]> git.saurik.com Git - apple/xnu.git/blame_incremental - bsd/netinet/tcp_input.c
xnu-7195.60.75.tar.gz
[apple/xnu.git] / bsd / netinet / tcp_input.c
... / ...
CommitLineData
1/*
2 * Copyright (c) 2000-2020 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28/*
29 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
30 * The Regents of the University of California. All rights reserved.
31 *
32 * Redistribution and use in source and binary forms, with or without
33 * modification, are permitted provided that the following conditions
34 * are met:
35 * 1. Redistributions of source code must retain the above copyright
36 * notice, this list of conditions and the following disclaimer.
37 * 2. Redistributions in binary form must reproduce the above copyright
38 * notice, this list of conditions and the following disclaimer in the
39 * documentation and/or other materials provided with the distribution.
40 * 3. All advertising materials mentioning features or use of this software
41 * must display the following acknowledgement:
42 * This product includes software developed by the University of
43 * California, Berkeley and its contributors.
44 * 4. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * @(#)tcp_input.c 8.12 (Berkeley) 5/24/95
61 * $FreeBSD: src/sys/netinet/tcp_input.c,v 1.107.2.16 2001/08/22 00:59:12 silby Exp $
62 */
63/*
64 * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce
65 * support for mandatory and extensible security protections. This notice
66 * is included in support of clause 2.2 (b) of the Apple Public License,
67 * Version 2.0.
68 */
69
70#include <sys/param.h>
71#include <sys/systm.h>
72#include <sys/kernel.h>
73#include <sys/sysctl.h>
74#include <sys/malloc.h>
75#include <sys/mbuf.h>
76#include <sys/proc.h> /* for proc0 declaration */
77#include <sys/protosw.h>
78#include <sys/socket.h>
79#include <sys/socketvar.h>
80#include <sys/syslog.h>
81#include <sys/mcache.h>
82#if XNU_TARGET_OS_OSX
83#include <sys/kasl.h>
84#endif /* XNU_TARGET_OS_OSX */
85#include <sys/kauth.h>
86#include <kern/cpu_number.h> /* before tcp_seq.h, for tcp_random18() */
87
88#include <machine/endian.h>
89
90#include <net/if.h>
91#include <net/if_types.h>
92#include <net/route.h>
93#include <net/ntstat.h>
94#include <net/content_filter.h>
95#include <net/dlil.h>
96#include <net/multi_layer_pkt_log.h>
97
98#include <netinet/in.h>
99#include <netinet/in_systm.h>
100#include <netinet/ip.h>
101#include <netinet/ip_icmp.h> /* for ICMP_BANDLIM */
102#include <netinet/in_var.h>
103#include <netinet/icmp_var.h> /* for ICMP_BANDLIM */
104#include <netinet/in_pcb.h>
105#include <netinet/ip_var.h>
106#include <mach/sdt.h>
107#include <netinet/ip6.h>
108#include <netinet/icmp6.h>
109#include <netinet6/nd6.h>
110#include <netinet6/ip6_var.h>
111#include <netinet6/in6_pcb.h>
112#include <netinet/tcp.h>
113#include <netinet/tcp_cache.h>
114#include <netinet/tcp_fsm.h>
115#include <netinet/tcp_seq.h>
116#include <netinet/tcp_timer.h>
117#include <netinet/tcp_var.h>
118#include <netinet/tcp_cc.h>
119#include <dev/random/randomdev.h>
120#include <kern/zalloc.h>
121#include <netinet6/tcp6_var.h>
122#include <netinet/tcpip.h>
123#if TCPDEBUG
124#include <netinet/tcp_debug.h>
125u_char tcp_saveipgen[40]; /* the size must be of max ip header, now IPv6 */
126struct tcphdr tcp_savetcp;
127#endif /* TCPDEBUG */
128#include <netinet/tcp_log.h>
129
130#if IPSEC
131#include <netinet6/ipsec.h>
132#include <netinet6/ipsec6.h>
133#include <netkey/key.h>
134#endif /*IPSEC*/
135
136#include <sys/kdebug.h>
137#if MPTCP
138#include <netinet/mptcp_var.h>
139#include <netinet/mptcp.h>
140#include <netinet/mptcp_opt.h>
141#endif /* MPTCP */
142
143#include <corecrypto/ccaes.h>
144
145#define DBG_LAYER_BEG NETDBG_CODE(DBG_NETTCP, 0)
146#define DBG_LAYER_END NETDBG_CODE(DBG_NETTCP, 2)
147#define DBG_FNC_TCP_INPUT NETDBG_CODE(DBG_NETTCP, (3 << 8))
148#define DBG_FNC_TCP_NEWCONN NETDBG_CODE(DBG_NETTCP, (7 << 8))
149
150#define TCP_RTT_HISTORY_EXPIRE_TIME (60 * TCP_RETRANSHZ)
151#define TCP_RECV_THROTTLE_WIN (5 * TCP_RETRANSHZ)
152#define TCP_STRETCHACK_ENABLE_PKTCNT 2000
153
154struct tcpstat tcpstat;
155
156SYSCTL_SKMEM_TCP_INT(OID_AUTO, flow_control_response,
157 CTLFLAG_RW | CTLFLAG_LOCKED, int, tcp_flow_control_response, 1,
158 "Improved response to Flow-control events");
159
160static int log_in_vain = 0;
161SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_in_vain,
162 CTLFLAG_RW | CTLFLAG_LOCKED, &log_in_vain, 0,
163 "Log all incoming TCP connections");
164
165SYSCTL_SKMEM_TCP_INT(OID_AUTO, ack_strategy,
166 CTLFLAG_RW | CTLFLAG_LOCKED, int, tcp_ack_strategy, TCP_ACK_STRATEGY_MODERN,
167 "Revised TCP ACK-strategy, avoiding stretch-ACK implementation");
168
169static int blackhole = 0;
170SYSCTL_INT(_net_inet_tcp, OID_AUTO, blackhole,
171 CTLFLAG_RW | CTLFLAG_LOCKED, &blackhole, 0,
172 "Do not send RST when dropping refused connections");
173
174SYSCTL_SKMEM_TCP_INT(OID_AUTO, aggressive_rcvwnd_inc,
175 CTLFLAG_RW | CTLFLAG_LOCKED, int, tcp_aggressive_rcvwnd_inc, 1,
176 "Be more aggressive about increasing the receive-window.");
177
178SYSCTL_SKMEM_TCP_INT(OID_AUTO, delayed_ack,
179 CTLFLAG_RW | CTLFLAG_LOCKED, int, tcp_delack_enabled, 3,
180 "Delay ACK to try and piggyback it onto a data packet");
181
182SYSCTL_SKMEM_TCP_INT(OID_AUTO, recvbg, CTLFLAG_RW | CTLFLAG_LOCKED,
183 int, tcp_recv_bg, 0, "Receive background");
184
185SYSCTL_SKMEM_TCP_INT(OID_AUTO, drop_synfin,
186 CTLFLAG_RW | CTLFLAG_LOCKED, static int, drop_synfin, 1,
187 "Drop TCP packets with SYN+FIN set");
188
189SYSCTL_NODE(_net_inet_tcp, OID_AUTO, reass, CTLFLAG_RW | CTLFLAG_LOCKED, 0,
190 "TCP Segment Reassembly Queue");
191
192static int tcp_reass_overflows = 0;
193SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, overflows,
194 CTLFLAG_RD | CTLFLAG_LOCKED, &tcp_reass_overflows, 0,
195 "Global number of TCP Segment Reassembly Queue Overflows");
196
197
198SYSCTL_SKMEM_TCP_INT(OID_AUTO, slowlink_wsize, CTLFLAG_RW | CTLFLAG_LOCKED,
199 __private_extern__ int, slowlink_wsize, 8192,
200 "Maximum advertised window size for slowlink");
201
202SYSCTL_SKMEM_TCP_INT(OID_AUTO, maxseg_unacked,
203 CTLFLAG_RW | CTLFLAG_LOCKED, int, maxseg_unacked, 8,
204 "Maximum number of outstanding segments left unacked");
205
206SYSCTL_SKMEM_TCP_INT(OID_AUTO, rfc3465, CTLFLAG_RW | CTLFLAG_LOCKED,
207 int, tcp_do_rfc3465, 1, "");
208
209SYSCTL_SKMEM_TCP_INT(OID_AUTO, rfc3465_lim2,
210 CTLFLAG_RW | CTLFLAG_LOCKED, int, tcp_do_rfc3465_lim2, 1,
211 "Appropriate bytes counting w/ L=2*SMSS");
212
213int rtt_samples_per_slot = 20;
214
215int tcp_acc_iaj_high_thresh = ACC_IAJ_HIGH_THRESH;
216u_int32_t tcp_autorcvbuf_inc_shift = 3;
217SYSCTL_SKMEM_TCP_INT(OID_AUTO, recv_allowed_iaj,
218 CTLFLAG_RW | CTLFLAG_LOCKED, int, tcp_allowed_iaj, ALLOWED_IAJ,
219 "Allowed inter-packet arrival jiter");
220
221SYSCTL_SKMEM_TCP_INT(OID_AUTO, doautorcvbuf,
222 CTLFLAG_RW | CTLFLAG_LOCKED, u_int32_t, tcp_do_autorcvbuf, 1,
223 "Enable automatic socket buffer tuning");
224
225SYSCTL_SKMEM_TCP_INT(OID_AUTO, autotunereorder,
226 CTLFLAG_RW | CTLFLAG_LOCKED, u_int32_t, tcp_autotune_reorder, 1,
227 "Enable automatic socket buffer tuning even when reordering is present");
228
229SYSCTL_SKMEM_TCP_INT(OID_AUTO, autorcvbufmax,
230 CTLFLAG_RW | CTLFLAG_LOCKED, u_int32_t, tcp_autorcvbuf_max, 2 * 1024 * 1024,
231 "Maximum receive socket buffer size");
232
233int tcp_disable_access_to_stats = 1;
234SYSCTL_INT(_net_inet_tcp, OID_AUTO, disable_access_to_stats,
235 CTLFLAG_RW | CTLFLAG_LOCKED, &tcp_disable_access_to_stats, 0,
236 "Disable access to tcpstat");
237
238SYSCTL_SKMEM_TCP_INT(OID_AUTO, challengeack_limit,
239 CTLFLAG_RW | CTLFLAG_LOCKED, uint32_t, tcp_challengeack_limit, 10,
240 "Maximum number of challenge ACKs per connection per second");
241
242/* TO BE REMOVED */
243SYSCTL_SKMEM_TCP_INT(OID_AUTO, do_rfc5961,
244 CTLFLAG_RW | CTLFLAG_LOCKED, static int, tcp_do_rfc5961, 1,
245 "Enable/Disable full RFC 5961 compliance");
246
247SYSCTL_SKMEM_TCP_INT(OID_AUTO, do_better_lr,
248 CTLFLAG_RW | CTLFLAG_LOCKED, int, tcp_do_better_lr, 1,
249 "Improved TCP Loss Recovery");
250
251extern int tcp_acc_iaj_high;
252extern int tcp_acc_iaj_react_limit;
253
254int tcprexmtthresh = 3;
255
256u_int32_t tcp_now;
257struct timeval tcp_uptime; /* uptime when tcp_now was last updated */
258lck_spin_t *tcp_uptime_lock; /* Used to sychronize updates to tcp_now */
259
260struct inpcbhead tcb;
261#define tcb6 tcb /* for KAME src sync over BSD*'s */
262struct inpcbinfo tcbinfo;
263
264static void tcp_dooptions(struct tcpcb *, u_char *, int, struct tcphdr *,
265 struct tcpopt *);
266static void tcp_finalize_options(struct tcpcb *, struct tcpopt *, unsigned int);
267static void tcp_pulloutofband(struct socket *,
268 struct tcphdr *, struct mbuf *, int);
269static void tcp_xmit_timer(struct tcpcb *, int, u_int32_t, tcp_seq);
270static inline unsigned int tcp_maxmtu(struct rtentry *);
271static inline int tcp_stretch_ack_enable(struct tcpcb *tp, int thflags);
272static inline void tcp_adaptive_rwtimo_check(struct tcpcb *, int);
273
274#if TRAFFIC_MGT
275static inline void update_iaj_state(struct tcpcb *tp, uint32_t tlen,
276 int reset_size);
277static inline void compute_iaj(struct tcpcb *tp);
278static inline void compute_iaj_meat(struct tcpcb *tp, uint32_t cur_iaj);
279#endif /* TRAFFIC_MGT */
280
281static inline unsigned int tcp_maxmtu6(struct rtentry *);
282unsigned int get_maxmtu(struct rtentry *);
283
284static void tcp_sbrcv_grow(struct tcpcb *tp, struct sockbuf *sb,
285 struct tcpopt *to, uint32_t tlen);
286void tcp_sbrcv_trim(struct tcpcb *tp, struct sockbuf *sb);
287static void tcp_sbsnd_trim(struct sockbuf *sbsnd);
288static inline void tcp_sbrcv_tstmp_check(struct tcpcb *tp);
289static inline void tcp_sbrcv_reserve(struct tcpcb *tp, struct sockbuf *sb,
290 u_int32_t newsize, u_int32_t idealsize, u_int32_t rcvbuf_max);
291static void tcp_bad_rexmt_restore_state(struct tcpcb *tp, struct tcphdr *th);
292static void tcp_compute_rtt(struct tcpcb *tp, struct tcpopt *to,
293 struct tcphdr *th);
294static void tcp_early_rexmt_check(struct tcpcb *tp, struct tcphdr *th);
295static void tcp_bad_rexmt_check(struct tcpcb *tp, struct tcphdr *th,
296 struct tcpopt *to);
297/*
298 * Constants used for resizing receive socket buffer
299 * when timestamps are not supported
300 */
301#define TCPTV_RCVNOTS_QUANTUM 100
302#define TCP_RCVNOTS_BYTELEVEL 204800
303
304/*
305 * Constants used for limiting early retransmits
306 * to 10 per minute.
307 */
308#define TCP_EARLY_REXMT_WIN (60 * TCP_RETRANSHZ) /* 60 seconds */
309#define TCP_EARLY_REXMT_LIMIT 10
310
311#define log_in_vain_log( a ) { log a; }
312
313int tcp_rcvunackwin = TCPTV_UNACKWIN;
314int tcp_maxrcvidle = TCPTV_MAXRCVIDLE;
315SYSCTL_SKMEM_TCP_INT(OID_AUTO, rcvsspktcnt, CTLFLAG_RW | CTLFLAG_LOCKED,
316 int, tcp_rcvsspktcnt, TCP_RCV_SS_PKTCOUNT, "packets to be seen before receiver stretches acks");
317
318#define DELAY_ACK(tp, th) \
319 (CC_ALGO(tp)->delay_ack != NULL && CC_ALGO(tp)->delay_ack(tp, th))
320
321static int tcp_dropdropablreq(struct socket *head);
322static void tcp_newreno_partial_ack(struct tcpcb *tp, struct tcphdr *th);
323static void update_base_rtt(struct tcpcb *tp, uint32_t rtt);
324void tcp_set_background_cc(struct socket *so);
325void tcp_set_foreground_cc(struct socket *so);
326static void tcp_set_new_cc(struct socket *so, uint16_t cc_index);
327static void tcp_bwmeas_check(struct tcpcb *tp);
328
329#if TRAFFIC_MGT
330void
331reset_acc_iaj(struct tcpcb *tp)
332{
333 tp->acc_iaj = 0;
334 CLEAR_IAJ_STATE(tp);
335}
336
337static inline void
338update_iaj_state(struct tcpcb *tp, uint32_t size, int rst_size)
339{
340 if (rst_size > 0) {
341 tp->iaj_size = 0;
342 }
343 if (tp->iaj_size == 0 || size >= tp->iaj_size) {
344 tp->iaj_size = size;
345 tp->iaj_rcv_ts = tcp_now;
346 tp->iaj_small_pkt = 0;
347 }
348}
349
350/* For every 32 bit unsigned integer(v), this function will find the
351 * largest integer n such that (n*n <= v). This takes at most 16 iterations
352 * irrespective of the value of v and does not involve multiplications.
353 */
354static inline int
355isqrt(unsigned int val)
356{
357 unsigned int sqrt_cache[11] = {0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100};
358 unsigned int temp, g = 0, b = 0x8000, bshft = 15;
359 if (val <= 100) {
360 for (g = 0; g <= 10; ++g) {
361 if (sqrt_cache[g] > val) {
362 g--;
363 break;
364 } else if (sqrt_cache[g] == val) {
365 break;
366 }
367 }
368 } else {
369 do {
370 temp = (((g << 1) + b) << (bshft--));
371 if (val >= temp) {
372 g += b;
373 val -= temp;
374 }
375 b >>= 1;
376 } while (b > 0 && val > 0);
377 }
378 return g;
379}
380
381static inline void
382compute_iaj(struct tcpcb *tp)
383{
384 compute_iaj_meat(tp, (tcp_now - tp->iaj_rcv_ts));
385}
386
387static inline void
388compute_iaj_meat(struct tcpcb *tp, uint32_t cur_iaj)
389{
390 /* When accumulated IAJ reaches MAX_ACC_IAJ in milliseconds,
391 * throttle the receive window to a minimum of MIN_IAJ_WIN packets
392 */
393#define MAX_ACC_IAJ (tcp_acc_iaj_high_thresh + tcp_acc_iaj_react_limit)
394#define IAJ_DIV_SHIFT 4
395#define IAJ_ROUNDUP_CONST (1 << (IAJ_DIV_SHIFT - 1))
396
397 uint32_t allowed_iaj, acc_iaj = 0;
398
399 uint32_t mean, temp;
400 int32_t cur_iaj_dev;
401
402 cur_iaj_dev = (cur_iaj - tp->avg_iaj);
403
404 /* Allow a jitter of "allowed_iaj" milliseconds. Some connections
405 * may have a constant jitter more than that. We detect this by
406 * using standard deviation.
407 */
408 allowed_iaj = tp->avg_iaj + tp->std_dev_iaj;
409 if (allowed_iaj < tcp_allowed_iaj) {
410 allowed_iaj = tcp_allowed_iaj;
411 }
412
413 /* Initially when the connection starts, the senders congestion
414 * window is small. During this period we avoid throttling a
415 * connection because we do not have a good starting point for
416 * allowed_iaj. IAJ_IGNORE_PKTCNT is used to quietly gloss over
417 * the first few packets.
418 */
419 if (tp->iaj_pktcnt > IAJ_IGNORE_PKTCNT) {
420 if (cur_iaj <= allowed_iaj) {
421 if (tp->acc_iaj >= 2) {
422 acc_iaj = tp->acc_iaj - 2;
423 } else {
424 acc_iaj = 0;
425 }
426 } else {
427 acc_iaj = tp->acc_iaj + (cur_iaj - allowed_iaj);
428 }
429
430 if (acc_iaj > MAX_ACC_IAJ) {
431 acc_iaj = MAX_ACC_IAJ;
432 }
433 tp->acc_iaj = acc_iaj;
434 }
435
436 /* Compute weighted average where the history has a weight of
437 * 15 out of 16 and the current value has a weight of 1 out of 16.
438 * This will make the short-term measurements have more weight.
439 *
440 * The addition of 8 will help to round-up the value
441 * instead of round-down
442 */
443 tp->avg_iaj = (((tp->avg_iaj << IAJ_DIV_SHIFT) - tp->avg_iaj)
444 + cur_iaj + IAJ_ROUNDUP_CONST) >> IAJ_DIV_SHIFT;
445
446 /* Compute Root-mean-square of deviation where mean is a weighted
447 * average as described above.
448 */
449 temp = tp->std_dev_iaj * tp->std_dev_iaj;
450 mean = (((temp << IAJ_DIV_SHIFT) - temp)
451 + (cur_iaj_dev * cur_iaj_dev)
452 + IAJ_ROUNDUP_CONST) >> IAJ_DIV_SHIFT;
453
454 tp->std_dev_iaj = isqrt(mean);
455
456 DTRACE_TCP3(iaj, struct tcpcb *, tp, uint32_t, cur_iaj,
457 uint32_t, allowed_iaj);
458
459 return;
460}
461#endif /* TRAFFIC_MGT */
462
463/*
464 * Perform rate limit check per connection per second
465 * tp->t_challengeack_last is the last_time diff was greater than 1sec
466 * tp->t_challengeack_count is the number of ACKs sent (within 1sec)
467 * Return TRUE if we shouldn't send the ACK due to rate limitation
468 * Return FALSE if it is still ok to send challenge ACK
469 */
470static boolean_t
471tcp_is_ack_ratelimited(struct tcpcb *tp)
472{
473 boolean_t ret = TRUE;
474 uint32_t now = tcp_now;
475 int32_t diff = 0;
476
477 diff = timer_diff(now, 0, tp->t_challengeack_last, 0);
478 /* If it is first time or diff > 1000ms,
479 * update the challengeack_last and reset the
480 * current count of ACKs
481 */
482 if (tp->t_challengeack_last == 0 || diff >= 1000) {
483 tp->t_challengeack_last = now;
484 tp->t_challengeack_count = 0;
485 ret = FALSE;
486 } else if (tp->t_challengeack_count < tcp_challengeack_limit) {
487 ret = FALSE;
488 }
489
490 /* Careful about wrap-around */
491 if (ret == FALSE && (tp->t_challengeack_count + 1 > 0)) {
492 tp->t_challengeack_count++;
493 }
494
495 return ret;
496}
497
498/* Check if enough amount of data has been acknowledged since
499 * bw measurement was started
500 */
501static void
502tcp_bwmeas_check(struct tcpcb *tp)
503{
504 int32_t bw_meas_bytes;
505 uint32_t bw, bytes, elapsed_time;
506
507 if (SEQ_LEQ(tp->snd_una, tp->t_bwmeas->bw_start)) {
508 return;
509 }
510
511 bw_meas_bytes = tp->snd_una - tp->t_bwmeas->bw_start;
512 if ((tp->t_flagsext & TF_BWMEAS_INPROGRESS) &&
513 bw_meas_bytes >= (int32_t)(tp->t_bwmeas->bw_size)) {
514 bytes = bw_meas_bytes;
515 elapsed_time = tcp_now - tp->t_bwmeas->bw_ts;
516 if (elapsed_time > 0) {
517 bw = bytes / elapsed_time;
518 if (bw > 0) {
519 if (tp->t_bwmeas->bw_sndbw > 0) {
520 tp->t_bwmeas->bw_sndbw =
521 (((tp->t_bwmeas->bw_sndbw << 3)
522 - tp->t_bwmeas->bw_sndbw)
523 + bw) >> 3;
524 } else {
525 tp->t_bwmeas->bw_sndbw = bw;
526 }
527
528 /* Store the maximum value */
529 if (tp->t_bwmeas->bw_sndbw_max == 0) {
530 tp->t_bwmeas->bw_sndbw_max =
531 tp->t_bwmeas->bw_sndbw;
532 } else {
533 tp->t_bwmeas->bw_sndbw_max =
534 max(tp->t_bwmeas->bw_sndbw,
535 tp->t_bwmeas->bw_sndbw_max);
536 }
537 }
538 }
539 tp->t_flagsext &= ~(TF_BWMEAS_INPROGRESS);
540 }
541}
542
543static int
544tcp_reass(struct tcpcb *tp, struct tcphdr *th, int *tlenp, struct mbuf *m,
545 struct ifnet *ifp, int *dowakeup)
546{
547 struct tseg_qent *q;
548 struct tseg_qent *p = NULL;
549 struct tseg_qent *nq;
550 struct tseg_qent *te = NULL;
551 struct inpcb *inp = tp->t_inpcb;
552 struct socket *so = inp->inp_socket;
553 int flags = 0;
554 u_int16_t qlimit;
555 boolean_t cell = IFNET_IS_CELLULAR(ifp);
556 boolean_t wifi = (!cell && IFNET_IS_WIFI(ifp));
557 boolean_t wired = (!wifi && IFNET_IS_WIRED(ifp));
558 boolean_t dsack_set = FALSE;
559
560 /*
561 * Call with th==0 after become established to
562 * force pre-ESTABLISHED data up to user socket.
563 */
564 if (th == NULL) {
565 goto present;
566 }
567
568 /*
569 * If the reassembly queue already has entries or if we are going
570 * to add a new one, then the connection has reached a loss state.
571 * Reset the stretch-ack algorithm at this point.
572 */
573 tcp_reset_stretch_ack(tp);
574 tp->t_forced_acks = TCP_FORCED_ACKS_COUNT;
575
576#if TRAFFIC_MGT
577 if (tp->acc_iaj > 0) {
578 reset_acc_iaj(tp);
579 }
580#endif /* TRAFFIC_MGT */
581
582 if (th->th_seq != tp->rcv_nxt) {
583 struct mbuf *tmp = m;
584 while (tmp != NULL) {
585 if (mbuf_class_under_pressure(tmp)) {
586 m_freem(m);
587 tcp_reass_overflows++;
588 tcpstat.tcps_rcvmemdrop++;
589 *tlenp = 0;
590 return 0;
591 }
592
593 tmp = tmp->m_next;
594 }
595 }
596
597 /*
598 * Limit the number of segments in the reassembly queue to prevent
599 * holding on to too many segments (and thus running out of mbufs).
600 * Make sure to let the missing segment through which caused this
601 * queue. Always keep one global queue entry spare to be able to
602 * process the missing segment.
603 */
604 qlimit = min(max(100, so->so_rcv.sb_hiwat >> 10),
605 (tcp_autorcvbuf_max >> 10));
606 if (th->th_seq != tp->rcv_nxt &&
607 (tp->t_reassqlen + 1) >= qlimit) {
608 tcp_reass_overflows++;
609 tcpstat.tcps_rcvmemdrop++;
610 m_freem(m);
611 *tlenp = 0;
612 return 0;
613 }
614
615 /* Allocate a new queue entry. If we can't, just drop the pkt. XXX */
616 te = (struct tseg_qent *) zalloc(tcp_reass_zone);
617 if (te == NULL) {
618 tcpstat.tcps_rcvmemdrop++;
619 m_freem(m);
620 return 0;
621 }
622 tp->t_reassqlen++;
623
624 /*
625 * Find a segment which begins after this one does.
626 */
627 LIST_FOREACH(q, &tp->t_segq, tqe_q) {
628 if (SEQ_GT(q->tqe_th->th_seq, th->th_seq)) {
629 break;
630 }
631 p = q;
632 }
633
634 /*
635 * If there is a preceding segment, it may provide some of
636 * our data already. If so, drop the data from the incoming
637 * segment. If it provides all of our data, drop us.
638 */
639 if (p != NULL) {
640 int i;
641 /* conversion to int (in i) handles seq wraparound */
642 i = p->tqe_th->th_seq + p->tqe_len - th->th_seq;
643 if (i > 0) {
644 if (i > 1) {
645 /*
646 * Note duplicate data sequnce numbers
647 * to report in DSACK option
648 */
649 tp->t_dsack_lseq = th->th_seq;
650 tp->t_dsack_rseq = th->th_seq +
651 min(i, *tlenp);
652
653 /*
654 * Report only the first part of partial/
655 * non-contiguous duplicate sequence space
656 */
657 dsack_set = TRUE;
658 }
659 if (i >= *tlenp) {
660 tcpstat.tcps_rcvduppack++;
661 tcpstat.tcps_rcvdupbyte += *tlenp;
662 if (nstat_collect) {
663 nstat_route_rx(inp->inp_route.ro_rt,
664 1, *tlenp,
665 NSTAT_RX_FLAG_DUPLICATE);
666 INP_ADD_STAT(inp, cell, wifi, wired,
667 rxpackets, 1);
668 INP_ADD_STAT(inp, cell, wifi, wired,
669 rxbytes, *tlenp);
670 tp->t_stat.rxduplicatebytes += *tlenp;
671 inp_set_activity_bitmap(inp);
672 }
673 m_freem(m);
674 zfree(tcp_reass_zone, te);
675 te = NULL;
676 tp->t_reassqlen--;
677 /*
678 * Try to present any queued data
679 * at the left window edge to the user.
680 * This is needed after the 3-WHS
681 * completes.
682 */
683 goto present;
684 }
685 m_adj(m, i);
686 *tlenp -= i;
687 th->th_seq += i;
688 }
689 }
690 tp->t_rcvoopack++;
691 tcpstat.tcps_rcvoopack++;
692 tcpstat.tcps_rcvoobyte += *tlenp;
693 if (nstat_collect) {
694 nstat_route_rx(inp->inp_route.ro_rt, 1, *tlenp,
695 NSTAT_RX_FLAG_OUT_OF_ORDER);
696 INP_ADD_STAT(inp, cell, wifi, wired, rxpackets, 1);
697 INP_ADD_STAT(inp, cell, wifi, wired, rxbytes, *tlenp);
698 tp->t_stat.rxoutoforderbytes += *tlenp;
699 inp_set_activity_bitmap(inp);
700 }
701
702 /*
703 * While we overlap succeeding segments trim them or,
704 * if they are completely covered, dequeue them.
705 */
706 while (q) {
707 int i = (th->th_seq + *tlenp) - q->tqe_th->th_seq;
708 if (i <= 0) {
709 break;
710 }
711
712 /*
713 * Report only the first part of partial/non-contiguous
714 * duplicate segment in dsack option. The variable
715 * dsack_set will be true if a previous entry has some of
716 * the duplicate sequence space.
717 */
718 if (i > 1 && !dsack_set) {
719 if (tp->t_dsack_lseq == 0) {
720 tp->t_dsack_lseq = q->tqe_th->th_seq;
721 tp->t_dsack_rseq =
722 tp->t_dsack_lseq + min(i, q->tqe_len);
723 } else {
724 /*
725 * this segment overlaps data in multple
726 * entries in the reassembly queue, move
727 * the right sequence number further.
728 */
729 tp->t_dsack_rseq =
730 tp->t_dsack_rseq + min(i, q->tqe_len);
731 }
732 }
733 if (i < q->tqe_len) {
734 q->tqe_th->th_seq += i;
735 q->tqe_len -= i;
736 m_adj(q->tqe_m, i);
737 break;
738 }
739
740 nq = LIST_NEXT(q, tqe_q);
741 LIST_REMOVE(q, tqe_q);
742 m_freem(q->tqe_m);
743 zfree(tcp_reass_zone, q);
744 tp->t_reassqlen--;
745 q = nq;
746 }
747
748 /* Insert the new segment queue entry into place. */
749 te->tqe_m = m;
750 te->tqe_th = th;
751 te->tqe_len = *tlenp;
752
753 if (p == NULL) {
754 LIST_INSERT_HEAD(&tp->t_segq, te, tqe_q);
755 } else {
756 LIST_INSERT_AFTER(p, te, tqe_q);
757 }
758
759present:
760 /*
761 * Present data to user, advancing rcv_nxt through
762 * completed sequence space.
