); | |
1117 | /* Get the header length of the reassembled packet */ | |
1118 | hlen = IP_VHL_HL(ip->ip_vhl) << 2; | |
1119 | #if IPDIVERT | |
1120 | /* Restore original checksum before diverting packet */ | |
1121 | if (div_info != 0) { | |
1122 | ip->ip_len += hlen; | |
1123 | HTONS(ip->ip_len); | |
1124 | HTONS(ip->ip_off); | |
1125 | ip->ip_sum = 0; | |
1126 | ip->ip_sum = in_cksum(m, hlen); | |
1127 | NTOHS(ip->ip_off); | |
1128 | NTOHS(ip->ip_len); | |
1129 | ip->ip_len -= hlen; | |
1130 | } | |
1131 | #endif | |
1132 | lck_mtx_unlock(ip_mutex); | |
1133 | } else | |
1134 | ip->ip_len -= hlen; | |
1135 | ||
1136 | #if IPDIVERT | |
1137 | /* | |
1138 | * Divert or tee packet to the divert protocol if required. | |
1139 | * | |
1140 | * If div_info is zero then cookie should be too, so we shouldn't | |
1141 | * need to clear them here. Assume divert_packet() does so also. | |
1142 | */ | |
1143 | if (div_info != 0) { | |
1144 | struct mbuf *clone = NULL; | |
1145 | ||
1146 | /* Clone packet if we're doing a 'tee' */ | |
1147 | if ((div_info & IP_FW_PORT_TEE_FLAG) != 0) | |
1148 | clone = m_dup(m, M_DONTWAIT); | |
1149 | ||
1150 | /* Restore packet header fields to original values */ | |
1151 | ip->ip_len += hlen; | |
1152 | HTONS(ip->ip_len); | |
1153 | HTONS(ip->ip_off); | |
1154 | ||
1155 | /* Deliver packet to divert input routine */ | |
1156 | OSAddAtomic(1, (SInt32*)&ipstat.ips_delivered); | |
1157 | divert_packet(m, 1, div_info & 0xffff, args.divert_rule); | |
1158 | ||
1159 | /* If 'tee', continue with original packet */ | |
1160 | if (clone == NULL) { | |
1161 | return; | |
1162 | } | |
1163 | m = clone; | |
1164 | ip = mtod(m, struct ip *); | |
1165 | } | |
1166 | #endif | |
1167 | ||
1168 | #if IPSEC | |
1169 | /* | |
1170 | * enforce IPsec policy checking if we are seeing last header. | |
1171 | * note that we do not visit this with protocols with pcb layer | |
1172 | * code - like udp/tcp/raw ip. | |
1173 | */ | |
1174 | if (ipsec_bypass == 0 && (ip_protox[ip->ip_p]->pr_flags & PR_LASTHDR) != 0) { | |
1175 | if (ipsec4_in_reject(m, NULL)) { | |
1176 | IPSEC_STAT_INCREMENT(ipsecstat.in_polvio); | |
1177 | goto bad; | |
1178 | } | |
1179 | } | |
1180 | #endif | |
1181 | ||
1182 | /* | |
1183 | * Switch out to protocol's input routine. | |
1184 | */ | |
1185 | OSAddAtomic(1, (SInt32*)&ipstat.ips_delivered); | |
1186 | { | |
1187 | if (args.next_hop && ip->ip_p == IPPROTO_TCP) { | |
1188 | /* TCP needs IPFORWARD info if available */ | |
1189 | struct m_tag *fwd_tag; | |
1190 | struct ip_fwd_tag *ipfwd_tag; | |
1191 | ||
1192 | fwd_tag = m_tag_alloc(KERNEL_MODULE_TAG_ID, KERNEL_TAG_TYPE_IPFORWARD, | |
1193 | sizeof(struct sockaddr_in), M_NOWAIT); | |
1194 | if (fwd_tag == NULL) { | |
1195 | goto bad; | |
1196 | } | |
1197 | ||
1198 | ipfwd_tag = (struct ip_fwd_tag *)(fwd_tag+1); | |
1199 | ipfwd_tag->next_hop = args.next_hop; | |
1200 | ||
1201 | m_tag_prepend(m, fwd_tag); | |
1202 | ||
1203 | KERNEL_DEBUG(DBG_LAYER_END, ip->ip_dst.s_addr, | |
1204 | ip->ip_src.s_addr, ip->ip_p, ip->ip_off, ip->ip_len); | |
1205 | ||
1206 | ||
1207 | /* TCP deals with its own locking */ | |
1208 | ip_proto_dispatch_in(m, hlen, ip->ip_p, 0); | |
1209 | } else { | |
1210 | KERNEL_DEBUG(DBG_LAYER_END, ip->ip_dst.s_addr, | |
1211 | ip->ip_src.s_addr, ip->ip_p, ip->ip_off, ip->ip_len); | |
1212 | ||
1213 | ip_proto_dispatch_in(m, hlen, ip->ip_p, 0); | |
1214 | } | |
1215 | ||
1216 | return; | |
1217 | } | |
1218 | bad: | |
1219 | KERNEL_DEBUG(DBG_LAYER_END, 0,0,0,0,0); | |
1220 | m_freem(m); | |
1221 | } | |
1222 | ||
1223 | /* | |
1224 | * Take incoming datagram fragment and try to reassemble it into | |
1225 | * whole datagram. If a chain for reassembly of this datagram already | |
1226 | * exists, then it is given as fp; otherwise have to make a chain. | |
1227 | * | |
1228 | * When IPDIVERT enabled, keep additional state with each packet that | |
1229 | * tells us if we need to divert or tee the packet we're building. | |
1230 | */ | |
1231 | ||
1232 | static struct mbuf * | |
1233 | #if IPDIVERT | |
1234 | ip_reass(struct mbuf *m, struct ipq *fp, struct ipq *where, | |
1235 | #ifdef IPDIVERT_44 | |
1236 | u_int32_t *divinfo, | |
1237 | #else /* IPDIVERT_44 */ | |
1238 | u_int16_t *divinfo, | |
1239 | #endif /* IPDIVERT_44 */ | |
1240 | u_int16_t *divcookie) | |
1241 | #else /* IPDIVERT */ | |
1242 | ip_reass(struct mbuf *m, struct ipq *fp, struct ipq *where) | |
1243 | #endif /* IPDIVERT */ | |
1244 | { | |
1245 | struct ip *ip = mtod(m, struct ip *); | |
1246 | struct mbuf *p = 0, *q, *nq; | |
1247 | struct mbuf *t; | |
1248 | int hlen = IP_VHL_HL(ip->ip_vhl) << 2; | |
1249 | int i, next; | |
1250 | u_int8_t ecn, ecn0; | |
1251 | ||
1252 | lck_mtx_assert(ip_mutex, LCK_MTX_ASSERT_OWNED); | |
1253 | /* | |
1254 | * Presence of header sizes in mbufs | |
1255 | * would confuse code below. | |
1256 | */ | |
1257 | m->m_data += hlen; | |
1258 | m->m_len -= hlen; | |
1259 | ||
1260 | if (m->m_pkthdr.csum_flags & CSUM_TCP_SUM16) | |
1261 | m->m_pkthdr.csum_flags = 0; | |
1262 | /* | |
1263 | * If first fragment to arrive, create a reassembly queue. | |
1264 | */ | |
1265 | if (fp == 0) { | |
1266 | if ((t = m_get(M_DONTWAIT, MT_FTABLE)) == NULL) | |
1267 | goto dropfrag; | |
1268 | fp = mtod(t, struct ipq *); | |
1269 | #if CONFIG_MACF_NET | |
1270 | if (mac_ipq_label_init(fp, M_NOWAIT) != 0) { | |
1271 | m_free(t); | |
1272 | fp = NULL; | |
1273 | goto dropfrag; | |
1274 | } | |
1275 | mac_ipq_label_associate(m, fp); | |
1276 | #endif | |
1277 | insque((void*)fp, (void*)where); | |
1278 | nipq++; | |
1279 | fp->ipq_nfrags = 1; | |
