]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Copyright (c) 2000-2012 Apple Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * This file contains Original Code and/or Modifications of Original Code | |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
14 | * | |
15 | * Please obtain a copy of the License at | |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
25 | * | |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ | |
27 | */ | |
28 | ||
29 | #include <mach_assert.h> | |
30 | ||
31 | #include <vm/pmap.h> | |
32 | #include <vm/vm_map.h> | |
33 | #include <kern/ledger.h> | |
34 | #include <i386/pmap_internal.h> | |
35 | ||
36 | void pmap_remove_range( | |
37 | pmap_t pmap, | |
38 | vm_map_offset_t va, | |
39 | pt_entry_t *spte, | |
40 | pt_entry_t *epte); | |
41 | ||
42 | void pmap_remove_range_options( | |
43 | pmap_t pmap, | |
44 | vm_map_offset_t va, | |
45 | pt_entry_t *spte, | |
46 | pt_entry_t *epte, | |
47 | int options); | |
48 | ||
49 | void pmap_reusable_range( | |
50 | pmap_t pmap, | |
51 | vm_map_offset_t va, | |
52 | pt_entry_t *spte, | |
53 | pt_entry_t *epte, | |
54 | boolean_t reusable); | |
55 | ||
56 | uint32_t pmap_update_clear_pte_count; | |
57 | ||
58 | /* | |
59 | * The Intel platform can nest at the PDE level, so NBPDE (i.e. 2MB) at a time, | |
60 | * on a NBPDE boundary. | |
61 | */ | |
62 | ||
63 | /* These symbols may be referenced directly by VM */ | |
64 | uint64_t pmap_nesting_size_min = NBPDE; | |
65 | uint64_t pmap_nesting_size_max = 0 - (uint64_t)NBPDE; | |
66 | ||
67 | /* | |
68 | * kern_return_t pmap_nest(grand, subord, va_start, size) | |
69 | * | |
70 | * grand = the pmap that we will nest subord into | |
71 | * subord = the pmap that goes into the grand | |
72 | * va_start = start of range in pmap to be inserted | |
73 | * nstart = start of range in pmap nested pmap | |
74 | * size = Size of nest area (up to 16TB) | |
75 | * | |
76 | * Inserts a pmap into another. This is used to implement shared segments. | |
77 | * | |
78 | * Note that we depend upon higher level VM locks to insure that things don't change while | |
79 | * we are doing this. For example, VM should not be doing any pmap enters while it is nesting | |
80 | * or do 2 nests at once. | |
81 | */ | |
82 | ||
83 | /* | |
84 | * This routine can nest subtrees either at the PDPT level (1GiB) or at the | |
85 | * PDE level (2MiB). We currently disallow disparate offsets for the "subord" | |
86 | * container and the "grand" parent. A minor optimization to consider for the | |
87 | * future: make the "subord" truly a container rather than a full-fledged | |
88 | * pagetable hierarchy which can be unnecessarily sparse (DRK). | |
89 | */ | |
90 | ||
91 | kern_return_t pmap_nest(pmap_t grand, pmap_t subord, addr64_t va_start, addr64_t nstart, uint64_t size) { | |
92 | vm_map_offset_t vaddr, nvaddr; | |
93 | pd_entry_t *pde,*npde; | |
94 | unsigned int i; | |
95 | uint64_t num_pde; | |
96 | ||
97 | assert(!is_ept_pmap(grand)); | |
98 | assert(!is_ept_pmap(subord)); | |
99 | ||
100 | if ((size & (pmap_nesting_size_min-1)) || | |
101 | (va_start & (pmap_nesting_size_min-1)) || | |
102 | (nstart & (pmap_nesting_size_min-1)) || | |
103 | ((size >> 28) > 65536)) /* Max size we can nest is 16TB */ | |
104 | return KERN_INVALID_VALUE; | |
105 | ||
106 | if(size == 0) { | |
107 | panic("pmap_nest: size is invalid - %016llX\n", size); | |
108 | } | |
109 | ||
110 | if (va_start != nstart) | |
111 | panic("pmap_nest: va_start(0x%llx) != nstart(0x%llx)\n", va_start, nstart); | |
112 | ||
113 | PMAP_TRACE(PMAP_CODE(PMAP__NEST) | DBG_FUNC_START, | |
114 | (uintptr_t) grand, (uintptr_t) subord, | |
115 | (uintptr_t) (va_start>>32), (uintptr_t) va_start, 0); | |
116 | ||
117 | nvaddr = (vm_map_offset_t)nstart; | |
118 | num_pde = size >> PDESHIFT; | |
119 | ||
120 | PMAP_LOCK(subord); | |
121 | ||
122 | subord->pm_shared = TRUE; | |
123 | ||
124 | for (i = 0; i < num_pde;) { | |
125 | if (((nvaddr & PDPTMASK) == 0) && (num_pde - i) >= NPDEPG && cpu_64bit) { | |
126 | ||
127 | npde = pmap64_pdpt(subord, nvaddr); | |
128 | ||
129 | while (0 == npde || ((*npde & INTEL_PTE_VALID) == 0)) { | |
130 | PMAP_UNLOCK(subord); | |
131 | pmap_expand_pdpt(subord, nvaddr, PMAP_EXPAND_OPTIONS_NONE); | |
132 | PMAP_LOCK(subord); | |
133 | npde = pmap64_pdpt(subord, nvaddr); | |
134 | } | |
135 | *npde |= INTEL_PDPTE_NESTED; | |
136 | nvaddr += NBPDPT; | |
137 | i += (uint32_t)NPDEPG; | |
138 | } | |
139 | else { | |
140 | npde = pmap_pde(subord, nvaddr); | |
141 | ||
142 | while (0 == npde || ((*npde & INTEL_PTE_VALID) == 0)) { | |
143 | PMAP_UNLOCK(subord); | |
144 | pmap_expand(subord, nvaddr, PMAP_EXPAND_OPTIONS_NONE); | |
145 | PMAP_LOCK(subord); | |
146 | npde = pmap_pde(subord, nvaddr); | |
147 | } | |
148 | nvaddr += NBPDE; | |
149 | i++; | |
150 | } | |
151 | } | |
152 | ||
153 | PMAP_UNLOCK(subord); | |
154 | ||
155 | vaddr = (vm_map_offset_t)va_start; | |
156 | ||
157 | PMAP_LOCK(grand); | |
158 | ||
159 | for (i = 0;i < num_pde;) { | |
160 | pd_entry_t tpde; | |
161 | ||
162 | if (((vaddr & PDPTMASK) == 0) && ((num_pde - i) >= NPDEPG) && cpu_64bit) { | |
163 | npde = pmap64_pdpt(subord, vaddr); | |
164 | if (npde == 0) | |
165 | panic("pmap_nest: no PDPT, subord %p nstart 0x%llx", subord, vaddr); | |
166 | tpde = *npde; | |
167 | pde = pmap64_pdpt(grand, vaddr); | |
168 | if (0 == pde) { | |
169 | PMAP_UNLOCK(grand); | |
170 | pmap_expand_pml4(grand, vaddr, PMAP_EXPAND_OPTIONS_NONE); | |
171 | PMAP_LOCK(grand); | |
172 | pde = pmap64_pdpt(grand, vaddr); | |
173 | } | |
174 | if (pde == 0) | |
175 | panic("pmap_nest: no PDPT, grand %p vaddr 0x%llx", grand, vaddr); | |
176 | pmap_store_pte(pde, tpde); | |
177 | vaddr += NBPDPT; | |
178 | i += (uint32_t) NPDEPG; | |
179 | } | |
180 | else { | |
181 | npde = pmap_pde(subord, nstart); | |
182 | if (npde == 0) | |
183 | panic("pmap_nest: no npde, subord %p nstart 0x%llx", subord, nstart); | |
184 | tpde = *npde; | |
185 | nstart += NBPDE; | |
186 | pde = pmap_pde(grand, vaddr); | |
187 | if ((0 == pde) && cpu_64bit) { | |
188 | PMAP_UNLOCK(grand); | |
189 | pmap_expand_pdpt(grand, vaddr, PMAP_EXPAND_OPTIONS_NONE); | |
190 | PMAP_LOCK(grand); | |
191 | pde = pmap_pde(grand, vaddr); | |
192 | } | |
193 | ||
194 | if (pde == 0) | |
195 | panic("pmap_nest: no pde, grand %p vaddr 0x%llx", grand, vaddr); | |
196 | vaddr += NBPDE; | |
197 | pmap_store_pte(pde, tpde); | |
198 | i++; | |
199 | } | |
200 | } | |
201 | ||
202 | PMAP_UNLOCK(grand); | |
203 | ||
204 | PMAP_TRACE(PMAP_CODE(PMAP__NEST) | DBG_FUNC_END, 0, 0, 0, 0, 0); | |
205 | ||
206 | return KERN_SUCCESS; | |
207 | } | |
208 | ||
209 | /* | |
210 | * kern_return_t pmap_unnest(grand, vaddr) | |
211 | * | |
212 | * grand = the pmap that we will un-nest subord from | |
213 | * vaddr = start of range in pmap to be unnested | |
214 | * | |
215 | * Removes a pmap from another. This is used to implement shared segments. | |
216 | */ | |
217 | ||
218 | kern_return_t pmap_unnest(pmap_t grand, addr64_t vaddr, uint64_t size) { | |
219 | ||
220 | pd_entry_t *pde; | |
221 | unsigned int i; | |
222 | uint64_t num_pde; | |
223 | addr64_t va_start, va_end; | |
224 | uint64_t npdpt = PMAP_INVALID_PDPTNUM; | |
225 | ||
226 | PMAP_TRACE(PMAP_CODE(PMAP__UNNEST) | DBG_FUNC_START, | |
227 | (uintptr_t) grand, | |
228 | (uintptr_t) (vaddr>>32), (uintptr_t) vaddr, 0, 0); | |
229 | ||
230 | if ((size & (pmap_nesting_size_min-1)) || | |
231 | (vaddr & (pmap_nesting_size_min-1))) { | |
232 | panic("pmap_unnest(%p,0x%llx,0x%llx): unaligned...\n", | |
233 | grand, vaddr, size); | |
234 | } | |
235 | ||
236 | assert(!is_ept_pmap(grand)); | |
237 | ||
238 | /* align everything to PDE boundaries */ | |
239 | va_start = vaddr & ~(NBPDE-1); | |
240 | va_end = (vaddr + size + NBPDE - 1) & ~(NBPDE-1); | |
241 | size = va_end - va_start; | |
242 | ||
243 | PMAP_LOCK(grand); | |
244 | ||
245 | num_pde = size >> PDESHIFT; | |
246 | vaddr = va_start; | |
247 | ||
248 | for (i = 0; i < num_pde; ) { | |
249 | if ((pdptnum(grand, vaddr) != npdpt) && cpu_64bit) { | |
250 | npdpt = pdptnum(grand, vaddr); | |
251 | pde = pmap64_pdpt(grand, vaddr); | |
252 | if (pde && (*pde & INTEL_PDPTE_NESTED)) { | |
253 | pmap_store_pte(pde, (pd_entry_t)0); | |
254 | i += (uint32_t) NPDEPG; | |
255 | vaddr += NBPDPT; | |
256 | continue; | |
257 | } | |
258 | } | |
259 | pde = pmap_pde(grand, (vm_map_offset_t)vaddr); | |
260 | if (pde == 0) | |
261 | panic("pmap_unnest: no pde, grand %p vaddr 0x%llx\n", grand, vaddr); | |
262 | pmap_store_pte(pde, (pd_entry_t)0); | |
263 | i++; | |
264 | vaddr += NBPDE; | |
265 | } | |
266 | ||
267 | PMAP_UPDATE_TLBS(grand, va_start, va_end); | |
268 | ||