763 */
764 if (!TCPS_HAVEESTABLISHED(tp->t_state)) {
765 return 0;
766 }
767 q = LIST_FIRST(&tp->t_segq);
768 if (!q || q->tqe_th->th_seq != tp->rcv_nxt) {
769 return 0;
770 }
771
772 /*
773 * If there is already another thread doing reassembly for this
774 * connection, it is better to let it finish the job --
775 * (radar 16316196)
776 */
777 if (tp->t_flagsext & TF_REASS_INPROG) {
778 return 0;
779 }
780
781 tp->t_flagsext |= TF_REASS_INPROG;
782 /* lost packet was recovered, so ooo data can be returned */
783 tcpstat.tcps_recovered_pkts++;
784
785 do {
786 tp->rcv_nxt += q->tqe_len;
787 flags = q->tqe_th->th_flags & TH_FIN;
788 LIST_REMOVE(q, tqe_q);
789 if (so->so_state & SS_CANTRCVMORE) {
790 m_freem(q->tqe_m);
791 } else {
792 /*
793 * The mbuf may be freed after it has been added to the
794 * receive socket buffer so we reinitialize th to point
795 * to a safe copy of the TCP header
796 */
797 struct tcphdr saved_tcphdr = {};
798
799 so_recv_data_stat(so, q->tqe_m, 0); /* XXXX */
800 memcpy(&saved_tcphdr, th, sizeof(struct tcphdr));
801
802 if (q->tqe_th->th_flags & TH_PUSH) {
803 tp->t_flagsext |= TF_LAST_IS_PSH;
804 } else {
805 tp->t_flagsext &= ~TF_LAST_IS_PSH;
806 }
807
808 if (sbappendstream_rcvdemux(so, q->tqe_m)) {
809 *dowakeup = 1;
810 }
811 th = &saved_tcphdr;
812 }
813 zfree(tcp_reass_zone, q);
814 tp->t_reassqlen--;
815 q = LIST_FIRST(&tp->t_segq);
816 } while (q && q->tqe_th->th_seq == tp->rcv_nxt);
817 tp->t_flagsext &= ~TF_REASS_INPROG;
818
819 if ((inp->inp_vflag & INP_IPV6) != 0) {
820 KERNEL_DEBUG(DBG_LAYER_BEG,
821 ((inp->inp_fport << 16) | inp->inp_lport),
822 (((inp->in6p_laddr.s6_addr16[0] & 0xffff) << 16) |
823 (inp->in6p_faddr.s6_addr16[0] & 0xffff)),
824 0, 0, 0);
825 } else {
826 KERNEL_DEBUG(DBG_LAYER_BEG,
827 ((inp->inp_fport << 16) | inp->inp_lport),
828 (((inp->inp_laddr.s_addr & 0xffff) << 16) |
829 (inp->inp_faddr.s_addr & 0xffff)),
830 0, 0, 0);
831 }
832
833 return flags;
834}
835
836/*
837 * Reduce congestion window -- used when ECN is seen or when a tail loss
838 * probe recovers the last packet.
839 */
840static void
841tcp_reduce_congestion_window(struct tcpcb *tp)
842{
843 /*
844 * If the current tcp cc module has
845 * defined a hook for tasks to run
846 * before entering FR, call it
847 */
848 if (CC_ALGO(tp)->pre_fr != NULL) {
849 CC_ALGO(tp)->pre_fr(tp);
850 }
851 ENTER_FASTRECOVERY(tp);
852 if (tp->t_flags & TF_SENTFIN) {
853 tp->snd_recover = tp->snd_max - 1;
854 } else {
855 tp->snd_recover = tp->snd_max;
856 }
857 tp->t_timer[TCPT_REXMT] = 0;
858 tp->t_timer[TCPT_PTO] = 0;
859 tp->t_rtttime = 0;
860 if (tp->t_flagsext & TF_CWND_NONVALIDATED) {
861 tcp_cc_adjust_nonvalidated_cwnd(tp);
862 } else {
863 tp->snd_cwnd = tp->snd_ssthresh +
864 tp->t_maxseg * tcprexmtthresh;
865 }
866}
867
868/*
869 * This function is called upon reception of data on a socket. It's purpose is
870 * to handle the adaptive keepalive timers that monitor whether the connection
871 * is making progress. First the adaptive read-timer, second the TFO probe-timer.
872 *
873 * The application wants to get an event if there is a stall during read.
874 * Set the initial keepalive timeout to be equal to twice RTO.
875 *
876 * If the outgoing interface is in marginal conditions, we need to
877 * enable read probes for that too.
878 */
879static inline void
880tcp_adaptive_rwtimo_check(struct tcpcb *tp, int tlen)
881{
882 struct ifnet *outifp = tp->t_inpcb->inp_last_outifp;
883
884 if ((tp->t_adaptive_rtimo > 0 ||
885 (outifp != NULL &&
886 (outifp->if_eflags & IFEF_PROBE_CONNECTIVITY)))
887 && tlen > 0 &&
888 tp->t_state == TCPS_ESTABLISHED) {
889 tp->t_timer[TCPT_KEEP] = OFFSET_FROM_START(tp,
890 (TCP_REXMTVAL(tp) << 1));
891 tp->t_flagsext |= TF_DETECT_READSTALL;
892 tp->t_rtimo_probes = 0;
893 }
894}
895
896inline void
897tcp_keepalive_reset(struct tcpcb *tp)
898{
899 tp->t_timer[TCPT_KEEP] = OFFSET_FROM_START(tp,
900 TCP_CONN_KEEPIDLE(tp));
901 tp->t_flagsext &= ~(TF_DETECT_READSTALL);
902 tp->t_rtimo_probes = 0;
903}
904
905/*
906 * TCP input routine, follows pages 65-76 of the
907 * protocol specification dated September, 1981 very closely.
908 */
909int
910tcp6_input(struct mbuf **mp, int *offp, int proto)
911{
912#pragma unused(proto)
913 struct mbuf *m = *mp;
914 uint32_t ia6_flags;
915 struct ifnet *ifp = m->m_pkthdr.rcvif;
916
917 IP6_EXTHDR_CHECK(m, *offp, sizeof(struct tcphdr), return IPPROTO_DONE);
918
919 /* Expect 32-bit aligned data pointer on strict-align platforms */
920 MBUF_STRICT_DATA_ALIGNMENT_CHECK_32(m);
921
922 /*
923 * draft-itojun-ipv6-tcp-to-anycast
924 * better place to put this in?
925 */
926 if (ip6_getdstifaddr_info(m, NULL, &ia6_flags) == 0) {
927 if (ia6_flags & IN6_IFF_ANYCAST) {
928 struct ip6_hdr *ip6;
929
930 ip6 = mtod(m, struct ip6_hdr *);
931 icmp6_error(m, ICMP6_DST_UNREACH,
932 ICMP6_DST_UNREACH_ADDR,
933 (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
934
935 IF_TCP_STATINC(ifp, icmp6unreach);
936
937 return IPPROTO_DONE;
938 }
939 }
940
941 tcp_input(m, *offp);
942 return IPPROTO_DONE;
943}
944
945/* Depending on the usage of mbuf space in the system, this function
946 * will return true or false. This is used to determine if a socket
947 * buffer can take more memory from the system for auto-tuning or not.
948 */
949u_int8_t
950tcp_cansbgrow(struct sockbuf *sb)
951{
952 /* Calculate the host level space limit in terms of MSIZE buffers.
953 * We can use a maximum of half of the available mbuf space for
954 * socket buffers.
955 */
956 u_int32_t mblim = ((nmbclusters >> 1) << (MCLSHIFT - MSIZESHIFT));
957
958 /* Calculate per sb limit in terms of bytes. We optimize this limit
959 * for upto 16 socket buffers.
960 */
961
962 u_int32_t sbspacelim = ((nmbclusters >> 4) << MCLSHIFT);
963
964 if ((total_sbmb_cnt < mblim) &&
965 (sb->sb_hiwat < sbspacelim)) {
966 return 1;
967 } else {
968 OSIncrementAtomic64(&sbmb_limreached);
969 }
970 return 0;
971}
972
973static void
974tcp_sbrcv_reserve(struct tcpcb *tp, struct sockbuf *sbrcv,
975 u_int32_t newsize, u_int32_t idealsize, u_int32_t rcvbuf_max)
976{
977 /* newsize should not exceed max */
978 newsize = min(newsize, rcvbuf_max);
979
980 /* The receive window scale negotiated at the
981 * beginning of the connection will also set a
982 * limit on the socket buffer size
983 */
984 newsize = min(newsize, TCP_MAXWIN << tp->rcv_scale);
985
986 /* Set new socket buffer size */
987 if (newsize > sbrcv->sb_hiwat &&
988 (sbreserve(sbrcv, newsize) == 1)) {
989 sbrcv->sb_idealsize = min(max(sbrcv->sb_idealsize,
990 (idealsize != 0) ? idealsize : newsize), rcvbuf_max);
991
992 /* Again check the limit set by the advertised
993 * window scale
994 */
995 sbrcv->sb_idealsize = min(sbrcv->sb_idealsize,
996 TCP_MAXWIN << tp->rcv_scale);
997 }
998}
999
1000/*
1001 * This function is used to grow a receive socket buffer. It
1002 * will take into account system-level memory usage and the
1003 * bandwidth available on the link to make a decision.
1004 */
1005static void
1006tcp_sbrcv_grow(struct tcpcb *tp, struct sockbuf *sbrcv,
1007 struct tcpopt *to, uint32_t pktlen)
1008{
1009 struct socket *so = sbrcv->sb_so;
1010
1011 /*
1012 * Do not grow the receive socket buffer if
1013 * - auto resizing is disabled, globally or on this socket
1014 * - the high water mark already reached the maximum
1015 * - the stream is in background and receive side is being
1016 * throttled
1017 */
1018 if (tcp_do_autorcvbuf == 0 ||
1019 (sbrcv->sb_flags & SB_AUTOSIZE) == 0 ||
1020 tcp_cansbgrow(sbrcv) == 0 ||
1021 sbrcv->sb_hiwat >= tcp_autorcvbuf_max ||
1022 (tp->t_flagsext & TF_RECV_THROTTLE) ||
1023 (so->so_flags1 & SOF1_EXTEND_BK_IDLE_WANTED) ||
1024 (!tcp_autotune_reorder && !LIST_EMPTY(&tp->t_segq))) {
1025 /* Can not resize the socket buffer, just return */
1026 goto out;
1027 }
1028
1029 if (!TSTMP_SUPPORTED(tp)) {
1030 /*
1031 * Timestamp option is not supported on this connection.
1032 * If the connection reached a state to indicate that
1033 * the receive socket buffer needs to grow, increase
1034 * the high water mark.
1035 */
1036 if (TSTMP_GEQ(tcp_now,
1037 tp->rfbuf_ts + TCPTV_RCVNOTS_QUANTUM)) {
1038 if (tp->rfbuf_cnt + pktlen >= TCP_RCVNOTS_BYTELEVEL) {
1039 tcp_sbrcv_reserve(tp, sbrcv,
1040 tcp_autorcvbuf_max, 0,
1041 tcp_autorcvbuf_max);
1042 }
1043 goto out;
1044 } else {
1045 tp->rfbuf_cnt += pktlen;
1046 return;
1047 }
1048 } else if (to->to_tsecr != 0) {
1049 /*
1050 * If the timestamp shows that one RTT has
1051 * completed, we can stop counting the
1052 * bytes. Here we consider increasing
1053 * the socket buffer if the bandwidth measured in
1054 * last rtt, is more than half of sb_hiwat, this will
1055 * help to scale the buffer according to the bandwidth
1056 * on the link.
1057 */
1058 if (TSTMP_GEQ(to->to_tsecr, tp->rfbuf_ts)) {
1059 if (tcp_aggressive_rcvwnd_inc) {
1060 tp->rfbuf_cnt += pktlen;
1061 }
1062
1063 if ((tcp_aggressive_rcvwnd_inc == 0 &&
1064 tp->rfbuf_cnt + pktlen > (sbrcv->sb_hiwat -
1065 (sbrcv->sb_hiwat >> 1))) ||
1066 (tcp_aggressive_rcvwnd_inc &&
1067 tp->rfbuf_cnt > tp->rfbuf_space)) {
1068 int32_t rcvbuf_inc;
1069 uint32_t idealsize;
1070
1071 if (tcp_aggressive_rcvwnd_inc == 0) {
1072 int32_t min_incr;
1073
1074 tp->rfbuf_cnt += pktlen;
1075 /*
1076 * Increment the receive window by a
1077 * multiple of maximum sized segments.
1078 * This will prevent a connection from
1079 * sending smaller segments on wire if it
1080 * is limited by the receive window.
1081 *
1082 * Set the ideal size based on current
1083 * bandwidth measurements. We set the
1084 * ideal size on receive socket buffer to
1085 * be twice the bandwidth delay product.
1086 */
1087 rcvbuf_inc = (tp->rfbuf_cnt << 1)
1088 - sbrcv->sb_hiwat;
1089
1090 /*
1091 * Make the increment equal to 8 segments
1092 * at least
1093 */
1094 min_incr = tp->t_maxseg << tcp_autorcvbuf_inc_shift;
1095 if (rcvbuf_inc < min_incr) {
1096 rcvbuf_inc = min_incr;
1097 }
1098
1099 idealsize = (tp->rfbuf_cnt << 1);
1100 } else {
1101 if (tp->rfbuf_cnt > tp->rfbuf_space + (tp->rfbuf_space >> 1)) {
1102 rcvbuf_inc = (tp->rfbuf_cnt << 2) - sbrcv->sb_hiwat;
1103 idealsize = (tp->rfbuf_cnt << 2);
1104 } else {
1105 rcvbuf_inc = (tp->rfbuf_cnt << 1) - sbrcv->sb_hiwat;
1106 idealsize = (tp->rfbuf_cnt << 1);
1107 }
1108 }
1109
1110 tp->rfbuf_space = tp->rfbuf_cnt;
1111
1112 if (rcvbuf_inc > 0) {
1113 rcvbuf_inc =
1114 (rcvbuf_inc / tp->t_maxseg) * tp->t_maxseg;
1115
1116 tcp_sbrcv_reserve(tp, sbrcv,
1117 sbrcv->sb_hiwat + rcvbuf_inc,
1118 idealsize, tcp_autorcvbuf_max);
1119 }
1120 }
1121 /* Measure instantaneous receive bandwidth */
1122 if (tp->t_bwmeas != NULL && tp->rfbuf_cnt > 0 &&
1123 TSTMP_GT(tcp_now, tp->rfbuf_ts)) {
1124 u_int32_t rcv_bw;
1125 rcv_bw = tp->rfbuf_cnt /
1126 (int)(tcp_now - tp->rfbuf_ts);
1127 if (tp->t_bwmeas->bw_rcvbw_max == 0) {
1128 tp->t_bwmeas->bw_rcvbw_max = rcv_bw;
1129 } else {
1130 tp->t_bwmeas->bw_rcvbw_max = max(
1131 tp->t_bwmeas->bw_rcvbw_max, rcv_bw);
1132 }
1133 }
1134 goto out;
1135 } else {
1136 tp->rfbuf_cnt += pktlen;
1137 return;
1138 }
1139 }
1140out:
1141 /* Restart the measurement */
1142 tp->rfbuf_ts = tcp_now;
1143 tp->rfbuf_cnt = 0;
1144 return;
1145}
1146
1147/* This function will trim the excess space added to the socket buffer
1148 * to help a slow-reading app. The ideal-size of a socket buffer depends
1149 * on the link bandwidth or it is set by an application and we aim to
1150 * reach that size.
1151 */
1152void
1153tcp_sbrcv_trim(struct tcpcb *tp, struct sockbuf *sbrcv)
1154{
1155 if (tcp_do_autorcvbuf == 1 && sbrcv->sb_idealsize > 0 &&
1156 sbrcv->sb_hiwat > sbrcv->sb_idealsize) {
1157 int32_t trim;
1158 /* compute the difference between ideal and current sizes */
1159 u_int32_t diff = sbrcv->sb_hiwat - sbrcv->sb_idealsize;
1160
1161 /* Compute the maximum advertised window for
1162 * this connection.
1163 */
1164 u_int32_t advwin = tp->rcv_adv - tp->rcv_nxt;
1165
1166 /* How much can we trim the receive socket buffer?
1167 * 1. it can not be trimmed beyond the max rcv win advertised
1168 * 2. if possible, leave 1/16 of bandwidth*delay to
1169 * avoid closing the win completely
1170 */
1171 u_int32_t leave = max(advwin, (sbrcv->sb_idealsize >> 4));
1172
1173 /* Sometimes leave can be zero, in that case leave at least
1174 * a few segments worth of space.
1175 */
1176 if (leave == 0) {
1177 leave = tp->t_maxseg << tcp_autorcvbuf_inc_shift;
1178 }
1179
1180 trim = sbrcv->sb_hiwat - (sbrcv->sb_cc + leave);
1181 trim = imin(trim, (int32_t)diff);
1182
1183 if (trim > 0) {
1184 sbreserve(sbrcv, (sbrcv->sb_hiwat - trim));
1185 }
1186 }
1187}
1188
1189/* We may need to trim the send socket buffer size for two reasons:
1190 * 1. if the rtt seen on the connection is climbing up, we do not
1191 * want to fill the buffers any more.
1192 * 2. if the congestion win on the socket backed off, there is no need
1193 * to hold more mbufs for that connection than what the cwnd will allow.
1194 */
1195void
1196tcp_sbsnd_trim(struct sockbuf *sbsnd)
1197{
1198 if (((sbsnd->sb_flags & (SB_AUTOSIZE | SB_TRIM)) ==
1199 (SB_AUTOSIZE | SB_TRIM)) &&
1200 (sbsnd->sb_idealsize > 0) &&
1201 (sbsnd->sb_hiwat > sbsnd->sb_idealsize)) {
1202 u_int32_t trim = 0;
1203 if (sbsnd->sb_cc <= sbsnd->sb_idealsize) {
1204 trim = sbsnd->sb_hiwat - sbsnd->sb_idealsize;
1205 } else {
1206 trim = sbsnd->sb_hiwat - sbsnd->sb_cc;
1207 }
1208 sbreserve(sbsnd, (sbsnd->sb_hiwat - trim));
1209 }
1210 if (sbsnd->sb_hiwat <= sbsnd->sb_idealsize) {
1211 sbsnd->sb_flags &= ~(SB_TRIM);
1212 }
1213}
1214
1215/*
1216 * If timestamp option was not negotiated on this connection
1217 * and this connection is on the receiving side of a stream
1218 * then we can not measure the delay on the link accurately.
1219 * Instead of enabling automatic receive socket buffer
1220 * resizing, just give more space to the receive socket buffer.
1221 */
1222static inline void
1223tcp_sbrcv_tstmp_check(struct tcpcb *tp)
1224{
1225 struct socket *so = tp->t_inpcb->inp_socket;
1226 u_int32_t newsize = 2 * tcp_recvspace;
1227 struct sockbuf *sbrcv = &so->so_rcv;
1228
1229 if ((tp->t_flags & (TF_REQ_TSTMP | TF_RCVD_TSTMP)) !=
1230 (TF_REQ_TSTMP | TF_RCVD_TSTMP) &&
1231 (sbrcv->sb_flags & SB_AUTOSIZE) != 0) {
1232 tcp_sbrcv_reserve(tp, sbrcv, newsize, 0, newsize);
1233 }
1234}
1235
1236/* A receiver will evaluate the flow of packets on a connection
1237 * to see if it can reduce ack traffic. The receiver will start
1238 * stretching acks if all of the following conditions are met:
1239 * 1. tcp_delack_enabled is set to 3
1240 * 2. If the bytes received in the last 100ms is greater than a threshold
1241 * defined by maxseg_unacked
1242 * 3. If the connection has not been idle for tcp_maxrcvidle period.
1243 * 4. If the connection has seen enough packets to let the slow-start
1244 * finish after connection establishment or after some packet loss.
1245 *
1246 * The receiver will stop stretching acks if there is congestion/reordering
1247 * as indicated by packets on reassembly queue or an ECN. If the delayed-ack
1248 * timer fires while stretching acks, it means that the packet flow has gone
1249 * below the threshold defined by maxseg_unacked and the receiver will stop
1250 * stretching acks. The receiver gets no indication when slow-start is completed
1251 * or when the connection reaches an idle state. That is why we use
1252 * tcp_rcvsspktcnt to cover slow-start and tcp_maxrcvidle to identify idle
1253 * state.
1254 */
1255static inline int
1256tcp_stretch_ack_enable(struct tcpcb *tp, int thflags)
1257{
1258 if (tp->rcv_by_unackwin >= (maxseg_unacked * tp->t_maxseg) &&
1259 TSTMP_GEQ(tp->rcv_unackwin, tcp_now)) {
1260 tp->t_flags |= TF_STREAMING_ON;
1261 } else {
1262 tp->t_flags &= ~TF_STREAMING_ON;
1263 }
1264
1265 /* If there has been an idle time, reset streaming detection */
1266 if (TSTMP_GT(tcp_now, tp->rcv_unackwin + tcp_maxrcvidle)) {
1267 tp->t_flags &= ~TF_STREAMING_ON;
1268 }
1269
1270 /*
1271 * If there are flags other than TH_ACK set, reset streaming
1272 * detection
1273 */
1274 if (thflags & ~TH_ACK) {
1275 tp->t_flags &= ~TF_STREAMING_ON;
1276 }
1277
1278 if (tp->t_flagsext & TF_DISABLE_STRETCHACK) {
1279 if (tp->rcv_nostrack_pkts >= TCP_STRETCHACK_ENABLE_PKTCNT) {
1280 tp->t_flagsext &= ~TF_DISABLE_STRETCHACK;
1281 tp->rcv_nostrack_pkts = 0;
1282 tp->rcv_nostrack_ts = 0;
1283 } else {
1284 tp->rcv_nostrack_pkts++;
1285 }
1286 }
1287
1288 if (!(tp->t_flagsext & (TF_NOSTRETCHACK | TF_DISABLE_STRETCHACK)) &&
1289 (tp->t_flags & TF_STREAMING_ON) &&
1290 (!(tp->t_flagsext & TF_RCVUNACK_WAITSS) ||
1291 (tp->rcv_waitforss >= tcp_rcvsspktcnt))) {
1292 return 1;
1293 }
1294
1295 return 0;
1296}
1297
1298/*
1299 * Reset the state related to stretch-ack algorithm. This will make
1300 * the receiver generate an ack every other packet. The receiver
1301 * will start re-evaluating the rate at which packets come to decide
1302 * if it can benefit by lowering the ack traffic.
1303 */
1304void
1305tcp_reset_stretch_ack(struct tcpcb *tp)
1306{
1307 tp->t_flags &= ~(TF_STRETCHACK | TF_STREAMING_ON);
1308 tp->rcv_by_unackwin = 0;
1309 tp->rcv_by_unackhalfwin = 0;
1310 tp->rcv_unackwin = tcp_now + tcp_rcvunackwin;
1311
1312 /*
1313 * When there is packet loss or packet re-ordering or CWR due to
1314 * ECN, the sender's congestion window is reduced. In these states,
1315 * generate an ack for every other packet for some time to allow
1316 * the sender's congestion window to grow.
1317 */
1318 tp->t_flagsext |= TF_RCVUNACK_WAITSS;
1319 tp->rcv_waitforss = 0;
1320}
1321
1322/*
1323 * The last packet was a retransmission, check if this ack
1324 * indicates that the retransmission was spurious.
1325 *
1326 * If the connection supports timestamps, we could use it to
1327 * detect if the last retransmit was not needed. Otherwise,
1328 * we check if the ACK arrived within RTT/2 window, then it
1329 * was a mistake to do the retransmit in the first place.
1330 *
1331 * This function will return 1 if it is a spurious retransmit,
1332 * 0 otherwise.
1333 */
1334int
1335tcp_detect_bad_rexmt(struct tcpcb *tp, struct tcphdr *th,
1336 struct tcpopt *to, u_int32_t rxtime)
1337{
1338 int32_t tdiff, bad_rexmt_win;
1339 bad_rexmt_win = (tp->t_srtt >> (TCP_RTT_SHIFT + 1));
1340
1341 /* If the ack has ECN CE bit, then cwnd has to be adjusted */
1342 if (TCP_ECN_ENABLED(tp) && (th->th_flags & TH_ECE)) {
1343 return 0;
1344 }
1345 if (TSTMP_SUPPORTED(tp)) {
1346 if (rxtime > 0 && (to->to_flags & TOF_TS) && to->to_tsecr != 0 &&
1347 TSTMP_LT(to->to_tsecr, rxtime)) {
1348 return 1;
1349 }
1350 } else {
1351 if ((tp->t_rxtshift == 1 || (tp->t_flagsext & TF_SENT_TLPROBE)) &&
1352 rxtime > 0) {
1353 tdiff = (int32_t)(tcp_now - rxtime);
1354 if (tdiff < bad_rexmt_win) {
1355 return 1;
1356 }
1357 }
1358 }
1359 return 0;
1360}
1361
1362
1363/*
1364 * Restore congestion window state if a spurious timeout
1365 * was detected.
1366 */
1367static void
1368tcp_bad_rexmt_restore_state(struct tcpcb *tp, struct tcphdr *th)
1369{
1370 if (TSTMP_SUPPORTED(tp)) {
1371 u_int32_t fsize, acked;
1372 fsize = tp->snd_max - th->th_ack;
1373 acked = BYTES_ACKED(th, tp);
1374
1375 /*
1376 * Implement bad retransmit recovery as
1377 * described in RFC 4015.
1378 */
1379 tp->snd_ssthresh = tp->snd_ssthresh_prev;
1380
1381 /* Initialize cwnd to the initial window */
1382 if (CC_ALGO(tp)->cwnd_init != NULL) {
1383 CC_ALGO(tp)->cwnd_init(tp);
1384 }
1385
1386 tp->snd_cwnd = fsize + min(acked, tp->snd_cwnd);
1387 } else {
1388 tp->snd_cwnd = tp->snd_cwnd_prev;
1389 tp->snd_ssthresh = tp->snd_ssthresh_prev;
1390 if (tp->t_flags & TF_WASFRECOVERY) {
1391 ENTER_FASTRECOVERY(tp);
1392 }
1393
1394 /* Do not use the loss flight size in this case */
1395 tp->t_lossflightsize = 0;
1396 }
1397 tp->snd_cwnd = max(tp->snd_cwnd, tcp_initial_cwnd(tp));
1398 tp->snd_recover = tp->snd_recover_prev;
1399 tp->snd_nxt = tp->snd_max;
1400
1401 /* Fix send socket buffer to reflect the change in cwnd */
1402 tcp_bad_rexmt_fix_sndbuf(tp);
1403
1404 /*
1405 * This RTT might reflect the extra delay induced
1406 * by the network. Skip using this sample for RTO
1407 * calculation and mark the connection so we can
1408 * recompute RTT when the next eligible sample is
1409 * found.
1410 */
1411 tp->t_flagsext |= TF_RECOMPUTE_RTT;
1412 tp->t_badrexmt_time = tcp_now;
1413 tp->t_rtttime = 0;
1414}
1415
1416/*
1417 * If the previous packet was sent in retransmission timer, and it was
1418 * not needed, then restore the congestion window to the state before that
1419 * transmission.
1420 *
1421 * If the last packet was sent in tail loss probe timeout, check if that
1422 * recovered the last packet. If so, that will indicate a real loss and
1423 * the congestion window needs to be lowered.
1424 */
1425static void
1426tcp_bad_rexmt_check(struct tcpcb *tp, struct tcphdr *th, struct tcpopt *to)
1427{
1428 if (tp->t_rxtshift > 0 &&
1429 tcp_detect_bad_rexmt(tp, th, to, tp->t_rxtstart)) {
1430 ++tcpstat.tcps_sndrexmitbad;
1431 tcp_bad_rexmt_restore_state(tp, th);
1432 tcp_ccdbg_trace(tp, th, TCP_CC_BAD_REXMT_RECOVERY);
1433 } else if ((tp->t_flagsext & TF_SENT_TLPROBE) && tp->t_tlphighrxt > 0 &&
1434 SEQ_GEQ(th->th_ack, tp->t_tlphighrxt) &&
1435 !tcp_detect_bad_rexmt(tp, th, to, tp->t_tlpstart)) {
1436 /*
1437 * check DSACK information also to make sure that
1438 * the TLP was indeed needed
1439 */
1440 if (tcp_rxtseg_dsack_for_tlp(tp)) {
1441 /*
1442 * received a DSACK to indicate that TLP was
1443 * not needed
1444 */
1445 tcp_rxtseg_clean(tp);
1446 goto out;
1447 }
1448
1449 /*
1450 * The tail loss probe recovered the last packet and
1451 * we need to adjust the congestion window to take
1452 * this loss into account.
1453 */
1454 ++tcpstat.tcps_tlp_recoverlastpkt;
1455 if (!IN_FASTRECOVERY(tp)) {
1456 tcp_reduce_congestion_window(tp);
1457 EXIT_FASTRECOVERY(tp);
1458 }
1459 tcp_ccdbg_trace(tp, th, TCP_CC_TLP_RECOVER_LASTPACKET);
1460 } else if (tcp_rxtseg_detect_bad_rexmt(tp, th->th_ack)) {
1461 /*
1462 * All of the retransmitted segments were duplicated, this
1463 * can be an indication of bad fast retransmit.
1464 */
1465 tcpstat.tcps_dsack_badrexmt++;
1466 tcp_bad_rexmt_restore_state(tp, th);
1467 tcp_ccdbg_trace(tp, th, TCP_CC_DSACK_BAD_REXMT);
1468 tcp_rxtseg_clean(tp);
1469 }
1470out:
1471 tp->t_flagsext &= ~(TF_SENT_TLPROBE);
1472 tp->t_tlphighrxt = 0;
1473 tp->t_tlpstart = 0;
1474
1475 /*
1476 * check if the latest ack was for a segment sent during PMTU
1477 * blackhole detection. If the timestamp on the ack is before
1478 * PMTU blackhole detection, then revert the size of the max
1479 * segment to previous size.
1480 */
1481 if (tp->t_rxtshift > 0 && (tp->t_flags & TF_BLACKHOLE) &&
1482 tp->t_pmtud_start_ts > 0 && TSTMP_SUPPORTED(tp)) {
1483 if ((to->to_flags & TOF_TS) && to->to_tsecr != 0
1484 && TSTMP_LT(to->to_tsecr, tp->t_pmtud_start_ts)) {
1485 tcp_pmtud_revert_segment_size(tp);
1486 }
1487 }
1488 if (tp->t_pmtud_start_ts > 0) {
1489 tp->t_pmtud_start_ts = 0;
1490 }
1491
1492 tp->t_pmtud_lastseg_size = 0;
1493}
1494
1495/*
1496 * Check if early retransmit can be attempted according to RFC 5827.
1497 *
1498 * If packet reordering is detected on a connection, fast recovery will
1499 * be delayed until it is clear that the packet was lost and not reordered.
1500 * But reordering detection is done only when SACK is enabled.
1501 *
1502 * On connections that do not support SACK, there is a limit on the number
1503 * of early retransmits that can be done per minute. This limit is needed
1504 * to make sure that too many packets are not retransmitted when there is
1505 * packet reordering.
