]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Copyright (c) 2000-2020 Apple Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * This file contains Original Code and/or Modifications of Original Code | |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
14 | * | |
15 | * Please obtain a copy of the License at | |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
25 | * | |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ | |
27 | */ | |
28 | /* Copyright (c) 1995 NeXT Computer, Inc. All Rights Reserved */ | |
29 | /* | |
30 | * Copyright (c) 1993 | |
31 | * The Regents of the University of California. All rights reserved. | |
32 | * | |
33 | * Redistribution and use in source and binary forms, with or without | |
34 | * modification, are permitted provided that the following conditions | |
35 | * are met: | |
36 | * 1. Redistributions of source code must retain the above copyright | |
37 | * notice, this list of conditions and the following disclaimer. | |
38 | * 2. Redistributions in binary form must reproduce the above copyright | |
39 | * notice, this list of conditions and the following disclaimer in the | |
40 | * documentation and/or other materials provided with the distribution. | |
41 | * 3. All advertising materials mentioning features or use of this software | |
42 | * must display the following acknowledgement: | |
43 | * This product includes software developed by the University of | |
44 | * California, Berkeley and its contributors. | |
45 | * 4. Neither the name of the University nor the names of its contributors | |
46 | * may be used to endorse or promote products derived from this software | |
47 | * without specific prior written permission. | |
48 | * | |
49 | * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND | |
50 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
51 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |
52 | * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE | |
53 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | |
54 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | |
55 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | |
56 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | |
57 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | |
58 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | |
59 | * SUCH DAMAGE. | |
60 | * | |
61 | * @(#)vfs_cluster.c 8.10 (Berkeley) 3/28/95 | |
62 | */ | |
63 | ||
64 | #include <sys/param.h> | |
65 | #include <sys/proc_internal.h> | |
66 | #include <sys/buf_internal.h> | |
67 | #include <sys/mount_internal.h> | |
68 | #include <sys/vnode_internal.h> | |
69 | #include <sys/trace.h> | |
70 | #include <kern/kalloc.h> | |
71 | #include <sys/time.h> | |
72 | #include <sys/kernel.h> | |
73 | #include <sys/resourcevar.h> | |
74 | #include <miscfs/specfs/specdev.h> | |
75 | #include <sys/uio_internal.h> | |
76 | #include <libkern/libkern.h> | |
77 | #include <machine/machine_routines.h> | |
78 | ||
79 | #include <sys/ubc_internal.h> | |
80 | #include <vm/vnode_pager.h> | |
81 | ||
82 | #include <mach/mach_types.h> | |
83 | #include <mach/memory_object_types.h> | |
84 | #include <mach/vm_map.h> | |
85 | #include <mach/upl.h> | |
86 | #include <kern/task.h> | |
87 | #include <kern/policy_internal.h> | |
88 | ||
89 | #include <vm/vm_kern.h> | |
90 | #include <vm/vm_map.h> | |
91 | #include <vm/vm_pageout.h> | |
92 | #include <vm/vm_fault.h> | |
93 | ||
94 | #include <sys/kdebug.h> | |
95 | #include <libkern/OSAtomic.h> | |
96 | ||
97 | #include <sys/sdt.h> | |
98 | ||
99 | #include <stdbool.h> | |
100 | ||
101 | #include <vfs/vfs_disk_conditioner.h> | |
102 | ||
103 | #if 0 | |
104 | #undef KERNEL_DEBUG | |
105 | #define KERNEL_DEBUG KERNEL_DEBUG_CONSTANT | |
106 | #endif | |
107 | ||
108 | ||
109 | #define CL_READ 0x01 | |
110 | #define CL_WRITE 0x02 | |
111 | #define CL_ASYNC 0x04 | |
112 | #define CL_COMMIT 0x08 | |
113 | #define CL_PAGEOUT 0x10 | |
114 | #define CL_AGE 0x20 | |
115 | #define CL_NOZERO 0x40 | |
116 | #define CL_PAGEIN 0x80 | |
117 | #define CL_DEV_MEMORY 0x100 | |
118 | #define CL_PRESERVE 0x200 | |
119 | #define CL_THROTTLE 0x400 | |
120 | #define CL_KEEPCACHED 0x800 | |
121 | #define CL_DIRECT_IO 0x1000 | |
122 | #define CL_PASSIVE 0x2000 | |
123 | #define CL_IOSTREAMING 0x4000 | |
124 | #define CL_CLOSE 0x8000 | |
125 | #define CL_ENCRYPTED 0x10000 | |
126 | #define CL_RAW_ENCRYPTED 0x20000 | |
127 | #define CL_NOCACHE 0x40000 | |
128 | ||
129 | #define MAX_VECTOR_UPL_ELEMENTS 8 | |
130 | #define MAX_VECTOR_UPL_SIZE (2 * MAX_UPL_SIZE_BYTES) | |
131 | ||
132 | #define CLUSTER_IO_WAITING ((buf_t)1) | |
133 | ||
134 | extern upl_t vector_upl_create(vm_offset_t); | |
135 | extern boolean_t vector_upl_is_valid(upl_t); | |
136 | extern boolean_t vector_upl_set_subupl(upl_t, upl_t, u_int32_t); | |
137 | extern void vector_upl_set_pagelist(upl_t); | |
138 | extern void vector_upl_set_iostate(upl_t, upl_t, vm_offset_t, u_int32_t); | |
139 | ||
140 | struct clios { | |
141 | lck_mtx_t io_mtxp; | |
142 | u_int io_completed; /* amount of io that has currently completed */ | |
143 | u_int io_issued; /* amount of io that was successfully issued */ | |
144 | int io_error; /* error code of first error encountered */ | |
145 | int io_wanted; /* someone is sleeping waiting for a change in state */ | |
146 | }; | |
147 | ||
148 | struct cl_direct_read_lock { | |
149 | LIST_ENTRY(cl_direct_read_lock) chain; | |
150 | int32_t ref_count; | |
151 | vnode_t vp; | |
152 | lck_rw_t rw_lock; | |
153 | }; | |
154 | ||
155 | #define CL_DIRECT_READ_LOCK_BUCKETS 61 | |
156 | ||
157 | static LIST_HEAD(cl_direct_read_locks, cl_direct_read_lock) | |
158 | cl_direct_read_locks[CL_DIRECT_READ_LOCK_BUCKETS]; | |
159 | ||
160 | static LCK_GRP_DECLARE(cl_mtx_grp, "cluster I/O"); | |
161 | static LCK_MTX_DECLARE(cl_transaction_mtxp, &cl_mtx_grp); | |
162 | static LCK_SPIN_DECLARE(cl_direct_read_spin_lock, &cl_mtx_grp); | |
163 | ||
164 | static ZONE_DECLARE(cl_rd_zone, "cluster_read", | |
165 | sizeof(struct cl_readahead), ZC_ZFREE_CLEARMEM | ZC_NOENCRYPT); | |
166 | ||
167 | static ZONE_DECLARE(cl_wr_zone, "cluster_write", | |
168 | sizeof(struct cl_writebehind), ZC_ZFREE_CLEARMEM | ZC_NOENCRYPT); | |
169 | ||
170 | #define IO_UNKNOWN 0 | |
171 | #define IO_DIRECT 1 | |
172 | #define IO_CONTIG 2 | |
173 | #define IO_COPY 3 | |
174 | ||
175 | #define PUSH_DELAY 0x01 | |
176 | #define PUSH_ALL 0x02 | |
177 | #define PUSH_SYNC 0x04 | |
178 | ||
179 | ||
180 | static void cluster_EOT(buf_t cbp_head, buf_t cbp_tail, int zero_offset); | |
181 | static void cluster_wait_IO(buf_t cbp_head, int async); | |
182 | static void cluster_complete_transaction(buf_t *cbp_head, void *callback_arg, int *retval, int flags, int needwait); | |
183 | ||
184 | static int cluster_io_type(struct uio *uio, int *io_type, u_int32_t *io_length, u_int32_t min_length); | |
185 | ||
186 | static int cluster_io(vnode_t vp, upl_t upl, vm_offset_t upl_offset, off_t f_offset, int non_rounded_size, | |
187 | int flags, buf_t real_bp, struct clios *iostate, int (*)(buf_t, void *), void *callback_arg); | |
188 | static int cluster_iodone(buf_t bp, void *callback_arg); | |
189 | static int cluster_ioerror(upl_t upl, int upl_offset, int abort_size, int error, int io_flags, vnode_t vp); | |
190 | static int cluster_is_throttled(vnode_t vp); | |
191 | ||
192 | static void cluster_iostate_wait(struct clios *iostate, u_int target, const char *wait_name); | |
193 | ||
194 | static void cluster_syncup(vnode_t vp, off_t newEOF, int (*)(buf_t, void *), void *callback_arg, int flags); | |
195 | ||
196 | static void cluster_read_upl_release(upl_t upl, int start_pg, int last_pg, int take_reference); | |
197 | static int cluster_copy_ubc_data_internal(vnode_t vp, struct uio *uio, int *io_resid, int mark_dirty, int take_reference); | |
198 | ||
199 | static int cluster_read_copy(vnode_t vp, struct uio *uio, u_int32_t io_req_size, off_t filesize, int flags, | |
200 | int (*)(buf_t, void *), void *callback_arg) __attribute__((noinline)); | |
201 | static int cluster_read_direct(vnode_t vp, struct uio *uio, off_t filesize, int *read_type, u_int32_t *read_length, | |
202 | int flags, int (*)(buf_t, void *), void *callback_arg) __attribute__((noinline)); | |
203 | static int cluster_read_contig(vnode_t vp, struct uio *uio, off_t filesize, int *read_type, u_int32_t *read_length, | |
204 | int (*)(buf_t, void *), void *callback_arg, int flags) __attribute__((noinline)); | |
205 | ||
206 | static int cluster_write_copy(vnode_t vp, struct uio *uio, u_int32_t io_req_size, off_t oldEOF, off_t newEOF, | |
207 | off_t headOff, off_t tailOff, int flags, int (*)(buf_t, void *), void *callback_arg) __attribute__((noinline)); | |
208 | static int cluster_write_direct(vnode_t vp, struct uio *uio, off_t oldEOF, off_t newEOF, | |
209 | int *write_type, u_int32_t *write_length, int flags, int (*)(buf_t, void *), void *callback_arg) __attribute__((noinline)); | |
210 | static int cluster_write_contig(vnode_t vp, struct uio *uio, off_t newEOF, | |
211 | int *write_type, u_int32_t *write_length, int (*)(buf_t, void *), void *callback_arg, int bflag) __attribute__((noinline)); | |
212 | ||
213 | static void cluster_update_state_internal(vnode_t vp, struct cl_extent *cl, int flags, boolean_t defer_writes, boolean_t *first_pass, | |
214 | off_t write_off, int write_cnt, off_t newEOF, int (*callback)(buf_t, void *), void *callback_arg, boolean_t vm_initiated); | |
215 | ||
216 | static int cluster_align_phys_io(vnode_t vp, struct uio *uio, addr64_t usr_paddr, u_int32_t xsize, int flags, int (*)(buf_t, void *), void *callback_arg); | |
217 | ||
218 | static int cluster_read_prefetch(vnode_t vp, off_t f_offset, u_int size, off_t filesize, int (*callback)(buf_t, void *), void *callback_arg, int bflag); | |
219 | static void cluster_read_ahead(vnode_t vp, struct cl_extent *extent, off_t filesize, struct cl_readahead *ra, | |
220 | int (*callback)(buf_t, void *), void *callback_arg, int bflag); | |
221 | ||
222 | static int cluster_push_now(vnode_t vp, struct cl_extent *, off_t EOF, int flags, int (*)(buf_t, void *), void *callback_arg, boolean_t vm_ioitiated); | |
223 | ||
224 | static int cluster_try_push(struct cl_writebehind *, vnode_t vp, off_t EOF, int push_flag, int flags, int (*)(buf_t, void *), | |
225 | void *callback_arg, int *err, boolean_t vm_initiated); | |
226 | ||
227 | static int sparse_cluster_switch(struct cl_writebehind *, vnode_t vp, off_t EOF, int (*)(buf_t, void *), void *callback_arg, boolean_t vm_initiated); | |
228 | static int sparse_cluster_push(struct cl_writebehind *, void **cmapp, vnode_t vp, off_t EOF, int push_flag, | |
229 | int io_flags, int (*)(buf_t, void *), void *callback_arg, boolean_t vm_initiated); | |
230 | static int sparse_cluster_add(struct cl_writebehind *, void **cmapp, vnode_t vp, struct cl_extent *, off_t EOF, | |
231 | int (*)(buf_t, void *), void *callback_arg, boolean_t vm_initiated); | |
232 | ||
233 | static kern_return_t vfs_drt_mark_pages(void **cmapp, off_t offset, u_int length, u_int *setcountp); | |
234 | static kern_return_t vfs_drt_get_cluster(void **cmapp, off_t *offsetp, u_int *lengthp); | |
235 | static kern_return_t vfs_drt_control(void **cmapp, int op_type); | |
236 | static kern_return_t vfs_get_scmap_push_behavior_internal(void **cmapp, int *push_flag); | |
237 | ||
238 | ||
239 | /* | |
240 | * For throttled IO to check whether | |
241 | * a block is cached by the boot cache | |
242 | * and thus it can avoid delaying the IO. | |
243 | * | |
244 | * bootcache_contains_block is initially | |
245 | * NULL. The BootCache will set it while | |
246 | * the cache is active and clear it when | |
247 | * the cache is jettisoned. | |
248 | * | |
249 | * Returns 0 if the block is not | |
250 | * contained in the cache, 1 if it is | |
251 | * contained. | |
252 | * | |
253 | * The function pointer remains valid | |
254 | * after the cache has been evicted even | |
255 | * if bootcache_contains_block has been | |
256 | * cleared. | |
257 | * | |
258 | * See rdar://9974130 The new throttling mechanism breaks the boot cache for throttled IOs | |
259 | */ | |
260 | int (*bootcache_contains_block)(dev_t device, u_int64_t blkno) = NULL; | |
261 | ||
262 | ||
263 | /* | |
264 | * limit the internal I/O size so that we | |
265 | * can represent it in a 32 bit int | |
266 | */ | |
267 | #define MAX_IO_REQUEST_SIZE (1024 * 1024 * 512) | |
268 | #define MAX_IO_CONTIG_SIZE MAX_UPL_SIZE_BYTES | |
269 | #define MAX_VECTS 16 | |
270 | /* | |
271 | * The MIN_DIRECT_WRITE_SIZE governs how much I/O should be issued before we consider | |
272 | * allowing the caller to bypass the buffer cache. For small I/Os (less than 16k), | |
273 | * we have not historically allowed the write to bypass the UBC. | |
274 | */ | |
275 | #define MIN_DIRECT_WRITE_SIZE (16384) | |
276 | ||
277 | #define WRITE_THROTTLE 6 | |
278 | #define WRITE_THROTTLE_SSD 2 | |
279 | #define WRITE_BEHIND 1 | |
280 | #define WRITE_BEHIND_SSD 1 | |
281 | ||
282 | #if !defined(XNU_TARGET_OS_OSX) | |
283 | #define PREFETCH 1 | |
284 | #define PREFETCH_SSD 1 | |
285 | uint32_t speculative_prefetch_max = (2048 * 1024); /* maximum bytes in a specluative read-ahead */ | |
286 | uint32_t speculative_prefetch_max_iosize = (512 * 1024); /* maximum I/O size to use in a specluative read-ahead */ | |
287 | #else /* XNU_TARGET_OS_OSX */ | |
288 | #define PREFETCH 3 | |
289 | #define PREFETCH_SSD 2 | |
290 | uint32_t speculative_prefetch_max = (MAX_UPL_SIZE_BYTES * 3); /* maximum bytes in a specluative read-ahead */ | |
291 | uint32_t speculative_prefetch_max_iosize = (512 * 1024); /* maximum I/O size to use in a specluative read-ahead on SSDs*/ | |
292 | #endif /* ! XNU_TARGET_OS_OSX */ | |
293 | ||
294 | ||
295 | #define IO_SCALE(vp, base) (vp->v_mount->mnt_ioscale * (base)) | |
296 | #define MAX_CLUSTER_SIZE(vp) (cluster_max_io_size(vp->v_mount, CL_WRITE)) | |
297 | #define MAX_PREFETCH(vp, size, is_ssd) (size * IO_SCALE(vp, ((is_ssd) ? PREFETCH_SSD : PREFETCH))) | |
298 | ||
299 | int speculative_reads_disabled = 0; | |
300 | ||
301 | /* | |
302 | * throttle the number of async writes that | |
303 | * can be outstanding on a single vnode | |
304 | * before we issue a synchronous write | |
305 | */ | |
306 | #define THROTTLE_MAXCNT 0 | |
307 | ||
308 | uint32_t throttle_max_iosize = (128 * 1024); | |
309 | ||
310 | #define THROTTLE_MAX_IOSIZE (throttle_max_iosize) | |
311 | ||
312 | SYSCTL_INT(_debug, OID_AUTO, lowpri_throttle_max_iosize, CTLFLAG_RW | CTLFLAG_LOCKED, &throttle_max_iosize, 0, ""); | |
313 | ||
314 | ||
315 | void | |
316 | cluster_init(void) | |
317 | { | |
318 | for (int i = 0; i < CL_DIRECT_READ_LOCK_BUCKETS; ++i) { | |
319 | LIST_INIT(&cl_direct_read_locks[i]); | |
320 | } | |
321 | } | |
322 | ||
323 | ||
324 | uint32_t | |
325 | cluster_max_io_size(mount_t mp, int type) | |
326 | { | |
327 | uint32_t max_io_size; | |
328 | uint32_t segcnt; | |
329 | uint32_t maxcnt; | |
330 | ||
331 | switch (type) { | |
332 | case CL_READ: | |
333 | segcnt = mp->mnt_segreadcnt; | |
334 | maxcnt = mp->mnt_maxreadcnt; | |
335 | break; | |
336 | case CL_WRITE: | |
337 | segcnt = mp->mnt_segwritecnt; | |
338 | maxcnt = mp->mnt_maxwritecnt; | |
339 | break; | |
340 | default: | |
341 | segcnt = min(mp->mnt_segreadcnt, mp->mnt_segwritecnt); | |
342 | maxcnt = min(mp->mnt_maxreadcnt, mp->mnt_maxwritecnt); | |
343 | break; | |
344 | } | |
345 | if (segcnt > (MAX_UPL_SIZE_BYTES >> PAGE_SHIFT)) { | |
346 | /* | |
347 | * don't allow a size beyond the max UPL size we can create | |
348 | */ | |
349 | segcnt = MAX_UPL_SIZE_BYTES >> PAGE_SHIFT; | |
350 | } | |
351 | max_io_size = min((segcnt * PAGE_SIZE), maxcnt); | |
352 | ||
353 | if (max_io_size < MAX_UPL_TRANSFER_BYTES) { | |
354 | /* | |
355 | * don't allow a size smaller than the old fixed limit | |
356 | */ | |
357 | max_io_size = MAX_UPL_TRANSFER_BYTES; | |
358 | } else { | |
359 | /* | |
360 | * make sure the size specified is a multiple of PAGE_SIZE | |
361 | */ | |
362 | max_io_size &= ~PAGE_MASK; | |
363 | } | |
364 | return max_io_size; | |
365 | } | |
366 | ||
367 | ||
368 | ||
369 | ||
370 | #define CLW_ALLOCATE 0x01 | |
371 | #define CLW_RETURNLOCKED 0x02 | |
372 | #define CLW_IONOCACHE 0x04 | |
373 | #define CLW_IOPASSIVE 0x08 | |
374 | ||
375 | /* | |
376 | * if the read ahead context doesn't yet exist, | |
377 | * allocate and initialize it... | |
378 | * the vnode lock serializes multiple callers | |
379 | * during the actual assignment... first one | |
380 | * to grab the lock wins... the other callers | |
381 | * will release the now unnecessary storage | |
382 | * | |
383 | * once the context is present, try to grab (but don't block on) | |
384 | * the lock associated with it... if someone | |
385 | * else currently owns it, than the read | |
386 | * will run without read-ahead. this allows | |
387 | * multiple readers to run in parallel and | |
388 | * since there's only 1 read ahead context, | |
389 | * there's no real loss in only allowing 1 | |
390 | * reader to have read-ahead enabled. | |
391 | */ | |
392 | static struct cl_readahead * | |
393 | cluster_get_rap(vnode_t vp) | |
394 | { | |
395 | struct ubc_info *ubc; | |
396 | struct cl_readahead *rap; | |
397 | ||
398 | ubc = vp->v_ubcinfo; | |
399 | ||
400 | if ((rap = ubc->cl_rahead) == NULL) { | |
401 | rap = zalloc_flags(cl_rd_zone, Z_WAITOK | Z_ZERO); | |
402 | rap->cl_lastr = -1; | |
403 | lck_mtx_init(&rap->cl_lockr, &cl_mtx_grp, LCK_ATTR_NULL); | |
404 | ||
405 | vnode_lock(vp); | |
406 | ||
407 | if (ubc->cl_rahead == NULL) { | |
408 | ubc->cl_rahead = rap; | |
409 | } else { | |
410 | lck_mtx_destroy(&rap->cl_lockr, &cl_mtx_grp); | |
411 | zfree(cl_rd_zone, rap); | |
412 | rap = ubc->cl_rahead; | |
413 | } | |
414 | vnode_unlock(vp); | |
415 | } | |
416 | if (lck_mtx_try_lock(&rap->cl_lockr) == TRUE) { | |
417 | return rap; | |
418 | } | |
419 | ||
420 | return (struct cl_readahead *)NULL; | |
421 | } | |
422 | ||
423 | ||
424 | /* | |
425 | * if the write behind context doesn't yet exist, | |
426 | * and CLW_ALLOCATE is specified, allocate and initialize it... | |
427 | * the vnode lock serializes multiple callers | |
428 | * during the actual assignment... first one | |
429 | * to grab the lock wins... the other callers | |
430 | * will release the now unnecessary storage | |
431 | * | |
432 | * if CLW_RETURNLOCKED is set, grab (blocking if necessary) | |
433 | * the lock associated with the write behind context before | |
434 | * returning | |
435 | */ | |
436 | ||
437 | static struct cl_writebehind * | |
438 | cluster_get_wbp(vnode_t vp, int flags) | |
439 | { | |
440 | struct ubc_info *ubc; | |
441 | struct cl_writebehind *wbp; | |
442 | ||
443 | ubc = vp->v_ubcinfo; | |
444 | ||
445 | if ((wbp = ubc->cl_wbehind) == NULL) { | |
446 | if (!(flags & CLW_ALLOCATE)) { | |
447 | return (struct cl_writebehind *)NULL; | |
448 | } | |
449 | ||
450 | wbp = zalloc_flags(cl_wr_zone, Z_WAITOK | Z_ZERO); | |
451 | ||
452 | lck_mtx_init(&wbp->cl_lockw, &cl_mtx_grp, LCK_ATTR_NULL); | |
453 | ||
454 | vnode_lock(vp); | |
455 | ||
456 | if (ubc->cl_wbehind == NULL) { | |
457 | ubc->cl_wbehind = wbp; | |
458 | } else { | |
459 | lck_mtx_destroy(&wbp->cl_lockw, &cl_mtx_grp); | |
460 | zfree(cl_wr_zone, wbp); | |
461 | wbp = ubc->cl_wbehind; | |
462 | } | |
463 | vnode_unlock(vp); | |
464 | } | |
465 | if (flags & CLW_RETURNLOCKED) { | |
466 | lck_mtx_lock(&wbp->cl_lockw); | |
467 | } | |
468 | ||
469 | return wbp; | |
470 | } | |
471 | ||
472 | ||
473 | static void | |
474 | cluster_syncup(vnode_t vp, off_t newEOF, int (*callback)(buf_t, void *), void *callback_arg, int flags) | |
475 | { | |
476 | struct cl_writebehind *wbp; | |
477 | ||
478 | if ((wbp = cluster_get_wbp(vp, 0)) != NULL) { | |
479 | if (wbp->cl_number) { | |
480 | lck_mtx_lock(&wbp->cl_lockw); | |
481 | ||
482 | cluster_try_push(wbp, vp, newEOF, PUSH_ALL | flags, 0, callback, callback_arg, NULL, FALSE); | |
483 | ||
484 | lck_mtx_unlock(&wbp->cl_lockw); | |
485 | } | |
486 | } | |
487 | } | |
488 | ||
489 | ||
490 | static int | |
491 | cluster_io_present_in_BC(vnode_t vp, off_t f_offset) | |
492 | { | |
493 | daddr64_t blkno; | |
494 | size_t io_size; | |
495 | int (*bootcache_check_fn)(dev_t device, u_int64_t blkno) = bootcache_contains_block; | |
496 | ||
497 | if (bootcache_check_fn && vp->v_mount && vp->v_mount->mnt_devvp) { | |
498 | if (VNOP_BLOCKMAP(vp, f_offset, PAGE_SIZE, &blkno, &io_size, NULL, VNODE_READ | VNODE_BLOCKMAP_NO_TRACK, NULL)) { | |
499 | return 0; | |
500 | } | |
501 | ||
502 | if (io_size == 0) { | |
503 | return 0; | |
504 | } | |
505 | ||
506 | if (bootcache_check_fn(vp->v_mount->mnt_devvp->v_rdev, blkno)) { | |
507 | return 1; | |
508 | } | |
509 | } | |
510 | return 0; | |
511 | } | |
512 | ||
513 | ||
514 | static int | |
515 | cluster_is_throttled(vnode_t vp) | |
516 | { | |
517 | return throttle_io_will_be_throttled(-1, vp->v_mount); | |
518 | } | |
519 | ||
520 | ||
521 | static void | |
522 | cluster_iostate_wait(struct clios *iostate, u_int target, const char *wait_name) | |
523 | { | |
524 | lck_mtx_lock(&iostate->io_mtxp); | |
525 | ||
526 | while ((iostate->io_issued - iostate->io_completed) > target) { | |
527 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 95)) | DBG_FUNC_START, | |
528 | iostate->io_issued, iostate->io_completed, target, 0, 0); | |
529 | ||
530 | iostate->io_wanted = 1; | |
531 | msleep((caddr_t)&iostate->io_wanted, &iostate->io_mtxp, PRIBIO + 1, wait_name, NULL); | |
532 | ||
533 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 95)) | DBG_FUNC_END, | |
534 | iostate->io_issued, iostate->io_completed, target, 0, 0); | |
535 | } | |
536 | lck_mtx_unlock(&iostate->io_mtxp); | |
537 | } | |
538 | ||
539 | static void | |
540 | cluster_handle_associated_upl(struct clios *iostate, upl_t upl, | |
541 | upl_offset_t upl_offset, upl_size_t size) | |
542 | { | |
543 | if (!size) { | |
544 | return; | |
545 | } | |
546 | ||
547 | upl_t associated_upl = upl_associated_upl(upl); | |
548 | ||
549 | if (!associated_upl) { | |
550 | return; | |
551 | } | |
552 | ||
553 | #if 0 | |
554 | printf("1: %d %d\n", upl_offset, upl_offset + size); | |
555 | #endif | |
556 | ||
557 | /* | |
558 | * The associated UPL is page aligned to file offsets whereas the | |
559 | * UPL it's attached to has different alignment requirements. The | |
560 | * upl_offset that we have refers to @upl. The code that follows | |
561 | * has to deal with the first and last pages in this transaction | |
562 | * which might straddle pages in the associated UPL. To keep | |
563 | * track of these pages, we use the mark bits: if the mark bit is | |
564 | * set, we know another transaction has completed its part of that | |
565 | * page and so we can unlock that page here. | |
566 | * | |
567 | * The following illustrates what we have to deal with: | |
568 | * | |
569 | * MEM u <------------ 1 PAGE ------------> e | |
570 | * +-------------+----------------------+----------------- | |
571 | * | |######################|################# | |
572 | * +-------------+----------------------+----------------- | |
573 | * FILE | <--- a ---> o <------------ 1 PAGE ------------> | |
574 | * | |
575 | * So here we show a write to offset @o. The data that is to be | |
576 | * written is in a buffer that is not page aligned; it has offset | |
577 | * @a in the page. The upl that carries the data starts in memory | |
578 | * at @u. The associated upl starts in the file at offset @o. A | |
579 | * transaction will always end on a page boundary (like @e above) | |
580 | * except for the very last transaction in the group. We cannot | |
581 | * unlock the page at @o in the associated upl until both the | |
582 | * transaction ending at @e and the following transaction (that | |
583 | * starts at @e) has completed. | |
584 | */ | |
585 | ||
586 | /* | |
587 | * We record whether or not the two UPLs are aligned as the mark | |
588 | * bit in the first page of @upl. | |
589 | */ | |
590 | upl_page_info_t *pl = UPL_GET_INTERNAL_PAGE_LIST(upl); | |
591 | bool is_unaligned = upl_page_get_mark(pl, 0); | |
592 | ||
593 | if (is_unaligned) { | |
594 | upl_page_info_t *assoc_pl = UPL_GET_INTERNAL_PAGE_LIST(associated_upl); | |
595 | ||
596 | upl_offset_t upl_end = upl_offset + size; | |
597 | assert(upl_end >= PAGE_SIZE); | |
598 | ||
599 | upl_size_t assoc_upl_size = upl_get_size(associated_upl); | |
600 | ||
601 | /* | |
602 | * In the very first transaction in the group, upl_offset will | |
603 | * not be page aligned, but after that it will be and in that | |
604 | * case we want the preceding page in the associated UPL hence | |
605 | * the minus one. | |
606 | */ | |
607 | assert(upl_offset); | |
608 | if (upl_offset) { | |
609 | upl_offset = trunc_page_32(upl_offset - 1); | |
610 | } | |
611 | ||
612 | lck_mtx_lock_spin(&iostate->io_mtxp); | |
613 | ||
614 | // Look at the first page... | |
615 | if (upl_offset | |
616 | && !upl_page_get_mark(assoc_pl, upl_offset >> PAGE_SHIFT)) { | |
617 | /* | |
618 | * The first page isn't marked so let another transaction | |
619 | * completion handle it. | |
620 | */ | |
621 | upl_page_set_mark(assoc_pl, upl_offset >> PAGE_SHIFT, true); | |
622 | upl_offset += PAGE_SIZE; | |
623 | } | |
624 | ||
625 | // And now the last page... | |
626 | ||
627 | /* | |
628 | * This needs to be > rather than >= because if it's equal, it | |
629 | * means there's another transaction that is sharing the last | |
630 | * page. | |
631 | */ | |
632 | if (upl_end > assoc_upl_size) { | |
633 | upl_end = assoc_upl_size; | |
634 | } else { | |
635 | upl_end = trunc_page_32(upl_end); | |
636 | const int last_pg = (upl_end >> PAGE_SHIFT) - 1; | |
637 | ||
638 | if (!upl_page_get_mark(assoc_pl, last_pg)) { | |
639 | /* | |
640 | * The last page isn't marked so mark the page and let another | |
641 | * transaction completion handle it. | |
642 | */ | |
643 | upl_page_set_mark(assoc_pl, last_pg, true); | |
644 | upl_end -= PAGE_SIZE; | |
645 | } | |
646 | } | |
647 | ||
648 | lck_mtx_unlock(&iostate->io_mtxp); | |
649 | ||
650 | #if 0 | |
651 | printf("2: %d %d\n", upl_offset, upl_end); | |
652 | #endif | |
653 | ||
654 | if (upl_end <= upl_offset) { | |
655 | return; | |
656 | } | |
657 | ||
658 | size = upl_end - upl_offset; | |
659 | } else { | |
660 | assert(!(upl_offset & PAGE_MASK)); | |
661 | assert(!(size & PAGE_MASK)); | |
662 | } | |
663 | ||
664 | boolean_t empty; | |
665 | ||
666 | /* | |
667 | * We can unlock these pages now and as this is for a | |
668 | * direct/uncached write, we want to dump the pages too. | |
669 | */ | |
670 | kern_return_t kr = upl_abort_range(associated_upl, upl_offset, size, | |
671 | UPL_ABORT_DUMP_PAGES, &empty); | |
672 | ||
673 | assert(!kr); | |
674 | ||
675 | if (!kr && empty) { | |
676 | upl_set_associated_upl(upl, NULL); | |
677 | upl_deallocate(associated_upl); | |
678 | } | |
679 | } | |
680 | ||
681 | static int | |
682 | cluster_ioerror(upl_t upl, int upl_offset, int abort_size, int error, int io_flags, vnode_t vp) | |
683 | { | |
684 | int upl_abort_code = 0; | |
685 | int page_in = 0; | |
686 | int page_out = 0; | |
687 | ||
688 | if ((io_flags & (B_PHYS | B_CACHE)) == (B_PHYS | B_CACHE)) { | |
689 | /* | |
690 | * direct write of any flavor, or a direct read that wasn't aligned | |
691 | */ | |
692 | ubc_upl_commit_range(upl, upl_offset, abort_size, UPL_COMMIT_FREE_ON_EMPTY); | |
693 | } else { | |
694 | if (io_flags & B_PAGEIO) { | |
695 | if (io_flags & B_READ) { | |
696 | page_in = 1; | |
697 | } else { | |
698 | page_out = 1; | |
699 | } | |
700 | } | |
701 | if (io_flags & B_CACHE) { | |
702 | /* | |
703 | * leave pages in the cache unchanged on error | |
704 | */ | |
705 | upl_abort_code = UPL_ABORT_FREE_ON_EMPTY; | |
706 | } else if (((io_flags & B_READ) == 0) && ((error != ENXIO) || vnode_isswap(vp))) { | |
707 | /* | |
708 | * transient error on pageout/write path... leave pages unchanged | |
709 | */ | |
710 | upl_abort_code = UPL_ABORT_FREE_ON_EMPTY; | |
711 | } else if (page_in) { | |
712 | upl_abort_code = UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_ERROR; | |
713 | } else { | |
714 | upl_abort_code = UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_DUMP_PAGES; | |
715 | } | |
716 | ||
717 | ubc_upl_abort_range(upl, upl_offset, abort_size, upl_abort_code); | |
718 | } | |
719 | return upl_abort_code; | |
720 | } | |
721 | ||
722 | ||
723 | static int | |
724 | cluster_iodone(buf_t bp, void *callback_arg) | |
725 | { | |
726 | int b_flags; | |
727 | int error; | |
728 | int total_size; | |
729 | int total_resid; | |
730 | int upl_offset; | |
731 | int zero_offset; | |
732 | int pg_offset = 0; | |
733 | int commit_size = 0; | |
734 | int upl_flags = 0; | |
735 | int transaction_size = 0; | |
736 | upl_t upl; | |
737 | buf_t cbp; | |
738 | buf_t cbp_head; | |
739 | buf_t cbp_next; | |
740 | buf_t real_bp; | |
741 | vnode_t vp; | |
742 | struct clios *iostate; | |
743 | boolean_t transaction_complete = FALSE; | |
744 | ||
745 | __IGNORE_WCASTALIGN(cbp_head = (buf_t)(bp->b_trans_head)); | |
746 | ||
747 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 20)) | DBG_FUNC_START, | |
748 | cbp_head, bp->b_lblkno, bp->b_bcount, bp->b_flags, 0); | |
749 | ||
750 | if (cbp_head->b_trans_next || !(cbp_head->b_flags & B_EOT)) { | |
751 | lck_mtx_lock_spin(&cl_transaction_mtxp); | |
752 | ||
753 | bp->b_flags |= B_TDONE; | |
754 | ||
755 | for (cbp = cbp_head; cbp; cbp = cbp->b_trans_next) { | |
756 | /* | |
757 | * all I/O requests that are part of this transaction | |
758 | * have to complete before we can process it | |
759 | */ | |
760 | if (!(cbp->b_flags & B_TDONE)) { | |
761 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 20)) | DBG_FUNC_END, | |
762 | cbp_head, cbp, cbp->b_bcount, cbp->b_flags, 0); | |
763 | ||
764 | lck_mtx_unlock(&cl_transaction_mtxp); | |
765 | ||
766 | return 0; | |
767 | } | |
768 | ||
769 | if (cbp->b_trans_next == CLUSTER_IO_WAITING) { | |
770 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 20)) | DBG_FUNC_END, | |
771 | cbp_head, cbp, cbp->b_bcount, cbp->b_flags, 0); | |
772 | ||
773 | lck_mtx_unlock(&cl_transaction_mtxp); | |
774 | wakeup(cbp); | |
775 | ||
776 | return 0; | |
777 | } | |
778 | ||
779 | if (cbp->b_flags & B_EOT) { | |
780 | transaction_complete = TRUE; | |
781 | } | |
782 | } | |
783 | lck_mtx_unlock(&cl_transaction_mtxp); | |
784 | ||
785 | if (transaction_complete == FALSE) { | |
786 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 20)) | DBG_FUNC_END, | |
787 | cbp_head, 0, 0, 0, 0); | |
788 | return 0; | |
789 | } | |
790 | } | |
791 | error = 0; | |
792 | total_size = 0; | |
793 | total_resid = 0; | |
794 | ||
795 | cbp = cbp_head; | |
796 | vp = cbp->b_vp; | |
797 | upl_offset = cbp->b_uploffset; | |
798 | upl = cbp->b_upl; | |
799 | b_flags = cbp->b_flags; | |
800 | real_bp = cbp->b_real_bp; | |
801 | zero_offset = cbp->b_validend; | |
802 | iostate = (struct clios *)cbp->b_iostate; | |
803 | ||
804 | if (real_bp) { | |
805 | real_bp->b_dev = cbp->b_dev; | |
806 | } | |
807 | ||
808 | while (cbp) { | |
809 | if ((cbp->b_flags & B_ERROR) && error == 0) { | |
810 | error = cbp->b_error; | |
811 | } | |
812 | ||
813 | total_resid += cbp->b_resid; | |
814 | total_size += cbp->b_bcount; | |
815 | ||
816 | cbp_next = cbp->b_trans_next; | |
817 | ||
818 | if (cbp_next == NULL) { | |
819 | /* | |
820 | * compute the overall size of the transaction | |
821 | * in case we created one that has 'holes' in it | |
822 | * 'total_size' represents the amount of I/O we | |
823 | * did, not the span of the transaction w/r to the UPL | |
824 | */ | |
825 | transaction_size = cbp->b_uploffset + cbp->b_bcount - upl_offset; | |
826 | } | |
827 | ||
828 | if (cbp != cbp_head) { | |
829 | free_io_buf(cbp); | |
830 | } | |
831 | ||
832 | cbp = cbp_next; | |
833 | } | |
834 | ||
835 | if (ISSET(b_flags, B_COMMIT_UPL)) { | |
836 | cluster_handle_associated_upl(iostate, | |
837 | cbp_head->b_upl, | |
838 | upl_offset, | |
839 | transaction_size); | |
840 | } | |
841 | ||
842 | if (error == 0 && total_resid) { | |
843 | error = EIO; | |
844 | } | |
845 | ||
846 | if (error == 0) { | |
847 | int (*cliodone_func)(buf_t, void *) = (int (*)(buf_t, void *))(cbp_head->b_cliodone); | |
848 | ||
849 | if (cliodone_func != NULL) { | |
850 | cbp_head->b_bcount = transaction_size; | |
851 | ||
852 | error = (*cliodone_func)(cbp_head, callback_arg); | |
853 | } | |
854 | } | |
855 | if (zero_offset) { | |
856 | cluster_zero(upl, zero_offset, PAGE_SIZE - (zero_offset & PAGE_MASK), real_bp); | |
857 | } | |
858 | ||
859 | free_io_buf(cbp_head); | |
860 | ||
861 | if (iostate) { | |
862 | int need_wakeup = 0; | |
863 | ||
864 | /* | |
865 | * someone has issued multiple I/Os asynchrounsly | |
866 | * and is waiting for them to complete (streaming) | |
867 | */ | |
868 | lck_mtx_lock_spin(&iostate->io_mtxp); | |
869 | ||
870 | if (error && iostate->io_error == 0) { | |
871 | iostate->io_error = error; | |
872 | } | |
873 | ||
874 | iostate->io_completed += total_size; | |
875 | ||
876 | if (iostate->io_wanted) { | |
877 | /* | |
878 | * someone is waiting for the state of | |
879 | * this io stream to change | |
880 | */ | |
881 | iostate->io_wanted = 0; | |
882 | need_wakeup = 1; | |
883 | } | |
884 | lck_mtx_unlock(&iostate->io_mtxp); | |
885 | ||
886 | if (need_wakeup) { | |
887 | wakeup((caddr_t)&iostate->io_wanted); | |
888 | } | |
889 | } | |
890 | ||
891 | if (b_flags & B_COMMIT_UPL) { | |
892 | pg_offset = upl_offset & PAGE_MASK; | |
893 | commit_size = (pg_offset + transaction_size + (PAGE_SIZE - 1)) & ~PAGE_MASK; | |
894 | ||
895 | if (error) { | |
896 | upl_set_iodone_error(upl, error); | |
897 | ||
898 | upl_flags = cluster_ioerror(upl, upl_offset - pg_offset, commit_size, error, b_flags, vp); | |
899 | } else { | |
900 | upl_flags = UPL_COMMIT_FREE_ON_EMPTY; | |
901 | ||
902 | if ((b_flags & B_PHYS) && (b_flags & B_READ)) { | |
903 | upl_flags |= UPL_COMMIT_SET_DIRTY; | |
904 | } | |
905 | ||
906 | if (b_flags & B_AGE) { | |
907 | upl_flags |= UPL_COMMIT_INACTIVATE; | |
908 | } | |
909 | ||
910 | ubc_upl_commit_range(upl, upl_offset - pg_offset, commit_size, upl_flags); | |
911 | } | |
912 | } | |
913 | if (real_bp) { | |
914 | if (error) { | |
915 | real_bp->b_flags |= B_ERROR; | |
916 | real_bp->b_error = error; | |
917 | } | |
918 | real_bp->b_resid = total_resid; | |
919 | ||
920 | buf_biodone(real_bp); | |
921 | } | |
922 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 20)) | DBG_FUNC_END, | |
923 | upl, upl_offset - pg_offset, commit_size, (error << 24) | upl_flags, 0); | |
924 | ||
925 | return error; | |
926 | } | |
927 | ||
928 | ||
929 | uint32_t | |
930 | cluster_throttle_io_limit(vnode_t vp, uint32_t *limit) | |