269 | PMAP_UNLOCK(grand); | |
270 | ||
271 | PMAP_TRACE(PMAP_CODE(PMAP__UNNEST) | DBG_FUNC_END, 0, 0, 0, 0, 0); | |
272 | ||
273 | return KERN_SUCCESS; | |
274 | } | |
275 | ||
276 | kern_return_t | |
277 | pmap_unnest_options( | |
278 | pmap_t grand, | |
279 | addr64_t vaddr, | |
280 | __unused uint64_t size, | |
281 | __unused unsigned int options) { | |
282 | return pmap_unnest(grand, vaddr, size); | |
283 | } | |
284 | ||
285 | /* Invoked by the Mach VM to determine the platform specific unnest region */ | |
286 | ||
287 | boolean_t pmap_adjust_unnest_parameters(pmap_t p, vm_map_offset_t *s, vm_map_offset_t *e) { | |
288 | pd_entry_t *pdpte; | |
289 | boolean_t rval = FALSE; | |
290 | ||
291 | if (!cpu_64bit) | |
292 | return rval; | |
293 | ||
294 | PMAP_LOCK(p); | |
295 | ||
296 | pdpte = pmap64_pdpt(p, *s); | |
297 | if (pdpte && (*pdpte & INTEL_PDPTE_NESTED)) { | |
298 | *s &= ~(NBPDPT -1); | |
299 | rval = TRUE; | |
300 | } | |
301 | ||
302 | pdpte = pmap64_pdpt(p, *e); | |
303 | if (pdpte && (*pdpte & INTEL_PDPTE_NESTED)) { | |
304 | *e = ((*e + NBPDPT) & ~(NBPDPT -1)); | |
305 | rval = TRUE; | |
306 | } | |
307 | ||
308 | PMAP_UNLOCK(p); | |
309 | ||
310 | return rval; | |
311 | } | |
312 | ||
313 | /* | |
314 | * pmap_find_phys returns the (4K) physical page number containing a | |
315 | * given virtual address in a given pmap. | |
316 | * Note that pmap_pte may return a pde if this virtual address is | |
317 | * mapped by a large page and this is taken into account in order | |
318 | * to return the correct page number in this case. | |
319 | */ | |
320 | ppnum_t | |
321 | pmap_find_phys(pmap_t pmap, addr64_t va) | |
322 | { | |
323 | pt_entry_t *ptp; | |
324 | pd_entry_t *pdep; | |
325 | ppnum_t ppn = 0; | |
326 | pd_entry_t pde; | |
327 | pt_entry_t pte; | |
328 | boolean_t is_ept; | |
329 | ||
330 | is_ept = is_ept_pmap(pmap); | |
331 | ||
332 | mp_disable_preemption(); | |
333 | ||
334 | /* This refcount test is a band-aid--several infrastructural changes | |
335 | * are necessary to eliminate invocation of this routine from arbitrary | |
336 | * contexts. | |
337 | */ | |
338 | ||
339 | if (!pmap->ref_count) | |
340 | goto pfp_exit; | |
341 | ||
342 | pdep = pmap_pde(pmap, va); | |
343 | ||
344 | if ((pdep != PD_ENTRY_NULL) && ((pde = *pdep) & PTE_VALID_MASK(is_ept))) { | |
345 | if (pde & PTE_PS) { | |
346 | ppn = (ppnum_t) i386_btop(pte_to_pa(pde)); | |
347 | ppn += (ppnum_t) ptenum(va); | |
348 | } | |
349 | else { | |
350 | ptp = pmap_pte(pmap, va); | |
351 | if ((PT_ENTRY_NULL != ptp) && (((pte = *ptp) & PTE_VALID_MASK(is_ept)) != 0)) { | |
352 | ppn = (ppnum_t) i386_btop(pte_to_pa(pte)); | |
353 | } | |
354 | } | |
355 | } | |
356 | pfp_exit: | |
357 | mp_enable_preemption(); | |
358 | ||
359 | return ppn; | |
360 | } | |
361 | ||
362 | /* | |
363 | * Update cache attributes for all extant managed mappings. | |
364 | * Assumes PV for this page is locked, and that the page | |
365 | * is managed. We assume that this physical page may be mapped in | |
366 | * both EPT and normal Intel PTEs, so we convert the attributes | |
367 | * to the corresponding format for each pmap. | |
368 | * | |
369 | * We assert that the passed set of attributes is a subset of the | |
370 | * PHYS_CACHEABILITY_MASK. | |
371 | */ | |
372 | void | |
373 | pmap_update_cache_attributes_locked(ppnum_t pn, unsigned attributes) { | |
374 | pv_rooted_entry_t pv_h, pv_e; | |
375 | pv_hashed_entry_t pvh_e, nexth; | |
376 | vm_map_offset_t vaddr; | |
377 | pmap_t pmap; | |
378 | pt_entry_t *ptep; | |
379 | boolean_t is_ept; | |
380 | unsigned ept_attributes; | |
381 | ||
382 | assert(IS_MANAGED_PAGE(pn)); | |
383 | assert(((~PHYS_CACHEABILITY_MASK) & attributes) == 0); | |
384 | ||
385 | /* We don't support the PTA bit for EPT PTEs */ | |
386 | if (attributes & INTEL_PTE_NCACHE) | |
387 | ept_attributes = INTEL_EPT_NCACHE; | |
388 | else | |
389 | ept_attributes = INTEL_EPT_WB; | |
390 | ||
391 | pv_h = pai_to_pvh(pn); | |
392 | /* TODO: translate the PHYS_* bits to PTE bits, while they're | |
393 | * currently identical, they may not remain so | |
394 | * Potential optimization (here and in page_protect), | |
395 | * parallel shootdowns, check for redundant | |
396 | * attribute modifications. | |
397 | */ | |
398 | ||
399 | /* | |
400 | * Alter attributes on all mappings | |
401 | */ | |
402 | if (pv_h->pmap != PMAP_NULL) { | |
403 | pv_e = pv_h; | |
404 | pvh_e = (pv_hashed_entry_t)pv_e; | |
405 | ||
406 | do { | |
407 | pmap = pv_e->pmap; | |
408 | vaddr = pv_e->va; | |
409 | ptep = pmap_pte(pmap, vaddr); | |
410 | ||
411 | if (0 == ptep) | |
412 | panic("pmap_update_cache_attributes_locked: Missing PTE, pmap: %p, pn: 0x%x vaddr: 0x%llx kernel_pmap: %p", pmap, pn, vaddr, kernel_pmap); | |
413 | ||
414 | is_ept = is_ept_pmap(pmap); | |
415 | ||
416 | nexth = (pv_hashed_entry_t)queue_next(&pvh_e->qlink); | |
417 | if (!is_ept) { | |
418 | pmap_update_pte(ptep, PHYS_CACHEABILITY_MASK, attributes); | |
419 | } else { | |
420 | pmap_update_pte(ptep, INTEL_EPT_CACHE_MASK, ept_attributes); | |
421 | } | |
422 | PMAP_UPDATE_TLBS(pmap, vaddr, vaddr + PAGE_SIZE); | |
423 | pvh_e = nexth; | |
424 | } while ((pv_e = (pv_rooted_entry_t)nexth) != pv_h); | |
425 | } | |
426 | } | |
427 | ||
428 | void x86_filter_TLB_coherency_interrupts(boolean_t dofilter) { | |
429 | assert(ml_get_interrupts_enabled() == 0 || get_preemption_level() != 0); | |
430 | ||
431 | if (dofilter) { | |
432 | CPU_CR3_MARK_INACTIVE(); | |
433 | } else { | |
434 | CPU_CR3_MARK_ACTIVE(); | |
435 | mfence(); | |
436 | if (current_cpu_datap()->cpu_tlb_invalid) | |
437 | process_pmap_updates(); | |
438 | } | |
439 | } | |
440 | ||
441 | ||
442 | /* | |
443 | * Insert the given physical page (p) at | |
444 | * the specified virtual address (v) in the | |
445 | * target physical map with the protection requested. | |
446 | * | |
447 | * If specified, the page will be wired down, meaning | |
448 | * that the related pte cannot be reclaimed. | |
449 | * | |
450 | * NB: This is the only routine which MAY NOT lazy-evaluate | |
451 | * or lose information. That is, this routine must actually | |
452 | * insert this page into the given map NOW. | |
453 | */ | |
454 | ||
455 | void | |
456 | pmap_enter( | |
457 | register pmap_t pmap, | |
458 | vm_map_offset_t vaddr, | |
459 | ppnum_t pn, | |
460 | vm_prot_t prot, | |
461 | vm_prot_t fault_type, | |
462 | unsigned int flags, | |
463 | boolean_t wired) | |
464 | { | |
465 | (void) pmap_enter_options(pmap, vaddr, pn, prot, fault_type, flags, wired, PMAP_EXPAND_OPTIONS_NONE, NULL); | |
466 | } | |
467 | ||
468 | ||
469 | kern_return_t | |
470 | pmap_enter_options( | |
471 | register pmap_t pmap, | |
472 | vm_map_offset_t vaddr, | |
473 | ppnum_t pn, | |
474 | vm_prot_t prot, | |
475 | __unused vm_prot_t fault_type, | |
476 | unsigned int flags, | |
477 | boolean_t wired, | |
478 | unsigned int options, | |
479 | void *arg) | |
480 | { | |
481 | pt_entry_t *pte; | |
482 | pv_rooted_entry_t pv_h; | |
483 | ppnum_t pai; | |
484 | pv_hashed_entry_t pvh_e; | |
485 | pv_hashed_entry_t pvh_new; | |
486 | pt_entry_t template; | |
487 | pmap_paddr_t old_pa; | |
488 | pmap_paddr_t pa = (pmap_paddr_t) i386_ptob(pn); | |
489 | boolean_t need_tlbflush = FALSE; | |
490 | boolean_t set_NX; | |
491 | char oattr; | |
492 | boolean_t old_pa_locked; | |
493 | /* 2MiB mappings are confined to x86_64 by VM */ | |
494 | boolean_t superpage = flags & VM_MEM_SUPERPAGE; | |
495 | vm_object_t delpage_pm_obj = NULL; | |
496 | uint64_t delpage_pde_index = 0; | |
497 | pt_entry_t old_pte; | |
498 | kern_return_t kr_expand; | |
499 | boolean_t is_ept; | |
500 | ||
501 | pmap_intr_assert(); | |
502 | ||
503 | if (pmap == PMAP_NULL) | |
504 | return KERN_INVALID_ARGUMENT; | |
505 | ||
506 | is_ept = is_ept_pmap(pmap); | |
507 | ||
508 | /* N.B. We can be supplied a zero page frame in the NOENTER case, it's an | |
509 | * unused value for that scenario. | |
510 | */ | |
511 | assert(pn != vm_page_fictitious_addr); | |
512 | ||
513 | if (pn == vm_page_guard_addr) | |
514 | return KERN_INVALID_ARGUMENT; | |
515 | ||
516 | PMAP_TRACE(PMAP_CODE(PMAP__ENTER) | DBG_FUNC_START, | |
517 | pmap, | |
518 | (uint32_t) (vaddr >> 32), (uint32_t) vaddr, | |
519 | pn, prot); | |
520 | ||
521 | if ((prot & VM_PROT_EXECUTE) || !nx_enabled || !pmap->nx_enabled) | |
522 | set_NX = FALSE; | |
523 | else | |
524 | set_NX = TRUE; | |
525 | ||
526 | if (__improbable(set_NX && (pmap == kernel_pmap) && ((pmap_disable_kstack_nx && (flags & VM_MEM_STACK)) || (pmap_disable_kheap_nx && !(flags & VM_MEM_STACK))))) { | |
527 | set_NX = FALSE; | |
528 | } | |
529 | ||
530 | /* | |
531 | * Must allocate a new pvlist entry while we're unlocked; | |