1506 */
1507static void
1508tcp_early_rexmt_check(struct tcpcb *tp, struct tcphdr *th)
1509{
1510 u_int32_t obytes, snd_off;
1511 int32_t snd_len;
1512 struct socket *so = tp->t_inpcb->inp_socket;
1513
1514 if ((SACK_ENABLED(tp) || tp->t_early_rexmt_count < TCP_EARLY_REXMT_LIMIT) &&
1515 SEQ_GT(tp->snd_max, tp->snd_una) &&
1516 (tp->t_dupacks == 1 || (SACK_ENABLED(tp) && !TAILQ_EMPTY(&tp->snd_holes)))) {
1517 /*
1518 * If there are only a few outstanding
1519 * segments on the connection, we might need
1520 * to lower the retransmit threshold. This
1521 * will allow us to do Early Retransmit as
1522 * described in RFC 5827.
1523 */
1524 if (SACK_ENABLED(tp) &&
1525 !TAILQ_EMPTY(&tp->snd_holes)) {
1526 obytes = (tp->snd_max - tp->snd_fack) +
1527 tp->sackhint.sack_bytes_rexmit;
1528 } else {
1529 obytes = (tp->snd_max - tp->snd_una);
1530 }
1531
1532 /*
1533 * In order to lower retransmit threshold the
1534 * following two conditions must be met.
1535 * 1. the amount of outstanding data is less
1536 * than 4*SMSS bytes
1537 * 2. there is no unsent data ready for
1538 * transmission or the advertised window
1539 * will limit sending new segments.
1540 */
1541 snd_off = tp->snd_max - tp->snd_una;
1542 snd_len = min(so->so_snd.sb_cc, tp->snd_wnd) - snd_off;
1543 if (obytes < (tp->t_maxseg << 2) &&
1544 snd_len <= 0) {
1545 u_int32_t osegs;
1546
1547 osegs = obytes / tp->t_maxseg;
1548 if ((osegs * tp->t_maxseg) < obytes) {
1549 osegs++;
1550 }
1551
1552 /*
1553 * Since the connection might have already
1554 * received some dupacks, we add them to
1555 * to the outstanding segments count to get
1556 * the correct retransmit threshold.
1557 *
1558 * By checking for early retransmit after
1559 * receiving some duplicate acks when SACK
1560 * is supported, the connection will
1561 * enter fast recovery even if multiple
1562 * segments are lost in the same window.
1563 */
1564 osegs += tp->t_dupacks;
1565 if (osegs < 4) {
1566 tp->t_rexmtthresh =
1567 ((osegs - 1) > 1) ? (osegs - 1) : 1;
1568 tp->t_rexmtthresh =
1569 min(tp->t_rexmtthresh, tcprexmtthresh);
1570 tp->t_rexmtthresh =
1571 max(tp->t_rexmtthresh, tp->t_dupacks);
1572
1573 if (tp->t_early_rexmt_count == 0) {
1574 tp->t_early_rexmt_win = tcp_now;
1575 }
1576
1577 if (tp->t_flagsext & TF_SENT_TLPROBE) {
1578 tcpstat.tcps_tlp_recovery++;
1579 tcp_ccdbg_trace(tp, th,
1580 TCP_CC_TLP_RECOVERY);
1581 } else {
1582 tcpstat.tcps_early_rexmt++;
1583 tp->t_early_rexmt_count++;
1584 tcp_ccdbg_trace(tp, th,
1585 TCP_CC_EARLY_RETRANSMIT);
1586 }
1587 }
1588 }
1589 }
1590
1591 /*
1592 * If we ever sent a TLP probe, the acknowledgement will trigger
1593 * early retransmit because the value of snd_fack will be close
1594 * to snd_max. This will take care of adjustments to the
1595 * congestion window. So we can reset TF_SENT_PROBE flag.
1596 */
1597 tp->t_flagsext &= ~(TF_SENT_TLPROBE);
1598 tp->t_tlphighrxt = 0;
1599 tp->t_tlpstart = 0;
1600}
1601
1602static boolean_t
1603tcp_tfo_syn(struct tcpcb *tp, struct tcpopt *to)
1604{
1605 u_char out[CCAES_BLOCK_SIZE];
1606 unsigned char len;
1607
1608 if (!(to->to_flags & (TOF_TFO | TOF_TFOREQ)) ||
1609 !(tcp_fastopen & TCP_FASTOPEN_SERVER)) {
1610 return FALSE;
1611 }
1612
1613 if ((to->to_flags & TOF_TFOREQ)) {
1614 tp->t_tfo_flags |= TFO_F_OFFER_COOKIE;
1615
1616 tp->t_tfo_stats |= TFO_S_COOKIEREQ_RECV;
1617 tcpstat.tcps_tfo_cookie_req_rcv++;
1618 return FALSE;
1619 }
1620
1621 /* Ok, then it must be an offered cookie. We need to check that ... */
1622 tcp_tfo_gen_cookie(tp->t_inpcb, out, sizeof(out));
1623
1624 len = *to->to_tfo - TCPOLEN_FASTOPEN_REQ;
1625 to->to_tfo++;
1626 if (memcmp(out, to->to_tfo, len)) {
1627 /* Cookies are different! Let's return and offer a new cookie */
1628 tp->t_tfo_flags |= TFO_F_OFFER_COOKIE;
1629
1630 tp->t_tfo_stats |= TFO_S_COOKIE_INVALID;
1631 tcpstat.tcps_tfo_cookie_invalid++;
1632 return FALSE;
1633 }
1634
1635 if (OSIncrementAtomic(&tcp_tfo_halfcnt) >= tcp_tfo_backlog) {
1636 /* Need to decrement again as we just increased it... */
1637 OSDecrementAtomic(&tcp_tfo_halfcnt);
1638 return FALSE;
1639 }
1640
1641 tp->t_tfo_flags |= TFO_F_COOKIE_VALID;
1642
1643 tp->t_tfo_stats |= TFO_S_SYNDATA_RCV;
1644 tcpstat.tcps_tfo_syn_data_rcv++;
1645
1646 return TRUE;
1647}
1648
1649static void
1650tcp_tfo_synack(struct tcpcb *tp, struct tcpopt *to)
1651{
1652 if (to->to_flags & TOF_TFO) {
1653 unsigned char len = *to->to_tfo - TCPOLEN_FASTOPEN_REQ;
1654
1655 /*
1656 * If this happens, things have gone terribly wrong. len should
1657 * have been checked in tcp_dooptions.
1658 */
1659 VERIFY(len <= TFO_COOKIE_LEN_MAX);
1660
1661 to->to_tfo++;
1662
1663 tcp_cache_set_cookie(tp, to->to_tfo, len);
1664 tcp_heuristic_tfo_success(tp);
1665
1666 tp->t_tfo_stats |= TFO_S_COOKIE_RCV;
1667 tcpstat.tcps_tfo_cookie_rcv++;
1668 if (tp->t_tfo_flags & TFO_F_COOKIE_SENT) {
1669 tcpstat.tcps_tfo_cookie_wrong++;
1670 tp->t_tfo_stats |= TFO_S_COOKIE_WRONG;
1671 }
1672 } else {
1673 /*
1674 * Thus, no cookie in the response, but we either asked for one
1675 * or sent SYN+DATA. Now, we need to check whether we had to
1676 * rexmit the SYN. If that's the case, it's better to start
1677 * backing of TFO-cookie requests.
1678 */
1679 if (!(tp->t_flagsext & TF_FASTOPEN_FORCE_ENABLE) &&
1680 tp->t_tfo_flags & TFO_F_SYN_LOSS) {
1681 tp->t_tfo_stats |= TFO_S_SYN_LOSS;
1682 tcpstat.tcps_tfo_syn_loss++;
1683
1684 tcp_heuristic_tfo_loss(tp);
1685 } else {
1686 if (tp->t_tfo_flags & TFO_F_COOKIE_REQ) {
1687 tp->t_tfo_stats |= TFO_S_NO_COOKIE_RCV;
1688 tcpstat.tcps_tfo_no_cookie_rcv++;
1689 }
1690
1691 tcp_heuristic_tfo_success(tp);
1692 }
1693 }
1694}
1695
1696static void
1697tcp_tfo_rcv_probe(struct tcpcb *tp, int tlen)
1698{
1699 if (tlen != 0) {
1700 return;
1701 }
1702
1703 tp->t_tfo_probe_state = TFO_PROBE_PROBING;
1704
1705 /*
1706 * We send the probe out rather quickly (after one RTO). It does not
1707 * really hurt that much, it's only one additional segment on the wire.
1708 */
1709 tp->t_timer[TCPT_KEEP] = OFFSET_FROM_START(tp, (TCP_REXMTVAL(tp)));
1710}
1711
1712static void
1713tcp_tfo_rcv_data(struct tcpcb *tp)
1714{
1715 /* Transition from PROBING to NONE as data has been received */
1716 if (tp->t_tfo_probe_state >= TFO_PROBE_PROBING) {
1717 tp->t_tfo_probe_state = TFO_PROBE_NONE;
1718 }
1719}
1720
1721static void
1722tcp_tfo_rcv_ack(struct tcpcb *tp, struct tcphdr *th)
1723{
1724 if (tp->t_tfo_probe_state == TFO_PROBE_PROBING &&
1725 tp->t_tfo_probes > 0) {
1726 if (th->th_seq == tp->rcv_nxt) {
1727 /* No hole, so stop probing */
1728 tp->t_tfo_probe_state = TFO_PROBE_NONE;
1729 } else if (SEQ_GT(th->th_seq, tp->rcv_nxt)) {
1730 /* There is a hole! Wait a bit for data... */
1731 tp->t_tfo_probe_state = TFO_PROBE_WAIT_DATA;
1732 tp->t_timer[TCPT_KEEP] = OFFSET_FROM_START(tp,
1733 TCP_REXMTVAL(tp));
1734 }
1735 }
1736}
1737
1738/*
1739 * Update snd_wnd information.
1740 */
1741static inline bool
1742tcp_update_window(struct tcpcb *tp, int thflags, struct tcphdr * th,
1743 u_int32_t tiwin, int tlen)
1744{
1745 /* Don't look at the window if there is no ACK flag */
1746 if ((thflags & TH_ACK) &&
1747 (SEQ_LT(tp->snd_wl1, th->th_seq) ||
1748 (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
1749 (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
1750 /* keep track of pure window updates */
1751 if (tlen == 0 &&
1752 tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd) {
1753 tcpstat.tcps_rcvwinupd++;
1754 }
1755 tp->snd_wnd = tiwin;
1756 tp->snd_wl1 = th->th_seq;
1757 tp->snd_wl2 = th->th_ack;
1758 if (tp->snd_wnd > tp->max_sndwnd) {
1759 tp->max_sndwnd = tp->snd_wnd;
1760 }
1761
1762 if (tp->t_inpcb->inp_socket->so_flags & SOF_MP_SUBFLOW) {
1763 mptcp_update_window_wakeup(tp);
1764 }
1765 return true;
1766 }
1767 return false;
1768}
1769
1770static void
1771tcp_handle_wakeup(struct socket *so, int read_wakeup, int write_wakeup)
1772{
1773 if (read_wakeup != 0) {
1774 sorwakeup(so);
1775 }
1776 if (write_wakeup != 0) {
1777 sowwakeup(so);
1778 }
1779}
1780
1781static void
1782tcp_update_snd_una(struct tcpcb *tp, uint32_t ack)
1783{
1784 tp->snd_una = ack;
1785 if (SACK_ENABLED(tp) && SEQ_LT(tp->send_highest_sack, tp->snd_una)) {
1786 tp->send_highest_sack = tp->snd_una;
1787
1788 /* If we move our marker, we need to start fresh */
1789 tp->t_new_dupacks = 0;
1790 }
1791}
1792
1793static bool
1794tcp_syn_data_valid(struct tcpcb *tp, struct tcphdr *tcp_hdr, int tlen)
1795{
1796 /* No data? */
1797 if (tlen <= 0) {
1798 return false;
1799 }
1800
1801 /* Not the right sequence-number? */
1802 if (tcp_hdr->th_seq != tp->irs) {
1803 return false;
1804 }
1805
1806 /* We could have wrapped around, check that */
1807 if (tp->t_inpcb->inp_stat->rxbytes > INT32_MAX) {
1808 return false;
1809 }
1810
1811 return true;
1812}
1813
1814void
1815tcp_input(struct mbuf *m, int off0)
1816{
1817 int exiting_fr = 0;
1818 struct tcphdr *th;
1819 struct ip *ip = NULL;
1820 struct inpcb *inp;
1821 u_char *optp = NULL;
1822 int optlen = 0;
1823 int tlen, off;
1824 int drop_hdrlen;
1825 struct tcpcb *tp = 0;
1826 int thflags;
1827 struct socket *so = 0;
1828 int todrop, acked, ourfinisacked, needoutput = 0;
1829 int read_wakeup = 0;
1830 int write_wakeup = 0;
1831 struct in_addr laddr;
1832 struct in6_addr laddr6;
1833 int dropsocket = 0;
1834 int iss = 0, nosock = 0;
1835 u_int32_t tiwin, sack_bytes_acked = 0, sack_bytes_newly_acked = 0;
1836 struct tcpopt to; /* options in this segment */
1837#if TCPDEBUG
1838 short ostate = 0;
1839#endif
1840 u_char ip_ecn = IPTOS_ECN_NOTECT;
1841 unsigned int ifscope;
1842 uint8_t isconnected, isdisconnected;
1843 struct ifnet *ifp = m->m_pkthdr.rcvif;
1844 int segment_count = m->m_pkthdr.seg_cnt ? : 1;
1845 int win;
1846 u_int16_t pf_tag = 0;
1847#if MPTCP
1848 struct mptcb *mp_tp = NULL;
1849#endif /* MPTCP */
1850 boolean_t cell = IFNET_IS_CELLULAR(ifp);
1851 boolean_t wifi = (!cell && IFNET_IS_WIFI(ifp));
1852 boolean_t wired = (!wifi && IFNET_IS_WIRED(ifp));
1853 boolean_t recvd_dsack = FALSE;
1854 struct tcp_respond_args tra;
1855 int prev_t_state;
1856 boolean_t check_cfil = cfil_filter_present();
1857 bool findpcb_iterated = false;
1858 /*
1859 * The mbuf may be freed after it has been added to the receive socket
1860 * buffer or the reassembly queue, so we reinitialize th to point to a
1861 * safe copy of the TCP header
1862 */
1863 struct tcphdr saved_tcphdr = {};
1864 /*
1865 * Save copy of the IPv4/IPv6 header.
1866 * Note: use array of uint32_t to silence compiler warning when casting
1867 * to a struct ip6_hdr pointer.
1868 */
1869#define MAX_IPWORDS ((sizeof(struct ip) + MAX_IPOPTLEN) / sizeof(uint32_t))
1870 uint32_t saved_hdr[MAX_IPWORDS];
1871
1872#define TCP_INC_VAR(stat, npkts) do { \
1873 stat += npkts; \
1874} while (0)
1875
1876 if (tcp_ack_strategy == TCP_ACK_STRATEGY_LEGACY) {
1877 segment_count = 1;
1878 }
1879 TCP_INC_VAR(tcpstat.tcps_rcvtotal, segment_count);
1880
1881 struct ip6_hdr *ip6 = NULL;
1882 int isipv6;
1883 struct proc *kernel_proc = current_proc();
1884
1885 KERNEL_DEBUG(DBG_FNC_TCP_INPUT | DBG_FUNC_START, 0, 0, 0, 0, 0);
1886
1887 isipv6 = (mtod(m, struct ip *)->ip_v == 6) ? 1 : 0;
1888 bzero((char *)&to, sizeof(to));
1889
1890 if (m->m_flags & M_PKTHDR) {
1891 pf_tag = m_pftag(m)->pftag_tag;
1892 }
1893
1894 if (isipv6) {
1895 /*
1896 * Expect 32-bit aligned data pointer on
1897 * strict-align platforms
1898 */
1899 MBUF_STRICT_DATA_ALIGNMENT_CHECK_32(m);
1900
1901 /* IP6_EXTHDR_CHECK() is already done at tcp6_input() */
1902 ip6 = mtod(m, struct ip6_hdr *);
1903 tlen = sizeof(*ip6) + ntohs(ip6->ip6_plen) - off0;
1904 th = (struct tcphdr *)(void *)((caddr_t)ip6 + off0);
1905
1906 if (tcp_input_checksum(AF_INET6, m, th, off0, tlen)) {
1907 TCP_LOG_DROP_PKT(ip6, th, ifp, "IPv6 bad tcp checksum");
1908 goto dropnosock;
1909 }
1910
1911 KERNEL_DEBUG(DBG_LAYER_BEG, ((th->th_dport << 16) | th->th_sport),
1912 (((ip6->ip6_src.s6_addr16[0]) << 16) | (ip6->ip6_dst.s6_addr16[0])),
1913 th->th_seq, th->th_ack, th->th_win);
1914 /*
1915 * Be proactive about unspecified IPv6 address in source.
1916 * As we use all-zero to indicate unbounded/unconnected pcb,
1917 * unspecified IPv6 address can be used to confuse us.
1918 *
1919 * Note that packets with unspecified IPv6 destination is
1920 * already dropped in ip6_input.
1921 */
1922 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
1923 /* XXX stat */
1924 IF_TCP_STATINC(ifp, unspecv6);
1925 TCP_LOG_DROP_PKT(ip6, th, ifp, "src IPv6 address unspecified");
1926 goto dropnosock;
1927 }
1928 DTRACE_TCP5(receive, struct mbuf *, m, struct inpcb *, NULL,
1929 struct ip6_hdr *, ip6, struct tcpcb *, NULL,
1930 struct tcphdr *, th);
1931
1932 ip_ecn = (ntohl(ip6->ip6_flow) >> 20) & IPTOS_ECN_MASK;
1933 } else {
1934 /*
1935 * Get IP and TCP header together in first mbuf.
1936 * Note: IP leaves IP header in first mbuf.
1937 */
1938 if (off0 > sizeof(struct ip)) {
1939 ip_stripoptions(m);
1940 off0 = sizeof(struct ip);
1941 }
1942 if (m->m_len < sizeof(struct tcpiphdr)) {
1943 if ((m = m_pullup(m, sizeof(struct tcpiphdr))) == 0) {
1944 tcpstat.tcps_rcvshort++;
1945 return;
1946 }
1947 }
1948
1949 /* Expect 32-bit aligned data pointer on strict-align platforms */
1950 MBUF_STRICT_DATA_ALIGNMENT_CHECK_32(m);
1951
1952 ip = mtod(m, struct ip *);
1953 th = (struct tcphdr *)(void *)((caddr_t)ip + off0);
1954 tlen = ip->ip_len;
1955
1956 if (tcp_input_checksum(AF_INET, m, th, off0, tlen)) {
1957 TCP_LOG_DROP_PKT(ip, th, ifp, "IPv4 bad tcp checksum");
1958 goto dropnosock;
1959 }
1960
1961 /* Re-initialization for later version check */
1962 ip->ip_v = IPVERSION;
1963 ip_ecn = (ip->ip_tos & IPTOS_ECN_MASK);
1964
1965 DTRACE_TCP5(receive, struct mbuf *, m, struct inpcb *, NULL,
1966 struct ip *, ip, struct tcpcb *, NULL, struct tcphdr *, th);
1967
1968 KERNEL_DEBUG(DBG_LAYER_BEG, ((th->th_dport << 16) | th->th_sport),
1969 (((ip->ip_src.s_addr & 0xffff) << 16) | (ip->ip_dst.s_addr & 0xffff)),
1970 th->th_seq, th->th_ack, th->th_win);
1971 }
1972
1973#define TCP_LOG_HDR (isipv6 ? (void *)ip6 : (void *)ip)
1974
1975 /*
1976 * Check that TCP offset makes sense,
1977 * pull out TCP options and adjust length.
1978 */
1979 off = th->th_off << 2;
1980 if (off < sizeof(struct tcphdr) || off > tlen) {
1981 tcpstat.tcps_rcvbadoff++;
1982 IF_TCP_STATINC(ifp, badformat);
1983 TCP_LOG_DROP_PKT(TCP_LOG_HDR, th, ifp, "bad tcp offset");
1984 goto dropnosock;
1985 }
1986 tlen -= off; /* tlen is used instead of ti->ti_len */
1987 if (off > sizeof(struct tcphdr)) {
1988 if (isipv6) {
1989 IP6_EXTHDR_CHECK(m, off0, off, return );
1990 ip6 = mtod(m, struct ip6_hdr *);
1991 th = (struct tcphdr *)(void *)((caddr_t)ip6 + off0);
1992 } else {
1993 if (m->m_len < sizeof(struct ip) + off) {
1994 if ((m = m_pullup(m, sizeof(struct ip) + off)) == 0) {
1995 tcpstat.tcps_rcvshort++;
1996 return;
1997 }
1998 ip = mtod(m, struct ip *);
1999 th = (struct tcphdr *)(void *)((caddr_t)ip + off0);
2000 }
2001 }
2002 optlen = off - sizeof(struct tcphdr);
2003 optp = (u_char *)(th + 1);
2004 /*
2005 * Do quick retrieval of timestamp options ("options
2006 * prediction?"). If timestamp is the only option and it's
2007 * formatted as recommended in RFC 1323 appendix A, we
2008 * quickly get the values now and not bother calling
2009 * tcp_dooptions(), etc.
2010 */
2011 if ((optlen == TCPOLEN_TSTAMP_APPA ||
2012 (optlen > TCPOLEN_TSTAMP_APPA &&
2013 optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
2014 *(u_int32_t *)(void *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
2015 (th->th_flags & TH_SYN) == 0) {
2016 to.to_flags |= TOF_TS;
2017 to.to_tsval = ntohl(*(u_int32_t *)(void *)(optp + 4));
2018 to.to_tsecr = ntohl(*(u_int32_t *)(void *)(optp + 8));
2019 optp = NULL; /* we've parsed the options */
2020 }
2021 }
2022 thflags = th->th_flags;
2023
2024 /*
2025 * Drop all packets with both the SYN and FIN bits set.
2026 * This prevents e.g. nmap from identifying the TCP/IP stack.
2027 *
2028 * This is a violation of the TCP specification.
2029 */
2030 if ((thflags & (TH_SYN | TH_FIN)) == (TH_SYN | TH_FIN)) {
2031 IF_TCP_STATINC(ifp, synfin);
2032 TCP_LOG_DROP_PKT(TCP_LOG_HDR, th, ifp, "drop SYN FIN");
2033 goto dropnosock;
2034 }
2035
2036 /*
2037 * Delay dropping TCP, IP headers, IPv6 ext headers, and TCP options,
2038 * until after ip6_savecontrol() is called and before other functions
2039 * which don't want those proto headers.
2040 * Because ip6_savecontrol() is going to parse the mbuf to
2041 * search for data to be passed up to user-land, it wants mbuf
2042 * parameters to be unchanged.
2043 */
2044 drop_hdrlen = off0 + off;
2045
2046 /* Since this is an entry point for input processing of tcp packets, we
2047 * can update the tcp clock here.
2048 */
2049 calculate_tcp_clock();
2050
2051 /*
2052 * Record the interface where this segment arrived on; this does not
2053 * affect normal data output (for non-detached TCP) as it provides a
2054 * hint about which route and interface to use for sending in the
2055 * absence of a PCB, when scoped routing (and thus source interface
2056 * selection) are enabled.
2057 */
2058 if ((m->m_pkthdr.pkt_flags & PKTF_LOOP) || m->m_pkthdr.rcvif == NULL) {
2059 ifscope = IFSCOPE_NONE;
2060 } else {
2061 ifscope = m->m_pkthdr.rcvif->if_index;
2062 }
2063
2064 /*
2065 * Convert TCP protocol specific fields to host format.
2066 */
2067
2068#if BYTE_ORDER != BIG_ENDIAN
2069 NTOHL(th->th_seq);
2070 NTOHL(th->th_ack);
2071 NTOHS(th->th_win);
2072 NTOHS(th->th_urp);
2073#endif
2074
2075 /*
2076 * Locate pcb for segment.
2077 */
2078findpcb:
2079
2080 isconnected = FALSE;
2081 isdisconnected = FALSE;
2082
2083 if (isipv6) {
2084 inp = in6_pcblookup_hash(&tcbinfo, &ip6->ip6_src, th->th_sport,
2085 &ip6->ip6_dst, th->th_dport, 1,
2086 m->m_pkthdr.rcvif);
2087 } else {
2088 inp = in_pcblookup_hash(&tcbinfo, ip->ip_src, th->th_sport,
2089 ip->ip_dst, th->th_dport, 1, m->m_pkthdr.rcvif);
2090 }
2091
2092 /*
2093 * Use the interface scope information from the PCB for outbound
2094 * segments. If the PCB isn't present and if scoped routing is
2095 * enabled, tcp_respond will use the scope of the interface where
2096 * the segment arrived on.
2097 */
2098 if (inp != NULL && (inp->inp_flags & INP_BOUND_IF)) {
2099 ifscope = inp->inp_boundifp->if_index;
2100 }
2101
2102 /*
2103 * If the state is CLOSED (i.e., TCB does not exist) then
2104 * all data in the incoming segment is discarded.
2105 * If the TCB exists but is in CLOSED state, it is embryonic,
2106 * but should either do a listen or a connect soon.
2107 */
2108 if (inp == NULL) {
2109 if (log_in_vain) {
2110 char dbuf[MAX_IPv6_STR_LEN], sbuf[MAX_IPv6_STR_LEN];
2111
2112 if (isipv6) {
2113 inet_ntop(AF_INET6, &ip6->ip6_dst, dbuf, sizeof(dbuf));
2114 inet_ntop(AF_INET6, &ip6->ip6_src, sbuf, sizeof(sbuf));
2115 } else {
2116 inet_ntop(AF_INET, &ip->ip_dst, dbuf, sizeof(dbuf));
2117 inet_ntop(AF_INET, &ip->ip_src, sbuf, sizeof(sbuf));
2118 }
2119 switch (log_in_vain) {
2120 case 1:
2121 if (thflags & TH_SYN) {
2122 log(LOG_INFO,
2123 "Connection attempt to TCP %s:%d from %s:%d\n",
2124 dbuf, ntohs(th->th_dport),
2125 sbuf,
2126 ntohs(th->th_sport));
2127 }
2128 break;
2129 case 2:
2130 log(LOG_INFO,
2131 "Connection attempt to TCP %s:%d from %s:%d flags:0x%x\n",
2132 dbuf, ntohs(th->th_dport), sbuf,
2133 ntohs(th->th_sport), thflags);
2134 break;
2135 case 3:
2136 case 4:
2137 if ((thflags & TH_SYN) && !(thflags & TH_ACK) &&
2138 !(m->m_flags & (M_BCAST | M_MCAST)) &&
2139 ((isipv6 && !IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst, &ip6->ip6_src)) ||
2140 (!isipv6 && ip->ip_dst.s_addr != ip->ip_src.s_addr))) {
2141 log_in_vain_log((LOG_INFO,
2142 "Stealth Mode connection attempt to TCP %s:%d from %s:%d\n",
2143 dbuf, ntohs(th->th_dport),
2144 sbuf,
2145 ntohs(th->th_sport)));
2146 }
2147 break;
2148 default:
2149 break;
2150 }
2151 }
2152 if (blackhole) {
2153 if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_type != IFT_LOOP) {
2154 switch (blackhole) {
2155 case 1:
2156 if (thflags & TH_SYN) {
2157 TCP_LOG_DROP_PKT(TCP_LOG_HDR, th, ifp, "blackhole 1 syn for closed port");
2158 goto dropnosock;
2159 }
2160 break;
2161 case 2:
2162 TCP_LOG_DROP_PKT(TCP_LOG_HDR, th, ifp, "blackhole 2 closed port");
2163 goto dropnosock;
2164 default:
2165 TCP_LOG_DROP_PKT(TCP_LOG_HDR, th, ifp, "blackhole closed port");
2166 goto dropnosock;
2167 }
2168 }
2169 }
2170 IF_TCP_STATINC(ifp, noconnnolist);
2171 TCP_LOG_DROP_PKT(TCP_LOG_HDR, th, ifp, "closed port");
2172 goto dropwithresetnosock;
2173 }
2174 so = inp->inp_socket;
2175 if (so == NULL) {
2176 /* This case shouldn't happen as the socket shouldn't be null
2177 * if inp_state isn't set to INPCB_STATE_DEAD
2178 * But just in case, we pretend we didn't find the socket if we hit this case
2179 * as this isn't cause for a panic (the socket might be leaked however)...
2180 */
2181 inp = NULL;
2182#if TEMPDEBUG
2183 printf("tcp_input: no more socket for inp=%x. This shouldn't happen\n", inp);
2184#endif
2185 TCP_LOG_DROP_PKT(TCP_LOG_HDR, th, ifp, "inp_socket NULL");
2186 goto dropnosock;
2187 }
2188
2189 socket_lock(so, 1);
2190 if (in_pcb_checkstate(inp, WNT_RELEASE, 1) == WNT_STOPUSING) {
2191 socket_unlock(so, 1);
2192 inp = NULL; // pretend we didn't find it
2193 TCP_LOG_DROP_PKT(TCP_LOG_HDR, th, ifp, "inp state WNT_STOPUSING");
2194 goto dropnosock;
2195 }
2196
2197 if (!isipv6 && inp->inp_faddr.s_addr != INADDR_ANY) {
2198 if (inp->inp_faddr.s_addr != ip->ip_src.s_addr ||
2199 inp->inp_laddr.s_addr != ip->ip_dst.s_addr ||
2200 inp->inp_fport != th->th_sport ||
2201 inp->inp_lport != th->th_dport) {
2202 os_log_error(OS_LOG_DEFAULT, "%s 5-tuple does not match: %u:%u %u:%u\n",
2203 __func__,
2204 ntohs(inp->inp_fport), ntohs(th->th_sport),
2205 ntohs(inp->inp_lport), ntohs(th->th_dport));
2206 if (findpcb_iterated) {
2207 goto drop;
2208 }
2209 findpcb_iterated = true;
2210 socket_unlock(so, 1);
2211 inp = NULL;
2212 goto findpcb;
2213 }
2214 } else if (isipv6 && !IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr)) {
2215 if (!IN6_ARE_ADDR_EQUAL(&inp->in6p_faddr, &ip6->ip6_src) ||
2216 !IN6_ARE_ADDR_EQUAL(&inp->in6p_laddr, &ip6->ip6_dst) ||
2217 inp->inp_fport != th->th_sport ||
2218 inp->inp_lport != th->th_dport) {
2219 os_log_error(OS_LOG_DEFAULT, "%s 5-tuple does not match: %u:%u %u:%u\n",
2220 __func__,
2221 ntohs(inp->inp_fport), ntohs(th->th_sport),
2222 ntohs(inp->inp_lport), ntohs(th->th_dport));
2223 if (findpcb_iterated) {
2224 goto drop;
2225 }
2226 findpcb_iterated = true;
2227 socket_unlock(so, 1);
2228 inp = NULL;
2229 goto findpcb;
2230 }
2231 }
2232
2233 tp = intotcpcb(inp);
2234 if (tp == NULL) {
2235 IF_TCP_STATINC(ifp, noconnlist);
2236 TCP_LOG_DROP_PKT(TCP_LOG_HDR, th, ifp, "tp is NULL");
2237 goto dropwithreset;
2238 }
2239
2240 TCP_LOG_TH_FLAGS(TCP_LOG_HDR, th, tp, false, ifp);
2241
2242 if (tp->t_state == TCPS_CLOSED) {
2243 TCP_LOG_DROP_PCB(TCP_LOG_HDR, th, tp, false, "tp state TCPS_CLOSED");
2244 goto drop;
2245 }
2246
2247#if NECP
2248 if (so->so_state & SS_ISCONNECTED) {
2249 // Connected TCP sockets have a fully-bound local and remote,
2250 // so the policy check doesn't need to override addresses
2251 if (!necp_socket_is_allowed_to_send_recv(inp, ifp, pf_tag, NULL, NULL, NULL, NULL)) {
2252 TCP_LOG_DROP_NECP(TCP_LOG_HDR, th, intotcpcb(inp), false);
2253 IF_TCP_STATINC(ifp, badformat);
2254 goto drop;
2255 }
2256 } else {
2257 /*
2258 * If the proc_uuid_policy table has been updated since the last use
2259 * of the listening socket (i.e., the proc_uuid_policy_table_gencount
2260 * has been updated), the flags in the socket may be out of date.