931 | { | |
932 | if (cluster_is_throttled(vp)) { | |
933 | *limit = THROTTLE_MAX_IOSIZE; | |
934 | return 1; | |
935 | } | |
936 | return 0; | |
937 | } | |
938 | ||
939 | ||
940 | void | |
941 | cluster_zero(upl_t upl, upl_offset_t upl_offset, int size, buf_t bp) | |
942 | { | |
943 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 23)) | DBG_FUNC_START, | |
944 | upl_offset, size, bp, 0, 0); | |
945 | ||
946 | if (bp == NULL || bp->b_datap == 0) { | |
947 | upl_page_info_t *pl; | |
948 | addr64_t zero_addr; | |
949 | ||
950 | pl = ubc_upl_pageinfo(upl); | |
951 | ||
952 | if (upl_device_page(pl) == TRUE) { | |
953 | zero_addr = ((addr64_t)upl_phys_page(pl, 0) << PAGE_SHIFT) + upl_offset; | |
954 | ||
955 | bzero_phys_nc(zero_addr, size); | |
956 | } else { | |
957 | while (size) { | |
958 | int page_offset; | |
959 | int page_index; | |
960 | int zero_cnt; | |
961 | ||
962 | page_index = upl_offset / PAGE_SIZE; | |
963 | page_offset = upl_offset & PAGE_MASK; | |
964 | ||
965 | zero_addr = ((addr64_t)upl_phys_page(pl, page_index) << PAGE_SHIFT) + page_offset; | |
966 | zero_cnt = min(PAGE_SIZE - page_offset, size); | |
967 | ||
968 | bzero_phys(zero_addr, zero_cnt); | |
969 | ||
970 | size -= zero_cnt; | |
971 | upl_offset += zero_cnt; | |
972 | } | |
973 | } | |
974 | } else { | |
975 | bzero((caddr_t)((vm_offset_t)bp->b_datap + upl_offset), size); | |
976 | } | |
977 | ||
978 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 23)) | DBG_FUNC_END, | |
979 | upl_offset, size, 0, 0, 0); | |
980 | } | |
981 | ||
982 | ||
983 | static void | |
984 | cluster_EOT(buf_t cbp_head, buf_t cbp_tail, int zero_offset) | |
985 | { | |
986 | cbp_head->b_validend = zero_offset; | |
987 | cbp_tail->b_flags |= B_EOT; | |
988 | } | |
989 | ||
990 | static void | |
991 | cluster_wait_IO(buf_t cbp_head, int async) | |
992 | { | |
993 | buf_t cbp; | |
994 | ||
995 | if (async) { | |
996 | /* | |
997 | * Async callback completion will not normally generate a | |
998 | * wakeup upon I/O completion. To get woken up, we set | |
999 | * b_trans_next (which is safe for us to modify) on the last | |
1000 | * buffer to CLUSTER_IO_WAITING so that cluster_iodone knows | |
1001 | * to wake us up when all buffers as part of this transaction | |
1002 | * are completed. This is done under the umbrella of | |
1003 | * cl_transaction_mtxp which is also taken in cluster_iodone. | |
1004 | */ | |
1005 | bool done = true; | |
1006 | buf_t last = NULL; | |
1007 | ||
1008 | lck_mtx_lock_spin(&cl_transaction_mtxp); | |
1009 | ||
1010 | for (cbp = cbp_head; cbp; last = cbp, cbp = cbp->b_trans_next) { | |
1011 | if (!ISSET(cbp->b_flags, B_TDONE)) { | |
1012 | done = false; | |
1013 | } | |
1014 | } | |
1015 | ||
1016 | if (!done) { | |
1017 | last->b_trans_next = CLUSTER_IO_WAITING; | |
1018 | ||
1019 | DTRACE_IO1(wait__start, buf_t, last); | |
1020 | do { | |
1021 | msleep(last, &cl_transaction_mtxp, PSPIN | (PRIBIO + 1), "cluster_wait_IO", NULL); | |
1022 | ||
1023 | /* | |
1024 | * We should only have been woken up if all the | |
1025 | * buffers are completed, but just in case... | |
1026 | */ | |
1027 | done = true; | |
1028 | for (cbp = cbp_head; cbp != CLUSTER_IO_WAITING; cbp = cbp->b_trans_next) { | |
1029 | if (!ISSET(cbp->b_flags, B_TDONE)) { | |
1030 | done = false; | |
1031 | break; | |
1032 | } | |
1033 | } | |
1034 | } while (!done); | |
1035 | DTRACE_IO1(wait__done, buf_t, last); | |
1036 | ||
1037 | last->b_trans_next = NULL; | |
1038 | } | |
1039 | ||
1040 | lck_mtx_unlock(&cl_transaction_mtxp); | |
1041 | } else { // !async | |
1042 | for (cbp = cbp_head; cbp; cbp = cbp->b_trans_next) { | |
1043 | buf_biowait(cbp); | |
1044 | } | |
1045 | } | |
1046 | } | |
1047 | ||
1048 | static void | |
1049 | cluster_complete_transaction(buf_t *cbp_head, void *callback_arg, int *retval, int flags, int needwait) | |
1050 | { | |
1051 | buf_t cbp; | |
1052 | int error; | |
1053 | boolean_t isswapout = FALSE; | |
1054 | ||
1055 | /* | |
1056 | * cluster_complete_transaction will | |
1057 | * only be called if we've issued a complete chain in synchronous mode | |
1058 | * or, we've already done a cluster_wait_IO on an incomplete chain | |
1059 | */ | |
1060 | if (needwait) { | |
1061 | for (cbp = *cbp_head; cbp; cbp = cbp->b_trans_next) { | |
1062 | buf_biowait(cbp); | |
1063 | } | |
1064 | } | |
1065 | /* | |
1066 | * we've already waited on all of the I/Os in this transaction, | |
1067 | * so mark all of the buf_t's in this transaction as B_TDONE | |
1068 | * so that cluster_iodone sees the transaction as completed | |
1069 | */ | |
1070 | for (cbp = *cbp_head; cbp; cbp = cbp->b_trans_next) { | |
1071 | cbp->b_flags |= B_TDONE; | |
1072 | } | |
1073 | cbp = *cbp_head; | |
1074 | ||
1075 | if ((flags & (CL_ASYNC | CL_PAGEOUT)) == CL_PAGEOUT && vnode_isswap(cbp->b_vp)) { | |
1076 | isswapout = TRUE; | |
1077 | } | |
1078 | ||
1079 | error = cluster_iodone(cbp, callback_arg); | |
1080 | ||
1081 | if (!(flags & CL_ASYNC) && error && *retval == 0) { | |
1082 | if (((flags & (CL_PAGEOUT | CL_KEEPCACHED)) != CL_PAGEOUT) || (error != ENXIO)) { | |
1083 | *retval = error; | |
1084 | } else if (isswapout == TRUE) { | |
1085 | *retval = error; | |
1086 | } | |
1087 | } | |
1088 | *cbp_head = (buf_t)NULL; | |
1089 | } | |
1090 | ||
1091 | ||
1092 | static int | |
1093 | cluster_io(vnode_t vp, upl_t upl, vm_offset_t upl_offset, off_t f_offset, int non_rounded_size, | |
1094 | int flags, buf_t real_bp, struct clios *iostate, int (*callback)(buf_t, void *), void *callback_arg) | |
1095 | { | |
1096 | buf_t cbp; | |
1097 | u_int size; | |
1098 | u_int io_size; | |
1099 | int io_flags; | |
1100 | int bmap_flags; | |
1101 | int error = 0; | |
1102 | int retval = 0; | |
1103 | buf_t cbp_head = NULL; | |
1104 | buf_t cbp_tail = NULL; | |
1105 | int trans_count = 0; | |
1106 | int max_trans_count; | |
1107 | u_int pg_count; | |
1108 | int pg_offset; | |
1109 | u_int max_iosize; | |
1110 | u_int max_vectors; | |
1111 | int priv; | |
1112 | int zero_offset = 0; | |
1113 | int async_throttle = 0; | |
1114 | mount_t mp; | |
1115 | vm_offset_t upl_end_offset; | |
1116 | boolean_t need_EOT = FALSE; | |
1117 | ||
1118 | /* | |
1119 | * we currently don't support buffers larger than a page | |
1120 | */ | |
1121 | if (real_bp && non_rounded_size > PAGE_SIZE) { | |
1122 | panic("%s(): Called with real buffer of size %d bytes which " | |
1123 | "is greater than the maximum allowed size of " | |
1124 | "%d bytes (the system PAGE_SIZE).\n", | |
1125 | __FUNCTION__, non_rounded_size, PAGE_SIZE); | |
1126 | } | |
1127 | ||
1128 | mp = vp->v_mount; | |
1129 | ||
1130 | /* | |
1131 | * we don't want to do any funny rounding of the size for IO requests | |
1132 | * coming through the DIRECT or CONTIGUOUS paths... those pages don't | |
1133 | * belong to us... we can't extend (nor do we need to) the I/O to fill | |
1134 | * out a page | |
1135 | */ | |
1136 | if (mp->mnt_devblocksize > 1 && !(flags & (CL_DEV_MEMORY | CL_DIRECT_IO))) { | |
1137 | /* | |
1138 | * round the requested size up so that this I/O ends on a | |
1139 | * page boundary in case this is a 'write'... if the filesystem | |
1140 | * has blocks allocated to back the page beyond the EOF, we want to | |
1141 | * make sure to write out the zero's that are sitting beyond the EOF | |
1142 | * so that in case the filesystem doesn't explicitly zero this area | |
1143 | * if a hole is created via a lseek/write beyond the current EOF, | |
1144 | * it will return zeros when it's read back from the disk. If the | |
1145 | * physical allocation doesn't extend for the whole page, we'll | |
1146 | * only write/read from the disk up to the end of this allocation | |
1147 | * via the extent info returned from the VNOP_BLOCKMAP call. | |
1148 | */ | |
1149 | pg_offset = upl_offset & PAGE_MASK; | |
1150 | ||
1151 | size = (((non_rounded_size + pg_offset) + (PAGE_SIZE - 1)) & ~PAGE_MASK) - pg_offset; | |
1152 | } else { | |
1153 | /* | |
1154 | * anyone advertising a blocksize of 1 byte probably | |
1155 | * can't deal with us rounding up the request size | |
1156 | * AFP is one such filesystem/device | |
1157 | */ | |
1158 | size = non_rounded_size; | |
1159 | } | |
1160 | upl_end_offset = upl_offset + size; | |
1161 | ||
1162 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 22)) | DBG_FUNC_START, (int)f_offset, size, upl_offset, flags, 0); | |
1163 | ||
1164 | /* | |
1165 | * Set the maximum transaction size to the maximum desired number of | |
1166 | * buffers. | |
1167 | */ | |
1168 | max_trans_count = 8; | |
1169 | if (flags & CL_DEV_MEMORY) { | |
1170 | max_trans_count = 16; | |
1171 | } | |
1172 | ||
1173 | if (flags & CL_READ) { | |
1174 | io_flags = B_READ; | |
1175 | bmap_flags = VNODE_READ; | |
1176 | ||
1177 | max_iosize = mp->mnt_maxreadcnt; | |
1178 | max_vectors = mp->mnt_segreadcnt; | |
1179 | } else { | |
1180 | io_flags = B_WRITE; | |
1181 | bmap_flags = VNODE_WRITE; | |
1182 | ||
1183 | max_iosize = mp->mnt_maxwritecnt; | |
1184 | max_vectors = mp->mnt_segwritecnt; | |
1185 | } | |
1186 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 22)) | DBG_FUNC_NONE, max_iosize, max_vectors, mp->mnt_devblocksize, 0, 0); | |
1187 | ||
1188 | /* | |
1189 | * make sure the maximum iosize is a | |
1190 | * multiple of the page size | |
1191 | */ | |
1192 | max_iosize &= ~PAGE_MASK; | |
1193 | ||
1194 | /* | |
1195 | * Ensure the maximum iosize is sensible. | |
1196 | */ | |
1197 | if (!max_iosize) { | |
1198 | max_iosize = PAGE_SIZE; | |
1199 | } | |
1200 | ||
1201 | if (flags & CL_THROTTLE) { | |
1202 | if (!(flags & CL_PAGEOUT) && cluster_is_throttled(vp)) { | |
1203 | if (max_iosize > THROTTLE_MAX_IOSIZE) { | |
1204 | max_iosize = THROTTLE_MAX_IOSIZE; | |
1205 | } | |
1206 | async_throttle = THROTTLE_MAXCNT; | |
1207 | } else { | |
1208 | if ((flags & CL_DEV_MEMORY)) { | |
1209 | async_throttle = IO_SCALE(vp, VNODE_ASYNC_THROTTLE); | |
1210 | } else { | |
1211 | u_int max_cluster; | |
1212 | u_int max_cluster_size; | |
1213 | u_int scale; | |
1214 | ||
1215 | if (vp->v_mount->mnt_minsaturationbytecount) { | |
1216 | max_cluster_size = vp->v_mount->mnt_minsaturationbytecount; | |
1217 | ||
1218 | scale = 1; | |
1219 | } else { | |
1220 | max_cluster_size = MAX_CLUSTER_SIZE(vp); | |
1221 | ||
1222 | if (disk_conditioner_mount_is_ssd(vp->v_mount)) { | |
1223 | scale = WRITE_THROTTLE_SSD; | |
1224 | } else { | |
1225 | scale = WRITE_THROTTLE; | |
1226 | } | |
1227 | } | |
1228 | if (max_iosize > max_cluster_size) { | |
1229 | max_cluster = max_cluster_size; | |
1230 | } else { | |
1231 | max_cluster = max_iosize; | |
1232 | } | |
1233 | ||
1234 | if (size < max_cluster) { | |
1235 | max_cluster = size; | |
1236 | } | |
1237 | ||
1238 | if (flags & CL_CLOSE) { | |
1239 | scale += MAX_CLUSTERS; | |
1240 | } | |
1241 | ||
1242 | async_throttle = min(IO_SCALE(vp, VNODE_ASYNC_THROTTLE), ((scale * max_cluster_size) / max_cluster) - 1); | |
1243 | } | |
1244 | } | |
1245 | } | |
1246 | if (flags & CL_AGE) { | |
1247 | io_flags |= B_AGE; | |
1248 | } | |
1249 | if (flags & (CL_PAGEIN | CL_PAGEOUT)) { | |
1250 | io_flags |= B_PAGEIO; | |
1251 | } | |
1252 | if (flags & (CL_IOSTREAMING)) { | |
1253 | io_flags |= B_IOSTREAMING; | |
1254 | } | |
1255 | if (flags & CL_COMMIT) { | |
1256 | io_flags |= B_COMMIT_UPL; | |
1257 | } | |
1258 | if (flags & CL_DIRECT_IO) { | |
1259 | io_flags |= B_PHYS; | |
1260 | } | |
1261 | if (flags & (CL_PRESERVE | CL_KEEPCACHED)) { | |
1262 | io_flags |= B_CACHE; | |
1263 | } | |
1264 | if (flags & CL_PASSIVE) { | |
1265 | io_flags |= B_PASSIVE; | |
1266 | } | |
1267 | if (flags & CL_ENCRYPTED) { | |
1268 | io_flags |= B_ENCRYPTED_IO; | |
1269 | } | |
1270 | ||
1271 | if (vp->v_flag & VSYSTEM) { | |
1272 | io_flags |= B_META; | |
1273 | } | |
1274 | ||
1275 | if ((flags & CL_READ) && ((upl_offset + non_rounded_size) & PAGE_MASK) && (!(flags & CL_NOZERO))) { | |
1276 | /* | |
1277 | * then we are going to end up | |
1278 | * with a page that we can't complete (the file size wasn't a multiple | |
1279 | * of PAGE_SIZE and we're trying to read to the end of the file | |
1280 | * so we'll go ahead and zero out the portion of the page we can't | |
1281 | * read in from the file | |
1282 | */ | |
1283 | zero_offset = (int)(upl_offset + non_rounded_size); | |
1284 | } else if (!ISSET(flags, CL_READ) && ISSET(flags, CL_DIRECT_IO)) { | |
1285 | assert(ISSET(flags, CL_COMMIT)); | |
1286 | ||
1287 | // For a direct/uncached write, we need to lock pages... | |
1288 | ||
1289 | upl_t cached_upl; | |
1290 | ||
1291 | /* | |
1292 | * Create a UPL to lock the pages in the cache whilst the | |
1293 | * write is in progress. | |
1294 | */ | |
1295 | ubc_create_upl_kernel(vp, f_offset, non_rounded_size, &cached_upl, | |
1296 | NULL, UPL_SET_LITE, VM_KERN_MEMORY_FILE); | |
1297 | ||
1298 | /* | |
1299 | * Attach this UPL to the other UPL so that we can find it | |
1300 | * later. | |
1301 | */ | |
1302 | upl_set_associated_upl(upl, cached_upl); | |
1303 | ||
1304 | if (upl_offset & PAGE_MASK) { | |
1305 | /* | |
1306 | * The two UPLs are not aligned, so mark the first page in | |
1307 | * @upl so that cluster_handle_associated_upl can handle | |
1308 | * it accordingly. | |
1309 | */ | |
1310 | upl_page_info_t *pl = UPL_GET_INTERNAL_PAGE_LIST(upl); | |
1311 | upl_page_set_mark(pl, 0, true); | |
1312 | } | |
1313 | } | |
1314 | ||
1315 | while (size) { | |
1316 | daddr64_t blkno; | |
1317 | daddr64_t lblkno; | |
1318 | u_int io_size_wanted; | |
1319 | size_t io_size_tmp; | |
1320 | ||
1321 | if (size > max_iosize) { | |
1322 | io_size = max_iosize; | |
1323 | } else { | |
1324 | io_size = size; | |
1325 | } | |
1326 | ||
1327 | io_size_wanted = io_size; | |
1328 | io_size_tmp = (size_t)io_size; | |
1329 | ||
1330 | if ((error = VNOP_BLOCKMAP(vp, f_offset, io_size, &blkno, &io_size_tmp, NULL, bmap_flags, NULL))) { | |
1331 | break; | |
1332 | } | |
1333 | ||
1334 | if (io_size_tmp > io_size_wanted) { | |
1335 | io_size = io_size_wanted; | |
1336 | } else { | |
1337 | io_size = (u_int)io_size_tmp; | |
1338 | } | |
1339 | ||
1340 | if (real_bp && (real_bp->b_blkno == real_bp->b_lblkno)) { | |
1341 | real_bp->b_blkno = blkno; | |
1342 | } | |
1343 | ||
1344 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 24)) | DBG_FUNC_NONE, | |
1345 | (int)f_offset, (int)(blkno >> 32), (int)blkno, io_size, 0); | |
1346 | ||
1347 | if (io_size == 0) { | |
1348 | /* | |
1349 | * vnop_blockmap didn't return an error... however, it did | |
1350 | * return an extent size of 0 which means we can't | |
1351 | * make forward progress on this I/O... a hole in the | |
1352 | * file would be returned as a blkno of -1 with a non-zero io_size | |
1353 | * a real extent is returned with a blkno != -1 and a non-zero io_size | |
1354 | */ | |
1355 | error = EINVAL; | |
1356 | break; | |
1357 | } | |
1358 | if (!(flags & CL_READ) && blkno == -1) { | |
1359 | off_t e_offset; | |
1360 | int pageout_flags; | |
1361 | ||
1362 | if (upl_get_internal_vectorupl(upl)) { | |
1363 | panic("Vector UPLs should not take this code-path\n"); | |
1364 | } | |
1365 | /* | |
1366 | * we're writing into a 'hole' | |
1367 | */ | |
1368 | if (flags & CL_PAGEOUT) { | |
1369 | /* | |
1370 | * if we got here via cluster_pageout | |
1371 | * then just error the request and return | |
1372 | * the 'hole' should already have been covered | |
1373 | */ | |
1374 | error = EINVAL; | |
1375 | break; | |
1376 | } | |
1377 | /* | |
1378 | * we can get here if the cluster code happens to | |
1379 | * pick up a page that was dirtied via mmap vs | |
1380 | * a 'write' and the page targets a 'hole'... | |
1381 | * i.e. the writes to the cluster were sparse | |
1382 | * and the file was being written for the first time | |
1383 | * | |
1384 | * we can also get here if the filesystem supports | |
1385 | * 'holes' that are less than PAGE_SIZE.... because | |
1386 | * we can't know if the range in the page that covers | |
1387 | * the 'hole' has been dirtied via an mmap or not, | |
1388 | * we have to assume the worst and try to push the | |
1389 | * entire page to storage. | |
1390 | * | |
1391 | * Try paging out the page individually before | |
1392 | * giving up entirely and dumping it (the pageout | |
1393 | * path will insure that the zero extent accounting | |
1394 | * has been taken care of before we get back into cluster_io) | |
1395 | * | |
1396 | * go direct to vnode_pageout so that we don't have to | |
1397 | * unbusy the page from the UPL... we used to do this | |
1398 | * so that we could call ubc_msync, but that results | |
1399 | * in a potential deadlock if someone else races us to acquire | |
1400 | * that page and wins and in addition needs one of the pages | |
1401 | * we're continuing to hold in the UPL | |
1402 | */ | |
1403 | pageout_flags = UPL_MSYNC | UPL_VNODE_PAGER | UPL_NESTED_PAGEOUT; | |
1404 | ||
1405 | if (!(flags & CL_ASYNC)) { | |
1406 | pageout_flags |= UPL_IOSYNC; | |
1407 | } | |
1408 | if (!(flags & CL_COMMIT)) { | |
1409 | pageout_flags |= UPL_NOCOMMIT; | |
1410 | } | |
1411 | ||
1412 | if (cbp_head) { | |
1413 | buf_t prev_cbp; | |
1414 | uint32_t bytes_in_last_page; | |
1415 | ||
1416 | /* | |
1417 | * first we have to wait for the the current outstanding I/Os | |
1418 | * to complete... EOT hasn't been set yet on this transaction | |
1419 | * so the pages won't be released | |
1420 | */ | |
1421 | cluster_wait_IO(cbp_head, (flags & CL_ASYNC)); | |
1422 | ||
1423 | bytes_in_last_page = cbp_head->b_uploffset & PAGE_MASK; | |
1424 | for (cbp = cbp_head; cbp; cbp = cbp->b_trans_next) { | |
1425 | bytes_in_last_page += cbp->b_bcount; | |
1426 | } | |
1427 | bytes_in_last_page &= PAGE_MASK; | |
1428 | ||
1429 | while (bytes_in_last_page) { | |
1430 | /* | |
1431 | * we've got a transcation that | |
1432 | * includes the page we're about to push out through vnode_pageout... | |
1433 | * find the bp's in the list which intersect this page and either | |
1434 | * remove them entirely from the transaction (there could be multiple bp's), or | |
1435 | * round it's iosize down to the page boundary (there can only be one)... | |
1436 | * | |
1437 | * find the last bp in the list and act on it | |
1438 | */ | |
1439 | for (prev_cbp = cbp = cbp_head; cbp->b_trans_next; cbp = cbp->b_trans_next) { | |
1440 | prev_cbp = cbp; | |
1441 | } | |
1442 | ||
1443 | if (bytes_in_last_page >= cbp->b_bcount) { | |
1444 | /* | |
1445 | * this buf no longer has any I/O associated with it | |
1446 | */ | |
1447 | bytes_in_last_page -= cbp->b_bcount; | |
1448 | cbp->b_bcount = 0; | |
1449 | ||
1450 | free_io_buf(cbp); | |
1451 | ||
1452 | if (cbp == cbp_head) { | |
1453 | assert(bytes_in_last_page == 0); | |
1454 | /* | |
1455 | * the buf we just freed was the only buf in | |
1456 | * this transaction... so there's no I/O to do | |
1457 | */ | |
1458 | cbp_head = NULL; | |
1459 | cbp_tail = NULL; | |
1460 | } else { | |
1461 | /* | |
1462 | * remove the buf we just freed from | |
1463 | * the transaction list | |
1464 | */ | |
1465 | prev_cbp->b_trans_next = NULL; | |
1466 | cbp_tail = prev_cbp; | |
1467 | } | |
1468 | } else { | |
1469 | /* | |
1470 | * this is the last bp that has I/O | |
1471 | * intersecting the page of interest | |
1472 | * only some of the I/O is in the intersection | |
1473 | * so clip the size but keep it in the transaction list | |
1474 | */ | |
1475 | cbp->b_bcount -= bytes_in_last_page; | |
1476 | cbp_tail = cbp; | |
1477 | bytes_in_last_page = 0; | |
1478 | } | |
1479 | } | |
1480 | if (cbp_head) { | |
1481 | /* | |
1482 | * there was more to the current transaction | |
1483 | * than just the page we are pushing out via vnode_pageout... | |
1484 | * mark it as finished and complete it... we've already | |
1485 | * waited for the I/Os to complete above in the call to cluster_wait_IO | |
1486 | */ | |
1487 | cluster_EOT(cbp_head, cbp_tail, 0); | |
1488 | ||
1489 | cluster_complete_transaction(&cbp_head, callback_arg, &retval, flags, 0); | |
1490 | ||
1491 | trans_count = 0; | |
1492 | } | |
1493 | } | |
1494 | if (vnode_pageout(vp, upl, (upl_offset_t)trunc_page(upl_offset), trunc_page_64(f_offset), PAGE_SIZE, pageout_flags, NULL) != PAGER_SUCCESS) { | |
1495 | error = EINVAL; | |
1496 | } | |
1497 | e_offset = round_page_64(f_offset + 1); | |
1498 | io_size = (u_int)(e_offset - f_offset); | |
1499 | ||
1500 | f_offset += io_size; | |
1501 | upl_offset += io_size; | |
1502 | ||
1503 | if (size >= io_size) { | |
1504 | size -= io_size; | |
1505 | } else { | |
1506 | size = 0; | |
1507 | } | |
1508 | /* | |
1509 | * keep track of how much of the original request | |
1510 | * that we've actually completed... non_rounded_size | |
1511 | * may go negative due to us rounding the request | |
1512 | * to a page size multiple (i.e. size > non_rounded_size) | |
1513 | */ | |
1514 | non_rounded_size -= io_size; | |
1515 | ||
1516 | if (non_rounded_size <= 0) { | |
1517 | /* | |
1518 | * we've transferred all of the data in the original | |
1519 | * request, but we were unable to complete the tail | |
1520 | * of the last page because the file didn't have | |
1521 | * an allocation to back that portion... this is ok. | |
1522 | */ | |
1523 | size = 0; | |
1524 | } | |
1525 | if (error) { | |
1526 | if (size == 0) { | |
1527 | flags &= ~CL_COMMIT; | |
1528 | } | |
1529 | break; | |
1530 | } | |
1531 | continue; | |
1532 | } | |
1533 | lblkno = (daddr64_t)(f_offset / 0x1000); | |
1534 | /* | |
1535 | * we have now figured out how much I/O we can do - this is in 'io_size' | |
1536 | * pg_offset is the starting point in the first page for the I/O | |
1537 | * pg_count is the number of full and partial pages that 'io_size' encompasses | |
1538 | */ | |
1539 | pg_offset = upl_offset & PAGE_MASK; | |
1540 | ||
1541 | if (flags & CL_DEV_MEMORY) { | |
1542 | /* | |
1543 | * treat physical requests as one 'giant' page | |
1544 | */ | |
1545 | pg_count = 1; | |
1546 | } else { | |
1547 | pg_count = (io_size + pg_offset + (PAGE_SIZE - 1)) / PAGE_SIZE; | |
1548 | } | |
1549 | ||
1550 | if ((flags & CL_READ) && blkno == -1) { | |
1551 | vm_offset_t commit_offset; | |
1552 | int bytes_to_zero; | |
1553 | int complete_transaction_now = 0; | |
1554 | ||
1555 | /* | |
1556 | * if we're reading and blkno == -1, then we've got a | |
1557 | * 'hole' in the file that we need to deal with by zeroing | |
1558 | * out the affected area in the upl | |
1559 | */ | |
1560 | if (io_size >= (u_int)non_rounded_size) { | |
1561 | /* | |
1562 | * if this upl contains the EOF and it is not a multiple of PAGE_SIZE | |
1563 | * than 'zero_offset' will be non-zero | |
1564 | * if the 'hole' returned by vnop_blockmap extends all the way to the eof | |
1565 | * (indicated by the io_size finishing off the I/O request for this UPL) | |
1566 | * than we're not going to issue an I/O for the | |
1567 | * last page in this upl... we need to zero both the hole and the tail | |
1568 | * of the page beyond the EOF, since the delayed zero-fill won't kick in | |
1569 | */ | |
1570 | bytes_to_zero = non_rounded_size; | |
1571 | if (!(flags & CL_NOZERO)) { | |
1572 | bytes_to_zero = (int)((((upl_offset + io_size) + (PAGE_SIZE - 1)) & ~PAGE_MASK) - upl_offset); | |
1573 | } | |
1574 | ||
1575 | zero_offset = 0; | |
1576 | } else { | |
1577 | bytes_to_zero = io_size; | |
1578 | } | |
1579 | ||
1580 | pg_count = 0; | |
1581 | ||
1582 | cluster_zero(upl, (upl_offset_t)upl_offset, bytes_to_zero, real_bp); | |
1583 | ||
1584 | if (cbp_head) { | |
1585 | int pg_resid; | |
1586 | ||
1587 | /* | |
1588 | * if there is a current I/O chain pending | |
1589 | * then the first page of the group we just zero'd | |
1590 | * will be handled by the I/O completion if the zero | |
1591 | * fill started in the middle of the page | |
1592 | */ | |
1593 | commit_offset = (upl_offset + (PAGE_SIZE - 1)) & ~PAGE_MASK; | |
1594 | ||
1595 | pg_resid = (int)(commit_offset - upl_offset); | |
1596 | ||
1597 | if (bytes_to_zero >= pg_resid) { | |
1598 | /* | |
1599 | * the last page of the current I/O | |
1600 | * has been completed... | |
1601 | * compute the number of fully zero'd | |
1602 | * pages that are beyond it | |
1603 | * plus the last page if its partial | |
1604 | * and we have no more I/O to issue... | |
1605 | * otherwise a partial page is left | |
1606 | * to begin the next I/O | |
1607 | */ | |
1608 | if ((int)io_size >= non_rounded_size) { | |
1609 | pg_count = (bytes_to_zero - pg_resid + (PAGE_SIZE - 1)) / PAGE_SIZE; | |
1610 | } else { | |
1611 | pg_count = (bytes_to_zero - pg_resid) / PAGE_SIZE; | |
1612 | } | |
1613 | ||
1614 | complete_transaction_now = 1; | |
1615 | } | |
1616 | } else { | |
1617 | /* | |
1618 | * no pending I/O to deal with | |
1619 | * so, commit all of the fully zero'd pages | |
1620 | * plus the last page if its partial | |
1621 | * and we have no more I/O to issue... | |
1622 | * otherwise a partial page is left | |
1623 | * to begin the next I/O | |
1624 | */ | |
1625 | if ((int)io_size >= non_rounded_size) { | |
1626 | pg_count = (pg_offset + bytes_to_zero + (PAGE_SIZE - 1)) / PAGE_SIZE; | |
1627 | } else { | |
1628 | pg_count = (pg_offset + bytes_to_zero) / PAGE_SIZE; | |
1629 | } | |
1630 | ||
1631 | commit_offset = upl_offset & ~PAGE_MASK; | |
1632 | } | |
1633 | ||
1634 | // Associated UPL is currently only used in the direct write path | |
1635 | assert(!upl_associated_upl(upl)); | |
1636 | ||
1637 | if ((flags & CL_COMMIT) && pg_count) { | |
1638 | ubc_upl_commit_range(upl, (upl_offset_t)commit_offset, | |
1639 | pg_count * PAGE_SIZE, | |
1640 | UPL_COMMIT_CLEAR_DIRTY | UPL_COMMIT_FREE_ON_EMPTY); | |
1641 | } | |
1642 | upl_offset += io_size; | |
1643 | f_offset += io_size; | |
1644 | size -= io_size; | |
1645 | ||
1646 | /* | |
1647 | * keep track of how much of the original request | |
1648 | * that we've actually completed... non_rounded_size | |
1649 | * may go negative due to us rounding the request | |
1650 | * to a page size multiple (i.e. size > non_rounded_size) | |
1651 | */ | |
1652 | non_rounded_size -= io_size; | |
1653 | ||
1654 | if (non_rounded_size <= 0) { | |
1655 | /* | |
1656 | * we've transferred all of the data in the original | |
1657 | * request, but we were unable to complete the tail | |
1658 | * of the last page because the file didn't have | |
1659 | * an allocation to back that portion... this is ok. | |
1660 | */ | |
1661 | size = 0; | |
1662 | } | |
1663 | if (cbp_head && (complete_transaction_now || size == 0)) { | |
1664 | cluster_wait_IO(cbp_head, (flags & CL_ASYNC)); | |
1665 | ||
1666 | cluster_EOT(cbp_head, cbp_tail, size == 0 ? zero_offset : 0); | |
1667 | ||
1668 | cluster_complete_transaction(&cbp_head, callback_arg, &retval, flags, 0); | |
1669 | ||
1670 | trans_count = 0; | |
1671 | } | |
1672 | continue; | |
1673 | } | |
1674 | if (pg_count > max_vectors) { | |
1675 | if (((pg_count - max_vectors) * PAGE_SIZE) > io_size) { | |
1676 | io_size = PAGE_SIZE - pg_offset; | |
1677 | pg_count = 1; | |
1678 | } else { | |
1679 | io_size -= (pg_count - max_vectors) * PAGE_SIZE; | |
1680 | pg_count = max_vectors; | |
1681 | } | |
1682 | } | |
1683 | /* | |
1684 | * If the transaction is going to reach the maximum number of | |
1685 | * desired elements, truncate the i/o to the nearest page so | |
1686 | * that the actual i/o is initiated after this buffer is | |
1687 | * created and added to the i/o chain. | |
1688 | * | |
1689 | * I/O directed to physically contiguous memory | |
1690 | * doesn't have a requirement to make sure we 'fill' a page | |
1691 | */ | |
1692 | if (!(flags & CL_DEV_MEMORY) && trans_count >= max_trans_count && | |
1693 | ((upl_offset + io_size) & PAGE_MASK)) { | |
1694 | vm_offset_t aligned_ofs; | |
1695 | ||
1696 | aligned_ofs = (upl_offset + io_size) & ~PAGE_MASK; | |
1697 | /* | |
1698 | * If the io_size does not actually finish off even a | |
1699 | * single page we have to keep adding buffers to the | |
1700 | * transaction despite having reached the desired limit. | |
1701 | * | |
1702 | * Eventually we get here with the page being finished | |
1703 | * off (and exceeded) and then we truncate the size of | |
1704 | * this i/o request so that it is page aligned so that | |
1705 | * we can finally issue the i/o on the transaction. | |
1706 | */ | |
1707 | if (aligned_ofs > upl_offset) { | |
1708 | io_size = (u_int)(aligned_ofs - upl_offset); | |
1709 | pg_count--; | |
1710 | } | |
1711 | } | |
1712 | ||
1713 | if (!(mp->mnt_kern_flag & MNTK_VIRTUALDEV)) { | |
1714 | /* | |
1715 | * if we're not targeting a virtual device i.e. a disk image | |
1716 | * it's safe to dip into the reserve pool since real devices | |
1717 | * can complete this I/O request without requiring additional | |
1718 | * bufs from the alloc_io_buf pool | |
1719 | */ | |
1720 | priv = 1; | |
1721 | } else if ((flags & CL_ASYNC) && !(flags & CL_PAGEOUT) && !cbp_head) { | |
1722 | /* | |
1723 | * Throttle the speculative IO | |
1724 | * | |
1725 | * We can only throttle this if it is the first iobuf | |
1726 | * for the transaction. alloc_io_buf implements | |
1727 | * additional restrictions for diskimages anyway. | |
1728 | */ | |
1729 | priv = 0; | |
1730 | } else { | |
1731 | priv = 1; | |
1732 | } | |
1733 | ||
1734 | cbp = alloc_io_buf(vp, priv); | |
1735 | ||
1736 | if (flags & CL_PAGEOUT) { | |
1737 | u_int i; | |
1738 | ||
1739 | /* | |
1740 | * since blocks are in offsets of 0x1000, scale | |
1741 | * iteration to (PAGE_SIZE * pg_count) of blks. | |
1742 | */ | |
1743 | for (i = 0; i < (PAGE_SIZE * pg_count) / 0x1000; i++) { | |
1744 | if (buf_invalblkno(vp, lblkno + i, 0) == EBUSY) { | |
1745 | panic("BUSY bp found in cluster_io"); | |
1746 | } | |
1747 | } | |
1748 | } | |
1749 | if (flags & CL_ASYNC) { | |
1750 | if (buf_setcallback(cbp, (void *)cluster_iodone, callback_arg)) { | |
1751 | panic("buf_setcallback failed\n"); | |
1752 | } | |
1753 | } | |
1754 | cbp->b_cliodone = (void *)callback; | |
1755 | cbp->b_flags |= io_flags; | |
1756 | if (flags & CL_NOCACHE) { | |
1757 | cbp->b_attr.ba_flags |= BA_NOCACHE; | |
1758 | } | |
1759 | ||
1760 | cbp->b_lblkno = lblkno; | |
1761 | cbp->b_blkno = blkno; | |
1762 | cbp->b_bcount = io_size; | |
1763 | ||
1764 | if (buf_setupl(cbp, upl, (uint32_t)upl_offset)) { | |
1765 | panic("buf_setupl failed\n"); | |
1766 | } | |
1767 | #if CONFIG_IOSCHED | |
1768 | upl_set_blkno(upl, upl_offset, io_size, blkno); | |
1769 | #endif | |
1770 | cbp->b_trans_next = (buf_t)NULL; | |
1771 | ||
1772 | if ((cbp->b_iostate = (void *)iostate)) { | |
1773 | /* | |
1774 | * caller wants to track the state of this | |
1775 | * io... bump the amount issued against this stream | |
1776 | */ | |
1777 | iostate->io_issued += io_size; | |
1778 | } | |
1779 | ||
1780 | if (flags & CL_READ) { | |
1781 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 26)) | DBG_FUNC_NONE, | |
1782 | (int)cbp->b_lblkno, (int)cbp->b_blkno, upl_offset, io_size, 0); | |
1783 | } else { | |
1784 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 27)) | DBG_FUNC_NONE, | |
1785 | (int)cbp->b_lblkno, (int)cbp->b_blkno, upl_offset, io_size, 0); | |
1786 | } | |
1787 | ||
1788 | if (cbp_head) { | |
1789 | cbp_tail->b_trans_next = cbp; | |
1790 | cbp_tail = cbp; | |
1791 | } else { | |
1792 | cbp_head = cbp; | |
1793 | cbp_tail = cbp; | |
1794 | ||
1795 | if ((cbp_head->b_real_bp = real_bp)) { | |
1796 | real_bp = (buf_t)NULL; | |
1797 | } | |
1798 | } | |
1799 | *(buf_t *)(&cbp->b_trans_head) = cbp_head; | |
1800 | ||
1801 | trans_count++; | |
1802 | ||
1803 | upl_offset += io_size; | |
1804 | f_offset += io_size; | |
1805 | size -= io_size; | |
1806 | /* | |
1807 | * keep track of how much of the original request | |
1808 | * that we've actually completed... non_rounded_size | |
1809 | * may go negative due to us rounding the request | |
1810 | * to a page size multiple (i.e. size > non_rounded_size) | |
1811 | */ | |
1812 | non_rounded_size -= io_size; | |
1813 | ||
1814 | if (non_rounded_size <= 0) { | |
1815 | /* | |
1816 | * we've transferred all of the data in the original | |
1817 | * request, but we were unable to complete the tail | |
1818 | * of the last page because the file didn't have | |
1819 | * an allocation to back that portion... this is ok. | |
1820 | */ | |
1821 | size = 0; | |
1822 | } | |
1823 | if (size == 0) { | |
1824 | /* | |
1825 | * we have no more I/O to issue, so go | |
1826 | * finish the final transaction | |
1827 | */ | |
1828 | need_EOT = TRUE; | |
1829 | } else if (((flags & CL_DEV_MEMORY) || (upl_offset & PAGE_MASK) == 0) && | |
1830 | ((flags & CL_ASYNC) || trans_count > max_trans_count)) { | |
1831 | /* | |
1832 | * I/O directed to physically contiguous memory... | |
1833 | * which doesn't have a requirement to make sure we 'fill' a page | |
1834 | * or... | |
1835 | * the current I/O we've prepared fully | |
1836 | * completes the last page in this request | |
1837 | * and ... | |
1838 | * it's either an ASYNC request or | |
1839 | * we've already accumulated more than 8 I/O's into | |
1840 | * this transaction so mark it as complete so that | |
1841 | * it can finish asynchronously or via the cluster_complete_transaction | |
1842 | * below if the request is synchronous | |
1843 | */ | |
1844 | need_EOT = TRUE; | |
1845 | } | |
1846 | if (need_EOT == TRUE) { | |
1847 | cluster_EOT(cbp_head, cbp_tail, size == 0 ? zero_offset : 0); | |
1848 | } | |
1849 | ||
1850 | if (flags & CL_THROTTLE) { | |
1851 | (void)vnode_waitforwrites(vp, async_throttle, 0, 0, "cluster_io"); | |
1852 | } | |
1853 | ||
1854 | if (!(io_flags & B_READ)) { | |
1855 | vnode_startwrite(vp); | |
1856 | } | |
1857 | ||
1858 | if (flags & CL_RAW_ENCRYPTED) { | |
1859 | /* | |
1860 | * User requested raw encrypted bytes. | |
1861 | * Twiddle the bit in the ba_flags for the buffer | |
1862 | */ | |
1863 | cbp->b_attr.ba_flags |= BA_RAW_ENCRYPTED_IO; | |
1864 | } | |
1865 | ||
1866 | (void) VNOP_STRATEGY(cbp); | |
1867 | ||
1868 | if (need_EOT == TRUE) { | |
1869 | if (!(flags & CL_ASYNC)) { | |
1870 | cluster_complete_transaction(&cbp_head, callback_arg, &retval, flags, 1); | |
1871 | } | |
1872 | ||
1873 | need_EOT = FALSE; | |
1874 | trans_count = 0; | |
1875 | cbp_head = NULL; | |
1876 | } | |
1877 | } | |
1878 | if (error) { | |
1879 | int abort_size; | |
1880 | ||
1881 | io_size = 0; | |
1882 | ||
1883 | if (cbp_head) { | |
1884 | /* | |
1885 | * Wait until all of the outstanding I/O | |
1886 | * for this partial transaction has completed | |
1887 | */ | |
1888 | cluster_wait_IO(cbp_head, (flags & CL_ASYNC)); | |
1889 | ||
1890 | /* | |
1891 | * Rewind the upl offset to the beginning of the | |
1892 | * transaction. | |
1893 | */ | |
1894 | upl_offset = cbp_head->b_uploffset; | |
1895 | } | |
1896 | ||
1897 | if (ISSET(flags, CL_COMMIT)) { | |
1898 | cluster_handle_associated_upl(iostate, upl, | |