1280 | fp->ipq_ttl = IPFRAGTTL; | |
1281 | fp->ipq_p = ip->ip_p; | |
1282 | fp->ipq_id = ip->ip_id; | |
1283 | fp->ipq_src = ip->ip_src; | |
1284 | fp->ipq_dst = ip->ip_dst; | |
1285 | fp->ipq_frags = m; | |
1286 | m->m_nextpkt = NULL; | |
1287 | #if IPDIVERT | |
1288 | #ifdef IPDIVERT_44 | |
1289 | fp->ipq_div_info = 0; | |
1290 | #else | |
1291 | fp->ipq_divert = 0; | |
1292 | #endif | |
1293 | fp->ipq_div_cookie = 0; | |
1294 | #endif | |
1295 | TAILQ_INSERT_HEAD(&ipq_list, fp, ipq_list); | |
1296 | goto inserted; | |
1297 | } else { | |
1298 | fp->ipq_nfrags++; | |
1299 | #if CONFIG_MACF_NET | |
1300 | mac_ipq_label_update(m, fp); | |
1301 | #endif | |
1302 | } | |
1303 | ||
1304 | #define GETIP(m) ((struct ip*)((m)->m_pkthdr.header)) | |
1305 | ||
1306 | /* | |
1307 | * Handle ECN by comparing this segment with the first one; | |
1308 | * if CE is set, do not lose CE. | |
1309 | * drop if CE and not-ECT are mixed for the same packet. | |
1310 | */ | |
1311 | ecn = ip->ip_tos & IPTOS_ECN_MASK; | |
1312 | ecn0 = GETIP(fp->ipq_frags)->ip_tos & IPTOS_ECN_MASK; | |
1313 | if (ecn == IPTOS_ECN_CE) { | |
1314 | if (ecn0 == IPTOS_ECN_NOTECT) | |
1315 | goto dropfrag; | |
1316 | if (ecn0 != IPTOS_ECN_CE) | |
1317 | GETIP(fp->ipq_frags)->ip_tos |= IPTOS_ECN_CE; | |
1318 | } | |
1319 | if (ecn == IPTOS_ECN_NOTECT && ecn0 != IPTOS_ECN_NOTECT) | |
1320 | goto dropfrag; | |
1321 | ||
1322 | /* | |
1323 | * Find a segment which begins after this one does. | |
1324 | */ | |
1325 | for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) | |
1326 | if (GETIP(q)->ip_off > ip->ip_off) | |
1327 | break; | |
1328 | ||
1329 | /* | |
1330 | * If there is a preceding segment, it may provide some of | |
1331 | * our data already. If so, drop the data from the incoming | |
1332 | * segment. If it provides all of our data, drop us, otherwise | |
1333 | * stick new segment in the proper place. | |
1334 | * | |
1335 | * If some of the data is dropped from the the preceding | |
1336 | * segment, then it's checksum is invalidated. | |
1337 | */ | |
1338 | if (p) { | |
1339 | i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off; | |
1340 | if (i > 0) { | |
1341 | if (i >= ip->ip_len) | |
1342 | goto dropfrag; | |
1343 | m_adj(m, i); | |
1344 | m->m_pkthdr.csum_flags = 0; | |
1345 | ip->ip_off += i; | |
1346 | ip->ip_len -= i; | |
1347 | } | |
1348 | m->m_nextpkt = p->m_nextpkt; | |
1349 | p->m_nextpkt = m; | |
1350 | } else { | |
1351 | m->m_nextpkt = fp->ipq_frags; | |
1352 | fp->ipq_frags = m; | |
1353 | } | |
1354 | ||
1355 | /* | |
1356 | * While we overlap succeeding segments trim them or, | |
1357 | * if they are completely covered, dequeue them. | |
1358 | */ | |
1359 | for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off; | |
1360 | q = nq) { | |
1361 | i = (ip->ip_off + ip->ip_len) - | |
1362 | GETIP(q)->ip_off; | |
1363 | if (i < GETIP(q)->ip_len) { | |
1364 | GETIP(q)->ip_len -= i; | |
1365 | GETIP(q)->ip_off += i; | |
1366 | m_adj(q, i); | |
1367 | q->m_pkthdr.csum_flags = 0; | |
1368 | break; | |
1369 | } | |
1370 | nq = q->m_nextpkt; | |
1371 | m->m_nextpkt = nq; | |
1372 | OSAddAtomic(1, (SInt32*)&ipstat.ips_fragdropped); | |
1373 | fp->ipq_nfrags--; | |
1374 | m_freem(q); | |
1375 | } | |
1376 | ||
1377 | inserted: | |
1378 | currentfrags++; | |
1379 | ||
1380 | #if IPDIVERT | |
1381 | /* | |
1382 | * Transfer firewall instructions to the fragment structure. | |
1383 | * Only trust info in the fragment at offset 0. | |
1384 | */ | |
1385 | if (ip->ip_off == 0) { | |
1386 | #ifdef IPDIVERT_44 | |
1387 | fp->ipq_div_info = *divinfo; | |
1388 | #else | |
1389 | fp->ipq_divert = *divinfo; | |
1390 | #endif | |
1391 | fp->ipq_div_cookie = *divcookie; | |
1392 | } | |
1393 | *divinfo = 0; | |
1394 | *divcookie = 0; | |
1395 | #endif | |
1396 | ||
1397 | /* | |
1398 | * Check for complete reassembly and perform frag per packet | |
1399 | * limiting. | |
1400 | * | |
1401 | * Frag limiting is performed here so that the nth frag has | |
1402 | * a chance to complete the packet before we drop the packet. | |
1403 | * As a result, n+1 frags are actually allowed per packet, but | |
1404 | * only n will ever be stored. (n = maxfragsperpacket.) | |
1405 | * | |
1406 | */ | |
1407 | next = 0; | |
1408 | for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) { | |
1409 | if (GETIP(q)->ip_off != next) { | |
1410 | if (fp->ipq_nfrags > maxfragsperpacket) { | |
1411 | OSAddAtomic(fp->ipq_nfrags, (SInt32*)&ipstat.ips_fragdropped); | |
1412 | ip_freef(fp); | |
1413 | } | |
1414 | return (0); | |
1415 | } | |
1416 | next += GETIP(q)->ip_len; | |
1417 | } | |
1418 | /* Make sure the last packet didn't have the IP_MF flag */ | |
1419 | if (p->m_flags & M_FRAG) { | |
1420 | if (fp->ipq_nfrags > maxfragsperpacket) { | |
1421 | OSAddAtomic(fp->ipq_nfrags, (SInt32*)&ipstat.ips_fragdropped); | |
1422 | ip_freef(fp); | |
1423 | } | |
1424 | return (0); | |
1425 | } | |
1426 | ||
1427 | /* | |
1428 | * Reassembly is complete. Make sure the packet is a sane size. | |
1429 | */ | |
1430 | q = fp->ipq_frags; | |
1431 | ip = GETIP(q); | |
1432 | if (next + (IP_VHL_HL(ip->ip_vhl) << 2) > IP_MAXPACKET) { | |
1433 | OSAddAtomic(1, (SInt32*)&ipstat.ips_toolong); | |
1434 | OSAddAtomic(fp->ipq_nfrags, (SInt32*)&ipstat.ips_fragdropped); | |
1435 | ip_freef(fp); | |
1436 | return (0); | |
1437 | } | |
1438 | ||
1439 | /* | |
1440 | * Concatenate fragments. | |
1441 | */ | |
1442 | m = q; | |
1443 | t = m->m_next; | |
1444 | m->m_next = 0; | |
1445 | m_cat(m, t); | |
1446 | nq = q->m_nextpkt; | |
1447 | q->m_nextpkt = 0; | |
1448 | for (q = nq; q != NULL; q = nq) { | |
1449 | nq = q->m_nextpkt; | |