2261 * If INP2_WANT_APP_POLICY is stale, inbound packets may
2262 * be dropped by NECP if the socket should now match a per-app
2263 * exception policy.
2264 * In order to avoid this refresh the proc_uuid_policy state to
2265 * potentially recalculate the socket's flags before checking
2266 * with NECP.
2267 */
2268 (void) inp_update_policy(inp);
2269
2270 if (isipv6) {
2271 if (!necp_socket_is_allowed_to_send_recv_v6(inp,
2272 th->th_dport, th->th_sport, &ip6->ip6_dst,
2273 &ip6->ip6_src, ifp, pf_tag, NULL, NULL, NULL, NULL)) {
2274 TCP_LOG_DROP_NECP(TCP_LOG_HDR, th, intotcpcb(inp), false);
2275 IF_TCP_STATINC(ifp, badformat);
2276 goto drop;
2277 }
2278 } else {
2279 if (!necp_socket_is_allowed_to_send_recv_v4(inp,
2280 th->th_dport, th->th_sport, &ip->ip_dst, &ip->ip_src,
2281 ifp, pf_tag, NULL, NULL, NULL, NULL)) {
2282 TCP_LOG_DROP_NECP(TCP_LOG_HDR, th, intotcpcb(inp), false);
2283 IF_TCP_STATINC(ifp, badformat);
2284 goto drop;
2285 }
2286 }
2287 }
2288#endif /* NECP */
2289
2290 prev_t_state = tp->t_state;
2291
2292 /* If none of the FIN|SYN|RST|ACK flag is set, drop */
2293 if ((thflags & TH_ACCEPT) == 0) {
2294 TCP_LOG_DROP_PCB(TCP_LOG_HDR, th, tp, false, "rfc5961 TH_ACCEPT == 0");
2295 goto drop;
2296 }
2297
2298 /* Unscale the window into a 32-bit value. */
2299 if ((thflags & TH_SYN) == 0) {
2300 tiwin = th->th_win << tp->snd_scale;
2301 } else {
2302 tiwin = th->th_win;
2303 }
2304
2305 /* Avoid processing packets while closing a listen socket */
2306 if (tp->t_state == TCPS_LISTEN &&
2307 (so->so_options & SO_ACCEPTCONN) == 0) {
2308 TCP_LOG_DROP_PCB(TCP_LOG_HDR, th, tp, false, "closing a listening socket");
2309 goto drop;
2310 }
2311
2312 if (so->so_options & (SO_DEBUG | SO_ACCEPTCONN)) {
2313#if TCPDEBUG
2314 if (so->so_options & SO_DEBUG) {
2315 ostate = tp->t_state;
2316 if (isipv6) {
2317 bcopy((char *)ip6, (char *)tcp_saveipgen,
2318 sizeof(*ip6));
2319 } else {
2320 bcopy((char *)ip, (char *)tcp_saveipgen, sizeof(*ip));
2321 }
2322 tcp_savetcp = *th;
2323 }
2324#endif
2325 if (so->so_options & SO_ACCEPTCONN) {
2326 struct tcpcb *tp0 = tp;
2327 struct socket *so2;
2328 struct socket *oso;
2329 struct sockaddr_storage from;
2330 struct sockaddr_storage to2;
2331 struct inpcb *oinp = sotoinpcb(so);
2332 struct ifnet *head_ifscope;
2333 unsigned int head_nocell, head_recvanyif,
2334 head_noexpensive, head_awdl_unrestricted,
2335 head_intcoproc_allowed, head_external_port,
2336 head_noconstrained;
2337
2338 /* Get listener's bound-to-interface, if any */
2339 head_ifscope = (inp->inp_flags & INP_BOUND_IF) ?
2340 inp->inp_boundifp : NULL;
2341 /* Get listener's no-cellular information, if any */
2342 head_nocell = INP_NO_CELLULAR(inp);
2343 /* Get listener's recv-any-interface, if any */
2344 head_recvanyif = (inp->inp_flags & INP_RECV_ANYIF);
2345 /* Get listener's no-expensive information, if any */
2346 head_noexpensive = INP_NO_EXPENSIVE(inp);
2347 head_noconstrained = INP_NO_CONSTRAINED(inp);
2348 head_awdl_unrestricted = INP_AWDL_UNRESTRICTED(inp);
2349 head_intcoproc_allowed = INP_INTCOPROC_ALLOWED(inp);
2350 head_external_port = (inp->inp_flags2 & INP2_EXTERNAL_PORT);
2351
2352 /*
2353 * If the state is LISTEN then ignore segment if it contains an RST.
2354 * If the segment contains an ACK then it is bad and send a RST.
2355 * If it does not contain a SYN then it is not interesting; drop it.
2356 * If it is from this socket, drop it, it must be forged.
2357 */
2358 if ((thflags & (TH_RST | TH_ACK | TH_SYN)) != TH_SYN) {
2359 IF_TCP_STATINC(ifp, listbadsyn);
2360
2361 if (thflags & TH_RST) {
2362 TCP_LOG_DROP_PCB(TCP_LOG_HDR, th, tp, false, "SYN with RST");
2363 goto drop;
2364 }
2365 if (thflags & TH_ACK) {
2366 TCP_LOG_DROP_PCB(TCP_LOG_HDR, th, tp, false, "SYN with ACK");
2367 tp = NULL;
2368 tcpstat.tcps_badsyn++;
2369 goto dropwithreset;
2370 }
2371
2372 /* We come here if there is no SYN set */
2373 tcpstat.tcps_badsyn++;
2374 TCP_LOG_DROP_PCB(TCP_LOG_HDR, th, tp, false, "bad SYN");
2375 goto drop;
2376 }
2377 KERNEL_DEBUG(DBG_FNC_TCP_NEWCONN | DBG_FUNC_START, 0, 0, 0, 0, 0);
2378 if (th->th_dport == th->th_sport) {
2379 if (isipv6) {
2380 if (IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst,
2381 &ip6->ip6_src)) {
2382 TCP_LOG_DROP_PCB(TCP_LOG_HDR, th, tp, false, "bad tuple same port");
2383 goto drop;
2384 }
2385 } else if (ip->ip_dst.s_addr == ip->ip_src.s_addr) {
2386 TCP_LOG_DROP_PCB(TCP_LOG_HDR, th, tp, false, "bad tuple same IPv4 address");
2387 goto drop;
2388 }
2389 }
2390 /*
2391 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
2392 * in_broadcast() should never return true on a received
2393 * packet with M_BCAST not set.
2394 *
2395 * Packets with a multicast source address should also
2396 * be discarded.
2397 */
2398 if (m->m_flags & (M_BCAST | M_MCAST)) {
2399 TCP_LOG_DROP_PCB(TCP_LOG_HDR, th, tp, false, "mbuf M_BCAST | M_MCAST");
2400 goto drop;
2401 }
2402 if (isipv6) {
2403 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
2404 IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
2405 TCP_LOG_DROP_PCB(TCP_LOG_HDR, th, tp, false, "IN6_IS_ADDR_MULTICAST");
2406 goto drop;
2407 }
2408 } else if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
2409 IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
2410 ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
2411 in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif)) {
2412 TCP_LOG_DROP_PCB(TCP_LOG_HDR, th, tp, false, "multicast or broadcast address");
2413 goto drop;
2414 }
2415
2416
2417 /*
2418 * If deprecated address is forbidden,
2419 * we do not accept SYN to deprecated interface
2420 * address to prevent any new inbound connection from
2421 * getting established.
2422 * When we do not accept SYN, we send a TCP RST,
2423 * with deprecated source address (instead of dropping
2424 * it). We compromise it as it is much better for peer
2425 * to send a RST, and RST will be the final packet
2426 * for the exchange.
2427 *
2428 * If we do not forbid deprecated addresses, we accept
2429 * the SYN packet. RFC 4862 forbids dropping SYN in
2430 * this case.
2431 */
2432 if (isipv6 && !ip6_use_deprecated) {
2433 uint32_t ia6_flags;
2434
2435 if (ip6_getdstifaddr_info(m, NULL,
2436 &ia6_flags) == 0) {
2437 if (ia6_flags & IN6_IFF_DEPRECATED) {
2438 tp = NULL;
2439 IF_TCP_STATINC(ifp, deprecate6);
2440 TCP_LOG_DROP_PCB(TCP_LOG_HDR, th, tp, false, "deprecated IPv6 address");
2441 goto dropwithreset;
2442 }
2443 }
2444 }
2445 if (so->so_filt || check_cfil) {
2446 if (isipv6) {
2447 struct sockaddr_in6 *sin6 = (struct sockaddr_in6*)&from;
2448
2449 sin6->sin6_len = sizeof(*sin6);
2450 sin6->sin6_family = AF_INET6;
2451 sin6->sin6_port = th->th_sport;
2452 sin6->sin6_flowinfo = 0;
2453 sin6->sin6_addr = ip6->ip6_src;
2454 sin6->sin6_scope_id = 0;
2455
2456 sin6 = (struct sockaddr_in6*)&to2;
2457
2458 sin6->sin6_len = sizeof(struct sockaddr_in6);
2459 sin6->sin6_family = AF_INET6;
2460 sin6->sin6_port = th->th_dport;
2461 sin6->sin6_flowinfo = 0;
2462 sin6->sin6_addr = ip6->ip6_dst;
2463 sin6->sin6_scope_id = 0;
2464 } else {
2465 struct sockaddr_in *sin = (struct sockaddr_in*)&from;
2466
2467 sin->sin_len = sizeof(*sin);
2468 sin->sin_family = AF_INET;
2469 sin->sin_port = th->th_sport;
2470 sin->sin_addr = ip->ip_src;
2471
2472 sin = (struct sockaddr_in*)&to2;
2473
2474 sin->sin_len = sizeof(struct sockaddr_in);
2475 sin->sin_family = AF_INET;
2476 sin->sin_port = th->th_dport;
2477 sin->sin_addr = ip->ip_dst;
2478 }
2479 }
2480
2481 if (so->so_filt) {
2482 so2 = sonewconn(so, 0, (struct sockaddr*)&from);
2483 } else {
2484 so2 = sonewconn(so, 0, NULL);
2485 }
2486 if (so2 == 0) {
2487 tcpstat.tcps_listendrop++;
2488 if (tcp_dropdropablreq(so)) {
2489 if (so->so_filt) {
2490 so2 = sonewconn(so, 0, (struct sockaddr*)&from);
2491 } else {
2492 so2 = sonewconn(so, 0, NULL);
2493 }
2494 }
2495 if (!so2) {
2496 TCP_LOG_DROP_PCB(TCP_LOG_HDR, th, tp, false, " listen drop");
2497 goto drop;
2498 }
2499 }
2500
2501 /* Point "inp" and "tp" in tandem to new socket */
2502 inp = (struct inpcb *)so2->so_pcb;
2503 tp = intotcpcb(inp);
2504
2505 oso = so;
2506 socket_unlock(so, 0); /* Unlock but keep a reference on listener for now */
2507
2508 so = so2;
2509 socket_lock(so, 1);
2510 /*
2511 * Mark socket as temporary until we're
2512 * committed to keeping it. The code at
2513 * ``drop'' and ``dropwithreset'' check the
2514 * flag dropsocket to see if the temporary
2515 * socket created here should be discarded.
2516 * We mark the socket as discardable until
2517 * we're committed to it below in TCPS_LISTEN.
2518 * There are some error conditions in which we
2519 * have to drop the temporary socket.
2520 */
2521 dropsocket++;
2522 /*
2523 * Inherit INP_BOUND_IF from listener; testing if
2524 * head_ifscope is non-NULL is sufficient, since it
2525 * can only be set to a non-zero value earlier if
2526 * the listener has such a flag set.
2527 */
2528 if (head_ifscope != NULL) {
2529 inp->inp_flags |= INP_BOUND_IF;
2530 inp->inp_boundifp = head_ifscope;
2531 } else {
2532 inp->inp_flags &= ~INP_BOUND_IF;
2533 }
2534 /*
2535 * Inherit restrictions from listener.
2536 */
2537 if (head_nocell) {
2538 inp_set_nocellular(inp);
2539 }
2540 if (head_noexpensive) {
2541 inp_set_noexpensive(inp);
2542 }
2543 if (head_noconstrained) {
2544 inp_set_noconstrained(inp);
2545 }
2546 if (head_awdl_unrestricted) {
2547 inp_set_awdl_unrestricted(inp);
2548 }
2549 if (head_intcoproc_allowed) {
2550 inp_set_intcoproc_allowed(inp);
2551 }
2552 /*
2553 * Inherit {IN,IN6}_RECV_ANYIF from listener.
2554 */
2555 if (head_recvanyif) {
2556 inp->inp_flags |= INP_RECV_ANYIF;
2557 } else {
2558 inp->inp_flags &= ~INP_RECV_ANYIF;
2559 }
2560
2561 if (head_external_port) {
2562 inp->inp_flags2 |= INP2_EXTERNAL_PORT;
2563 }
2564 if (isipv6) {
2565 inp->in6p_laddr = ip6->ip6_dst;
2566 } else {
2567 inp->inp_vflag &= ~INP_IPV6;
2568 inp->inp_vflag |= INP_IPV4;
2569 inp->inp_laddr = ip->ip_dst;
2570 }
2571 inp->inp_lport = th->th_dport;
2572 if (in_pcbinshash(inp, 0) != 0) {
2573 /*
2574 * Undo the assignments above if we failed to
2575 * put the PCB on the hash lists.
2576 */
2577 if (isipv6) {
2578 inp->in6p_laddr = in6addr_any;
2579 } else {
2580 inp->inp_laddr.s_addr = INADDR_ANY;
2581 }
2582 inp->inp_lport = 0;
2583 socket_lock(oso, 0); /* release ref on parent */
2584 socket_unlock(oso, 1);
2585 TCP_LOG_DROP_PCB(TCP_LOG_HDR, th, tp, false, " in_pcbinshash failed");
2586 goto drop;
2587 }
2588 socket_lock(oso, 0);
2589 if (isipv6) {
2590 /*
2591 * Inherit socket options from the listening
2592 * socket.
2593 * Note that in6p_inputopts are not (even
2594 * should not be) copied, since it stores
2595 * previously received options and is used to
2596 * detect if each new option is different than
2597 * the previous one and hence should be passed
2598 * to a user.
2599 * If we copied in6p_inputopts, a user would
2600 * not be able to receive options just after
2601 * calling the accept system call.
2602 */
2603 inp->inp_flags |=
2604 oinp->inp_flags & INP_CONTROLOPTS;
2605 if (oinp->in6p_outputopts) {
2606 inp->in6p_outputopts =
2607 ip6_copypktopts(oinp->in6p_outputopts,
2608 M_NOWAIT);
2609 }
2610 } else {
2611 inp->inp_options = ip_srcroute();
2612 inp->inp_ip_tos = oinp->inp_ip_tos;
2613 }
2614#if IPSEC
2615 /* copy old policy into new socket's */
2616 if (sotoinpcb(oso)->inp_sp) {
2617 int error = 0;
2618 /* Is it a security hole here to silently fail to copy the policy? */
2619 if (inp->inp_sp != NULL) {
2620 error = ipsec_init_policy(so, &inp->inp_sp);
2621 }
2622 if (error != 0 || ipsec_copy_policy(sotoinpcb(oso)->inp_sp, inp->inp_sp)) {
2623 printf("tcp_input: could not copy policy\n");
2624 }
2625 }
2626#endif
2627 /* inherit states from the listener */
2628 DTRACE_TCP4(state__change, void, NULL, struct inpcb *, inp,
2629 struct tcpcb *, tp, int32_t, TCPS_LISTEN);
2630 tp->t_state = TCPS_LISTEN;
2631 tp->t_flags |= tp0->t_flags & (TF_NOPUSH | TF_NOOPT | TF_NODELAY);
2632 tp->t_flagsext |= (tp0->t_flagsext & (TF_RXTFINDROP | TF_NOTIMEWAIT | TF_FASTOPEN));
2633 tp->t_keepinit = tp0->t_keepinit;
2634 tp->t_keepcnt = tp0->t_keepcnt;
2635 tp->t_keepintvl = tp0->t_keepintvl;
2636 tp->t_adaptive_wtimo = tp0->t_adaptive_wtimo;
2637 tp->t_adaptive_rtimo = tp0->t_adaptive_rtimo;
2638 tp->t_inpcb->inp_ip_ttl = tp0->t_inpcb->inp_ip_ttl;
2639 if ((so->so_flags & SOF_NOTSENT_LOWAT) != 0) {
2640 tp->t_notsent_lowat = tp0->t_notsent_lowat;
2641 }
2642 tp->t_inpcb->inp_flags2 |=
2643 tp0->t_inpcb->inp_flags2 & INP2_KEEPALIVE_OFFLOAD;
2644
2645 /* now drop the reference on the listener */
2646 socket_unlock(oso, 1);
2647
2648 tcp_set_max_rwinscale(tp, so);
2649
2650#if CONTENT_FILTER
2651 if (check_cfil) {
2652 int error = cfil_sock_attach(so2, (struct sockaddr*)&to2, (struct sockaddr*)&from,
2653 CFS_CONNECTION_DIR_IN);
2654 if (error != 0) {
2655 TCP_LOG_DROP_PCB(TCP_LOG_HDR, th, tp, false, " cfil_sock_attach failed");
2656 goto drop;
2657 }
2658 }
2659#endif /* CONTENT_FILTER */
2660
2661 KERNEL_DEBUG(DBG_FNC_TCP_NEWCONN | DBG_FUNC_END, 0, 0, 0, 0, 0);
2662 }
2663 }
2664 socket_lock_assert_owned(so);
2665
2666 if (net_mpklog_enabled && (m->m_pkthdr.rcvif->if_xflags & IFXF_MPK_LOG)) {
2667 MPKL_TCP_INPUT(tcp_mpkl_log_object,
2668 ntohs(tp->t_inpcb->inp_lport), ntohs(tp->t_inpcb->inp_fport),
2669 th->th_seq, th->th_ack, tlen, thflags,
2670 so->last_pid, so->so_log_seqn++);
2671 }
2672
2673 if (tp->t_state == TCPS_ESTABLISHED && tlen > 0) {
2674 /*
2675 * Evaluate the rate of arrival of packets to see if the
2676 * receiver can reduce the ack traffic. The algorithm to
2677 * stretch acks will be enabled if the connection meets
2678 * certain criteria defined in tcp_stretch_ack_enable function.
2679 */
2680 if ((tp->t_flagsext & TF_RCVUNACK_WAITSS) != 0) {
2681 TCP_INC_VAR(tp->rcv_waitforss, segment_count);
2682 }
2683 if (tcp_stretch_ack_enable(tp, thflags)) {
2684 tp->t_flags |= TF_STRETCHACK;
2685 tp->t_flagsext &= ~(TF_RCVUNACK_WAITSS);
2686 tp->rcv_waitforss = 0;
2687 } else {
2688 tp->t_flags &= ~(TF_STRETCHACK);
2689 }
2690 if (TSTMP_GT(tp->rcv_unackwin - (tcp_rcvunackwin >> 1), tcp_now)) {
2691 tp->rcv_by_unackhalfwin += (tlen + off);
2692 tp->rcv_by_unackwin += (tlen + off);
2693 } else {
2694 tp->rcv_unackwin = tcp_now + tcp_rcvunackwin;
2695 tp->rcv_by_unackwin = tp->rcv_by_unackhalfwin + tlen + off;
2696 tp->rcv_by_unackhalfwin = tlen + off;
2697 }
2698 }
2699
2700 /*
2701 * Clear TE_SENDECE if TH_CWR is set. This is harmless, so we don't
2702 * bother doing extensive checks for state and whatnot.
2703 */
2704 if (thflags & TH_CWR) {
2705 tp->ecn_flags &= ~TE_SENDECE;
2706 tp->t_ecn_recv_cwr++;
2707 }
2708
2709 /*
2710 * Explicit Congestion Notification - Flag that we need to send ECT if
2711 * + The IP Congestion experienced flag was set.
2712 * + Socket is in established state
2713 * + We negotiated ECN in the TCP setup
2714 * + This isn't a pure ack (tlen > 0)
2715 * + The data is in the valid window
2716 *
2717 * TE_SENDECE will be cleared when we receive a packet with TH_CWR set.
2718 */
2719 if (ip_ecn == IPTOS_ECN_CE && tp->t_state == TCPS_ESTABLISHED &&
2720 TCP_ECN_ENABLED(tp) && tlen > 0 &&
2721 SEQ_GEQ(th->th_seq, tp->last_ack_sent) &&
2722 SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) {
2723 tp->t_ecn_recv_ce++;
2724 tcpstat.tcps_ecn_recv_ce++;
2725 INP_INC_IFNET_STAT(inp, ecn_recv_ce);
2726 /* Mark this connection as it received CE from network */
2727 tp->ecn_flags |= TE_RECV_ECN_CE;
2728 tp->ecn_flags |= TE_SENDECE;
2729 }
2730
2731 /*
2732 * If we received an explicit notification of congestion in
2733 * ip tos ecn bits or by the CWR bit in TCP header flags, reset
2734 * the ack-stretching state. We need to handle ECN notification if
2735 * an ECN setup SYN was sent even once.
2736 */
2737 if (tp->t_state == TCPS_ESTABLISHED &&
2738 (tp->ecn_flags & TE_SETUPSENT) &&
2739 (ip_ecn == IPTOS_ECN_CE || (thflags & TH_CWR))) {
2740 tcp_reset_stretch_ack(tp);
2741 tp->t_forced_acks = TCP_FORCED_ACKS_COUNT;
2742 CLEAR_IAJ_STATE(tp);
2743 }
2744
2745 if (ip_ecn == IPTOS_ECN_CE && tp->t_state == TCPS_ESTABLISHED &&
2746 !TCP_ECN_ENABLED(tp) && !(tp->ecn_flags & TE_CEHEURI_SET)) {
2747 tcpstat.tcps_ecn_fallback_ce++;
2748 tcp_heuristic_ecn_aggressive(tp);
2749 tp->ecn_flags |= TE_CEHEURI_SET;
2750 }
2751
2752 if (tp->t_state == TCPS_ESTABLISHED && TCP_ECN_ENABLED(tp) &&
2753 ip_ecn == IPTOS_ECN_CE && !(tp->ecn_flags & TE_CEHEURI_SET)) {
2754 if (inp->inp_stat->rxpackets < ECN_MIN_CE_PROBES) {
2755 tp->t_ecn_recv_ce_pkt++;
2756 } else if (tp->t_ecn_recv_ce_pkt > ECN_MAX_CE_RATIO) {
2757 tcpstat.tcps_ecn_fallback_ce++;
2758 tcp_heuristic_ecn_aggressive(tp);
2759 tp->ecn_flags |= TE_CEHEURI_SET;
2760 INP_INC_IFNET_STAT(inp, ecn_fallback_ce);
2761 } else {
2762 /* We tracked the first ECN_MIN_CE_PROBES segments, we
2763 * now know that the path is good.
2764 */
2765 tp->ecn_flags |= TE_CEHEURI_SET;
2766 }
2767 }
2768
2769 /* Update rcvtime as a new segment was received on the connection */
2770 tp->t_rcvtime = tcp_now;
2771
2772 /*
2773 * Segment received on connection.
2774 * Reset idle time and keep-alive timer.
2775 */
2776 if (TCPS_HAVEESTABLISHED(tp->t_state)) {
2777 tcp_keepalive_reset(tp);
2778
2779 if (tp->t_mpsub) {
2780 mptcp_reset_keepalive(tp);
2781 }
2782 }
2783
2784 /*
2785 * Process options if not in LISTEN state,
2786 * else do it below (after getting remote address).
2787 */
2788 if (tp->t_state != TCPS_LISTEN && optp) {
2789 tcp_dooptions(tp, optp, optlen, th, &to);
2790 }
2791#if MPTCP
2792 if (tp->t_state != TCPS_LISTEN && (so->so_flags & SOF_MP_SUBFLOW) &&
2793 mptcp_input_preproc(tp, m, th, drop_hdrlen) != 0) {
2794 tp->t_flags |= TF_ACKNOW;
2795 (void) tcp_output(tp);
2796 tcp_check_timer_state(tp);
2797 socket_unlock(so, 1);
2798 return;
2799 }
2800#endif /* MPTCP */
2801 if (tp->t_state == TCPS_SYN_SENT && (thflags & TH_SYN)) {
2802 if (!(thflags & TH_ACK) ||
2803 (SEQ_GT(th->th_ack, tp->iss) &&
2804 SEQ_LEQ(th->th_ack, tp->snd_max))) {
2805 tcp_finalize_options(tp, &to, ifscope);
2806 }
2807 }
2808
2809#if TRAFFIC_MGT
2810 /*
2811 * Compute inter-packet arrival jitter. According to RFC 3550,
2812 * inter-packet arrival jitter is defined as the difference in
2813 * packet spacing at the receiver compared to the sender for a
2814 * pair of packets. When two packets of maximum segment size come
2815 * one after the other with consecutive sequence numbers, we
2816 * consider them as packets sent together at the sender and use
2817 * them as a pair to compute inter-packet arrival jitter. This
2818 * metric indicates the delay induced by the network components due
2819 * to queuing in edge/access routers.
2820 */
2821 if (tp->t_state == TCPS_ESTABLISHED &&
2822 (thflags & (TH_SYN | TH_FIN | TH_RST | TH_URG | TH_ACK | TH_ECE | TH_PUSH)) == TH_ACK &&
2823 ((tp->t_flags & TF_NEEDFIN) == 0) &&
2824 ((to.to_flags & TOF_TS) == 0 ||
2825 TSTMP_GEQ(to.to_tsval, tp->ts_recent)) &&
2826 th->th_seq == tp->rcv_nxt && LIST_EMPTY(&tp->t_segq)) {
2827 int seg_size = tlen;
2828 if (tp->iaj_pktcnt <= IAJ_IGNORE_PKTCNT) {
2829 TCP_INC_VAR(tp->iaj_pktcnt, segment_count);
2830 }
2831
2832 if (tp->iaj_size == 0 || seg_size > tp->iaj_size ||
2833 (seg_size == tp->iaj_size && tp->iaj_rcv_ts == 0)) {
2834 /*
2835 * State related to inter-arrival jitter is
2836 * uninitialized or we are trying to find a good
2837 * first packet to start computing the metric
2838 */
2839 update_iaj_state(tp, seg_size, 0);
2840 } else {
2841 if (seg_size == tp->iaj_size) {
2842 /*
2843 * Compute inter-arrival jitter taking
2844 * this packet as the second packet
2845 */
2846 compute_iaj(tp);
2847 }
2848 if (seg_size < tp->iaj_size) {
2849 /*
2850 * There is a smaller packet in the stream.
2851 * Some times the maximum size supported
2852 * on a path can change if there is a new
2853 * link with smaller MTU. The receiver will
2854 * not know about this change. If there
2855 * are too many packets smaller than
2856 * iaj_size, we try to learn the iaj_size
2857 * again.
2858 */
2859 TCP_INC_VAR(tp->iaj_small_pkt, segment_count);
2860 if (tp->iaj_small_pkt > RESET_IAJ_SIZE_THRESH) {
2861 update_iaj_state(tp, seg_size, 1);
2862 } else {
2863 CLEAR_IAJ_STATE(tp);
2864 }
2865 } else {
2866 update_iaj_state(tp, seg_size, 0);
2867 }
2868 }
2869 } else {
2870 CLEAR_IAJ_STATE(tp);
2871 }
2872#endif /* TRAFFIC_MGT */
2873
2874 /*
2875 * Header prediction: check for the two common cases
2876 * of a uni-directional data xfer. If the packet has
2877 * no control flags, is in-sequence, the window didn't
2878 * change and we're not retransmitting, it's a
2879 * candidate. If the length is zero and the ack moved
2880 * forward, we're the sender side of the xfer. Just
2881 * free the data acked & wake any higher level process
2882 * that was blocked waiting for space. If the length
2883 * is non-zero and the ack didn't move, we're the
2884 * receiver side. If we're getting packets in-order
2885 * (the reassembly queue is empty), add the data to
2886 * the socket buffer and note that we need a delayed ack.
2887 * Make sure that the hidden state-flags are also off.
2888 * Since we check for TCPS_ESTABLISHED above, it can only
2889 * be TH_NEEDSYN.
2890 */
2891 if (tp->t_state == TCPS_ESTABLISHED &&
2892 (thflags & (TH_SYN | TH_FIN | TH_RST | TH_URG | TH_ACK | TH_ECE | TH_CWR)) == TH_ACK &&
2893 ((tp->t_flags & TF_NEEDFIN) == 0) &&
2894 ((to.to_flags & TOF_TS) == 0 ||
2895 TSTMP_GEQ(to.to_tsval, tp->ts_recent)) &&
2896 th->th_seq == tp->rcv_nxt &&
2897 tiwin && tiwin == tp->snd_wnd &&
2898 tp->snd_nxt == tp->snd_max) {
2899 /*
2900 * If last ACK falls within this segment's sequence numbers,
2901 * record the timestamp.
2902 * NOTE that the test is modified according to the latest
2903 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
2904 */
2905 if ((to.to_flags & TOF_TS) != 0 &&
2906 SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
2907 tp->ts_recent_age = tcp_now;
2908 tp->ts_recent = to.to_tsval;
2909 }
2910
2911 if (tlen == 0) {
2912 if (SEQ_GT(th->th_ack, tp->snd_una) &&
2913 SEQ_LEQ(th->th_ack, tp->snd_max) &&
2914 tp->snd_cwnd >= tp->snd_ssthresh &&
2915 (!IN_FASTRECOVERY(tp) &&
2916 ((!(SACK_ENABLED(tp)) &&
2917 tp->t_dupacks < tp->t_rexmtthresh) ||
2918 (SACK_ENABLED(tp) && to.to_nsacks == 0 &&
2919 TAILQ_EMPTY(&tp->snd_holes))))) {
2920 /*
2921 * this is a pure ack for outstanding data.