1899 | (upl_offset_t)upl_offset, | |
1900 | (upl_size_t)(upl_end_offset - upl_offset)); | |
1901 | } | |
1902 | ||
1903 | // Free all the IO buffers in this transaction | |
1904 | for (cbp = cbp_head; cbp;) { | |
1905 | buf_t cbp_next; | |
1906 | ||
1907 | size += cbp->b_bcount; | |
1908 | io_size += cbp->b_bcount; | |
1909 | ||
1910 | cbp_next = cbp->b_trans_next; | |
1911 | free_io_buf(cbp); | |
1912 | cbp = cbp_next; | |
1913 | } | |
1914 | ||
1915 | if (iostate) { | |
1916 | int need_wakeup = 0; | |
1917 | ||
1918 | /* | |
1919 | * update the error condition for this stream | |
1920 | * since we never really issued the io | |
1921 | * just go ahead and adjust it back | |
1922 | */ | |
1923 | lck_mtx_lock_spin(&iostate->io_mtxp); | |
1924 | ||
1925 | if (iostate->io_error == 0) { | |
1926 | iostate->io_error = error; | |
1927 | } | |
1928 | iostate->io_issued -= io_size; | |
1929 | ||
1930 | if (iostate->io_wanted) { | |
1931 | /* | |
1932 | * someone is waiting for the state of | |
1933 | * this io stream to change | |
1934 | */ | |
1935 | iostate->io_wanted = 0; | |
1936 | need_wakeup = 1; | |
1937 | } | |
1938 | lck_mtx_unlock(&iostate->io_mtxp); | |
1939 | ||
1940 | if (need_wakeup) { | |
1941 | wakeup((caddr_t)&iostate->io_wanted); | |
1942 | } | |
1943 | } | |
1944 | ||
1945 | if (flags & CL_COMMIT) { | |
1946 | int upl_flags; | |
1947 | ||
1948 | pg_offset = upl_offset & PAGE_MASK; | |
1949 | abort_size = (int)((upl_end_offset - upl_offset + PAGE_MASK) & ~PAGE_MASK); | |
1950 | ||
1951 | upl_flags = cluster_ioerror(upl, (int)(upl_offset - pg_offset), | |
1952 | abort_size, error, io_flags, vp); | |
1953 | ||
1954 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 28)) | DBG_FUNC_NONE, | |
1955 | upl, upl_offset - pg_offset, abort_size, (error << 24) | upl_flags, 0); | |
1956 | } | |
1957 | if (retval == 0) { | |
1958 | retval = error; | |
1959 | } | |
1960 | } else if (cbp_head) { | |
1961 | panic("%s(): cbp_head is not NULL.\n", __FUNCTION__); | |
1962 | } | |
1963 | ||
1964 | if (real_bp) { | |
1965 | /* | |
1966 | * can get here if we either encountered an error | |
1967 | * or we completely zero-filled the request and | |
1968 | * no I/O was issued | |
1969 | */ | |
1970 | if (error) { | |
1971 | real_bp->b_flags |= B_ERROR; | |
1972 | real_bp->b_error = error; | |
1973 | } | |
1974 | buf_biodone(real_bp); | |
1975 | } | |
1976 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 22)) | DBG_FUNC_END, (int)f_offset, size, upl_offset, retval, 0); | |
1977 | ||
1978 | return retval; | |
1979 | } | |
1980 | ||
1981 | #define reset_vector_run_state() \ | |
1982 | issueVectorUPL = vector_upl_offset = vector_upl_index = vector_upl_iosize = vector_upl_size = 0; | |
1983 | ||
1984 | static int | |
1985 | vector_cluster_io(vnode_t vp, upl_t vector_upl, vm_offset_t vector_upl_offset, off_t v_upl_uio_offset, int vector_upl_iosize, | |
1986 | int io_flag, buf_t real_bp, struct clios *iostate, int (*callback)(buf_t, void *), void *callback_arg) | |
1987 | { | |
1988 | vector_upl_set_pagelist(vector_upl); | |
1989 | ||
1990 | if (io_flag & CL_READ) { | |
1991 | if (vector_upl_offset == 0 && ((vector_upl_iosize & PAGE_MASK) == 0)) { | |
1992 | io_flag &= ~CL_PRESERVE; /*don't zero fill*/ | |
1993 | } else { | |
1994 | io_flag |= CL_PRESERVE; /*zero fill*/ | |
1995 | } | |
1996 | } | |
1997 | return cluster_io(vp, vector_upl, vector_upl_offset, v_upl_uio_offset, vector_upl_iosize, io_flag, real_bp, iostate, callback, callback_arg); | |
1998 | } | |
1999 | ||
2000 | static int | |
2001 | cluster_read_prefetch(vnode_t vp, off_t f_offset, u_int size, off_t filesize, int (*callback)(buf_t, void *), void *callback_arg, int bflag) | |
2002 | { | |
2003 | int pages_in_prefetch; | |
2004 | ||
2005 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 49)) | DBG_FUNC_START, | |
2006 | (int)f_offset, size, (int)filesize, 0, 0); | |
2007 | ||
2008 | if (f_offset >= filesize) { | |
2009 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 49)) | DBG_FUNC_END, | |
2010 | (int)f_offset, 0, 0, 0, 0); | |
2011 | return 0; | |
2012 | } | |
2013 | if ((off_t)size > (filesize - f_offset)) { | |
2014 | size = (u_int)(filesize - f_offset); | |
2015 | } | |
2016 | pages_in_prefetch = (size + (PAGE_SIZE - 1)) / PAGE_SIZE; | |
2017 | ||
2018 | advisory_read_ext(vp, filesize, f_offset, size, callback, callback_arg, bflag); | |
2019 | ||
2020 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 49)) | DBG_FUNC_END, | |
2021 | (int)f_offset + size, pages_in_prefetch, 0, 1, 0); | |
2022 | ||
2023 | return pages_in_prefetch; | |
2024 | } | |
2025 | ||
2026 | ||
2027 | ||
2028 | static void | |
2029 | cluster_read_ahead(vnode_t vp, struct cl_extent *extent, off_t filesize, struct cl_readahead *rap, int (*callback)(buf_t, void *), void *callback_arg, | |
2030 | int bflag) | |
2031 | { | |
2032 | daddr64_t r_addr; | |
2033 | off_t f_offset; | |
2034 | int size_of_prefetch; | |
2035 | u_int max_prefetch; | |
2036 | ||
2037 | ||
2038 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_START, | |
2039 | (int)extent->b_addr, (int)extent->e_addr, (int)rap->cl_lastr, 0, 0); | |
2040 | ||
2041 | if (extent->b_addr == rap->cl_lastr && extent->b_addr == extent->e_addr) { | |
2042 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END, | |
2043 | rap->cl_ralen, (int)rap->cl_maxra, (int)rap->cl_lastr, 0, 0); | |
2044 | return; | |
2045 | } | |
2046 | if (rap->cl_lastr == -1 || (extent->b_addr != rap->cl_lastr && extent->b_addr != (rap->cl_lastr + 1))) { | |
2047 | rap->cl_ralen = 0; | |
2048 | rap->cl_maxra = 0; | |
2049 | ||
2050 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END, | |
2051 | rap->cl_ralen, (int)rap->cl_maxra, (int)rap->cl_lastr, 1, 0); | |
2052 | ||
2053 | return; | |
2054 | } | |
2055 | max_prefetch = MAX_PREFETCH(vp, cluster_max_io_size(vp->v_mount, CL_READ), disk_conditioner_mount_is_ssd(vp->v_mount)); | |
2056 | ||
2057 | if (max_prefetch > speculative_prefetch_max) { | |
2058 | max_prefetch = speculative_prefetch_max; | |
2059 | } | |
2060 | ||
2061 | if (max_prefetch <= PAGE_SIZE) { | |
2062 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END, | |
2063 | rap->cl_ralen, (int)rap->cl_maxra, (int)rap->cl_lastr, 6, 0); | |
2064 | return; | |
2065 | } | |
2066 | if (extent->e_addr < rap->cl_maxra && rap->cl_ralen >= 4) { | |
2067 | if ((rap->cl_maxra - extent->e_addr) > (rap->cl_ralen / 4)) { | |
2068 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END, | |
2069 | rap->cl_ralen, (int)rap->cl_maxra, (int)rap->cl_lastr, 2, 0); | |
2070 | return; | |
2071 | } | |
2072 | } | |
2073 | r_addr = MAX(extent->e_addr, rap->cl_maxra) + 1; | |
2074 | f_offset = (off_t)(r_addr * PAGE_SIZE_64); | |
2075 | ||
2076 | size_of_prefetch = 0; | |
2077 | ||
2078 | ubc_range_op(vp, f_offset, f_offset + PAGE_SIZE_64, UPL_ROP_PRESENT, &size_of_prefetch); | |
2079 | ||
2080 | if (size_of_prefetch) { | |
2081 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END, | |
2082 | rap->cl_ralen, (int)rap->cl_maxra, (int)rap->cl_lastr, 3, 0); | |
2083 | return; | |
2084 | } | |
2085 | if (f_offset < filesize) { | |
2086 | daddr64_t read_size; | |
2087 | ||
2088 | rap->cl_ralen = rap->cl_ralen ? min(max_prefetch / PAGE_SIZE, rap->cl_ralen << 1) : 1; | |
2089 | ||
2090 | read_size = (extent->e_addr + 1) - extent->b_addr; | |
2091 | ||
2092 | if (read_size > rap->cl_ralen) { | |
2093 | if (read_size > max_prefetch / PAGE_SIZE) { | |
2094 | rap->cl_ralen = max_prefetch / PAGE_SIZE; | |
2095 | } else { | |
2096 | rap->cl_ralen = (int)read_size; | |
2097 | } | |
2098 | } | |
2099 | size_of_prefetch = cluster_read_prefetch(vp, f_offset, rap->cl_ralen * PAGE_SIZE, filesize, callback, callback_arg, bflag); | |
2100 | ||
2101 | if (size_of_prefetch) { | |
2102 | rap->cl_maxra = (r_addr + size_of_prefetch) - 1; | |
2103 | } | |
2104 | } | |
2105 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END, | |
2106 | rap->cl_ralen, (int)rap->cl_maxra, (int)rap->cl_lastr, 4, 0); | |
2107 | } | |
2108 | ||
2109 | ||
2110 | int | |
2111 | cluster_pageout(vnode_t vp, upl_t upl, upl_offset_t upl_offset, off_t f_offset, | |
2112 | int size, off_t filesize, int flags) | |
2113 | { | |
2114 | return cluster_pageout_ext(vp, upl, upl_offset, f_offset, size, filesize, flags, NULL, NULL); | |
2115 | } | |
2116 | ||
2117 | ||
2118 | int | |
2119 | cluster_pageout_ext(vnode_t vp, upl_t upl, upl_offset_t upl_offset, off_t f_offset, | |
2120 | int size, off_t filesize, int flags, int (*callback)(buf_t, void *), void *callback_arg) | |
2121 | { | |
2122 | int io_size; | |
2123 | int rounded_size; | |
2124 | off_t max_size; | |
2125 | int local_flags; | |
2126 | ||
2127 | local_flags = CL_PAGEOUT | CL_THROTTLE; | |
2128 | ||
2129 | if ((flags & UPL_IOSYNC) == 0) { | |
2130 | local_flags |= CL_ASYNC; | |
2131 | } | |
2132 | if ((flags & UPL_NOCOMMIT) == 0) { | |
2133 | local_flags |= CL_COMMIT; | |
2134 | } | |
2135 | if ((flags & UPL_KEEPCACHED)) { | |
2136 | local_flags |= CL_KEEPCACHED; | |
2137 | } | |
2138 | if (flags & UPL_PAGING_ENCRYPTED) { | |
2139 | local_flags |= CL_ENCRYPTED; | |
2140 | } | |
2141 | ||
2142 | ||
2143 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 52)) | DBG_FUNC_NONE, | |
2144 | (int)f_offset, size, (int)filesize, local_flags, 0); | |
2145 | ||
2146 | /* | |
2147 | * If they didn't specify any I/O, then we are done... | |
2148 | * we can't issue an abort because we don't know how | |
2149 | * big the upl really is | |
2150 | */ | |
2151 | if (size <= 0) { | |
2152 | return EINVAL; | |
2153 | } | |
2154 | ||
2155 | if (vp->v_mount->mnt_flag & MNT_RDONLY) { | |
2156 | if (local_flags & CL_COMMIT) { | |
2157 | ubc_upl_abort_range(upl, upl_offset, size, UPL_ABORT_FREE_ON_EMPTY); | |
2158 | } | |
2159 | return EROFS; | |
2160 | } | |
2161 | /* | |
2162 | * can't page-in from a negative offset | |
2163 | * or if we're starting beyond the EOF | |
2164 | * or if the file offset isn't page aligned | |
2165 | * or the size requested isn't a multiple of PAGE_SIZE | |
2166 | */ | |
2167 | if (f_offset < 0 || f_offset >= filesize || | |
2168 | (f_offset & PAGE_MASK_64) || (size & PAGE_MASK)) { | |
2169 | if (local_flags & CL_COMMIT) { | |
2170 | ubc_upl_abort_range(upl, upl_offset, size, UPL_ABORT_FREE_ON_EMPTY); | |
2171 | } | |
2172 | return EINVAL; | |
2173 | } | |
2174 | max_size = filesize - f_offset; | |
2175 | ||
2176 | if (size < max_size) { | |
2177 | io_size = size; | |
2178 | } else { | |
2179 | io_size = (int)max_size; | |
2180 | } | |
2181 | ||
2182 | rounded_size = (io_size + (PAGE_SIZE - 1)) & ~PAGE_MASK; | |
2183 | ||
2184 | if (size > rounded_size) { | |
2185 | if (local_flags & CL_COMMIT) { | |
2186 | ubc_upl_abort_range(upl, upl_offset + rounded_size, size - rounded_size, | |
2187 | UPL_ABORT_FREE_ON_EMPTY); | |
2188 | } | |
2189 | } | |
2190 | return cluster_io(vp, upl, upl_offset, f_offset, io_size, | |
2191 | local_flags, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg); | |
2192 | } | |
2193 | ||
2194 | ||
2195 | int | |
2196 | cluster_pagein(vnode_t vp, upl_t upl, upl_offset_t upl_offset, off_t f_offset, | |
2197 | int size, off_t filesize, int flags) | |
2198 | { | |
2199 | return cluster_pagein_ext(vp, upl, upl_offset, f_offset, size, filesize, flags, NULL, NULL); | |
2200 | } | |
2201 | ||
2202 | ||
2203 | int | |
2204 | cluster_pagein_ext(vnode_t vp, upl_t upl, upl_offset_t upl_offset, off_t f_offset, | |
2205 | int size, off_t filesize, int flags, int (*callback)(buf_t, void *), void *callback_arg) | |
2206 | { | |
2207 | u_int io_size; | |
2208 | int rounded_size; | |
2209 | off_t max_size; | |
2210 | int retval; | |
2211 | int local_flags = 0; | |
2212 | ||
2213 | if (upl == NULL || size < 0) { | |
2214 | panic("cluster_pagein: NULL upl passed in"); | |
2215 | } | |
2216 | ||
2217 | if ((flags & UPL_IOSYNC) == 0) { | |
2218 | local_flags |= CL_ASYNC; | |
2219 | } | |
2220 | if ((flags & UPL_NOCOMMIT) == 0) { | |
2221 | local_flags |= CL_COMMIT; | |
2222 | } | |
2223 | if (flags & UPL_IOSTREAMING) { | |
2224 | local_flags |= CL_IOSTREAMING; | |
2225 | } | |
2226 | if (flags & UPL_PAGING_ENCRYPTED) { | |
2227 | local_flags |= CL_ENCRYPTED; | |
2228 | } | |
2229 | ||
2230 | ||
2231 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 56)) | DBG_FUNC_NONE, | |
2232 | (int)f_offset, size, (int)filesize, local_flags, 0); | |
2233 | ||
2234 | /* | |
2235 | * can't page-in from a negative offset | |
2236 | * or if we're starting beyond the EOF | |
2237 | * or if the file offset isn't page aligned | |
2238 | * or the size requested isn't a multiple of PAGE_SIZE | |
2239 | */ | |
2240 | if (f_offset < 0 || f_offset >= filesize || | |
2241 | (f_offset & PAGE_MASK_64) || (size & PAGE_MASK) || (upl_offset & PAGE_MASK)) { | |
2242 | if (local_flags & CL_COMMIT) { | |
2243 | ubc_upl_abort_range(upl, upl_offset, size, UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_ERROR); | |
2244 | } | |
2245 | return EINVAL; | |
2246 | } | |
2247 | max_size = filesize - f_offset; | |
2248 | ||
2249 | if (size < max_size) { | |
2250 | io_size = size; | |
2251 | } else { | |
2252 | io_size = (int)max_size; | |
2253 | } | |
2254 | ||
2255 | rounded_size = (io_size + (PAGE_SIZE - 1)) & ~PAGE_MASK; | |
2256 | ||
2257 | if (size > rounded_size && (local_flags & CL_COMMIT)) { | |
2258 | ubc_upl_abort_range(upl, upl_offset + rounded_size, | |
2259 | size - rounded_size, UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_ERROR); | |
2260 | } | |
2261 | ||
2262 | retval = cluster_io(vp, upl, upl_offset, f_offset, io_size, | |
2263 | local_flags | CL_READ | CL_PAGEIN, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg); | |
2264 | ||
2265 | return retval; | |
2266 | } | |
2267 | ||
2268 | ||
2269 | int | |
2270 | cluster_bp(buf_t bp) | |
2271 | { | |
2272 | return cluster_bp_ext(bp, NULL, NULL); | |
2273 | } | |
2274 | ||
2275 | ||
2276 | int | |
2277 | cluster_bp_ext(buf_t bp, int (*callback)(buf_t, void *), void *callback_arg) | |
2278 | { | |
2279 | off_t f_offset; | |
2280 | int flags; | |
2281 | ||
2282 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 19)) | DBG_FUNC_START, | |
2283 | bp, (int)bp->b_lblkno, bp->b_bcount, bp->b_flags, 0); | |
2284 | ||
2285 | if (bp->b_flags & B_READ) { | |
2286 | flags = CL_ASYNC | CL_READ; | |
2287 | } else { | |
2288 | flags = CL_ASYNC; | |
2289 | } | |
2290 | if (bp->b_flags & B_PASSIVE) { | |
2291 | flags |= CL_PASSIVE; | |
2292 | } | |
2293 | ||
2294 | f_offset = ubc_blktooff(bp->b_vp, bp->b_lblkno); | |
2295 | ||
2296 | return cluster_io(bp->b_vp, bp->b_upl, 0, f_offset, bp->b_bcount, flags, bp, (struct clios *)NULL, callback, callback_arg); | |
2297 | } | |
2298 | ||
2299 | ||
2300 | ||
2301 | int | |
2302 | cluster_write(vnode_t vp, struct uio *uio, off_t oldEOF, off_t newEOF, off_t headOff, off_t tailOff, int xflags) | |
2303 | { | |
2304 | return cluster_write_ext(vp, uio, oldEOF, newEOF, headOff, tailOff, xflags, NULL, NULL); | |
2305 | } | |
2306 | ||
2307 | ||
2308 | int | |
2309 | cluster_write_ext(vnode_t vp, struct uio *uio, off_t oldEOF, off_t newEOF, off_t headOff, off_t tailOff, | |
2310 | int xflags, int (*callback)(buf_t, void *), void *callback_arg) | |
2311 | { | |
2312 | user_ssize_t cur_resid; | |
2313 | int retval = 0; | |
2314 | int flags; | |
2315 | int zflags; | |
2316 | int bflag; | |
2317 | int write_type = IO_COPY; | |
2318 | u_int32_t write_length; | |
2319 | ||
2320 | flags = xflags; | |
2321 | ||
2322 | if (flags & IO_PASSIVE) { | |
2323 | bflag = CL_PASSIVE; | |
2324 | } else { | |
2325 | bflag = 0; | |
2326 | } | |
2327 | ||
2328 | if (vp->v_flag & VNOCACHE_DATA) { | |
2329 | flags |= IO_NOCACHE; | |
2330 | bflag |= CL_NOCACHE; | |
2331 | } | |
2332 | if (uio == NULL) { | |
2333 | /* | |
2334 | * no user data... | |
2335 | * this call is being made to zero-fill some range in the file | |
2336 | */ | |
2337 | retval = cluster_write_copy(vp, NULL, (u_int32_t)0, oldEOF, newEOF, headOff, tailOff, flags, callback, callback_arg); | |
2338 | ||
2339 | return retval; | |
2340 | } | |
2341 | /* | |
2342 | * do a write through the cache if one of the following is true.... | |
2343 | * NOCACHE is not true or NODIRECT is true | |
2344 | * the uio request doesn't target USERSPACE | |
2345 | * otherwise, find out if we want the direct or contig variant for | |
2346 | * the first vector in the uio request | |
2347 | */ | |
2348 | if (((flags & (IO_NOCACHE | IO_NODIRECT)) == IO_NOCACHE) && UIO_SEG_IS_USER_SPACE(uio->uio_segflg)) { | |
2349 | retval = cluster_io_type(uio, &write_type, &write_length, MIN_DIRECT_WRITE_SIZE); | |
2350 | } | |
2351 | ||
2352 | if ((flags & (IO_TAILZEROFILL | IO_HEADZEROFILL)) && write_type == IO_DIRECT) { | |
2353 | /* | |
2354 | * must go through the cached variant in this case | |
2355 | */ | |
2356 | write_type = IO_COPY; | |
2357 | } | |
2358 | ||
2359 | while ((cur_resid = uio_resid(uio)) && uio->uio_offset < newEOF && retval == 0) { | |
2360 | switch (write_type) { | |
2361 | case IO_COPY: | |
2362 | /* | |
2363 | * make sure the uio_resid isn't too big... | |
2364 | * internally, we want to handle all of the I/O in | |
2365 | * chunk sizes that fit in a 32 bit int | |
2366 | */ | |
2367 | if (cur_resid > (user_ssize_t)(MAX_IO_REQUEST_SIZE)) { | |
2368 | /* | |
2369 | * we're going to have to call cluster_write_copy | |
2370 | * more than once... | |
2371 | * | |
2372 | * only want the last call to cluster_write_copy to | |
2373 | * have the IO_TAILZEROFILL flag set and only the | |
2374 | * first call should have IO_HEADZEROFILL | |
2375 | */ | |
2376 | zflags = flags & ~IO_TAILZEROFILL; | |
2377 | flags &= ~IO_HEADZEROFILL; | |
2378 | ||
2379 | write_length = MAX_IO_REQUEST_SIZE; | |
2380 | } else { | |
2381 | /* | |
2382 | * last call to cluster_write_copy | |
2383 | */ | |
2384 | zflags = flags; | |
2385 | ||
2386 | write_length = (u_int32_t)cur_resid; | |
2387 | } | |
2388 | retval = cluster_write_copy(vp, uio, write_length, oldEOF, newEOF, headOff, tailOff, zflags, callback, callback_arg); | |
2389 | break; | |
2390 | ||
2391 | case IO_CONTIG: | |
2392 | zflags = flags & ~(IO_TAILZEROFILL | IO_HEADZEROFILL); | |
2393 | ||
2394 | if (flags & IO_HEADZEROFILL) { | |
2395 | /* | |
2396 | * only do this once per request | |
2397 | */ | |
2398 | flags &= ~IO_HEADZEROFILL; | |
2399 | ||
2400 | retval = cluster_write_copy(vp, (struct uio *)0, (u_int32_t)0, (off_t)0, uio->uio_offset, | |
2401 | headOff, (off_t)0, zflags | IO_HEADZEROFILL | IO_SYNC, callback, callback_arg); | |
2402 | if (retval) { | |
2403 | break; | |
2404 | } | |
2405 | } | |
2406 | retval = cluster_write_contig(vp, uio, newEOF, &write_type, &write_length, callback, callback_arg, bflag); | |
2407 | ||
2408 | if (retval == 0 && (flags & IO_TAILZEROFILL) && uio_resid(uio) == 0) { | |
2409 | /* | |
2410 | * we're done with the data from the user specified buffer(s) | |
2411 | * and we've been requested to zero fill at the tail | |
2412 | * treat this as an IO_HEADZEROFILL which doesn't require a uio | |
2413 | * by rearranging the args and passing in IO_HEADZEROFILL | |
2414 | */ | |
2415 | retval = cluster_write_copy(vp, (struct uio *)0, (u_int32_t)0, (off_t)0, tailOff, uio->uio_offset, | |
2416 | (off_t)0, zflags | IO_HEADZEROFILL | IO_SYNC, callback, callback_arg); | |
2417 | } | |
2418 | break; | |
2419 | ||
2420 | case IO_DIRECT: | |
2421 | /* | |
2422 | * cluster_write_direct is never called with IO_TAILZEROFILL || IO_HEADZEROFILL | |
2423 | */ | |
2424 | retval = cluster_write_direct(vp, uio, oldEOF, newEOF, &write_type, &write_length, flags, callback, callback_arg); | |
2425 | break; | |
2426 | ||
2427 | case IO_UNKNOWN: | |
2428 | retval = cluster_io_type(uio, &write_type, &write_length, MIN_DIRECT_WRITE_SIZE); | |
2429 | break; | |
2430 | } | |
2431 | /* | |
2432 | * in case we end up calling cluster_write_copy (from cluster_write_direct) | |
2433 | * multiple times to service a multi-vector request that is not aligned properly | |
2434 | * we need to update the oldEOF so that we | |
2435 | * don't zero-fill the head of a page if we've successfully written | |
2436 | * data to that area... 'cluster_write_copy' will zero-fill the head of a | |
2437 | * page that is beyond the oldEOF if the write is unaligned... we only | |
2438 | * want that to happen for the very first page of the cluster_write, | |
2439 | * NOT the first page of each vector making up a multi-vector write. | |
2440 | */ | |
2441 | if (uio->uio_offset > oldEOF) { | |
2442 | oldEOF = uio->uio_offset; | |
2443 | } | |
2444 | } | |
2445 | return retval; | |
2446 | } | |
2447 | ||
2448 | ||
2449 | static int | |
2450 | cluster_write_direct(vnode_t vp, struct uio *uio, off_t oldEOF, off_t newEOF, int *write_type, u_int32_t *write_length, | |
2451 | int flags, int (*callback)(buf_t, void *), void *callback_arg) | |
2452 | { | |
2453 | upl_t upl; | |
2454 | upl_page_info_t *pl; | |
2455 | vm_offset_t upl_offset; | |
2456 | vm_offset_t vector_upl_offset = 0; | |
2457 | u_int32_t io_req_size; | |
2458 | u_int32_t offset_in_file; | |
2459 | u_int32_t offset_in_iovbase; | |
2460 | u_int32_t io_size; | |
2461 | int io_flag = 0; | |
2462 | upl_size_t upl_size, vector_upl_size = 0; | |
2463 | vm_size_t upl_needed_size; | |
2464 | mach_msg_type_number_t pages_in_pl; | |
2465 | upl_control_flags_t upl_flags; | |
2466 | kern_return_t kret; | |
2467 | mach_msg_type_number_t i; | |
2468 | int force_data_sync; | |
2469 | int retval = 0; | |
2470 | int first_IO = 1; | |
2471 | struct clios iostate; | |
2472 | user_addr_t iov_base; | |
2473 | u_int32_t mem_alignment_mask; | |
2474 | u_int32_t devblocksize; | |
2475 | u_int32_t max_io_size; | |
2476 | u_int32_t max_upl_size; | |
2477 | u_int32_t max_vector_size; | |
2478 | u_int32_t bytes_outstanding_limit; | |
2479 | boolean_t io_throttled = FALSE; | |
2480 | ||
2481 | u_int32_t vector_upl_iosize = 0; | |
2482 | int issueVectorUPL = 0, useVectorUPL = (uio->uio_iovcnt > 1); | |
2483 | off_t v_upl_uio_offset = 0; | |
2484 | int vector_upl_index = 0; | |
2485 | upl_t vector_upl = NULL; | |
2486 | ||
2487 | ||
2488 | /* | |
2489 | * When we enter this routine, we know | |
2490 | * -- the resid will not exceed iov_len | |
2491 | */ | |
2492 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 75)) | DBG_FUNC_START, | |
2493 | (int)uio->uio_offset, *write_length, (int)newEOF, 0, 0); | |
2494 | ||
2495 | assert(vm_map_page_shift(current_map()) >= PAGE_SHIFT); | |
2496 | ||
2497 | max_upl_size = cluster_max_io_size(vp->v_mount, CL_WRITE); | |
2498 | ||
2499 | io_flag = CL_ASYNC | CL_PRESERVE | CL_COMMIT | CL_THROTTLE | CL_DIRECT_IO; | |
2500 | ||
2501 | if (flags & IO_PASSIVE) { | |
2502 | io_flag |= CL_PASSIVE; | |
2503 | } | |
2504 | ||
2505 | if (flags & IO_NOCACHE) { | |
2506 | io_flag |= CL_NOCACHE; | |
2507 | } | |
2508 | ||
2509 | if (flags & IO_SKIP_ENCRYPTION) { | |
2510 | io_flag |= CL_ENCRYPTED; | |
2511 | } | |
2512 | ||
2513 | iostate.io_completed = 0; | |
2514 | iostate.io_issued = 0; | |
2515 | iostate.io_error = 0; | |
2516 | iostate.io_wanted = 0; | |
2517 | ||
2518 | lck_mtx_init(&iostate.io_mtxp, &cl_mtx_grp, LCK_ATTR_NULL); | |
2519 | ||
2520 | mem_alignment_mask = (u_int32_t)vp->v_mount->mnt_alignmentmask; | |
2521 | devblocksize = (u_int32_t)vp->v_mount->mnt_devblocksize; | |
2522 | ||
2523 | if (devblocksize == 1) { | |
2524 | /* | |
2525 | * the AFP client advertises a devblocksize of 1 | |
2526 | * however, its BLOCKMAP routine maps to physical | |
2527 | * blocks that are PAGE_SIZE in size... | |
2528 | * therefore we can't ask for I/Os that aren't page aligned | |
2529 | * or aren't multiples of PAGE_SIZE in size | |
2530 | * by setting devblocksize to PAGE_SIZE, we re-instate | |
2531 | * the old behavior we had before the mem_alignment_mask | |
2532 | * changes went in... | |
2533 | */ | |
2534 | devblocksize = PAGE_SIZE; | |
2535 | } | |
2536 | ||
2537 | next_dwrite: | |
2538 | io_req_size = *write_length; | |
2539 | iov_base = uio_curriovbase(uio); | |
2540 | ||
2541 | offset_in_file = (u_int32_t)uio->uio_offset & PAGE_MASK; | |
2542 | offset_in_iovbase = (u_int32_t)iov_base & mem_alignment_mask; | |
2543 | ||
2544 | if (offset_in_file || offset_in_iovbase) { | |
2545 | /* | |
2546 | * one of the 2 important offsets is misaligned | |
2547 | * so fire an I/O through the cache for this entire vector | |
2548 | */ | |
2549 | goto wait_for_dwrites; | |
2550 | } | |
2551 | if (iov_base & (devblocksize - 1)) { | |
2552 | /* | |
2553 | * the offset in memory must be on a device block boundary | |
2554 | * so that we can guarantee that we can generate an | |
2555 | * I/O that ends on a page boundary in cluster_io | |
2556 | */ | |
2557 | goto wait_for_dwrites; | |
2558 | } | |
2559 | ||
2560 | task_update_logical_writes(current_task(), (io_req_size & ~PAGE_MASK), TASK_WRITE_IMMEDIATE, vp); | |
2561 | while (io_req_size >= PAGE_SIZE && uio->uio_offset < newEOF && retval == 0) { | |
2562 | int throttle_type; | |
2563 | ||
2564 | if ((throttle_type = cluster_is_throttled(vp))) { | |
2565 | /* | |
2566 | * we're in the throttle window, at the very least | |
2567 | * we want to limit the size of the I/O we're about | |
2568 | * to issue | |
2569 | */ | |
2570 | if ((flags & IO_RETURN_ON_THROTTLE) && throttle_type == THROTTLE_NOW) { | |
2571 | /* | |
2572 | * we're in the throttle window and at least 1 I/O | |
2573 | * has already been issued by a throttleable thread | |
2574 | * in this window, so return with EAGAIN to indicate | |
2575 | * to the FS issuing the cluster_write call that it | |
2576 | * should now throttle after dropping any locks | |
2577 | */ | |
2578 | throttle_info_update_by_mount(vp->v_mount); | |
2579 | ||
2580 | io_throttled = TRUE; | |
2581 | goto wait_for_dwrites; | |
2582 | } | |
2583 | max_vector_size = THROTTLE_MAX_IOSIZE; | |
2584 | max_io_size = THROTTLE_MAX_IOSIZE; | |
2585 | } else { | |
2586 | max_vector_size = MAX_VECTOR_UPL_SIZE; | |
2587 | max_io_size = max_upl_size; | |
2588 | } | |
2589 | ||
2590 | if (first_IO) { | |
2591 | cluster_syncup(vp, newEOF, callback, callback_arg, callback ? PUSH_SYNC : 0); | |
2592 | first_IO = 0; | |
2593 | } | |
2594 | io_size = io_req_size & ~PAGE_MASK; | |
2595 | iov_base = uio_curriovbase(uio); | |
2596 | ||
2597 | if (io_size > max_io_size) { | |
2598 | io_size = max_io_size; | |
2599 | } | |
2600 | ||
2601 | if (useVectorUPL && (iov_base & PAGE_MASK)) { | |
2602 | /* | |
2603 | * We have an iov_base that's not page-aligned. | |
2604 | * Issue all I/O's that have been collected within | |
2605 | * this Vectored UPL. | |
2606 | */ | |
2607 | if (vector_upl_index) { | |
2608 | retval = vector_cluster_io(vp, vector_upl, vector_upl_offset, v_upl_uio_offset, vector_upl_iosize, io_flag, (buf_t)NULL, &iostate, callback, callback_arg); | |
2609 | reset_vector_run_state(); | |
2610 | } | |
2611 | ||
2612 | /* | |
2613 | * After this point, if we are using the Vector UPL path and the base is | |
2614 | * not page-aligned then the UPL with that base will be the first in the vector UPL. | |
2615 | */ | |
2616 | } | |
2617 | ||
2618 | upl_offset = (vm_offset_t)((u_int32_t)iov_base & PAGE_MASK); | |
2619 | upl_needed_size = (upl_offset + io_size + (PAGE_SIZE - 1)) & ~PAGE_MASK; | |
2620 | ||
2621 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 76)) | DBG_FUNC_START, | |
2622 | (int)upl_offset, upl_needed_size, (int)iov_base, io_size, 0); | |
2623 | ||
2624 | vm_map_t map = UIO_SEG_IS_USER_SPACE(uio->uio_segflg) ? current_map() : kernel_map; | |
2625 | for (force_data_sync = 0; force_data_sync < 3; force_data_sync++) { | |
2626 | pages_in_pl = 0; | |
2627 | upl_size = (upl_size_t)upl_needed_size; | |
2628 | upl_flags = UPL_FILE_IO | UPL_COPYOUT_FROM | UPL_NO_SYNC | | |
2629 | UPL_CLEAN_IN_PLACE | UPL_SET_INTERNAL | UPL_SET_LITE | UPL_SET_IO_WIRE; | |
2630 | ||
2631 | kret = vm_map_get_upl(map, | |
2632 | vm_map_trunc_page(iov_base, vm_map_page_mask(map)), | |
2633 | &upl_size, | |
2634 | &upl, | |
2635 | NULL, | |
2636 | &pages_in_pl, | |
2637 | &upl_flags, | |
2638 | VM_KERN_MEMORY_FILE, | |
2639 | force_data_sync); | |
2640 | ||
2641 | if (kret != KERN_SUCCESS) { | |
2642 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 76)) | DBG_FUNC_END, | |
2643 | 0, 0, 0, kret, 0); | |
2644 | /* | |
2645 | * failed to get pagelist | |
2646 | * | |
2647 | * we may have already spun some portion of this request | |
2648 | * off as async requests... we need to wait for the I/O | |
2649 | * to complete before returning | |
2650 | */ | |
2651 | goto wait_for_dwrites; | |
2652 | } | |
2653 | pl = UPL_GET_INTERNAL_PAGE_LIST(upl); | |
2654 | pages_in_pl = upl_size / PAGE_SIZE; | |
2655 | ||
2656 | for (i = 0; i < pages_in_pl; i++) { | |
2657 | if (!upl_valid_page(pl, i)) { | |
2658 | break; | |
2659 | } | |
2660 | } | |
2661 | if (i == pages_in_pl) { | |
2662 | break; | |
2663 | } | |
2664 | ||
2665 | /* | |
2666 | * didn't get all the pages back that we | |
2667 | * needed... release this upl and try again | |
2668 | */ | |
2669 | ubc_upl_abort(upl, 0); | |
2670 | } | |
2671 | if (force_data_sync >= 3) { | |
2672 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 76)) | DBG_FUNC_END, | |
2673 | i, pages_in_pl, upl_size, kret, 0); | |
2674 | /* | |
2675 | * for some reason, we couldn't acquire a hold on all | |
2676 | * the pages needed in the user's address space | |
2677 | * | |
2678 | * we may have already spun some portion of this request | |
2679 | * off as async requests... we need to wait for the I/O | |
2680 | * to complete before returning | |
2681 | */ | |
2682 | goto wait_for_dwrites; | |
2683 | } | |
2684 | ||
2685 | /* | |
2686 | * Consider the possibility that upl_size wasn't satisfied. | |
2687 | */ | |
2688 | if (upl_size < upl_needed_size) { | |
2689 | if (upl_size && upl_offset == 0) { | |
2690 | io_size = upl_size; | |
2691 | } else { | |
2692 | io_size = 0; | |
2693 | } | |
2694 | } | |
2695 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 76)) | DBG_FUNC_END, | |
2696 | (int)upl_offset, upl_size, (int)iov_base, io_size, 0); | |
2697 | ||
2698 | if (io_size == 0) { | |
2699 | ubc_upl_abort(upl, 0); | |
2700 | /* | |
2701 | * we may have already spun some portion of this request | |
2702 | * off as async requests... we need to wait for the I/O | |
2703 | * to complete before returning | |
2704 | */ | |
2705 | goto wait_for_dwrites; | |
2706 | } | |
2707 | ||
2708 | if (useVectorUPL) { | |
2709 | vm_offset_t end_off = ((iov_base + io_size) & PAGE_MASK); | |
2710 | if (end_off) { | |
2711 | issueVectorUPL = 1; | |
2712 | } | |
2713 | /* | |
2714 | * After this point, if we are using a vector UPL, then | |
2715 | * either all the UPL elements end on a page boundary OR | |
2716 | * this UPL is the last element because it does not end | |
2717 | * on a page boundary. | |
2718 | */ | |
2719 | } | |
2720 | ||
2721 | /* | |
2722 | * we want push out these writes asynchronously so that we can overlap | |
2723 | * the preparation of the next I/O | |
2724 | * if there are already too many outstanding writes | |
2725 | * wait until some complete before issuing the next | |
2726 | */ | |
2727 | if (vp->v_mount->mnt_minsaturationbytecount) { | |
2728 | bytes_outstanding_limit = vp->v_mount->mnt_minsaturationbytecount; | |
2729 | } else { | |
2730 | bytes_outstanding_limit = max_upl_size * IO_SCALE(vp, 2); | |
2731 | } | |
2732 | ||
2733 | cluster_iostate_wait(&iostate, bytes_outstanding_limit, "cluster_write_direct"); | |
2734 | ||
2735 | if (iostate.io_error) { | |
2736 | /* | |
2737 | * one of the earlier writes we issued ran into a hard error | |
2738 | * don't issue any more writes, cleanup the UPL | |
2739 | * that was just created but not used, then | |
2740 | * go wait for all writes that are part of this stream | |
2741 | * to complete before returning the error to the caller | |
2742 | */ | |
2743 | ubc_upl_abort(upl, 0); | |
2744 | ||
2745 | goto wait_for_dwrites; | |
2746 | } | |
2747 | ||
2748 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 77)) | DBG_FUNC_START, | |
2749 | (int)upl_offset, (int)uio->uio_offset, io_size, io_flag, 0); | |
2750 | ||
2751 | if (!useVectorUPL) { | |
2752 | retval = cluster_io(vp, upl, upl_offset, uio->uio_offset, | |
2753 | io_size, io_flag, (buf_t)NULL, &iostate, callback, callback_arg); | |
2754 | } else { | |
2755 | if (!vector_upl_index) { | |
2756 | vector_upl = vector_upl_create(upl_offset); | |
2757 | v_upl_uio_offset = uio->uio_offset; | |
2758 | vector_upl_offset = upl_offset; | |
2759 | } | |
2760 | ||
2761 | vector_upl_set_subupl(vector_upl, upl, upl_size); | |
2762 | vector_upl_set_iostate(vector_upl, upl, vector_upl_size, upl_size); | |
2763 | vector_upl_index++; | |
2764 | vector_upl_iosize += io_size; | |
2765 | vector_upl_size += upl_size; | |
2766 | ||
2767 | if (issueVectorUPL || vector_upl_index == MAX_VECTOR_UPL_ELEMENTS || vector_upl_size >= max_vector_size) { | |
2768 | retval = vector_cluster_io(vp, vector_upl, vector_upl_offset, v_upl_uio_offset, vector_upl_iosize, io_flag, (buf_t)NULL, &iostate, callback, callback_arg); | |
2769 | reset_vector_run_state(); | |
2770 | } | |
2771 | } | |
2772 | ||
2773 | /* | |
2774 | * update the uio structure to | |
2775 | * reflect the I/O that we just issued | |
2776 | */ | |
2777 | uio_update(uio, (user_size_t)io_size); | |
2778 | ||
2779 | /* | |
2780 | * in case we end up calling through to cluster_write_copy to finish | |
2781 | * the tail of this request, we need to update the oldEOF so that we | |
2782 | * don't zero-fill the head of a page if we've successfully written | |
2783 | * data to that area... 'cluster_write_copy' will zero-fill the head of a | |
2784 | * page that is beyond the oldEOF if the write is unaligned... we only | |
2785 | * want that to happen for the very first page of the cluster_write, | |
2786 | * NOT the first page of each vector making up a multi-vector write. | |
2787 | */ | |
2788 | if (uio->uio_offset > oldEOF) { | |
2789 | oldEOF = uio->uio_offset; | |
2790 | } | |
2791 | ||
2792 | io_req_size -= io_size; | |
2793 | ||
2794 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 77)) | DBG_FUNC_END, | |
2795 | (int)upl_offset, (int)uio->uio_offset, io_req_size, retval, 0); | |
2796 | } /* end while */ | |
2797 | ||
2798 | if (retval == 0 && iostate.io_error == 0 && io_req_size == 0) { | |
2799 | retval = cluster_io_type(uio, write_type, write_length, MIN_DIRECT_WRITE_SIZE); | |
2800 | ||
2801 | if (retval == 0 && *write_type == IO_DIRECT) { | |
2802 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 75)) | DBG_FUNC_NONE, | |
2803 | (int)uio->uio_offset, *write_length, (int)newEOF, 0, 0); | |
2804 | ||
2805 | goto next_dwrite; | |
2806 | } | |
2807 | } | |
2808 | ||
2809 | wait_for_dwrites: | |
2810 | ||
2811 | if (retval == 0 && iostate.io_error == 0 && useVectorUPL && vector_upl_index) { | |