1450 | q->m_nextpkt = NULL; | |
1451 | if (q->m_pkthdr.csum_flags & CSUM_TCP_SUM16) | |
1452 | m->m_pkthdr.csum_flags = 0; | |
1453 | else { | |
1454 | m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags; | |
1455 | m->m_pkthdr.csum_data += q->m_pkthdr.csum_data; | |
1456 | } | |
1457 | m_cat(m, q); | |
1458 | } | |
1459 | ||
1460 | #if IPDIVERT | |
1461 | /* | |
1462 | * Extract firewall instructions from the fragment structure. | |
1463 | */ | |
1464 | #ifdef IPDIVERT_44 | |
1465 | *divinfo = fp->ipq_div_info; | |
1466 | #else | |
1467 | *divinfo = fp->ipq_divert; | |
1468 | #endif | |
1469 | *divcookie = fp->ipq_div_cookie; | |
1470 | #endif | |
1471 | ||
1472 | #if CONFIG_MACF_NET | |
1473 | mac_mbuf_label_associate_ipq(fp, m); | |
1474 | mac_ipq_label_destroy(fp); | |
1475 | #endif | |
1476 | /* | |
1477 | * Create header for new ip packet by | |
1478 | * modifying header of first packet; | |
1479 | * dequeue and discard fragment reassembly header. | |
1480 | * Make header visible. | |
1481 | */ | |
1482 | ip->ip_len = next; | |
1483 | ip->ip_src = fp->ipq_src; | |
1484 | ip->ip_dst = fp->ipq_dst; | |
1485 | remque((void*)fp); | |
1486 | TAILQ_REMOVE(&ipq_list, fp, ipq_list); | |
1487 | currentfrags -= fp->ipq_nfrags; | |
1488 | nipq--; | |
1489 | (void) m_free(dtom(fp)); | |
1490 | m->m_len += (IP_VHL_HL(ip->ip_vhl) << 2); | |
1491 | m->m_data -= (IP_VHL_HL(ip->ip_vhl) << 2); | |
1492 | /* some debugging cruft by sklower, below, will go away soon */ | |
1493 | if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */ | |
1494 | int plen = 0; | |
1495 | for (t = m; t; t = t->m_next) | |
1496 | plen += t->m_len; | |
1497 | m->m_pkthdr.len = plen; | |
1498 | } | |
1499 | return (m); | |
1500 | ||
1501 | dropfrag: | |
1502 | #if IPDIVERT | |
1503 | *divinfo = 0; | |
1504 | *divcookie = 0; | |
1505 | #endif | |
1506 | OSAddAtomic(1, (SInt32*)&ipstat.ips_fragdropped); | |
1507 | if (fp != 0) | |
1508 | fp->ipq_nfrags--; | |
1509 | m_freem(m); | |
1510 | return (0); | |
1511 | ||
1512 | #undef GETIP | |
1513 | } | |
1514 | ||
1515 | /* | |
1516 | * Free a fragment reassembly header and all | |
1517 | * associated datagrams. | |
1518 | */ | |
1519 | static void | |
1520 | ip_freef(struct ipq *fp) | |
1521 | { | |
1522 | lck_mtx_assert(ip_mutex, LCK_MTX_ASSERT_OWNED); | |
1523 | currentfrags -= fp->ipq_nfrags; | |
1524 | m_freem_list(fp->ipq_frags); | |
1525 | remque((void*)fp); | |
1526 | TAILQ_REMOVE(&ipq_list, fp, ipq_list); | |
1527 | (void) m_free(dtom(fp)); | |
1528 | nipq--; | |
1529 | } | |
1530 | ||
1531 | /* | |
1532 | * IP timer processing; | |
1533 | * if a timer expires on a reassembly | |
1534 | * queue, discard it. | |
1535 | */ | |
1536 | void | |
1537 | ip_slowtimo(void) | |
1538 | { | |
1539 | struct ipq *fp; | |
1540 | int i; | |
1541 | lck_mtx_lock(ip_mutex); | |
1542 | for (i = 0; i < IPREASS_NHASH; i++) { | |
1543 | fp = ipq[i].next; | |
1544 | if (fp == 0) | |
1545 | continue; | |
1546 | while (fp != &ipq[i]) { | |
1547 | --fp->ipq_ttl; | |
1548 | fp = fp->next; | |
1549 | if (fp->prev->ipq_ttl == 0) { | |
1550 | OSAddAtomic(fp->ipq_nfrags, (SInt32*)&ipstat.ips_fragtimeout); | |
1551 | ip_freef(fp->prev); | |
1552 | } | |
1553 | } | |
1554 | } | |
1555 | /* | |
1556 | * If we are over the maximum number of fragments | |
1557 | * (due to the limit being lowered), drain off | |
1558 | * enough to get down to the new limit. | |
1559 | */ | |
1560 | if (maxnipq >= 0 && nipq > maxnipq) { | |
1561 | for (i = 0; i < IPREASS_NHASH; i++) { | |
1562 | while (nipq > maxnipq && | |
1563 | (ipq[i].next != &ipq[i])) { | |
1564 | OSAddAtomic(ipq[i].next->ipq_nfrags, (SInt32*)&ipstat.ips_fragdropped); | |
1565 | ip_freef(ipq[i].next); | |
1566 | } | |
1567 | } | |
1568 | } | |
1569 | ipflow_slowtimo(); | |
1570 | lck_mtx_unlock(ip_mutex); | |
1571 | } | |
1572 | ||
1573 | /* | |
1574 | * Drain off all datagram fragments. | |
1575 | */ | |
1576 | void | |
1577 | ip_drain(void) | |
1578 | { | |
1579 | int i; | |
1580 | ||
1581 | lck_mtx_lock(ip_mutex); | |
1582 | for (i = 0; i < IPREASS_NHASH; i++) { | |
1583 | while (ipq[i].next != &ipq[i]) { | |
1584 | OSAddAtomic(ipq[i].next->ipq_nfrags, (SInt32*)&ipstat.ips_fragdropped); | |
1585 | ip_freef(ipq[i].next); | |
1586 | } | |
1587 | } | |
1588 | lck_mtx_unlock(ip_mutex); | |
1589 | in_rtqdrain(); | |
1590 | } | |
1591 | ||
1592 | /* | |
1593 | * Do option processing on a datagram, | |
1594 | * possibly discarding it if bad options are encountered, | |
1595 | * or forwarding it if source-routed. | |
1596 | * The pass argument is used when operating in the IPSTEALTH | |
1597 | * mode to tell what options to process: | |
1598 | * [LS]SRR (pass 0) or the others (pass 1). | |
1599 | * The reason for as many as two passes is that when doing IPSTEALTH, | |
1600 | * non-routing options should be processed only if the packet is for us. | |
1601 | * Returns 1 if packet has been forwarded/freed, | |
1602 | * 0 if the packet should be processed further. | |
1603 | */ | |
1604 | static int | |
1605 | ip_dooptions(struct mbuf *m, __unused int pass, struct sockaddr_in *next_hop, struct route *ipforward_rt) | |
1606 | { | |
1607 | struct ip *ip = mtod(m, struct ip *); | |
1608 | u_char *cp; | |
1609 | struct ip_timestamp *ipt; | |
1610 | struct in_ifaddr *ia; | |
1611 | int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0; | |
1612 | struct in_addr *sin, dst; | |
1613 | n_time ntime; | |
1614 | ||
1615 | dst = ip->ip_dst; | |
1616 | cp = (u_char *)(ip + 1); | |
1617 | cnt = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof (struct ip); | |