2922 */
2923 ++tcpstat.tcps_predack;
2924
2925 tcp_bad_rexmt_check(tp, th, &to);
2926
2927 /* Recalculate the RTT */
2928 tcp_compute_rtt(tp, &to, th);
2929
2930 VERIFY(SEQ_GEQ(th->th_ack, tp->snd_una));
2931 acked = BYTES_ACKED(th, tp);
2932 tcpstat.tcps_rcvackpack++;
2933 tcpstat.tcps_rcvackbyte += acked;
2934
2935 /*
2936 * Handle an ack that is in sequence during
2937 * congestion avoidance phase. The
2938 * calculations in this function
2939 * assume that snd_una is not updated yet.
2940 */
2941 if (CC_ALGO(tp)->congestion_avd != NULL) {
2942 CC_ALGO(tp)->congestion_avd(tp, th);
2943 }
2944 tcp_ccdbg_trace(tp, th, TCP_CC_INSEQ_ACK_RCVD);
2945 sbdrop(&so->so_snd, acked);
2946 tcp_sbsnd_trim(&so->so_snd);
2947
2948 if (SEQ_GT(tp->snd_una, tp->snd_recover) &&
2949 SEQ_LEQ(th->th_ack, tp->snd_recover)) {
2950 tp->snd_recover = th->th_ack - 1;
2951 }
2952
2953 tcp_update_snd_una(tp, th->th_ack);
2954
2955 TCP_RESET_REXMT_STATE(tp);
2956
2957 /*
2958 * pull snd_wl2 up to prevent seq wrap relative
2959 * to th_ack.
2960 */
2961 tp->snd_wl2 = th->th_ack;
2962
2963 if (tp->t_dupacks > 0) {
2964 tp->t_dupacks = 0;
2965 tp->t_rexmtthresh = tcprexmtthresh;
2966 tp->t_new_dupacks = 0;
2967 }
2968
2969 tp->sackhint.sack_bytes_acked = 0;
2970
2971 /*
2972 * If all outstanding data are acked, stop
2973 * retransmit timer, otherwise restart timer
2974 * using current (possibly backed-off) value.
2975 * If process is waiting for space,
2976 * wakeup/selwakeup/signal. If data
2977 * are ready to send, let tcp_output
2978 * decide between more output or persist.
2979 */
2980 if (tp->snd_una == tp->snd_max) {
2981 tp->t_timer[TCPT_REXMT] = 0;
2982 tp->t_timer[TCPT_PTO] = 0;
2983 } else if (tp->t_timer[TCPT_PERSIST] == 0) {
2984 tp->t_timer[TCPT_REXMT] = OFFSET_FROM_START(tp, tp->t_rxtcur);
2985 }
2986 if (!SLIST_EMPTY(&tp->t_rxt_segments) &&
2987 !TCP_DSACK_SEQ_IN_WINDOW(tp,
2988 tp->t_dsack_lastuna, tp->snd_una)) {
2989 tcp_rxtseg_clean(tp);
2990 }
2991
2992 if ((tp->t_flagsext & TF_MEASURESNDBW) != 0 &&
2993 tp->t_bwmeas != NULL) {
2994 tcp_bwmeas_check(tp);
2995 }
2996
2997 write_wakeup = 1;
2998 if (!SLIST_EMPTY(&tp->t_notify_ack)) {
2999 tcp_notify_acknowledgement(tp, so);
3000 }
3001
3002 if ((so->so_snd.sb_cc) || (tp->t_flags & TF_ACKNOW)) {
3003 (void) tcp_output(tp);
3004 }
3005
3006 tcp_tfo_rcv_ack(tp, th);
3007
3008 m_freem(m);
3009
3010 tcp_check_timer_state(tp);
3011
3012 tcp_handle_wakeup(so, read_wakeup, write_wakeup);
3013
3014 socket_unlock(so, 1);
3015 KERNEL_DEBUG(DBG_FNC_TCP_INPUT | DBG_FUNC_END, 0, 0, 0, 0, 0);
3016 return;
3017 }
3018 } else if (th->th_ack == tp->snd_una && LIST_EMPTY(&tp->t_segq) &&
3019 tlen <= tcp_sbspace(tp)) {
3020 /*
3021 * this is a pure, in-sequence data packet
3022 * with nothing on the reassembly queue and
3023 * we have enough buffer space to take it.
3024 */
3025
3026 /* Clean receiver SACK report if present */
3027 if (SACK_ENABLED(tp) && tp->rcv_numsacks) {
3028 tcp_clean_sackreport(tp);
3029 }
3030 ++tcpstat.tcps_preddat;
3031 tp->rcv_nxt += tlen;
3032 /*
3033 * Pull snd_wl1 up to prevent seq wrap relative to
3034 * th_seq.
3035 */
3036 tp->snd_wl1 = th->th_seq;
3037 /*
3038 * Pull rcv_up up to prevent seq wrap relative to
3039 * rcv_nxt.
3040 */
3041 tp->rcv_up = tp->rcv_nxt;
3042 TCP_INC_VAR(tcpstat.tcps_rcvpack, segment_count);
3043 tcpstat.tcps_rcvbyte += tlen;
3044 if (nstat_collect) {
3045 INP_ADD_STAT(inp, cell, wifi, wired,
3046 rxpackets, 1);
3047 INP_ADD_STAT(inp, cell, wifi, wired, rxbytes,
3048 tlen);
3049 inp_set_activity_bitmap(inp);
3050 }
3051
3052 /*
3053 * Calculate the RTT on the receiver only if the
3054 * connection is in streaming mode and the last
3055 * packet was not an end-of-write
3056 */
3057 if (tp->t_flags & TF_STREAMING_ON) {
3058 tcp_compute_rtt(tp, &to, th);
3059 }
3060
3061 tcp_sbrcv_grow(tp, &so->so_rcv, &to, tlen);
3062
3063 /*
3064 * Add data to socket buffer.
3065 */
3066 so_recv_data_stat(so, m, 0);
3067 m_adj(m, drop_hdrlen); /* delayed header drop */
3068
3069 /*
3070 * If message delivery (SOF_ENABLE_MSGS) is enabled on
3071 * this socket, deliver the packet received as an
3072 * in-order message with sequence number attached to it.
3073 */
3074 if (isipv6) {
3075 memcpy(&saved_hdr, ip6, sizeof(struct ip6_hdr));
3076 ip6 = (struct ip6_hdr *)&saved_hdr[0];
3077 } else {
3078 memcpy(&saved_hdr, ip, ip->ip_hl << 2);
3079 ip = (struct ip *)&saved_hdr[0];
3080 }
3081 memcpy(&saved_tcphdr, th, sizeof(struct tcphdr));
3082
3083 if (th->th_flags & TH_PUSH) {
3084 tp->t_flagsext |= TF_LAST_IS_PSH;
3085 } else {
3086 tp->t_flagsext &= ~TF_LAST_IS_PSH;
3087 }
3088
3089 if (sbappendstream_rcvdemux(so, m)) {
3090 mptcp_handle_input(so);
3091 read_wakeup = 1;
3092 }
3093 th = &saved_tcphdr;
3094
3095 if (isipv6) {
3096 KERNEL_DEBUG(DBG_LAYER_END, ((th->th_dport << 16) | th->th_sport),
3097 (((ip6->ip6_src.s6_addr16[0]) << 16) | (ip6->ip6_dst.s6_addr16[0])),
3098 th->th_seq, th->th_ack, th->th_win);
3099 } else {
3100 KERNEL_DEBUG(DBG_LAYER_END, ((th->th_dport << 16) | th->th_sport),
3101 (((ip->ip_src.s_addr & 0xffff) << 16) | (ip->ip_dst.s_addr & 0xffff)),
3102 th->th_seq, th->th_ack, th->th_win);
3103 }
3104 TCP_INC_VAR(tp->t_unacksegs, segment_count);
3105 if (DELAY_ACK(tp, th)) {
3106 if ((tp->t_flags & TF_DELACK) == 0) {
3107 tp->t_flags |= TF_DELACK;
3108 tp->t_timer[TCPT_DELACK] = OFFSET_FROM_START(tp, tcp_delack);
3109 }
3110 } else {
3111 tp->t_flags |= TF_ACKNOW;
3112 tcp_output(tp);
3113 }
3114
3115 tcp_adaptive_rwtimo_check(tp, tlen);
3116
3117 if (tlen > 0) {
3118 tcp_tfo_rcv_data(tp);
3119 }
3120
3121 tcp_check_timer_state(tp);
3122
3123 tcp_handle_wakeup(so, read_wakeup, write_wakeup);
3124
3125 socket_unlock(so, 1);
3126 KERNEL_DEBUG(DBG_FNC_TCP_INPUT | DBG_FUNC_END, 0, 0, 0, 0, 0);
3127 return;
3128 }
3129 }
3130
3131 /*
3132 * Calculate amount of space in receive window,
3133 * and then do TCP input processing.
3134 * Receive window is amount of space in rcv queue,
3135 * but not less than advertised window.
3136 */
3137 socket_lock_assert_owned(so);
3138 win = tcp_sbspace(tp);
3139 if (win < 0) {
3140 win = 0;
3141 } else { /* clip rcv window to 4K for modems */
3142 if (tp->t_flags & TF_SLOWLINK && slowlink_wsize > 0) {
3143 win = min(win, slowlink_wsize);
3144 }
3145 }
3146 tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
3147#if MPTCP
3148 /*
3149 * Ensure that the subflow receive window isn't greater
3150 * than the connection level receive window.
3151 */
3152 if ((tp->t_mpflags & TMPF_MPTCP_TRUE) && (mp_tp = tptomptp(tp))) {
3153 socket_lock_assert_owned(mptetoso(mp_tp->mpt_mpte));
3154 int64_t recwin_conn = (int64_t)(mp_tp->mpt_rcvadv - mp_tp->mpt_rcvnxt);
3155
3156 VERIFY(recwin_conn < INT32_MAX && recwin_conn > INT32_MIN);
3157 if (recwin_conn > 0 && tp->rcv_wnd > (uint32_t)recwin_conn) {
3158 tp->rcv_wnd = (uint32_t)recwin_conn;
3159 tcpstat.tcps_mp_reducedwin++;
3160 }
3161 }
3162#endif /* MPTCP */
3163
3164 switch (tp->t_state) {
3165 /*
3166 * Initialize tp->rcv_nxt, and tp->irs, select an initial
3167 * tp->iss, and send a segment:
3168 * <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
3169 * Also initialize tp->snd_nxt to tp->iss+1 and tp->snd_una to tp->iss.
3170 * Fill in remote peer address fields if not previously specified.
3171 * Enter SYN_RECEIVED state, and process any other fields of this
3172 * segment in this state.
3173 */
3174 case TCPS_LISTEN: {
3175 struct sockaddr_in *sin;
3176 struct sockaddr_in6 *sin6;
3177
3178 socket_lock_assert_owned(so);
3179
3180 /* Clear the logging flags inherited from the listening socket */
3181 tp->t_log_flags = 0;
3182 tp->t_flagsext &= ~TF_LOGGED_CONN_SUMMARY;
3183
3184 if (isipv6) {
3185 MALLOC(sin6, struct sockaddr_in6 *, sizeof *sin6,
3186 M_SONAME, M_NOWAIT);
3187 if (sin6 == NULL) {
3188 TCP_LOG_DROP_PCB(TCP_LOG_HDR, th, tp, false, "LISTEN malloc M_SONAME failed");
3189 goto drop;
3190 }
3191 bzero(sin6, sizeof(*sin6));
3192 sin6->sin6_family = AF_INET6;
3193 sin6->sin6_len = sizeof(*sin6);
3194 sin6->sin6_addr = ip6->ip6_src;
3195 sin6->sin6_port = th->th_sport;
3196 laddr6 = inp->in6p_laddr;
3197 if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr)) {
3198 inp->in6p_laddr = ip6->ip6_dst;
3199 }
3200 if (in6_pcbconnect(inp, (struct sockaddr *)sin6,
3201 kernel_proc)) {
3202 inp->in6p_laddr = laddr6;
3203 FREE(sin6, M_SONAME);
3204 TCP_LOG_DROP_PCB(TCP_LOG_HDR, th, tp, false, " LISTEN in6_pcbconnect failed");
3205 goto drop;
3206 }
3207 FREE(sin6, M_SONAME);
3208 } else {
3209 socket_lock_assert_owned(so);
3210 MALLOC(sin, struct sockaddr_in *, sizeof *sin, M_SONAME,
3211 M_NOWAIT);
3212 if (sin == NULL) {
3213 TCP_LOG_DROP_PCB(TCP_LOG_HDR, th, tp, false, "LISTEN malloc M_SONAME failed");
3214 goto drop;
3215 }
3216 sin->sin_family = AF_INET;
3217 sin->sin_len = sizeof(*sin);
3218 sin->sin_addr = ip->ip_src;
3219 sin->sin_port = th->th_sport;
3220 bzero((caddr_t)sin->sin_zero, sizeof(sin->sin_zero));
3221 laddr = inp->inp_laddr;
3222 if (inp->inp_laddr.s_addr == INADDR_ANY) {
3223 inp->inp_laddr = ip->ip_dst;
3224 }
3225 if (in_pcbconnect(inp, (struct sockaddr *)sin, kernel_proc,
3226 IFSCOPE_NONE, NULL)) {
3227 inp->inp_laddr = laddr;
3228 FREE(sin, M_SONAME);
3229 TCP_LOG_DROP_PCB(TCP_LOG_HDR, th, tp, false, " LISTEN in_pcbconnect failed");
3230 goto drop;
3231 }
3232 FREE(sin, M_SONAME);
3233 }
3234
3235 tcp_dooptions(tp, optp, optlen, th, &to);
3236 tcp_finalize_options(tp, &to, ifscope);
3237
3238 if (tfo_enabled(tp) && tcp_tfo_syn(tp, &to)) {
3239 isconnected = TRUE;
3240 }
3241
3242 if (iss) {
3243 tp->iss = iss;
3244 } else {
3245 tp->iss = tcp_new_isn(tp);
3246 }
3247 tp->irs = th->th_seq;
3248 tcp_sendseqinit(tp);
3249 tcp_rcvseqinit(tp);
3250 tp->snd_recover = tp->snd_una;
3251 /*
3252 * Initialization of the tcpcb for transaction;
3253 * set SND.WND = SEG.WND,
3254 * initialize CCsend and CCrecv.
3255 */
3256 tp->snd_wnd = tiwin; /* initial send-window */
3257 tp->max_sndwnd = tp->snd_wnd;
3258 tp->t_flags |= TF_ACKNOW;
3259 tp->t_unacksegs = 0;
3260 DTRACE_TCP4(state__change, void, NULL, struct inpcb *, inp,
3261 struct tcpcb *, tp, int32_t, TCPS_SYN_RECEIVED);
3262 tp->t_state = TCPS_SYN_RECEIVED;
3263 tp->t_timer[TCPT_KEEP] = OFFSET_FROM_START(tp,
3264 TCP_CONN_KEEPINIT(tp));
3265 tp->t_connect_time = tcp_now;
3266 dropsocket = 0; /* committed to socket */
3267
3268 if (inp->inp_flowhash == 0) {
3269 inp->inp_flowhash = inp_calc_flowhash(inp);
3270 }
3271 /* update flowinfo - RFC 6437 */
3272 if (inp->inp_flow == 0 &&
3273 inp->in6p_flags & IN6P_AUTOFLOWLABEL) {
3274 inp->inp_flow &= ~IPV6_FLOWLABEL_MASK;
3275 inp->inp_flow |=
3276 (htonl(inp->inp_flowhash) & IPV6_FLOWLABEL_MASK);
3277 }
3278
3279 /* reset the incomp processing flag */
3280 so->so_flags &= ~(SOF_INCOMP_INPROGRESS);
3281 tcpstat.tcps_accepts++;
3282 if ((thflags & (TH_ECE | TH_CWR)) == (TH_ECE | TH_CWR)) {
3283 /* ECN-setup SYN */
3284 tp->ecn_flags |= (TE_SETUPRECEIVED | TE_SENDIPECT);
3285 }
3286
3287 /*
3288 * The address and connection state are finalized
3289 */
3290 TCP_LOG_CONNECT(tp, false, 0);
3291
3292 tcp_add_fsw_flow(tp, ifp);
3293
3294 goto trimthenstep6;
3295 }
3296
3297 /*
3298 * If the state is SYN_RECEIVED and the seg contains an ACK,
3299 * but not for our SYN/ACK, send a RST.
3300 */
3301 case TCPS_SYN_RECEIVED:
3302 if ((thflags & TH_ACK) &&
3303 (SEQ_LEQ(th->th_ack, tp->snd_una) ||
3304 SEQ_GT(th->th_ack, tp->snd_max))) {
3305 IF_TCP_STATINC(ifp, ooopacket);
3306 TCP_LOG_DROP_PCB(TCP_LOG_HDR, th, tp, false, "SYN_RECEIVED bad ACK");
3307 goto dropwithreset;
3308 }
3309
3310 /*
3311 * In SYN_RECEIVED state, if we recv some SYNS with
3312 * window scale and others without, window scaling should
3313 * be disabled. Otherwise the window advertised will be
3314 * lower if we assume scaling and the other end does not.
3315 */
3316 if ((thflags & TH_SYN) &&
3317 (tp->irs == th->th_seq) &&
3318 !(to.to_flags & TOF_SCALE)) {
3319 tp->t_flags &= ~TF_RCVD_SCALE;
3320 }
3321 break;
3322
3323 /*
3324 * If the state is SYN_SENT:
3325 * if seg contains an ACK, but not for our SYN, drop the input.
3326 * if seg contains a RST, then drop the connection.
3327 * if seg does not contain SYN, then drop it.
3328 * Otherwise this is an acceptable SYN segment
3329 * initialize tp->rcv_nxt and tp->irs
3330 * if seg contains ack then advance tp->snd_una
3331 * if SYN has been acked change to ESTABLISHED else SYN_RCVD state
3332 * arrange for segment to be acked (eventually)
3333 * continue processing rest of data/controls, beginning with URG
3334 */
3335 case TCPS_SYN_SENT:
3336 if ((thflags & TH_ACK) &&
3337 (SEQ_LEQ(th->th_ack, tp->iss) ||
3338 SEQ_GT(th->th_ack, tp->snd_max))) {
3339 IF_TCP_STATINC(ifp, ooopacket);
3340 TCP_LOG_DROP_PCB(TCP_LOG_HDR, th, tp, false, "SYN_SENT bad ACK");
3341 goto dropwithreset;
3342 }
3343 if (thflags & TH_RST) {
3344 if ((thflags & TH_ACK) != 0) {
3345 if (tfo_enabled(tp) &&
3346 !(tp->t_flagsext & TF_FASTOPEN_FORCE_ENABLE)) {
3347 tcp_heuristic_tfo_rst(tp);
3348 }
3349 if ((tp->ecn_flags & (TE_SETUPSENT | TE_RCVD_SYN_RST)) == TE_SETUPSENT) {
3350 /*
3351 * On local connections, send
3352 * non-ECN syn one time before
3353 * dropping the connection
3354 */
3355 if (tp->t_flags & TF_LOCAL) {
3356 tp->ecn_flags |= TE_RCVD_SYN_RST;
3357 goto drop;
3358 } else {
3359 tcp_heuristic_ecn_synrst(tp);
3360 }
3361 }
3362 soevent(so,
3363 (SO_FILT_HINT_LOCKED |
3364 SO_FILT_HINT_CONNRESET));
3365 tp = tcp_drop(tp, ECONNREFUSED);
3366 }
3367 TCP_LOG_DROP_PCB(TCP_LOG_HDR, th, tp, false, "SYN_SENT got RST");
3368 goto drop;
3369 }
3370 if ((thflags & TH_SYN) == 0) {
3371 TCP_LOG_DROP_PCB(TCP_LOG_HDR, th, tp, false, "SYN_SENT no SYN");
3372 goto drop;
3373 }
3374 tp->snd_wnd = th->th_win; /* initial send window */
3375 tp->max_sndwnd = tp->snd_wnd;
3376
3377 tp->irs = th->th_seq;
3378 tcp_rcvseqinit(tp);
3379 if (thflags & TH_ACK) {
3380 tcpstat.tcps_connects++;
3381
3382 if ((thflags & (TH_ECE | TH_CWR)) == (TH_ECE)) {
3383 /* ECN-setup SYN-ACK */
3384 tp->ecn_flags |= TE_SETUPRECEIVED;
3385 if (TCP_ECN_ENABLED(tp)) {
3386 tcp_heuristic_ecn_success(tp);
3387 tcpstat.tcps_ecn_client_success++;
3388 }
3389 } else {
3390 if (tp->ecn_flags & TE_SETUPSENT &&
3391 tp->t_rxtshift == 0) {
3392 tcp_heuristic_ecn_success(tp);
3393 tcpstat.tcps_ecn_not_supported++;
3394 }
3395 if (tp->ecn_flags & TE_SETUPSENT &&
3396 tp->t_rxtshift > 0) {
3397 tcp_heuristic_ecn_loss(tp);
3398 }
3399
3400 /* non-ECN-setup SYN-ACK */
3401 tp->ecn_flags &= ~TE_SENDIPECT;
3402 }
3403
3404 /* Do window scaling on this connection? */
3405 if (TCP_WINDOW_SCALE_ENABLED(tp)) {
3406 tp->snd_scale = tp->requested_s_scale;
3407 tp->rcv_scale = tp->request_r_scale;
3408 }
3409
3410 tp->rcv_adv += min(tp->rcv_wnd, TCP_MAXWIN << tp->rcv_scale);
3411 tp->snd_una++; /* SYN is acked */
3412 if (SEQ_LT(tp->snd_nxt, tp->snd_una)) {
3413 tp->snd_nxt = tp->snd_una;
3414 }
3415
3416 /*
3417 * We have sent more in the SYN than what is being
3418 * acked. (e.g., TFO)
3419 * We should restart the sending from what the receiver
3420 * has acknowledged immediately.
3421 */
3422 if (SEQ_GT(tp->snd_nxt, th->th_ack)) {
3423 /*
3424 * rdar://problem/33214601
3425 * There is a middlebox that acks all but one
3426 * byte and still drops the data.
3427 */
3428 if (!(tp->t_flagsext & TF_FASTOPEN_FORCE_ENABLE) &&
3429 (tp->t_tfo_stats & TFO_S_SYN_DATA_SENT) &&
3430 tp->snd_max == th->th_ack + 1 &&
3431 tp->snd_max > tp->snd_una + 1) {
3432 tcp_heuristic_tfo_middlebox(tp);
3433
3434 so->so_error = ENODATA;
3435 soevent(so,
3436 (SO_FILT_HINT_LOCKED | SO_FILT_HINT_MP_SUB_ERROR));
3437
3438 tp->t_tfo_stats |= TFO_S_ONE_BYTE_PROXY;
3439 }
3440
3441 tp->snd_max = tp->snd_nxt = th->th_ack;
3442 }
3443
3444 /*
3445 * If there's data, delay ACK; if there's also a FIN
3446 * ACKNOW will be turned on later.
3447 */
3448 TCP_INC_VAR(tp->t_unacksegs, segment_count);
3449 if (DELAY_ACK(tp, th) && tlen != 0) {
3450 if ((tp->t_flags & TF_DELACK) == 0) {
3451 tp->t_flags |= TF_DELACK;
3452 tp->t_timer[TCPT_DELACK] = OFFSET_FROM_START(tp, tcp_delack);
3453 }
3454 } else {
3455 tp->t_flags |= TF_ACKNOW;
3456 }
3457 /*
3458 * Received <SYN,ACK> in SYN_SENT[*] state.
3459 * Transitions:
3460 * SYN_SENT --> ESTABLISHED
3461 * SYN_SENT* --> FIN_WAIT_1
3462 */
3463 tp->t_starttime = tcp_now;
3464 tcp_sbrcv_tstmp_check(tp);
3465 if (tp->t_flags & TF_NEEDFIN) {
3466 DTRACE_TCP4(state__change, void, NULL,
3467 struct inpcb *, inp,
3468 struct tcpcb *, tp, int32_t,
3469 TCPS_FIN_WAIT_1);
3470 tp->t_state = TCPS_FIN_WAIT_1;
3471 tp->t_flags &= ~TF_NEEDFIN;
3472 thflags &= ~TH_SYN;
3473
3474 TCP_LOG_CONNECTION_SUMMARY(tp);
3475 } else {
3476 DTRACE_TCP4(state__change, void, NULL,
3477 struct inpcb *, inp, struct tcpcb *,
3478 tp, int32_t, TCPS_ESTABLISHED);
3479 tp->t_state = TCPS_ESTABLISHED;
3480 tp->t_timer[TCPT_KEEP] =
3481 OFFSET_FROM_START(tp,
3482 TCP_CONN_KEEPIDLE(tp));
3483 if (nstat_collect) {
3484 nstat_route_connect_success(
3485 inp->inp_route.ro_rt);
3486 }
3487 /*
3488 * The SYN is acknowledged but una is not
3489 * updated yet. So pass the value of
3490 * ack to compute sndbytes correctly
3491 */
3492 inp_count_sndbytes(inp, th->th_ack);
3493 }
3494 tp->t_forced_acks = TCP_FORCED_ACKS_COUNT;
3495#if MPTCP
3496 /*
3497 * Do not send the connect notification for additional
3498 * subflows until ACK for 3-way handshake arrives.
3499 */
3500 if ((!(tp->t_mpflags & TMPF_MPTCP_TRUE)) &&
3501 (tp->t_mpflags & TMPF_SENT_JOIN)) {
3502 isconnected = FALSE;
3503 } else
3504#endif /* MPTCP */
3505 isconnected = TRUE;
3506
3507 if ((tp->t_tfo_flags & (TFO_F_COOKIE_REQ | TFO_F_COOKIE_SENT)) ||
3508 (tp->t_tfo_stats & TFO_S_SYN_DATA_SENT)) {
3509 tcp_tfo_synack(tp, &to);
3510
3511 if ((tp->t_tfo_stats & TFO_S_SYN_DATA_SENT) &&
3512 SEQ_LT(tp->snd_una, th->th_ack)) {
3513 tp->t_tfo_stats |= TFO_S_SYN_DATA_ACKED;
3514 tcpstat.tcps_tfo_syn_data_acked++;
3515#if MPTCP
3516 if (so->so_flags & SOF_MP_SUBFLOW) {
3517 so->so_flags1 |= SOF1_TFO_REWIND;
3518 }
3519#endif
3520 tcp_tfo_rcv_probe(tp, tlen);
3521 }
3522 }
3523 } else {
3524 /*
3525 * Received initial SYN in SYN-SENT[*] state => simul-
3526 * taneous open.
3527 * Do 3-way handshake:
3528 * SYN-SENT -> SYN-RECEIVED
3529 * SYN-SENT* -> SYN-RECEIVED*
3530 */
3531 tp->t_flags |= TF_ACKNOW;
3532 tp->t_timer[TCPT_REXMT] = 0;
3533 DTRACE_TCP4(state__change, void, NULL, struct inpcb *, inp,
3534 struct tcpcb *, tp, int32_t, TCPS_SYN_RECEIVED);
3535 tp->t_state = TCPS_SYN_RECEIVED;
3536
3537 /*
3538 * During simultaneous open, TFO should not be used.
3539 * So, we disable it here, to prevent that data gets
3540 * sent on the SYN/ACK.
3541 */
3542 tcp_disable_tfo(tp);
3543 }
3544
3545trimthenstep6:
3546 /*
3547 * Advance th->th_seq to correspond to first data byte.
3548 * If data, trim to stay within window,
3549 * dropping FIN if necessary.
3550 */
3551 th->th_seq++;
3552 if (tlen > tp->rcv_wnd) {
3553 todrop = tlen - tp->rcv_wnd;
3554 m_adj(m, -todrop);
3555 tlen = tp->rcv_wnd;
3556 thflags &= ~TH_FIN;
3557 tcpstat.tcps_rcvpackafterwin++;
3558 tcpstat.tcps_rcvbyteafterwin += todrop;
3559 }
3560 tp->snd_wl1 = th->th_seq - 1;
3561 tp->rcv_up = th->th_seq;
3562 /*
3563 * Client side of transaction: already sent SYN and data.
3564 * If the remote host used T/TCP to validate the SYN,
3565 * our data will be ACK'd; if so, enter normal data segment
3566 * processing in the middle of step 5, ack processing.
3567 * Otherwise, goto step 6.
3568 */
3569 if (thflags & TH_ACK) {
3570 goto process_ACK;
3571 }
3572 goto step6;
3573 /*
3574 * If the state is LAST_ACK or CLOSING or TIME_WAIT:
3575 * do normal processing.
3576 *
3577 * NB: Leftover from RFC1644 T/TCP. Cases to be reused later.
3578 */
3579 case TCPS_LAST_ACK:
3580 case TCPS_CLOSING:
3581 case TCPS_TIME_WAIT:
3582 break; /* continue normal processing */
3583
3584 /* Received a SYN while connection is already established.
3585 * This is a "half open connection and other anomalies" described
3586 * in RFC793 page 34, send an ACK so the remote reset the connection
3587 * or recovers by adjusting its sequence numbering. Sending an ACK is
3588 * in accordance with RFC 5961 Section 4.2
3589 */
3590 case TCPS_ESTABLISHED:
3591 if (thflags & TH_SYN && tlen <= 0) {
3592 /* Drop the packet silently if we have reached the limit */
3593 if (tcp_is_ack_ratelimited(tp)) {
3594 TCP_LOG_DROP_PCB(TCP_LOG_HDR, th, tp, false, "ESTABLISHED rfc5961 rate limited");
3595 goto drop;
3596 } else {
3597 /* Send challenge ACK */
3598 tcpstat.tcps_synchallenge++;
3599 TCP_LOG_DROP_PCB(TCP_LOG_HDR, th, tp, false, "ESTABLISHED rfc5961 challenge ACK");
3600 goto dropafterack;
3601 }
3602 }
3603 break;
3604 }
3605
3606 /*
3607 * States other than LISTEN or SYN_SENT.
3608 * First check the RST flag and sequence number since reset segments
3609 * are exempt from the timestamp and connection count tests. This
3610 * fixes a bug introduced by the Stevens, vol. 2, p. 960 bugfix
3611 * below which allowed reset segments in half the sequence space
3612 * to fall though and be processed (which gives forged reset
3613 * segments with a random sequence number a 50 percent chance of
3614 * killing a connection).
3615 * Then check timestamp, if present.
3616 * Then check the connection count, if present.