532 | * zalloc may cause pageout (which will lock the pmap system). | |
533 | * If we determine we need a pvlist entry, we will unlock | |
534 | * and allocate one. Then we will retry, throughing away | |
535 | * the allocated entry later (if we no longer need it). | |
536 | */ | |
537 | ||
538 | pvh_new = PV_HASHED_ENTRY_NULL; | |
539 | Retry: | |
540 | pvh_e = PV_HASHED_ENTRY_NULL; | |
541 | ||
542 | PMAP_LOCK(pmap); | |
543 | ||
544 | /* | |
545 | * Expand pmap to include this pte. Assume that | |
546 | * pmap is always expanded to include enough hardware | |
547 | * pages to map one VM page. | |
548 | */ | |
549 | if(superpage) { | |
550 | while ((pte = pmap64_pde(pmap, vaddr)) == PD_ENTRY_NULL) { | |
551 | /* need room for another pde entry */ | |
552 | PMAP_UNLOCK(pmap); | |
553 | kr_expand = pmap_expand_pdpt(pmap, vaddr, options); | |
554 | if (kr_expand != KERN_SUCCESS) | |
555 | return kr_expand; | |
556 | PMAP_LOCK(pmap); | |
557 | } | |
558 | } else { | |
559 | while ((pte = pmap_pte(pmap, vaddr)) == PT_ENTRY_NULL) { | |
560 | /* | |
561 | * Must unlock to expand the pmap | |
562 | * going to grow pde level page(s) | |
563 | */ | |
564 | PMAP_UNLOCK(pmap); | |
565 | kr_expand = pmap_expand(pmap, vaddr, options); | |
566 | if (kr_expand != KERN_SUCCESS) | |
567 | return kr_expand; | |
568 | PMAP_LOCK(pmap); | |
569 | } | |
570 | } | |
571 | if (options & PMAP_EXPAND_OPTIONS_NOENTER) { | |
572 | PMAP_UNLOCK(pmap); | |
573 | return KERN_SUCCESS; | |
574 | } | |
575 | ||
576 | if (superpage && *pte && !(*pte & PTE_PS)) { | |
577 | /* | |
578 | * There is still an empty page table mapped that | |
579 | * was used for a previous base page mapping. | |
580 | * Remember the PDE and the PDE index, so that we | |
581 | * can free the page at the end of this function. | |
582 | */ | |
583 | delpage_pde_index = pdeidx(pmap, vaddr); | |
584 | delpage_pm_obj = pmap->pm_obj; | |
585 | *pte = 0; | |
586 | } | |
587 | ||
588 | old_pa = pte_to_pa(*pte); | |
589 | pai = pa_index(old_pa); | |
590 | old_pa_locked = FALSE; | |
591 | ||
592 | if (old_pa == 0 && | |
593 | (*pte & PTE_COMPRESSED)) { | |
594 | /* one less "compressed" */ | |
595 | OSAddAtomic64(-1, &pmap->stats.compressed); | |
596 | /* marker will be cleared below */ | |
597 | } | |
598 | ||
599 | /* | |
600 | * if we have a previous managed page, lock the pv entry now. after | |
601 | * we lock it, check to see if someone beat us to the lock and if so | |
602 | * drop the lock | |
603 | */ | |
604 | if ((0 != old_pa) && IS_MANAGED_PAGE(pai)) { | |
605 | LOCK_PVH(pai); | |
606 | old_pa_locked = TRUE; | |
607 | old_pa = pte_to_pa(*pte); | |
608 | if (0 == old_pa) { | |
609 | UNLOCK_PVH(pai); /* another path beat us to it */ | |
610 | old_pa_locked = FALSE; | |
611 | } | |
612 | } | |
613 | ||
614 | /* | |
615 | * Special case if the incoming physical page is already mapped | |
616 | * at this address. | |
617 | */ | |
618 | if (old_pa == pa) { | |
619 | pt_entry_t old_attributes = | |
620 | *pte & ~(PTE_REF(is_ept) | PTE_MOD(is_ept)); | |
621 | ||
622 | /* | |
623 | * May be changing its wired attribute or protection | |
624 | */ | |
625 | ||
626 | template = pa_to_pte(pa); | |
627 | ||
628 | /* ?: WORTH ASSERTING THAT AT LEAST ONE RWX (implicit valid) PASSED FOR EPT? */ | |
629 | if (!is_ept) { | |
630 | template |= INTEL_PTE_VALID; | |
631 | } else { | |
632 | template |= INTEL_EPT_IPTA; | |
633 | } | |
634 | ||
635 | template |= pmap_get_cache_attributes(pa_index(pa), is_ept); | |
636 | ||
637 | /* | |
638 | * We don't support passing VM_MEM_NOT_CACHEABLE flags for EPT PTEs | |
639 | */ | |
640 | if (!is_ept && (VM_MEM_NOT_CACHEABLE == | |
641 | (flags & (VM_MEM_NOT_CACHEABLE | VM_WIMG_USE_DEFAULT)))) { | |
642 | if (!(flags & VM_MEM_GUARDED)) | |
643 | template |= INTEL_PTE_PTA; | |
644 | template |= INTEL_PTE_NCACHE; | |
645 | } | |
646 | if (pmap != kernel_pmap && !is_ept) | |
647 | template |= INTEL_PTE_USER; | |
648 | ||
649 | if (prot & VM_PROT_READ) | |
650 | template |= PTE_READ(is_ept); | |
651 | ||
652 | if (prot & VM_PROT_WRITE) { | |
653 | template |= PTE_WRITE(is_ept); | |
654 | if (is_ept && !pmap_ept_support_ad) { | |
655 | template |= PTE_MOD(is_ept); | |
656 | if (old_pa_locked) { | |
657 | assert(IS_MANAGED_PAGE(pai)); | |
658 | pmap_phys_attributes[pai] |= PHYS_MODIFIED; | |
659 | } | |
660 | } | |
661 | } | |
662 | if (prot & VM_PROT_EXECUTE) { | |
663 | assert(set_NX == 0); | |
664 | template = pte_set_ex(template, is_ept); | |
665 | } | |
666 | ||
667 | if (set_NX) | |
668 | template = pte_remove_ex(template, is_ept); | |
669 | ||
670 | if (wired) { | |
671 | template |= PTE_WIRED; | |
672 | if (!iswired(old_attributes)) { | |
673 | OSAddAtomic(+1, &pmap->stats.wired_count); | |
674 | pmap_ledger_credit(pmap, task_ledgers.wired_mem, PAGE_SIZE); | |
675 | } | |
676 | } else { | |
677 | if (iswired(old_attributes)) { | |
678 | assert(pmap->stats.wired_count >= 1); | |
679 | OSAddAtomic(-1, &pmap->stats.wired_count); | |
680 | pmap_ledger_debit(pmap, task_ledgers.wired_mem, PAGE_SIZE); | |
681 | } | |
682 | } | |
683 | ||
684 | if (superpage) /* this path can not be used */ | |
685 | template |= PTE_PS; /* to change the page size! */ | |
686 | ||
687 | if (old_attributes == template) | |
688 | goto dont_update_pte; | |
689 | ||
690 | /* Determine delta, PV locked */ | |
691 | need_tlbflush = | |
692 | ((old_attributes ^ template) != PTE_WIRED); | |
693 | ||
694 | if (need_tlbflush == TRUE && !(old_attributes & PTE_WRITE(is_ept))) { | |
695 | if ((old_attributes ^ template) == PTE_WRITE(is_ept)) | |
696 | need_tlbflush = FALSE; | |
697 | } | |
698 | ||
699 | /* For hardware that doesn't have EPT AD support, we always set REFMOD for EPT PTEs */ | |
700 | if (is_ept && !pmap_ept_support_ad) { | |
701 | template |= PTE_REF(is_ept); | |
702 | if (old_pa_locked) { | |
703 | assert(IS_MANAGED_PAGE(pai)); | |
704 | pmap_phys_attributes[pai] |= PHYS_REFERENCED; | |
705 | } | |
706 | } | |
707 | ||
708 | /* store modified PTE and preserve RC bits */ | |
709 | pt_entry_t npte, opte;; | |
710 | do { | |
711 | opte = *pte; | |
712 | npte = template | (opte & (PTE_REF(is_ept) | PTE_MOD(is_ept))); | |
713 | } while (!pmap_cmpx_pte(pte, opte, npte)); | |
714 | dont_update_pte: | |
715 | if (old_pa_locked) { | |
716 | UNLOCK_PVH(pai); | |
717 | old_pa_locked = FALSE; | |
718 | } | |
719 | goto Done; | |
720 | } | |
721 | ||
722 | /* | |
723 | * Outline of code from here: | |
724 | * 1) If va was mapped, update TLBs, remove the mapping | |
725 | * and remove old pvlist entry. | |
726 | * 2) Add pvlist entry for new mapping | |
727 | * 3) Enter new mapping. | |
728 | * | |
729 | * If the old physical page is not managed step 1) is skipped | |
730 | * (except for updating the TLBs), and the mapping is | |
731 | * overwritten at step 3). If the new physical page is not | |
732 | * managed, step 2) is skipped. | |
733 | */ | |
734 | ||
735 | if (old_pa != (pmap_paddr_t) 0) { | |
736 | ||
737 | /* | |
738 | * Don't do anything to pages outside valid memory here. | |
739 | * Instead convince the code that enters a new mapping | |
740 | * to overwrite the old one. | |
741 | */ | |
742 | ||
743 | /* invalidate the PTE */ | |
744 | pmap_update_pte(pte, PTE_VALID_MASK(is_ept), 0); | |
745 | /* propagate invalidate everywhere */ | |
746 | PMAP_UPDATE_TLBS(pmap, vaddr, vaddr + PAGE_SIZE); | |
747 | /* remember reference and change */ | |
748 | old_pte = *pte; | |
749 | oattr = (char) (old_pte & (PTE_MOD(is_ept) | PTE_REF(is_ept))); | |
750 | /* completely invalidate the PTE */ | |
751 | pmap_store_pte(pte, 0); | |
752 | ||
753 | if (IS_MANAGED_PAGE(pai)) { | |
754 | pmap_assert(old_pa_locked == TRUE); | |
755 | pmap_ledger_debit(pmap, task_ledgers.phys_mem, PAGE_SIZE); | |
756 | pmap_ledger_debit(pmap, task_ledgers.phys_footprint, PAGE_SIZE); | |
757 | assert(pmap->stats.resident_count >= 1); | |
758 | OSAddAtomic(-1, &pmap->stats.resident_count); | |
759 | if (pmap != kernel_pmap) { | |
760 | if (IS_REUSABLE_PAGE(pai)) { | |
761 | assert(pmap->stats.reusable > 0); | |
762 | OSAddAtomic(-1, &pmap->stats.reusable); | |
763 | } else if (IS_INTERNAL_PAGE(pai)) { | |
764 | assert(pmap->stats.internal > 0); | |
765 | OSAddAtomic(-1, &pmap->stats.internal); | |
766 | } else { | |
767 | assert(pmap->stats.external > 0); | |
768 | OSAddAtomic(-1, &pmap->stats.external); | |
769 | } | |
770 | } | |
771 | if (iswired(*pte)) { | |
772 | assert(pmap->stats.wired_count >= 1); | |
773 | OSAddAtomic(-1, &pmap->stats.wired_count); | |
774 | pmap_ledger_debit(pmap, task_ledgers.wired_mem, | |
775 | PAGE_SIZE); | |
776 | } | |
777 | ||
778 | if (!is_ept) { | |