2812 | retval = vector_cluster_io(vp, vector_upl, vector_upl_offset, v_upl_uio_offset, vector_upl_iosize, io_flag, (buf_t)NULL, &iostate, callback, callback_arg); | |
2813 | reset_vector_run_state(); | |
2814 | } | |
2815 | /* | |
2816 | * make sure all async writes issued as part of this stream | |
2817 | * have completed before we return | |
2818 | */ | |
2819 | cluster_iostate_wait(&iostate, 0, "cluster_write_direct"); | |
2820 | ||
2821 | if (iostate.io_error) { | |
2822 | retval = iostate.io_error; | |
2823 | } | |
2824 | ||
2825 | lck_mtx_destroy(&iostate.io_mtxp, &cl_mtx_grp); | |
2826 | ||
2827 | if (io_throttled == TRUE && retval == 0) { | |
2828 | retval = EAGAIN; | |
2829 | } | |
2830 | ||
2831 | if (io_req_size && retval == 0) { | |
2832 | /* | |
2833 | * we couldn't handle the tail of this request in DIRECT mode | |
2834 | * so fire it through the copy path | |
2835 | * | |
2836 | * note that flags will never have IO_HEADZEROFILL or IO_TAILZEROFILL set | |
2837 | * so we can just pass 0 in for the headOff and tailOff | |
2838 | */ | |
2839 | if (uio->uio_offset > oldEOF) { | |
2840 | oldEOF = uio->uio_offset; | |
2841 | } | |
2842 | ||
2843 | retval = cluster_write_copy(vp, uio, io_req_size, oldEOF, newEOF, (off_t)0, (off_t)0, flags, callback, callback_arg); | |
2844 | ||
2845 | *write_type = IO_UNKNOWN; | |
2846 | } | |
2847 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 75)) | DBG_FUNC_END, | |
2848 | (int)uio->uio_offset, io_req_size, retval, 4, 0); | |
2849 | ||
2850 | return retval; | |
2851 | } | |
2852 | ||
2853 | ||
2854 | static int | |
2855 | cluster_write_contig(vnode_t vp, struct uio *uio, off_t newEOF, int *write_type, u_int32_t *write_length, | |
2856 | int (*callback)(buf_t, void *), void *callback_arg, int bflag) | |
2857 | { | |
2858 | upl_page_info_t *pl; | |
2859 | addr64_t src_paddr = 0; | |
2860 | upl_t upl[MAX_VECTS]; | |
2861 | vm_offset_t upl_offset; | |
2862 | u_int32_t tail_size = 0; | |
2863 | u_int32_t io_size; | |
2864 | u_int32_t xsize; | |
2865 | upl_size_t upl_size; | |
2866 | vm_size_t upl_needed_size; | |
2867 | mach_msg_type_number_t pages_in_pl; | |
2868 | upl_control_flags_t upl_flags; | |
2869 | kern_return_t kret; | |
2870 | struct clios iostate; | |
2871 | int error = 0; | |
2872 | int cur_upl = 0; | |
2873 | int num_upl = 0; | |
2874 | int n; | |
2875 | user_addr_t iov_base; | |
2876 | u_int32_t devblocksize; | |
2877 | u_int32_t mem_alignment_mask; | |
2878 | ||
2879 | /* | |
2880 | * When we enter this routine, we know | |
2881 | * -- the io_req_size will not exceed iov_len | |
2882 | * -- the target address is physically contiguous | |
2883 | */ | |
2884 | cluster_syncup(vp, newEOF, callback, callback_arg, callback ? PUSH_SYNC : 0); | |
2885 | ||
2886 | devblocksize = (u_int32_t)vp->v_mount->mnt_devblocksize; | |
2887 | mem_alignment_mask = (u_int32_t)vp->v_mount->mnt_alignmentmask; | |
2888 | ||
2889 | iostate.io_completed = 0; | |
2890 | iostate.io_issued = 0; | |
2891 | iostate.io_error = 0; | |
2892 | iostate.io_wanted = 0; | |
2893 | ||
2894 | lck_mtx_init(&iostate.io_mtxp, &cl_mtx_grp, LCK_ATTR_NULL); | |
2895 | ||
2896 | next_cwrite: | |
2897 | io_size = *write_length; | |
2898 | ||
2899 | iov_base = uio_curriovbase(uio); | |
2900 | ||
2901 | upl_offset = (vm_offset_t)((u_int32_t)iov_base & PAGE_MASK); | |
2902 | upl_needed_size = upl_offset + io_size; | |
2903 | ||
2904 | pages_in_pl = 0; | |
2905 | upl_size = (upl_size_t)upl_needed_size; | |
2906 | upl_flags = UPL_FILE_IO | UPL_COPYOUT_FROM | UPL_NO_SYNC | | |
2907 | UPL_CLEAN_IN_PLACE | UPL_SET_INTERNAL | UPL_SET_LITE | UPL_SET_IO_WIRE; | |
2908 | ||
2909 | vm_map_t map = UIO_SEG_IS_USER_SPACE(uio->uio_segflg) ? current_map() : kernel_map; | |
2910 | kret = vm_map_get_upl(map, | |
2911 | vm_map_trunc_page(iov_base, vm_map_page_mask(map)), | |
2912 | &upl_size, &upl[cur_upl], NULL, &pages_in_pl, &upl_flags, VM_KERN_MEMORY_FILE, 0); | |
2913 | ||
2914 | if (kret != KERN_SUCCESS) { | |
2915 | /* | |
2916 | * failed to get pagelist | |
2917 | */ | |
2918 | error = EINVAL; | |
2919 | goto wait_for_cwrites; | |
2920 | } | |
2921 | num_upl++; | |
2922 | ||
2923 | /* | |
2924 | * Consider the possibility that upl_size wasn't satisfied. | |
2925 | */ | |
2926 | if (upl_size < upl_needed_size) { | |
2927 | /* | |
2928 | * This is a failure in the physical memory case. | |
2929 | */ | |
2930 | error = EINVAL; | |
2931 | goto wait_for_cwrites; | |
2932 | } | |
2933 | pl = ubc_upl_pageinfo(upl[cur_upl]); | |
2934 | ||
2935 | src_paddr = ((addr64_t)upl_phys_page(pl, 0) << PAGE_SHIFT) + (addr64_t)upl_offset; | |
2936 | ||
2937 | while (((uio->uio_offset & (devblocksize - 1)) || io_size < devblocksize) && io_size) { | |
2938 | u_int32_t head_size; | |
2939 | ||
2940 | head_size = devblocksize - (u_int32_t)(uio->uio_offset & (devblocksize - 1)); | |
2941 | ||
2942 | if (head_size > io_size) { | |
2943 | head_size = io_size; | |
2944 | } | |
2945 | ||
2946 | error = cluster_align_phys_io(vp, uio, src_paddr, head_size, 0, callback, callback_arg); | |
2947 | ||
2948 | if (error) { | |
2949 | goto wait_for_cwrites; | |
2950 | } | |
2951 | ||
2952 | upl_offset += head_size; | |
2953 | src_paddr += head_size; | |
2954 | io_size -= head_size; | |
2955 | ||
2956 | iov_base += head_size; | |
2957 | } | |
2958 | if ((u_int32_t)iov_base & mem_alignment_mask) { | |
2959 | /* | |
2960 | * request doesn't set up on a memory boundary | |
2961 | * the underlying DMA engine can handle... | |
2962 | * return an error instead of going through | |
2963 | * the slow copy path since the intent of this | |
2964 | * path is direct I/O from device memory | |
2965 | */ | |
2966 | error = EINVAL; | |
2967 | goto wait_for_cwrites; | |
2968 | } | |
2969 | ||
2970 | tail_size = io_size & (devblocksize - 1); | |
2971 | io_size -= tail_size; | |
2972 | ||
2973 | while (io_size && error == 0) { | |
2974 | if (io_size > MAX_IO_CONTIG_SIZE) { | |
2975 | xsize = MAX_IO_CONTIG_SIZE; | |
2976 | } else { | |
2977 | xsize = io_size; | |
2978 | } | |
2979 | /* | |
2980 | * request asynchronously so that we can overlap | |
2981 | * the preparation of the next I/O... we'll do | |
2982 | * the commit after all the I/O has completed | |
2983 | * since its all issued against the same UPL | |
2984 | * if there are already too many outstanding writes | |
2985 | * wait until some have completed before issuing the next | |
2986 | */ | |
2987 | cluster_iostate_wait(&iostate, MAX_IO_CONTIG_SIZE * IO_SCALE(vp, 2), "cluster_write_contig"); | |
2988 | ||
2989 | if (iostate.io_error) { | |
2990 | /* | |
2991 | * one of the earlier writes we issued ran into a hard error | |
2992 | * don't issue any more writes... | |
2993 | * go wait for all writes that are part of this stream | |
2994 | * to complete before returning the error to the caller | |
2995 | */ | |
2996 | goto wait_for_cwrites; | |
2997 | } | |
2998 | /* | |
2999 | * issue an asynchronous write to cluster_io | |
3000 | */ | |
3001 | error = cluster_io(vp, upl[cur_upl], upl_offset, uio->uio_offset, | |
3002 | xsize, CL_DEV_MEMORY | CL_ASYNC | bflag, (buf_t)NULL, (struct clios *)&iostate, callback, callback_arg); | |
3003 | ||
3004 | if (error == 0) { | |
3005 | /* | |
3006 | * The cluster_io write completed successfully, | |
3007 | * update the uio structure | |
3008 | */ | |
3009 | uio_update(uio, (user_size_t)xsize); | |
3010 | ||
3011 | upl_offset += xsize; | |
3012 | src_paddr += xsize; | |
3013 | io_size -= xsize; | |
3014 | } | |
3015 | } | |
3016 | if (error == 0 && iostate.io_error == 0 && tail_size == 0 && num_upl < MAX_VECTS) { | |
3017 | error = cluster_io_type(uio, write_type, write_length, 0); | |
3018 | ||
3019 | if (error == 0 && *write_type == IO_CONTIG) { | |
3020 | cur_upl++; | |
3021 | goto next_cwrite; | |
3022 | } | |
3023 | } else { | |
3024 | *write_type = IO_UNKNOWN; | |
3025 | } | |
3026 | ||
3027 | wait_for_cwrites: | |
3028 | /* | |
3029 | * make sure all async writes that are part of this stream | |
3030 | * have completed before we proceed | |
3031 | */ | |
3032 | cluster_iostate_wait(&iostate, 0, "cluster_write_contig"); | |
3033 | ||
3034 | if (iostate.io_error) { | |
3035 | error = iostate.io_error; | |
3036 | } | |
3037 | ||
3038 | lck_mtx_destroy(&iostate.io_mtxp, &cl_mtx_grp); | |
3039 | ||
3040 | if (error == 0 && tail_size) { | |
3041 | error = cluster_align_phys_io(vp, uio, src_paddr, tail_size, 0, callback, callback_arg); | |
3042 | } | |
3043 | ||
3044 | for (n = 0; n < num_upl; n++) { | |
3045 | /* | |
3046 | * just release our hold on each physically contiguous | |
3047 | * region without changing any state | |
3048 | */ | |
3049 | ubc_upl_abort(upl[n], 0); | |
3050 | } | |
3051 | ||
3052 | return error; | |
3053 | } | |
3054 | ||
3055 | ||
3056 | /* | |
3057 | * need to avoid a race between an msync of a range of pages dirtied via mmap | |
3058 | * vs a filesystem such as HFS deciding to write a 'hole' to disk via cluster_write's | |
3059 | * zerofill mechanism before it has seen the VNOP_PAGEOUTs for the pages being msync'd | |
3060 | * | |
3061 | * we should never force-zero-fill pages that are already valid in the cache... | |
3062 | * the entire page contains valid data (either from disk, zero-filled or dirtied | |
3063 | * via an mmap) so we can only do damage by trying to zero-fill | |
3064 | * | |
3065 | */ | |
3066 | static int | |
3067 | cluster_zero_range(upl_t upl, upl_page_info_t *pl, int flags, int io_offset, off_t zero_off, off_t upl_f_offset, int bytes_to_zero) | |
3068 | { | |
3069 | int zero_pg_index; | |
3070 | boolean_t need_cluster_zero = TRUE; | |
3071 | ||
3072 | if ((flags & (IO_NOZEROVALID | IO_NOZERODIRTY))) { | |
3073 | bytes_to_zero = min(bytes_to_zero, PAGE_SIZE - (int)(zero_off & PAGE_MASK_64)); | |
3074 | zero_pg_index = (int)((zero_off - upl_f_offset) / PAGE_SIZE_64); | |
3075 | ||
3076 | if (upl_valid_page(pl, zero_pg_index)) { | |
3077 | /* | |
3078 | * never force zero valid pages - dirty or clean | |
3079 | * we'll leave these in the UPL for cluster_write_copy to deal with | |
3080 | */ | |
3081 | need_cluster_zero = FALSE; | |
3082 | } | |
3083 | } | |
3084 | if (need_cluster_zero == TRUE) { | |
3085 | cluster_zero(upl, io_offset, bytes_to_zero, NULL); | |
3086 | } | |
3087 | ||
3088 | return bytes_to_zero; | |
3089 | } | |
3090 | ||
3091 | ||
3092 | void | |
3093 | cluster_update_state(vnode_t vp, vm_object_offset_t s_offset, vm_object_offset_t e_offset, boolean_t vm_initiated) | |
3094 | { | |
3095 | struct cl_extent cl; | |
3096 | boolean_t first_pass = TRUE; | |
3097 | ||
3098 | assert(s_offset < e_offset); | |
3099 | assert((s_offset & PAGE_MASK_64) == 0); | |
3100 | assert((e_offset & PAGE_MASK_64) == 0); | |
3101 | ||
3102 | cl.b_addr = (daddr64_t)(s_offset / PAGE_SIZE_64); | |
3103 | cl.e_addr = (daddr64_t)(e_offset / PAGE_SIZE_64); | |
3104 | ||
3105 | cluster_update_state_internal(vp, &cl, 0, TRUE, &first_pass, s_offset, (int)(e_offset - s_offset), | |
3106 | vp->v_un.vu_ubcinfo->ui_size, NULL, NULL, vm_initiated); | |
3107 | } | |
3108 | ||
3109 | ||
3110 | static void | |
3111 | cluster_update_state_internal(vnode_t vp, struct cl_extent *cl, int flags, boolean_t defer_writes, | |
3112 | boolean_t *first_pass, off_t write_off, int write_cnt, off_t newEOF, | |
3113 | int (*callback)(buf_t, void *), void *callback_arg, boolean_t vm_initiated) | |
3114 | { | |
3115 | struct cl_writebehind *wbp; | |
3116 | int cl_index; | |
3117 | int ret_cluster_try_push; | |
3118 | u_int max_cluster_pgcount; | |
3119 | ||
3120 | ||
3121 | max_cluster_pgcount = MAX_CLUSTER_SIZE(vp) / PAGE_SIZE; | |
3122 | ||
3123 | /* | |
3124 | * take the lock to protect our accesses | |
3125 | * of the writebehind and sparse cluster state | |
3126 | */ | |
3127 | wbp = cluster_get_wbp(vp, CLW_ALLOCATE | CLW_RETURNLOCKED); | |
3128 | ||
3129 | if (wbp->cl_scmap) { | |
3130 | if (!(flags & IO_NOCACHE)) { | |
3131 | /* | |
3132 | * we've fallen into the sparse | |
3133 | * cluster method of delaying dirty pages | |
3134 | */ | |
3135 | sparse_cluster_add(wbp, &(wbp->cl_scmap), vp, cl, newEOF, callback, callback_arg, vm_initiated); | |
3136 | ||
3137 | lck_mtx_unlock(&wbp->cl_lockw); | |
3138 | return; | |
3139 | } | |
3140 | /* | |
3141 | * must have done cached writes that fell into | |
3142 | * the sparse cluster mechanism... we've switched | |
3143 | * to uncached writes on the file, so go ahead | |
3144 | * and push whatever's in the sparse map | |
3145 | * and switch back to normal clustering | |
3146 | */ | |
3147 | wbp->cl_number = 0; | |
3148 | ||
3149 | sparse_cluster_push(wbp, &(wbp->cl_scmap), vp, newEOF, PUSH_ALL, 0, callback, callback_arg, vm_initiated); | |
3150 | /* | |
3151 | * no clusters of either type present at this point | |
3152 | * so just go directly to start_new_cluster since | |
3153 | * we know we need to delay this I/O since we've | |
3154 | * already released the pages back into the cache | |
3155 | * to avoid the deadlock with sparse_cluster_push | |
3156 | */ | |
3157 | goto start_new_cluster; | |
3158 | } | |
3159 | if (*first_pass == TRUE) { | |
3160 | if (write_off == wbp->cl_last_write) { | |
3161 | wbp->cl_seq_written += write_cnt; | |
3162 | } else { | |
3163 | wbp->cl_seq_written = write_cnt; | |
3164 | } | |
3165 | ||
3166 | wbp->cl_last_write = write_off + write_cnt; | |
3167 | ||
3168 | *first_pass = FALSE; | |
3169 | } | |
3170 | if (wbp->cl_number == 0) { | |
3171 | /* | |
3172 | * no clusters currently present | |
3173 | */ | |
3174 | goto start_new_cluster; | |
3175 | } | |
3176 | ||
3177 | for (cl_index = 0; cl_index < wbp->cl_number; cl_index++) { | |
3178 | /* | |
3179 | * check each cluster that we currently hold | |
3180 | * try to merge some or all of this write into | |
3181 | * one or more of the existing clusters... if | |
3182 | * any portion of the write remains, start a | |
3183 | * new cluster | |
3184 | */ | |
3185 | if (cl->b_addr >= wbp->cl_clusters[cl_index].b_addr) { | |
3186 | /* | |
3187 | * the current write starts at or after the current cluster | |
3188 | */ | |
3189 | if (cl->e_addr <= (wbp->cl_clusters[cl_index].b_addr + max_cluster_pgcount)) { | |
3190 | /* | |
3191 | * we have a write that fits entirely | |
3192 | * within the existing cluster limits | |
3193 | */ | |
3194 | if (cl->e_addr > wbp->cl_clusters[cl_index].e_addr) { | |
3195 | /* | |
3196 | * update our idea of where the cluster ends | |
3197 | */ | |
3198 | wbp->cl_clusters[cl_index].e_addr = cl->e_addr; | |
3199 | } | |
3200 | break; | |
3201 | } | |
3202 | if (cl->b_addr < (wbp->cl_clusters[cl_index].b_addr + max_cluster_pgcount)) { | |
3203 | /* | |
3204 | * we have a write that starts in the middle of the current cluster | |
3205 | * but extends beyond the cluster's limit... we know this because | |
3206 | * of the previous checks | |
3207 | * we'll extend the current cluster to the max | |
3208 | * and update the b_addr for the current write to reflect that | |
3209 | * the head of it was absorbed into this cluster... | |
3210 | * note that we'll always have a leftover tail in this case since | |
3211 | * full absorbtion would have occurred in the clause above | |
3212 | */ | |
3213 | wbp->cl_clusters[cl_index].e_addr = wbp->cl_clusters[cl_index].b_addr + max_cluster_pgcount; | |
3214 | ||
3215 | cl->b_addr = wbp->cl_clusters[cl_index].e_addr; | |
3216 | } | |
3217 | /* | |
3218 | * we come here for the case where the current write starts | |
3219 | * beyond the limit of the existing cluster or we have a leftover | |
3220 | * tail after a partial absorbtion | |
3221 | * | |
3222 | * in either case, we'll check the remaining clusters before | |
3223 | * starting a new one | |
3224 | */ | |
3225 | } else { | |
3226 | /* | |
3227 | * the current write starts in front of the cluster we're currently considering | |
3228 | */ | |
3229 | if ((wbp->cl_clusters[cl_index].e_addr - cl->b_addr) <= max_cluster_pgcount) { | |
3230 | /* | |
3231 | * we can just merge the new request into | |
3232 | * this cluster and leave it in the cache | |
3233 | * since the resulting cluster is still | |
3234 | * less than the maximum allowable size | |
3235 | */ | |
3236 | wbp->cl_clusters[cl_index].b_addr = cl->b_addr; | |
3237 | ||
3238 | if (cl->e_addr > wbp->cl_clusters[cl_index].e_addr) { | |
3239 | /* | |
3240 | * the current write completely | |
3241 | * envelops the existing cluster and since | |
3242 | * each write is limited to at most max_cluster_pgcount pages | |
3243 | * we can just use the start and last blocknos of the write | |
3244 | * to generate the cluster limits | |
3245 | */ | |
3246 | wbp->cl_clusters[cl_index].e_addr = cl->e_addr; | |
3247 | } | |
3248 | break; | |
3249 | } | |
3250 | /* | |
3251 | * if we were to combine this write with the current cluster | |
3252 | * we would exceed the cluster size limit.... so, | |
3253 | * let's see if there's any overlap of the new I/O with | |
3254 | * the cluster we're currently considering... in fact, we'll | |
3255 | * stretch the cluster out to it's full limit and see if we | |
3256 | * get an intersection with the current write | |
3257 | * | |
3258 | */ | |
3259 | if (cl->e_addr > wbp->cl_clusters[cl_index].e_addr - max_cluster_pgcount) { | |
3260 | /* | |
3261 | * the current write extends into the proposed cluster | |
3262 | * clip the length of the current write after first combining it's | |
3263 | * tail with the newly shaped cluster | |
3264 | */ | |
3265 | wbp->cl_clusters[cl_index].b_addr = wbp->cl_clusters[cl_index].e_addr - max_cluster_pgcount; | |
3266 | ||
3267 | cl->e_addr = wbp->cl_clusters[cl_index].b_addr; | |
3268 | } | |
3269 | /* | |
3270 | * if we get here, there was no way to merge | |
3271 | * any portion of this write with this cluster | |
3272 | * or we could only merge part of it which | |
3273 | * will leave a tail... | |
3274 | * we'll check the remaining clusters before starting a new one | |
3275 | */ | |
3276 | } | |
3277 | } | |
3278 | if (cl_index < wbp->cl_number) { | |
3279 | /* | |
3280 | * we found an existing cluster(s) that we | |
3281 | * could entirely merge this I/O into | |
3282 | */ | |
3283 | goto delay_io; | |
3284 | } | |
3285 | ||
3286 | if (defer_writes == FALSE && | |
3287 | wbp->cl_number == MAX_CLUSTERS && | |
3288 | wbp->cl_seq_written >= (MAX_CLUSTERS * (max_cluster_pgcount * PAGE_SIZE))) { | |
3289 | uint32_t n; | |
3290 | ||
3291 | if (vp->v_mount->mnt_minsaturationbytecount) { | |
3292 | n = vp->v_mount->mnt_minsaturationbytecount / MAX_CLUSTER_SIZE(vp); | |
3293 | ||
3294 | if (n > MAX_CLUSTERS) { | |
3295 | n = MAX_CLUSTERS; | |
3296 | } | |
3297 | } else { | |
3298 | n = 0; | |
3299 | } | |
3300 | ||
3301 | if (n == 0) { | |
3302 | if (disk_conditioner_mount_is_ssd(vp->v_mount)) { | |
3303 | n = WRITE_BEHIND_SSD; | |
3304 | } else { | |
3305 | n = WRITE_BEHIND; | |
3306 | } | |
3307 | } | |
3308 | while (n--) { | |
3309 | cluster_try_push(wbp, vp, newEOF, 0, 0, callback, callback_arg, NULL, vm_initiated); | |
3310 | } | |
3311 | } | |
3312 | if (wbp->cl_number < MAX_CLUSTERS) { | |
3313 | /* | |
3314 | * we didn't find an existing cluster to | |
3315 | * merge into, but there's room to start | |
3316 | * a new one | |
3317 | */ | |
3318 | goto start_new_cluster; | |
3319 | } | |
3320 | /* | |
3321 | * no exisitng cluster to merge with and no | |
3322 | * room to start a new one... we'll try | |
3323 | * pushing one of the existing ones... if none of | |
3324 | * them are able to be pushed, we'll switch | |
3325 | * to the sparse cluster mechanism | |
3326 | * cluster_try_push updates cl_number to the | |
3327 | * number of remaining clusters... and | |
3328 | * returns the number of currently unused clusters | |
3329 | */ | |
3330 | ret_cluster_try_push = 0; | |
3331 | ||
3332 | /* | |
3333 | * if writes are not deferred, call cluster push immediately | |
3334 | */ | |
3335 | if (defer_writes == FALSE) { | |
3336 | ret_cluster_try_push = cluster_try_push(wbp, vp, newEOF, (flags & IO_NOCACHE) ? 0 : PUSH_DELAY, 0, callback, callback_arg, NULL, vm_initiated); | |
3337 | } | |
3338 | /* | |
3339 | * execute following regardless of writes being deferred or not | |
3340 | */ | |
3341 | if (ret_cluster_try_push == 0) { | |
3342 | /* | |
3343 | * no more room in the normal cluster mechanism | |
3344 | * so let's switch to the more expansive but expensive | |
3345 | * sparse mechanism.... | |
3346 | */ | |
3347 | sparse_cluster_switch(wbp, vp, newEOF, callback, callback_arg, vm_initiated); | |
3348 | sparse_cluster_add(wbp, &(wbp->cl_scmap), vp, cl, newEOF, callback, callback_arg, vm_initiated); | |
3349 | ||
3350 | lck_mtx_unlock(&wbp->cl_lockw); | |
3351 | return; | |
3352 | } | |
3353 | start_new_cluster: | |
3354 | wbp->cl_clusters[wbp->cl_number].b_addr = cl->b_addr; | |
3355 | wbp->cl_clusters[wbp->cl_number].e_addr = cl->e_addr; | |
3356 | ||
3357 | wbp->cl_clusters[wbp->cl_number].io_flags = 0; | |
3358 | ||
3359 | if (flags & IO_NOCACHE) { | |
3360 | wbp->cl_clusters[wbp->cl_number].io_flags |= CLW_IONOCACHE; | |
3361 | } | |
3362 | ||
3363 | if (flags & IO_PASSIVE) { | |
3364 | wbp->cl_clusters[wbp->cl_number].io_flags |= CLW_IOPASSIVE; | |
3365 | } | |
3366 | ||
3367 | wbp->cl_number++; | |
3368 | delay_io: | |
3369 | lck_mtx_unlock(&wbp->cl_lockw); | |
3370 | return; | |
3371 | } | |
3372 | ||
3373 | ||
3374 | static int | |
3375 | cluster_write_copy(vnode_t vp, struct uio *uio, u_int32_t io_req_size, off_t oldEOF, off_t newEOF, off_t headOff, | |
3376 | off_t tailOff, int flags, int (*callback)(buf_t, void *), void *callback_arg) | |
3377 | { | |
3378 | upl_page_info_t *pl; | |
3379 | upl_t upl; | |
3380 | vm_offset_t upl_offset = 0; | |
3381 | vm_size_t upl_size; | |
3382 | off_t upl_f_offset; | |
3383 | int pages_in_upl; | |
3384 | int start_offset; | |
3385 | int xfer_resid; | |
3386 | int io_size; | |
3387 | int io_offset; | |
3388 | int bytes_to_zero; | |
3389 | int bytes_to_move; | |
3390 | kern_return_t kret; | |
3391 | int retval = 0; | |
3392 | int io_resid; | |
3393 | long long total_size; | |
3394 | long long zero_cnt; | |
3395 | off_t zero_off; | |
3396 | long long zero_cnt1; | |
3397 | off_t zero_off1; | |
3398 | off_t write_off = 0; | |
3399 | int write_cnt = 0; | |
3400 | boolean_t first_pass = FALSE; | |
3401 | struct cl_extent cl; | |
3402 | int bflag; | |
3403 | u_int max_io_size; | |
3404 | ||
3405 | if (uio) { | |
3406 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 40)) | DBG_FUNC_START, | |
3407 | (int)uio->uio_offset, io_req_size, (int)oldEOF, (int)newEOF, 0); | |
3408 | ||
3409 | io_resid = io_req_size; | |
3410 | } else { | |
3411 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 40)) | DBG_FUNC_START, | |
3412 | 0, 0, (int)oldEOF, (int)newEOF, 0); | |
3413 | ||
3414 | io_resid = 0; | |
3415 | } | |
3416 | if (flags & IO_PASSIVE) { | |
3417 | bflag = CL_PASSIVE; | |
3418 | } else { | |
3419 | bflag = 0; | |
3420 | } | |
3421 | if (flags & IO_NOCACHE) { | |
3422 | bflag |= CL_NOCACHE; | |
3423 | } | |
3424 | ||
3425 | if (flags & IO_SKIP_ENCRYPTION) { | |
3426 | bflag |= CL_ENCRYPTED; | |
3427 | } | |
3428 | ||
3429 | zero_cnt = 0; | |
3430 | zero_cnt1 = 0; | |
3431 | zero_off = 0; | |
3432 | zero_off1 = 0; | |
3433 | ||
3434 | max_io_size = cluster_max_io_size(vp->v_mount, CL_WRITE); | |
3435 | ||
3436 | if (flags & IO_HEADZEROFILL) { | |
3437 | /* | |
3438 | * some filesystems (HFS is one) don't support unallocated holes within a file... | |
3439 | * so we zero fill the intervening space between the old EOF and the offset | |
3440 | * where the next chunk of real data begins.... ftruncate will also use this | |
3441 | * routine to zero fill to the new EOF when growing a file... in this case, the | |
3442 | * uio structure will not be provided | |
3443 | */ | |
3444 | if (uio) { | |
3445 | if (headOff < uio->uio_offset) { | |
3446 | zero_cnt = uio->uio_offset - headOff; | |
3447 | zero_off = headOff; | |
3448 | } | |
3449 | } else if (headOff < newEOF) { | |
3450 | zero_cnt = newEOF - headOff; | |
3451 | zero_off = headOff; | |
3452 | } | |
3453 | } else { | |
3454 | if (uio && uio->uio_offset > oldEOF) { | |
3455 | zero_off = uio->uio_offset & ~PAGE_MASK_64; | |
3456 | ||
3457 | if (zero_off >= oldEOF) { | |
3458 | zero_cnt = uio->uio_offset - zero_off; | |
3459 | ||
3460 | flags |= IO_HEADZEROFILL; | |
3461 | } | |
3462 | } | |
3463 | } | |
3464 | if (flags & IO_TAILZEROFILL) { | |
3465 | if (uio) { | |
3466 | zero_off1 = uio->uio_offset + io_req_size; | |
3467 | ||
3468 | if (zero_off1 < tailOff) { | |
3469 | zero_cnt1 = tailOff - zero_off1; | |
3470 | } | |
3471 | } | |
3472 | } else { | |
3473 | if (uio && newEOF > oldEOF) { | |
3474 | zero_off1 = uio->uio_offset + io_req_size; | |
3475 | ||
3476 | if (zero_off1 == newEOF && (zero_off1 & PAGE_MASK_64)) { | |
3477 | zero_cnt1 = PAGE_SIZE_64 - (zero_off1 & PAGE_MASK_64); | |
3478 | ||
3479 | flags |= IO_TAILZEROFILL; | |
3480 | } | |
3481 | } | |
3482 | } | |
3483 | if (zero_cnt == 0 && uio == (struct uio *) 0) { | |
3484 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 40)) | DBG_FUNC_END, | |
3485 | retval, 0, 0, 0, 0); | |
3486 | return 0; | |
3487 | } | |
3488 | if (uio) { | |
3489 | write_off = uio->uio_offset; | |
3490 | write_cnt = (int)uio_resid(uio); | |
3491 | /* | |
3492 | * delay updating the sequential write info | |
3493 | * in the control block until we've obtained | |
3494 | * the lock for it | |
3495 | */ | |
3496 | first_pass = TRUE; | |
3497 | } | |
3498 | while ((total_size = (io_resid + zero_cnt + zero_cnt1)) && retval == 0) { | |
3499 | /* | |
3500 | * for this iteration of the loop, figure out where our starting point is | |
3501 | */ | |
3502 | if (zero_cnt) { | |
3503 | start_offset = (int)(zero_off & PAGE_MASK_64); | |
3504 | upl_f_offset = zero_off - start_offset; | |
3505 | } else if (io_resid) { | |
3506 | start_offset = (int)(uio->uio_offset & PAGE_MASK_64); | |
3507 | upl_f_offset = uio->uio_offset - start_offset; | |
3508 | } else { | |
3509 | start_offset = (int)(zero_off1 & PAGE_MASK_64); | |
3510 | upl_f_offset = zero_off1 - start_offset; | |
3511 | } | |
3512 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 46)) | DBG_FUNC_NONE, | |
3513 | (int)zero_off, (int)zero_cnt, (int)zero_off1, (int)zero_cnt1, 0); | |
3514 | ||
3515 | if (total_size > max_io_size) { | |
3516 | total_size = max_io_size; | |
3517 | } | |
3518 | ||
3519 | cl.b_addr = (daddr64_t)(upl_f_offset / PAGE_SIZE_64); | |
3520 | ||
3521 | if (uio && ((flags & (IO_SYNC | IO_HEADZEROFILL | IO_TAILZEROFILL)) == 0)) { | |
3522 | /* | |
3523 | * assumption... total_size <= io_resid | |
3524 | * because IO_HEADZEROFILL and IO_TAILZEROFILL not set | |
3525 | */ | |
3526 | if ((start_offset + total_size) > max_io_size) { | |
3527 | total_size = max_io_size - start_offset; | |
3528 | } | |
3529 | xfer_resid = (int)total_size; | |
3530 | ||
3531 | retval = cluster_copy_ubc_data_internal(vp, uio, &xfer_resid, 1, 1); | |
3532 | ||
3533 | if (retval) { | |
3534 | break; | |
3535 | } | |
3536 | ||
3537 | io_resid -= (total_size - xfer_resid); | |
3538 | total_size = xfer_resid; | |
3539 | start_offset = (int)(uio->uio_offset & PAGE_MASK_64); | |
3540 | upl_f_offset = uio->uio_offset - start_offset; | |
3541 | ||
3542 | if (total_size == 0) { | |
3543 | if (start_offset) { | |
3544 | /* | |
3545 | * the write did not finish on a page boundary | |
3546 | * which will leave upl_f_offset pointing to the | |
3547 | * beginning of the last page written instead of | |
3548 | * the page beyond it... bump it in this case | |
3549 | * so that the cluster code records the last page | |
3550 | * written as dirty | |
3551 | */ | |
3552 | upl_f_offset += PAGE_SIZE_64; | |
3553 | } | |
3554 | upl_size = 0; | |
3555 | ||
3556 | goto check_cluster; | |
3557 | } | |
3558 | } | |
3559 | /* | |
3560 | * compute the size of the upl needed to encompass | |
3561 | * the requested write... limit each call to cluster_io | |
3562 | * to the maximum UPL size... cluster_io will clip if | |
3563 | * this exceeds the maximum io_size for the device, | |
3564 | * make sure to account for | |
3565 | * a starting offset that's not page aligned | |
3566 | */ | |
3567 | upl_size = (start_offset + total_size + (PAGE_SIZE - 1)) & ~PAGE_MASK; | |
3568 | ||
3569 | if (upl_size > max_io_size) { | |
3570 | upl_size = max_io_size; | |
3571 | } | |
3572 | ||
3573 | pages_in_upl = (int)(upl_size / PAGE_SIZE); | |
3574 | io_size = (int)(upl_size - start_offset); | |
3575 | ||
3576 | if ((long long)io_size > total_size) { | |
3577 | io_size = (int)total_size; | |
3578 | } | |
3579 | ||
3580 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 41)) | DBG_FUNC_START, upl_size, io_size, total_size, 0, 0); | |
3581 | ||
3582 | ||
3583 | /* | |
3584 | * Gather the pages from the buffer cache. | |
3585 | * The UPL_WILL_MODIFY flag lets the UPL subsystem know | |
3586 | * that we intend to modify these pages. | |
3587 | */ | |
3588 | kret = ubc_create_upl_kernel(vp, | |
3589 | upl_f_offset, | |
3590 | (int)upl_size, | |
3591 | &upl, | |
3592 | &pl, | |
3593 | UPL_SET_LITE | ((uio != NULL && (uio->uio_flags & UIO_FLAGS_IS_COMPRESSED_FILE)) ? 0 : UPL_WILL_MODIFY), | |
3594 | VM_KERN_MEMORY_FILE); | |
3595 | if (kret != KERN_SUCCESS) { | |
3596 | panic("cluster_write_copy: failed to get pagelist"); | |
3597 | } | |
3598 | ||
3599 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 41)) | DBG_FUNC_END, | |
3600 | upl, (int)upl_f_offset, start_offset, 0, 0); | |
3601 | ||
3602 | if (start_offset && upl_f_offset < oldEOF && !upl_valid_page(pl, 0)) { | |
3603 | int read_size; | |
3604 | ||
3605 | /* | |
3606 | * we're starting in the middle of the first page of the upl | |
3607 | * and the page isn't currently valid, so we're going to have | |
3608 | * to read it in first... this is a synchronous operation | |
3609 | */ | |
3610 | read_size = PAGE_SIZE; | |
3611 | ||
3612 | if ((upl_f_offset + read_size) > oldEOF) { | |
3613 | read_size = (int)(oldEOF - upl_f_offset); | |
3614 | } | |
3615 | ||
3616 | retval = cluster_io(vp, upl, 0, upl_f_offset, read_size, | |
3617 | CL_READ | bflag, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg); | |
3618 | if (retval) { | |
3619 | /* | |
3620 | * we had an error during the read which causes us to abort | |
3621 | * the current cluster_write request... before we do, we need | |
3622 | * to release the rest of the pages in the upl without modifying | |
3623 | * there state and mark the failed page in error | |
3624 | */ | |
3625 | ubc_upl_abort_range(upl, 0, PAGE_SIZE, UPL_ABORT_DUMP_PAGES | UPL_ABORT_FREE_ON_EMPTY); | |
3626 | ||
3627 | if (upl_size > PAGE_SIZE) { | |
3628 | ubc_upl_abort_range(upl, 0, (upl_size_t)upl_size, | |
3629 | UPL_ABORT_FREE_ON_EMPTY); | |
3630 | } | |
3631 | ||
3632 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 45)) | DBG_FUNC_NONE, | |
3633 | upl, 0, 0, retval, 0); | |
3634 | break; | |
3635 | } | |
3636 | } | |
3637 | if ((start_offset == 0 || upl_size > PAGE_SIZE) && ((start_offset + io_size) & PAGE_MASK)) { | |
3638 | /* | |
3639 | * the last offset we're writing to in this upl does not end on a page | |
3640 | * boundary... if it's not beyond the old EOF, then we'll also need to | |
3641 | * pre-read this page in if it isn't already valid | |
3642 | */ | |
3643 | upl_offset = upl_size - PAGE_SIZE; | |
3644 | ||
3645 | if ((upl_f_offset + start_offset + io_size) < oldEOF && | |
3646 | !upl_valid_page(pl, (int)(upl_offset / PAGE_SIZE))) { | |
3647 | int read_size; | |
3648 | ||
3649 | read_size = PAGE_SIZE; | |
3650 | ||
3651 | if ((off_t)(upl_f_offset + upl_offset + read_size) > oldEOF) { | |
3652 | read_size = (int)(oldEOF - (upl_f_offset + upl_offset)); | |
3653 | } | |
3654 | ||
3655 | retval = cluster_io(vp, upl, upl_offset, upl_f_offset + upl_offset, read_size, | |
3656 | CL_READ | bflag, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg); | |
3657 | if (retval) { | |
3658 | /* | |
3659 | * we had an error during the read which causes us to abort | |
3660 | * the current cluster_write request... before we do, we | |
3661 | * need to release the rest of the pages in the upl without | |
3662 | * modifying there state and mark the failed page in error | |
3663 | */ | |
3664 | ubc_upl_abort_range(upl, (upl_offset_t)upl_offset, PAGE_SIZE, UPL_ABORT_DUMP_PAGES | UPL_ABORT_FREE_ON_EMPTY); | |
3665 | ||
3666 | if (upl_size > PAGE_SIZE) { | |
3667 | ubc_upl_abort_range(upl, 0, (upl_size_t)upl_size, UPL_ABORT_FREE_ON_EMPTY); | |
3668 | } | |
3669 | ||
3670 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 45)) | DBG_FUNC_NONE, | |
3671 | upl, 0, 0, retval, 0); | |
3672 | break; | |
3673 | } | |
3674 | } | |
3675 | } | |
3676 | xfer_resid = io_size; | |
3677 | io_offset = start_offset; | |
3678 | ||
3679 | while (zero_cnt && xfer_resid) { | |
3680 | if (zero_cnt < (long long)xfer_resid) { | |
3681 | bytes_to_zero = (int)zero_cnt; | |
3682 | } else { | |
3683 | bytes_to_zero = xfer_resid; | |
3684 | } | |
3685 | ||
3686 | bytes_to_zero = cluster_zero_range(upl, pl, flags, io_offset, zero_off, upl_f_offset, bytes_to_zero); | |
3687 | ||
3688 | xfer_resid -= bytes_to_zero; | |
3689 | zero_cnt -= bytes_to_zero; | |
3690 | zero_off += bytes_to_zero; | |
3691 | io_offset += bytes_to_zero; | |
3692 | } | |
3693 | if (xfer_resid && io_resid) { | |
3694 | u_int32_t io_requested; | |
3695 | ||
3696 | bytes_to_move = min(io_resid, xfer_resid); | |
3697 | io_requested = bytes_to_move; | |
3698 | ||
3699 | retval = cluster_copy_upl_data(uio, upl, io_offset, (int *)&io_requested); | |
3700 | ||
3701 | if (retval) { | |
3702 | ubc_upl_abort_range(upl, 0, (upl_size_t)upl_size, UPL_ABORT_FREE_ON_EMPTY); | |
3703 | ||
3704 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 45)) | DBG_FUNC_NONE, | |
3705 | upl, 0, 0, retval, 0); | |
3706 | } else { | |
3707 | io_resid -= bytes_to_move; | |
3708 | xfer_resid -= bytes_to_move; | |
3709 | io_offset += bytes_to_move; | |
3710 | } | |
3711 | } | |
3712 | while (xfer_resid && zero_cnt1 && retval == 0) { | |
3713 | if (zero_cnt1 < (long long)xfer_resid) { | |
3714 | bytes_to_zero = (int)zero_cnt1; | |
3715 | } else { | |
3716 | bytes_to_zero = xfer_resid; | |
3717 | } | |
3718 | ||
3719 | bytes_to_zero = cluster_zero_range(upl, pl, flags, io_offset, zero_off1, upl_f_offset, bytes_to_zero); | |
3720 | ||
3721 | xfer_resid -= bytes_to_zero; | |
3722 | zero_cnt1 -= bytes_to_zero; | |
3723 | zero_off1 += bytes_to_zero; | |
3724 | io_offset += bytes_to_zero; | |
3725 | } | |
3726 | if (retval == 0) { | |
3727 | int do_zeroing = 1; | |
3728 | ||
3729 | io_size += start_offset; | |
3730 | ||
3731 | /* Force more restrictive zeroing behavior only on APFS */ | |
3732 | if ((vnode_tag(vp) == VT_APFS) && (newEOF < oldEOF)) { | |
3733 | do_zeroing = 0; | |
3734 | } | |