3617 * Then check that at least some bytes of segment are within
3618 * receive window. If segment begins before rcv_nxt,
3619 * drop leading data (and SYN); if nothing left, just ack.
3620 *
3621 *
3622 * If the RST bit is set, check the sequence number to see
3623 * if this is a valid reset segment.
3624 * RFC 793 page 37:
3625 * In all states except SYN-SENT, all reset (RST) segments
3626 * are validated by checking their SEQ-fields. A reset is
3627 * valid if its sequence number is in the window.
3628 * Note: this does not take into account delayed ACKs, so
3629 * we should test against last_ack_sent instead of rcv_nxt.
3630 * The sequence number in the reset segment is normally an
3631 * echo of our outgoing acknowlegement numbers, but some hosts
3632 * send a reset with the sequence number at the rightmost edge
3633 * of our receive window, and we have to handle this case.
3634 * Note 2: Paul Watson's paper "Slipping in the Window" has shown
3635 * that brute force RST attacks are possible. To combat this,
3636 * we use a much stricter check while in the ESTABLISHED state,
3637 * only accepting RSTs where the sequence number is equal to
3638 * last_ack_sent. In all other states (the states in which a
3639 * RST is more likely), the more permissive check is used.
3640 * RFC 5961 Section 3.2: if the RST bit is set, sequence # is
3641 * within the receive window and last_ack_sent == seq,
3642 * then reset the connection. Otherwise if the seq doesn't
3643 * match last_ack_sent, TCP must send challenge ACK. Perform
3644 * rate limitation when sending the challenge ACK.
3645 * If we have multiple segments in flight, the intial reset
3646 * segment sequence numbers will be to the left of last_ack_sent,
3647 * but they will eventually catch up.
3648 * In any case, it never made sense to trim reset segments to
3649 * fit the receive window since RFC 1122 says:
3650 * 4.2.2.12 RST Segment: RFC-793 Section 3.4
3651 *
3652 * A TCP SHOULD allow a received RST segment to include data.
3653 *
3654 * DISCUSSION
3655 * It has been suggested that a RST segment could contain
3656 * ASCII text that encoded and explained the cause of the
3657 * RST. No standard has yet been established for such
3658 * data.
3659 *
3660 * If the reset segment passes the sequence number test examine
3661 * the state:
3662 * SYN_RECEIVED STATE:
3663 * If passive open, return to LISTEN state.
3664 * If active open, inform user that connection was refused.
3665 * ESTABLISHED, FIN_WAIT_1, FIN_WAIT_2, CLOSE_WAIT STATES:
3666 * Inform user that connection was reset, and close tcb.
3667 * CLOSING, LAST_ACK STATES:
3668 * Close the tcb.
3669 * TIME_WAIT STATE:
3670 * Drop the segment - see Stevens, vol. 2, p. 964 and
3671 * RFC 1337.
3672 *
3673 * Radar 4803931: Allows for the case where we ACKed the FIN but
3674 * there is already a RST in flight from the peer.
3675 * In that case, accept the RST for non-established
3676 * state if it's one off from last_ack_sent.
3677 *
3678 */
3679 if (thflags & TH_RST) {
3680 if ((SEQ_GEQ(th->th_seq, tp->last_ack_sent) &&
3681 SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) ||
3682 (tp->rcv_wnd == 0 &&
3683 ((tp->last_ack_sent == th->th_seq) ||
3684 ((tp->last_ack_sent - 1) == th->th_seq)))) {
3685 if (tp->last_ack_sent == th->th_seq) {
3686 switch (tp->t_state) {
3687 case TCPS_SYN_RECEIVED:
3688 IF_TCP_STATINC(ifp, rstinsynrcv);
3689 so->so_error = ECONNREFUSED;
3690 goto close;
3691
3692 case TCPS_ESTABLISHED:
3693 if (TCP_ECN_ENABLED(tp) &&
3694 tp->snd_una == tp->iss + 1 &&
3695 SEQ_GT(tp->snd_max, tp->snd_una)) {
3696 /*
3697 * If the first data packet on an
3698 * ECN connection, receives a RST
3699 * increment the heuristic
3700 */
3701 tcp_heuristic_ecn_droprst(tp);
3702 }
3703 OS_FALLTHROUGH;
3704 case TCPS_FIN_WAIT_1:
3705 case TCPS_CLOSE_WAIT:
3706 case TCPS_FIN_WAIT_2:
3707 so->so_error = ECONNRESET;
3708close:
3709 soevent(so,
3710 (SO_FILT_HINT_LOCKED |
3711 SO_FILT_HINT_CONNRESET));
3712
3713 tcpstat.tcps_drops++;
3714 tp = tcp_close(tp);
3715 break;
3716
3717 case TCPS_CLOSING:
3718 case TCPS_LAST_ACK:
3719 tp = tcp_close(tp);
3720 break;
3721
3722 case TCPS_TIME_WAIT:
3723 break;
3724 }
3725 } else {
3726 tcpstat.tcps_badrst++;
3727 /* Drop if we have reached the ACK limit */
3728 if (tcp_is_ack_ratelimited(tp)) {
3729 TCP_LOG_DROP_PCB(TCP_LOG_HDR, th, tp, false, "ESTABLISHED rfc5961 rate limited");
3730 goto drop;
3731 } else {
3732 /* Send challenge ACK */
3733 tcpstat.tcps_rstchallenge++;
3734 TCP_LOG_DROP_PCB(TCP_LOG_HDR, th, tp, false, "ESTABLISHED rfc5961 challenge ACK");
3735 goto dropafterack;
3736 }
3737 }
3738 }
3739 goto drop;
3740 }
3741
3742 /*
3743 * RFC 1323 PAWS: If we have a timestamp reply on this segment
3744 * and it's less than ts_recent, drop it.
3745 */
3746 if ((to.to_flags & TOF_TS) != 0 && tp->ts_recent &&
3747 TSTMP_LT(to.to_tsval, tp->ts_recent)) {
3748 /* Check to see if ts_recent is over 24 days old. */
3749 if ((int)(tcp_now - tp->ts_recent_age) > TCP_PAWS_IDLE) {
3750 /*
3751 * Invalidate ts_recent. If this segment updates
3752 * ts_recent, the age will be reset later and ts_recent
3753 * will get a valid value. If it does not, setting
3754 * ts_recent to zero will at least satisfy the
3755 * requirement that zero be placed in the timestamp
3756 * echo reply when ts_recent isn't valid. The
3757 * age isn't reset until we get a valid ts_recent
3758 * because we don't want out-of-order segments to be
3759 * dropped when ts_recent is old.
3760 */
3761 tp->ts_recent = 0;
3762 } else {
3763 tcpstat.tcps_rcvduppack++;
3764 tcpstat.tcps_rcvdupbyte += tlen;
3765 tp->t_pawsdrop++;
3766 tcpstat.tcps_pawsdrop++;
3767
3768 /*
3769 * PAWS-drop when ECN is being used? That indicates
3770 * that ECT-marked packets take a different path, with
3771 * different congestion-characteristics.
3772 *
3773 * Only fallback when we did send less than 2GB as PAWS
3774 * really has no reason to kick in earlier.
3775 */
3776 if (TCP_ECN_ENABLED(tp) &&
3777 inp->inp_stat->rxbytes < 2147483648) {
3778 INP_INC_IFNET_STAT(inp, ecn_fallback_reorder);
3779 tcpstat.tcps_ecn_fallback_reorder++;
3780 tcp_heuristic_ecn_aggressive(tp);
3781 }
3782
3783 if (nstat_collect) {
3784 nstat_route_rx(tp->t_inpcb->inp_route.ro_rt,
3785 1, tlen, NSTAT_RX_FLAG_DUPLICATE);
3786 INP_ADD_STAT(inp, cell, wifi, wired,
3787 rxpackets, 1);
3788 INP_ADD_STAT(inp, cell, wifi, wired,
3789 rxbytes, tlen);
3790 tp->t_stat.rxduplicatebytes += tlen;
3791 inp_set_activity_bitmap(inp);
3792 }
3793 if (tlen > 0) {
3794 goto dropafterack;
3795 }
3796 goto drop;
3797 }
3798 }
3799
3800 /*
3801 * In the SYN-RECEIVED state, validate that the packet belongs to
3802 * this connection before trimming the data to fit the receive
3803 * window. Check the sequence number versus IRS since we know
3804 * the sequence numbers haven't wrapped. This is a partial fix
3805 * for the "LAND" DoS attack.
3806 */
3807 if (tp->t_state == TCPS_SYN_RECEIVED && SEQ_LT(th->th_seq, tp->irs)) {
3808 IF_TCP_STATINC(ifp, dospacket);
3809 TCP_LOG_DROP_PCB(TCP_LOG_HDR, th, tp, false, "SYN_RECEIVED bad SEQ");
3810 goto dropwithreset;
3811 }
3812
3813 /*
3814 * Check if there is old data at the beginning of the window
3815 * i.e. the sequence number is before rcv_nxt
3816 */
3817 todrop = tp->rcv_nxt - th->th_seq;
3818 if (todrop > 0) {
3819 boolean_t is_syn_set = FALSE;
3820
3821 if (thflags & TH_SYN) {
3822 is_syn_set = TRUE;
3823 thflags &= ~TH_SYN;
3824 th->th_seq++;
3825 if (th->th_urp > 1) {
3826 th->th_urp--;
3827 } else {
3828 thflags &= ~TH_URG;
3829 }
3830 todrop--;
3831 }
3832 /*
3833 * Following if statement from Stevens, vol. 2, p. 960.
3834 * The amount of duplicate data is greater than or equal
3835 * to the size of the segment - entire segment is duplicate
3836 */
3837 if (todrop > tlen
3838 || (todrop == tlen && (thflags & TH_FIN) == 0)) {
3839 /*
3840 * Any valid FIN must be to the left of the window.
3841 * At this point the FIN must be a duplicate or out
3842 * of sequence; drop it.
3843 */
3844 thflags &= ~TH_FIN;
3845
3846 /*
3847 * Send an ACK to resynchronize and drop any data.
3848 * But keep on processing for RST or ACK.
3849 *
3850 * If the SYN bit was originally set, then only send
3851 * an ACK if we are not rate-limiting this connection.
3852 */
3853 if (is_syn_set) {
3854 if (!tcp_is_ack_ratelimited(tp)) {
3855 tcpstat.tcps_synchallenge++;
3856 tp->t_flags |= TF_ACKNOW;
3857 }
3858 } else {
3859 tp->t_flags |= TF_ACKNOW;
3860 }
3861
3862 if (todrop == 1) {
3863 /* This could be a keepalive */
3864 soevent(so, SO_FILT_HINT_LOCKED |
3865 SO_FILT_HINT_KEEPALIVE);
3866 }
3867 todrop = tlen;
3868 tcpstat.tcps_rcvduppack++;
3869 tcpstat.tcps_rcvdupbyte += todrop;
3870 } else {
3871 tcpstat.tcps_rcvpartduppack++;
3872 tcpstat.tcps_rcvpartdupbyte += todrop;
3873 }
3874
3875 if (todrop > 1) {
3876 /*
3877 * Note the duplicate data sequence space so that
3878 * it can be reported in DSACK option.
3879 */
3880 tp->t_dsack_lseq = th->th_seq;
3881 tp->t_dsack_rseq = th->th_seq + todrop;
3882 tp->t_flags |= TF_ACKNOW;
3883 }
3884 if (nstat_collect) {
3885 nstat_route_rx(tp->t_inpcb->inp_route.ro_rt, 1,
3886 todrop, NSTAT_RX_FLAG_DUPLICATE);
3887 INP_ADD_STAT(inp, cell, wifi, wired, rxpackets, 1);
3888 INP_ADD_STAT(inp, cell, wifi, wired, rxbytes, todrop);
3889 tp->t_stat.rxduplicatebytes += todrop;
3890 inp_set_activity_bitmap(inp);
3891 }
3892 drop_hdrlen += todrop; /* drop from the top afterwards */
3893 th->th_seq += todrop;
3894 tlen -= todrop;
3895 if (th->th_urp > todrop) {
3896 th->th_urp -= todrop;
3897 } else {
3898 thflags &= ~TH_URG;
3899 th->th_urp = 0;
3900 }
3901 }
3902
3903 /*
3904 * If new data are received on a connection after the user
3905 * processes are gone, then RST the other end.
3906 * Send also a RST when we received a data segment after we've
3907 * sent our FIN when the socket is defunct.
3908 * Note that an MPTCP subflow socket would have SS_NOFDREF set
3909 * by default. So, if it's an MPTCP-subflow we rather check the
3910 * MPTCP-level's socket state for SS_NOFDREF.
3911 */
3912 if (tlen) {
3913 boolean_t close_it = FALSE;
3914
3915 if (!(so->so_flags & SOF_MP_SUBFLOW) && (so->so_state & SS_NOFDREF) &&
3916 tp->t_state > TCPS_CLOSE_WAIT) {
3917 TCP_LOG_DROP_PCB(TCP_LOG_HDR, th, tp, false, "SS_NOFDREF");
3918 close_it = TRUE;
3919 }
3920
3921 if ((so->so_flags & SOF_MP_SUBFLOW) && (mptetoso(tptomptp(tp)->mpt_mpte)->so_state & SS_NOFDREF) &&
3922 tp->t_state > TCPS_CLOSE_WAIT) {
3923 TCP_LOG_DROP_PCB(TCP_LOG_HDR, th, tp, false, "SOF_MP_SUBFLOW SS_NOFDREF");
3924 close_it = TRUE;
3925 }
3926
3927 if ((so->so_flags & SOF_DEFUNCT) && tp->t_state > TCPS_FIN_WAIT_1) {
3928 TCP_LOG_DROP_PCB(TCP_LOG_HDR, th, tp, false, "SOF_DEFUNCT");
3929 close_it = TRUE;
3930 }
3931
3932 if (close_it) {
3933 tp = tcp_close(tp);
3934 tcpstat.tcps_rcvafterclose++;
3935 IF_TCP_STATINC(ifp, cleanup);
3936 goto dropwithreset;
3937 }
3938 }
3939
3940 /*
3941 * If segment ends after window, drop trailing data
3942 * (and PUSH and FIN); if nothing left, just ACK.
3943 */
3944 todrop = (th->th_seq + tlen) - (tp->rcv_nxt + tp->rcv_wnd);
3945 if (todrop > 0) {
3946 tcpstat.tcps_rcvpackafterwin++;
3947 if (todrop >= tlen) {
3948 tcpstat.tcps_rcvbyteafterwin += tlen;
3949 /*
3950 * If a new connection request is received
3951 * while in TIME_WAIT, drop the old connection
3952 * and start over if the sequence numbers
3953 * are above the previous ones.
3954 */
3955 if (thflags & TH_SYN &&
3956 tp->t_state == TCPS_TIME_WAIT &&
3957 SEQ_GT(th->th_seq, tp->rcv_nxt)) {
3958 iss = tcp_new_isn(tp);
3959 tp = tcp_close(tp);
3960 socket_unlock(so, 1);
3961 goto findpcb;
3962 }
3963 /*
3964 * If window is closed can only take segments at
3965 * window edge, and have to drop data and PUSH from
3966 * incoming segments. Continue processing, but
3967 * remember to ack. Otherwise, drop segment
3968 * and ack.
3969 */
3970 if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
3971 tp->t_flags |= TF_ACKNOW;
3972 tcpstat.tcps_rcvwinprobe++;
3973 } else {
3974 goto dropafterack;
3975 }
3976 } else {
3977 tcpstat.tcps_rcvbyteafterwin += todrop;
3978 }
3979 m_adj(m, -todrop);
3980 tlen -= todrop;
3981 thflags &= ~(TH_PUSH | TH_FIN);
3982 }
3983
3984 /*
3985 * If last ACK falls within this segment's sequence numbers,
3986 * record its timestamp.
3987 * NOTE:
3988 * 1) That the test incorporates suggestions from the latest
3989 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
3990 * 2) That updating only on newer timestamps interferes with
3991 * our earlier PAWS tests, so this check should be solely
3992 * predicated on the sequence space of this segment.
3993 * 3) That we modify the segment boundary check to be
3994 * Last.ACK.Sent <= SEG.SEQ + SEG.Len
3995 * instead of RFC1323's
3996 * Last.ACK.Sent < SEG.SEQ + SEG.Len,
3997 * This modified check allows us to overcome RFC1323's
3998 * limitations as described in Stevens TCP/IP Illustrated
3999 * Vol. 2 p.869. In such cases, we can still calculate the
4000 * RTT correctly when RCV.NXT == Last.ACK.Sent.
4001 */
4002 if ((to.to_flags & TOF_TS) != 0 &&
4003 SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
4004 SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
4005 ((thflags & (TH_SYN | TH_FIN)) != 0))) {
4006 tp->ts_recent_age = tcp_now;
4007 tp->ts_recent = to.to_tsval;
4008 }
4009
4010 /*
4011 * Stevens: If a SYN is in the window, then this is an
4012 * error and we send an RST and drop the connection.
4013 *
4014 * RFC 5961 Section 4.2
4015 * Send challenge ACK for any SYN in synchronized state
4016 * Perform rate limitation in doing so.
4017 */
4018 if (thflags & TH_SYN) {
4019 if (!tcp_syn_data_valid(tp, th, tlen)) {
4020 tcpstat.tcps_badsyn++;
4021 /* Drop if we have reached ACK limit */
4022 if (tcp_is_ack_ratelimited(tp)) {
4023 TCP_LOG_DROP_PCB(TCP_LOG_HDR, th, tp, false, "rfc5961 bad SYN rate limited");
4024 goto drop;
4025 } else {
4026 /* Send challenge ACK */
4027 tcpstat.tcps_synchallenge++;
4028 TCP_LOG_DROP_PCB(TCP_LOG_HDR, th, tp, false, "rfc5961 bad SYN challenge ack");
4029 goto dropafterack;
4030 }
4031 } else {
4032 /*
4033 * Received SYN (/ACK) with data.
4034 * Move sequence number along to process the data.
4035 */
4036 th->th_seq++;
4037 thflags &= ~TH_SYN;
4038 }
4039 }
4040
4041 /*
4042 * If the ACK bit is off: if in SYN-RECEIVED state or SENDSYN
4043 * flag is on (half-synchronized state), then queue data for
4044 * later processing; else drop segment and return.
4045 */
4046 if ((thflags & TH_ACK) == 0) {
4047 if (tp->t_state == TCPS_SYN_RECEIVED) {
4048 if ((tfo_enabled(tp))) {
4049 /*
4050 * So, we received a valid segment while in
4051 * SYN-RECEIVED.
4052 * As this cannot be an RST (see that if a bit
4053 * higher), and it does not have the ACK-flag
4054 * set, we want to retransmit the SYN/ACK.
4055 * Thus, we have to reset snd_nxt to snd_una to
4056 * trigger the going back to sending of the
4057 * SYN/ACK. This is more consistent with the
4058 * behavior of tcp_output(), which expects
4059 * to send the segment that is pointed to by
4060 * snd_nxt.
4061 */
4062 tp->snd_nxt = tp->snd_una;
4063
4064 /*
4065 * We need to make absolutely sure that we are
4066 * going to reply upon a duplicate SYN-segment.
4067 */
4068 if (th->th_flags & TH_SYN) {
4069 needoutput = 1;
4070 }
4071 }
4072
4073 goto step6;
4074 } else if (tp->t_flags & TF_ACKNOW) {
4075 TCP_LOG_DROP_PCB(TCP_LOG_HDR, th, tp, false, "bad ACK");
4076 goto dropafterack;
4077 } else {
4078 TCP_LOG_DROP_PCB(TCP_LOG_HDR, th, tp, false, "bad ACK");
4079 goto drop;
4080 }
4081 }
4082
4083 /*
4084 * Ack processing.
4085 */
4086
4087 switch (tp->t_state) {
4088 /*
4089 * In SYN_RECEIVED state, the ack ACKs our SYN, so enter
4090 * ESTABLISHED state and continue processing.
4091 * The ACK was checked above.
4092 */
4093 case TCPS_SYN_RECEIVED:
4094
4095 tcpstat.tcps_connects++;
4096
4097 /* Do window scaling? */
4098 if (TCP_WINDOW_SCALE_ENABLED(tp)) {
4099 tp->snd_scale = tp->requested_s_scale;
4100 tp->rcv_scale = tp->request_r_scale;
4101 tp->snd_wnd = th->th_win << tp->snd_scale;
4102 tp->max_sndwnd = tp->snd_wnd;
4103 tiwin = tp->snd_wnd;
4104 }
4105 /*
4106 * Make transitions:
4107 * SYN-RECEIVED -> ESTABLISHED
4108 * SYN-RECEIVED* -> FIN-WAIT-1
4109 */
4110 tp->t_starttime = tcp_now;
4111 tcp_sbrcv_tstmp_check(tp);
4112 if (tp->t_flags & TF_NEEDFIN) {
4113 DTRACE_TCP4(state__change, void, NULL,
4114 struct inpcb *, inp,
4115 struct tcpcb *, tp, int32_t, TCPS_FIN_WAIT_1);
4116 tp->t_state = TCPS_FIN_WAIT_1;
4117 tp->t_flags &= ~TF_NEEDFIN;
4118
4119 TCP_LOG_CONNECTION_SUMMARY(tp);
4120 } else {
4121 DTRACE_TCP4(state__change, void, NULL,
4122 struct inpcb *, inp,
4123 struct tcpcb *, tp, int32_t, TCPS_ESTABLISHED);
4124 tp->t_state = TCPS_ESTABLISHED;
4125 tp->t_timer[TCPT_KEEP] = OFFSET_FROM_START(tp,
4126 TCP_CONN_KEEPIDLE(tp));
4127 if (nstat_collect) {
4128 nstat_route_connect_success(
4129 tp->t_inpcb->inp_route.ro_rt);
4130 }
4131
4132 /*
4133 * The SYN is acknowledged but una is not updated
4134 * yet. So pass the value of ack to compute
4135 * sndbytes correctly
4136 */
4137 inp_count_sndbytes(inp, th->th_ack);
4138 }
4139 tp->t_forced_acks = TCP_FORCED_ACKS_COUNT;
4140 /*
4141 * If segment contains data or ACK, will call tcp_reass()
4142 * later; if not, do so now to pass queued data to user.
4143 */
4144 if (tlen == 0 && (thflags & TH_FIN) == 0) {
4145 if (isipv6) {
4146 memcpy(&saved_hdr, ip6, sizeof(struct ip6_hdr));
4147 ip6 = (struct ip6_hdr *)&saved_hdr[0];
4148 } else {
4149 memcpy(&saved_hdr, ip, ip->ip_hl << 2);
4150 ip = (struct ip *)&saved_hdr[0];
4151 }
4152 memcpy(&saved_tcphdr, th, sizeof(struct tcphdr));
4153 (void) tcp_reass(tp, (struct tcphdr *)0, &tlen,
4154 NULL, ifp, &read_wakeup);
4155 th = &saved_tcphdr;
4156 }
4157 tp->snd_wl1 = th->th_seq - 1;
4158
4159#if MPTCP
4160 /*
4161 * Do not send the connect notification for additional subflows
4162 * until ACK for 3-way handshake arrives.
4163 */
4164 if ((!(tp->t_mpflags & TMPF_MPTCP_TRUE)) &&
4165 (tp->t_mpflags & TMPF_SENT_JOIN)) {
4166 isconnected = FALSE;
4167 } else
4168#endif /* MPTCP */
4169 isconnected = TRUE;
4170 if ((tp->t_tfo_flags & TFO_F_COOKIE_VALID)) {
4171 /* Done this when receiving the SYN */
4172 isconnected = FALSE;
4173
4174 OSDecrementAtomic(&tcp_tfo_halfcnt);
4175
4176 /* Panic if something has gone terribly wrong. */
4177 VERIFY(tcp_tfo_halfcnt >= 0);
4178
4179 tp->t_tfo_flags &= ~TFO_F_COOKIE_VALID;
4180 }
4181
4182 /*
4183 * In case there is data in the send-queue (e.g., TFO is being
4184 * used, or connectx+data has been done), then if we would
4185 * "FALLTHROUGH", we would handle this ACK as if data has been
4186 * acknowledged. But, we have to prevent this. And this
4187 * can be prevented by increasing snd_una by 1, so that the
4188 * SYN is not considered as data (snd_una++ is actually also
4189 * done in SYN_SENT-state as part of the regular TCP stack).
4190 *
4191 * In case there is data on this ack as well, the data will be
4192 * handled by the label "dodata" right after step6.
4193 */
4194 if (so->so_snd.sb_cc) {
4195 tp->snd_una++; /* SYN is acked */
4196 if (SEQ_LT(tp->snd_nxt, tp->snd_una)) {
4197 tp->snd_nxt = tp->snd_una;
4198 }
4199
4200 /*
4201 * No duplicate-ACK handling is needed. So, we
4202 * directly advance to processing the ACK (aka,
4203 * updating the RTT estimation,...)
4204 *
4205 * But, we first need to handle eventual SACKs,
4206 * because TFO will start sending data with the
4207 * SYN/ACK, so it might be that the client
4208 * includes a SACK with its ACK.
4209 */
4210 if (SACK_ENABLED(tp) &&
4211 (to.to_nsacks > 0 || !TAILQ_EMPTY(&tp->snd_holes))) {
4212 tcp_sack_doack(tp, &to, th, &sack_bytes_acked, &sack_bytes_newly_acked);
4213 }
4214
4215 goto process_ACK;
4216 }
4217
4218 OS_FALLTHROUGH;
4219
4220 /*
4221 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
4222 * ACKs. If the ack is in the range
4223 * tp->snd_una < th->th_ack <= tp->snd_max
4224 * then advance tp->snd_una to th->th_ack and drop
4225 * data from the retransmission queue. If this ACK reflects
4226 * more up to date window information we update our window information.
4227 */
4228 case TCPS_ESTABLISHED:
4229 case TCPS_FIN_WAIT_1:
4230 case TCPS_FIN_WAIT_2:
4231 case TCPS_CLOSE_WAIT:
4232 case TCPS_CLOSING:
4233 case TCPS_LAST_ACK:
4234 case TCPS_TIME_WAIT:
4235 if (SEQ_GT(th->th_ack, tp->snd_max)) {
4236 tcpstat.tcps_rcvacktoomuch++;
4237 if (tcp_is_ack_ratelimited(tp)) {
4238 TCP_LOG_DROP_PCB(TCP_LOG_HDR, th, tp, false, "rfc5961 rcvacktoomuch");
4239 goto drop;
4240 } else {
4241 goto dropafterack;
4242 }
4243 }
4244 if (SEQ_LT(th->th_ack, tp->snd_una - tp->max_sndwnd)) {
4245 if (tcp_is_ack_ratelimited(tp)) {
4246 TCP_LOG_DROP_PCB(TCP_LOG_HDR, th, tp, false, "rfc5961 bad ACK");
4247 goto drop;
4248 } else {
4249 goto dropafterack;
4250 }
4251 }
4252 if (SACK_ENABLED(tp) && to.to_nsacks > 0) {
4253 recvd_dsack = tcp_sack_process_dsack(tp, &to, th);
4254 /*
4255 * If DSACK is received and this packet has no
4256 * other SACK information, it can be dropped.
4257 * We do not want to treat it as a duplicate ack.
4258 */
4259 if (recvd_dsack &&
4260 SEQ_LEQ(th->th_ack, tp->snd_una) &&
4261 to.to_nsacks == 0) {
4262 tcp_bad_rexmt_check(tp, th, &to);
4263 goto drop;
4264 }
4265 }
4266
4267 if (SACK_ENABLED(tp) &&
4268 (to.to_nsacks > 0 || !TAILQ_EMPTY(&tp->snd_holes))) {
4269 tcp_sack_doack(tp, &to, th, &sack_bytes_acked, &sack_bytes_newly_acked);
4270 }
4271
4272#if MPTCP
4273 if (tp->t_mpuna && SEQ_GEQ(th->th_ack, tp->t_mpuna)) {
4274 if (tp->t_mpflags & TMPF_PREESTABLISHED) {
4275 /* MP TCP establishment succeeded */
4276 tp->t_mpuna = 0;
4277 if (tp->t_mpflags & TMPF_JOINED_FLOW) {
4278 if (tp->t_mpflags & TMPF_SENT_JOIN) {
4279 tp->t_mpflags &=
4280 ~TMPF_PREESTABLISHED;
4281 tp->t_mpflags |=
4282 TMPF_MPTCP_TRUE;
4283
4284 tp->t_timer[TCPT_JACK_RXMT] = 0;
4285 tp->t_mprxtshift = 0;
4286 isconnected = TRUE;
4287 } else {
4288 isconnected = FALSE;
4289 }
4290 } else {
4291 isconnected = TRUE;
4292 }
4293 }
4294 }
4295#endif /* MPTCP */
4296
4297 tcp_tfo_rcv_ack(tp, th);
4298
4299 /*
4300 * If we have outstanding data (other than
4301 * a window probe), this is a completely
4302 * duplicate ack and the ack is the biggest we've seen.
4303 *
4304 * Need to accommodate a change in window on duplicate acks
4305 * to allow operating systems that update window during
4306 * recovery with SACK
4307 */
4308 if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
4309 if (tlen == 0 && (tiwin == tp->snd_wnd ||
4310 (to.to_nsacks > 0 && sack_bytes_acked > 0))) {
4311 uint32_t old_dupacks;
4312 /*
4313 * If both ends send FIN at the same time,
4314 * then the ack will be a duplicate ack
4315 * but we have to process the FIN. Check
4316 * for this condition and process the FIN
4317 * instead of the dupack
4318 */
4319 if ((thflags & TH_FIN) &&
4320 !TCPS_HAVERCVDFIN(tp->t_state)) {
4321 break;
4322 }
4323process_dupack:
4324 old_dupacks = tp->t_dupacks;
4325#if MPTCP
4326 /*
4327 * MPTCP options that are ignored must
4328 * not be treated as duplicate ACKs.