779 | pmap_phys_attributes[pai] |= oattr; | |
780 | } else { | |
781 | pmap_phys_attributes[pai] |= ept_refmod_to_physmap(oattr); | |
782 | } | |
783 | ||
784 | /* | |
785 | * Remove the mapping from the pvlist for | |
786 | * this physical page. | |
787 | * We'll end up with either a rooted pv or a | |
788 | * hashed pv | |
789 | */ | |
790 | pvh_e = pmap_pv_remove(pmap, vaddr, (ppnum_t *) &pai, &old_pte); | |
791 | ||
792 | } else { | |
793 | ||
794 | /* | |
795 | * old_pa is not managed. | |
796 | * Do removal part of accounting. | |
797 | */ | |
798 | ||
799 | if (pmap != kernel_pmap) { | |
800 | #if 00 | |
801 | assert(pmap->stats.device > 0); | |
802 | OSAddAtomic(-1, &pmap->stats.device); | |
803 | #endif | |
804 | } | |
805 | if (iswired(*pte)) { | |
806 | assert(pmap->stats.wired_count >= 1); | |
807 | OSAddAtomic(-1, &pmap->stats.wired_count); | |
808 | pmap_ledger_debit(pmap, task_ledgers.wired_mem, PAGE_SIZE); | |
809 | } | |
810 | } | |
811 | } | |
812 | ||
813 | /* | |
814 | * if we had a previously managed paged locked, unlock it now | |
815 | */ | |
816 | if (old_pa_locked) { | |
817 | UNLOCK_PVH(pai); | |
818 | old_pa_locked = FALSE; | |
819 | } | |
820 | ||
821 | pai = pa_index(pa); /* now working with new incoming phys page */ | |
822 | if (IS_MANAGED_PAGE(pai)) { | |
823 | ||
824 | /* | |
825 | * Step 2) Enter the mapping in the PV list for this | |
826 | * physical page. | |
827 | */ | |
828 | pv_h = pai_to_pvh(pai); | |
829 | ||
830 | LOCK_PVH(pai); | |
831 | ||
832 | if (pv_h->pmap == PMAP_NULL) { | |
833 | /* | |
834 | * No mappings yet, use rooted pv | |
835 | */ | |
836 | pv_h->va = vaddr; | |
837 | pv_h->pmap = pmap; | |
838 | queue_init(&pv_h->qlink); | |
839 | ||
840 | if (options & PMAP_OPTIONS_INTERNAL) { | |
841 | pmap_phys_attributes[pai] |= PHYS_INTERNAL; | |
842 | } else { | |
843 | pmap_phys_attributes[pai] &= ~PHYS_INTERNAL; | |
844 | } | |
845 | if (options & PMAP_OPTIONS_REUSABLE) { | |
846 | pmap_phys_attributes[pai] |= PHYS_REUSABLE; | |
847 | } else { | |
848 | pmap_phys_attributes[pai] &= ~PHYS_REUSABLE; | |
849 | } | |
850 | } else { | |
851 | /* | |
852 | * Add new pv_hashed_entry after header. | |
853 | */ | |
854 | if ((PV_HASHED_ENTRY_NULL == pvh_e) && pvh_new) { | |
855 | pvh_e = pvh_new; | |
856 | pvh_new = PV_HASHED_ENTRY_NULL; | |
857 | } else if (PV_HASHED_ENTRY_NULL == pvh_e) { | |
858 | PV_HASHED_ALLOC(&pvh_e); | |
859 | if (PV_HASHED_ENTRY_NULL == pvh_e) { | |
860 | /* | |
861 | * the pv list is empty. if we are on | |
862 | * the kernel pmap we'll use one of | |
863 | * the special private kernel pv_e's, | |
864 | * else, we need to unlock | |
865 | * everything, zalloc a pv_e, and | |
866 | * restart bringing in the pv_e with | |
867 | * us. | |
868 | */ | |
869 | if (kernel_pmap == pmap) { | |
870 | PV_HASHED_KERN_ALLOC(&pvh_e); | |
871 | } else { | |
872 | UNLOCK_PVH(pai); | |
873 | PMAP_UNLOCK(pmap); | |
874 | pmap_pv_throttle(pmap); | |
875 | pvh_new = (pv_hashed_entry_t) zalloc(pv_hashed_list_zone); | |
876 | goto Retry; | |
877 | } | |
878 | } | |
879 | } | |
880 | ||
881 | if (PV_HASHED_ENTRY_NULL == pvh_e) | |
882 | panic("Mapping alias chain exhaustion, possibly induced by numerous kernel virtual double mappings"); | |
883 | ||
884 | pvh_e->va = vaddr; | |
885 | pvh_e->pmap = pmap; | |
886 | pvh_e->ppn = pn; | |
887 | pv_hash_add(pvh_e, pv_h); | |
888 | ||
889 | /* | |
890 | * Remember that we used the pvlist entry. | |
891 | */ | |
892 | pvh_e = PV_HASHED_ENTRY_NULL; | |
893 | } | |
894 | ||
895 | /* | |
896 | * only count the mapping | |
897 | * for 'managed memory' | |
898 | */ | |
899 | pmap_ledger_credit(pmap, task_ledgers.phys_mem, PAGE_SIZE); | |
900 | pmap_ledger_credit(pmap, task_ledgers.phys_footprint, PAGE_SIZE); | |
901 | OSAddAtomic(+1, &pmap->stats.resident_count); | |
902 | if (pmap->stats.resident_count > pmap->stats.resident_max) { | |
903 | pmap->stats.resident_max = pmap->stats.resident_count; | |
904 | } | |
905 | if (pmap != kernel_pmap) { | |
906 | if (IS_REUSABLE_PAGE(pai)) { | |
907 | OSAddAtomic(+1, &pmap->stats.reusable); | |
908 | PMAP_STATS_PEAK(pmap->stats.reusable); | |
909 | } else if (IS_INTERNAL_PAGE(pai)) { | |
910 | OSAddAtomic(+1, &pmap->stats.internal); | |
911 | PMAP_STATS_PEAK(pmap->stats.internal); | |
912 | } else { | |
913 | OSAddAtomic(+1, &pmap->stats.external); | |
914 | PMAP_STATS_PEAK(pmap->stats.external); | |
915 | } | |
916 | } | |
917 | } else if (last_managed_page == 0) { | |
918 | /* Account for early mappings created before "managed pages" | |
919 | * are determined. Consider consulting the available DRAM map. | |
920 | */ | |
921 | pmap_ledger_credit(pmap, task_ledgers.phys_mem, PAGE_SIZE); | |
922 | pmap_ledger_credit(pmap, task_ledgers.phys_footprint, PAGE_SIZE); | |
923 | OSAddAtomic(+1, &pmap->stats.resident_count); | |
924 | if (pmap != kernel_pmap) { | |
925 | #if 00 | |
926 | OSAddAtomic(+1, &pmap->stats.device); | |
927 | PMAP_STATS_PEAK(pmap->stats.device); | |
928 | #endif | |
929 | } | |
930 | } | |
931 | /* | |
932 | * Step 3) Enter the mapping. | |
933 | * | |
934 | * Build a template to speed up entering - | |
935 | * only the pfn changes. | |
936 | */ | |
937 | template = pa_to_pte(pa); | |
938 | ||
939 | if (!is_ept) { | |
940 | template |= INTEL_PTE_VALID; | |
941 | } else { | |
942 | template |= INTEL_EPT_IPTA; | |
943 | } | |
944 | ||
945 | ||
946 | /* | |
947 | * DRK: It may be worth asserting on cache attribute flags that diverge | |
948 | * from the existing physical page attributes. | |
949 | */ | |
950 | ||
951 | template |= pmap_get_cache_attributes(pa_index(pa), is_ept); | |
952 | ||
953 | /* | |
954 | * We don't support passing VM_MEM_NOT_CACHEABLE flags for EPT PTEs | |
955 | */ | |
956 | if (!is_ept && (flags & VM_MEM_NOT_CACHEABLE)) { | |
957 | if (!(flags & VM_MEM_GUARDED)) | |
958 | template |= INTEL_PTE_PTA; | |
959 | template |= INTEL_PTE_NCACHE; | |
960 | } | |
961 | if (pmap != kernel_pmap && !is_ept) | |
962 | template |= INTEL_PTE_USER; | |
963 | if (prot & VM_PROT_READ) | |
964 | template |= PTE_READ(is_ept); | |
965 | if (prot & VM_PROT_WRITE) { | |
966 | template |= PTE_WRITE(is_ept); | |
967 | if (is_ept && !pmap_ept_support_ad) { | |
968 | template |= PTE_MOD(is_ept); | |
969 | if (IS_MANAGED_PAGE(pai)) | |
970 | pmap_phys_attributes[pai] |= PHYS_MODIFIED; | |
971 | } | |
972 | } | |
973 | if (prot & VM_PROT_EXECUTE) { | |
974 | assert(set_NX == 0); | |
975 | template = pte_set_ex(template, is_ept); | |
976 | } | |
977 | ||
978 | if (set_NX) | |
979 | template = pte_remove_ex(template, is_ept); | |
980 | if (wired) { | |
981 | template |= INTEL_PTE_WIRED; | |
982 | OSAddAtomic(+1, & pmap->stats.wired_count); | |
983 | pmap_ledger_credit(pmap, task_ledgers.wired_mem, PAGE_SIZE); | |
984 | } | |
985 | if (superpage) | |
986 | template |= INTEL_PTE_PS; | |
987 | ||
988 | /* For hardware that doesn't have EPT AD support, we always set REFMOD for EPT PTEs */ | |
989 | if (is_ept && !pmap_ept_support_ad) { | |
990 | template |= PTE_REF(is_ept); | |
991 | if (IS_MANAGED_PAGE(pai)) | |
992 | pmap_phys_attributes[pai] |= PHYS_REFERENCED; | |
993 | } | |
994 | ||
995 | pmap_store_pte(pte, template); | |
996 | ||
997 | /* | |
998 | * if this was a managed page we delayed unlocking the pv until here | |
999 | * to prevent pmap_page_protect et al from finding it until the pte | |
1000 | * has been stored | |
1001 | */ | |
1002 | if (IS_MANAGED_PAGE(pai)) { | |
1003 | UNLOCK_PVH(pai); | |
1004 | } | |
1005 | Done: | |
1006 | if (need_tlbflush == TRUE) { | |
1007 | if (options & PMAP_OPTIONS_NOFLUSH) | |
1008 | PMAP_UPDATE_TLBS_DELAYED(pmap, vaddr, vaddr + PAGE_SIZE, (pmap_flush_context *)arg); | |
1009 | else | |
1010 | PMAP_UPDATE_TLBS(pmap, vaddr, vaddr + PAGE_SIZE); | |
1011 | } | |
1012 | if (pvh_e != PV_HASHED_ENTRY_NULL) { | |
1013 | PV_HASHED_FREE_LIST(pvh_e, pvh_e, 1); | |
1014 | } | |
1015 | if (pvh_new != PV_HASHED_ENTRY_NULL) { | |
1016 | PV_HASHED_KERN_FREE_LIST(pvh_new, pvh_new, 1); | |
1017 | } | |
1018 | PMAP_UNLOCK(pmap); | |
1019 | ||
1020 | if (delpage_pm_obj) { | |
1021 | vm_page_t m; | |
1022 | ||
1023 | vm_object_lock(delpage_pm_obj); | |
1024 | m = vm_page_lookup(delpage_pm_obj, (delpage_pde_index * PAGE_SIZE)); | |
1025 | if (m == VM_PAGE_NULL) | |
1026 | panic("pmap_enter: pte page not in object"); | |
1027 | VM_PAGE_FREE(m); | |
1028 | vm_object_unlock(delpage_pm_obj); | |
1029 | OSAddAtomic(-1, &inuse_ptepages_count); | |
1030 | PMAP_ZINFO_PFREE(pmap, PAGE_SIZE); | |
1031 | } | |
1032 | ||
1033 | PMAP_TRACE(PMAP_CODE(PMAP__ENTER) | DBG_FUNC_END, 0, 0, 0, 0, 0); | |
1034 | return KERN_SUCCESS; | |
1035 | } | |
1036 | ||
1037 | /* | |
1038 | * Remove a range of hardware page-table entries. | |