3735 | ||
3736 | if (do_zeroing && (upl_f_offset + io_size) >= newEOF && (u_int)io_size < upl_size) { | |
3737 | /* | |
3738 | * if we're extending the file with this write | |
3739 | * we'll zero fill the rest of the page so that | |
3740 | * if the file gets extended again in such a way as to leave a | |
3741 | * hole starting at this EOF, we'll have zero's in the correct spot | |
3742 | */ | |
3743 | cluster_zero(upl, io_size, (int)(upl_size - io_size), NULL); | |
3744 | } | |
3745 | /* | |
3746 | * release the upl now if we hold one since... | |
3747 | * 1) pages in it may be present in the sparse cluster map | |
3748 | * and may span 2 separate buckets there... if they do and | |
3749 | * we happen to have to flush a bucket to make room and it intersects | |
3750 | * this upl, a deadlock may result on page BUSY | |
3751 | * 2) we're delaying the I/O... from this point forward we're just updating | |
3752 | * the cluster state... no need to hold the pages, so commit them | |
3753 | * 3) IO_SYNC is set... | |
3754 | * because we had to ask for a UPL that provides currenty non-present pages, the | |
3755 | * UPL has been automatically set to clear the dirty flags (both software and hardware) | |
3756 | * upon committing it... this is not the behavior we want since it's possible for | |
3757 | * pages currently present as part of a mapped file to be dirtied while the I/O is in flight. | |
3758 | * we'll pick these pages back up later with the correct behavior specified. | |
3759 | * 4) we don't want to hold pages busy in a UPL and then block on the cluster lock... if a flush | |
3760 | * of this vnode is in progress, we will deadlock if the pages being flushed intersect the pages | |
3761 | * we hold since the flushing context is holding the cluster lock. | |
3762 | */ | |
3763 | ubc_upl_commit_range(upl, 0, (upl_size_t)upl_size, | |
3764 | UPL_COMMIT_SET_DIRTY | UPL_COMMIT_INACTIVATE | UPL_COMMIT_FREE_ON_EMPTY); | |
3765 | check_cluster: | |
3766 | /* | |
3767 | * calculate the last logical block number | |
3768 | * that this delayed I/O encompassed | |
3769 | */ | |
3770 | cl.e_addr = (daddr64_t)((upl_f_offset + (off_t)upl_size) / PAGE_SIZE_64); | |
3771 | ||
3772 | if (flags & IO_SYNC) { | |
3773 | /* | |
3774 | * if the IO_SYNC flag is set than we need to bypass | |
3775 | * any clustering and immediately issue the I/O | |
3776 | * | |
3777 | * we don't hold the lock at this point | |
3778 | * | |
3779 | * we've already dropped the current upl, so pick it back up with COPYOUT_FROM set | |
3780 | * so that we correctly deal with a change in state of the hardware modify bit... | |
3781 | * we do this via cluster_push_now... by passing along the IO_SYNC flag, we force | |
3782 | * cluster_push_now to wait until all the I/Os have completed... cluster_push_now is also | |
3783 | * responsible for generating the correct sized I/O(s) | |
3784 | */ | |
3785 | retval = cluster_push_now(vp, &cl, newEOF, flags, callback, callback_arg, FALSE); | |
3786 | } else { | |
3787 | boolean_t defer_writes = FALSE; | |
3788 | ||
3789 | if (vfs_flags(vp->v_mount) & MNT_DEFWRITE) { | |
3790 | defer_writes = TRUE; | |
3791 | } | |
3792 | ||
3793 | cluster_update_state_internal(vp, &cl, flags, defer_writes, &first_pass, | |
3794 | write_off, write_cnt, newEOF, callback, callback_arg, FALSE); | |
3795 | } | |
3796 | } | |
3797 | } | |
3798 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 40)) | DBG_FUNC_END, retval, 0, io_resid, 0, 0); | |
3799 | ||
3800 | return retval; | |
3801 | } | |
3802 | ||
3803 | ||
3804 | ||
3805 | int | |
3806 | cluster_read(vnode_t vp, struct uio *uio, off_t filesize, int xflags) | |
3807 | { | |
3808 | return cluster_read_ext(vp, uio, filesize, xflags, NULL, NULL); | |
3809 | } | |
3810 | ||
3811 | ||
3812 | int | |
3813 | cluster_read_ext(vnode_t vp, struct uio *uio, off_t filesize, int xflags, int (*callback)(buf_t, void *), void *callback_arg) | |
3814 | { | |
3815 | int retval = 0; | |
3816 | int flags; | |
3817 | user_ssize_t cur_resid; | |
3818 | u_int32_t io_size; | |
3819 | u_int32_t read_length = 0; | |
3820 | int read_type = IO_COPY; | |
3821 | ||
3822 | flags = xflags; | |
3823 | ||
3824 | if (vp->v_flag & VNOCACHE_DATA) { | |
3825 | flags |= IO_NOCACHE; | |
3826 | } | |
3827 | if ((vp->v_flag & VRAOFF) || speculative_reads_disabled) { | |
3828 | flags |= IO_RAOFF; | |
3829 | } | |
3830 | ||
3831 | if (flags & IO_SKIP_ENCRYPTION) { | |
3832 | flags |= IO_ENCRYPTED; | |
3833 | } | |
3834 | ||
3835 | /* | |
3836 | * do a read through the cache if one of the following is true.... | |
3837 | * NOCACHE is not true | |
3838 | * the uio request doesn't target USERSPACE | |
3839 | * Alternatively, if IO_ENCRYPTED is set, then we want to bypass the cache as well. | |
3840 | * Reading encrypted data from a CP filesystem should never result in the data touching | |
3841 | * the UBC. | |
3842 | * | |
3843 | * otherwise, find out if we want the direct or contig variant for | |
3844 | * the first vector in the uio request | |
3845 | */ | |
3846 | if (((flags & IO_NOCACHE) && UIO_SEG_IS_USER_SPACE(uio->uio_segflg)) || (flags & IO_ENCRYPTED)) { | |
3847 | retval = cluster_io_type(uio, &read_type, &read_length, 0); | |
3848 | } | |
3849 | ||
3850 | while ((cur_resid = uio_resid(uio)) && uio->uio_offset < filesize && retval == 0) { | |
3851 | switch (read_type) { | |
3852 | case IO_COPY: | |
3853 | /* | |
3854 | * make sure the uio_resid isn't too big... | |
3855 | * internally, we want to handle all of the I/O in | |
3856 | * chunk sizes that fit in a 32 bit int | |
3857 | */ | |
3858 | if (cur_resid > (user_ssize_t)(MAX_IO_REQUEST_SIZE)) { | |
3859 | io_size = MAX_IO_REQUEST_SIZE; | |
3860 | } else { | |
3861 | io_size = (u_int32_t)cur_resid; | |
3862 | } | |
3863 | ||
3864 | retval = cluster_read_copy(vp, uio, io_size, filesize, flags, callback, callback_arg); | |
3865 | break; | |
3866 | ||
3867 | case IO_DIRECT: | |
3868 | retval = cluster_read_direct(vp, uio, filesize, &read_type, &read_length, flags, callback, callback_arg); | |
3869 | break; | |
3870 | ||
3871 | case IO_CONTIG: | |
3872 | retval = cluster_read_contig(vp, uio, filesize, &read_type, &read_length, callback, callback_arg, flags); | |
3873 | break; | |
3874 | ||
3875 | case IO_UNKNOWN: | |
3876 | retval = cluster_io_type(uio, &read_type, &read_length, 0); | |
3877 | break; | |
3878 | } | |
3879 | } | |
3880 | return retval; | |
3881 | } | |
3882 | ||
3883 | ||
3884 | ||
3885 | static void | |
3886 | cluster_read_upl_release(upl_t upl, int start_pg, int last_pg, int take_reference) | |
3887 | { | |
3888 | int range; | |
3889 | int abort_flags = UPL_ABORT_FREE_ON_EMPTY; | |
3890 | ||
3891 | if ((range = last_pg - start_pg)) { | |
3892 | if (take_reference) { | |
3893 | abort_flags |= UPL_ABORT_REFERENCE; | |
3894 | } | |
3895 | ||
3896 | ubc_upl_abort_range(upl, start_pg * PAGE_SIZE, range * PAGE_SIZE, abort_flags); | |
3897 | } | |
3898 | } | |
3899 | ||
3900 | ||
3901 | static int | |
3902 | cluster_read_copy(vnode_t vp, struct uio *uio, u_int32_t io_req_size, off_t filesize, int flags, int (*callback)(buf_t, void *), void *callback_arg) | |
3903 | { | |
3904 | upl_page_info_t *pl; | |
3905 | upl_t upl; | |
3906 | vm_offset_t upl_offset; | |
3907 | u_int32_t upl_size; | |
3908 | off_t upl_f_offset; | |
3909 | int start_offset; | |
3910 | int start_pg; | |
3911 | int last_pg; | |
3912 | int uio_last = 0; | |
3913 | int pages_in_upl; | |
3914 | off_t max_size; | |
3915 | off_t last_ioread_offset; | |
3916 | off_t last_request_offset; | |
3917 | kern_return_t kret; | |
3918 | int error = 0; | |
3919 | int retval = 0; | |
3920 | u_int32_t size_of_prefetch; | |
3921 | u_int32_t xsize; | |
3922 | u_int32_t io_size; | |
3923 | u_int32_t max_rd_size; | |
3924 | u_int32_t max_io_size; | |
3925 | u_int32_t max_prefetch; | |
3926 | u_int rd_ahead_enabled = 1; | |
3927 | u_int prefetch_enabled = 1; | |
3928 | struct cl_readahead * rap; | |
3929 | struct clios iostate; | |
3930 | struct cl_extent extent; | |
3931 | int bflag; | |
3932 | int take_reference = 1; | |
3933 | int policy = IOPOL_DEFAULT; | |
3934 | boolean_t iolock_inited = FALSE; | |
3935 | ||
3936 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 32)) | DBG_FUNC_START, | |
3937 | (int)uio->uio_offset, io_req_size, (int)filesize, flags, 0); | |
3938 | ||
3939 | if (flags & IO_ENCRYPTED) { | |
3940 | panic("encrypted blocks will hit UBC!"); | |
3941 | } | |
3942 | ||
3943 | policy = throttle_get_io_policy(NULL); | |
3944 | ||
3945 | if (policy == THROTTLE_LEVEL_TIER3 || policy == THROTTLE_LEVEL_TIER2 || (flags & IO_NOCACHE)) { | |
3946 | take_reference = 0; | |
3947 | } | |
3948 | ||
3949 | if (flags & IO_PASSIVE) { | |
3950 | bflag = CL_PASSIVE; | |
3951 | } else { | |
3952 | bflag = 0; | |
3953 | } | |
3954 | ||
3955 | if (flags & IO_NOCACHE) { | |
3956 | bflag |= CL_NOCACHE; | |
3957 | } | |
3958 | ||
3959 | if (flags & IO_SKIP_ENCRYPTION) { | |
3960 | bflag |= CL_ENCRYPTED; | |
3961 | } | |
3962 | ||
3963 | max_io_size = cluster_max_io_size(vp->v_mount, CL_READ); | |
3964 | max_prefetch = MAX_PREFETCH(vp, max_io_size, disk_conditioner_mount_is_ssd(vp->v_mount)); | |
3965 | max_rd_size = max_prefetch; | |
3966 | ||
3967 | last_request_offset = uio->uio_offset + io_req_size; | |
3968 | ||
3969 | if (last_request_offset > filesize) { | |
3970 | last_request_offset = filesize; | |
3971 | } | |
3972 | ||
3973 | if ((flags & (IO_RAOFF | IO_NOCACHE)) || ((last_request_offset & ~PAGE_MASK_64) == (uio->uio_offset & ~PAGE_MASK_64))) { | |
3974 | rd_ahead_enabled = 0; | |
3975 | rap = NULL; | |
3976 | } else { | |
3977 | if (cluster_is_throttled(vp)) { | |
3978 | /* | |
3979 | * we're in the throttle window, at the very least | |
3980 | * we want to limit the size of the I/O we're about | |
3981 | * to issue | |
3982 | */ | |
3983 | rd_ahead_enabled = 0; | |
3984 | prefetch_enabled = 0; | |
3985 | ||
3986 | max_rd_size = THROTTLE_MAX_IOSIZE; | |
3987 | } | |
3988 | if ((rap = cluster_get_rap(vp)) == NULL) { | |
3989 | rd_ahead_enabled = 0; | |
3990 | } else { | |
3991 | extent.b_addr = uio->uio_offset / PAGE_SIZE_64; | |
3992 | extent.e_addr = (last_request_offset - 1) / PAGE_SIZE_64; | |
3993 | } | |
3994 | } | |
3995 | if (rap != NULL && rap->cl_ralen && (rap->cl_lastr == extent.b_addr || (rap->cl_lastr + 1) == extent.b_addr)) { | |
3996 | /* | |
3997 | * determine if we already have a read-ahead in the pipe courtesy of the | |
3998 | * last read systemcall that was issued... | |
3999 | * if so, pick up it's extent to determine where we should start | |
4000 | * with respect to any read-ahead that might be necessary to | |
4001 | * garner all the data needed to complete this read systemcall | |
4002 | */ | |
4003 | last_ioread_offset = (rap->cl_maxra * PAGE_SIZE_64) + PAGE_SIZE_64; | |
4004 | ||
4005 | if (last_ioread_offset < uio->uio_offset) { | |
4006 | last_ioread_offset = (off_t)0; | |
4007 | } else if (last_ioread_offset > last_request_offset) { | |
4008 | last_ioread_offset = last_request_offset; | |
4009 | } | |
4010 | } else { | |
4011 | last_ioread_offset = (off_t)0; | |
4012 | } | |
4013 | ||
4014 | while (io_req_size && uio->uio_offset < filesize && retval == 0) { | |
4015 | max_size = filesize - uio->uio_offset; | |
4016 | bool leftover_upl_aborted = false; | |
4017 | ||
4018 | if ((off_t)(io_req_size) < max_size) { | |
4019 | io_size = io_req_size; | |
4020 | } else { | |
4021 | io_size = (u_int32_t)max_size; | |
4022 | } | |
4023 | ||
4024 | if (!(flags & IO_NOCACHE)) { | |
4025 | while (io_size) { | |
4026 | u_int32_t io_resid; | |
4027 | u_int32_t io_requested; | |
4028 | ||
4029 | /* | |
4030 | * if we keep finding the pages we need already in the cache, then | |
4031 | * don't bother to call cluster_read_prefetch since it costs CPU cycles | |
4032 | * to determine that we have all the pages we need... once we miss in | |
4033 | * the cache and have issued an I/O, than we'll assume that we're likely | |
4034 | * to continue to miss in the cache and it's to our advantage to try and prefetch | |
4035 | */ | |
4036 | if (last_request_offset && last_ioread_offset && (size_of_prefetch = (u_int32_t)(last_request_offset - last_ioread_offset))) { | |
4037 | if ((last_ioread_offset - uio->uio_offset) <= max_rd_size && prefetch_enabled) { | |
4038 | /* | |
4039 | * we've already issued I/O for this request and | |
4040 | * there's still work to do and | |
4041 | * our prefetch stream is running dry, so issue a | |
4042 | * pre-fetch I/O... the I/O latency will overlap | |
4043 | * with the copying of the data | |
4044 | */ | |
4045 | if (size_of_prefetch > max_rd_size) { | |
4046 | size_of_prefetch = max_rd_size; | |
4047 | } | |
4048 | ||
4049 | size_of_prefetch = cluster_read_prefetch(vp, last_ioread_offset, size_of_prefetch, filesize, callback, callback_arg, bflag); | |
4050 | ||
4051 | last_ioread_offset += (off_t)(size_of_prefetch * PAGE_SIZE); | |
4052 | ||
4053 | if (last_ioread_offset > last_request_offset) { | |
4054 | last_ioread_offset = last_request_offset; | |
4055 | } | |
4056 | } | |
4057 | } | |
4058 | /* | |
4059 | * limit the size of the copy we're about to do so that | |
4060 | * we can notice that our I/O pipe is running dry and | |
4061 | * get the next I/O issued before it does go dry | |
4062 | */ | |
4063 | if (last_ioread_offset && io_size > (max_io_size / 4)) { | |
4064 | io_resid = (max_io_size / 4); | |
4065 | } else { | |
4066 | io_resid = io_size; | |
4067 | } | |
4068 | ||
4069 | io_requested = io_resid; | |
4070 | ||
4071 | retval = cluster_copy_ubc_data_internal(vp, uio, (int *)&io_resid, 0, take_reference); | |
4072 | ||
4073 | xsize = io_requested - io_resid; | |
4074 | ||
4075 | io_size -= xsize; | |
4076 | io_req_size -= xsize; | |
4077 | ||
4078 | if (retval || io_resid) { | |
4079 | /* | |
4080 | * if we run into a real error or | |
4081 | * a page that is not in the cache | |
4082 | * we need to leave streaming mode | |
4083 | */ | |
4084 | break; | |
4085 | } | |
4086 | ||
4087 | if (rd_ahead_enabled && (io_size == 0 || last_ioread_offset == last_request_offset)) { | |
4088 | /* | |
4089 | * we're already finished the I/O for this read request | |
4090 | * let's see if we should do a read-ahead | |
4091 | */ | |
4092 | cluster_read_ahead(vp, &extent, filesize, rap, callback, callback_arg, bflag); | |
4093 | } | |
4094 | } | |
4095 | if (retval) { | |
4096 | break; | |
4097 | } | |
4098 | if (io_size == 0) { | |
4099 | if (rap != NULL) { | |
4100 | if (extent.e_addr < rap->cl_lastr) { | |
4101 | rap->cl_maxra = 0; | |
4102 | } | |
4103 | rap->cl_lastr = extent.e_addr; | |
4104 | } | |
4105 | break; | |
4106 | } | |
4107 | /* | |
4108 | * recompute max_size since cluster_copy_ubc_data_internal | |
4109 | * may have advanced uio->uio_offset | |
4110 | */ | |
4111 | max_size = filesize - uio->uio_offset; | |
4112 | } | |
4113 | ||
4114 | iostate.io_completed = 0; | |
4115 | iostate.io_issued = 0; | |
4116 | iostate.io_error = 0; | |
4117 | iostate.io_wanted = 0; | |
4118 | ||
4119 | if ((flags & IO_RETURN_ON_THROTTLE)) { | |
4120 | if (cluster_is_throttled(vp) == THROTTLE_NOW) { | |
4121 | if (!cluster_io_present_in_BC(vp, uio->uio_offset)) { | |
4122 | /* | |
4123 | * we're in the throttle window and at least 1 I/O | |
4124 | * has already been issued by a throttleable thread | |
4125 | * in this window, so return with EAGAIN to indicate | |
4126 | * to the FS issuing the cluster_read call that it | |
4127 | * should now throttle after dropping any locks | |
4128 | */ | |
4129 | throttle_info_update_by_mount(vp->v_mount); | |
4130 | ||
4131 | retval = EAGAIN; | |
4132 | break; | |
4133 | } | |
4134 | } | |
4135 | } | |
4136 | ||
4137 | /* | |
4138 | * compute the size of the upl needed to encompass | |
4139 | * the requested read... limit each call to cluster_io | |
4140 | * to the maximum UPL size... cluster_io will clip if | |
4141 | * this exceeds the maximum io_size for the device, | |
4142 | * make sure to account for | |
4143 | * a starting offset that's not page aligned | |
4144 | */ | |
4145 | start_offset = (int)(uio->uio_offset & PAGE_MASK_64); | |
4146 | upl_f_offset = uio->uio_offset - (off_t)start_offset; | |
4147 | ||
4148 | if (io_size > max_rd_size) { | |
4149 | io_size = max_rd_size; | |
4150 | } | |
4151 | ||
4152 | upl_size = (start_offset + io_size + (PAGE_SIZE - 1)) & ~PAGE_MASK; | |
4153 | ||
4154 | if (flags & IO_NOCACHE) { | |
4155 | if (upl_size > max_io_size) { | |
4156 | upl_size = max_io_size; | |
4157 | } | |
4158 | } else { | |
4159 | if (upl_size > max_io_size / 4) { | |
4160 | upl_size = max_io_size / 4; | |
4161 | upl_size &= ~PAGE_MASK; | |
4162 | ||
4163 | if (upl_size == 0) { | |
4164 | upl_size = PAGE_SIZE; | |
4165 | } | |
4166 | } | |
4167 | } | |
4168 | pages_in_upl = upl_size / PAGE_SIZE; | |
4169 | ||
4170 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 33)) | DBG_FUNC_START, | |
4171 | upl, (int)upl_f_offset, upl_size, start_offset, 0); | |
4172 | ||
4173 | kret = ubc_create_upl_kernel(vp, | |
4174 | upl_f_offset, | |
4175 | upl_size, | |
4176 | &upl, | |
4177 | &pl, | |
4178 | UPL_FILE_IO | UPL_SET_LITE, | |
4179 | VM_KERN_MEMORY_FILE); | |
4180 | if (kret != KERN_SUCCESS) { | |
4181 | panic("cluster_read_copy: failed to get pagelist"); | |
4182 | } | |
4183 | ||
4184 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 33)) | DBG_FUNC_END, | |
4185 | upl, (int)upl_f_offset, upl_size, start_offset, 0); | |
4186 | ||
4187 | /* | |
4188 | * scan from the beginning of the upl looking for the first | |
4189 | * non-valid page.... this will become the first page in | |
4190 | * the request we're going to make to 'cluster_io'... if all | |
4191 | * of the pages are valid, we won't call through to 'cluster_io' | |
4192 | */ | |
4193 | for (start_pg = 0; start_pg < pages_in_upl; start_pg++) { | |
4194 | if (!upl_valid_page(pl, start_pg)) { | |
4195 | break; | |
4196 | } | |
4197 | } | |
4198 | ||
4199 | /* | |
4200 | * scan from the starting invalid page looking for a valid | |
4201 | * page before the end of the upl is reached, if we | |
4202 | * find one, then it will be the last page of the request to | |
4203 | * 'cluster_io' | |
4204 | */ | |
4205 | for (last_pg = start_pg; last_pg < pages_in_upl; last_pg++) { | |
4206 | if (upl_valid_page(pl, last_pg)) { | |
4207 | break; | |
4208 | } | |
4209 | } | |
4210 | ||
4211 | if (start_pg < last_pg) { | |
4212 | /* | |
4213 | * we found a range of 'invalid' pages that must be filled | |
4214 | * if the last page in this range is the last page of the file | |
4215 | * we may have to clip the size of it to keep from reading past | |
4216 | * the end of the last physical block associated with the file | |
4217 | */ | |
4218 | if (iolock_inited == FALSE) { | |
4219 | lck_mtx_init(&iostate.io_mtxp, &cl_mtx_grp, LCK_ATTR_NULL); | |
4220 | ||
4221 | iolock_inited = TRUE; | |
4222 | } | |
4223 | upl_offset = start_pg * PAGE_SIZE; | |
4224 | io_size = (last_pg - start_pg) * PAGE_SIZE; | |
4225 | ||
4226 | if ((off_t)(upl_f_offset + upl_offset + io_size) > filesize) { | |
4227 | io_size = (u_int32_t)(filesize - (upl_f_offset + upl_offset)); | |
4228 | } | |
4229 | ||
4230 | /* | |
4231 | * Find out if this needs verification, we'll have to manage the UPL | |
4232 | * diffrently if so. Note that this call only lets us know if | |
4233 | * verification is enabled on this mount point, the actual verification | |
4234 | * is performed in the File system. | |
4235 | */ | |
4236 | size_t verify_block_size = 0; | |
4237 | if ((VNOP_VERIFY(vp, start_offset, NULL, 0, &verify_block_size, VNODE_VERIFY_DEFAULT, NULL) == 0) /* && verify_block_size */) { | |
4238 | for (uio_last = last_pg; uio_last < pages_in_upl; uio_last++) { | |
4239 | if (!upl_valid_page(pl, uio_last)) { | |
4240 | break; | |
4241 | } | |
4242 | } | |
4243 | if (uio_last < pages_in_upl) { | |
4244 | /* | |
4245 | * there were some invalid pages beyond the valid pages | |
4246 | * that we didn't issue an I/O for, just release them | |
4247 | * unchanged now, so that any prefetch/readahed can | |
4248 | * include them | |
4249 | */ | |
4250 | ubc_upl_abort_range(upl, uio_last * PAGE_SIZE, | |
4251 | (pages_in_upl - uio_last) * PAGE_SIZE, UPL_ABORT_FREE_ON_EMPTY); | |
4252 | leftover_upl_aborted = true; | |
4253 | } | |
4254 | } | |
4255 | ||
4256 | /* | |
4257 | * issue an asynchronous read to cluster_io | |
4258 | */ | |
4259 | ||
4260 | error = cluster_io(vp, upl, upl_offset, upl_f_offset + upl_offset, | |
4261 | io_size, CL_READ | CL_ASYNC | bflag, (buf_t)NULL, &iostate, callback, callback_arg); | |
4262 | ||
4263 | if (rap) { | |
4264 | if (extent.e_addr < rap->cl_maxra) { | |
4265 | /* | |
4266 | * we've just issued a read for a block that should have been | |
4267 | * in the cache courtesy of the read-ahead engine... something | |
4268 | * has gone wrong with the pipeline, so reset the read-ahead | |
4269 | * logic which will cause us to restart from scratch | |
4270 | */ | |
4271 | rap->cl_maxra = 0; | |
4272 | } | |
4273 | } | |
4274 | } | |
4275 | if (error == 0) { | |
4276 | /* | |
4277 | * if the read completed successfully, or there was no I/O request | |
4278 | * issued, than copy the data into user land via 'cluster_upl_copy_data' | |
4279 | * we'll first add on any 'valid' | |
4280 | * pages that were present in the upl when we acquired it. | |
4281 | */ | |
4282 | u_int val_size; | |
4283 | ||
4284 | if (!leftover_upl_aborted) { | |
4285 | for (uio_last = last_pg; uio_last < pages_in_upl; uio_last++) { | |
4286 | if (!upl_valid_page(pl, uio_last)) { | |
4287 | break; | |
4288 | } | |
4289 | } | |
4290 | if (uio_last < pages_in_upl) { | |
4291 | /* | |
4292 | * there were some invalid pages beyond the valid pages | |
4293 | * that we didn't issue an I/O for, just release them | |
4294 | * unchanged now, so that any prefetch/readahed can | |
4295 | * include them | |
4296 | */ | |
4297 | ubc_upl_abort_range(upl, uio_last * PAGE_SIZE, | |
4298 | (pages_in_upl - uio_last) * PAGE_SIZE, UPL_ABORT_FREE_ON_EMPTY); | |
4299 | } | |
4300 | } | |
4301 | ||
4302 | /* | |
4303 | * compute size to transfer this round, if io_req_size is | |
4304 | * still non-zero after this attempt, we'll loop around and | |
4305 | * set up for another I/O. | |
4306 | */ | |
4307 | val_size = (uio_last * PAGE_SIZE) - start_offset; | |
4308 | ||
4309 | if (val_size > max_size) { | |
4310 | val_size = (u_int)max_size; | |
4311 | } | |
4312 | ||
4313 | if (val_size > io_req_size) { | |
4314 | val_size = io_req_size; | |
4315 | } | |
4316 | ||
4317 | if ((uio->uio_offset + val_size) > last_ioread_offset) { | |
4318 | last_ioread_offset = uio->uio_offset + val_size; | |
4319 | } | |
4320 | ||
4321 | if ((size_of_prefetch = (u_int32_t)(last_request_offset - last_ioread_offset)) && prefetch_enabled) { | |
4322 | if ((last_ioread_offset - (uio->uio_offset + val_size)) <= upl_size) { | |
4323 | /* | |
4324 | * if there's still I/O left to do for this request, and... | |
4325 | * we're not in hard throttle mode, and... | |
4326 | * we're close to using up the previous prefetch, then issue a | |
4327 | * new pre-fetch I/O... the I/O latency will overlap | |
4328 | * with the copying of the data | |
4329 | */ | |
4330 | if (size_of_prefetch > max_rd_size) { | |
4331 | size_of_prefetch = max_rd_size; | |
4332 | } | |
4333 | ||
4334 | size_of_prefetch = cluster_read_prefetch(vp, last_ioread_offset, size_of_prefetch, filesize, callback, callback_arg, bflag); | |
4335 | ||
4336 | last_ioread_offset += (off_t)(size_of_prefetch * PAGE_SIZE); | |
4337 | ||
4338 | if (last_ioread_offset > last_request_offset) { | |
4339 | last_ioread_offset = last_request_offset; | |
4340 | } | |
4341 | } | |
4342 | } else if ((uio->uio_offset + val_size) == last_request_offset) { | |
4343 | /* | |
4344 | * this transfer will finish this request, so... | |
4345 | * let's try to read ahead if we're in | |
4346 | * a sequential access pattern and we haven't | |
4347 | * explicitly disabled it | |
4348 | */ | |
4349 | if (rd_ahead_enabled) { | |
4350 | cluster_read_ahead(vp, &extent, filesize, rap, callback, callback_arg, bflag); | |
4351 | } | |
4352 | ||
4353 | if (rap != NULL) { | |
4354 | if (extent.e_addr < rap->cl_lastr) { | |
4355 | rap->cl_maxra = 0; | |
4356 | } | |
4357 | rap->cl_lastr = extent.e_addr; | |
4358 | } | |
4359 | } | |
4360 | if (iolock_inited == TRUE) { | |
4361 | cluster_iostate_wait(&iostate, 0, "cluster_read_copy"); | |
4362 | } | |
4363 | ||
4364 | if (iostate.io_error) { | |
4365 | error = iostate.io_error; | |
4366 | } else { | |
4367 | u_int32_t io_requested; | |
4368 | ||
4369 | io_requested = val_size; | |
4370 | ||
4371 | retval = cluster_copy_upl_data(uio, upl, start_offset, (int *)&io_requested); | |
4372 | ||
4373 | io_req_size -= (val_size - io_requested); | |
4374 | } | |
4375 | } else { | |
4376 | if (iolock_inited == TRUE) { | |
4377 | cluster_iostate_wait(&iostate, 0, "cluster_read_copy"); | |
4378 | } | |
4379 | } | |
4380 | if (start_pg < last_pg) { | |
4381 | /* | |
4382 | * compute the range of pages that we actually issued an I/O for | |
4383 | * and either commit them as valid if the I/O succeeded | |
4384 | * or abort them if the I/O failed or we're not supposed to | |
4385 | * keep them in the cache | |
4386 | */ | |
4387 | io_size = (last_pg - start_pg) * PAGE_SIZE; | |
4388 | ||
4389 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 35)) | DBG_FUNC_START, upl, start_pg * PAGE_SIZE, io_size, error, 0); | |
4390 | ||
4391 | if (error || (flags & IO_NOCACHE)) { | |
4392 | ubc_upl_abort_range(upl, start_pg * PAGE_SIZE, io_size, | |
4393 | UPL_ABORT_DUMP_PAGES | UPL_ABORT_FREE_ON_EMPTY); | |
4394 | } else { | |
4395 | int commit_flags = UPL_COMMIT_CLEAR_DIRTY | UPL_COMMIT_FREE_ON_EMPTY; | |
4396 | ||
4397 | if (take_reference) { | |
4398 | commit_flags |= UPL_COMMIT_INACTIVATE; | |
4399 | } else { | |
4400 | commit_flags |= UPL_COMMIT_SPECULATE; | |
4401 | } | |
4402 | ||
4403 | ubc_upl_commit_range(upl, start_pg * PAGE_SIZE, io_size, commit_flags); | |
4404 | } | |
4405 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 35)) | DBG_FUNC_END, upl, start_pg * PAGE_SIZE, io_size, error, 0); | |
4406 | } | |
4407 | if ((last_pg - start_pg) < pages_in_upl) { | |
4408 | /* | |
4409 | * the set of pages that we issued an I/O for did not encompass | |
4410 | * the entire upl... so just release these without modifying | |
4411 | * their state | |
4412 | */ | |
4413 | if (error) { | |
4414 | if (leftover_upl_aborted) { | |
4415 | ubc_upl_abort_range(upl, start_pg * PAGE_SIZE, (uio_last - start_pg) * PAGE_SIZE, | |
4416 | UPL_ABORT_FREE_ON_EMPTY); | |
4417 | } else { | |
4418 | ubc_upl_abort_range(upl, 0, upl_size, UPL_ABORT_FREE_ON_EMPTY); | |
4419 | } | |
4420 | } else { | |
4421 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 35)) | DBG_FUNC_START, | |
4422 | upl, -1, pages_in_upl - (last_pg - start_pg), 0, 0); | |
4423 | ||
4424 | /* | |
4425 | * handle any valid pages at the beginning of | |
4426 | * the upl... release these appropriately | |
4427 | */ | |
4428 | cluster_read_upl_release(upl, 0, start_pg, take_reference); | |
4429 | ||
4430 | /* | |
4431 | * handle any valid pages immediately after the | |
4432 | * pages we issued I/O for... ... release these appropriately | |
4433 | */ | |
4434 | cluster_read_upl_release(upl, last_pg, uio_last, take_reference); | |
4435 | ||
4436 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 35)) | DBG_FUNC_END, upl, -1, -1, 0, 0); | |
4437 | } | |
4438 | } | |
4439 | if (retval == 0) { | |
4440 | retval = error; | |
4441 | } | |
4442 | ||
4443 | if (io_req_size) { | |
4444 | if (cluster_is_throttled(vp)) { | |
4445 | /* | |
4446 | * we're in the throttle window, at the very least | |
4447 | * we want to limit the size of the I/O we're about | |
4448 | * to issue | |
4449 | */ | |
4450 | rd_ahead_enabled = 0; | |
4451 | prefetch_enabled = 0; | |
4452 | max_rd_size = THROTTLE_MAX_IOSIZE; | |
4453 | } else { | |
4454 | if (max_rd_size == THROTTLE_MAX_IOSIZE) { | |
4455 | /* | |
4456 | * coming out of throttled state | |
4457 | */ | |
4458 | if (policy != THROTTLE_LEVEL_TIER3 && policy != THROTTLE_LEVEL_TIER2) { | |
4459 | if (rap != NULL) { | |
4460 | rd_ahead_enabled = 1; | |
4461 | } | |
4462 | prefetch_enabled = 1; | |
4463 | } | |
4464 | max_rd_size = max_prefetch; | |
4465 | last_ioread_offset = 0; | |
4466 | } | |
4467 | } | |
4468 | } | |
4469 | } | |
4470 | if (iolock_inited == TRUE) { | |
4471 | /* | |
4472 | * cluster_io returned an error after it | |
4473 | * had already issued some I/O. we need | |
4474 | * to wait for that I/O to complete before | |
4475 | * we can destroy the iostate mutex... | |
4476 | * 'retval' already contains the early error | |
4477 | * so no need to pick it up from iostate.io_error | |
4478 | */ | |
4479 | cluster_iostate_wait(&iostate, 0, "cluster_read_copy"); | |
4480 | ||
4481 | lck_mtx_destroy(&iostate.io_mtxp, &cl_mtx_grp); | |
4482 | } | |
4483 | if (rap != NULL) { | |
4484 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 32)) | DBG_FUNC_END, | |
4485 | (int)uio->uio_offset, io_req_size, rap->cl_lastr, retval, 0); | |
4486 | ||
4487 | lck_mtx_unlock(&rap->cl_lockr); | |
4488 | } else { | |
4489 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 32)) | DBG_FUNC_END, | |
4490 | (int)uio->uio_offset, io_req_size, 0, retval, 0); | |
4491 | } | |
4492 | ||
4493 | return retval; | |
4494 | } | |
4495 | ||
4496 | /* | |
4497 | * We don't want another read/write lock for every vnode in the system | |
4498 | * so we keep a hash of them here. There should never be very many of | |
4499 | * these around at any point in time. | |
4500 | */ | |
4501 | cl_direct_read_lock_t * | |
4502 | cluster_lock_direct_read(vnode_t vp, lck_rw_type_t type) | |
4503 | { | |
4504 | struct cl_direct_read_locks *head | |
4505 | = &cl_direct_read_locks[(uintptr_t)vp / sizeof(*vp) | |
4506 | % CL_DIRECT_READ_LOCK_BUCKETS]; | |
4507 | ||
4508 | struct cl_direct_read_lock *lck, *new_lck = NULL; | |
4509 | ||
4510 | for (;;) { | |
4511 | lck_spin_lock(&cl_direct_read_spin_lock); | |
4512 | ||
4513 | LIST_FOREACH(lck, head, chain) { | |
4514 | if (lck->vp == vp) { | |
4515 | ++lck->ref_count; | |
4516 | lck_spin_unlock(&cl_direct_read_spin_lock); | |
4517 | if (new_lck) { | |
4518 | // Someone beat us to it, ditch the allocation | |
4519 | lck_rw_destroy(&new_lck->rw_lock, &cl_mtx_grp); | |
4520 | kheap_free(KHEAP_DEFAULT, new_lck, sizeof(cl_direct_read_lock_t)); | |
4521 | } | |
4522 | lck_rw_lock(&lck->rw_lock, type); | |
4523 | return lck; | |
4524 | } | |
4525 | } | |
4526 | ||
4527 | if (new_lck) { | |
4528 | // Use the lock we allocated | |
4529 | LIST_INSERT_HEAD(head, new_lck, chain); | |
4530 | lck_spin_unlock(&cl_direct_read_spin_lock); | |
4531 | lck_rw_lock(&new_lck->rw_lock, type); | |
4532 | return new_lck; | |
4533 | } | |
4534 | ||
4535 | lck_spin_unlock(&cl_direct_read_spin_lock); | |
4536 | ||
4537 | // Allocate a new lock | |
4538 | new_lck = kheap_alloc(KHEAP_DEFAULT, sizeof(cl_direct_read_lock_t), | |
4539 | Z_WAITOK); | |
4540 | lck_rw_init(&new_lck->rw_lock, &cl_mtx_grp, LCK_ATTR_NULL); | |
4541 | new_lck->vp = vp; | |
4542 | new_lck->ref_count = 1; | |
4543 | ||
4544 | // Got to go round again | |
4545 | } | |
4546 | } | |
4547 | ||
4548 | void | |
4549 | cluster_unlock_direct_read(cl_direct_read_lock_t *lck) | |
4550 | { | |
4551 | lck_rw_done(&lck->rw_lock); | |
4552 | ||
4553 | lck_spin_lock(&cl_direct_read_spin_lock); | |
4554 | if (lck->ref_count == 1) { | |
4555 | LIST_REMOVE(lck, chain); | |
4556 | lck_spin_unlock(&cl_direct_read_spin_lock); | |
4557 | lck_rw_destroy(&lck->rw_lock, &cl_mtx_grp); | |
4558 | kheap_free(KHEAP_DEFAULT, lck, sizeof(cl_direct_read_lock_t)); | |
4559 | } else { | |
4560 | --lck->ref_count; | |
4561 | lck_spin_unlock(&cl_direct_read_spin_lock); | |
4562 | } | |
4563 | } | |
4564 | ||
4565 | static int | |
4566 | cluster_read_direct(vnode_t vp, struct uio *uio, off_t filesize, int *read_type, u_int32_t *read_length, | |
4567 | int flags, int (*callback)(buf_t, void *), void *callback_arg) | |
4568 | { | |
4569 | upl_t upl; | |
4570 | upl_page_info_t *pl; | |
4571 | off_t max_io_size; | |
4572 | vm_offset_t upl_offset, vector_upl_offset = 0; | |
4573 | upl_size_t upl_size, vector_upl_size = 0; | |
4574 | vm_size_t upl_needed_size; | |
4575 | unsigned int pages_in_pl; | |
4576 | upl_control_flags_t upl_flags; | |
4577 | kern_return_t kret; | |
4578 | unsigned int i; | |
4579 | int force_data_sync; | |
4580 | int retval = 0; | |
4581 | int no_zero_fill = 0; | |
4582 | int io_flag = 0; | |
4583 | int misaligned = 0; | |
4584 | struct clios iostate; | |
4585 | user_addr_t iov_base; | |
4586 | u_int32_t io_req_size; | |
4587 | u_int32_t offset_in_file; | |
4588 | u_int32_t offset_in_iovbase; | |
4589 | u_int32_t io_size; | |
4590 | u_int32_t io_min; | |
4591 | u_int32_t xsize; | |
4592 | u_int32_t devblocksize; | |
4593 | u_int32_t mem_alignment_mask; | |
4594 | u_int32_t max_upl_size; | |
4595 | u_int32_t max_rd_size; | |
4596 | u_int32_t max_rd_ahead; | |
4597 | u_int32_t max_vector_size; | |
4598 | boolean_t io_throttled = FALSE; | |
4599 | ||
4600 | u_int32_t vector_upl_iosize = 0; | |
4601 | int issueVectorUPL = 0, useVectorUPL = (uio->uio_iovcnt > 1); | |
4602 | off_t v_upl_uio_offset = 0; | |
4603 | int vector_upl_index = 0; | |
4604 | upl_t vector_upl = NULL; | |
4605 | cl_direct_read_lock_t *lock = NULL; | |
4606 | ||
4607 | user_addr_t orig_iov_base = 0; | |
4608 | user_addr_t last_iov_base = 0; | |
4609 | user_addr_t next_iov_base = 0; | |
4610 | ||
4611 | assert(vm_map_page_shift(current_map()) >= PAGE_SHIFT); | |
4612 | ||
4613 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 70)) | DBG_FUNC_START, | |
4614 | (int)uio->uio_offset, (int)filesize, *read_type, *read_length, 0); | |
4615 | ||
4616 | max_upl_size = cluster_max_io_size(vp->v_mount, CL_READ); | |
4617 | ||
4618 | max_rd_size = max_upl_size; | |
4619 | max_rd_ahead = max_rd_size * IO_SCALE(vp, 2); | |
4620 | ||
4621 | io_flag = CL_COMMIT | CL_READ | CL_ASYNC | CL_NOZERO | CL_DIRECT_IO; | |
4622 | ||
4623 | if (flags & IO_PASSIVE) { | |
4624 | io_flag |= CL_PASSIVE; | |
4625 | } | |
4626 | ||
4627 | if (flags & IO_ENCRYPTED) { | |
4628 | io_flag |= CL_RAW_ENCRYPTED; | |
4629 | } | |
4630 | ||
4631 | if (flags & IO_NOCACHE) { | |
4632 | io_flag |= CL_NOCACHE; | |
4633 | } | |
4634 | ||
4635 | if (flags & IO_SKIP_ENCRYPTION) { | |
4636 | io_flag |= CL_ENCRYPTED; | |
4637 | } | |
4638 | ||
4639 | iostate.io_completed = 0; | |
4640 | iostate.io_issued = 0; | |
4641 | iostate.io_error = 0; | |
4642 | iostate.io_wanted = 0; | |
4643 | ||
4644 | lck_mtx_init(&iostate.io_mtxp, &cl_mtx_grp, LCK_ATTR_NULL); | |
4645 | ||
4646 | devblocksize = (u_int32_t)vp->v_mount->mnt_devblocksize; | |