1618 | for (; cnt > 0; cnt -= optlen, cp += optlen) { | |
1619 | opt = cp[IPOPT_OPTVAL]; | |
1620 | if (opt == IPOPT_EOL) | |
1621 | break; | |
1622 | if (opt == IPOPT_NOP) | |
1623 | optlen = 1; | |
1624 | else { | |
1625 | if (cnt < IPOPT_OLEN + sizeof(*cp)) { | |
1626 | code = &cp[IPOPT_OLEN] - (u_char *)ip; | |
1627 | goto bad; | |
1628 | } | |
1629 | optlen = cp[IPOPT_OLEN]; | |
1630 | if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) { | |
1631 | code = &cp[IPOPT_OLEN] - (u_char *)ip; | |
1632 | goto bad; | |
1633 | } | |
1634 | } | |
1635 | switch (opt) { | |
1636 | ||
1637 | default: | |
1638 | break; | |
1639 | ||
1640 | /* | |
1641 | * Source routing with record. | |
1642 | * Find interface with current destination address. | |
1643 | * If none on this machine then drop if strictly routed, | |
1644 | * or do nothing if loosely routed. | |
1645 | * Record interface address and bring up next address | |
1646 | * component. If strictly routed make sure next | |
1647 | * address is on directly accessible net. | |
1648 | */ | |
1649 | case IPOPT_LSRR: | |
1650 | case IPOPT_SSRR: | |
1651 | if (optlen < IPOPT_OFFSET + sizeof(*cp)) { | |
1652 | code = &cp[IPOPT_OLEN] - (u_char *)ip; | |
1653 | goto bad; | |
1654 | } | |
1655 | if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) { | |
1656 | code = &cp[IPOPT_OFFSET] - (u_char *)ip; | |
1657 | goto bad; | |
1658 | } | |
1659 | ipaddr.sin_addr = ip->ip_dst; | |
1660 | ia = (struct in_ifaddr *) | |
1661 | ifa_ifwithaddr((struct sockaddr *)&ipaddr); | |
1662 | if (ia == 0) { | |
1663 | if (opt == IPOPT_SSRR) { | |
1664 | type = ICMP_UNREACH; | |
1665 | code = ICMP_UNREACH_SRCFAIL; | |
1666 | goto bad; | |
1667 | } | |
1668 | if (!ip_dosourceroute) | |
1669 | goto nosourcerouting; | |
1670 | /* | |
1671 | * Loose routing, and not at next destination | |
1672 | * yet; nothing to do except forward. | |
1673 | */ | |
1674 | break; | |
1675 | } | |
1676 | else { | |
1677 | ifafree(&ia->ia_ifa); | |
1678 | ia = NULL; | |
1679 | } | |
1680 | off--; /* 0 origin */ | |
1681 | if (off > optlen - (int)sizeof(struct in_addr)) { | |
1682 | /* | |
1683 | * End of source route. Should be for us. | |
1684 | */ | |
1685 | if (!ip_acceptsourceroute) | |
1686 | goto nosourcerouting; | |
1687 | save_rte(cp, ip->ip_src); | |
1688 | break; | |
1689 | } | |
1690 | ||
1691 | if (!ip_dosourceroute) { | |
1692 | if (ipforwarding) { | |
1693 | char buf[MAX_IPv4_STR_LEN]; | |
1694 | char buf2[MAX_IPv4_STR_LEN]; | |
1695 | /* | |
1696 | * Acting as a router, so generate ICMP | |
1697 | */ | |
1698 | nosourcerouting: | |
1699 | log(LOG_WARNING, | |
1700 | "attempted source route from %s to %s\n", | |
1701 | inet_ntop(AF_INET, &ip->ip_src, buf, sizeof(buf)), | |
1702 | inet_ntop(AF_INET, &ip->ip_dst, buf2, sizeof(buf2))); | |
1703 | type = ICMP_UNREACH; | |
1704 | code = ICMP_UNREACH_SRCFAIL; | |
1705 | goto bad; | |
1706 | } else { | |
1707 | /* | |
1708 | * Not acting as a router, so silently drop. | |
1709 | */ | |
1710 | OSAddAtomic(1, (SInt32*)&ipstat.ips_cantforward); | |
1711 | m_freem(m); | |
1712 | return (1); | |
1713 | } | |
1714 | } | |
1715 | ||
1716 | /* | |
1717 | * locate outgoing interface | |
1718 | */ | |
1719 | (void)memcpy(&ipaddr.sin_addr, cp + off, | |
1720 | sizeof(ipaddr.sin_addr)); | |
1721 | ||
1722 | if (opt == IPOPT_SSRR) { | |
1723 | #define INA struct in_ifaddr * | |
1724 | #define SA struct sockaddr * | |
1725 | if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr)) == 0) { | |
1726 | ia = (INA)ifa_ifwithnet((SA)&ipaddr); | |
1727 | } | |
1728 | } else { | |
1729 | ia = ip_rtaddr(ipaddr.sin_addr, ipforward_rt); | |
1730 | } | |
1731 | if (ia == 0) { | |
1732 | type = ICMP_UNREACH; | |
1733 | code = ICMP_UNREACH_SRCFAIL; | |
1734 | goto bad; | |
1735 | } | |
1736 | ip->ip_dst = ipaddr.sin_addr; | |
1737 | (void)memcpy(cp + off, &(IA_SIN(ia)->sin_addr), | |
1738 | sizeof(struct in_addr)); | |
1739 | ifafree(&ia->ia_ifa); | |
1740 | ia = NULL; | |
1741 | cp[IPOPT_OFFSET] += sizeof(struct in_addr); | |
1742 | /* | |
1743 | * Let ip_intr's mcast routing check handle mcast pkts | |
1744 | */ | |
1745 | forward = !IN_MULTICAST(ntohl(ip->ip_dst.s_addr)); | |
1746 | break; | |
1747 | ||
1748 | case IPOPT_RR: | |
1749 | if (optlen < IPOPT_OFFSET + sizeof(*cp)) { | |
1750 | code = &cp[IPOPT_OFFSET] - (u_char *)ip; | |
1751 | goto bad; | |
1752 | } | |
1753 | if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) { | |
1754 | code = &cp[IPOPT_OFFSET] - (u_char *)ip; | |
1755 | goto bad; | |
1756 | } | |
1757 | /* | |
1758 | * If no space remains, ignore. | |
1759 | */ | |
1760 | off--; /* 0 origin */ | |
1761 | if (off > optlen - (int)sizeof(struct in_addr)) | |
1762 | break; | |
1763 | (void)memcpy(&ipaddr.sin_addr, &ip->ip_dst, | |
1764 | sizeof(ipaddr.sin_addr)); | |
1765 | /* | |
1766 | * locate outgoing interface; if we're the destination, | |
1767 | * use the incoming interface (should be same). | |
1768 | */ | |
1769 | if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == 0) { | |
1770 | if ((ia = ip_rtaddr(ipaddr.sin_addr, ipforward_rt)) == 0) { | |
1771 | type = ICMP_UNREACH; | |
1772 | code = ICMP_UNREACH_HOST; | |
1773 | goto bad; | |
1774 | } | |
1775 | } | |
1776 | (void)memcpy(cp + off, &(IA_SIN(ia)->sin_addr), | |
1777 | sizeof(struct in_addr)); | |
1778 | ifafree(&ia->ia_ifa); | |
1779 | ia = NULL; | |
1780 | cp[IPOPT_OFFSET] += sizeof(struct in_addr); | |
1781 | break; | |
1782 | ||
1783 | case IPOPT_TS: | |
1784 | code = cp - (u_char *)ip; | |
1785 | ipt = (struct ip_timestamp *)cp; | |
1786 | if (ipt->ipt_len < 4 || ipt->ipt_len > 40) { | |
1787 | code = (u_char *)&ipt->ipt_len - (u_char *)ip; | |