1039 | * The entries given are the first (inclusive) | |
1040 | * and last (exclusive) entries for the VM pages. | |
1041 | * The virtual address is the va for the first pte. | |
1042 | * | |
1043 | * The pmap must be locked. | |
1044 | * If the pmap is not the kernel pmap, the range must lie | |
1045 | * entirely within one pte-page. This is NOT checked. | |
1046 | * Assumes that the pte-page exists. | |
1047 | */ | |
1048 | ||
1049 | void | |
1050 | pmap_remove_range( | |
1051 | pmap_t pmap, | |
1052 | vm_map_offset_t start_vaddr, | |
1053 | pt_entry_t *spte, | |
1054 | pt_entry_t *epte) | |
1055 | { | |
1056 | pmap_remove_range_options(pmap, start_vaddr, spte, epte, | |
1057 | PMAP_OPTIONS_REMOVE); | |
1058 | } | |
1059 | ||
1060 | void | |
1061 | pmap_remove_range_options( | |
1062 | pmap_t pmap, | |
1063 | vm_map_offset_t start_vaddr, | |
1064 | pt_entry_t *spte, | |
1065 | pt_entry_t *epte, | |
1066 | int options) | |
1067 | { | |
1068 | pt_entry_t *cpte; | |
1069 | pv_hashed_entry_t pvh_et = PV_HASHED_ENTRY_NULL; | |
1070 | pv_hashed_entry_t pvh_eh = PV_HASHED_ENTRY_NULL; | |
1071 | pv_hashed_entry_t pvh_e; | |
1072 | int pvh_cnt = 0; | |
1073 | int num_removed, num_unwired, num_found, num_invalid; | |
1074 | int num_device, num_external, num_internal, num_reusable; | |
1075 | uint64_t num_compressed; | |
1076 | ppnum_t pai; | |
1077 | pmap_paddr_t pa; | |
1078 | vm_map_offset_t vaddr; | |
1079 | boolean_t is_ept = is_ept_pmap(pmap); | |
1080 | ||
1081 | num_removed = 0; | |
1082 | num_unwired = 0; | |
1083 | num_found = 0; | |
1084 | num_invalid = 0; | |
1085 | num_device = 0; | |
1086 | num_external = 0; | |
1087 | num_internal = 0; | |
1088 | num_reusable = 0; | |
1089 | num_compressed = 0; | |
1090 | /* invalidate the PTEs first to "freeze" them */ | |
1091 | for (cpte = spte, vaddr = start_vaddr; | |
1092 | cpte < epte; | |
1093 | cpte++, vaddr += PAGE_SIZE_64) { | |
1094 | pt_entry_t p = *cpte; | |
1095 | ||
1096 | pa = pte_to_pa(p); | |
1097 | if (pa == 0) { | |
1098 | if (pmap != kernel_pmap && | |
1099 | (options & PMAP_OPTIONS_REMOVE) && | |
1100 | (p & PTE_COMPRESSED)) { | |
1101 | /* one less "compressed" */ | |
1102 | num_compressed++; | |
1103 | /* clear marker */ | |
1104 | /* XXX probably does not need to be atomic! */ | |
1105 | pmap_update_pte(cpte, PTE_COMPRESSED, 0); | |
1106 | } | |
1107 | continue; | |
1108 | } | |
1109 | num_found++; | |
1110 | ||
1111 | if (iswired(p)) | |
1112 | num_unwired++; | |
1113 | ||
1114 | pai = pa_index(pa); | |
1115 | ||
1116 | if (!IS_MANAGED_PAGE(pai)) { | |
1117 | /* | |
1118 | * Outside range of managed physical memory. | |
1119 | * Just remove the mappings. | |
1120 | */ | |
1121 | pmap_store_pte(cpte, 0); | |
1122 | num_device++; | |
1123 | continue; | |
1124 | } | |
1125 | ||
1126 | if ((p & PTE_VALID_MASK(is_ept)) == 0) | |
1127 | num_invalid++; | |
1128 | ||
1129 | /* invalidate the PTE */ | |
1130 | pmap_update_pte(cpte, PTE_VALID_MASK(is_ept), 0); | |
1131 | } | |
1132 | ||
1133 | if (num_found == 0) { | |
1134 | /* nothing was changed: we're done */ | |
1135 | goto update_counts; | |
1136 | } | |
1137 | ||
1138 | /* propagate the invalidates to other CPUs */ | |
1139 | ||
1140 | PMAP_UPDATE_TLBS(pmap, start_vaddr, vaddr); | |
1141 | ||
1142 | for (cpte = spte, vaddr = start_vaddr; | |
1143 | cpte < epte; | |
1144 | cpte++, vaddr += PAGE_SIZE_64) { | |
1145 | ||
1146 | pa = pte_to_pa(*cpte); | |
1147 | if (pa == 0) | |
1148 | continue; | |
1149 | ||
1150 | pai = pa_index(pa); | |
1151 | ||
1152 | LOCK_PVH(pai); | |
1153 | ||
1154 | pa = pte_to_pa(*cpte); | |
1155 | if (pa == 0) { | |
1156 | UNLOCK_PVH(pai); | |
1157 | continue; | |
1158 | } | |
1159 | num_removed++; | |
1160 | if (IS_REUSABLE_PAGE(pai)) { | |
1161 | num_reusable++; | |
1162 | } else if (IS_INTERNAL_PAGE(pai)) { | |
1163 | num_internal++; | |
1164 | } else { | |
1165 | num_external++; | |
1166 | } | |
1167 | ||
1168 | /* | |
1169 | * Get the modify and reference bits, then | |
1170 | * nuke the entry in the page table | |
1171 | */ | |
1172 | /* remember reference and change */ | |
1173 | pmap_phys_attributes[pai] |= | |
1174 | (char) (*cpte & (PHYS_MODIFIED | PHYS_REFERENCED)); | |
1175 | ||
1176 | /* | |
1177 | * Remove the mapping from the pvlist for this physical page. | |
1178 | */ | |
1179 | pvh_e = pmap_pv_remove(pmap, vaddr, (ppnum_t *) &pai, cpte); | |
1180 | ||
1181 | /* completely invalidate the PTE */ | |
1182 | pmap_store_pte(cpte, 0); | |
1183 | ||
1184 | UNLOCK_PVH(pai); | |
1185 | ||
1186 | if (pvh_e != PV_HASHED_ENTRY_NULL) { | |
1187 | pvh_e->qlink.next = (queue_entry_t) pvh_eh; | |
1188 | pvh_eh = pvh_e; | |
1189 | ||
1190 | if (pvh_et == PV_HASHED_ENTRY_NULL) { | |
1191 | pvh_et = pvh_e; | |
1192 | } | |
1193 | pvh_cnt++; | |
1194 | } | |
1195 | } /* for loop */ | |
1196 | ||
1197 | if (pvh_eh != PV_HASHED_ENTRY_NULL) { | |
1198 | PV_HASHED_FREE_LIST(pvh_eh, pvh_et, pvh_cnt); | |
1199 | } | |
1200 | update_counts: | |
1201 | /* | |
1202 | * Update the counts | |
1203 | */ | |
1204 | #if TESTING | |
1205 | if (pmap->stats.resident_count < num_removed) | |
1206 | panic("pmap_remove_range: resident_count"); | |
1207 | #endif | |
1208 | pmap_ledger_debit(pmap, task_ledgers.phys_mem, machine_ptob(num_removed)); | |
1209 | pmap_ledger_debit(pmap, task_ledgers.phys_footprint, machine_ptob(num_removed)); | |
1210 | assert(pmap->stats.resident_count >= num_removed); | |
1211 | OSAddAtomic(-num_removed, &pmap->stats.resident_count); | |
1212 | ||
1213 | if (pmap != kernel_pmap) { | |
1214 | #if 00 | |
1215 | assert(pmap->stats.device >= num_device); | |
1216 | if (num_device) | |
1217 | OSAddAtomic(-num_device, &pmap->stats.device); | |
1218 | #endif /* 00 */ | |
1219 | assert(pmap->stats.external >= num_external); | |
1220 | if (num_external) | |
1221 | OSAddAtomic(-num_external, &pmap->stats.external); | |
1222 | assert(pmap->stats.internal >= num_internal); | |
1223 | if (num_internal) | |
1224 | OSAddAtomic(-num_internal, &pmap->stats.internal); | |
1225 | assert(pmap->stats.reusable >= num_reusable); | |
1226 | if (num_reusable) | |
1227 | OSAddAtomic(-num_reusable, &pmap->stats.reusable); | |
1228 | assert(pmap->stats.compressed >= num_compressed); | |
1229 | if (num_compressed) | |
1230 | OSAddAtomic64(-num_compressed, &pmap->stats.compressed); | |
1231 | } | |
1232 | ||
1233 | #if TESTING | |
1234 | if (pmap->stats.wired_count < num_unwired) | |
1235 | panic("pmap_remove_range: wired_count"); | |
1236 | #endif | |
1237 | assert(pmap->stats.wired_count >= num_unwired); | |
1238 | OSAddAtomic(-num_unwired, &pmap->stats.wired_count); | |
1239 | pmap_ledger_debit(pmap, task_ledgers.wired_mem, machine_ptob(num_unwired)); | |
1240 | ||
1241 | return; | |
1242 | } | |
1243 | ||
1244 | ||
1245 | /* | |
1246 | * Remove the given range of addresses | |
1247 | * from the specified map. | |
1248 | * | |
1249 | * It is assumed that the start and end are properly | |
1250 | * rounded to the hardware page size. | |
1251 | */ | |
1252 | void | |
1253 | pmap_remove( | |
1254 | pmap_t map, | |
1255 | addr64_t s64, | |
1256 | addr64_t e64) | |
1257 | { | |
1258 | pmap_remove_options(map, s64, e64, PMAP_OPTIONS_REMOVE); | |
1259 | } | |
1260 | ||
1261 | void | |
1262 | pmap_remove_options( | |
1263 | pmap_t map, | |
1264 | addr64_t s64, | |
1265 | addr64_t e64, | |
1266 | int options) | |
1267 | { | |
1268 | pt_entry_t *pde; | |
1269 | pt_entry_t *spte, *epte; | |
1270 | addr64_t l64; | |
1271 | uint64_t deadline; | |
1272 | boolean_t is_ept; | |
1273 | ||
1274 | pmap_intr_assert(); | |
1275 | ||
1276 | if (map == PMAP_NULL || s64 == e64) | |
1277 | return; | |
1278 | ||
1279 | is_ept = is_ept_pmap(map); | |
1280 | ||
1281 | PMAP_TRACE(PMAP_CODE(PMAP__REMOVE) | DBG_FUNC_START, | |
1282 | map, | |
1283 | (uint32_t) (s64 >> 32), s64, | |
1284 | (uint32_t) (e64 >> 32), e64); | |
1285 | ||
1286 | ||
1287 | PMAP_LOCK(map); | |
1288 | ||
1289 | #if 0 | |
1290 | /* | |
1291 | * Check that address range in the kernel does not overlap the stacks. | |
1292 | * We initialize local static min/max variables once to avoid making | |
1293 | * 2 function calls for every remove. Note also that these functions | |
1294 | * both return 0 before kernel stacks have been initialized, and hence | |
1295 | * the panic is not triggered in this case. | |
1296 | */ | |
1297 | if (map == kernel_pmap) { | |
1298 | static vm_offset_t kernel_stack_min = 0; | |
1299 | static vm_offset_t kernel_stack_max = 0; | |
1300 | ||
1301 | if (kernel_stack_min == 0) { | |
1302 | kernel_stack_min = min_valid_stack_address(); | |
1303 | kernel_stack_max = max_valid_stack_address(); | |
1304 | } | |