4647 | mem_alignment_mask = (u_int32_t)vp->v_mount->mnt_alignmentmask; | |
4648 | ||
4649 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 70)) | DBG_FUNC_NONE, | |
4650 | (int)devblocksize, (int)mem_alignment_mask, 0, 0, 0); | |
4651 | ||
4652 | if (devblocksize == 1) { | |
4653 | /* | |
4654 | * the AFP client advertises a devblocksize of 1 | |
4655 | * however, its BLOCKMAP routine maps to physical | |
4656 | * blocks that are PAGE_SIZE in size... | |
4657 | * therefore we can't ask for I/Os that aren't page aligned | |
4658 | * or aren't multiples of PAGE_SIZE in size | |
4659 | * by setting devblocksize to PAGE_SIZE, we re-instate | |
4660 | * the old behavior we had before the mem_alignment_mask | |
4661 | * changes went in... | |
4662 | */ | |
4663 | devblocksize = PAGE_SIZE; | |
4664 | } | |
4665 | ||
4666 | orig_iov_base = uio_curriovbase(uio); | |
4667 | last_iov_base = orig_iov_base; | |
4668 | ||
4669 | next_dread: | |
4670 | io_req_size = *read_length; | |
4671 | iov_base = uio_curriovbase(uio); | |
4672 | ||
4673 | offset_in_file = (u_int32_t)uio->uio_offset & (devblocksize - 1); | |
4674 | offset_in_iovbase = (u_int32_t)iov_base & mem_alignment_mask; | |
4675 | ||
4676 | if (vm_map_page_mask(current_map()) < PAGE_MASK) { | |
4677 | /* | |
4678 | * XXX TODO4K | |
4679 | * Direct I/O might not work as expected from a 16k kernel space | |
4680 | * to a 4k user space because each 4k chunk might point to | |
4681 | * a different 16k physical page... | |
4682 | * Let's go the "misaligned" way. | |
4683 | */ | |
4684 | if (!misaligned) { | |
4685 | DEBUG4K_VFS("forcing misaligned\n"); | |
4686 | } | |
4687 | misaligned = 1; | |
4688 | } | |
4689 | ||
4690 | if (offset_in_file || offset_in_iovbase) { | |
4691 | /* | |
4692 | * one of the 2 important offsets is misaligned | |
4693 | * so fire an I/O through the cache for this entire vector | |
4694 | */ | |
4695 | misaligned = 1; | |
4696 | } | |
4697 | if (iov_base & (devblocksize - 1)) { | |
4698 | /* | |
4699 | * the offset in memory must be on a device block boundary | |
4700 | * so that we can guarantee that we can generate an | |
4701 | * I/O that ends on a page boundary in cluster_io | |
4702 | */ | |
4703 | misaligned = 1; | |
4704 | } | |
4705 | ||
4706 | max_io_size = filesize - uio->uio_offset; | |
4707 | ||
4708 | /* | |
4709 | * The user must request IO in aligned chunks. If the | |
4710 | * offset into the file is bad, or the userland pointer | |
4711 | * is non-aligned, then we cannot service the encrypted IO request. | |
4712 | */ | |
4713 | if (flags & IO_ENCRYPTED) { | |
4714 | if (misaligned || (io_req_size & (devblocksize - 1))) { | |
4715 | retval = EINVAL; | |
4716 | } | |
4717 | ||
4718 | max_io_size = roundup(max_io_size, devblocksize); | |
4719 | } | |
4720 | ||
4721 | if ((off_t)io_req_size > max_io_size) { | |
4722 | io_req_size = (u_int32_t)max_io_size; | |
4723 | } | |
4724 | ||
4725 | /* | |
4726 | * When we get to this point, we know... | |
4727 | * -- the offset into the file is on a devblocksize boundary | |
4728 | */ | |
4729 | ||
4730 | while (io_req_size && retval == 0) { | |
4731 | u_int32_t io_start; | |
4732 | ||
4733 | if (cluster_is_throttled(vp)) { | |
4734 | /* | |
4735 | * we're in the throttle window, at the very least | |
4736 | * we want to limit the size of the I/O we're about | |
4737 | * to issue | |
4738 | */ | |
4739 | max_rd_size = THROTTLE_MAX_IOSIZE; | |
4740 | max_rd_ahead = THROTTLE_MAX_IOSIZE - 1; | |
4741 | max_vector_size = THROTTLE_MAX_IOSIZE; | |
4742 | } else { | |
4743 | max_rd_size = max_upl_size; | |
4744 | max_rd_ahead = max_rd_size * IO_SCALE(vp, 2); | |
4745 | max_vector_size = MAX_VECTOR_UPL_SIZE; | |
4746 | } | |
4747 | io_start = io_size = io_req_size; | |
4748 | ||
4749 | /* | |
4750 | * First look for pages already in the cache | |
4751 | * and move them to user space. But only do this | |
4752 | * check if we are not retrieving encrypted data directly | |
4753 | * from the filesystem; those blocks should never | |
4754 | * be in the UBC. | |
4755 | * | |
4756 | * cluster_copy_ubc_data returns the resid | |
4757 | * in io_size | |
4758 | */ | |
4759 | if ((flags & IO_ENCRYPTED) == 0) { | |
4760 | retval = cluster_copy_ubc_data_internal(vp, uio, (int *)&io_size, 0, 0); | |
4761 | } | |
4762 | /* | |
4763 | * calculate the number of bytes actually copied | |
4764 | * starting size - residual | |
4765 | */ | |
4766 | xsize = io_start - io_size; | |
4767 | ||
4768 | io_req_size -= xsize; | |
4769 | ||
4770 | if (useVectorUPL && (xsize || (iov_base & PAGE_MASK))) { | |
4771 | /* | |
4772 | * We found something in the cache or we have an iov_base that's not | |
4773 | * page-aligned. | |
4774 | * | |
4775 | * Issue all I/O's that have been collected within this Vectored UPL. | |
4776 | */ | |
4777 | if (vector_upl_index) { | |
4778 | retval = vector_cluster_io(vp, vector_upl, vector_upl_offset, v_upl_uio_offset, vector_upl_iosize, io_flag, (buf_t)NULL, &iostate, callback, callback_arg); | |
4779 | reset_vector_run_state(); | |
4780 | } | |
4781 | ||
4782 | if (xsize) { | |
4783 | useVectorUPL = 0; | |
4784 | } | |
4785 | ||
4786 | /* | |
4787 | * After this point, if we are using the Vector UPL path and the base is | |
4788 | * not page-aligned then the UPL with that base will be the first in the vector UPL. | |
4789 | */ | |
4790 | } | |
4791 | ||
4792 | /* | |
4793 | * check to see if we are finished with this request. | |
4794 | * | |
4795 | * If we satisfied this IO already, then io_req_size will be 0. | |
4796 | * Otherwise, see if the IO was mis-aligned and needs to go through | |
4797 | * the UBC to deal with the 'tail'. | |
4798 | * | |
4799 | */ | |
4800 | if (io_req_size == 0 || (misaligned)) { | |
4801 | /* | |
4802 | * see if there's another uio vector to | |
4803 | * process that's of type IO_DIRECT | |
4804 | * | |
4805 | * break out of while loop to get there | |
4806 | */ | |
4807 | break; | |
4808 | } | |
4809 | /* | |
4810 | * assume the request ends on a device block boundary | |
4811 | */ | |
4812 | io_min = devblocksize; | |
4813 | ||
4814 | /* | |
4815 | * we can handle I/O's in multiples of the device block size | |
4816 | * however, if io_size isn't a multiple of devblocksize we | |
4817 | * want to clip it back to the nearest page boundary since | |
4818 | * we are going to have to go through cluster_read_copy to | |
4819 | * deal with the 'overhang'... by clipping it to a PAGE_SIZE | |
4820 | * multiple, we avoid asking the drive for the same physical | |
4821 | * blocks twice.. once for the partial page at the end of the | |
4822 | * request and a 2nd time for the page we read into the cache | |
4823 | * (which overlaps the end of the direct read) in order to | |
4824 | * get at the overhang bytes | |
4825 | */ | |
4826 | if (io_size & (devblocksize - 1)) { | |
4827 | assert(!(flags & IO_ENCRYPTED)); | |
4828 | /* | |
4829 | * Clip the request to the previous page size boundary | |
4830 | * since request does NOT end on a device block boundary | |
4831 | */ | |
4832 | io_size &= ~PAGE_MASK; | |
4833 | io_min = PAGE_SIZE; | |
4834 | } | |
4835 | if (retval || io_size < io_min) { | |
4836 | /* | |
4837 | * either an error or we only have the tail left to | |
4838 | * complete via the copy path... | |
4839 | * we may have already spun some portion of this request | |
4840 | * off as async requests... we need to wait for the I/O | |
4841 | * to complete before returning | |
4842 | */ | |
4843 | goto wait_for_dreads; | |
4844 | } | |
4845 | ||
4846 | /* | |
4847 | * Don't re-check the UBC data if we are looking for uncached IO | |
4848 | * or asking for encrypted blocks. | |
4849 | */ | |
4850 | if ((flags & IO_ENCRYPTED) == 0) { | |
4851 | if ((xsize = io_size) > max_rd_size) { | |
4852 | xsize = max_rd_size; | |
4853 | } | |
4854 | ||
4855 | io_size = 0; | |
4856 | ||
4857 | if (!lock) { | |
4858 | /* | |
4859 | * We hold a lock here between the time we check the | |
4860 | * cache and the time we issue I/O. This saves us | |
4861 | * from having to lock the pages in the cache. Not | |
4862 | * all clients will care about this lock but some | |
4863 | * clients may want to guarantee stability between | |
4864 | * here and when the I/O is issued in which case they | |
4865 | * will take the lock exclusively. | |
4866 | */ | |
4867 | lock = cluster_lock_direct_read(vp, LCK_RW_TYPE_SHARED); | |
4868 | } | |
4869 | ||
4870 | ubc_range_op(vp, uio->uio_offset, uio->uio_offset + xsize, UPL_ROP_ABSENT, (int *)&io_size); | |
4871 | ||
4872 | if (io_size == 0) { | |
4873 | /* | |
4874 | * a page must have just come into the cache | |
4875 | * since the first page in this range is no | |
4876 | * longer absent, go back and re-evaluate | |
4877 | */ | |
4878 | continue; | |
4879 | } | |
4880 | } | |
4881 | if ((flags & IO_RETURN_ON_THROTTLE)) { | |
4882 | if (cluster_is_throttled(vp) == THROTTLE_NOW) { | |
4883 | if (!cluster_io_present_in_BC(vp, uio->uio_offset)) { | |
4884 | /* | |
4885 | * we're in the throttle window and at least 1 I/O | |
4886 | * has already been issued by a throttleable thread | |
4887 | * in this window, so return with EAGAIN to indicate | |
4888 | * to the FS issuing the cluster_read call that it | |
4889 | * should now throttle after dropping any locks | |
4890 | */ | |
4891 | throttle_info_update_by_mount(vp->v_mount); | |
4892 | ||
4893 | io_throttled = TRUE; | |
4894 | goto wait_for_dreads; | |
4895 | } | |
4896 | } | |
4897 | } | |
4898 | if (io_size > max_rd_size) { | |
4899 | io_size = max_rd_size; | |
4900 | } | |
4901 | ||
4902 | iov_base = uio_curriovbase(uio); | |
4903 | ||
4904 | upl_offset = (vm_offset_t)((u_int32_t)iov_base & PAGE_MASK); | |
4905 | upl_needed_size = (upl_offset + io_size + (PAGE_SIZE - 1)) & ~PAGE_MASK; | |
4906 | ||
4907 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 72)) | DBG_FUNC_START, | |
4908 | (int)upl_offset, upl_needed_size, (int)iov_base, io_size, 0); | |
4909 | ||
4910 | if (upl_offset == 0 && ((io_size & PAGE_MASK) == 0)) { | |
4911 | no_zero_fill = 1; | |
4912 | } else { | |
4913 | no_zero_fill = 0; | |
4914 | } | |
4915 | ||
4916 | vm_map_t map = UIO_SEG_IS_USER_SPACE(uio->uio_segflg) ? current_map() : kernel_map; | |
4917 | for (force_data_sync = 0; force_data_sync < 3; force_data_sync++) { | |
4918 | pages_in_pl = 0; | |
4919 | upl_size = (upl_size_t)upl_needed_size; | |
4920 | upl_flags = UPL_FILE_IO | UPL_NO_SYNC | UPL_SET_INTERNAL | UPL_SET_LITE | UPL_SET_IO_WIRE; | |
4921 | if (no_zero_fill) { | |
4922 | upl_flags |= UPL_NOZEROFILL; | |
4923 | } | |
4924 | if (force_data_sync) { | |
4925 | upl_flags |= UPL_FORCE_DATA_SYNC; | |
4926 | } | |
4927 | ||
4928 | kret = vm_map_create_upl(map, | |
4929 | (vm_map_offset_t)(iov_base & ~((user_addr_t)PAGE_MASK)), | |
4930 | &upl_size, &upl, NULL, &pages_in_pl, &upl_flags, VM_KERN_MEMORY_FILE); | |
4931 | ||
4932 | if (kret != KERN_SUCCESS) { | |
4933 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 72)) | DBG_FUNC_END, | |
4934 | (int)upl_offset, upl_size, io_size, kret, 0); | |
4935 | /* | |
4936 | * failed to get pagelist | |
4937 | * | |
4938 | * we may have already spun some portion of this request | |
4939 | * off as async requests... we need to wait for the I/O | |
4940 | * to complete before returning | |
4941 | */ | |
4942 | goto wait_for_dreads; | |
4943 | } | |
4944 | pages_in_pl = upl_size / PAGE_SIZE; | |
4945 | pl = UPL_GET_INTERNAL_PAGE_LIST(upl); | |
4946 | ||
4947 | for (i = 0; i < pages_in_pl; i++) { | |
4948 | if (!upl_page_present(pl, i)) { | |
4949 | break; | |
4950 | } | |
4951 | } | |
4952 | if (i == pages_in_pl) { | |
4953 | break; | |
4954 | } | |
4955 | ||
4956 | ubc_upl_abort(upl, 0); | |
4957 | } | |
4958 | if (force_data_sync >= 3) { | |
4959 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 72)) | DBG_FUNC_END, | |
4960 | (int)upl_offset, upl_size, io_size, kret, 0); | |
4961 | ||
4962 | goto wait_for_dreads; | |
4963 | } | |
4964 | /* | |
4965 | * Consider the possibility that upl_size wasn't satisfied. | |
4966 | */ | |
4967 | if (upl_size < upl_needed_size) { | |
4968 | if (upl_size && upl_offset == 0) { | |
4969 | io_size = upl_size; | |
4970 | } else { | |
4971 | io_size = 0; | |
4972 | } | |
4973 | } | |
4974 | if (io_size == 0) { | |
4975 | ubc_upl_abort(upl, 0); | |
4976 | goto wait_for_dreads; | |
4977 | } | |
4978 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 72)) | DBG_FUNC_END, | |
4979 | (int)upl_offset, upl_size, io_size, kret, 0); | |
4980 | ||
4981 | if (useVectorUPL) { | |
4982 | vm_offset_t end_off = ((iov_base + io_size) & PAGE_MASK); | |
4983 | if (end_off) { | |
4984 | issueVectorUPL = 1; | |
4985 | } | |
4986 | /* | |
4987 | * After this point, if we are using a vector UPL, then | |
4988 | * either all the UPL elements end on a page boundary OR | |
4989 | * this UPL is the last element because it does not end | |
4990 | * on a page boundary. | |
4991 | */ | |
4992 | } | |
4993 | ||
4994 | /* | |
4995 | * request asynchronously so that we can overlap | |
4996 | * the preparation of the next I/O | |
4997 | * if there are already too many outstanding reads | |
4998 | * wait until some have completed before issuing the next read | |
4999 | */ | |
5000 | cluster_iostate_wait(&iostate, max_rd_ahead, "cluster_read_direct"); | |
5001 | ||
5002 | if (iostate.io_error) { | |
5003 | /* | |
5004 | * one of the earlier reads we issued ran into a hard error | |
5005 | * don't issue any more reads, cleanup the UPL | |
5006 | * that was just created but not used, then | |
5007 | * go wait for any other reads to complete before | |
5008 | * returning the error to the caller | |
5009 | */ | |
5010 | ubc_upl_abort(upl, 0); | |
5011 | ||
5012 | goto wait_for_dreads; | |
5013 | } | |
5014 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 73)) | DBG_FUNC_START, | |
5015 | upl, (int)upl_offset, (int)uio->uio_offset, io_size, 0); | |
5016 | ||
5017 | if (!useVectorUPL) { | |
5018 | if (no_zero_fill) { | |
5019 | io_flag &= ~CL_PRESERVE; | |
5020 | } else { | |
5021 | io_flag |= CL_PRESERVE; | |
5022 | } | |
5023 | ||
5024 | retval = cluster_io(vp, upl, upl_offset, uio->uio_offset, io_size, io_flag, (buf_t)NULL, &iostate, callback, callback_arg); | |
5025 | } else { | |
5026 | if (!vector_upl_index) { | |
5027 | vector_upl = vector_upl_create(upl_offset); | |
5028 | v_upl_uio_offset = uio->uio_offset; | |
5029 | vector_upl_offset = upl_offset; | |
5030 | } | |
5031 | ||
5032 | vector_upl_set_subupl(vector_upl, upl, upl_size); | |
5033 | vector_upl_set_iostate(vector_upl, upl, vector_upl_size, upl_size); | |
5034 | vector_upl_index++; | |
5035 | vector_upl_size += upl_size; | |
5036 | vector_upl_iosize += io_size; | |
5037 | ||
5038 | if (issueVectorUPL || vector_upl_index == MAX_VECTOR_UPL_ELEMENTS || vector_upl_size >= max_vector_size) { | |
5039 | retval = vector_cluster_io(vp, vector_upl, vector_upl_offset, v_upl_uio_offset, vector_upl_iosize, io_flag, (buf_t)NULL, &iostate, callback, callback_arg); | |
5040 | reset_vector_run_state(); | |
5041 | } | |
5042 | } | |
5043 | last_iov_base = iov_base + io_size; | |
5044 | ||
5045 | if (lock) { | |
5046 | // We don't need to wait for the I/O to complete | |
5047 | cluster_unlock_direct_read(lock); | |
5048 | lock = NULL; | |
5049 | } | |
5050 | ||
5051 | /* | |
5052 | * update the uio structure | |
5053 | */ | |
5054 | if ((flags & IO_ENCRYPTED) && (max_io_size < io_size)) { | |
5055 | uio_update(uio, (user_size_t)max_io_size); | |
5056 | } else { | |
5057 | uio_update(uio, (user_size_t)io_size); | |
5058 | } | |
5059 | ||
5060 | io_req_size -= io_size; | |
5061 | ||
5062 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 73)) | DBG_FUNC_END, | |
5063 | upl, (int)uio->uio_offset, io_req_size, retval, 0); | |
5064 | } /* end while */ | |
5065 | ||
5066 | if (retval == 0 && iostate.io_error == 0 && io_req_size == 0 && uio->uio_offset < filesize) { | |
5067 | retval = cluster_io_type(uio, read_type, read_length, 0); | |
5068 | ||
5069 | if (retval == 0 && *read_type == IO_DIRECT) { | |
5070 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 70)) | DBG_FUNC_NONE, | |
5071 | (int)uio->uio_offset, (int)filesize, *read_type, *read_length, 0); | |
5072 | ||
5073 | goto next_dread; | |
5074 | } | |
5075 | } | |
5076 | ||
5077 | wait_for_dreads: | |
5078 | ||
5079 | if (retval == 0 && iostate.io_error == 0 && useVectorUPL && vector_upl_index) { | |
5080 | retval = vector_cluster_io(vp, vector_upl, vector_upl_offset, v_upl_uio_offset, vector_upl_iosize, io_flag, (buf_t)NULL, &iostate, callback, callback_arg); | |
5081 | reset_vector_run_state(); | |
5082 | } | |
5083 | ||
5084 | // We don't need to wait for the I/O to complete | |
5085 | if (lock) { | |
5086 | cluster_unlock_direct_read(lock); | |
5087 | } | |
5088 | ||
5089 | /* | |
5090 | * make sure all async reads that are part of this stream | |
5091 | * have completed before we return | |
5092 | */ | |
5093 | cluster_iostate_wait(&iostate, 0, "cluster_read_direct"); | |
5094 | ||
5095 | if (iostate.io_error) { | |
5096 | retval = iostate.io_error; | |
5097 | } | |
5098 | ||
5099 | lck_mtx_destroy(&iostate.io_mtxp, &cl_mtx_grp); | |
5100 | ||
5101 | if (io_throttled == TRUE && retval == 0) { | |
5102 | retval = EAGAIN; | |
5103 | } | |
5104 | ||
5105 | vm_map_offset_t current_page_size, current_page_mask; | |
5106 | current_page_size = vm_map_page_size(current_map()); | |
5107 | current_page_mask = vm_map_page_mask(current_map()); | |
5108 | for (next_iov_base = orig_iov_base; | |
5109 | next_iov_base < last_iov_base; | |
5110 | next_iov_base += current_page_size) { | |
5111 | /* | |
5112 | * This is specifically done for pmap accounting purposes. | |
5113 | * vm_pre_fault() will call vm_fault() to enter the page into | |
5114 | * the pmap if there isn't _a_ physical page for that VA already. | |
5115 | */ | |
5116 | vm_pre_fault(vm_map_trunc_page(next_iov_base, current_page_mask), VM_PROT_READ); | |
5117 | } | |
5118 | ||
5119 | if (io_req_size && retval == 0) { | |
5120 | /* | |
5121 | * we couldn't handle the tail of this request in DIRECT mode | |
5122 | * so fire it through the copy path | |
5123 | */ | |
5124 | if (flags & IO_ENCRYPTED) { | |
5125 | /* | |
5126 | * We cannot fall back to the copy path for encrypted I/O. If this | |
5127 | * happens, there is something wrong with the user buffer passed | |
5128 | * down. | |
5129 | */ | |
5130 | retval = EFAULT; | |
5131 | } else { | |
5132 | retval = cluster_read_copy(vp, uio, io_req_size, filesize, flags, callback, callback_arg); | |
5133 | } | |
5134 | ||
5135 | *read_type = IO_UNKNOWN; | |
5136 | } | |
5137 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 70)) | DBG_FUNC_END, | |
5138 | (int)uio->uio_offset, (int)uio_resid(uio), io_req_size, retval, 0); | |
5139 | ||
5140 | return retval; | |
5141 | } | |
5142 | ||
5143 | ||
5144 | static int | |
5145 | cluster_read_contig(vnode_t vp, struct uio *uio, off_t filesize, int *read_type, u_int32_t *read_length, | |
5146 | int (*callback)(buf_t, void *), void *callback_arg, int flags) | |
5147 | { | |
5148 | upl_page_info_t *pl; | |
5149 | upl_t upl[MAX_VECTS]; | |
5150 | vm_offset_t upl_offset; | |
5151 | addr64_t dst_paddr = 0; | |
5152 | user_addr_t iov_base; | |
5153 | off_t max_size; | |
5154 | upl_size_t upl_size; | |
5155 | vm_size_t upl_needed_size; | |
5156 | mach_msg_type_number_t pages_in_pl; | |
5157 | upl_control_flags_t upl_flags; | |
5158 | kern_return_t kret; | |
5159 | struct clios iostate; | |
5160 | int error = 0; | |
5161 | int cur_upl = 0; | |
5162 | int num_upl = 0; | |
5163 | int n; | |
5164 | u_int32_t xsize; | |
5165 | u_int32_t io_size; | |
5166 | u_int32_t devblocksize; | |
5167 | u_int32_t mem_alignment_mask; | |
5168 | u_int32_t tail_size = 0; | |
5169 | int bflag; | |
5170 | ||
5171 | if (flags & IO_PASSIVE) { | |
5172 | bflag = CL_PASSIVE; | |
5173 | } else { | |
5174 | bflag = 0; | |
5175 | } | |
5176 | ||
5177 | if (flags & IO_NOCACHE) { | |
5178 | bflag |= CL_NOCACHE; | |
5179 | } | |
5180 | ||
5181 | /* | |
5182 | * When we enter this routine, we know | |
5183 | * -- the read_length will not exceed the current iov_len | |
5184 | * -- the target address is physically contiguous for read_length | |
5185 | */ | |
5186 | cluster_syncup(vp, filesize, callback, callback_arg, PUSH_SYNC); | |
5187 | ||
5188 | devblocksize = (u_int32_t)vp->v_mount->mnt_devblocksize; | |
5189 | mem_alignment_mask = (u_int32_t)vp->v_mount->mnt_alignmentmask; | |
5190 | ||
5191 | iostate.io_completed = 0; | |
5192 | iostate.io_issued = 0; | |
5193 | iostate.io_error = 0; | |
5194 | iostate.io_wanted = 0; | |
5195 | ||
5196 | lck_mtx_init(&iostate.io_mtxp, &cl_mtx_grp, LCK_ATTR_NULL); | |
5197 | ||
5198 | next_cread: | |
5199 | io_size = *read_length; | |
5200 | ||
5201 | max_size = filesize - uio->uio_offset; | |
5202 | ||
5203 | if (io_size > max_size) { | |
5204 | io_size = (u_int32_t)max_size; | |
5205 | } | |
5206 | ||
5207 | iov_base = uio_curriovbase(uio); | |
5208 | ||
5209 | upl_offset = (vm_offset_t)((u_int32_t)iov_base & PAGE_MASK); | |
5210 | upl_needed_size = upl_offset + io_size; | |
5211 | ||
5212 | pages_in_pl = 0; | |
5213 | upl_size = (upl_size_t)upl_needed_size; | |
5214 | upl_flags = UPL_FILE_IO | UPL_NO_SYNC | UPL_CLEAN_IN_PLACE | UPL_SET_INTERNAL | UPL_SET_LITE | UPL_SET_IO_WIRE; | |
5215 | ||
5216 | ||
5217 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 92)) | DBG_FUNC_START, | |
5218 | (int)upl_offset, (int)upl_size, (int)iov_base, io_size, 0); | |
5219 | ||
5220 | vm_map_t map = UIO_SEG_IS_USER_SPACE(uio->uio_segflg) ? current_map() : kernel_map; | |
5221 | kret = vm_map_get_upl(map, | |
5222 | vm_map_trunc_page(iov_base, vm_map_page_mask(map)), | |
5223 | &upl_size, &upl[cur_upl], NULL, &pages_in_pl, &upl_flags, VM_KERN_MEMORY_FILE, 0); | |
5224 | ||
5225 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 92)) | DBG_FUNC_END, | |
5226 | (int)upl_offset, upl_size, io_size, kret, 0); | |
5227 | ||
5228 | if (kret != KERN_SUCCESS) { | |
5229 | /* | |
5230 | * failed to get pagelist | |
5231 | */ | |
5232 | error = EINVAL; | |
5233 | goto wait_for_creads; | |
5234 | } | |
5235 | num_upl++; | |
5236 | ||
5237 | if (upl_size < upl_needed_size) { | |
5238 | /* | |
5239 | * The upl_size wasn't satisfied. | |
5240 | */ | |
5241 | error = EINVAL; | |
5242 | goto wait_for_creads; | |
5243 | } | |
5244 | pl = ubc_upl_pageinfo(upl[cur_upl]); | |
5245 | ||
5246 | dst_paddr = ((addr64_t)upl_phys_page(pl, 0) << PAGE_SHIFT) + (addr64_t)upl_offset; | |
5247 | ||
5248 | while (((uio->uio_offset & (devblocksize - 1)) || io_size < devblocksize) && io_size) { | |
5249 | u_int32_t head_size; | |
5250 | ||
5251 | head_size = devblocksize - (u_int32_t)(uio->uio_offset & (devblocksize - 1)); | |
5252 | ||
5253 | if (head_size > io_size) { | |
5254 | head_size = io_size; | |
5255 | } | |
5256 | ||
5257 | error = cluster_align_phys_io(vp, uio, dst_paddr, head_size, CL_READ, callback, callback_arg); | |
5258 | ||
5259 | if (error) { | |
5260 | goto wait_for_creads; | |
5261 | } | |
5262 | ||
5263 | upl_offset += head_size; | |
5264 | dst_paddr += head_size; | |
5265 | io_size -= head_size; | |
5266 | ||
5267 | iov_base += head_size; | |
5268 | } | |
5269 | if ((u_int32_t)iov_base & mem_alignment_mask) { | |
5270 | /* | |
5271 | * request doesn't set up on a memory boundary | |
5272 | * the underlying DMA engine can handle... | |
5273 | * return an error instead of going through | |
5274 | * the slow copy path since the intent of this | |
5275 | * path is direct I/O to device memory | |
5276 | */ | |
5277 | error = EINVAL; | |
5278 | goto wait_for_creads; | |
5279 | } | |
5280 | ||
5281 | tail_size = io_size & (devblocksize - 1); | |
5282 | ||
5283 | io_size -= tail_size; | |
5284 | ||
5285 | while (io_size && error == 0) { | |
5286 | if (io_size > MAX_IO_CONTIG_SIZE) { | |
5287 | xsize = MAX_IO_CONTIG_SIZE; | |
5288 | } else { | |
5289 | xsize = io_size; | |
5290 | } | |
5291 | /* | |
5292 | * request asynchronously so that we can overlap | |
5293 | * the preparation of the next I/O... we'll do | |
5294 | * the commit after all the I/O has completed | |
5295 | * since its all issued against the same UPL | |
5296 | * if there are already too many outstanding reads | |
5297 | * wait until some have completed before issuing the next | |
5298 | */ | |
5299 | cluster_iostate_wait(&iostate, MAX_IO_CONTIG_SIZE * IO_SCALE(vp, 2), "cluster_read_contig"); | |
5300 | ||
5301 | if (iostate.io_error) { | |
5302 | /* | |
5303 | * one of the earlier reads we issued ran into a hard error | |
5304 | * don't issue any more reads... | |
5305 | * go wait for any other reads to complete before | |
5306 | * returning the error to the caller | |
5307 | */ | |
5308 | goto wait_for_creads; | |
5309 | } | |
5310 | error = cluster_io(vp, upl[cur_upl], upl_offset, uio->uio_offset, xsize, | |
5311 | CL_READ | CL_NOZERO | CL_DEV_MEMORY | CL_ASYNC | bflag, | |
5312 | (buf_t)NULL, &iostate, callback, callback_arg); | |
5313 | /* | |
5314 | * The cluster_io read was issued successfully, | |
5315 | * update the uio structure | |
5316 | */ | |
5317 | if (error == 0) { | |
5318 | uio_update(uio, (user_size_t)xsize); | |
5319 | ||
5320 | dst_paddr += xsize; | |
5321 | upl_offset += xsize; | |
5322 | io_size -= xsize; | |
5323 | } | |
5324 | } | |
5325 | if (error == 0 && iostate.io_error == 0 && tail_size == 0 && num_upl < MAX_VECTS && uio->uio_offset < filesize) { | |
5326 | error = cluster_io_type(uio, read_type, read_length, 0); | |
5327 | ||
5328 | if (error == 0 && *read_type == IO_CONTIG) { | |
5329 | cur_upl++; | |
5330 | goto next_cread; | |
5331 | } | |
5332 | } else { | |
5333 | *read_type = IO_UNKNOWN; | |
5334 | } | |
5335 | ||
5336 | wait_for_creads: | |
5337 | /* | |
5338 | * make sure all async reads that are part of this stream | |
5339 | * have completed before we proceed | |
5340 | */ | |
5341 | cluster_iostate_wait(&iostate, 0, "cluster_read_contig"); | |
5342 | ||
5343 | if (iostate.io_error) { | |
5344 | error = iostate.io_error; | |
5345 | } | |
5346 | ||
5347 | lck_mtx_destroy(&iostate.io_mtxp, &cl_mtx_grp); | |
5348 | ||
5349 | if (error == 0 && tail_size) { | |
5350 | error = cluster_align_phys_io(vp, uio, dst_paddr, tail_size, CL_READ, callback, callback_arg); | |
5351 | } | |
5352 | ||
5353 | for (n = 0; n < num_upl; n++) { | |
5354 | /* | |
5355 | * just release our hold on each physically contiguous | |
5356 | * region without changing any state | |
5357 | */ | |
5358 | ubc_upl_abort(upl[n], 0); | |
5359 | } | |
5360 | ||
5361 | return error; | |
5362 | } | |
5363 | ||
5364 | ||
5365 | static int | |
5366 | cluster_io_type(struct uio *uio, int *io_type, u_int32_t *io_length, u_int32_t min_length) | |
5367 | { | |
5368 | user_size_t iov_len; | |
5369 | user_addr_t iov_base = 0; | |
5370 | upl_t upl; | |
5371 | upl_size_t upl_size; | |
5372 | upl_control_flags_t upl_flags; | |
5373 | int retval = 0; | |
5374 | ||
5375 | /* | |
5376 | * skip over any emtpy vectors | |
5377 | */ | |
5378 | uio_update(uio, (user_size_t)0); | |
5379 | ||
5380 | iov_len = uio_curriovlen(uio); | |
5381 | ||
5382 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 94)) | DBG_FUNC_START, uio, (int)iov_len, 0, 0, 0); | |
5383 | ||
5384 | if (iov_len) { | |
5385 | iov_base = uio_curriovbase(uio); | |
5386 | /* | |
5387 | * make sure the size of the vector isn't too big... | |
5388 | * internally, we want to handle all of the I/O in | |
5389 | * chunk sizes that fit in a 32 bit int | |
5390 | */ | |
5391 | if (iov_len > (user_size_t)MAX_IO_REQUEST_SIZE) { | |
5392 | upl_size = MAX_IO_REQUEST_SIZE; | |
5393 | } else { | |
5394 | upl_size = (u_int32_t)iov_len; | |
5395 | } | |
5396 | ||
5397 | upl_flags = UPL_QUERY_OBJECT_TYPE; | |
5398 | ||
5399 | vm_map_t map = UIO_SEG_IS_USER_SPACE(uio->uio_segflg) ? current_map() : kernel_map; | |
5400 | if ((vm_map_get_upl(map, | |
5401 | vm_map_trunc_page(iov_base, vm_map_page_mask(map)), | |
5402 | &upl_size, &upl, NULL, NULL, &upl_flags, VM_KERN_MEMORY_FILE, 0)) != KERN_SUCCESS) { | |
5403 | /* | |
5404 | * the user app must have passed in an invalid address | |
5405 | */ | |
5406 | retval = EFAULT; | |
5407 | } | |
5408 | if (upl_size == 0) { | |
5409 | retval = EFAULT; | |
5410 | } | |
5411 | ||
5412 | *io_length = upl_size; | |
5413 | ||
5414 | if (upl_flags & UPL_PHYS_CONTIG) { | |
5415 | *io_type = IO_CONTIG; | |
5416 | } else if (iov_len >= min_length) { | |
5417 | *io_type = IO_DIRECT; | |
5418 | } else { | |
5419 | *io_type = IO_COPY; | |
5420 | } | |
5421 | } else { | |
5422 | /* | |
5423 | * nothing left to do for this uio | |
5424 | */ | |
5425 | *io_length = 0; | |
5426 | *io_type = IO_UNKNOWN; | |
5427 | } | |
5428 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 94)) | DBG_FUNC_END, iov_base, *io_type, *io_length, retval, 0); | |
5429 | ||
5430 | if (*io_type == IO_DIRECT && | |
5431 | vm_map_page_shift(current_map()) < PAGE_SHIFT) { | |
5432 | /* no direct I/O for sub-page-size address spaces */ | |
5433 | DEBUG4K_VFS("io_type IO_DIRECT -> IO_COPY\n"); | |
5434 | *io_type = IO_COPY; | |
5435 | } | |
5436 | ||
5437 | return retval; | |
5438 | } | |
5439 | ||
5440 | ||
5441 | /* | |
5442 | * generate advisory I/O's in the largest chunks possible | |
5443 | * the completed pages will be released into the VM cache | |
5444 | */ | |
5445 | int | |
5446 | advisory_read(vnode_t vp, off_t filesize, off_t f_offset, int resid) | |
5447 | { | |
5448 | return advisory_read_ext(vp, filesize, f_offset, resid, NULL, NULL, CL_PASSIVE); | |
5449 | } | |
5450 | ||
5451 | int | |
5452 | advisory_read_ext(vnode_t vp, off_t filesize, off_t f_offset, int resid, int (*callback)(buf_t, void *), void *callback_arg, int bflag) | |
5453 | { | |
5454 | upl_page_info_t *pl; | |
5455 | upl_t upl; | |
5456 | vm_offset_t upl_offset; | |
5457 | int upl_size; | |
5458 | off_t upl_f_offset; | |
5459 | int start_offset; | |
5460 | int start_pg; | |
5461 | int last_pg; | |
5462 | int pages_in_upl; | |
5463 | off_t max_size; | |
5464 | int io_size; | |
5465 | kern_return_t kret; | |
5466 | int retval = 0; | |
5467 | int issued_io; | |
5468 | int skip_range; | |
5469 | uint32_t max_io_size; | |
5470 | ||
5471 | ||
5472 | if (!UBCINFOEXISTS(vp)) { | |
5473 | return EINVAL; | |
5474 | } | |
5475 | ||
5476 | if (f_offset < 0 || resid < 0) { | |
5477 | return EINVAL; | |
5478 | } | |
5479 | ||
5480 | max_io_size = cluster_max_io_size(vp->v_mount, CL_READ); | |
5481 | ||
5482 | if (disk_conditioner_mount_is_ssd(vp->v_mount)) { | |
5483 | if (max_io_size > speculative_prefetch_max_iosize) { | |
5484 | max_io_size = speculative_prefetch_max_iosize; | |
5485 | } | |
5486 | } | |
5487 | ||
5488 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 60)) | DBG_FUNC_START, | |
5489 | (int)f_offset, resid, (int)filesize, 0, 0); | |
5490 | ||
5491 | while (resid && f_offset < filesize && retval == 0) { | |
5492 | /* | |
5493 | * compute the size of the upl needed to encompass | |
5494 | * the requested read... limit each call to cluster_io | |
5495 | * to the maximum UPL size... cluster_io will clip if | |
5496 | * this exceeds the maximum io_size for the device, | |
5497 | * make sure to account for | |
5498 | * a starting offset that's not page aligned | |
5499 | */ | |
5500 | start_offset = (int)(f_offset & PAGE_MASK_64); | |
5501 | upl_f_offset = f_offset - (off_t)start_offset; | |
5502 | max_size = filesize - f_offset; | |
5503 | ||
5504 | if (resid < max_size) { | |
5505 | io_size = resid; | |
5506 | } else { | |
5507 | io_size = (int)max_size; | |
5508 | } | |
5509 | ||
5510 | upl_size = (start_offset + io_size + (PAGE_SIZE - 1)) & ~PAGE_MASK; | |
5511 | if ((uint32_t)upl_size > max_io_size) { | |
5512 | upl_size = max_io_size; | |
5513 | } | |
5514 | ||
5515 | skip_range = 0; | |
5516 | /* | |
5517 | * return the number of contiguously present pages in the cache | |
5518 | * starting at upl_f_offset within the file | |
5519 | */ | |
5520 | ubc_range_op(vp, upl_f_offset, upl_f_offset + upl_size, UPL_ROP_PRESENT, &skip_range); | |
5521 | ||
5522 | if (skip_range) { | |
5523 | /* | |
5524 | * skip over pages already present in the cache | |
5525 | */ | |
5526 | io_size = skip_range - start_offset; | |
5527 | ||
5528 | f_offset += io_size; | |
5529 | resid -= io_size; | |
5530 | ||
5531 | if (skip_range == upl_size) { | |
5532 | continue; | |
5533 | } | |
5534 | /* | |
5535 | * have to issue some real I/O | |
5536 | * at this point, we know it's starting on a page boundary | |
5537 | * because we've skipped over at least the first page in the request | |
5538 | */ | |
5539 | start_offset = 0; | |
5540 | upl_f_offset += skip_range; | |
5541 | upl_size -= skip_range; | |
5542 | } | |
5543 | pages_in_upl = upl_size / PAGE_SIZE; | |
5544 | ||
5545 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 61)) | DBG_FUNC_START, | |
5546 | upl, (int)upl_f_offset, upl_size, start_offset, 0); | |
5547 | ||
5548 | kret = ubc_create_upl_kernel(vp, | |
5549 | upl_f_offset, | |
5550 | upl_size, | |
5551 | &upl, | |
5552 | &pl, | |
5553 | UPL_RET_ONLY_ABSENT | UPL_SET_LITE, | |
5554 | VM_KERN_MEMORY_FILE); | |
5555 | if (kret != KERN_SUCCESS) { | |
5556 | return retval; | |
5557 | } | |
5558 | issued_io = 0; | |
5559 | ||
5560 | /* | |
5561 | * before we start marching forward, we must make sure we end on | |
5562 | * a present page, otherwise we will be working with a freed | |
5563 | * upl | |
5564 | */ | |
5565 | for (last_pg = pages_in_upl - 1; last_pg >= 0; last_pg--) { | |
5566 | if (upl_page_present(pl, last_pg)) { | |
5567 | break; | |
5568 | } | |
5569 | } | |
5570 | pages_in_upl = last_pg + 1; | |
5571 | ||
5572 | ||
5573 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 61)) | DBG_FUNC_END, | |
5574 | upl, (int)upl_f_offset, upl_size, start_offset, 0); | |
5575 | ||
5576 | ||
5577 | for (last_pg = 0; last_pg < pages_in_upl;) { | |
5578 | /* | |
5579 | * scan from the beginning of the upl looking for the first | |
5580 | * page that is present.... this will become the first page in | |
5581 | * the request we're going to make to 'cluster_io'... if all | |
5582 | * of the pages are absent, we won't call through to 'cluster_io' | |
5583 | */ | |
5584 | for (start_pg = last_pg; start_pg < pages_in_upl; start_pg++) { | |
5585 | if (upl_page_present(pl, start_pg)) { | |
5586 | break; | |
5587 | } | |
5588 | } | |
5589 | ||
5590 | /* | |
5591 | * scan from the starting present page looking for an absent | |
5592 | * page before the end of the upl is reached, if we | |
5593 | * find one, then it will terminate the range of pages being | |
5594 | * presented to 'cluster_io' | |
5595 | */ | |
5596 | for (last_pg = start_pg; last_pg < pages_in_upl; last_pg++) { | |
5597 | if (!upl_page_present(pl, last_pg)) { | |
5598 | break; | |