1788 | goto bad; | |
1789 | } | |
1790 | if (ipt->ipt_ptr < 5) { | |
1791 | code = (u_char *)&ipt->ipt_ptr - (u_char *)ip; | |
1792 | goto bad; | |
1793 | } | |
1794 | if (ipt->ipt_ptr > | |
1795 | ipt->ipt_len - (int)sizeof(int32_t)) { | |
1796 | if (++ipt->ipt_oflw == 0) { | |
1797 | code = (u_char *)&ipt->ipt_ptr - | |
1798 | (u_char *)ip; | |
1799 | goto bad; | |
1800 | } | |
1801 | break; | |
1802 | } | |
1803 | sin = (struct in_addr *)(cp + ipt->ipt_ptr - 1); | |
1804 | switch (ipt->ipt_flg) { | |
1805 | ||
1806 | case IPOPT_TS_TSONLY: | |
1807 | break; | |
1808 | ||
1809 | case IPOPT_TS_TSANDADDR: | |
1810 | if (ipt->ipt_ptr - 1 + sizeof(n_time) + | |
1811 | sizeof(struct in_addr) > ipt->ipt_len) { | |
1812 | code = (u_char *)&ipt->ipt_ptr - | |
1813 | (u_char *)ip; | |
1814 | goto bad; | |
1815 | } | |
1816 | ipaddr.sin_addr = dst; | |
1817 | ia = (INA)ifaof_ifpforaddr((SA)&ipaddr, | |
1818 | m->m_pkthdr.rcvif); | |
1819 | if (ia == 0) | |
1820 | continue; | |
1821 | (void)memcpy(sin, &IA_SIN(ia)->sin_addr, | |
1822 | sizeof(struct in_addr)); | |
1823 | ipt->ipt_ptr += sizeof(struct in_addr); | |
1824 | ifafree(&ia->ia_ifa); | |
1825 | ia = NULL; | |
1826 | break; | |
1827 | ||
1828 | case IPOPT_TS_PRESPEC: | |
1829 | if (ipt->ipt_ptr - 1 + sizeof(n_time) + | |
1830 | sizeof(struct in_addr) > ipt->ipt_len) { | |
1831 | code = (u_char *)&ipt->ipt_ptr - | |
1832 | (u_char *)ip; | |
1833 | goto bad; | |
1834 | } | |
1835 | (void)memcpy(&ipaddr.sin_addr, sin, | |
1836 | sizeof(struct in_addr)); | |
1837 | if ((ia = (struct in_ifaddr*)ifa_ifwithaddr((SA)&ipaddr)) == 0) | |
1838 | continue; | |
1839 | ifafree(&ia->ia_ifa); | |
1840 | ia = NULL; | |
1841 | ipt->ipt_ptr += sizeof(struct in_addr); | |
1842 | break; | |
1843 | ||
1844 | default: | |
1845 | /* XXX can't take &ipt->ipt_flg */ | |
1846 | code = (u_char *)&ipt->ipt_ptr - | |
1847 | (u_char *)ip + 1; | |
1848 | goto bad; | |
1849 | } | |
1850 | ntime = iptime(); | |
1851 | (void)memcpy(cp + ipt->ipt_ptr - 1, &ntime, | |
1852 | sizeof(n_time)); | |
1853 | ipt->ipt_ptr += sizeof(n_time); | |
1854 | } | |
1855 | } | |
1856 | if (forward && ipforwarding) { | |
1857 | ip_forward(m, 1, next_hop, ipforward_rt); | |
1858 | if (ipforward_rt->ro_rt != NULL) { | |
1859 | rtfree(ipforward_rt->ro_rt); | |
1860 | ipforward_rt->ro_rt = NULL; | |
1861 | } | |
1862 | return (1); | |
1863 | } | |
1864 | return (0); | |
1865 | bad: | |
1866 | ip->ip_len -= IP_VHL_HL(ip->ip_vhl) << 2; /* XXX icmp_error adds in hdr length */ | |
1867 | icmp_error(m, type, code, 0, 0); | |
1868 | OSAddAtomic(1, (SInt32*)&ipstat.ips_badoptions); | |
1869 | return (1); | |
1870 | } | |
1871 | ||
1872 | /* | |
1873 | * Given address of next destination (final or next hop), | |
1874 | * return internet address info of interface to be used to get there. | |
1875 | */ | |
1876 | struct in_ifaddr * | |
1877 | ip_rtaddr(struct in_addr dst, struct route *rt) | |
1878 | { | |
1879 | struct sockaddr_in *sin; | |
1880 | ||
1881 | sin = (struct sockaddr_in *)&rt->ro_dst; | |
1882 | ||
1883 | lck_mtx_lock(rt_mtx); | |
1884 | if (rt->ro_rt == 0 || dst.s_addr != sin->sin_addr.s_addr || | |
1885 | rt->ro_rt->generation_id != route_generation) { | |
1886 | if (rt->ro_rt) { | |
1887 | rtfree_locked(rt->ro_rt); | |
1888 | rt->ro_rt = 0; | |
1889 | } | |
1890 | sin->sin_family = AF_INET; | |
1891 | sin->sin_len = sizeof(*sin); | |
1892 | sin->sin_addr = dst; | |
1893 | ||
1894 | rtalloc_ign_locked(rt, RTF_PRCLONING); | |
1895 | } | |
1896 | if (rt->ro_rt == 0) { | |
1897 | lck_mtx_unlock(rt_mtx); | |
1898 | return ((struct in_ifaddr *)0); | |
1899 | } | |
1900 | ||
1901 | if (rt->ro_rt->rt_ifa) | |
1902 | ifaref(rt->ro_rt->rt_ifa); | |
1903 | lck_mtx_unlock(rt_mtx); | |
1904 | return ((struct in_ifaddr *) rt->ro_rt->rt_ifa); | |
1905 | } | |
1906 | ||
1907 | /* | |
1908 | * Save incoming source route for use in replies, | |
1909 | * to be picked up later by ip_srcroute if the receiver is interested. | |
1910 | */ | |
1911 | void | |
1912 | save_rte(u_char *option, struct in_addr dst) | |
1913 | { | |
1914 | unsigned olen; | |
1915 | ||
1916 | olen = option[IPOPT_OLEN]; | |
1917 | #if DIAGNOSTIC | |
1918 | if (ipprintfs) | |
1919 | printf("save_rte: olen %d\n", olen); | |
1920 | #endif | |
1921 | if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst))) | |
1922 | return; | |
1923 | bcopy(option, ip_srcrt.srcopt, olen); | |
1924 | ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr); | |
1925 | ip_srcrt.dst = dst; | |
1926 | } | |
1927 | ||
1928 | /* | |
1929 | * Retrieve incoming source route for use in replies, | |
1930 | * in the same form used by setsockopt. | |
1931 | * The first hop is placed before the options, will be removed later. | |
1932 | */ | |
1933 | struct mbuf * | |
1934 | ip_srcroute(void) | |
1935 | { | |
1936 | struct in_addr *p, *q; | |
1937 | struct mbuf *m; | |
1938 | ||
1939 | if (ip_nhops == 0) | |
1940 | return ((struct mbuf *)0); | |
1941 | m = m_get(M_DONTWAIT, MT_HEADER); | |
1942 | if (m == 0) | |
1943 | return ((struct mbuf *)0); | |
1944 | ||
1945 | #define OPTSIZ (sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt)) | |
1946 | ||
1947 | /* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */ | |
1948 | m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) + | |
1949 | OPTSIZ; | |
1950 | #if DIAGNOSTIC | |
1951 | if (ipprintfs) | |
1952 | printf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len); | |
1953 | #endif | |
1954 | ||
1955 | /* | |
1956 | * First save first hop for return route | |
1957 | */ | |
1958 | p = &ip_srcrt.route[ip_nhops - 1]; | |