1305 | if ((kernel_stack_min <= s64 && s64 < kernel_stack_max) || | |
1306 | (kernel_stack_min < e64 && e64 <= kernel_stack_max)) | |
1307 | panic("pmap_remove() attempted in kernel stack"); | |
1308 | } | |
1309 | #else | |
1310 | ||
1311 | /* | |
1312 | * The values of kernel_stack_min and kernel_stack_max are no longer | |
1313 | * relevant now that we allocate kernel stacks in the kernel map, | |
1314 | * so the old code above no longer applies. If we wanted to check that | |
1315 | * we weren't removing a mapping of a page in a kernel stack we'd | |
1316 | * mark the PTE with an unused bit and check that here. | |
1317 | */ | |
1318 | ||
1319 | #endif | |
1320 | ||
1321 | deadline = rdtsc64() + max_preemption_latency_tsc; | |
1322 | ||
1323 | while (s64 < e64) { | |
1324 | l64 = (s64 + pde_mapped_size) & ~(pde_mapped_size - 1); | |
1325 | if (l64 > e64) | |
1326 | l64 = e64; | |
1327 | pde = pmap_pde(map, s64); | |
1328 | ||
1329 | if (pde && (*pde & PTE_VALID_MASK(is_ept))) { | |
1330 | if (*pde & PTE_PS) { | |
1331 | /* | |
1332 | * If we're removing a superpage, pmap_remove_range() | |
1333 | * must work on level 2 instead of level 1; and we're | |
1334 | * only passing a single level 2 entry instead of a | |
1335 | * level 1 range. | |
1336 | */ | |
1337 | spte = pde; | |
1338 | epte = spte+1; /* excluded */ | |
1339 | } else { | |
1340 | spte = pmap_pte(map, (s64 & ~(pde_mapped_size - 1))); | |
1341 | spte = &spte[ptenum(s64)]; | |
1342 | epte = &spte[intel_btop(l64 - s64)]; | |
1343 | } | |
1344 | pmap_remove_range_options(map, s64, spte, epte, | |
1345 | options); | |
1346 | } | |
1347 | s64 = l64; | |
1348 | ||
1349 | if (s64 < e64 && rdtsc64() >= deadline) { | |
1350 | PMAP_UNLOCK(map) | |
1351 | /* TODO: Rapid release/reacquisition can defeat | |
1352 | * the "backoff" intent here; either consider a | |
1353 | * fair spinlock, or a scheme whereby each lock | |
1354 | * attempt marks the processor as within a spinlock | |
1355 | * acquisition, and scan CPUs here to determine | |
1356 | * if a backoff is necessary, to avoid sacrificing | |
1357 | * performance in the common case. | |
1358 | */ | |
1359 | PMAP_LOCK(map) | |
1360 | deadline = rdtsc64() + max_preemption_latency_tsc; | |
1361 | } | |
1362 | } | |
1363 | ||
1364 | PMAP_UNLOCK(map); | |
1365 | ||
1366 | PMAP_TRACE(PMAP_CODE(PMAP__REMOVE) | DBG_FUNC_END, | |
1367 | map, 0, 0, 0, 0); | |
1368 | ||
1369 | } | |
1370 | ||
1371 | void | |
1372 | pmap_page_protect( | |
1373 | ppnum_t pn, | |
1374 | vm_prot_t prot) | |
1375 | { | |
1376 | pmap_page_protect_options(pn, prot, 0, NULL); | |
1377 | } | |
1378 | ||
1379 | /* | |
1380 | * Routine: pmap_page_protect_options | |
1381 | * | |
1382 | * Function: | |
1383 | * Lower the permission for all mappings to a given | |
1384 | * page. | |
1385 | */ | |
1386 | void | |
1387 | pmap_page_protect_options( | |
1388 | ppnum_t pn, | |
1389 | vm_prot_t prot, | |
1390 | unsigned int options, | |
1391 | void *arg) | |
1392 | { | |
1393 | pv_hashed_entry_t pvh_eh = PV_HASHED_ENTRY_NULL; | |
1394 | pv_hashed_entry_t pvh_et = PV_HASHED_ENTRY_NULL; | |
1395 | pv_hashed_entry_t nexth; | |
1396 | int pvh_cnt = 0; | |
1397 | pv_rooted_entry_t pv_h; | |
1398 | pv_rooted_entry_t pv_e; | |
1399 | pv_hashed_entry_t pvh_e; | |
1400 | pt_entry_t *pte; | |
1401 | int pai; | |
1402 | pmap_t pmap; | |
1403 | boolean_t remove; | |
1404 | pt_entry_t new_pte_value; | |
1405 | boolean_t is_ept; | |
1406 | ||
1407 | pmap_intr_assert(); | |
1408 | assert(pn != vm_page_fictitious_addr); | |
1409 | if (pn == vm_page_guard_addr) | |
1410 | return; | |
1411 | ||
1412 | pai = ppn_to_pai(pn); | |
1413 | ||
1414 | if (!IS_MANAGED_PAGE(pai)) { | |
1415 | /* | |
1416 | * Not a managed page. | |
1417 | */ | |
1418 | return; | |
1419 | } | |
1420 | PMAP_TRACE(PMAP_CODE(PMAP__PAGE_PROTECT) | DBG_FUNC_START, | |
1421 | pn, prot, 0, 0, 0); | |
1422 | ||
1423 | /* | |
1424 | * Determine the new protection. | |
1425 | */ | |
1426 | switch (prot) { | |
1427 | case VM_PROT_READ: | |
1428 | case VM_PROT_READ | VM_PROT_EXECUTE: | |
1429 | remove = FALSE; | |
1430 | break; | |
1431 | case VM_PROT_ALL: | |
1432 | return; /* nothing to do */ | |
1433 | default: | |
1434 | remove = TRUE; | |
1435 | break; | |
1436 | } | |
1437 | ||
1438 | pv_h = pai_to_pvh(pai); | |
1439 | ||
1440 | LOCK_PVH(pai); | |
1441 | ||
1442 | ||
1443 | /* | |
1444 | * Walk down PV list, if any, changing or removing all mappings. | |
1445 | */ | |
1446 | if (pv_h->pmap == PMAP_NULL) | |
1447 | goto done; | |
1448 | ||
1449 | pv_e = pv_h; | |
1450 | pvh_e = (pv_hashed_entry_t) pv_e; /* cheat */ | |
1451 | ||
1452 | do { | |
1453 | vm_map_offset_t vaddr; | |
1454 | ||
1455 | if ((options & PMAP_OPTIONS_COMPRESSOR_IFF_MODIFIED) && | |
1456 | (pmap_phys_attributes[pai] & PHYS_MODIFIED)) { | |
1457 | /* page was modified, so it will be compressed */ | |
1458 | options &= ~PMAP_OPTIONS_COMPRESSOR_IFF_MODIFIED; | |
1459 | options |= PMAP_OPTIONS_COMPRESSOR; | |
1460 | } | |
1461 | ||
1462 | pmap = pv_e->pmap; | |
1463 | is_ept = is_ept_pmap(pmap); | |
1464 | vaddr = pv_e->va; | |
1465 | pte = pmap_pte(pmap, vaddr); | |
1466 | ||
1467 | pmap_assert2((pa_index(pte_to_pa(*pte)) == pn), | |
1468 | "pmap_page_protect: PTE mismatch, pn: 0x%x, pmap: %p, vaddr: 0x%llx, pte: 0x%llx", pn, pmap, vaddr, *pte); | |
1469 | ||
1470 | if (0 == pte) { | |
1471 | panic("pmap_page_protect() " | |
1472 | "pmap=%p pn=0x%x vaddr=0x%llx\n", | |
1473 | pmap, pn, vaddr); | |
1474 | } | |
1475 | nexth = (pv_hashed_entry_t) queue_next(&pvh_e->qlink); | |
1476 | ||
1477 | /* | |
1478 | * Remove the mapping if new protection is NONE | |
1479 | */ | |
1480 | if (remove) { | |
1481 | ||
1482 | /* Remove per-pmap wired count */ | |
1483 | if (iswired(*pte)) { | |
1484 | OSAddAtomic(-1, &pmap->stats.wired_count); | |
1485 | pmap_ledger_debit(pmap, task_ledgers.wired_mem, PAGE_SIZE); | |
1486 | } | |
1487 | ||
1488 | if (pmap != kernel_pmap && | |
1489 | (options & PMAP_OPTIONS_COMPRESSOR) && | |
1490 | IS_INTERNAL_PAGE(pai)) { | |
1491 | /* mark this PTE as having been "reclaimed" */ | |
1492 | new_pte_value = PTE_COMPRESSED; | |
1493 | } else { | |
1494 | new_pte_value = 0; | |
1495 | } | |
1496 | ||
1497 | if (options & PMAP_OPTIONS_NOREFMOD) { | |
1498 | pmap_store_pte(pte, new_pte_value); | |
1499 | ||
1500 | if (options & PMAP_OPTIONS_NOFLUSH) | |
1501 | PMAP_UPDATE_TLBS_DELAYED(pmap, vaddr, vaddr + PAGE_SIZE, (pmap_flush_context *)arg); | |
1502 | else | |
1503 | PMAP_UPDATE_TLBS(pmap, vaddr, vaddr + PAGE_SIZE); | |
1504 | } else { | |
1505 | /* | |
1506 | * Remove the mapping, collecting dirty bits. | |
1507 | */ | |
1508 | pmap_update_pte(pte, PTE_VALID_MASK(is_ept), 0); | |
1509 | ||
1510 | PMAP_UPDATE_TLBS(pmap, vaddr, vaddr+PAGE_SIZE); | |
1511 | if ((options & | |
1512 | PMAP_OPTIONS_COMPRESSOR_IFF_MODIFIED) && | |
1513 | ! (pmap_phys_attributes[pai] & | |
1514 | PHYS_MODIFIED) && | |
1515 | (*pte & PHYS_MODIFIED)) { | |
1516 | /* | |
1517 | * Page is actually "modified" and | |
1518 | * will be compressed. Start | |
1519 | * accounting for it as "compressed". | |
1520 | */ | |
1521 | options &= ~PMAP_OPTIONS_COMPRESSOR_IFF_MODIFIED; | |
1522 | options |= PMAP_OPTIONS_COMPRESSOR; | |
1523 | new_pte_value = PTE_COMPRESSED; | |
1524 | } | |
1525 | if (!is_ept) { | |
1526 | pmap_phys_attributes[pai] |= | |
1527 | *pte & (PHYS_MODIFIED|PHYS_REFERENCED); | |
1528 | } else { | |
1529 | pmap_phys_attributes[pai] |= | |
1530 | ept_refmod_to_physmap((*pte & (INTEL_EPT_REF | INTEL_EPT_MOD))) & (PHYS_MODIFIED | PHYS_REFERENCED); | |
1531 | } | |
1532 | pmap_store_pte(pte, new_pte_value); | |
1533 | } | |
1534 | ||
1535 | if (new_pte_value == PTE_COMPRESSED) { | |
1536 | /* one more "compressed" page */ | |
1537 | OSAddAtomic64(+1, &pmap->stats.compressed); | |
1538 | PMAP_STATS_PEAK(pmap->stats.compressed); | |
1539 | pmap->stats.compressed_lifetime++; | |
1540 | } | |
1541 | ||
1542 | #if TESTING | |
1543 | if (pmap->stats.resident_count < 1) | |
1544 | panic("pmap_page_protect: resident_count"); | |
1545 | #endif | |
1546 | pmap_ledger_debit(pmap, task_ledgers.phys_mem, PAGE_SIZE); | |
1547 | assert(pmap->stats.resident_count >= 1); | |
1548 | OSAddAtomic(-1, &pmap->stats.resident_count); | |
1549 | if (options & PMAP_OPTIONS_COMPRESSOR) { | |
1550 | /* | |
1551 | * This removal is only being done so we can send this page to | |
1552 | * the compressor; therefore it mustn't affect total task footprint. | |
1553 | */ | |
1554 | pmap_ledger_credit(pmap, task_ledgers.internal_compressed, PAGE_SIZE); | |
1555 | } else { | |
1556 | pmap_ledger_debit(pmap, task_ledgers.phys_footprint, PAGE_SIZE); | |
1557 | } | |
1558 | ||
1559 | if (pmap != kernel_pmap) { | |