4329 */
4330 if (to.to_flags & TOF_MPTCP) {
4331 goto drop;
4332 }
4333
4334 if ((isconnected) && (tp->t_mpflags & TMPF_JOINED_FLOW)) {
4335 mptcplog((LOG_DEBUG, "MPTCP "
4336 "Sockets: bypass ack recovery\n"),
4337 MPTCP_SOCKET_DBG,
4338 MPTCP_LOGLVL_VERBOSE);
4339 break;
4340 }
4341#endif /* MPTCP */
4342 /*
4343 * If a duplicate acknowledgement was seen
4344 * after ECN, it indicates packet loss in
4345 * addition to ECN. Reset INRECOVERY flag
4346 * so that we can process partial acks
4347 * correctly
4348 */
4349 if (tp->ecn_flags & TE_INRECOVERY) {
4350 tp->ecn_flags &= ~TE_INRECOVERY;
4351 }
4352
4353 tcpstat.tcps_rcvdupack++;
4354 if (SACK_ENABLED(tp) && tcp_do_better_lr) {
4355 tp->t_dupacks += max(1, sack_bytes_acked / tp->t_maxseg);
4356 } else {
4357 ++tp->t_dupacks;
4358 }
4359
4360 tp->sackhint.sack_bytes_acked += sack_bytes_acked;
4361
4362 if (SACK_ENABLED(tp) && tcp_do_better_lr) {
4363 tp->t_new_dupacks += (sack_bytes_newly_acked / tp->t_maxseg);
4364
4365 if (tp->t_new_dupacks >= tp->t_rexmtthresh && IN_FASTRECOVERY(tp)) {
4366 /* Let's restart the retransmission */
4367 tcp_sack_lost_rexmit(tp);
4368
4369 /*
4370 * If the current tcp cc module has
4371 * defined a hook for tasks to run
4372 * before entering FR, call it
4373 */
4374 if (CC_ALGO(tp)->pre_fr != NULL) {
4375 CC_ALGO(tp)->pre_fr(tp);
4376 }
4377
4378 ENTER_FASTRECOVERY(tp);
4379
4380 if (tp->t_flags & TF_SENTFIN) {
4381 tp->snd_recover = tp->snd_max - 1;
4382 } else {
4383 tp->snd_recover = tp->snd_max;
4384 }
4385 tp->t_rtttime = 0;
4386
4387 if (TCP_ECN_ENABLED(tp)) {
4388 tp->ecn_flags |= TE_SENDCWR;
4389 }
4390
4391 if (tp->t_flagsext & TF_CWND_NONVALIDATED) {
4392 tcp_cc_adjust_nonvalidated_cwnd(tp);
4393 } else {
4394 tp->snd_cwnd = tp->snd_ssthresh;
4395 }
4396 }
4397 }
4398
4399 /*
4400 * Check if we need to reset the limit on
4401 * early retransmit
4402 */
4403 if (tp->t_early_rexmt_count > 0 &&
4404 TSTMP_GEQ(tcp_now,
4405 (tp->t_early_rexmt_win +
4406 TCP_EARLY_REXMT_WIN))) {
4407 tp->t_early_rexmt_count = 0;
4408 }
4409
4410 /*
4411 * Is early retransmit needed? We check for
4412 * this when the connection is waiting for
4413 * duplicate acks to enter fast recovery.
4414 */
4415 if (!IN_FASTRECOVERY(tp)) {
4416 tcp_early_rexmt_check(tp, th);
4417 }
4418
4419 /*
4420 * If we've seen exactly rexmt threshold
4421 * of duplicate acks, assume a packet
4422 * has been dropped and retransmit it.
4423 * Kludge snd_nxt & the congestion
4424 * window so we send only this one
4425 * packet.
4426 *
4427 * We know we're losing at the current
4428 * window size so do congestion avoidance
4429 * (set ssthresh to half the current window
4430 * and pull our congestion window back to
4431 * the new ssthresh).
4432 *
4433 * Dup acks mean that packets have left the
4434 * network (they're now cached at the receiver)
4435 * so bump cwnd by the amount in the receiver
4436 * to keep a constant cwnd packets in the
4437 * network.
4438 */
4439 if (tp->t_timer[TCPT_REXMT] == 0 ||
4440 (th->th_ack != tp->snd_una && sack_bytes_acked == 0)) {
4441 tp->t_dupacks = 0;
4442 tp->t_rexmtthresh = tcprexmtthresh;
4443 tp->t_new_dupacks = 0;
4444 } else if ((tp->t_dupacks > tp->t_rexmtthresh && (!tcp_do_better_lr || old_dupacks >= tp->t_rexmtthresh)) ||
4445 IN_FASTRECOVERY(tp)) {
4446 /*
4447 * If this connection was seeing packet
4448 * reordering, then recovery might be
4449 * delayed to disambiguate between
4450 * reordering and loss
4451 */
4452 if (SACK_ENABLED(tp) && !IN_FASTRECOVERY(tp) &&
4453 (tp->t_flagsext &
4454 (TF_PKTS_REORDERED | TF_DELAY_RECOVERY)) ==
4455 (TF_PKTS_REORDERED | TF_DELAY_RECOVERY)) {
4456 /*
4457 * Since the SACK information is already
4458 * updated, this ACK will be dropped
4459 */
4460 break;
4461 }
4462
4463 /*
4464 * Dup acks mean that packets have left the
4465 * network (they're now cached at the receiver)
4466 * so bump cwnd by the amount in the receiver
4467 * to keep a constant cwnd packets in the
4468 * network.
4469 */
4470 if (SACK_ENABLED(tp) && IN_FASTRECOVERY(tp)) {
4471 int awnd;
4472
4473 /*
4474 * Compute the amount of data in flight first.
4475 * We can inject new data into the pipe iff
4476 * we have less than snd_ssthres worth of data in
4477 * flight.
4478 */
4479 awnd = (tp->snd_nxt - tp->snd_fack) + tp->sackhint.sack_bytes_rexmit;
4480 if (awnd < tp->snd_ssthresh) {
4481 tp->snd_cwnd += tp->t_maxseg;
4482 if (tp->snd_cwnd > tp->snd_ssthresh) {
4483 tp->snd_cwnd = tp->snd_ssthresh;
4484 }
4485 }
4486 } else {
4487 tp->snd_cwnd += tp->t_maxseg;
4488 }
4489
4490 /* Process any window updates */
4491 if (tiwin > tp->snd_wnd) {
4492 tcp_update_window(tp, thflags,
4493 th, tiwin, tlen);
4494 }
4495 tcp_ccdbg_trace(tp, th,
4496 TCP_CC_IN_FASTRECOVERY);
4497
4498 (void) tcp_output(tp);
4499
4500 goto drop;
4501 } else if ((!tcp_do_better_lr && tp->t_dupacks == tp->t_rexmtthresh) ||
4502 (tcp_do_better_lr && tp->t_dupacks >= tp->t_rexmtthresh)) {
4503 tcp_seq onxt = tp->snd_nxt;
4504
4505 /*
4506 * If we're doing sack, check to
4507 * see if we're already in sack
4508 * recovery. If we're not doing sack,
4509 * check to see if we're in newreno
4510 * recovery.
4511 */
4512 if (SACK_ENABLED(tp)) {
4513 if (IN_FASTRECOVERY(tp)) {
4514 tp->t_dupacks = 0;
4515 break;
4516 } else if (tp->t_flagsext & TF_DELAY_RECOVERY) {
4517 break;
4518 }
4519 } else {
4520 if (SEQ_LEQ(th->th_ack, tp->snd_recover)) {
4521 tp->t_dupacks = 0;
4522 break;
4523 }
4524 }
4525 if (tp->t_flags & TF_SENTFIN) {
4526 tp->snd_recover = tp->snd_max - 1;
4527 } else {
4528 tp->snd_recover = tp->snd_max;
4529 }
4530 tp->t_timer[TCPT_PTO] = 0;
4531 tp->t_rtttime = 0;
4532
4533 /*
4534 * If the connection has seen pkt
4535 * reordering, delay recovery until
4536 * it is clear that the packet
4537 * was lost.
4538 */
4539 if (SACK_ENABLED(tp) &&
4540 (tp->t_flagsext &
4541 (TF_PKTS_REORDERED | TF_DELAY_RECOVERY))
4542 == TF_PKTS_REORDERED &&
4543 !IN_FASTRECOVERY(tp) &&
4544 tp->t_reorderwin > 0 &&
4545 (tp->t_state == TCPS_ESTABLISHED ||
4546 tp->t_state == TCPS_FIN_WAIT_1)) {
4547 tp->t_timer[TCPT_DELAYFR] =
4548 OFFSET_FROM_START(tp,
4549 tp->t_reorderwin);
4550 tp->t_flagsext |= TF_DELAY_RECOVERY;
4551 tcpstat.tcps_delay_recovery++;
4552 tcp_ccdbg_trace(tp, th,
4553 TCP_CC_DELAY_FASTRECOVERY);
4554 break;
4555 }
4556
4557 tcp_rexmt_save_state(tp);
4558 /*
4559 * If the current tcp cc module has
4560 * defined a hook for tasks to run
4561 * before entering FR, call it
4562 */
4563 if (CC_ALGO(tp)->pre_fr != NULL) {
4564 CC_ALGO(tp)->pre_fr(tp);
4565 }
4566 ENTER_FASTRECOVERY(tp);
4567 tp->t_timer[TCPT_REXMT] = 0;
4568 if (TCP_ECN_ENABLED(tp)) {
4569 tp->ecn_flags |= TE_SENDCWR;
4570 }
4571
4572 if (SACK_ENABLED(tp)) {
4573 tcpstat.tcps_sack_recovery_episode++;
4574 tp->t_sack_recovery_episode++;
4575 tp->sack_newdata = tp->snd_nxt;
4576 if (tcp_do_better_lr) {
4577 tp->snd_cwnd = tp->snd_ssthresh;
4578 } else {
4579 tp->snd_cwnd = tp->t_maxseg;
4580 }
4581 tp->t_flagsext &= ~TF_CWND_NONVALIDATED;
4582
4583 /* Process any window updates */
4584 if (tiwin > tp->snd_wnd) {
4585 tcp_update_window(tp, thflags, th, tiwin, tlen);
4586 }
4587
4588 tcp_ccdbg_trace(tp, th, TCP_CC_ENTER_FASTRECOVERY);
4589 (void) tcp_output(tp);
4590 goto drop;
4591 }
4592 tp->snd_nxt = th->th_ack;
4593 tp->snd_cwnd = tp->t_maxseg;
4594
4595 /* Process any window updates */
4596 if (tiwin > tp->snd_wnd) {
4597 tcp_update_window(tp, thflags, th, tiwin, tlen);
4598 }
4599
4600 (void) tcp_output(tp);
4601 if (tp->t_flagsext & TF_CWND_NONVALIDATED) {
4602 tcp_cc_adjust_nonvalidated_cwnd(tp);
4603 } else {
4604 tp->snd_cwnd = tp->snd_ssthresh + tp->t_maxseg * tp->t_dupacks;
4605 }
4606 if (SEQ_GT(onxt, tp->snd_nxt)) {
4607 tp->snd_nxt = onxt;
4608 }
4609
4610 tcp_ccdbg_trace(tp, th, TCP_CC_ENTER_FASTRECOVERY);
4611 goto drop;
4612 } else if (ALLOW_LIMITED_TRANSMIT(tp) &&
4613 (!(SACK_ENABLED(tp)) || sack_bytes_acked > 0) &&
4614 (so->so_snd.sb_cc - (tp->snd_max - tp->snd_una)) > 0) {
4615 u_int32_t incr = (tp->t_maxseg * tp->t_dupacks);
4616
4617 /* Use Limited Transmit algorithm on the first two
4618 * duplicate acks when there is new data to transmit
4619 */
4620 tp->snd_cwnd += incr;
4621 tcpstat.tcps_limited_txt++;
4622 (void) tcp_output(tp);
4623
4624 tcp_ccdbg_trace(tp, th, TCP_CC_LIMITED_TRANSMIT);
4625
4626 /* Reset snd_cwnd back to normal */
4627 tp->snd_cwnd -= incr;
4628 }
4629 }
4630 break;
4631 }
4632 /*
4633 * If the congestion window was inflated to account
4634 * for the other side's cached packets, retract it.
4635 */
4636 if (IN_FASTRECOVERY(tp)) {
4637 if (SEQ_LT(th->th_ack, tp->snd_recover)) {
4638 /*
4639 * If we received an ECE and entered
4640 * recovery, the subsequent ACKs should
4641 * not be treated as partial acks.
4642 */
4643 if (tp->ecn_flags & TE_INRECOVERY) {
4644 goto process_ACK;
4645 }
4646
4647 if (SACK_ENABLED(tp)) {
4648 tcp_sack_partialack(tp, th);
4649 } else {
4650 tcp_newreno_partial_ack(tp, th);
4651 }
4652 tcp_ccdbg_trace(tp, th, TCP_CC_PARTIAL_ACK);
4653 } else {
4654 if (tcp_cubic_minor_fixes) {
4655 exiting_fr = 1;
4656 }
4657 EXIT_FASTRECOVERY(tp);
4658 if (CC_ALGO(tp)->post_fr != NULL) {
4659 CC_ALGO(tp)->post_fr(tp, th);
4660 }
4661 tp->t_pipeack = 0;
4662 tcp_clear_pipeack_state(tp);
4663 tcp_ccdbg_trace(tp, th,
4664 TCP_CC_EXIT_FASTRECOVERY);
4665 }
4666 } else if ((tp->t_flagsext &
4667 (TF_PKTS_REORDERED | TF_DELAY_RECOVERY))
4668 == (TF_PKTS_REORDERED | TF_DELAY_RECOVERY)) {
4669 /*
4670 * If the ack acknowledges upto snd_recover or if
4671 * it acknowledges all the snd holes, exit
4672 * recovery and cancel the timer. Otherwise,
4673 * this is a partial ack. Wait for recovery timer
4674 * to enter recovery. The snd_holes have already
4675 * been updated.
4676 */
4677 if (SEQ_GEQ(th->th_ack, tp->snd_recover) ||
4678 TAILQ_EMPTY(&tp->snd_holes)) {
4679 tp->t_timer[TCPT_DELAYFR] = 0;
4680 tp->t_flagsext &= ~TF_DELAY_RECOVERY;
4681 EXIT_FASTRECOVERY(tp);
4682 tcp_ccdbg_trace(tp, th,
4683 TCP_CC_EXIT_FASTRECOVERY);
4684 }
4685 } else {
4686 /*
4687 * We were not in fast recovery. Reset the
4688 * duplicate ack counter.
4689 */
4690 tp->t_dupacks = 0;
4691 tp->t_rexmtthresh = tcprexmtthresh;
4692 tp->t_new_dupacks = 0;
4693 }
4694
4695process_ACK:
4696 VERIFY(SEQ_GEQ(th->th_ack, tp->snd_una));
4697 acked = BYTES_ACKED(th, tp);
4698 tcpstat.tcps_rcvackpack++;
4699 tcpstat.tcps_rcvackbyte += acked;
4700
4701 /*
4702 * If the last packet was a retransmit, make sure
4703 * it was not spurious.
4704 *
4705 * This will also take care of congestion window
4706 * adjustment if a last packet was recovered due to a
4707 * tail loss probe.
4708 */
4709 tcp_bad_rexmt_check(tp, th, &to);
4710
4711 /* Recalculate the RTT */
4712 tcp_compute_rtt(tp, &to, th);
4713
4714 /*
4715 * If all outstanding data is acked, stop retransmit
4716 * timer and remember to restart (more output or persist).
4717 * If there is more data to be acked, restart retransmit
4718 * timer, using current (possibly backed-off) value.
4719 */
4720 TCP_RESET_REXMT_STATE(tp);
4721 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
4722 tp->t_rttmin, TCPTV_REXMTMAX,
4723 TCP_ADD_REXMTSLOP(tp));
4724 if (th->th_ack == tp->snd_max) {
4725 tp->t_timer[TCPT_REXMT] = 0;
4726 tp->t_timer[TCPT_PTO] = 0;
4727 needoutput = 1;
4728 } else if (tp->t_timer[TCPT_PERSIST] == 0) {
4729 tp->t_timer[TCPT_REXMT] = OFFSET_FROM_START(tp,
4730 tp->t_rxtcur);
4731 }
4732
4733 if ((prev_t_state == TCPS_SYN_SENT ||
4734 prev_t_state == TCPS_SYN_RECEIVED) &&
4735 tp->t_state == TCPS_ESTABLISHED) {
4736 TCP_LOG_RTT_INFO(tp);
4737 }
4738
4739 /*
4740 * If no data (only SYN) was ACK'd, skip rest of ACK
4741 * processing.
4742 */
4743 if (acked == 0) {
4744 goto step6;
4745 }
4746
4747 /*
4748 * When outgoing data has been acked (except the SYN+data), we
4749 * mark this connection as "sending good" for TFO.
4750 */
4751 if ((tp->t_tfo_stats & TFO_S_SYN_DATA_SENT) &&
4752 !(tp->t_tfo_flags & TFO_F_NO_SNDPROBING) &&
4753 !(th->th_flags & TH_SYN)) {
4754 tp->t_tfo_flags |= TFO_F_NO_SNDPROBING;
4755 }
4756
4757 /*
4758 * If TH_ECE is received, make sure that ECN is enabled
4759 * on that connection and we have sent ECT on data packets.
4760 */
4761 if ((thflags & TH_ECE) != 0 && TCP_ECN_ENABLED(tp) &&
4762 (tp->ecn_flags & TE_SENDIPECT)) {
4763 /*
4764 * Reduce the congestion window if we haven't
4765 * done so.
4766 */
4767 if (!IN_FASTRECOVERY(tp)) {
4768 tcp_reduce_congestion_window(tp);
4769 tp->ecn_flags |= (TE_INRECOVERY | TE_SENDCWR);
4770 /*
4771 * Also note that the connection received
4772 * ECE atleast once
4773 */
4774 tp->ecn_flags |= TE_RECV_ECN_ECE;
4775 INP_INC_IFNET_STAT(inp, ecn_recv_ece);
4776 tcpstat.tcps_ecn_recv_ece++;
4777 tcp_ccdbg_trace(tp, th, TCP_CC_ECN_RCVD);
4778 }
4779 }
4780
4781 /*
4782 * When new data is acked, open the congestion window.
4783 * The specifics of how this is achieved are up to the
4784 * congestion control algorithm in use for this connection.
4785 *
4786 * The calculations in this function assume that snd_una is
4787 * not updated yet.
4788 */
4789 if (!IN_FASTRECOVERY(tp) && !exiting_fr) {
4790 if (CC_ALGO(tp)->ack_rcvd != NULL) {
4791 CC_ALGO(tp)->ack_rcvd(tp, th);
4792 }
4793 tcp_ccdbg_trace(tp, th, TCP_CC_ACK_RCVD);
4794 }
4795 if (acked > so->so_snd.sb_cc) {
4796 tp->snd_wnd -= so->so_snd.sb_cc;
4797 sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
4798 ourfinisacked = 1;
4799 } else {
4800 sbdrop(&so->so_snd, acked);
4801 tcp_sbsnd_trim(&so->so_snd);
4802 tp->snd_wnd -= acked;
4803 ourfinisacked = 0;
4804 }
4805 /* detect una wraparound */
4806 if (!IN_FASTRECOVERY(tp) &&
4807 SEQ_GT(tp->snd_una, tp->snd_recover) &&
4808 SEQ_LEQ(th->th_ack, tp->snd_recover)) {
4809 tp->snd_recover = th->th_ack - 1;
4810 }
4811
4812 if (IN_FASTRECOVERY(tp) &&
4813 SEQ_GEQ(th->th_ack, tp->snd_recover)) {
4814 EXIT_FASTRECOVERY(tp);
4815 }
4816
4817 tcp_update_snd_una(tp, th->th_ack);
4818
4819 if (SACK_ENABLED(tp)) {
4820 if (SEQ_GT(tp->snd_una, tp->snd_recover)) {
4821 tp->snd_recover = tp->snd_una;
4822 }
4823 }
4824 if (SEQ_LT(tp->snd_nxt, tp->snd_una)) {
4825 tp->snd_nxt = tp->snd_una;
4826 }
4827 if (!SLIST_EMPTY(&tp->t_rxt_segments) &&
4828 !TCP_DSACK_SEQ_IN_WINDOW(tp, tp->t_dsack_lastuna,
4829 tp->snd_una)) {
4830 tcp_rxtseg_clean(tp);
4831 }
4832 if ((tp->t_flagsext & TF_MEASURESNDBW) != 0 &&
4833 tp->t_bwmeas != NULL) {
4834 tcp_bwmeas_check(tp);
4835 }
4836
4837 write_wakeup = 1;
4838
4839 if (!SLIST_EMPTY(&tp->t_notify_ack)) {
4840 tcp_notify_acknowledgement(tp, so);
4841 }
4842
4843 switch (tp->t_state) {
4844 /*
4845 * In FIN_WAIT_1 STATE in addition to the processing
4846 * for the ESTABLISHED state if our FIN is now acknowledged
4847 * then enter FIN_WAIT_2.
4848 */
4849 case TCPS_FIN_WAIT_1:
4850 if (ourfinisacked) {
4851 /*
4852 * If we can't receive any more
4853 * data, then closing user can proceed.
4854 * Starting the TCPT_2MSL timer is contrary to the
4855 * specification, but if we don't get a FIN
4856 * we'll hang forever.
4857 */
4858 if (so->so_state & SS_CANTRCVMORE) {
4859 tp->t_timer[TCPT_2MSL] = OFFSET_FROM_START(tp,
4860 TCP_CONN_MAXIDLE(tp));
4861 isconnected = FALSE;
4862 isdisconnected = TRUE;
4863 }
4864 DTRACE_TCP4(state__change, void, NULL,
4865 struct inpcb *, inp,
4866 struct tcpcb *, tp,
4867 int32_t, TCPS_FIN_WAIT_2);
4868 tp->t_state = TCPS_FIN_WAIT_2;
4869 /* fall through and make sure we also recognize
4870 * data ACKed with the FIN
4871 */
4872 }
4873 break;
4874
4875 /*
4876 * In CLOSING STATE in addition to the processing for
4877 * the ESTABLISHED state if the ACK acknowledges our FIN
4878 * then enter the TIME-WAIT state, otherwise ignore
4879 * the segment.
4880 */
4881 case TCPS_CLOSING:
4882 if (ourfinisacked) {
4883 DTRACE_TCP4(state__change, void, NULL,
4884 struct inpcb *, inp,
4885 struct tcpcb *, tp,
4886 int32_t, TCPS_TIME_WAIT);
4887 tp->t_state = TCPS_TIME_WAIT;
4888 tcp_canceltimers(tp);
4889 if (tp->t_flagsext & TF_NOTIMEWAIT) {
4890 tp->t_flags |= TF_CLOSING;
4891 } else {
4892 add_to_time_wait(tp, 2 * tcp_msl);
4893 }
4894 isconnected = FALSE;
4895 isdisconnected = TRUE;
4896 }
4897 break;
4898
4899 /*
4900 * In LAST_ACK, we may still be waiting for data to drain
4901 * and/or to be acked, as well as for the ack of our FIN.
4902 * If our FIN is now acknowledged, delete the TCB,
4903 * enter the closed state and return.
4904 */
4905 case TCPS_LAST_ACK:
4906 if (ourfinisacked) {
4907 tp = tcp_close(tp);
4908 goto drop;
4909 }
4910 break;
4911
4912 /*
4913 * In TIME_WAIT state the only thing that should arrive
4914 * is a retransmission of the remote FIN. Acknowledge
4915 * it and restart the finack timer.
4916 */
4917 case TCPS_TIME_WAIT:
4918 add_to_time_wait(tp, 2 * tcp_msl);
4919 goto dropafterack;
4920 }
4921
4922 /*
4923 * If there is a SACK option on the ACK and we
4924 * haven't seen any duplicate acks before, count
4925 * it as a duplicate ack even if the cumulative
4926 * ack is advanced. If the receiver delayed an
4927 * ack and detected loss afterwards, then the ack
4928 * will advance cumulative ack and will also have
4929 * a SACK option. So counting it as one duplicate
4930 * ack is ok.
4931 */
4932 if (tp->t_state == TCPS_ESTABLISHED &&
4933 SACK_ENABLED(tp) && sack_bytes_acked > 0 &&
4934 to.to_nsacks > 0 && tp->t_dupacks == 0 &&
4935 SEQ_LEQ(th->th_ack, tp->snd_una) && tlen == 0 &&
4936 !(tp->t_flagsext & TF_PKTS_REORDERED)) {
4937 tcpstat.tcps_sack_ackadv++;
4938 goto process_dupack;
4939 }
4940 }
4941
4942step6:
4943 /*
4944 * Update window information.
4945 */
4946 if (tcp_update_window(tp, thflags, th, tiwin, tlen)) {
4947 needoutput = 1;
4948 }
4949
4950 /*
4951 * Process segments with URG.
4952 */
4953 if ((thflags & TH_URG) && th->th_urp &&
4954 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
4955 /*
4956 * This is a kludge, but if we receive and accept
4957 * random urgent pointers, we'll crash in
4958 * soreceive. It's hard to imagine someone
4959 * actually wanting to send this much urgent data.
4960 */
4961 if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
4962 th->th_urp = 0; /* XXX */
4963 thflags &= ~TH_URG; /* XXX */
4964 goto dodata; /* XXX */
4965 }
4966 /*
4967 * If this segment advances the known urgent pointer,
4968 * then mark the data stream. This should not happen
4969 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
4970 * a FIN has been received from the remote side.
4971 * In these states we ignore the URG.
4972 *
4973 * According to RFC961 (Assigned Protocols),
4974 * the urgent pointer points to the last octet
4975 * of urgent data. We continue, however,
4976 * to consider it to indicate the first octet
4977 * of data past the urgent section as the original
4978 * spec states (in one of two places).
4979 */
4980 if (SEQ_GT(th->th_seq + th->th_urp, tp->rcv_up)) {
4981 tp->rcv_up = th->th_seq + th->th_urp;
4982 so->so_oobmark = so->so_rcv.sb_cc +
4983 (tp->rcv_up - tp->rcv_nxt) - 1;
4984 if (so->so_oobmark == 0) {
4985 so->so_state |= SS_RCVATMARK;
4986 }
4987 sohasoutofband(so);
4988 tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
4989 }
4990 /*
4991 * Remove out of band data so doesn't get presented to user.
4992 * This can happen independent of advancing the URG pointer,
4993 * but if two URG's are pending at once, some out-of-band
4994 * data may creep in... ick.
4995 */
4996 if (th->th_urp <= (u_int32_t)tlen
4997#if SO_OOBINLINE
4998 && (so->so_options & SO_OOBINLINE) == 0
4999#endif
5000 ) {
5001 tcp_pulloutofband(so, th, m,
5002 drop_hdrlen); /* hdr drop is delayed */
5003 }
5004 } else {
5005 /*
5006 * If no out of band data is expected,
5007 * pull receive urgent pointer along
5008 * with the receive window.
5009 */
5010 if (SEQ_GT(tp->rcv_nxt, tp->rcv_up)) {
5011 tp->rcv_up = tp->rcv_nxt;
5012 }
5013 }
5014dodata:
5015
5016 /* Set socket's connect or disconnect state correcly before doing data.
5017 * The following might unlock the socket if there is an upcall or a socket
5018 * filter.
5019 */
5020 if (isconnected) {
5021 soisconnected(so);
5022 } else if (isdisconnected) {
5023 soisdisconnected(so);
5024 }
5025
5026 /* Let's check the state of pcb just to make sure that it did not get closed
5027 * when we unlocked above
5028 */
5029 if (inp->inp_state == INPCB_STATE_DEAD) {
5030 /* Just drop the packet that we are processing and return */
5031 TCP_LOG_DROP_PCB(TCP_LOG_HDR, th, tp, false, "INPCB_STATE_DEAD");
5032 goto drop;
5033 }
5034
5035 /*
5036 * Process the segment text, merging it into the TCP sequencing queue,
5037 * and arranging for acknowledgment of receipt if necessary.
5038 * This process logically involves adjusting tp->rcv_wnd as data
5039 * is presented to the user (this happens in tcp_usrreq.c,
5040 * case PRU_RCVD). If a FIN has already been received on this
5041 * connection then we just ignore the text.
5042 *
5043 * If we are in SYN-received state and got a valid TFO cookie, we want
5044 * to process the data.
5045 */
5046 if ((tlen || (thflags & TH_FIN)) &&
5047 TCPS_HAVERCVDFIN(tp->t_state) == 0 &&
5048 (TCPS_HAVEESTABLISHED(tp->t_state) ||
5049 (tp->t_state == TCPS_SYN_RECEIVED &&
5050 (tp->t_tfo_flags & TFO_F_COOKIE_VALID)))) {
5051 tcp_seq save_start = th->th_seq;
5052 tcp_seq save_end = th->th_seq + tlen;
5053 m_adj(m, drop_hdrlen); /* delayed header drop */
5054 /*
5055 * Insert segment which includes th into TCP reassembly queue
5056 * with control block tp. Set thflags to whether reassembly now
5057 * includes a segment with FIN. This handles the common case
5058 * inline (segment is the next to be received on an established
5059 * connection, and the queue is empty), avoiding linkage into
5060 * and removal from the queue and repetition of various
5061 * conversions.
5062 * Set DELACK for segments received in order, but ack
5063 * immediately when segments are out of order (so
5064 * fast retransmit can work).
5065 */
5066 if (th->th_seq == tp->rcv_nxt && LIST_EMPTY(&tp->t_segq)) {
5067 TCP_INC_VAR(tp->t_unacksegs, segment_count);
5068 /*
5069 * Calculate the RTT on the receiver only if the
5070 * connection is in streaming mode and the last
5071 * packet was not an end-of-write
5072 */
5073 if (tp->t_flags & TF_STREAMING_ON) {
5074 tcp_compute_rtt(tp, &to, th);
5075 }
5076
5077 if (DELAY_ACK(tp, th) &&
5078 ((tp->t_flags & TF_ACKNOW) == 0)) {
5079 if ((tp->t_flags & TF_DELACK) == 0) {
5080 tp->t_flags |= TF_DELACK;
5081 tp->t_timer[TCPT_DELACK] =
5082 OFFSET_FROM_START(tp, tcp_delack);
5083 }
5084 } else {
5085 tp->t_flags |= TF_ACKNOW;
5086 }
5087 tp->rcv_nxt += tlen;
5088 thflags = th->th_flags & TH_FIN;
5089 TCP_INC_VAR(tcpstat.tcps_rcvpack, segment_count);
5090 tcpstat.tcps_rcvbyte += tlen;
5091 if (nstat_collect) {
5092 INP_ADD_STAT(inp, cell, wifi, wired,
5093 rxpackets, 1);
5094 INP_ADD_STAT(inp, cell, wifi, wired,
5095 rxbytes, tlen);
5096 inp_set_activity_bitmap(inp);
5097 }
5098 tcp_sbrcv_grow(tp, &so->so_rcv, &to, tlen);
5099 so_recv_data_stat(so, m, drop_hdrlen);
5100
5101 if (isipv6) {
5102 memcpy(&saved_hdr, ip6, sizeof(struct ip6_hdr));
5103 ip6 = (struct ip6_hdr *)&saved_hdr[0];
5104 } else {
5105 memcpy(&saved_hdr, ip, ip->ip_hl << 2);
5106 ip = (struct ip *)&saved_hdr[0];
5107 }
5108 memcpy(&saved_tcphdr, th, sizeof(struct tcphdr));
5109
5110 if (th->th_flags & TH_PUSH) {
5111 tp->t_flagsext |= TF_LAST_IS_PSH;
5112 } else {
5113 tp->t_flagsext &= ~TF_LAST_IS_PSH;
5114 }
5115
5116 if (sbappendstream_rcvdemux(so, m)) {
5117 read_wakeup = 1;
5118 }
5119 th = &saved_tcphdr;
5120 } else {
5121 if (isipv6) {
5122 memcpy(&saved_hdr, ip6, sizeof(struct ip6_hdr));
5123 ip6 = (struct ip6_hdr *)&saved_hdr[0];
5124 } else {
5125 memcpy(&saved_hdr, ip, ip->ip_hl << 2);
5126 ip = (struct ip *)&saved_hdr[0];
5127 }
5128
5129 if (tcp_autotune_reorder) {
5130 tcp_sbrcv_grow(tp, &so->so_rcv, &to, tlen);
5131 }
5132
5133 memcpy(&saved_tcphdr, th, sizeof(struct tcphdr));
5134 thflags = tcp_reass(tp, th, &tlen, m, ifp, &read_wakeup);
5135 th = &saved_tcphdr;
5136 tp->t_flags |= TF_ACKNOW;
5137 }
5138
5139 if ((tlen > 0 || (th->th_flags & TH_FIN)) && SACK_ENABLED(tp)) {
5140 if (th->th_flags & TH_FIN) {
5141 save_end++;
5142 }
5143 tcp_update_sack_list(tp, save_start, save_end);
5144 }
5145
5146 tcp_adaptive_rwtimo_check(tp, tlen);
5147
5148 if (tlen > 0) {
5149 tcp_tfo_rcv_data(tp);
5150 }
5151
5152 if (tp->t_flags & TF_DELACK) {
5153 if (isipv6) {
5154 KERNEL_DEBUG(DBG_LAYER_END, ((th->th_dport << 16) | th->th_sport),
5155 (((ip6->ip6_src.s6_addr16[0]) << 16) | (ip6->ip6_dst.s6_addr16[0])),
5156 th->th_seq, th->th_ack, th->th_win);
5157 } else {
5158 KERNEL_DEBUG(DBG_LAYER_END, ((th->th_dport << 16) | th->th_sport),
5159 (((ip->ip_src.s_addr & 0xffff) << 16) | (ip->ip_dst.s_addr & 0xffff)),
5160 th->th_seq, th->th_ack, th->th_win);
5161 }
5162 }
5163 } else {
5164 if ((so->so_flags & SOF_MP_SUBFLOW) && tlen == 0 &&
5165 (m->m_pkthdr.pkt_flags & PKTF_MPTCP_DFIN) &&
5166 (m->m_pkthdr.pkt_flags & PKTF_MPTCP)) {
5167 m_adj(m, drop_hdrlen); /* delayed header drop */
5168 mptcp_input(tptomptp(tp)->mpt_mpte, m);
5169 tp->t_flags |= TF_ACKNOW;
5170 } else {
5171 m_freem(m);
5172 }
5173 thflags &= ~TH_FIN;
5174 }
5175
5176 /*
5177 * If FIN is received ACK the FIN and let the user know
5178 * that the connection is closing.