1959 | *(mtod(m, struct in_addr *)) = *p--; | |
1960 | #if DIAGNOSTIC | |
1961 | if (ipprintfs) | |
1962 | printf(" hops %lx", (u_long)ntohl(mtod(m, struct in_addr *)->s_addr)); | |
1963 | #endif | |
1964 | ||
1965 | /* | |
1966 | * Copy option fields and padding (nop) to mbuf. | |
1967 | */ | |
1968 | ip_srcrt.nop = IPOPT_NOP; | |
1969 | ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF; | |
1970 | (void)memcpy(mtod(m, caddr_t) + sizeof(struct in_addr), | |
1971 | &ip_srcrt.nop, OPTSIZ); | |
1972 | q = (struct in_addr *)(mtod(m, caddr_t) + | |
1973 | sizeof(struct in_addr) + OPTSIZ); | |
1974 | #undef OPTSIZ | |
1975 | /* | |
1976 | * Record return path as an IP source route, | |
1977 | * reversing the path (pointers are now aligned). | |
1978 | */ | |
1979 | while (p >= ip_srcrt.route) { | |
1980 | #if DIAGNOSTIC | |
1981 | if (ipprintfs) | |
1982 | printf(" %lx", (u_long)ntohl(q->s_addr)); | |
1983 | #endif | |
1984 | *q++ = *p--; | |
1985 | } | |
1986 | /* | |
1987 | * Last hop goes to final destination. | |
1988 | */ | |
1989 | *q = ip_srcrt.dst; | |
1990 | #if DIAGNOSTIC | |
1991 | if (ipprintfs) | |
1992 | printf(" %lx\n", (u_long)ntohl(q->s_addr)); | |
1993 | #endif | |
1994 | return (m); | |
1995 | } | |
1996 | ||
1997 | /* | |
1998 | * Strip out IP options, at higher | |
1999 | * level protocol in the kernel. | |
2000 | * Second argument is buffer to which options | |
2001 | * will be moved, and return value is their length. | |
2002 | * XXX should be deleted; last arg currently ignored. | |
2003 | */ | |
2004 | void | |
2005 | ip_stripoptions(struct mbuf *m, __unused struct mbuf *mopt) | |
2006 | { | |
2007 | int i; | |
2008 | struct ip *ip = mtod(m, struct ip *); | |
2009 | caddr_t opts; | |
2010 | int olen; | |
2011 | ||
2012 | olen = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof (struct ip); | |
2013 | opts = (caddr_t)(ip + 1); | |
2014 | i = m->m_len - (sizeof (struct ip) + olen); | |
2015 | bcopy(opts + olen, opts, (unsigned)i); | |
2016 | m->m_len -= olen; | |
2017 | if (m->m_flags & M_PKTHDR) | |
2018 | m->m_pkthdr.len -= olen; | |
2019 | ip->ip_vhl = IP_MAKE_VHL(IPVERSION, sizeof(struct ip) >> 2); | |
2020 | } | |
2021 | ||
2022 | u_char inetctlerrmap[PRC_NCMDS] = { | |
2023 | 0, 0, 0, 0, | |
2024 | 0, EMSGSIZE, EHOSTDOWN, EHOSTUNREACH, | |
2025 | ENETUNREACH, EHOSTUNREACH, ECONNREFUSED, ECONNREFUSED, | |
2026 | EMSGSIZE, EHOSTUNREACH, 0, 0, | |
2027 | 0, 0, 0, 0, | |
2028 | ENOPROTOOPT, ECONNREFUSED | |
2029 | }; | |
2030 | ||
2031 | /* | |
2032 | * Forward a packet. If some error occurs return the sender | |
2033 | * an icmp packet. Note we can't always generate a meaningful | |
2034 | * icmp message because icmp doesn't have a large enough repertoire | |
2035 | * of codes and types. | |
2036 | * | |
2037 | * If not forwarding, just drop the packet. This could be confusing | |
2038 | * if ipforwarding was zero but some routing protocol was advancing | |
2039 | * us as a gateway to somewhere. However, we must let the routing | |
2040 | * protocol deal with that. | |
2041 | * | |
2042 | * The srcrt parameter indicates whether the packet is being forwarded | |
2043 | * via a source route. | |
2044 | */ | |
2045 | static void | |
2046 | ip_forward(struct mbuf *m, int srcrt, struct sockaddr_in *next_hop, struct route *ipforward_rt) | |
2047 | { | |
2048 | struct ip *ip = mtod(m, struct ip *); | |
2049 | struct sockaddr_in *sin; | |
2050 | struct rtentry *rt; | |
2051 | int error, type = 0, code = 0; | |
2052 | struct mbuf *mcopy; | |
2053 | n_long dest; | |
2054 | struct in_addr pkt_dst; | |
2055 | struct ifnet *destifp; | |
2056 | struct ifnet *rcvif = m->m_pkthdr.rcvif; | |
2057 | #if IPSEC | |
2058 | struct ifnet dummyifp; | |
2059 | #endif | |
2060 | ||
2061 | m->m_pkthdr.rcvif = NULL; | |
2062 | ||
2063 | dest = 0; | |
2064 | /* | |
2065 | * Cache the destination address of the packet; this may be | |
2066 | * changed by use of 'ipfw fwd'. | |
2067 | */ | |
2068 | pkt_dst = next_hop ? next_hop->sin_addr : ip->ip_dst; | |
2069 | ||
2070 | #if DIAGNOSTIC | |
2071 | if (ipprintfs) | |
2072 | printf("forward: src %lx dst %lx ttl %x\n", | |
2073 | (u_long)ip->ip_src.s_addr, (u_long)pkt_dst.s_addr, | |
2074 | ip->ip_ttl); | |
2075 | #endif | |
2076 | ||
2077 | ||
2078 | if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(pkt_dst) == 0) { | |
2079 | OSAddAtomic(1, (SInt32*)&ipstat.ips_cantforward); | |
2080 | m_freem(m); | |
2081 | return; | |
2082 | } | |
2083 | #if IPSTEALTH | |
2084 | if (!ipstealth) { | |
2085 | #endif | |
2086 | if (ip->ip_ttl <= IPTTLDEC) { | |
2087 | icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, | |
2088 | dest, 0); | |
2089 | return; | |
2090 | } | |
2091 | #if IPSTEALTH | |
2092 | } | |
2093 | #endif | |
2094 | ||
2095 | sin = (struct sockaddr_in *)&ipforward_rt->ro_dst; | |
2096 | if ((rt = ipforward_rt->ro_rt) == 0 || | |
2097 | pkt_dst.s_addr != sin->sin_addr.s_addr || | |
2098 | ipforward_rt->ro_rt->generation_id != route_generation) { | |
2099 | if (ipforward_rt->ro_rt) { | |
2100 | rtfree(ipforward_rt->ro_rt); | |
2101 | ipforward_rt->ro_rt = 0; | |
2102 | } | |
2103 | sin->sin_family = AF_INET; | |
2104 | sin->sin_len = sizeof(*sin); | |
2105 | sin->sin_addr = pkt_dst; | |
2106 | ||
2107 | rtalloc_ign(ipforward_rt, RTF_PRCLONING); | |
2108 | if (ipforward_rt->ro_rt == 0) { | |
2109 | icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest, 0); | |
2110 | return; | |
2111 | } | |
2112 | rt = ipforward_rt->ro_rt; | |
2113 | } | |
2114 | ||
2115 | /* | |
2116 | * Save the IP header and at most 8 bytes of the payload, | |
2117 | * in case we need to generate an ICMP message to the src. | |