5599 | } | |
5600 | } | |
5601 | ||
5602 | if (last_pg > start_pg) { | |
5603 | /* | |
5604 | * we found a range of pages that must be filled | |
5605 | * if the last page in this range is the last page of the file | |
5606 | * we may have to clip the size of it to keep from reading past | |
5607 | * the end of the last physical block associated with the file | |
5608 | */ | |
5609 | upl_offset = start_pg * PAGE_SIZE; | |
5610 | io_size = (last_pg - start_pg) * PAGE_SIZE; | |
5611 | ||
5612 | if ((off_t)(upl_f_offset + upl_offset + io_size) > filesize) { | |
5613 | io_size = (int)(filesize - (upl_f_offset + upl_offset)); | |
5614 | } | |
5615 | ||
5616 | /* | |
5617 | * issue an asynchronous read to cluster_io | |
5618 | */ | |
5619 | retval = cluster_io(vp, upl, upl_offset, upl_f_offset + upl_offset, io_size, | |
5620 | CL_ASYNC | CL_READ | CL_COMMIT | CL_AGE | bflag, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg); | |
5621 | ||
5622 | issued_io = 1; | |
5623 | } | |
5624 | } | |
5625 | if (issued_io == 0) { | |
5626 | ubc_upl_abort(upl, 0); | |
5627 | } | |
5628 | ||
5629 | io_size = upl_size - start_offset; | |
5630 | ||
5631 | if (io_size > resid) { | |
5632 | io_size = resid; | |
5633 | } | |
5634 | f_offset += io_size; | |
5635 | resid -= io_size; | |
5636 | } | |
5637 | ||
5638 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 60)) | DBG_FUNC_END, | |
5639 | (int)f_offset, resid, retval, 0, 0); | |
5640 | ||
5641 | return retval; | |
5642 | } | |
5643 | ||
5644 | ||
5645 | int | |
5646 | cluster_push(vnode_t vp, int flags) | |
5647 | { | |
5648 | return cluster_push_ext(vp, flags, NULL, NULL); | |
5649 | } | |
5650 | ||
5651 | ||
5652 | int | |
5653 | cluster_push_ext(vnode_t vp, int flags, int (*callback)(buf_t, void *), void *callback_arg) | |
5654 | { | |
5655 | return cluster_push_err(vp, flags, callback, callback_arg, NULL); | |
5656 | } | |
5657 | ||
5658 | /* write errors via err, but return the number of clusters written */ | |
5659 | int | |
5660 | cluster_push_err(vnode_t vp, int flags, int (*callback)(buf_t, void *), void *callback_arg, int *err) | |
5661 | { | |
5662 | int retval; | |
5663 | int my_sparse_wait = 0; | |
5664 | struct cl_writebehind *wbp; | |
5665 | int local_err = 0; | |
5666 | ||
5667 | if (err) { | |
5668 | *err = 0; | |
5669 | } | |
5670 | ||
5671 | if (!UBCINFOEXISTS(vp)) { | |
5672 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_NONE, kdebug_vnode(vp), flags, 0, -1, 0); | |
5673 | return 0; | |
5674 | } | |
5675 | /* return if deferred write is set */ | |
5676 | if (((unsigned int)vfs_flags(vp->v_mount) & MNT_DEFWRITE) && (flags & IO_DEFWRITE)) { | |
5677 | return 0; | |
5678 | } | |
5679 | if ((wbp = cluster_get_wbp(vp, CLW_RETURNLOCKED)) == NULL) { | |
5680 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_NONE, kdebug_vnode(vp), flags, 0, -2, 0); | |
5681 | return 0; | |
5682 | } | |
5683 | if (!ISSET(flags, IO_SYNC) && wbp->cl_number == 0 && wbp->cl_scmap == NULL) { | |
5684 | lck_mtx_unlock(&wbp->cl_lockw); | |
5685 | ||
5686 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_NONE, kdebug_vnode(vp), flags, 0, -3, 0); | |
5687 | return 0; | |
5688 | } | |
5689 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_START, | |
5690 | wbp->cl_scmap, wbp->cl_number, flags, 0, 0); | |
5691 | ||
5692 | /* | |
5693 | * if we have an fsync in progress, we don't want to allow any additional | |
5694 | * sync/fsync/close(s) to occur until it finishes. | |
5695 | * note that its possible for writes to continue to occur to this file | |
5696 | * while we're waiting and also once the fsync starts to clean if we're | |
5697 | * in the sparse map case | |
5698 | */ | |
5699 | while (wbp->cl_sparse_wait) { | |
5700 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 97)) | DBG_FUNC_START, kdebug_vnode(vp), 0, 0, 0, 0); | |
5701 | ||
5702 | msleep((caddr_t)&wbp->cl_sparse_wait, &wbp->cl_lockw, PRIBIO + 1, "cluster_push_ext", NULL); | |
5703 | ||
5704 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 97)) | DBG_FUNC_END, kdebug_vnode(vp), 0, 0, 0, 0); | |
5705 | } | |
5706 | if (flags & IO_SYNC) { | |
5707 | my_sparse_wait = 1; | |
5708 | wbp->cl_sparse_wait = 1; | |
5709 | ||
5710 | /* | |
5711 | * this is an fsync (or equivalent)... we must wait for any existing async | |
5712 | * cleaning operations to complete before we evaulate the current state | |
5713 | * and finish cleaning... this insures that all writes issued before this | |
5714 | * fsync actually get cleaned to the disk before this fsync returns | |
5715 | */ | |
5716 | while (wbp->cl_sparse_pushes) { | |
5717 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 98)) | DBG_FUNC_START, kdebug_vnode(vp), 0, 0, 0, 0); | |
5718 | ||
5719 | msleep((caddr_t)&wbp->cl_sparse_pushes, &wbp->cl_lockw, PRIBIO + 1, "cluster_push_ext", NULL); | |
5720 | ||
5721 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 98)) | DBG_FUNC_END, kdebug_vnode(vp), 0, 0, 0, 0); | |
5722 | } | |
5723 | } | |
5724 | if (wbp->cl_scmap) { | |
5725 | void *scmap; | |
5726 | ||
5727 | if (wbp->cl_sparse_pushes < SPARSE_PUSH_LIMIT) { | |
5728 | scmap = wbp->cl_scmap; | |
5729 | wbp->cl_scmap = NULL; | |
5730 | ||
5731 | wbp->cl_sparse_pushes++; | |
5732 | ||
5733 | lck_mtx_unlock(&wbp->cl_lockw); | |
5734 | ||
5735 | retval = sparse_cluster_push(wbp, &scmap, vp, ubc_getsize(vp), PUSH_ALL, flags, callback, callback_arg, FALSE); | |
5736 | ||
5737 | lck_mtx_lock(&wbp->cl_lockw); | |
5738 | ||
5739 | wbp->cl_sparse_pushes--; | |
5740 | ||
5741 | if (retval) { | |
5742 | if (wbp->cl_scmap != NULL) { | |
5743 | panic("cluster_push_err: Expected NULL cl_scmap\n"); | |
5744 | } | |
5745 | ||
5746 | wbp->cl_scmap = scmap; | |
5747 | } | |
5748 | ||
5749 | if (wbp->cl_sparse_wait && wbp->cl_sparse_pushes == 0) { | |
5750 | wakeup((caddr_t)&wbp->cl_sparse_pushes); | |
5751 | } | |
5752 | } else { | |
5753 | retval = sparse_cluster_push(wbp, &(wbp->cl_scmap), vp, ubc_getsize(vp), PUSH_ALL, flags, callback, callback_arg, FALSE); | |
5754 | } | |
5755 | ||
5756 | local_err = retval; | |
5757 | ||
5758 | if (err) { | |
5759 | *err = retval; | |
5760 | } | |
5761 | retval = 1; | |
5762 | } else { | |
5763 | retval = cluster_try_push(wbp, vp, ubc_getsize(vp), PUSH_ALL, flags, callback, callback_arg, &local_err, FALSE); | |
5764 | if (err) { | |
5765 | *err = local_err; | |
5766 | } | |
5767 | } | |
5768 | lck_mtx_unlock(&wbp->cl_lockw); | |
5769 | ||
5770 | if (flags & IO_SYNC) { | |
5771 | (void)vnode_waitforwrites(vp, 0, 0, 0, "cluster_push"); | |
5772 | } | |
5773 | ||
5774 | if (my_sparse_wait) { | |
5775 | /* | |
5776 | * I'm the owner of the serialization token | |
5777 | * clear it and wakeup anyone that is waiting | |
5778 | * for me to finish | |
5779 | */ | |
5780 | lck_mtx_lock(&wbp->cl_lockw); | |
5781 | ||
5782 | wbp->cl_sparse_wait = 0; | |
5783 | wakeup((caddr_t)&wbp->cl_sparse_wait); | |
5784 | ||
5785 | lck_mtx_unlock(&wbp->cl_lockw); | |
5786 | } | |
5787 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_END, | |
5788 | wbp->cl_scmap, wbp->cl_number, retval, local_err, 0); | |
5789 | ||
5790 | return retval; | |
5791 | } | |
5792 | ||
5793 | ||
5794 | __private_extern__ void | |
5795 | cluster_release(struct ubc_info *ubc) | |
5796 | { | |
5797 | struct cl_writebehind *wbp; | |
5798 | struct cl_readahead *rap; | |
5799 | ||
5800 | if ((wbp = ubc->cl_wbehind)) { | |
5801 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 81)) | DBG_FUNC_START, ubc, wbp->cl_scmap, 0, 0, 0); | |
5802 | ||
5803 | if (wbp->cl_scmap) { | |
5804 | vfs_drt_control(&(wbp->cl_scmap), 0); | |
5805 | } | |
5806 | lck_mtx_destroy(&wbp->cl_lockw, &cl_mtx_grp); | |
5807 | zfree(cl_wr_zone, wbp); | |
5808 | ubc->cl_wbehind = NULL; | |
5809 | } else { | |
5810 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 81)) | DBG_FUNC_START, ubc, 0, 0, 0, 0); | |
5811 | } | |
5812 | ||
5813 | if ((rap = ubc->cl_rahead)) { | |
5814 | lck_mtx_destroy(&rap->cl_lockr, &cl_mtx_grp); | |
5815 | zfree(cl_rd_zone, rap); | |
5816 | ubc->cl_rahead = NULL; | |
5817 | } | |
5818 | ||
5819 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 81)) | DBG_FUNC_END, ubc, rap, wbp, 0, 0); | |
5820 | } | |
5821 | ||
5822 | ||
5823 | static int | |
5824 | cluster_try_push(struct cl_writebehind *wbp, vnode_t vp, off_t EOF, int push_flag, int io_flags, int (*callback)(buf_t, void *), void *callback_arg, int *err, boolean_t vm_initiated) | |
5825 | { | |
5826 | int cl_index; | |
5827 | int cl_index1; | |
5828 | int min_index; | |
5829 | int cl_len; | |
5830 | int cl_pushed = 0; | |
5831 | struct cl_wextent l_clusters[MAX_CLUSTERS]; | |
5832 | u_int max_cluster_pgcount; | |
5833 | int error = 0; | |
5834 | ||
5835 | max_cluster_pgcount = MAX_CLUSTER_SIZE(vp) / PAGE_SIZE; | |
5836 | /* | |
5837 | * the write behind context exists and has | |
5838 | * already been locked... | |
5839 | */ | |
5840 | if (wbp->cl_number == 0) { | |
5841 | /* | |
5842 | * no clusters to push | |
5843 | * return number of empty slots | |
5844 | */ | |
5845 | return MAX_CLUSTERS; | |
5846 | } | |
5847 | ||
5848 | /* | |
5849 | * make a local 'sorted' copy of the clusters | |
5850 | * and clear wbp->cl_number so that new clusters can | |
5851 | * be developed | |
5852 | */ | |
5853 | for (cl_index = 0; cl_index < wbp->cl_number; cl_index++) { | |
5854 | for (min_index = -1, cl_index1 = 0; cl_index1 < wbp->cl_number; cl_index1++) { | |
5855 | if (wbp->cl_clusters[cl_index1].b_addr == wbp->cl_clusters[cl_index1].e_addr) { | |
5856 | continue; | |
5857 | } | |
5858 | if (min_index == -1) { | |
5859 | min_index = cl_index1; | |
5860 | } else if (wbp->cl_clusters[cl_index1].b_addr < wbp->cl_clusters[min_index].b_addr) { | |
5861 | min_index = cl_index1; | |
5862 | } | |
5863 | } | |
5864 | if (min_index == -1) { | |
5865 | break; | |
5866 | } | |
5867 | ||
5868 | l_clusters[cl_index].b_addr = wbp->cl_clusters[min_index].b_addr; | |
5869 | l_clusters[cl_index].e_addr = wbp->cl_clusters[min_index].e_addr; | |
5870 | l_clusters[cl_index].io_flags = wbp->cl_clusters[min_index].io_flags; | |
5871 | ||
5872 | wbp->cl_clusters[min_index].b_addr = wbp->cl_clusters[min_index].e_addr; | |
5873 | } | |
5874 | wbp->cl_number = 0; | |
5875 | ||
5876 | cl_len = cl_index; | |
5877 | ||
5878 | /* skip switching to the sparse cluster mechanism if on diskimage */ | |
5879 | if (((push_flag & PUSH_DELAY) && cl_len == MAX_CLUSTERS) && | |
5880 | !(vp->v_mount->mnt_kern_flag & MNTK_VIRTUALDEV)) { | |
5881 | int i; | |
5882 | ||
5883 | /* | |
5884 | * determine if we appear to be writing the file sequentially | |
5885 | * if not, by returning without having pushed any clusters | |
5886 | * we will cause this vnode to be pushed into the sparse cluster mechanism | |
5887 | * used for managing more random I/O patterns | |
5888 | * | |
5889 | * we know that we've got all clusters currently in use and the next write doesn't fit into one of them... | |
5890 | * that's why we're in try_push with PUSH_DELAY... | |
5891 | * | |
5892 | * check to make sure that all the clusters except the last one are 'full'... and that each cluster | |
5893 | * is adjacent to the next (i.e. we're looking for sequential writes) they were sorted above | |
5894 | * so we can just make a simple pass through, up to, but not including the last one... | |
5895 | * note that e_addr is not inclusive, so it will be equal to the b_addr of the next cluster if they | |
5896 | * are sequential | |
5897 | * | |
5898 | * we let the last one be partial as long as it was adjacent to the previous one... | |
5899 | * we need to do this to deal with multi-threaded servers that might write an I/O or 2 out | |
5900 | * of order... if this occurs at the tail of the last cluster, we don't want to fall into the sparse cluster world... | |
5901 | */ | |
5902 | for (i = 0; i < MAX_CLUSTERS - 1; i++) { | |
5903 | if ((l_clusters[i].e_addr - l_clusters[i].b_addr) != max_cluster_pgcount) { | |
5904 | goto dont_try; | |
5905 | } | |
5906 | if (l_clusters[i].e_addr != l_clusters[i + 1].b_addr) { | |
5907 | goto dont_try; | |
5908 | } | |
5909 | } | |
5910 | } | |
5911 | if (vm_initiated == TRUE) { | |
5912 | lck_mtx_unlock(&wbp->cl_lockw); | |
5913 | } | |
5914 | ||
5915 | for (cl_index = 0; cl_index < cl_len; cl_index++) { | |
5916 | int flags; | |
5917 | struct cl_extent cl; | |
5918 | int retval; | |
5919 | ||
5920 | flags = io_flags & (IO_PASSIVE | IO_CLOSE); | |
5921 | ||
5922 | /* | |
5923 | * try to push each cluster in turn... | |
5924 | */ | |
5925 | if (l_clusters[cl_index].io_flags & CLW_IONOCACHE) { | |
5926 | flags |= IO_NOCACHE; | |
5927 | } | |
5928 | ||
5929 | if (l_clusters[cl_index].io_flags & CLW_IOPASSIVE) { | |
5930 | flags |= IO_PASSIVE; | |
5931 | } | |
5932 | ||
5933 | if (push_flag & PUSH_SYNC) { | |
5934 | flags |= IO_SYNC; | |
5935 | } | |
5936 | ||
5937 | cl.b_addr = l_clusters[cl_index].b_addr; | |
5938 | cl.e_addr = l_clusters[cl_index].e_addr; | |
5939 | ||
5940 | retval = cluster_push_now(vp, &cl, EOF, flags, callback, callback_arg, vm_initiated); | |
5941 | ||
5942 | if (retval == 0) { | |
5943 | cl_pushed++; | |
5944 | ||
5945 | l_clusters[cl_index].b_addr = 0; | |
5946 | l_clusters[cl_index].e_addr = 0; | |
5947 | } else if (error == 0) { | |
5948 | error = retval; | |
5949 | } | |
5950 | ||
5951 | if (!(push_flag & PUSH_ALL)) { | |
5952 | break; | |
5953 | } | |
5954 | } | |
5955 | if (vm_initiated == TRUE) { | |
5956 | lck_mtx_lock(&wbp->cl_lockw); | |
5957 | } | |
5958 | ||
5959 | if (err) { | |
5960 | *err = error; | |
5961 | } | |
5962 | ||
5963 | dont_try: | |
5964 | if (cl_len > cl_pushed) { | |
5965 | /* | |
5966 | * we didn't push all of the clusters, so | |
5967 | * lets try to merge them back in to the vnode | |
5968 | */ | |
5969 | if ((MAX_CLUSTERS - wbp->cl_number) < (cl_len - cl_pushed)) { | |
5970 | /* | |
5971 | * we picked up some new clusters while we were trying to | |
5972 | * push the old ones... this can happen because I've dropped | |
5973 | * the vnode lock... the sum of the | |
5974 | * leftovers plus the new cluster count exceeds our ability | |
5975 | * to represent them, so switch to the sparse cluster mechanism | |
5976 | * | |
5977 | * collect the active public clusters... | |
5978 | */ | |
5979 | sparse_cluster_switch(wbp, vp, EOF, callback, callback_arg, vm_initiated); | |
5980 | ||
5981 | for (cl_index = 0, cl_index1 = 0; cl_index < cl_len; cl_index++) { | |
5982 | if (l_clusters[cl_index].b_addr == l_clusters[cl_index].e_addr) { | |
5983 | continue; | |
5984 | } | |
5985 | wbp->cl_clusters[cl_index1].b_addr = l_clusters[cl_index].b_addr; | |
5986 | wbp->cl_clusters[cl_index1].e_addr = l_clusters[cl_index].e_addr; | |
5987 | wbp->cl_clusters[cl_index1].io_flags = l_clusters[cl_index].io_flags; | |
5988 | ||
5989 | cl_index1++; | |
5990 | } | |
5991 | /* | |
5992 | * update the cluster count | |
5993 | */ | |
5994 | wbp->cl_number = cl_index1; | |
5995 | ||
5996 | /* | |
5997 | * and collect the original clusters that were moved into the | |
5998 | * local storage for sorting purposes | |
5999 | */ | |
6000 | sparse_cluster_switch(wbp, vp, EOF, callback, callback_arg, vm_initiated); | |
6001 | } else { | |
6002 | /* | |
6003 | * we've got room to merge the leftovers back in | |
6004 | * just append them starting at the next 'hole' | |
6005 | * represented by wbp->cl_number | |
6006 | */ | |
6007 | for (cl_index = 0, cl_index1 = wbp->cl_number; cl_index < cl_len; cl_index++) { | |
6008 | if (l_clusters[cl_index].b_addr == l_clusters[cl_index].e_addr) { | |
6009 | continue; | |
6010 | } | |
6011 | ||
6012 | wbp->cl_clusters[cl_index1].b_addr = l_clusters[cl_index].b_addr; | |
6013 | wbp->cl_clusters[cl_index1].e_addr = l_clusters[cl_index].e_addr; | |
6014 | wbp->cl_clusters[cl_index1].io_flags = l_clusters[cl_index].io_flags; | |
6015 | ||
6016 | cl_index1++; | |
6017 | } | |
6018 | /* | |
6019 | * update the cluster count | |
6020 | */ | |
6021 | wbp->cl_number = cl_index1; | |
6022 | } | |
6023 | } | |
6024 | return MAX_CLUSTERS - wbp->cl_number; | |
6025 | } | |
6026 | ||
6027 | ||
6028 | ||
6029 | static int | |
6030 | cluster_push_now(vnode_t vp, struct cl_extent *cl, off_t EOF, int flags, | |
6031 | int (*callback)(buf_t, void *), void *callback_arg, boolean_t vm_initiated) | |
6032 | { | |
6033 | upl_page_info_t *pl; | |
6034 | upl_t upl; | |
6035 | vm_offset_t upl_offset; | |
6036 | int upl_size; | |
6037 | off_t upl_f_offset; | |
6038 | int pages_in_upl; | |
6039 | int start_pg; | |
6040 | int last_pg; | |
6041 | int io_size; | |
6042 | int io_flags; | |
6043 | int upl_flags; | |
6044 | int bflag; | |
6045 | int size; | |
6046 | int error = 0; | |
6047 | int retval; | |
6048 | kern_return_t kret; | |
6049 | ||
6050 | if (flags & IO_PASSIVE) { | |
6051 | bflag = CL_PASSIVE; | |
6052 | } else { | |
6053 | bflag = 0; | |
6054 | } | |
6055 | ||
6056 | if (flags & IO_SKIP_ENCRYPTION) { | |
6057 | bflag |= CL_ENCRYPTED; | |
6058 | } | |
6059 | ||
6060 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 51)) | DBG_FUNC_START, | |
6061 | (int)cl->b_addr, (int)cl->e_addr, (int)EOF, flags, 0); | |
6062 | ||
6063 | if ((pages_in_upl = (int)(cl->e_addr - cl->b_addr)) == 0) { | |
6064 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 51)) | DBG_FUNC_END, 1, 0, 0, 0, 0); | |
6065 | ||
6066 | return 0; | |
6067 | } | |
6068 | upl_size = pages_in_upl * PAGE_SIZE; | |
6069 | upl_f_offset = (off_t)(cl->b_addr * PAGE_SIZE_64); | |
6070 | ||
6071 | if (upl_f_offset + upl_size >= EOF) { | |
6072 | if (upl_f_offset >= EOF) { | |
6073 | /* | |
6074 | * must have truncated the file and missed | |
6075 | * clearing a dangling cluster (i.e. it's completely | |
6076 | * beyond the new EOF | |
6077 | */ | |
6078 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 51)) | DBG_FUNC_END, 1, 1, 0, 0, 0); | |
6079 | ||
6080 | return 0; | |
6081 | } | |
6082 | size = (int)(EOF - upl_f_offset); | |
6083 | ||
6084 | upl_size = (size + (PAGE_SIZE - 1)) & ~PAGE_MASK; | |
6085 | pages_in_upl = upl_size / PAGE_SIZE; | |
6086 | } else { | |
6087 | size = upl_size; | |
6088 | } | |
6089 | ||
6090 | ||
6091 | if (vm_initiated) { | |
6092 | vnode_pageout(vp, NULL, (upl_offset_t)0, upl_f_offset, (upl_size_t)upl_size, | |
6093 | UPL_MSYNC | UPL_VNODE_PAGER | UPL_KEEPCACHED, &error); | |
6094 | ||
6095 | return error; | |
6096 | } | |
6097 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 41)) | DBG_FUNC_START, upl_size, size, 0, 0, 0); | |
6098 | ||
6099 | /* | |
6100 | * by asking for UPL_COPYOUT_FROM and UPL_RET_ONLY_DIRTY, we get the following desirable behavior | |
6101 | * | |
6102 | * - only pages that are currently dirty are returned... these are the ones we need to clean | |
6103 | * - the hardware dirty bit is cleared when the page is gathered into the UPL... the software dirty bit is set | |
6104 | * - if we have to abort the I/O for some reason, the software dirty bit is left set since we didn't clean the page | |
6105 | * - when we commit the page, the software dirty bit is cleared... the hardware dirty bit is untouched so that if | |
6106 | * someone dirties this page while the I/O is in progress, we don't lose track of the new state | |
6107 | * | |
6108 | * when the I/O completes, we no longer ask for an explicit clear of the DIRTY state (either soft or hard) | |
6109 | */ | |
6110 | ||
6111 | if ((vp->v_flag & VNOCACHE_DATA) || (flags & IO_NOCACHE)) { | |
6112 | upl_flags = UPL_COPYOUT_FROM | UPL_RET_ONLY_DIRTY | UPL_SET_LITE | UPL_WILL_BE_DUMPED; | |
6113 | } else { | |
6114 | upl_flags = UPL_COPYOUT_FROM | UPL_RET_ONLY_DIRTY | UPL_SET_LITE; | |
6115 | } | |
6116 | ||
6117 | kret = ubc_create_upl_kernel(vp, | |
6118 | upl_f_offset, | |
6119 | upl_size, | |
6120 | &upl, | |
6121 | &pl, | |
6122 | upl_flags, | |
6123 | VM_KERN_MEMORY_FILE); | |
6124 | if (kret != KERN_SUCCESS) { | |
6125 | panic("cluster_push: failed to get pagelist"); | |
6126 | } | |
6127 | ||
6128 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 41)) | DBG_FUNC_END, upl, upl_f_offset, 0, 0, 0); | |
6129 | ||
6130 | /* | |
6131 | * since we only asked for the dirty pages back | |
6132 | * it's possible that we may only get a few or even none, so... | |
6133 | * before we start marching forward, we must make sure we know | |
6134 | * where the last present page is in the UPL, otherwise we could | |
6135 | * end up working with a freed upl due to the FREE_ON_EMPTY semantics | |
6136 | * employed by commit_range and abort_range. | |
6137 | */ | |
6138 | for (last_pg = pages_in_upl - 1; last_pg >= 0; last_pg--) { | |
6139 | if (upl_page_present(pl, last_pg)) { | |
6140 | break; | |
6141 | } | |
6142 | } | |
6143 | pages_in_upl = last_pg + 1; | |
6144 | ||
6145 | if (pages_in_upl == 0) { | |
6146 | ubc_upl_abort(upl, 0); | |
6147 | ||
6148 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 51)) | DBG_FUNC_END, 1, 2, 0, 0, 0); | |
6149 | return 0; | |
6150 | } | |
6151 | ||
6152 | for (last_pg = 0; last_pg < pages_in_upl;) { | |
6153 | /* | |
6154 | * find the next dirty page in the UPL | |
6155 | * this will become the first page in the | |
6156 | * next I/O to generate | |
6157 | */ | |
6158 | for (start_pg = last_pg; start_pg < pages_in_upl; start_pg++) { | |
6159 | if (upl_dirty_page(pl, start_pg)) { | |
6160 | break; | |
6161 | } | |
6162 | if (upl_page_present(pl, start_pg)) { | |
6163 | /* | |
6164 | * RET_ONLY_DIRTY will return non-dirty 'precious' pages | |
6165 | * just release these unchanged since we're not going | |
6166 | * to steal them or change their state | |
6167 | */ | |
6168 | ubc_upl_abort_range(upl, start_pg * PAGE_SIZE, PAGE_SIZE, UPL_ABORT_FREE_ON_EMPTY); | |
6169 | } | |
6170 | } | |
6171 | if (start_pg >= pages_in_upl) { | |
6172 | /* | |
6173 | * done... no more dirty pages to push | |
6174 | */ | |
6175 | break; | |
6176 | } | |
6177 | if (start_pg > last_pg) { | |
6178 | /* | |
6179 | * skipped over some non-dirty pages | |
6180 | */ | |
6181 | size -= ((start_pg - last_pg) * PAGE_SIZE); | |
6182 | } | |
6183 | ||
6184 | /* | |
6185 | * find a range of dirty pages to write | |
6186 | */ | |
6187 | for (last_pg = start_pg; last_pg < pages_in_upl; last_pg++) { | |
6188 | if (!upl_dirty_page(pl, last_pg)) { | |
6189 | break; | |
6190 | } | |
6191 | } | |
6192 | upl_offset = start_pg * PAGE_SIZE; | |
6193 | ||
6194 | io_size = min(size, (last_pg - start_pg) * PAGE_SIZE); | |
6195 | ||
6196 | io_flags = CL_THROTTLE | CL_COMMIT | CL_AGE | bflag; | |
6197 | ||
6198 | if (!(flags & IO_SYNC)) { | |
6199 | io_flags |= CL_ASYNC; | |
6200 | } | |
6201 | ||
6202 | if (flags & IO_CLOSE) { | |
6203 | io_flags |= CL_CLOSE; | |
6204 | } | |
6205 | ||
6206 | if (flags & IO_NOCACHE) { | |
6207 | io_flags |= CL_NOCACHE; | |
6208 | } | |
6209 | ||
6210 | retval = cluster_io(vp, upl, upl_offset, upl_f_offset + upl_offset, io_size, | |
6211 | io_flags, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg); | |
6212 | ||
6213 | if (error == 0 && retval) { | |
6214 | error = retval; | |
6215 | } | |
6216 | ||
6217 | size -= io_size; | |
6218 | } | |
6219 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 51)) | DBG_FUNC_END, 1, 3, error, 0, 0); | |
6220 | ||
6221 | return error; | |
6222 | } | |
6223 | ||
6224 | ||
6225 | /* | |
6226 | * sparse_cluster_switch is called with the write behind lock held | |
6227 | */ | |
6228 | static int | |
6229 | sparse_cluster_switch(struct cl_writebehind *wbp, vnode_t vp, off_t EOF, int (*callback)(buf_t, void *), void *callback_arg, boolean_t vm_initiated) | |
6230 | { | |
6231 | int cl_index; | |
6232 | int error; | |
6233 | ||
6234 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 78)) | DBG_FUNC_START, kdebug_vnode(vp), wbp->cl_scmap, wbp->cl_number, 0, 0); | |
6235 | ||
6236 | for (cl_index = 0; cl_index < wbp->cl_number; cl_index++) { | |
6237 | int flags; | |
6238 | struct cl_extent cl; | |
6239 | ||
6240 | for (cl.b_addr = wbp->cl_clusters[cl_index].b_addr; cl.b_addr < wbp->cl_clusters[cl_index].e_addr; cl.b_addr++) { | |
6241 | if (ubc_page_op(vp, (off_t)(cl.b_addr * PAGE_SIZE_64), 0, NULL, &flags) == KERN_SUCCESS) { | |
6242 | if (flags & UPL_POP_DIRTY) { | |
6243 | cl.e_addr = cl.b_addr + 1; | |
6244 | ||
6245 | error = sparse_cluster_add(wbp, &(wbp->cl_scmap), vp, &cl, EOF, callback, callback_arg, vm_initiated); | |
6246 | ||
6247 | if (error) { | |
6248 | break; | |
6249 | } | |
6250 | } | |
6251 | } | |
6252 | } | |
6253 | } | |
6254 | wbp->cl_number -= cl_index; | |
6255 | ||
6256 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 78)) | DBG_FUNC_END, kdebug_vnode(vp), wbp->cl_scmap, wbp->cl_number, error, 0); | |
6257 | ||
6258 | return error; | |
6259 | } | |
6260 | ||
6261 | ||
6262 | /* | |
6263 | * sparse_cluster_push must be called with the write-behind lock held if the scmap is | |
6264 | * still associated with the write-behind context... however, if the scmap has been disassociated | |
6265 | * from the write-behind context (the cluster_push case), the wb lock is not held | |
6266 | */ | |
6267 | static int | |
6268 | sparse_cluster_push(struct cl_writebehind *wbp, void **scmap, vnode_t vp, off_t EOF, int push_flag, | |
6269 | int io_flags, int (*callback)(buf_t, void *), void *callback_arg, boolean_t vm_initiated) | |
6270 | { | |
6271 | struct cl_extent cl; | |
6272 | off_t offset; | |
6273 | u_int length; | |
6274 | void *l_scmap; | |
6275 | int error = 0; | |
6276 | ||
6277 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 79)) | DBG_FUNC_START, kdebug_vnode(vp), (*scmap), 0, push_flag, 0); | |
6278 | ||
6279 | if (push_flag & PUSH_ALL) { | |
6280 | vfs_drt_control(scmap, 1); | |
6281 | } | |
6282 | ||
6283 | l_scmap = *scmap; | |
6284 | ||
6285 | for (;;) { | |
6286 | int retval; | |
6287 | ||
6288 | if (vfs_drt_get_cluster(scmap, &offset, &length) != KERN_SUCCESS) { | |
6289 | break; | |
6290 | } | |
6291 | ||
6292 | if (vm_initiated == TRUE) { | |
6293 | lck_mtx_unlock(&wbp->cl_lockw); | |
6294 | } | |
6295 | ||
6296 | cl.b_addr = (daddr64_t)(offset / PAGE_SIZE_64); | |
6297 | cl.e_addr = (daddr64_t)((offset + length) / PAGE_SIZE_64); | |
6298 | ||
6299 | retval = cluster_push_now(vp, &cl, EOF, io_flags, callback, callback_arg, vm_initiated); | |
6300 | if (error == 0 && retval) { | |
6301 | error = retval; | |
6302 | } | |
6303 | ||
6304 | if (vm_initiated == TRUE) { | |
6305 | lck_mtx_lock(&wbp->cl_lockw); | |
6306 | ||
6307 | if (*scmap != l_scmap) { | |
6308 | break; | |
6309 | } | |
6310 | } | |
6311 | ||
6312 | if (error) { | |
6313 | if (vfs_drt_mark_pages(scmap, offset, length, NULL) != KERN_SUCCESS) { | |
6314 | panic("Failed to restore dirty state on failure\n"); | |
6315 | } | |
6316 | ||
6317 | break; | |
6318 | } | |
6319 | ||
6320 | if (!(push_flag & PUSH_ALL)) { | |
6321 | break; | |
6322 | } | |
6323 | } | |
6324 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 79)) | DBG_FUNC_END, kdebug_vnode(vp), (*scmap), error, 0, 0); | |
6325 | ||
6326 | return error; | |
6327 | } | |
6328 | ||
6329 | ||
6330 | /* | |
6331 | * sparse_cluster_add is called with the write behind lock held | |
6332 | */ | |
6333 | static int | |
6334 | sparse_cluster_add(struct cl_writebehind *wbp, void **scmap, vnode_t vp, struct cl_extent *cl, off_t EOF, | |
6335 | int (*callback)(buf_t, void *), void *callback_arg, boolean_t vm_initiated) | |
6336 | { | |
6337 | u_int new_dirty; | |
6338 | u_int length; | |
6339 | off_t offset; | |
6340 | int error; | |
6341 | int push_flag = 0; /* Is this a valid value? */ | |
6342 | ||
6343 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 80)) | DBG_FUNC_START, (*scmap), 0, cl->b_addr, (int)cl->e_addr, 0); | |
6344 | ||
6345 | offset = (off_t)(cl->b_addr * PAGE_SIZE_64); | |
6346 | length = ((u_int)(cl->e_addr - cl->b_addr)) * PAGE_SIZE; | |
6347 | ||
6348 | while (vfs_drt_mark_pages(scmap, offset, length, &new_dirty) != KERN_SUCCESS) { | |
6349 | /* | |
6350 | * no room left in the map | |
6351 | * only a partial update was done | |
6352 | * push out some pages and try again | |
6353 | */ | |
6354 | ||
6355 | if (vfs_get_scmap_push_behavior_internal(scmap, &push_flag)) { | |
6356 | push_flag = 0; | |
6357 | } | |
6358 | ||
6359 | error = sparse_cluster_push(wbp, scmap, vp, EOF, push_flag, 0, callback, callback_arg, vm_initiated); | |
6360 | ||
6361 | if (error) { | |
6362 | break; | |
6363 | } | |
6364 | ||
6365 | offset += (new_dirty * PAGE_SIZE_64); | |
6366 | length -= (new_dirty * PAGE_SIZE); | |
6367 | } | |
6368 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 80)) | DBG_FUNC_END, kdebug_vnode(vp), (*scmap), error, 0, 0); | |
6369 | ||
6370 | return error; | |
6371 | } | |
6372 | ||
6373 | ||
6374 | static int | |
6375 | cluster_align_phys_io(vnode_t vp, struct uio *uio, addr64_t usr_paddr, u_int32_t xsize, int flags, int (*callback)(buf_t, void *), void *callback_arg) | |
6376 | { | |
6377 | upl_page_info_t *pl; | |
6378 | upl_t upl; | |
6379 | addr64_t ubc_paddr; | |
6380 | kern_return_t kret; | |
6381 | int error = 0; | |
6382 | int did_read = 0; | |
6383 | int abort_flags; | |
6384 | int upl_flags; | |
6385 | int bflag; | |
6386 | ||
6387 | if (flags & IO_PASSIVE) { | |
6388 | bflag = CL_PASSIVE; | |
6389 | } else { | |
6390 | bflag = 0; | |
6391 | } | |
6392 | ||
6393 | if (flags & IO_NOCACHE) { | |
6394 | bflag |= CL_NOCACHE; | |
6395 | } | |
6396 | ||
6397 | upl_flags = UPL_SET_LITE; | |
6398 | ||
6399 | if (!(flags & CL_READ)) { | |
6400 | /* | |
6401 | * "write" operation: let the UPL subsystem know | |
6402 | * that we intend to modify the buffer cache pages | |
6403 | * we're gathering. | |
6404 | */ | |
6405 | upl_flags |= UPL_WILL_MODIFY; | |
6406 | } else { | |
6407 | /* | |
6408 | * indicate that there is no need to pull the | |
6409 | * mapping for this page... we're only going | |
6410 | * to read from it, not modify it. | |
6411 | */ | |
6412 | upl_flags |= UPL_FILE_IO; | |
6413 | } | |
6414 | kret = ubc_create_upl_kernel(vp, | |
6415 | uio->uio_offset & ~PAGE_MASK_64, | |
6416 | PAGE_SIZE, | |
6417 | &upl, | |
6418 | &pl, | |
6419 | upl_flags, | |
6420 | VM_KERN_MEMORY_FILE); | |
6421 | ||
6422 | if (kret != KERN_SUCCESS) { | |
6423 | return EINVAL; | |
6424 | } | |
6425 | ||
6426 | if (!upl_valid_page(pl, 0)) { | |
6427 | /* | |
6428 | * issue a synchronous read to cluster_io | |
6429 | */ | |
6430 | error = cluster_io(vp, upl, 0, uio->uio_offset & ~PAGE_MASK_64, PAGE_SIZE, | |
6431 | CL_READ | bflag, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg); | |
6432 | if (error) { | |
6433 | ubc_upl_abort_range(upl, 0, PAGE_SIZE, UPL_ABORT_DUMP_PAGES | UPL_ABORT_FREE_ON_EMPTY); | |
6434 | ||
6435 | return error; | |
6436 | } | |
6437 | did_read = 1; | |
6438 | } | |
6439 | ubc_paddr = ((addr64_t)upl_phys_page(pl, 0) << PAGE_SHIFT) + (addr64_t)(uio->uio_offset & PAGE_MASK_64); | |
6440 | ||
6441 | /* | |
6442 | * NOTE: There is no prototype for the following in BSD. It, and the definitions | |
6443 | * of the defines for cppvPsrc, cppvPsnk, cppvFsnk, and cppvFsrc will be found in | |
6444 | * osfmk/ppc/mappings.h. They are not included here because there appears to be no | |
6445 | * way to do so without exporting them to kexts as well. | |
6446 | */ | |
6447 | if (flags & CL_READ) { | |
6448 | // copypv(ubc_paddr, usr_paddr, xsize, cppvPsrc | cppvPsnk | cppvFsnk); /* Copy physical to physical and flush the destination */ | |
6449 | copypv(ubc_paddr, usr_paddr, xsize, 2 | 1 | 4); /* Copy physical to physical and flush the destination */ | |
6450 | } else { | |
6451 | // copypv(usr_paddr, ubc_paddr, xsize, cppvPsrc | cppvPsnk | cppvFsrc); /* Copy physical to physical and flush the source */ | |
6452 | copypv(usr_paddr, ubc_paddr, xsize, 2 | 1 | 8); /* Copy physical to physical and flush the source */ | |
6453 | } | |
6454 | if (!(flags & CL_READ) || (upl_valid_page(pl, 0) && upl_dirty_page(pl, 0))) { | |
6455 | /* | |
6456 | * issue a synchronous write to cluster_io | |
6457 | */ | |
6458 | error = cluster_io(vp, upl, 0, uio->uio_offset & ~PAGE_MASK_64, PAGE_SIZE, | |
6459 | bflag, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg); | |
6460 | } | |
6461 | if (error == 0) { | |
6462 | uio_update(uio, (user_size_t)xsize); | |
6463 | } | |
6464 | ||
6465 | if (did_read) { | |
6466 | abort_flags = UPL_ABORT_FREE_ON_EMPTY; | |
6467 | } else { | |
6468 | abort_flags = UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_DUMP_PAGES; | |
6469 | } | |
6470 | ||
6471 | ubc_upl_abort_range(upl, 0, PAGE_SIZE, abort_flags); | |
6472 | ||
6473 | return error; | |
6474 | } | |
6475 | ||
6476 | int | |
6477 | cluster_copy_upl_data(struct uio *uio, upl_t upl, int upl_offset, int *io_resid) | |
6478 | { | |
6479 | int pg_offset; | |
6480 | int pg_index; | |
6481 | int csize; | |
6482 | int segflg; | |
6483 | int retval = 0; | |
6484 | int xsize; | |
6485 | upl_page_info_t *pl; | |
6486 | int dirty_count; | |
6487 | ||
6488 | xsize = *io_resid; | |
6489 | ||
6490 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_START, | |
6491 | (int)uio->uio_offset, upl_offset, xsize, 0, 0); | |
6492 | ||
6493 | segflg = uio->uio_segflg; | |
6494 | ||
6495 | switch (segflg) { | |
6496 | case UIO_USERSPACE32: | |
6497 | case UIO_USERISPACE32: | |
6498 | uio->uio_segflg = UIO_PHYS_USERSPACE32; | |
6499 | break; | |
6500 | ||
6501 | case UIO_USERSPACE: | |
6502 | case UIO_USERISPACE: | |
6503 | uio->uio_segflg = UIO_PHYS_USERSPACE; | |
6504 | break; | |
6505 | ||
6506 | case UIO_USERSPACE64: | |
6507 | case UIO_USERISPACE64: | |
6508 | uio->uio_segflg = UIO_PHYS_USERSPACE64; | |
6509 | break; | |
6510 | ||
6511 | case UIO_SYSSPACE: | |
6512 | uio->uio_segflg = UIO_PHYS_SYSSPACE; | |
6513 | break; | |
6514 | } | |
6515 | pl = ubc_upl_pageinfo(upl); | |
6516 | ||
6517 | pg_index = upl_offset / PAGE_SIZE; | |
6518 | pg_offset = upl_offset & PAGE_MASK; | |
6519 | csize = min(PAGE_SIZE - pg_offset, xsize); | |
6520 | ||
6521 | dirty_count = 0; | |
6522 | while (xsize && retval == 0) { | |
6523 | addr64_t paddr; | |
6524 | ||
6525 | paddr = ((addr64_t)upl_phys_page(pl, pg_index) << PAGE_SHIFT) + pg_offset; | |
6526 | if ((uio->uio_rw == UIO_WRITE) && (upl_dirty_page(pl, pg_index) == FALSE)) { | |
6527 | dirty_count++; | |
6528 | } | |
6529 | ||
6530 | retval = uiomove64(paddr, csize, uio); | |
6531 | ||
6532 | pg_index += 1; | |
6533 | pg_offset = 0; | |
6534 | xsize -= csize; | |
6535 | csize = min(PAGE_SIZE, xsize); | |
6536 | } | |
6537 | *io_resid = xsize; | |
6538 | ||
6539 | uio->uio_segflg = segflg; | |
6540 | ||
6541 | task_update_logical_writes(current_task(), (dirty_count * PAGE_SIZE), TASK_WRITE_DEFERRED, upl_lookup_vnode(upl)); | |
6542 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_END, | |
6543 | (int)uio->uio_offset, xsize, retval, segflg, 0); | |
6544 | ||
6545 | return retval; | |
6546 | } | |
6547 | ||
6548 | ||
6549 | int | |