1560 | if (IS_REUSABLE_PAGE(pai)) { | |
1561 | assert(pmap->stats.reusable > 0); | |
1562 | OSAddAtomic(-1, &pmap->stats.reusable); | |
1563 | } else if (IS_INTERNAL_PAGE(pai)) { | |
1564 | assert(pmap->stats.internal > 0); | |
1565 | OSAddAtomic(-1, &pmap->stats.internal); | |
1566 | } else { | |
1567 | assert(pmap->stats.external > 0); | |
1568 | OSAddAtomic(-1, &pmap->stats.external); | |
1569 | } | |
1570 | } | |
1571 | ||
1572 | /* | |
1573 | * Deal with the pv_rooted_entry. | |
1574 | */ | |
1575 | ||
1576 | if (pv_e == pv_h) { | |
1577 | /* | |
1578 | * Fix up head later. | |
1579 | */ | |
1580 | pv_h->pmap = PMAP_NULL; | |
1581 | } else { | |
1582 | /* | |
1583 | * Delete this entry. | |
1584 | */ | |
1585 | pv_hash_remove(pvh_e); | |
1586 | pvh_e->qlink.next = (queue_entry_t) pvh_eh; | |
1587 | pvh_eh = pvh_e; | |
1588 | ||
1589 | if (pvh_et == PV_HASHED_ENTRY_NULL) | |
1590 | pvh_et = pvh_e; | |
1591 | pvh_cnt++; | |
1592 | } | |
1593 | } else { | |
1594 | /* | |
1595 | * Write-protect, after opportunistic refmod collect | |
1596 | */ | |
1597 | if (!is_ept) { | |
1598 | pmap_phys_attributes[pai] |= | |
1599 | *pte & (PHYS_MODIFIED|PHYS_REFERENCED); | |
1600 | } else { | |
1601 | pmap_phys_attributes[pai] |= | |
1602 | ept_refmod_to_physmap((*pte & (INTEL_EPT_REF | INTEL_EPT_MOD))) & (PHYS_MODIFIED | PHYS_REFERENCED); | |
1603 | } | |
1604 | pmap_update_pte(pte, PTE_WRITE(is_ept), 0); | |
1605 | ||
1606 | if (options & PMAP_OPTIONS_NOFLUSH) | |
1607 | PMAP_UPDATE_TLBS_DELAYED(pmap, vaddr, vaddr + PAGE_SIZE, (pmap_flush_context *)arg); | |
1608 | else | |
1609 | PMAP_UPDATE_TLBS(pmap, vaddr, vaddr+PAGE_SIZE); | |
1610 | } | |
1611 | pvh_e = nexth; | |
1612 | } while ((pv_e = (pv_rooted_entry_t) nexth) != pv_h); | |
1613 | ||
1614 | ||
1615 | /* | |
1616 | * If pv_head mapping was removed, fix it up. | |
1617 | */ | |
1618 | if (pv_h->pmap == PMAP_NULL) { | |
1619 | pvh_e = (pv_hashed_entry_t) queue_next(&pv_h->qlink); | |
1620 | ||
1621 | if (pvh_e != (pv_hashed_entry_t) pv_h) { | |
1622 | pv_hash_remove(pvh_e); | |
1623 | pv_h->pmap = pvh_e->pmap; | |
1624 | pv_h->va = pvh_e->va; | |
1625 | pvh_e->qlink.next = (queue_entry_t) pvh_eh; | |
1626 | pvh_eh = pvh_e; | |
1627 | ||
1628 | if (pvh_et == PV_HASHED_ENTRY_NULL) | |
1629 | pvh_et = pvh_e; | |
1630 | pvh_cnt++; | |
1631 | } | |
1632 | } | |
1633 | if (pvh_eh != PV_HASHED_ENTRY_NULL) { | |
1634 | PV_HASHED_FREE_LIST(pvh_eh, pvh_et, pvh_cnt); | |
1635 | } | |
1636 | done: | |
1637 | UNLOCK_PVH(pai); | |
1638 | ||
1639 | PMAP_TRACE(PMAP_CODE(PMAP__PAGE_PROTECT) | DBG_FUNC_END, | |
1640 | 0, 0, 0, 0, 0); | |
1641 | } | |
1642 | ||
1643 | ||
1644 | /* | |
1645 | * Clear specified attribute bits. | |
1646 | */ | |
1647 | void | |
1648 | phys_attribute_clear( | |
1649 | ppnum_t pn, | |
1650 | int bits, | |
1651 | unsigned int options, | |
1652 | void *arg) | |
1653 | { | |
1654 | pv_rooted_entry_t pv_h; | |
1655 | pv_hashed_entry_t pv_e; | |
1656 | pt_entry_t *pte; | |
1657 | int pai; | |
1658 | pmap_t pmap; | |
1659 | char attributes = 0; | |
1660 | boolean_t is_internal, is_reusable, is_ept; | |
1661 | int ept_bits_to_clear; | |
1662 | boolean_t ept_keep_global_mod = FALSE; | |
1663 | ||
1664 | if ((bits & PHYS_MODIFIED) && | |
1665 | (options & PMAP_OPTIONS_NOFLUSH) && | |
1666 | arg == NULL) { | |
1667 | panic("phys_attribute_clear(0x%x,0x%x,0x%x,%p): " | |
1668 | "should not clear 'modified' without flushing TLBs\n", | |
1669 | pn, bits, options, arg); | |
1670 | } | |
1671 | ||
1672 | /* We only support converting MOD and REF bits for EPT PTEs in this function */ | |
1673 | assert((bits & ~(PHYS_REFERENCED | PHYS_MODIFIED)) == 0); | |
1674 | ||
1675 | ept_bits_to_clear = (unsigned)physmap_refmod_to_ept(bits & (PHYS_MODIFIED | PHYS_REFERENCED)); | |
1676 | ||
1677 | pmap_intr_assert(); | |
1678 | assert(pn != vm_page_fictitious_addr); | |
1679 | if (pn == vm_page_guard_addr) | |
1680 | return; | |
1681 | ||
1682 | pai = ppn_to_pai(pn); | |
1683 | ||
1684 | if (!IS_MANAGED_PAGE(pai)) { | |
1685 | /* | |
1686 | * Not a managed page. | |
1687 | */ | |
1688 | return; | |
1689 | } | |
1690 | ||
1691 | PMAP_TRACE(PMAP_CODE(PMAP__ATTRIBUTE_CLEAR) | DBG_FUNC_START, | |
1692 | pn, bits, 0, 0, 0); | |
1693 | ||
1694 | pv_h = pai_to_pvh(pai); | |
1695 | ||
1696 | LOCK_PVH(pai); | |
1697 | ||
1698 | ||
1699 | /* | |
1700 | * Walk down PV list, clearing all modify or reference bits. | |
1701 | * We do not have to lock the pv_list because we have | |
1702 | * the per-pmap lock | |
1703 | */ | |
1704 | if (pv_h->pmap != PMAP_NULL) { | |
1705 | /* | |
1706 | * There are some mappings. | |
1707 | */ | |
1708 | ||
1709 | is_internal = IS_INTERNAL_PAGE(pai); | |
1710 | is_reusable = IS_REUSABLE_PAGE(pai); | |
1711 | ||
1712 | pv_e = (pv_hashed_entry_t)pv_h; | |
1713 | ||
1714 | do { | |
1715 | vm_map_offset_t va; | |
1716 | char pte_bits; | |
1717 | ||
1718 | pmap = pv_e->pmap; | |
1719 | is_ept = is_ept_pmap(pmap); | |
1720 | va = pv_e->va; | |
1721 | pte_bits = 0; | |
1722 | ||
1723 | if (bits) { | |
1724 | pte = pmap_pte(pmap, va); | |
1725 | /* grab ref/mod bits from this PTE */ | |
1726 | pte_bits = (*pte & (PTE_REF(is_ept) | PTE_MOD(is_ept))); | |
1727 | /* propagate to page's global attributes */ | |
1728 | if (!is_ept) { | |
1729 | attributes |= pte_bits; | |
1730 | } else { | |
1731 | attributes |= ept_refmod_to_physmap(pte_bits); | |
1732 | if (!pmap_ept_support_ad && (pte_bits & INTEL_EPT_MOD)) { | |
1733 | ept_keep_global_mod = TRUE; | |
1734 | } | |
1735 | } | |
1736 | /* which bits to clear for this PTE? */ | |
1737 | if (!is_ept) { | |
1738 | pte_bits &= bits; | |
1739 | } else { | |
1740 | pte_bits &= ept_bits_to_clear; | |
1741 | } | |
1742 | } | |
1743 | ||
1744 | /* | |
1745 | * Clear modify and/or reference bits. | |
1746 | */ | |
1747 | if (pte_bits) { | |
1748 | pmap_update_pte(pte, bits, 0); | |
1749 | ||
1750 | /* Ensure all processors using this translation | |
1751 | * invalidate this TLB entry. The invalidation | |
1752 | * *must* follow the PTE update, to ensure that | |
1753 | * the TLB shadow of the 'D' bit (in particular) | |
1754 | * is synchronized with the updated PTE. | |
1755 | */ | |
1756 | if (! (options & PMAP_OPTIONS_NOFLUSH)) { | |
1757 | /* flush TLBS now */ | |
1758 | PMAP_UPDATE_TLBS(pmap, | |
1759 | va, | |
1760 | va + PAGE_SIZE); | |
1761 | } else if (arg) { | |
1762 | /* delayed TLB flush: add "pmap" info */ | |
1763 | PMAP_UPDATE_TLBS_DELAYED( | |
1764 | pmap, | |
1765 | va, | |
1766 | va + PAGE_SIZE, | |
1767 | (pmap_flush_context *)arg); | |
1768 | } else { | |
1769 | /* no TLB flushing at all */ | |
1770 | } | |
1771 | } | |
1772 | ||
1773 | /* update pmap "reusable" stats */ | |
1774 | if ((options & PMAP_OPTIONS_CLEAR_REUSABLE) && | |
1775 | is_reusable && | |
1776 | pmap != kernel_pmap) { | |
1777 | /* one less "reusable" */ | |
1778 | assert(pmap->stats.reusable > 0); | |
1779 | OSAddAtomic(-1, &pmap->stats.reusable); | |
1780 | if (is_internal) { | |
1781 | /* one more "internal" */ | |
1782 | OSAddAtomic(+1, &pmap->stats.internal); | |
1783 | PMAP_STATS_PEAK(pmap->stats.internal); | |
1784 | } else { | |
1785 | /* one more "external" */ | |
1786 | OSAddAtomic(+1, &pmap->stats.external); | |
1787 | PMAP_STATS_PEAK(pmap->stats.external); | |
1788 | } | |
1789 | } else if ((options & PMAP_OPTIONS_SET_REUSABLE) && | |
1790 | !is_reusable && | |
1791 | pmap != kernel_pmap) { | |
1792 | /* one more "reusable" */ | |
1793 | OSAddAtomic(+1, &pmap->stats.reusable); | |
1794 | PMAP_STATS_PEAK(pmap->stats.reusable); | |
1795 | if (is_internal) { | |
1796 | /* one less "internal" */ | |
1797 | assert(pmap->stats.internal > 0); | |
1798 | OSAddAtomic(-1, &pmap->stats.internal); | |
1799 | } else { | |
1800 | /* one less "external" */ | |
1801 | assert(pmap->stats.external > 0); | |
1802 | OSAddAtomic(-1, &pmap->stats.external); | |
1803 | } | |
1804 | } | |
1805 | ||
1806 | pv_e = (pv_hashed_entry_t)queue_next(&pv_e->qlink); | |
1807 | ||
1808 | } while (pv_e != (pv_hashed_entry_t)pv_h); | |
1809 | } | |
1810 | /* Opportunistic refmod collection, annulled | |
1811 | * if both REF and MOD are being cleared. | |
1812 | */ | |
1813 | ||
1814 | pmap_phys_attributes[pai] |= attributes; | |
1815 | ||
1816 | if (ept_keep_global_mod) { | |
1817 | /* | |
1818 | * If the hardware doesn't support AD bits for EPT PTEs and someone is | |
1819 | * requesting that we clear the modified bit for a phys page, we need | |
1820 | * to ensure that there are no EPT mappings for the page with the | |
1821 | * modified bit set. If there are, we cannot clear the global modified bit. | |
1822 | */ | |
1823 | bits &= ~PHYS_MODIFIED; | |
1824 | } | |