2118 | * | |
2119 | * We don't use m_copy() because it might return a reference | |
2120 | * to a shared cluster. Both this function and ip_output() | |
2121 | * assume exclusive access to the IP header in `m', so any | |
2122 | * data in a cluster may change before we reach icmp_error(). | |
2123 | */ | |
2124 | MGET(mcopy, M_DONTWAIT, m->m_type); | |
2125 | if (mcopy != NULL) { | |
2126 | M_COPY_PKTHDR(mcopy, m); | |
2127 | mcopy->m_len = imin((IP_VHL_HL(ip->ip_vhl) << 2) + 8, | |
2128 | (int)ip->ip_len); | |
2129 | m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t)); | |
2130 | } | |
2131 | ||
2132 | #if IPSTEALTH | |
2133 | if (!ipstealth) { | |
2134 | #endif | |
2135 | ip->ip_ttl -= IPTTLDEC; | |
2136 | #if IPSTEALTH | |
2137 | } | |
2138 | #endif | |
2139 | ||
2140 | /* | |
2141 | * If forwarding packet using same interface that it came in on, | |
2142 | * perhaps should send a redirect to sender to shortcut a hop. | |
2143 | * Only send redirect if source is sending directly to us, | |
2144 | * and if packet was not source routed (or has any options). | |
2145 | * Also, don't send redirect if forwarding using a default route | |
2146 | * or a route modified by a redirect. | |
2147 | */ | |
2148 | #define satosin(sa) ((struct sockaddr_in *)(sa)) | |
2149 | if (rt->rt_ifp == m->m_pkthdr.rcvif && | |
2150 | (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 && | |
2151 | satosin(rt_key(rt))->sin_addr.s_addr != 0 && | |
2152 | ipsendredirects && !srcrt) { | |
2153 | #define RTA(rt) ((struct in_ifaddr *)(rt->rt_ifa)) | |
2154 | u_long src = ntohl(ip->ip_src.s_addr); | |
2155 | ||
2156 | if (RTA(rt) && | |
2157 | (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) { | |
2158 | if (rt->rt_flags & RTF_GATEWAY) | |
2159 | dest = satosin(rt->rt_gateway)->sin_addr.s_addr; | |
2160 | else | |
2161 | dest = pkt_dst.s_addr; | |
2162 | /* Router requirements says to only send host redirects */ | |
2163 | type = ICMP_REDIRECT; | |
2164 | code = ICMP_REDIRECT_HOST; | |
2165 | #if DIAGNOSTIC | |
2166 | if (ipprintfs) | |
2167 | printf("redirect (%d) to %lx\n", code, (u_long)dest); | |
2168 | #endif | |
2169 | } | |
2170 | } | |
2171 | ||
2172 | { | |
2173 | if (next_hop) { | |
2174 | /* Pass IPFORWARD info if available */ | |
2175 | struct m_tag *tag; | |
2176 | struct ip_fwd_tag *ipfwd_tag; | |
2177 | ||
2178 | tag = m_tag_alloc(KERNEL_MODULE_TAG_ID, KERNEL_TAG_TYPE_IPFORWARD, | |
2179 | sizeof(struct sockaddr_in), M_NOWAIT); | |
2180 | if (tag == NULL) { | |
2181 | error = ENOBUFS; | |
2182 | m_freem(m); | |
2183 | return; | |
2184 | } | |
2185 | ||
2186 | ipfwd_tag = (struct ip_fwd_tag *)(tag+1); | |
2187 | ipfwd_tag->next_hop = next_hop; | |
2188 | ||
2189 | m_tag_prepend(m, tag); | |
2190 | } | |
2191 | error = ip_output_list(m, 0, (struct mbuf *)0, ipforward_rt, | |
2192 | IP_FORWARDING, 0, NULL); | |
2193 | } | |
2194 | if (error) | |
2195 | OSAddAtomic(1, (SInt32*)&ipstat.ips_cantforward); | |
2196 | else { | |
2197 | OSAddAtomic(1, (SInt32*)&ipstat.ips_forward); | |
2198 | if (type) | |
2199 | OSAddAtomic(1, (SInt32*)&ipstat.ips_redirectsent); | |
2200 | else { | |
2201 | if (mcopy) { | |
2202 | ipflow_create(ipforward_rt, mcopy); | |
2203 | m_freem(mcopy); | |
2204 | } | |
2205 | return; | |
2206 | } | |
2207 | } | |
2208 | if (mcopy == NULL) | |
2209 | return; | |
2210 | destifp = NULL; | |
2211 | ||
2212 | switch (error) { | |
2213 | ||
2214 | case 0: /* forwarded, but need redirect */ | |
2215 | /* type, code set above */ | |
2216 | break; | |
2217 | ||
2218 | case ENETUNREACH: /* shouldn't happen, checked above */ | |
2219 | case EHOSTUNREACH: | |
2220 | case ENETDOWN: | |
2221 | case EHOSTDOWN: | |
2222 | default: | |
2223 | type = ICMP_UNREACH; | |
2224 | code = ICMP_UNREACH_HOST; | |
2225 | break; | |
2226 | ||
2227 | case EMSGSIZE: | |
2228 | type = ICMP_UNREACH; | |
2229 | code = ICMP_UNREACH_NEEDFRAG; | |
2230 | #ifndef IPSEC | |
2231 | if (ipforward_rt->ro_rt) | |
2232 | destifp = ipforward_rt->ro_rt->rt_ifp; | |
2233 | #else | |
2234 | /* | |
2235 | * If the packet is routed over IPsec tunnel, tell the | |
2236 | * originator the tunnel MTU. | |
2237 | * tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz | |
2238 | * XXX quickhack!!! | |
2239 | */ | |
2240 | if (ipforward_rt->ro_rt) { | |
2241 | struct secpolicy *sp = NULL; | |
2242 | int ipsecerror; | |
2243 | int ipsechdr; | |
2244 | struct route *ro; | |
2245 | ||
2246 | if (ipsec_bypass) { | |
2247 | destifp = ipforward_rt->ro_rt->rt_ifp; | |
2248 | OSAddAtomic(1, (SInt32*)&ipstat.ips_cantfrag); | |
2249 | break; | |
2250 | } | |
2251 | sp = ipsec4_getpolicybyaddr(mcopy, | |
2252 | IPSEC_DIR_OUTBOUND, | |
2253 | IP_FORWARDING, | |
2254 | &ipsecerror); | |
2255 | ||
2256 | if (sp == NULL) | |
2257 | destifp = ipforward_rt->ro_rt->rt_ifp; | |
2258 | else { | |
2259 | /* count IPsec header size */ | |
2260 | ipsechdr = ipsec_hdrsiz(sp); | |
2261 | ||
2262 | /* | |
2263 | * find the correct route for outer IPv4 | |
2264 | * header, compute tunnel MTU. | |
2265 | * | |
2266 | * XXX BUG ALERT | |
2267 | * The "dummyifp" code relies upon the fact | |
2268 | * that icmp_error() touches only ifp->if_mtu. | |
2269 | */ | |
2270 | /*XXX*/ | |
2271 | destifp = NULL; | |
2272 | ||
2273 | if (sp->req != NULL) { | |
2274 | if (sp->req->saidx.mode == IPSEC_MODE_TUNNEL) { | |
2275 | struct secasindex saidx; | |
2276 | struct ip *ipm; | |
2277 | struct secasvar *sav; | |
2278 | ||
2279 | ipm = mtod(mcopy, struct ip *); | |
2280 | bcopy(&sp->req->saidx, &saidx, sizeof(saidx)); | |
2281 | saidx.mode = sp->req->saidx.mode; | |
2282 | saidx.reqid = sp->req->saidx.reqid; | |