6550 | cluster_copy_ubc_data(vnode_t vp, struct uio *uio, int *io_resid, int mark_dirty) | |
6551 | { | |
6552 | return cluster_copy_ubc_data_internal(vp, uio, io_resid, mark_dirty, 1); | |
6553 | } | |
6554 | ||
6555 | ||
6556 | static int | |
6557 | cluster_copy_ubc_data_internal(vnode_t vp, struct uio *uio, int *io_resid, int mark_dirty, int take_reference) | |
6558 | { | |
6559 | int segflg; | |
6560 | int io_size; | |
6561 | int xsize; | |
6562 | int start_offset; | |
6563 | int retval = 0; | |
6564 | memory_object_control_t control; | |
6565 | ||
6566 | io_size = *io_resid; | |
6567 | ||
6568 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_START, | |
6569 | (int)uio->uio_offset, io_size, mark_dirty, take_reference, 0); | |
6570 | ||
6571 | control = ubc_getobject(vp, UBC_FLAGS_NONE); | |
6572 | ||
6573 | if (control == MEMORY_OBJECT_CONTROL_NULL) { | |
6574 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_END, | |
6575 | (int)uio->uio_offset, io_size, retval, 3, 0); | |
6576 | ||
6577 | return 0; | |
6578 | } | |
6579 | segflg = uio->uio_segflg; | |
6580 | ||
6581 | switch (segflg) { | |
6582 | case UIO_USERSPACE32: | |
6583 | case UIO_USERISPACE32: | |
6584 | uio->uio_segflg = UIO_PHYS_USERSPACE32; | |
6585 | break; | |
6586 | ||
6587 | case UIO_USERSPACE64: | |
6588 | case UIO_USERISPACE64: | |
6589 | uio->uio_segflg = UIO_PHYS_USERSPACE64; | |
6590 | break; | |
6591 | ||
6592 | case UIO_USERSPACE: | |
6593 | case UIO_USERISPACE: | |
6594 | uio->uio_segflg = UIO_PHYS_USERSPACE; | |
6595 | break; | |
6596 | ||
6597 | case UIO_SYSSPACE: | |
6598 | uio->uio_segflg = UIO_PHYS_SYSSPACE; | |
6599 | break; | |
6600 | } | |
6601 | ||
6602 | if ((io_size = *io_resid)) { | |
6603 | start_offset = (int)(uio->uio_offset & PAGE_MASK_64); | |
6604 | xsize = (int)uio_resid(uio); | |
6605 | ||
6606 | retval = memory_object_control_uiomove(control, uio->uio_offset - start_offset, uio, | |
6607 | start_offset, io_size, mark_dirty, take_reference); | |
6608 | xsize -= uio_resid(uio); | |
6609 | io_size -= xsize; | |
6610 | } | |
6611 | uio->uio_segflg = segflg; | |
6612 | *io_resid = io_size; | |
6613 | ||
6614 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_END, | |
6615 | (int)uio->uio_offset, io_size, retval, 0x80000000 | segflg, 0); | |
6616 | ||
6617 | return retval; | |
6618 | } | |
6619 | ||
6620 | ||
6621 | int | |
6622 | is_file_clean(vnode_t vp, off_t filesize) | |
6623 | { | |
6624 | off_t f_offset; | |
6625 | int flags; | |
6626 | int total_dirty = 0; | |
6627 | ||
6628 | for (f_offset = 0; f_offset < filesize; f_offset += PAGE_SIZE_64) { | |
6629 | if (ubc_page_op(vp, f_offset, 0, NULL, &flags) == KERN_SUCCESS) { | |
6630 | if (flags & UPL_POP_DIRTY) { | |
6631 | total_dirty++; | |
6632 | } | |
6633 | } | |
6634 | } | |
6635 | if (total_dirty) { | |
6636 | return EINVAL; | |
6637 | } | |
6638 | ||
6639 | return 0; | |
6640 | } | |
6641 | ||
6642 | ||
6643 | ||
6644 | /* | |
6645 | * Dirty region tracking/clustering mechanism. | |
6646 | * | |
6647 | * This code (vfs_drt_*) provides a mechanism for tracking and clustering | |
6648 | * dirty regions within a larger space (file). It is primarily intended to | |
6649 | * support clustering in large files with many dirty areas. | |
6650 | * | |
6651 | * The implementation assumes that the dirty regions are pages. | |
6652 | * | |
6653 | * To represent dirty pages within the file, we store bit vectors in a | |
6654 | * variable-size circular hash. | |
6655 | */ | |
6656 | ||
6657 | /* | |
6658 | * Bitvector size. This determines the number of pages we group in a | |
6659 | * single hashtable entry. Each hashtable entry is aligned to this | |
6660 | * size within the file. | |
6661 | */ | |
6662 | #define DRT_BITVECTOR_PAGES ((1024 * 256) / PAGE_SIZE) | |
6663 | ||
6664 | /* | |
6665 | * File offset handling. | |
6666 | * | |
6667 | * DRT_ADDRESS_MASK is dependent on DRT_BITVECTOR_PAGES; | |
6668 | * the correct formula is (~((DRT_BITVECTOR_PAGES * PAGE_SIZE) - 1)) | |
6669 | */ | |
6670 | #define DRT_ADDRESS_MASK (~((DRT_BITVECTOR_PAGES * PAGE_SIZE) - 1)) | |
6671 | #define DRT_ALIGN_ADDRESS(addr) ((addr) & DRT_ADDRESS_MASK) | |
6672 | ||
6673 | /* | |
6674 | * Hashtable address field handling. | |
6675 | * | |
6676 | * The low-order bits of the hashtable address are used to conserve | |
6677 | * space. | |
6678 | * | |
6679 | * DRT_HASH_COUNT_MASK must be large enough to store the range | |
6680 | * 0-DRT_BITVECTOR_PAGES inclusive, as well as have one value | |
6681 | * to indicate that the bucket is actually unoccupied. | |
6682 | */ | |
6683 | #define DRT_HASH_GET_ADDRESS(scm, i) ((scm)->scm_hashtable[(i)].dhe_control & DRT_ADDRESS_MASK) | |
6684 | #define DRT_HASH_SET_ADDRESS(scm, i, a) \ | |
6685 | do { \ | |
6686 | (scm)->scm_hashtable[(i)].dhe_control = \ | |
6687 | ((scm)->scm_hashtable[(i)].dhe_control & ~DRT_ADDRESS_MASK) | DRT_ALIGN_ADDRESS(a); \ | |
6688 | } while (0) | |
6689 | #define DRT_HASH_COUNT_MASK 0x1ff | |
6690 | #define DRT_HASH_GET_COUNT(scm, i) ((scm)->scm_hashtable[(i)].dhe_control & DRT_HASH_COUNT_MASK) | |
6691 | #define DRT_HASH_SET_COUNT(scm, i, c) \ | |
6692 | do { \ | |
6693 | (scm)->scm_hashtable[(i)].dhe_control = \ | |
6694 | ((scm)->scm_hashtable[(i)].dhe_control & ~DRT_HASH_COUNT_MASK) | ((c) & DRT_HASH_COUNT_MASK); \ | |
6695 | } while (0) | |
6696 | #define DRT_HASH_CLEAR(scm, i) \ | |
6697 | do { \ | |
6698 | (scm)->scm_hashtable[(i)].dhe_control = 0; \ | |
6699 | } while (0) | |
6700 | #define DRT_HASH_VACATE(scm, i) DRT_HASH_SET_COUNT((scm), (i), DRT_HASH_COUNT_MASK) | |
6701 | #define DRT_HASH_VACANT(scm, i) (DRT_HASH_GET_COUNT((scm), (i)) == DRT_HASH_COUNT_MASK) | |
6702 | #define DRT_HASH_COPY(oscm, oi, scm, i) \ | |
6703 | do { \ | |
6704 | (scm)->scm_hashtable[(i)].dhe_control = (oscm)->scm_hashtable[(oi)].dhe_control; \ | |
6705 | DRT_BITVECTOR_COPY(oscm, oi, scm, i); \ | |
6706 | } while(0); | |
6707 | ||
6708 | ||
6709 | #if !defined(XNU_TARGET_OS_OSX) | |
6710 | /* | |
6711 | * Hash table moduli. | |
6712 | * | |
6713 | * Since the hashtable entry's size is dependent on the size of | |
6714 | * the bitvector, and since the hashtable size is constrained to | |
6715 | * both being prime and fitting within the desired allocation | |
6716 | * size, these values need to be manually determined. | |
6717 | * | |
6718 | * For DRT_BITVECTOR_SIZE = 64, the entry size is 16 bytes. | |
6719 | * | |
6720 | * The small hashtable allocation is 4096 bytes, so the modulus is 251. | |
6721 | * The large hashtable allocation is 32768 bytes, so the modulus is 2039. | |
6722 | * The xlarge hashtable allocation is 131072 bytes, so the modulus is 8179. | |
6723 | */ | |
6724 | ||
6725 | #define DRT_HASH_SMALL_MODULUS 251 | |
6726 | #define DRT_HASH_LARGE_MODULUS 2039 | |
6727 | #define DRT_HASH_XLARGE_MODULUS 8179 | |
6728 | ||
6729 | /* | |
6730 | * Physical memory required before the large hash modulus is permitted. | |
6731 | * | |
6732 | * On small memory systems, the large hash modulus can lead to phsyical | |
6733 | * memory starvation, so we avoid using it there. | |
6734 | */ | |
6735 | #define DRT_HASH_LARGE_MEMORY_REQUIRED (1024LL * 1024LL * 1024LL) /* 1GiB */ | |
6736 | #define DRT_HASH_XLARGE_MEMORY_REQUIRED (8 * 1024LL * 1024LL * 1024LL) /* 8GiB */ | |
6737 | ||
6738 | #define DRT_SMALL_ALLOCATION 4096 /* 80 bytes spare */ | |
6739 | #define DRT_LARGE_ALLOCATION 32768 /* 144 bytes spare */ | |
6740 | #define DRT_XLARGE_ALLOCATION 131072 /* 208 bytes spare */ | |
6741 | ||
6742 | #else /* XNU_TARGET_OS_OSX */ | |
6743 | /* | |
6744 | * Hash table moduli. | |
6745 | * | |
6746 | * Since the hashtable entry's size is dependent on the size of | |
6747 | * the bitvector, and since the hashtable size is constrained to | |
6748 | * both being prime and fitting within the desired allocation | |
6749 | * size, these values need to be manually determined. | |
6750 | * | |
6751 | * For DRT_BITVECTOR_SIZE = 64, the entry size is 16 bytes. | |
6752 | * | |
6753 | * The small hashtable allocation is 16384 bytes, so the modulus is 1019. | |
6754 | * The large hashtable allocation is 131072 bytes, so the modulus is 8179. | |
6755 | * The xlarge hashtable allocation is 524288 bytes, so the modulus is 32749. | |
6756 | */ | |
6757 | ||
6758 | #define DRT_HASH_SMALL_MODULUS 1019 | |
6759 | #define DRT_HASH_LARGE_MODULUS 8179 | |
6760 | #define DRT_HASH_XLARGE_MODULUS 32749 | |
6761 | ||
6762 | /* | |
6763 | * Physical memory required before the large hash modulus is permitted. | |
6764 | * | |
6765 | * On small memory systems, the large hash modulus can lead to phsyical | |
6766 | * memory starvation, so we avoid using it there. | |
6767 | */ | |
6768 | #define DRT_HASH_LARGE_MEMORY_REQUIRED (4 * 1024LL * 1024LL * 1024LL) /* 4GiB */ | |
6769 | #define DRT_HASH_XLARGE_MEMORY_REQUIRED (32 * 1024LL * 1024LL * 1024LL) /* 32GiB */ | |
6770 | ||
6771 | #define DRT_SMALL_ALLOCATION 16384 /* 80 bytes spare */ | |
6772 | #define DRT_LARGE_ALLOCATION 131072 /* 208 bytes spare */ | |
6773 | #define DRT_XLARGE_ALLOCATION 524288 /* 304 bytes spare */ | |
6774 | ||
6775 | #endif /* ! XNU_TARGET_OS_OSX */ | |
6776 | ||
6777 | /* *** nothing below here has secret dependencies on DRT_BITVECTOR_PAGES *** */ | |
6778 | ||
6779 | /* | |
6780 | * Hashtable entry. | |
6781 | */ | |
6782 | struct vfs_drt_hashentry { | |
6783 | u_int64_t dhe_control; | |
6784 | /* | |
6785 | * dhe_bitvector was declared as dhe_bitvector[DRT_BITVECTOR_PAGES / 32]; | |
6786 | * DRT_BITVECTOR_PAGES is defined as ((1024 * 256) / PAGE_SIZE) | |
6787 | * Since PAGE_SIZE is only known at boot time, | |
6788 | * -define MAX_DRT_BITVECTOR_PAGES for smallest supported page size (4k) | |
6789 | * -declare dhe_bitvector array for largest possible length | |
6790 | */ | |
6791 | #define MAX_DRT_BITVECTOR_PAGES (1024 * 256)/( 4 * 1024) | |
6792 | u_int32_t dhe_bitvector[MAX_DRT_BITVECTOR_PAGES / 32]; | |
6793 | }; | |
6794 | ||
6795 | /* | |
6796 | * Hashtable bitvector handling. | |
6797 | * | |
6798 | * Bitvector fields are 32 bits long. | |
6799 | */ | |
6800 | ||
6801 | #define DRT_HASH_SET_BIT(scm, i, bit) \ | |
6802 | (scm)->scm_hashtable[(i)].dhe_bitvector[(bit) / 32] |= (1 << ((bit) % 32)) | |
6803 | ||
6804 | #define DRT_HASH_CLEAR_BIT(scm, i, bit) \ | |
6805 | (scm)->scm_hashtable[(i)].dhe_bitvector[(bit) / 32] &= ~(1 << ((bit) % 32)) | |
6806 | ||
6807 | #define DRT_HASH_TEST_BIT(scm, i, bit) \ | |
6808 | ((scm)->scm_hashtable[(i)].dhe_bitvector[(bit) / 32] & (1 << ((bit) % 32))) | |
6809 | ||
6810 | #define DRT_BITVECTOR_CLEAR(scm, i) \ | |
6811 | bzero(&(scm)->scm_hashtable[(i)].dhe_bitvector[0], (MAX_DRT_BITVECTOR_PAGES / 32) * sizeof(u_int32_t)) | |
6812 | ||
6813 | #define DRT_BITVECTOR_COPY(oscm, oi, scm, i) \ | |
6814 | bcopy(&(oscm)->scm_hashtable[(oi)].dhe_bitvector[0], \ | |
6815 | &(scm)->scm_hashtable[(i)].dhe_bitvector[0], \ | |
6816 | (MAX_DRT_BITVECTOR_PAGES / 32) * sizeof(u_int32_t)) | |
6817 | ||
6818 | /* | |
6819 | * Dirty Region Tracking structure. | |
6820 | * | |
6821 | * The hashtable is allocated entirely inside the DRT structure. | |
6822 | * | |
6823 | * The hash is a simple circular prime modulus arrangement, the structure | |
6824 | * is resized from small to large if it overflows. | |
6825 | */ | |
6826 | ||
6827 | struct vfs_drt_clustermap { | |
6828 | u_int32_t scm_magic; /* sanity/detection */ | |
6829 | #define DRT_SCM_MAGIC 0x12020003 | |
6830 | u_int32_t scm_modulus; /* current ring size */ | |
6831 | u_int32_t scm_buckets; /* number of occupied buckets */ | |
6832 | u_int32_t scm_lastclean; /* last entry we cleaned */ | |
6833 | u_int32_t scm_iskips; /* number of slot skips */ | |
6834 | ||
6835 | struct vfs_drt_hashentry scm_hashtable[0]; | |
6836 | }; | |
6837 | ||
6838 | ||
6839 | #define DRT_HASH(scm, addr) ((addr) % (scm)->scm_modulus) | |
6840 | #define DRT_HASH_NEXT(scm, addr) (((addr) + 1) % (scm)->scm_modulus) | |
6841 | ||
6842 | /* | |
6843 | * Debugging codes and arguments. | |
6844 | */ | |
6845 | #define DRT_DEBUG_EMPTYFREE (FSDBG_CODE(DBG_FSRW, 82)) /* nil */ | |
6846 | #define DRT_DEBUG_RETCLUSTER (FSDBG_CODE(DBG_FSRW, 83)) /* offset, length */ | |
6847 | #define DRT_DEBUG_ALLOC (FSDBG_CODE(DBG_FSRW, 84)) /* copycount */ | |
6848 | #define DRT_DEBUG_INSERT (FSDBG_CODE(DBG_FSRW, 85)) /* offset, iskip */ | |
6849 | #define DRT_DEBUG_MARK (FSDBG_CODE(DBG_FSRW, 86)) /* offset, length, | |
6850 | * dirty */ | |
6851 | /* 0, setcount */ | |
6852 | /* 1 (clean, no map) */ | |
6853 | /* 2 (map alloc fail) */ | |
6854 | /* 3, resid (partial) */ | |
6855 | #define DRT_DEBUG_6 (FSDBG_CODE(DBG_FSRW, 87)) | |
6856 | #define DRT_DEBUG_SCMDATA (FSDBG_CODE(DBG_FSRW, 88)) /* modulus, buckets, | |
6857 | * lastclean, iskips */ | |
6858 | ||
6859 | ||
6860 | static kern_return_t vfs_drt_alloc_map(struct vfs_drt_clustermap **cmapp); | |
6861 | static kern_return_t vfs_drt_free_map(struct vfs_drt_clustermap *cmap); | |
6862 | static kern_return_t vfs_drt_search_index(struct vfs_drt_clustermap *cmap, | |
6863 | u_int64_t offset, int *indexp); | |
6864 | static kern_return_t vfs_drt_get_index(struct vfs_drt_clustermap **cmapp, | |
6865 | u_int64_t offset, | |
6866 | int *indexp, | |
6867 | int recursed); | |
6868 | static kern_return_t vfs_drt_do_mark_pages( | |
6869 | void **cmapp, | |
6870 | u_int64_t offset, | |
6871 | u_int length, | |
6872 | u_int *setcountp, | |
6873 | int dirty); | |
6874 | static void vfs_drt_trace( | |
6875 | struct vfs_drt_clustermap *cmap, | |
6876 | int code, | |
6877 | int arg1, | |
6878 | int arg2, | |
6879 | int arg3, | |
6880 | int arg4); | |
6881 | ||
6882 | ||
6883 | /* | |
6884 | * Allocate and initialise a sparse cluster map. | |
6885 | * | |
6886 | * Will allocate a new map, resize or compact an existing map. | |
6887 | * | |
6888 | * XXX we should probably have at least one intermediate map size, | |
6889 | * as the 1:16 ratio seems a bit drastic. | |
6890 | */ | |
6891 | static kern_return_t | |
6892 | vfs_drt_alloc_map(struct vfs_drt_clustermap **cmapp) | |
6893 | { | |
6894 | struct vfs_drt_clustermap *cmap = NULL, *ocmap = NULL; | |
6895 | kern_return_t kret = KERN_SUCCESS; | |
6896 | u_int64_t offset = 0; | |
6897 | u_int32_t i = 0; | |
6898 | int modulus_size = 0, map_size = 0, active_buckets = 0, index = 0, copycount = 0; | |
6899 | ||
6900 | ocmap = NULL; | |
6901 | if (cmapp != NULL) { | |
6902 | ocmap = *cmapp; | |
6903 | } | |
6904 | ||
6905 | /* | |
6906 | * Decide on the size of the new map. | |
6907 | */ | |
6908 | if (ocmap == NULL) { | |
6909 | modulus_size = DRT_HASH_SMALL_MODULUS; | |
6910 | map_size = DRT_SMALL_ALLOCATION; | |
6911 | } else { | |
6912 | /* count the number of active buckets in the old map */ | |
6913 | active_buckets = 0; | |
6914 | for (i = 0; i < ocmap->scm_modulus; i++) { | |
6915 | if (!DRT_HASH_VACANT(ocmap, i) && | |
6916 | (DRT_HASH_GET_COUNT(ocmap, i) != 0)) { | |
6917 | active_buckets++; | |
6918 | } | |
6919 | } | |
6920 | /* | |
6921 | * If we're currently using the small allocation, check to | |
6922 | * see whether we should grow to the large one. | |
6923 | */ | |
6924 | if (ocmap->scm_modulus == DRT_HASH_SMALL_MODULUS) { | |
6925 | /* | |
6926 | * If the ring is nearly full and we are allowed to | |
6927 | * use the large modulus, upgrade. | |
6928 | */ | |
6929 | if ((active_buckets > (DRT_HASH_SMALL_MODULUS - 5)) && | |
6930 | (max_mem >= DRT_HASH_LARGE_MEMORY_REQUIRED)) { | |
6931 | modulus_size = DRT_HASH_LARGE_MODULUS; | |
6932 | map_size = DRT_LARGE_ALLOCATION; | |
6933 | } else { | |
6934 | modulus_size = DRT_HASH_SMALL_MODULUS; | |
6935 | map_size = DRT_SMALL_ALLOCATION; | |
6936 | } | |
6937 | } else if (ocmap->scm_modulus == DRT_HASH_LARGE_MODULUS) { | |
6938 | if ((active_buckets > (DRT_HASH_LARGE_MODULUS - 5)) && | |
6939 | (max_mem >= DRT_HASH_XLARGE_MEMORY_REQUIRED)) { | |
6940 | modulus_size = DRT_HASH_XLARGE_MODULUS; | |
6941 | map_size = DRT_XLARGE_ALLOCATION; | |
6942 | } else { | |
6943 | /* | |
6944 | * If the ring is completely full and we can't | |
6945 | * expand, there's nothing useful for us to do. | |
6946 | * Behave as though we had compacted into the new | |
6947 | * array and return. | |
6948 | */ | |
6949 | return KERN_SUCCESS; | |
6950 | } | |
6951 | } else { | |
6952 | /* already using the xlarge modulus */ | |
6953 | modulus_size = DRT_HASH_XLARGE_MODULUS; | |
6954 | map_size = DRT_XLARGE_ALLOCATION; | |
6955 | ||
6956 | /* | |
6957 | * If the ring is completely full, there's | |
6958 | * nothing useful for us to do. Behave as | |
6959 | * though we had compacted into the new | |
6960 | * array and return. | |
6961 | */ | |
6962 | if (active_buckets >= DRT_HASH_XLARGE_MODULUS) { | |
6963 | return KERN_SUCCESS; | |
6964 | } | |
6965 | } | |
6966 | } | |
6967 | ||
6968 | /* | |
6969 | * Allocate and initialise the new map. | |
6970 | */ | |
6971 | ||
6972 | kret = kmem_alloc(kernel_map, (vm_offset_t *)&cmap, map_size, VM_KERN_MEMORY_FILE); | |
6973 | if (kret != KERN_SUCCESS) { | |
6974 | return kret; | |
6975 | } | |
6976 | cmap->scm_magic = DRT_SCM_MAGIC; | |
6977 | cmap->scm_modulus = modulus_size; | |
6978 | cmap->scm_buckets = 0; | |
6979 | cmap->scm_lastclean = 0; | |
6980 | cmap->scm_iskips = 0; | |
6981 | for (i = 0; i < cmap->scm_modulus; i++) { | |
6982 | DRT_HASH_CLEAR(cmap, i); | |
6983 | DRT_HASH_VACATE(cmap, i); | |
6984 | DRT_BITVECTOR_CLEAR(cmap, i); | |
6985 | } | |
6986 | ||
6987 | /* | |
6988 | * If there's an old map, re-hash entries from it into the new map. | |
6989 | */ | |
6990 | copycount = 0; | |
6991 | if (ocmap != NULL) { | |
6992 | for (i = 0; i < ocmap->scm_modulus; i++) { | |
6993 | /* skip empty buckets */ | |
6994 | if (DRT_HASH_VACANT(ocmap, i) || | |
6995 | (DRT_HASH_GET_COUNT(ocmap, i) == 0)) { | |
6996 | continue; | |
6997 | } | |
6998 | /* get new index */ | |
6999 | offset = DRT_HASH_GET_ADDRESS(ocmap, i); | |
7000 | kret = vfs_drt_get_index(&cmap, offset, &index, 1); | |
7001 | if (kret != KERN_SUCCESS) { | |
7002 | /* XXX need to bail out gracefully here */ | |
7003 | panic("vfs_drt: new cluster map mysteriously too small"); | |
7004 | index = 0; | |
7005 | } | |
7006 | /* copy */ | |
7007 | DRT_HASH_COPY(ocmap, i, cmap, index); | |
7008 | copycount++; | |
7009 | } | |
7010 | } | |
7011 | ||
7012 | /* log what we've done */ | |
7013 | vfs_drt_trace(cmap, DRT_DEBUG_ALLOC, copycount, 0, 0, 0); | |
7014 | ||
7015 | /* | |
7016 | * It's important to ensure that *cmapp always points to | |
7017 | * a valid map, so we must overwrite it before freeing | |
7018 | * the old map. | |
7019 | */ | |
7020 | *cmapp = cmap; | |
7021 | if (ocmap != NULL) { | |
7022 | /* emit stats into trace buffer */ | |
7023 | vfs_drt_trace(ocmap, DRT_DEBUG_SCMDATA, | |
7024 | ocmap->scm_modulus, | |
7025 | ocmap->scm_buckets, | |
7026 | ocmap->scm_lastclean, | |
7027 | ocmap->scm_iskips); | |
7028 | ||
7029 | vfs_drt_free_map(ocmap); | |
7030 | } | |
7031 | return KERN_SUCCESS; | |
7032 | } | |
7033 | ||
7034 | ||
7035 | /* | |
7036 | * Free a sparse cluster map. | |
7037 | */ | |
7038 | static kern_return_t | |
7039 | vfs_drt_free_map(struct vfs_drt_clustermap *cmap) | |
7040 | { | |
7041 | vm_size_t map_size = 0; | |
7042 | ||
7043 | if (cmap->scm_modulus == DRT_HASH_SMALL_MODULUS) { | |
7044 | map_size = DRT_SMALL_ALLOCATION; | |
7045 | } else if (cmap->scm_modulus == DRT_HASH_LARGE_MODULUS) { | |
7046 | map_size = DRT_LARGE_ALLOCATION; | |
7047 | } else if (cmap->scm_modulus == DRT_HASH_XLARGE_MODULUS) { | |
7048 | map_size = DRT_XLARGE_ALLOCATION; | |
7049 | } else { | |
7050 | panic("vfs_drt_free_map: Invalid modulus %d\n", cmap->scm_modulus); | |
7051 | } | |
7052 | ||
7053 | kmem_free(kernel_map, (vm_offset_t)cmap, map_size); | |
7054 | return KERN_SUCCESS; | |
7055 | } | |
7056 | ||
7057 | ||
7058 | /* | |
7059 | * Find the hashtable slot currently occupied by an entry for the supplied offset. | |
7060 | */ | |
7061 | static kern_return_t | |
7062 | vfs_drt_search_index(struct vfs_drt_clustermap *cmap, u_int64_t offset, int *indexp) | |
7063 | { | |
7064 | int index; | |
7065 | u_int32_t i; | |
7066 | ||
7067 | offset = DRT_ALIGN_ADDRESS(offset); | |
7068 | index = DRT_HASH(cmap, offset); | |
7069 | ||
7070 | /* traverse the hashtable */ | |
7071 | for (i = 0; i < cmap->scm_modulus; i++) { | |
7072 | /* | |
7073 | * If the slot is vacant, we can stop. | |
7074 | */ | |
7075 | if (DRT_HASH_VACANT(cmap, index)) { | |
7076 | break; | |
7077 | } | |
7078 | ||
7079 | /* | |
7080 | * If the address matches our offset, we have success. | |
7081 | */ | |
7082 | if (DRT_HASH_GET_ADDRESS(cmap, index) == offset) { | |
7083 | *indexp = index; | |
7084 | return KERN_SUCCESS; | |
7085 | } | |
7086 | ||
7087 | /* | |
7088 | * Move to the next slot, try again. | |
7089 | */ | |
7090 | index = DRT_HASH_NEXT(cmap, index); | |
7091 | } | |
7092 | /* | |
7093 | * It's not there. | |
7094 | */ | |
7095 | return KERN_FAILURE; | |
7096 | } | |
7097 | ||
7098 | /* | |
7099 | * Find the hashtable slot for the supplied offset. If we haven't allocated | |
7100 | * one yet, allocate one and populate the address field. Note that it will | |
7101 | * not have a nonzero page count and thus will still technically be free, so | |
7102 | * in the case where we are called to clean pages, the slot will remain free. | |
7103 | */ | |
7104 | static kern_return_t | |
7105 | vfs_drt_get_index(struct vfs_drt_clustermap **cmapp, u_int64_t offset, int *indexp, int recursed) | |
7106 | { | |
7107 | struct vfs_drt_clustermap *cmap; | |
7108 | kern_return_t kret; | |
7109 | u_int32_t index; | |
7110 | u_int32_t i; | |
7111 | ||
7112 | cmap = *cmapp; | |
7113 | ||
7114 | /* look for an existing entry */ | |
7115 | kret = vfs_drt_search_index(cmap, offset, indexp); | |
7116 | if (kret == KERN_SUCCESS) { | |
7117 | return kret; | |
7118 | } | |
7119 | ||
7120 | /* need to allocate an entry */ | |
7121 | offset = DRT_ALIGN_ADDRESS(offset); | |
7122 | index = DRT_HASH(cmap, offset); | |
7123 | ||
7124 | /* scan from the index forwards looking for a vacant slot */ | |
7125 | for (i = 0; i < cmap->scm_modulus; i++) { | |
7126 | /* slot vacant? */ | |
7127 | if (DRT_HASH_VACANT(cmap, index) || DRT_HASH_GET_COUNT(cmap, index) == 0) { | |
7128 | cmap->scm_buckets++; | |
7129 | if (index < cmap->scm_lastclean) { | |
7130 | cmap->scm_lastclean = index; | |
7131 | } | |
7132 | DRT_HASH_SET_ADDRESS(cmap, index, offset); | |
7133 | DRT_HASH_SET_COUNT(cmap, index, 0); | |
7134 | DRT_BITVECTOR_CLEAR(cmap, index); | |
7135 | *indexp = index; | |
7136 | vfs_drt_trace(cmap, DRT_DEBUG_INSERT, (int)offset, i, 0, 0); | |
7137 | return KERN_SUCCESS; | |
7138 | } | |
7139 | cmap->scm_iskips += i; | |
7140 | index = DRT_HASH_NEXT(cmap, index); | |
7141 | } | |
7142 | ||
7143 | /* | |
7144 | * We haven't found a vacant slot, so the map is full. If we're not | |
7145 | * already recursed, try reallocating/compacting it. | |
7146 | */ | |
7147 | if (recursed) { | |
7148 | return KERN_FAILURE; | |
7149 | } | |
7150 | kret = vfs_drt_alloc_map(cmapp); | |
7151 | if (kret == KERN_SUCCESS) { | |
7152 | /* now try to insert again */ | |
7153 | kret = vfs_drt_get_index(cmapp, offset, indexp, 1); | |
7154 | } | |
7155 | return kret; | |
7156 | } | |
7157 | ||
7158 | /* | |
7159 | * Implementation of set dirty/clean. | |
7160 | * | |
7161 | * In the 'clean' case, not finding a map is OK. | |
7162 | */ | |
7163 | static kern_return_t | |
7164 | vfs_drt_do_mark_pages( | |
7165 | void **private, | |
7166 | u_int64_t offset, | |
7167 | u_int length, | |
7168 | u_int *setcountp, | |
7169 | int dirty) | |
7170 | { | |
7171 | struct vfs_drt_clustermap *cmap, **cmapp; | |
7172 | kern_return_t kret; | |
7173 | int i, index, pgoff, pgcount, setcount, ecount; | |
7174 | ||
7175 | cmapp = (struct vfs_drt_clustermap **)private; | |
7176 | cmap = *cmapp; | |
7177 | ||
7178 | vfs_drt_trace(cmap, DRT_DEBUG_MARK | DBG_FUNC_START, (int)offset, (int)length, dirty, 0); | |
7179 | ||
7180 | if (setcountp != NULL) { | |
7181 | *setcountp = 0; | |
7182 | } | |
7183 | ||
7184 | /* allocate a cluster map if we don't already have one */ | |
7185 | if (cmap == NULL) { | |
7186 | /* no cluster map, nothing to clean */ | |
7187 | if (!dirty) { | |
7188 | vfs_drt_trace(cmap, DRT_DEBUG_MARK | DBG_FUNC_END, 1, 0, 0, 0); | |
7189 | return KERN_SUCCESS; | |
7190 | } | |
7191 | kret = vfs_drt_alloc_map(cmapp); | |
7192 | if (kret != KERN_SUCCESS) { | |
7193 | vfs_drt_trace(cmap, DRT_DEBUG_MARK | DBG_FUNC_END, 2, 0, 0, 0); | |
7194 | return kret; | |
7195 | } | |
7196 | } | |
7197 | setcount = 0; | |
7198 | ||
7199 | /* | |
7200 | * Iterate over the length of the region. | |
7201 | */ | |
7202 | while (length > 0) { | |
7203 | /* | |
7204 | * Get the hashtable index for this offset. | |
7205 | * | |
7206 | * XXX this will add blank entries if we are clearing a range | |
7207 | * that hasn't been dirtied. | |
7208 | */ | |
7209 | kret = vfs_drt_get_index(cmapp, offset, &index, 0); | |
7210 | cmap = *cmapp; /* may have changed! */ | |
7211 | /* this may be a partial-success return */ | |
7212 | if (kret != KERN_SUCCESS) { | |
7213 | if (setcountp != NULL) { | |
7214 | *setcountp = setcount; | |
7215 | } | |
7216 | vfs_drt_trace(cmap, DRT_DEBUG_MARK | DBG_FUNC_END, 3, (int)length, 0, 0); | |
7217 | ||
7218 | return kret; | |
7219 | } | |
7220 | ||
7221 | /* | |
7222 | * Work out how many pages we're modifying in this | |
7223 | * hashtable entry. | |
7224 | */ | |
7225 | pgoff = (int)((offset - DRT_ALIGN_ADDRESS(offset)) / PAGE_SIZE); | |
7226 | pgcount = min((length / PAGE_SIZE), (DRT_BITVECTOR_PAGES - pgoff)); | |
7227 | ||
7228 | /* | |
7229 | * Iterate over pages, dirty/clearing as we go. | |
7230 | */ | |
7231 | ecount = DRT_HASH_GET_COUNT(cmap, index); | |
7232 | for (i = 0; i < pgcount; i++) { | |
7233 | if (dirty) { | |
7234 | if (!DRT_HASH_TEST_BIT(cmap, index, pgoff + i)) { | |
7235 | if (ecount >= DRT_BITVECTOR_PAGES) { | |
7236 | panic("ecount >= DRT_BITVECTOR_PAGES, cmap = %p, index = %d, bit = %d", cmap, index, pgoff + i); | |
7237 | } | |
7238 | DRT_HASH_SET_BIT(cmap, index, pgoff + i); | |
7239 | ecount++; | |
7240 | setcount++; | |
7241 | } | |
7242 | } else { | |
7243 | if (DRT_HASH_TEST_BIT(cmap, index, pgoff + i)) { | |
7244 | if (ecount <= 0) { | |
7245 | panic("ecount <= 0, cmap = %p, index = %d, bit = %d", cmap, index, pgoff + i); | |
7246 | } | |
7247 | assert(ecount > 0); | |
7248 | DRT_HASH_CLEAR_BIT(cmap, index, pgoff + i); | |
7249 | ecount--; | |
7250 | setcount++; | |
7251 | } | |
7252 | } | |
7253 | } | |
7254 | DRT_HASH_SET_COUNT(cmap, index, ecount); | |
7255 | ||
7256 | offset += pgcount * PAGE_SIZE; | |
7257 | length -= pgcount * PAGE_SIZE; | |
7258 | } | |
7259 | if (setcountp != NULL) { | |
7260 | *setcountp = setcount; | |
7261 | } | |
7262 | ||
7263 | vfs_drt_trace(cmap, DRT_DEBUG_MARK | DBG_FUNC_END, 0, setcount, 0, 0); | |
7264 | ||
7265 | return KERN_SUCCESS; | |
7266 | } | |
7267 | ||
7268 | /* | |
7269 | * Mark a set of pages as dirty/clean. | |
7270 | * | |
7271 | * This is a public interface. | |
7272 | * | |
7273 | * cmapp | |
7274 | * Pointer to storage suitable for holding a pointer. Note that | |
7275 | * this must either be NULL or a value set by this function. | |
7276 | * | |
7277 | * size | |
7278 | * Current file size in bytes. | |
7279 | * | |
7280 | * offset | |
7281 | * Offset of the first page to be marked as dirty, in bytes. Must be | |
7282 | * page-aligned. | |
7283 | * | |
7284 | * length | |
7285 | * Length of dirty region, in bytes. Must be a multiple of PAGE_SIZE. | |
7286 | * | |
7287 | * setcountp | |
7288 | * Number of pages newly marked dirty by this call (optional). | |
7289 | * | |
7290 | * Returns KERN_SUCCESS if all the pages were successfully marked. | |
7291 | */ | |
7292 | static kern_return_t | |
7293 | vfs_drt_mark_pages(void **cmapp, off_t offset, u_int length, u_int *setcountp) | |
7294 | { | |
7295 | /* XXX size unused, drop from interface */ | |
7296 | return vfs_drt_do_mark_pages(cmapp, offset, length, setcountp, 1); | |
7297 | } | |
7298 | ||
7299 | #if 0 | |
7300 | static kern_return_t | |
7301 | vfs_drt_unmark_pages(void **cmapp, off_t offset, u_int length) | |
7302 | { | |
7303 | return vfs_drt_do_mark_pages(cmapp, offset, length, NULL, 0); | |
7304 | } | |
7305 | #endif | |
7306 | ||
7307 | /* | |
7308 | * Get a cluster of dirty pages. | |
7309 | * | |
7310 | * This is a public interface. | |
7311 | * | |
7312 | * cmapp | |
7313 | * Pointer to storage managed by drt_mark_pages. Note that this must | |
7314 | * be NULL or a value set by drt_mark_pages. | |
7315 | * | |
7316 | * offsetp | |
7317 | * Returns the byte offset into the file of the first page in the cluster. | |
7318 | * | |
7319 | * lengthp | |
7320 | * Returns the length in bytes of the cluster of dirty pages. | |
7321 | * | |
7322 | * Returns success if a cluster was found. If KERN_FAILURE is returned, there | |
7323 | * are no dirty pages meeting the minmum size criteria. Private storage will | |
7324 | * be released if there are no more dirty pages left in the map | |
7325 | * | |
7326 | */ | |
7327 | static kern_return_t | |
7328 | vfs_drt_get_cluster(void **cmapp, off_t *offsetp, u_int *lengthp) | |
7329 | { | |
7330 | struct vfs_drt_clustermap *cmap; | |
7331 | u_int64_t offset; | |
7332 | u_int length; | |
7333 | u_int32_t j; | |
7334 | int index, i, fs, ls; | |
7335 | ||
7336 | /* sanity */ | |
7337 | if ((cmapp == NULL) || (*cmapp == NULL)) { | |
7338 | return KERN_FAILURE; | |
7339 | } | |
7340 | cmap = *cmapp; | |
7341 | ||
7342 | /* walk the hashtable */ | |
7343 | for (offset = 0, j = 0; j < cmap->scm_modulus; offset += (DRT_BITVECTOR_PAGES * PAGE_SIZE), j++) { | |
7344 | index = DRT_HASH(cmap, offset); | |
7345 | ||
7346 | if (DRT_HASH_VACANT(cmap, index) || (DRT_HASH_GET_COUNT(cmap, index) == 0)) { | |
7347 | continue; | |
7348 | } | |
7349 | ||
7350 | /* scan the bitfield for a string of bits */ | |
7351 | fs = -1; | |
7352 | ||
7353 | for (i = 0; i < DRT_BITVECTOR_PAGES; i++) { | |
7354 | if (DRT_HASH_TEST_BIT(cmap, index, i)) { | |
7355 | fs = i; | |
7356 | break; | |
7357 | } | |
7358 | } | |
7359 | if (fs == -1) { | |
7360 | /* didn't find any bits set */ | |
7361 | panic("vfs_drt: entry summary count > 0 but no bits set in map, cmap = %p, index = %d, count = %lld", | |
7362 | cmap, index, DRT_HASH_GET_COUNT(cmap, index)); | |
7363 | } | |
7364 | for (ls = 0; i < DRT_BITVECTOR_PAGES; i++, ls++) { | |
7365 | if (!DRT_HASH_TEST_BIT(cmap, index, i)) { | |
7366 | break; | |
7367 | } | |
7368 | } | |
7369 | ||
7370 | /* compute offset and length, mark pages clean */ | |
7371 | offset = DRT_HASH_GET_ADDRESS(cmap, index) + (PAGE_SIZE * fs); | |
7372 | length = ls * PAGE_SIZE; | |
7373 | vfs_drt_do_mark_pages(cmapp, offset, length, NULL, 0); | |
7374 | cmap->scm_lastclean = index; | |
7375 | ||
7376 | /* return successful */ | |
7377 | *offsetp = (off_t)offset; | |
7378 | *lengthp = length; | |
7379 | ||
7380 | vfs_drt_trace(cmap, DRT_DEBUG_RETCLUSTER, (int)offset, (int)length, 0, 0); | |
7381 | return KERN_SUCCESS; | |
7382 | } | |
7383 | /* | |
7384 | * We didn't find anything... hashtable is empty | |
7385 | * emit stats into trace buffer and | |
7386 | * then free it | |
7387 | */ | |
7388 | vfs_drt_trace(cmap, DRT_DEBUG_SCMDATA, | |
7389 | cmap->scm_modulus, | |
7390 | cmap->scm_buckets, | |
7391 | cmap->scm_lastclean, | |
7392 | cmap->scm_iskips); | |
7393 | ||
7394 | vfs_drt_free_map(cmap); | |
7395 | *cmapp = NULL; | |
7396 | ||
7397 | return KERN_FAILURE; | |
7398 | } | |
7399 | ||
7400 | ||
7401 | static kern_return_t | |
7402 | vfs_drt_control(void **cmapp, int op_type) | |
7403 | { | |
7404 | struct vfs_drt_clustermap *cmap; | |
7405 | ||
7406 | /* sanity */ | |
7407 | if ((cmapp == NULL) || (*cmapp == NULL)) { | |
7408 | return KERN_FAILURE; | |
7409 | } | |
7410 | cmap = *cmapp; | |
7411 | ||
7412 | switch (op_type) { | |
7413 | case 0: | |
7414 | /* emit stats into trace buffer */ | |
7415 | vfs_drt_trace(cmap, DRT_DEBUG_SCMDATA, | |
7416 | cmap->scm_modulus, | |
7417 | cmap->scm_buckets, | |
7418 | cmap->scm_lastclean, | |
7419 | cmap->scm_iskips); | |
7420 | ||
7421 | vfs_drt_free_map(cmap); | |
7422 | *cmapp = NULL; | |
7423 | break; | |
7424 | ||
7425 | case 1: | |
7426 | cmap->scm_lastclean = 0; | |
7427 | break; | |
7428 | } | |
7429 | return KERN_SUCCESS; | |
7430 | } | |
7431 | ||
7432 | ||
7433 | ||
7434 | /* | |
7435 | * Emit a summary of the state of the clustermap into the trace buffer | |
7436 | * along with some caller-provided data. | |
7437 | */ | |
7438 | #if KDEBUG | |
7439 | static void | |
7440 | vfs_drt_trace(__unused struct vfs_drt_clustermap *cmap, int code, int arg1, int arg2, int arg3, int arg4) | |
7441 | { | |
7442 | KERNEL_DEBUG(code, arg1, arg2, arg3, arg4, 0); | |
7443 | } | |
7444 | #else | |
7445 | static void | |
7446 | vfs_drt_trace(__unused struct vfs_drt_clustermap *cmap, __unused int code, | |
7447 | __unused int arg1, __unused int arg2, __unused int arg3, | |
7448 | __unused int arg4) | |
7449 | { | |
7450 | } | |
7451 | #endif | |
7452 | ||
7453 | #if 0 | |
7454 | /* | |
7455 | * Perform basic sanity check on the hash entry summary count | |
7456 | * vs. the actual bits set in the entry. | |
7457 | */ | |
7458 | static void | |
7459 | vfs_drt_sanity(struct vfs_drt_clustermap *cmap) | |
7460 | { | |
7461 | int index, i; | |
7462 | int bits_on; | |
7463 | ||
7464 | for (index = 0; index < cmap->scm_modulus; index++) { | |
7465 | if (DRT_HASH_VACANT(cmap, index)) { | |
7466 | continue; | |
7467 | } | |
7468 | ||
7469 | for (bits_on = 0, i = 0; i < DRT_BITVECTOR_PAGES; i++) { | |
7470 | if (DRT_HASH_TEST_BIT(cmap, index, i)) { | |
7471 | bits_on++; | |
7472 | } | |
7473 | } | |
7474 | if (bits_on != DRT_HASH_GET_COUNT(cmap, index)) { | |
7475 | panic("bits_on = %d, index = %d\n", bits_on, index); | |
7476 | } | |
7477 | } | |
7478 | } | |
7479 | #endif | |
7480 | ||
7481 | /* | |
7482 | * Internal interface only. | |
7483 | */ | |
7484 | static kern_return_t | |
7485 | vfs_get_scmap_push_behavior_internal(void **cmapp, int *push_flag) | |
7486 | { | |
7487 | struct vfs_drt_clustermap *cmap; | |
7488 | ||
7489 | /* sanity */ | |
7490 | if ((cmapp == NULL) || (*cmapp == NULL) || (push_flag == NULL)) { | |
7491 | return KERN_FAILURE; | |
7492 | } | |
7493 | cmap = *cmapp; | |
7494 | ||
7495 | if (cmap->scm_modulus == DRT_HASH_XLARGE_MODULUS) { | |
7496 | /* | |
7497 | * If we have a full xlarge sparse cluster, | |
7498 | * we push it out all at once so the cluster | |
7499 | * map can be available to absorb more I/Os. | |
7500 | * This is done on large memory configs so | |
7501 | * the small I/Os don't interfere with the | |
7502 | * pro workloads. | |
7503 | */ | |
7504 | *push_flag = PUSH_ALL; | |
7505 | } | |
7506 | return KERN_SUCCESS; | |
7507 | } |