1825 | pmap_phys_attributes[pai] &= ~(bits); | |
1826 | ||
1827 | /* update this page's "reusable" status */ | |
1828 | if (options & PMAP_OPTIONS_CLEAR_REUSABLE) { | |
1829 | pmap_phys_attributes[pai] &= ~PHYS_REUSABLE; | |
1830 | } else if (options & PMAP_OPTIONS_SET_REUSABLE) { | |
1831 | pmap_phys_attributes[pai] |= PHYS_REUSABLE; | |
1832 | } | |
1833 | ||
1834 | UNLOCK_PVH(pai); | |
1835 | ||
1836 | PMAP_TRACE(PMAP_CODE(PMAP__ATTRIBUTE_CLEAR) | DBG_FUNC_END, | |
1837 | 0, 0, 0, 0, 0); | |
1838 | } | |
1839 | ||
1840 | /* | |
1841 | * Check specified attribute bits. | |
1842 | */ | |
1843 | int | |
1844 | phys_attribute_test( | |
1845 | ppnum_t pn, | |
1846 | int bits) | |
1847 | { | |
1848 | pv_rooted_entry_t pv_h; | |
1849 | pv_hashed_entry_t pv_e; | |
1850 | pt_entry_t *pte; | |
1851 | int pai; | |
1852 | pmap_t pmap; | |
1853 | int attributes = 0; | |
1854 | boolean_t is_ept; | |
1855 | ||
1856 | pmap_intr_assert(); | |
1857 | assert(pn != vm_page_fictitious_addr); | |
1858 | assert((bits & ~(PHYS_MODIFIED | PHYS_REFERENCED)) == 0); | |
1859 | if (pn == vm_page_guard_addr) | |
1860 | return 0; | |
1861 | ||
1862 | pai = ppn_to_pai(pn); | |
1863 | ||
1864 | if (!IS_MANAGED_PAGE(pai)) { | |
1865 | /* | |
1866 | * Not a managed page. | |
1867 | */ | |
1868 | return 0; | |
1869 | } | |
1870 | ||
1871 | /* | |
1872 | * Fast check... if bits already collected | |
1873 | * no need to take any locks... | |
1874 | * if not set, we need to recheck after taking | |
1875 | * the lock in case they got pulled in while | |
1876 | * we were waiting for the lock | |
1877 | */ | |
1878 | if ((pmap_phys_attributes[pai] & bits) == bits) | |
1879 | return bits; | |
1880 | ||
1881 | pv_h = pai_to_pvh(pai); | |
1882 | ||
1883 | LOCK_PVH(pai); | |
1884 | ||
1885 | attributes = pmap_phys_attributes[pai] & bits; | |
1886 | ||
1887 | ||
1888 | /* | |
1889 | * Walk down PV list, checking the mappings until we | |
1890 | * reach the end or we've found the desired attributes. | |
1891 | */ | |
1892 | if (attributes != bits && | |
1893 | pv_h->pmap != PMAP_NULL) { | |
1894 | /* | |
1895 | * There are some mappings. | |
1896 | */ | |
1897 | pv_e = (pv_hashed_entry_t)pv_h; | |
1898 | do { | |
1899 | vm_map_offset_t va; | |
1900 | ||
1901 | pmap = pv_e->pmap; | |
1902 | is_ept = is_ept_pmap(pmap); | |
1903 | va = pv_e->va; | |
1904 | /* | |
1905 | * pick up modify and/or reference bits from mapping | |
1906 | */ | |
1907 | ||
1908 | pte = pmap_pte(pmap, va); | |
1909 | if (!is_ept) { | |
1910 | attributes |= (int)(*pte & bits); | |
1911 | } else { | |
1912 | attributes |= (int)(ept_refmod_to_physmap((*pte & (INTEL_EPT_REF | INTEL_EPT_MOD))) & (PHYS_MODIFIED | PHYS_REFERENCED)); | |
1913 | ||
1914 | } | |
1915 | ||
1916 | pv_e = (pv_hashed_entry_t)queue_next(&pv_e->qlink); | |
1917 | ||
1918 | } while ((attributes != bits) && | |
1919 | (pv_e != (pv_hashed_entry_t)pv_h)); | |
1920 | } | |
1921 | pmap_phys_attributes[pai] |= attributes; | |
1922 | ||
1923 | UNLOCK_PVH(pai); | |
1924 | return (attributes); | |
1925 | } | |
1926 | ||
1927 | /* | |
1928 | * Routine: pmap_change_wiring | |
1929 | * Function: Change the wiring attribute for a map/virtual-address | |
1930 | * pair. | |
1931 | * In/out conditions: | |
1932 | * The mapping must already exist in the pmap. | |
1933 | */ | |
1934 | void | |
1935 | pmap_change_wiring( | |
1936 | pmap_t map, | |
1937 | vm_map_offset_t vaddr, | |
1938 | boolean_t wired) | |
1939 | { | |
1940 | pt_entry_t *pte; | |
1941 | ||
1942 | PMAP_LOCK(map); | |
1943 | ||
1944 | if ((pte = pmap_pte(map, vaddr)) == PT_ENTRY_NULL) | |
1945 | panic("pmap_change_wiring: pte missing"); | |
1946 | ||
1947 | if (wired && !iswired(*pte)) { | |
1948 | /* | |
1949 | * wiring down mapping | |
1950 | */ | |
1951 | pmap_ledger_credit(map, task_ledgers.wired_mem, PAGE_SIZE); | |
1952 | OSAddAtomic(+1, &map->stats.wired_count); | |
1953 | pmap_update_pte(pte, 0, PTE_WIRED); | |
1954 | } | |
1955 | else if (!wired && iswired(*pte)) { | |
1956 | /* | |
1957 | * unwiring mapping | |
1958 | */ | |
1959 | assert(map->stats.wired_count >= 1); | |
1960 | OSAddAtomic(-1, &map->stats.wired_count); | |
1961 | pmap_ledger_debit(map, task_ledgers.wired_mem, PAGE_SIZE); | |
1962 | pmap_update_pte(pte, PTE_WIRED, 0); | |
1963 | } | |
1964 | ||
1965 | PMAP_UNLOCK(map); | |
1966 | } | |
1967 | ||
1968 | /* | |
1969 | * "Backdoor" direct map routine for early mappings. | |
1970 | * Useful for mapping memory outside the range | |
1971 | * Sets A, D and NC if requested | |
1972 | */ | |
1973 | ||
1974 | vm_offset_t | |
1975 | pmap_map_bd( | |
1976 | vm_offset_t virt, | |
1977 | vm_map_offset_t start_addr, | |
1978 | vm_map_offset_t end_addr, | |
1979 | vm_prot_t prot, | |
1980 | unsigned int flags) | |
1981 | { | |
1982 | pt_entry_t template; | |
1983 | pt_entry_t *pte; | |
1984 | spl_t spl; | |
1985 | vm_offset_t base = virt; | |
1986 | template = pa_to_pte(start_addr) | |
1987 | | INTEL_PTE_REF | |
1988 | | INTEL_PTE_MOD | |
1989 | | INTEL_PTE_WIRED | |
1990 | | INTEL_PTE_VALID; | |
1991 | ||
1992 | if ((flags & (VM_MEM_NOT_CACHEABLE | VM_WIMG_USE_DEFAULT)) == VM_MEM_NOT_CACHEABLE) { | |
1993 | template |= INTEL_PTE_NCACHE; | |
1994 | if (!(flags & (VM_MEM_GUARDED))) | |
1995 | template |= INTEL_PTE_PTA; | |
1996 | } | |
1997 | ||
1998 | #if defined(__x86_64__) | |
1999 | if ((prot & VM_PROT_EXECUTE) == 0) | |
2000 | template |= INTEL_PTE_NX; | |
2001 | #endif | |
2002 | ||
2003 | if (prot & VM_PROT_WRITE) | |
2004 | template |= INTEL_PTE_WRITE; | |
2005 | ||
2006 | while (start_addr < end_addr) { | |
2007 | spl = splhigh(); | |
2008 | pte = pmap_pte(kernel_pmap, (vm_map_offset_t)virt); | |
2009 | if (pte == PT_ENTRY_NULL) { | |
2010 | panic("pmap_map_bd: Invalid kernel address\n"); | |
2011 | } | |
2012 | pmap_store_pte(pte, template); | |
2013 | splx(spl); | |
2014 | pte_increment_pa(template); | |
2015 | virt += PAGE_SIZE; | |
2016 | start_addr += PAGE_SIZE; | |
2017 | } | |
2018 | flush_tlb_raw(); | |
2019 | PMAP_UPDATE_TLBS(kernel_pmap, base, base + end_addr - start_addr); | |
2020 | return(virt); | |
2021 | } | |
2022 | ||
2023 | unsigned int | |
2024 | pmap_query_resident( | |
2025 | pmap_t pmap, | |
2026 | addr64_t s64, | |
2027 | addr64_t e64, | |
2028 | unsigned int *compressed_count_p) | |
2029 | { | |
2030 | pt_entry_t *pde; | |
2031 | pt_entry_t *spte, *epte; | |
2032 | addr64_t l64; | |
2033 | uint64_t deadline; | |
2034 | unsigned int result; | |
2035 | boolean_t is_ept; | |
2036 | unsigned int compressed_count; | |
2037 | ||
2038 | pmap_intr_assert(); | |
2039 | ||
2040 | if (pmap == PMAP_NULL || pmap == kernel_pmap || s64 == e64) { | |
2041 | if (compressed_count_p) { | |
2042 | *compressed_count_p = 0; | |
2043 | } | |
2044 | return 0; | |
2045 | } | |
2046 | ||
2047 | is_ept = is_ept_pmap(pmap); | |
2048 | ||
2049 | PMAP_TRACE(PMAP_CODE(PMAP__QUERY_RESIDENT) | DBG_FUNC_START, | |
2050 | pmap, | |
2051 | (uint32_t) (s64 >> 32), s64, | |
2052 | (uint32_t) (e64 >> 32), e64); | |
2053 | ||
2054 | result = 0; | |
2055 | compressed_count = 0; | |
2056 | ||
2057 | PMAP_LOCK(pmap); | |
2058 | ||
2059 | deadline = rdtsc64() + max_preemption_latency_tsc; | |
2060 | ||
2061 | while (s64 < e64) { | |
2062 | l64 = (s64 + pde_mapped_size) & ~(pde_mapped_size - 1); | |
2063 | if (l64 > e64) | |
2064 | l64 = e64; | |
2065 | pde = pmap_pde(pmap, s64); | |
2066 | ||
2067 | if (pde && (*pde & PTE_VALID_MASK(is_ept))) { | |
2068 | if (*pde & PTE_PS) { | |
2069 | /* superpage: not supported */ | |
2070 | } else { | |
2071 | spte = pmap_pte(pmap, | |
2072 | (s64 & ~(pde_mapped_size - 1))); | |
2073 | spte = &spte[ptenum(s64)]; | |
2074 | epte = &spte[intel_btop(l64 - s64)]; | |
2075 | ||
2076 | for (; spte < epte; spte++) { | |
2077 | if (pte_to_pa(*spte) != 0) { | |
2078 | result++; | |
2079 | } else if (*spte & PTE_COMPRESSED) { | |
2080 | compressed_count++; | |
2081 | } | |
2082 | } | |
2083 | ||
2084 | } | |
2085 | } | |
2086 | s64 = l64; | |
2087 | ||
2088 | if (s64 < e64 && rdtsc64() >= deadline) { | |
2089 | PMAP_UNLOCK(pmap); | |
2090 | PMAP_LOCK(pmap); | |
2091 | deadline = rdtsc64() + max_preemption_latency_tsc; | |
2092 | } | |
2093 | } | |
2094 | ||
2095 | PMAP_UNLOCK(pmap); | |
2096 | ||
2097 | PMAP_TRACE(PMAP_CODE(PMAP__QUERY_RESIDENT) | DBG_FUNC_END, | |
2098 | pmap, 0, 0, 0, 0); | |
2099 | ||
2100 | if (compressed_count_p) { | |
2101 | *compressed_count_p = compressed_count; | |
2102 | } | |
2103 | return result; | |
2104 | } | |
2105 | ||
2106 | #if MACH_ASSERT | |
2107 | void | |
2108 | pmap_set_process( | |
2109 | __unused pmap_t pmap, | |
2110 | __unused int pid, | |
2111 | __unused char *procname) | |
2112 | { | |
2113 | } | |
2114 | #endif /* MACH_ASSERT */ |