2283 | sin = (struct sockaddr_in *)&saidx.src; | |
2284 | if (sin->sin_len == 0) { | |
2285 | sin->sin_len = sizeof(*sin); | |
2286 | sin->sin_family = AF_INET; | |
2287 | sin->sin_port = IPSEC_PORT_ANY; | |
2288 | bcopy(&ipm->ip_src, &sin->sin_addr, | |
2289 | sizeof(sin->sin_addr)); | |
2290 | } | |
2291 | sin = (struct sockaddr_in *)&saidx.dst; | |
2292 | if (sin->sin_len == 0) { | |
2293 | sin->sin_len = sizeof(*sin); | |
2294 | sin->sin_family = AF_INET; | |
2295 | sin->sin_port = IPSEC_PORT_ANY; | |
2296 | bcopy(&ipm->ip_dst, &sin->sin_addr, | |
2297 | sizeof(sin->sin_addr)); | |
2298 | } | |
2299 | sav = key_allocsa_policy(&saidx); | |
2300 | if (sav != NULL) { | |
2301 | if (sav->sah != NULL) { | |
2302 | ro = &sav->sah->sa_route; | |
2303 | if (ro->ro_rt && ro->ro_rt->rt_ifp) { | |
2304 | dummyifp.if_mtu = | |
2305 | ro->ro_rt->rt_ifp->if_mtu; | |
2306 | dummyifp.if_mtu -= ipsechdr; | |
2307 | destifp = &dummyifp; | |
2308 | } | |
2309 | } | |
2310 | key_freesav(sav, KEY_SADB_UNLOCKED); | |
2311 | } | |
2312 | } | |
2313 | } | |
2314 | key_freesp(sp, KEY_SADB_UNLOCKED); | |
2315 | } | |
2316 | } | |
2317 | #endif /*IPSEC*/ | |
2318 | OSAddAtomic(1, (SInt32*)&ipstat.ips_cantfrag); | |
2319 | break; | |
2320 | ||
2321 | case ENOBUFS: | |
2322 | type = ICMP_SOURCEQUENCH; | |
2323 | code = 0; | |
2324 | break; | |
2325 | ||
2326 | case EACCES: /* ipfw denied packet */ | |
2327 | m_freem(mcopy); | |
2328 | return; | |
2329 | } | |
2330 | icmp_error(mcopy, type, code, dest, destifp); | |
2331 | } | |
2332 | ||
2333 | void | |
2334 | ip_savecontrol( | |
2335 | struct inpcb *inp, | |
2336 | struct mbuf **mp, | |
2337 | struct ip *ip, | |
2338 | struct mbuf *m) | |
2339 | { | |
2340 | if (inp->inp_socket->so_options & SO_TIMESTAMP) { | |
2341 | struct timeval tv; | |
2342 | ||
2343 | microtime(&tv); | |
2344 | *mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv), | |
2345 | SCM_TIMESTAMP, SOL_SOCKET); | |
2346 | if (*mp) | |
2347 | mp = &(*mp)->m_next; | |
2348 | } | |
2349 | if (inp->inp_flags & INP_RECVDSTADDR) { | |
2350 | *mp = sbcreatecontrol((caddr_t) &ip->ip_dst, | |
2351 | sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP); | |
2352 | if (*mp) | |
2353 | mp = &(*mp)->m_next; | |
2354 | } | |
2355 | #ifdef notyet | |
2356 | /* XXX | |
2357 | * Moving these out of udp_input() made them even more broken | |
2358 | * than they already were. | |
2359 | */ | |
2360 | /* options were tossed already */ | |
2361 | if (inp->inp_flags & INP_RECVOPTS) { | |
2362 | *mp = sbcreatecontrol((caddr_t) opts_deleted_above, | |
2363 | sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP); | |
2364 | if (*mp) | |
2365 | mp = &(*mp)->m_next; | |
2366 | } | |
2367 | /* ip_srcroute doesn't do what we want here, need to fix */ | |
2368 | if (inp->inp_flags & INP_RECVRETOPTS) { | |
2369 | *mp = sbcreatecontrol((caddr_t) ip_srcroute(), | |
2370 | sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP); | |
2371 | if (*mp) | |
2372 | mp = &(*mp)->m_next; | |
2373 | } | |
2374 | #endif | |
2375 | if (inp->inp_flags & INP_RECVIF) { | |
2376 | struct ifnet *ifp; | |
2377 | struct sdlbuf { | |
2378 | struct sockaddr_dl sdl; | |
2379 | u_char pad[32]; | |
2380 | } sdlbuf; | |
2381 | struct sockaddr_dl *sdp; | |
2382 | struct sockaddr_dl *sdl2 = &sdlbuf.sdl; | |
2383 | ||
2384 | ifnet_head_lock_shared(); | |
2385 | if (((ifp = m->m_pkthdr.rcvif)) | |
2386 | && ( ifp->if_index && (ifp->if_index <= if_index))) { | |
2387 | struct ifaddr *ifa = ifnet_addrs[ifp->if_index - 1]; | |
2388 | ||
2389 | if (!ifa || !ifa->ifa_addr) | |
2390 | goto makedummy; | |
2391 | ||
2392 | sdp = (struct sockaddr_dl *)ifa->ifa_addr; | |
2393 | /* | |
2394 | * Change our mind and don't try copy. | |
2395 | */ | |
2396 | if ((sdp->sdl_family != AF_LINK) | |
2397 | || (sdp->sdl_len > sizeof(sdlbuf))) { | |
2398 | goto makedummy; | |
2399 | } | |
2400 | bcopy(sdp, sdl2, sdp->sdl_len); | |
2401 | } else { | |
2402 | makedummy: | |
2403 | sdl2->sdl_len | |
2404 | = offsetof(struct sockaddr_dl, sdl_data[0]); | |
2405 | sdl2->sdl_family = AF_LINK; | |
2406 | sdl2->sdl_index = 0; | |
2407 | sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0; | |
2408 | } | |
2409 | ifnet_head_done(); | |
2410 | *mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len, | |
2411 | IP_RECVIF, IPPROTO_IP); | |
2412 | if (*mp) | |
2413 | mp = &(*mp)->m_next; | |
2414 | } | |
2415 | if (inp->inp_flags & INP_RECVTTL) { | |
2416 | *mp = sbcreatecontrol((caddr_t)&ip->ip_ttl, sizeof(ip->ip_ttl), IP_RECVTTL, IPPROTO_IP); | |
2417 | if (*mp) mp = &(*mp)->m_next; | |
2418 | } | |
2419 | } | |
2420 | ||
2421 | int | |
2422 | ip_rsvp_init(struct socket *so) | |
2423 | { | |
2424 | if (so->so_type != SOCK_RAW || | |
2425 | so->so_proto->pr_protocol != IPPROTO_RSVP) | |
2426 | return EOPNOTSUPP; | |
2427 | ||
2428 | if (ip_rsvpd != NULL) | |
2429 | return EADDRINUSE; | |
2430 | ||
2431 | ip_rsvpd = so; | |
2432 | /* | |
2433 | * This may seem silly, but we need to be sure we don't over-increment | |
2434 | * the RSVP counter, in case something slips up. | |
2435 | */ | |
2436 | if (!ip_rsvp_on) { | |
2437 | ip_rsvp_on = 1; | |
2438 | rsvp_on++; | |
2439 | } | |
2440 | ||
2441 | return 0; | |
2442 | } | |
2443 | ||
2444 | int | |
2445 | ip_rsvp_done(void) | |
2446 | { | |
2447 | ip_rsvpd = NULL; | |
2448 | /* | |
2449 | * This may seem silly, but we need to be sure we don't over-decrement | |
2450 | * the RSVP counter, in case something slips up. | |
2451 | */ | |
2452 | if (ip_rsvp_on) { | |
2453 | ip_rsvp_on = 0; | |
2454 | rsvp_on--; | |
2455 | } | |
2456 | return 0; | |
2457 | } |