5179 */
5180 if (thflags & TH_FIN) {
5181 if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
5182 socantrcvmore(so);
5183 /*
5184 * If connection is half-synchronized
5185 * (ie NEEDSYN flag on) then delay ACK,
5186 * so it may be piggybacked when SYN is sent.
5187 * Otherwise, since we received a FIN then no
5188 * more input can be expected, send ACK now.
5189 */
5190 TCP_INC_VAR(tp->t_unacksegs, segment_count);
5191 tp->t_flags |= TF_ACKNOW;
5192 tp->rcv_nxt++;
5193 }
5194 switch (tp->t_state) {
5195 /*
5196 * In SYN_RECEIVED and ESTABLISHED STATES
5197 * enter the CLOSE_WAIT state.
5198 */
5199 case TCPS_SYN_RECEIVED:
5200 tp->t_starttime = tcp_now;
5201 OS_FALLTHROUGH;
5202 case TCPS_ESTABLISHED:
5203 DTRACE_TCP4(state__change, void, NULL, struct inpcb *, inp,
5204 struct tcpcb *, tp, int32_t, TCPS_CLOSE_WAIT);
5205 tp->t_state = TCPS_CLOSE_WAIT;
5206 break;
5207
5208 /*
5209 * If still in FIN_WAIT_1 STATE FIN has not been acked so
5210 * enter the CLOSING state.
5211 */
5212 case TCPS_FIN_WAIT_1:
5213 DTRACE_TCP4(state__change, void, NULL, struct inpcb *, inp,
5214 struct tcpcb *, tp, int32_t, TCPS_CLOSING);
5215 tp->t_state = TCPS_CLOSING;
5216 break;
5217
5218 /*
5219 * In FIN_WAIT_2 state enter the TIME_WAIT state,
5220 * starting the time-wait timer, turning off the other
5221 * standard timers.
5222 */
5223 case TCPS_FIN_WAIT_2:
5224 DTRACE_TCP4(state__change, void, NULL,
5225 struct inpcb *, inp,
5226 struct tcpcb *, tp,
5227 int32_t, TCPS_TIME_WAIT);
5228 tp->t_state = TCPS_TIME_WAIT;
5229 tcp_canceltimers(tp);
5230 tp->t_flags |= TF_ACKNOW;
5231 if (tp->t_flagsext & TF_NOTIMEWAIT) {
5232 tp->t_flags |= TF_CLOSING;
5233 } else {
5234 add_to_time_wait(tp, 2 * tcp_msl);
5235 }
5236 soisdisconnected(so);
5237 break;
5238
5239 /*
5240 * In TIME_WAIT state restart the 2 MSL time_wait timer.
5241 */
5242 case TCPS_TIME_WAIT:
5243 add_to_time_wait(tp, 2 * tcp_msl);
5244 break;
5245 }
5246 }
5247#if TCPDEBUG
5248 if (so->so_options & SO_DEBUG) {
5249 tcp_trace(TA_INPUT, ostate, tp, (void *)tcp_saveipgen,
5250 &tcp_savetcp, 0);
5251 }
5252#endif
5253
5254 if (read_wakeup) {
5255 mptcp_handle_input(so);
5256 }
5257
5258 /*
5259 * Return any desired output.
5260 */
5261 if (needoutput || (tp->t_flags & TF_ACKNOW)) {
5262 (void) tcp_output(tp);
5263 }
5264
5265 tcp_check_timer_state(tp);
5266
5267 tcp_handle_wakeup(so, read_wakeup, write_wakeup);
5268
5269 socket_unlock(so, 1);
5270 KERNEL_DEBUG(DBG_FNC_TCP_INPUT | DBG_FUNC_END, 0, 0, 0, 0, 0);
5271 return;
5272
5273dropafterack:
5274 /*
5275 * Generate an ACK dropping incoming segment if it occupies
5276 * sequence space, where the ACK reflects our state.
5277 *
5278 * We can now skip the test for the RST flag since all
5279 * paths to this code happen after packets containing
5280 * RST have been dropped.
5281 *
5282 * In the SYN-RECEIVED state, don't send an ACK unless the
5283 * segment we received passes the SYN-RECEIVED ACK test.
5284 * If it fails send a RST. This breaks the loop in the
5285 * "LAND" DoS attack, and also prevents an ACK storm
5286 * between two listening ports that have been sent forged
5287 * SYN segments, each with the source address of the other.
5288 */
5289 if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) &&
5290 (SEQ_GT(tp->snd_una, th->th_ack) ||
5291 SEQ_GT(th->th_ack, tp->snd_max))) {
5292 IF_TCP_STATINC(ifp, dospacket);
5293 goto dropwithreset;
5294 }
5295#if TCPDEBUG
5296 if (so->so_options & SO_DEBUG) {
5297 tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
5298 &tcp_savetcp, 0);
5299 }
5300#endif
5301 m_freem(m);
5302 tp->t_flags |= TF_ACKNOW;
5303
5304 (void) tcp_output(tp);
5305
5306 tcp_handle_wakeup(so, read_wakeup, write_wakeup);
5307
5308 /* Don't need to check timer state as we should have done it during tcp_output */
5309 socket_unlock(so, 1);
5310 KERNEL_DEBUG(DBG_FNC_TCP_INPUT | DBG_FUNC_END, 0, 0, 0, 0, 0);
5311 return;
5312dropwithresetnosock:
5313 nosock = 1;
5314dropwithreset:
5315 /*
5316 * Generate a RST, dropping incoming segment.
5317 * Make ACK acceptable to originator of segment.
5318 * Don't bother to respond if destination was broadcast/multicast.
5319 */
5320 if ((thflags & TH_RST) || m->m_flags & (M_BCAST | M_MCAST)) {
5321 goto drop;
5322 }
5323 if (isipv6) {
5324 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
5325 IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
5326 goto drop;
5327 }
5328 } else if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
5329 IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
5330 ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
5331 in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif)) {
5332 goto drop;
5333 }
5334 /* IPv6 anycast check is done at tcp6_input() */
5335
5336#if TCPDEBUG
5337 if (tp == 0 || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG)) {
5338 tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
5339 &tcp_savetcp, 0);
5340 }
5341#endif
5342 bzero(&tra, sizeof(tra));
5343 tra.ifscope = ifscope;
5344 tra.awdl_unrestricted = 1;
5345 tra.intcoproc_allowed = 1;
5346 if (thflags & TH_ACK) {
5347 /* mtod() below is safe as long as hdr dropping is delayed */
5348 tcp_respond(tp, mtod(m, void *), th, m, (tcp_seq)0, th->th_ack,
5349 TH_RST, &tra);
5350 } else {
5351 if (thflags & TH_SYN) {
5352 tlen++;
5353 }
5354 /* mtod() below is safe as long as hdr dropping is delayed */
5355 tcp_respond(tp, mtod(m, void *), th, m, th->th_seq + tlen,
5356 (tcp_seq)0, TH_RST | TH_ACK, &tra);
5357 }
5358 /* destroy temporarily created socket */
5359 if (dropsocket) {
5360 (void) soabort(so);
5361 socket_unlock(so, 1);
5362 } else if ((inp != NULL) && (nosock == 0)) {
5363 tcp_handle_wakeup(so, read_wakeup, write_wakeup);
5364
5365 socket_unlock(so, 1);
5366 }
5367 KERNEL_DEBUG(DBG_FNC_TCP_INPUT | DBG_FUNC_END, 0, 0, 0, 0, 0);
5368 return;
5369dropnosock:
5370 nosock = 1;
5371drop:
5372 /*
5373 * Drop space held by incoming segment and return.
5374 */
5375#if TCPDEBUG
5376 if (tp == 0 || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG)) {
5377 tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
5378 &tcp_savetcp, 0);
5379 }
5380#endif
5381 m_freem(m);
5382 /* destroy temporarily created socket */
5383 if (dropsocket) {
5384 (void) soabort(so);
5385 socket_unlock(so, 1);
5386 } else if (nosock == 0) {
5387 tcp_handle_wakeup(so, read_wakeup, write_wakeup);
5388
5389 socket_unlock(so, 1);
5390 }
5391 KERNEL_DEBUG(DBG_FNC_TCP_INPUT | DBG_FUNC_END, 0, 0, 0, 0, 0);
5392 return;
5393}
5394
5395/*
5396 * Parse TCP options and place in tcpopt.
5397 */
5398static void
5399tcp_dooptions(struct tcpcb *tp, u_char *cp, int cnt, struct tcphdr *th,
5400 struct tcpopt *to)
5401{
5402 u_short mss = 0;
5403 int opt, optlen;
5404
5405 for (; cnt > 0; cnt -= optlen, cp += optlen) {
5406 opt = cp[0];
5407 if (opt == TCPOPT_EOL) {
5408 break;
5409 }
5410 if (opt == TCPOPT_NOP) {
5411 optlen = 1;
5412 } else {
5413 if (cnt < 2) {
5414 break;
5415 }
5416 optlen = cp[1];
5417 if (optlen < 2 || optlen > cnt) {
5418 break;
5419 }
5420 }
5421 switch (opt) {
5422 default:
5423 continue;
5424
5425 case TCPOPT_MAXSEG:
5426 if (optlen != TCPOLEN_MAXSEG) {
5427 continue;
5428 }
5429 if (!(th->th_flags & TH_SYN)) {
5430 continue;
5431 }
5432 bcopy((char *) cp + 2, (char *) &mss, sizeof(mss));
5433 NTOHS(mss);
5434 to->to_mss = mss;
5435 to->to_flags |= TOF_MSS;
5436 break;
5437
5438 case TCPOPT_WINDOW:
5439 if (optlen != TCPOLEN_WINDOW) {
5440 continue;
5441 }
5442 if (!(th->th_flags & TH_SYN)) {
5443 continue;
5444 }
5445 to->to_flags |= TOF_SCALE;
5446 to->to_requested_s_scale = min(cp[2], TCP_MAX_WINSHIFT);
5447 break;
5448
5449 case TCPOPT_TIMESTAMP:
5450 if (optlen != TCPOLEN_TIMESTAMP) {
5451 continue;
5452 }
5453 to->to_flags |= TOF_TS;
5454 bcopy((char *)cp + 2,
5455 (char *)&to->to_tsval, sizeof(to->to_tsval));
5456 NTOHL(to->to_tsval);
5457 bcopy((char *)cp + 6,
5458 (char *)&to->to_tsecr, sizeof(to->to_tsecr));
5459 NTOHL(to->to_tsecr);
5460 /* Re-enable sending Timestamps if we received them */
5461 if (!(tp->t_flags & TF_REQ_TSTMP)) {
5462 tp->t_flags |= TF_REQ_TSTMP;
5463 }
5464 break;
5465 case TCPOPT_SACK_PERMITTED:
5466 if (optlen != TCPOLEN_SACK_PERMITTED) {
5467 continue;
5468 }
5469 if (th->th_flags & TH_SYN) {
5470 to->to_flags |= TOF_SACK;
5471 }
5472 break;
5473 case TCPOPT_SACK:
5474 if (optlen <= 2 || (optlen - 2) % TCPOLEN_SACK != 0) {
5475 continue;
5476 }
5477 to->to_nsacks = (optlen - 2) / TCPOLEN_SACK;
5478 to->to_sacks = cp + 2;
5479 tcpstat.tcps_sack_rcv_blocks++;
5480
5481 break;
5482 case TCPOPT_FASTOPEN:
5483 if (optlen == TCPOLEN_FASTOPEN_REQ) {
5484 if (tp->t_state != TCPS_LISTEN) {
5485 continue;
5486 }
5487
5488 to->to_flags |= TOF_TFOREQ;
5489 } else {
5490 if (optlen < TCPOLEN_FASTOPEN_REQ ||
5491 (optlen - TCPOLEN_FASTOPEN_REQ) > TFO_COOKIE_LEN_MAX ||
5492 (optlen - TCPOLEN_FASTOPEN_REQ) < TFO_COOKIE_LEN_MIN) {
5493 continue;
5494 }
5495 if (tp->t_state != TCPS_LISTEN &&
5496 tp->t_state != TCPS_SYN_SENT) {
5497 continue;
5498 }
5499
5500 to->to_flags |= TOF_TFO;
5501 to->to_tfo = cp + 1;
5502 }
5503
5504 break;
5505#if MPTCP
5506 case TCPOPT_MULTIPATH:
5507 tcp_do_mptcp_options(tp, cp, th, to, optlen);
5508 break;
5509#endif /* MPTCP */
5510 }
5511 }
5512}
5513
5514static void
5515tcp_finalize_options(struct tcpcb *tp, struct tcpopt *to, unsigned int ifscope)
5516{
5517 if (to->to_flags & TOF_TS) {
5518 tp->t_flags |= TF_RCVD_TSTMP;
5519 tp->ts_recent = to->to_tsval;
5520 tp->ts_recent_age = tcp_now;
5521 }
5522 if (to->to_flags & TOF_MSS) {
5523 tcp_mss(tp, to->to_mss, ifscope);
5524 }
5525 if (SACK_ENABLED(tp)) {
5526 if (!(to->to_flags & TOF_SACK)) {
5527 tp->t_flagsext &= ~(TF_SACK_ENABLE);
5528 } else {
5529 tp->t_flags |= TF_SACK_PERMIT;
5530 }
5531 }
5532 if (to->to_flags & TOF_SCALE) {
5533 tp->t_flags |= TF_RCVD_SCALE;
5534 tp->requested_s_scale = to->to_requested_s_scale;
5535
5536 /* Re-enable window scaling, if the option is received */
5537 if (tp->request_r_scale > 0) {
5538 tp->t_flags |= TF_REQ_SCALE;
5539 }
5540 }
5541}
5542
5543/*
5544 * Pull out of band byte out of a segment so
5545 * it doesn't appear in the user's data queue.
5546 * It is still reflected in the segment length for
5547 * sequencing purposes.
5548 *
5549 * @param off delayed to be droped hdrlen
5550 */
5551static void
5552tcp_pulloutofband(struct socket *so, struct tcphdr *th, struct mbuf *m, int off)
5553{
5554 int cnt = off + th->th_urp - 1;
5555
5556 while (cnt >= 0) {
5557 if (m->m_len > cnt) {
5558 char *cp = mtod(m, caddr_t) + cnt;
5559 struct tcpcb *tp = sototcpcb(so);
5560
5561 tp->t_iobc = *cp;
5562 tp->t_oobflags |= TCPOOB_HAVEDATA;
5563 bcopy(cp + 1, cp, (unsigned)(m->m_len - cnt - 1));
5564 m->m_len--;
5565 if (m->m_flags & M_PKTHDR) {
5566 m->m_pkthdr.len--;
5567 }
5568 return;
5569 }
5570 cnt -= m->m_len;
5571 m = m->m_next;
5572 if (m == 0) {
5573 break;
5574 }
5575 }
5576 panic("tcp_pulloutofband");
5577}
5578
5579uint32_t
5580get_base_rtt(struct tcpcb *tp)
5581{
5582 struct rtentry *rt = tp->t_inpcb->inp_route.ro_rt;
5583 return (rt == NULL) ? 0 : rt->rtt_min;
5584}
5585
5586/* Each value of RTT base represents the minimum RTT seen in a minute.
5587 * We keep upto N_RTT_BASE minutes worth of history.
5588 */
5589void
5590update_base_rtt(struct tcpcb *tp, uint32_t rtt)
5591{
5592 u_int32_t base_rtt, i;
5593 struct rtentry *rt;
5594
5595 if ((rt = tp->t_inpcb->inp_route.ro_rt) == NULL) {
5596 return;
5597 }
5598 if (rt->rtt_expire_ts == 0) {
5599 RT_LOCK_SPIN(rt);
5600 if (rt->rtt_expire_ts != 0) {
5601 RT_UNLOCK(rt);
5602 goto update;
5603 }
5604 rt->rtt_expire_ts = tcp_now;
5605 rt->rtt_index = 0;
5606 rt->rtt_hist[0] = rtt;
5607 rt->rtt_min = rtt;
5608 RT_UNLOCK(rt);
5609 return;
5610 }
5611update:
5612#if TRAFFIC_MGT
5613 /*
5614 * If the recv side is being throttled, check if the
5615 * current RTT is closer to the base RTT seen in
5616 * first (recent) two slots. If so, unthrottle the stream.
5617 */
5618 if ((tp->t_flagsext & TF_RECV_THROTTLE) &&
5619 (int)(tcp_now - tp->t_recv_throttle_ts) >= TCP_RECV_THROTTLE_WIN) {
5620 base_rtt = rt->rtt_min;
5621 if (tp->t_rttcur <= (base_rtt + target_qdelay)) {
5622 tp->t_flagsext &= ~TF_RECV_THROTTLE;
5623 tp->t_recv_throttle_ts = 0;
5624 }
5625 }
5626#endif /* TRAFFIC_MGT */
5627 if ((int)(tcp_now - rt->rtt_expire_ts) >=
5628 TCP_RTT_HISTORY_EXPIRE_TIME) {
5629 RT_LOCK_SPIN(rt);
5630 /* check the condition again to avoid race */
5631 if ((int)(tcp_now - rt->rtt_expire_ts) >=
5632 TCP_RTT_HISTORY_EXPIRE_TIME) {
5633 rt->rtt_index++;
5634 if (rt->rtt_index >= NRTT_HIST) {
5635 rt->rtt_index = 0;
5636 }
5637 rt->rtt_hist[rt->rtt_index] = rtt;
5638 rt->rtt_expire_ts = tcp_now;
5639 } else {
5640 rt->rtt_hist[rt->rtt_index] =
5641 min(rt->rtt_hist[rt->rtt_index], rtt);
5642 }
5643 /* forget the old value and update minimum */
5644 rt->rtt_min = 0;
5645 for (i = 0; i < NRTT_HIST; ++i) {
5646 if (rt->rtt_hist[i] != 0 &&
5647 (rt->rtt_min == 0 ||
5648 rt->rtt_hist[i] < rt->rtt_min)) {
5649 rt->rtt_min = rt->rtt_hist[i];
5650 }
5651 }
5652 RT_UNLOCK(rt);
5653 } else {
5654 rt->rtt_hist[rt->rtt_index] =
5655 min(rt->rtt_hist[rt->rtt_index], rtt);
5656 if (rt->rtt_min == 0) {
5657 rt->rtt_min = rtt;
5658 } else {
5659 rt->rtt_min = min(rt->rtt_min, rtt);
5660 }
5661 }
5662}
5663
5664/*
5665 * If we have a timestamp reply, update smoothed RTT. If no timestamp is
5666 * present but transmit timer is running and timed sequence number was
5667 * acked, update smoothed RTT.
5668 *
5669 * If timestamps are supported, a receiver can update RTT even if
5670 * there is no outstanding data.
5671 *
5672 * Some boxes send broken timestamp replies during the SYN+ACK phase,
5673 * ignore timestamps of 0or we could calculate a huge RTT and blow up
5674 * the retransmit timer.
5675 */
5676static void
5677tcp_compute_rtt(struct tcpcb *tp, struct tcpopt *to, struct tcphdr *th)
5678{
5679 int rtt = 0;
5680 VERIFY(to != NULL && th != NULL);
5681 if (tp->t_rtttime != 0 && SEQ_GT(th->th_ack, tp->t_rtseq)) {
5682 u_int32_t pipe_ack_val;
5683 rtt = tcp_now - tp->t_rtttime;
5684 /*
5685 * Compute pipe ack -- the amount of data acknowledged
5686 * in the last RTT
5687 */
5688 if (SEQ_GT(th->th_ack, tp->t_pipeack_lastuna)) {
5689 pipe_ack_val = th->th_ack - tp->t_pipeack_lastuna;
5690 /* Update the sample */
5691 tp->t_pipeack_sample[tp->t_pipeack_ind++] =
5692 pipe_ack_val;
5693 tp->t_pipeack_ind %= TCP_PIPEACK_SAMPLE_COUNT;
5694
5695 /* Compute the max of the pipeack samples */
5696 pipe_ack_val = tcp_get_max_pipeack(tp);
5697 tp->t_pipeack = (pipe_ack_val >
5698 tcp_initial_cwnd(tp)) ?
5699 pipe_ack_val : 0;
5700 }
5701 /* start another measurement */
5702 tp->t_rtttime = 0;
5703 }
5704 if (((to->to_flags & TOF_TS) != 0) &&
5705 (to->to_tsecr != 0) &&
5706 TSTMP_GEQ(tcp_now, to->to_tsecr)) {
5707 tcp_xmit_timer(tp, (tcp_now - to->to_tsecr),
5708 to->to_tsecr, th->th_ack);
5709 } else if (rtt > 0) {
5710 tcp_xmit_timer(tp, rtt, 0, th->th_ack);
5711 }
5712}
5713
5714/*
5715 * Collect new round-trip time estimate and update averages and
5716 * current timeout.
5717 */
5718static void
5719tcp_xmit_timer(struct tcpcb *tp, int rtt,
5720 u_int32_t tsecr, tcp_seq th_ack)
5721{
5722 int delta;
5723 int old_srtt = tp->t_srtt;
5724 int old_rttvar = tp->t_rttvar;
5725 bool log_rtt = false;
5726
5727 /*
5728 * On AWDL interface, the initial RTT measurement on SYN
5729 * can be wrong due to peer caching. Avoid the first RTT
5730 * measurement as it might skew up the RTO.
5731 * <rdar://problem/28739046>
5732 */
5733 if (tp->t_inpcb->inp_last_outifp != NULL &&
5734 (tp->t_inpcb->inp_last_outifp->if_eflags & IFEF_AWDL) &&
5735 th_ack == tp->iss + 1) {
5736 return;
5737 }
5738
5739 if (tp->t_flagsext & TF_RECOMPUTE_RTT) {
5740 if (SEQ_GT(th_ack, tp->snd_una) &&
5741 SEQ_LEQ(th_ack, tp->snd_max) &&
5742 (tsecr == 0 ||
5743 TSTMP_GEQ(tsecr, tp->t_badrexmt_time))) {
5744 /*
5745 * We received a new ACK after a
5746 * spurious timeout. Adapt retransmission
5747 * timer as described in rfc 4015.
5748 */
5749 tp->t_flagsext &= ~(TF_RECOMPUTE_RTT);
5750 tp->t_badrexmt_time = 0;
5751 tp->t_srtt = max(tp->t_srtt_prev, rtt);
5752 tp->t_srtt = tp->t_srtt << TCP_RTT_SHIFT;
5753 tp->t_rttvar = max(tp->t_rttvar_prev, (rtt >> 1));
5754 tp->t_rttvar = tp->t_rttvar << TCP_RTTVAR_SHIFT;
5755
5756 if (tp->t_rttbest > (tp->t_srtt + tp->t_rttvar)) {
5757 tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
5758 }
5759
5760 goto compute_rto;
5761 } else {
5762 return;
5763 }
5764 }
5765
5766 tcpstat.tcps_rttupdated++;
5767 tp->t_rttupdated++;
5768
5769 if (rtt > 0) {
5770 tp->t_rttcur = rtt;
5771 update_base_rtt(tp, rtt);
5772 }
5773
5774 if (tp->t_srtt != 0) {
5775 /*
5776 * srtt is stored as fixed point with 5 bits after the
5777 * binary point (i.e., scaled by 32). The following magic
5778 * is equivalent to the smoothing algorithm in rfc793 with
5779 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
5780 * point).
5781 *
5782 * Freebsd adjusts rtt to origin 0 by subtracting 1
5783 * from the provided rtt value. This was required because
5784 * of the way t_rtttime was initiailised to 1 before.
5785 * Since we changed t_rtttime to be based on
5786 * tcp_now, this extra adjustment is not needed.
5787 */
5788 delta = (rtt << TCP_DELTA_SHIFT)
5789 - (tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT));
5790
5791 if ((tp->t_srtt += delta) <= 0) {
5792 tp->t_srtt = 1;
5793 }
5794
5795 /*
5796 * We accumulate a smoothed rtt variance (actually, a
5797 * smoothed mean difference), then set the retransmit
5798 * timer to smoothed rtt + 4 times the smoothed variance.
5799 * rttvar is stored as fixed point with 4 bits after the
5800 * binary point (scaled by 16). The following is
5801 * equivalent to rfc793 smoothing with an alpha of .75
5802 * (rttvar = rttvar*3/4 + |delta| / 4). This replaces
5803 * rfc793's wired-in beta.
5804 */
5805 if (delta < 0) {
5806 delta = -delta;
5807 }
5808 delta -= tp->t_rttvar >> (TCP_RTTVAR_SHIFT - TCP_DELTA_SHIFT);
5809 if ((tp->t_rttvar += delta) <= 0) {
5810 tp->t_rttvar = 1;
5811 }
5812 if (tp->t_rttbest == 0 ||
5813 tp->t_rttbest > (tp->t_srtt + tp->t_rttvar)) {
5814 tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
5815 }
5816 } else {
5817 /*
5818 * No rtt measurement yet - use the unsmoothed rtt.
5819 * Set the variance to half the rtt (so our first
5820 * retransmit happens at 3*rtt).
5821 */
5822 tp->t_srtt = rtt << TCP_RTT_SHIFT;
5823 tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1);
5824 tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
5825 }
5826
5827compute_rto:
5828 nstat_route_rtt(tp->t_inpcb->inp_route.ro_rt, tp->t_srtt,
5829 tp->t_rttvar);
5830
5831 /*
5832 * the retransmit should happen at rtt + 4 * rttvar.
5833 * Because of the way we do the smoothing, srtt and rttvar
5834 * will each average +1/2 tick of bias. When we compute
5835 * the retransmit timer, we want 1/2 tick of rounding and
5836 * 1 extra tick because of +-1/2 tick uncertainty in the
5837 * firing of the timer. The bias will give us exactly the
5838 * 1.5 tick we need. But, because the bias is
5839 * statistical, we have to test that we don't drop below
5840 * the minimum feasible timer (which is 2 ticks).
5841 */
5842 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
5843 max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX,
5844 TCP_ADD_REXMTSLOP(tp));
5845
5846 /*
5847 * We received an ack for a packet that wasn't retransmitted;
5848 * it is probably safe to discard any error indications we've
5849 * received recently. This isn't quite right, but close enough
5850 * for now (a route might have failed after we sent a segment,
5851 * and the return path might not be symmetrical).
5852 */
5853 tp->t_softerror = 0;
5854
5855 if (log_rtt) {
5856 TCP_LOG_RTT_INFO(tp);
5857 }
5858
5859 TCP_LOG_RTT_CHANGE(tp, old_srtt, old_rttvar);
5860}
5861
5862static inline unsigned int
5863tcp_maxmtu(struct rtentry *rt)
5864{
5865 unsigned int maxmtu;
5866 int interface_mtu = 0;
5867
5868 RT_LOCK_ASSERT_HELD(rt);
5869 interface_mtu = rt->rt_ifp->if_mtu;
5870
5871 if (rt_key(rt)->sa_family == AF_INET &&
5872 INTF_ADJUST_MTU_FOR_CLAT46(rt->rt_ifp)) {
5873 interface_mtu = IN6_LINKMTU(rt->rt_ifp);
5874 /* Further adjust the size for CLAT46 expansion */
5875 interface_mtu -= CLAT46_HDR_EXPANSION_OVERHD;
5876 }
5877
5878 if (rt->rt_rmx.rmx_mtu == 0) {
5879 maxmtu = interface_mtu;
5880 } else {
5881 maxmtu = MIN(rt->rt_rmx.rmx_mtu, interface_mtu);
5882 }
5883
5884 return maxmtu;
5885}
5886
5887static inline unsigned int
5888tcp_maxmtu6(struct rtentry *rt)
5889{
5890 unsigned int maxmtu;
5891 struct nd_ifinfo *ndi = NULL;
5892
5893 RT_LOCK_ASSERT_HELD(rt);
5894 if ((ndi = ND_IFINFO(rt->rt_ifp)) != NULL && !ndi->initialized) {
5895 ndi = NULL;
5896 }
5897 if (ndi != NULL) {
5898 lck_mtx_lock(&ndi->lock);
5899 }
5900 if (rt->rt_rmx.rmx_mtu == 0) {
5901 maxmtu = IN6_LINKMTU(rt->rt_ifp);
5902 } else {
5903 maxmtu = MIN(rt->rt_rmx.rmx_mtu, IN6_LINKMTU(rt->rt_ifp));
5904 }
5905 if (ndi != NULL) {
5906 lck_mtx_unlock(&ndi->lock);
5907 }
5908
5909 return maxmtu;
5910}
5911
5912unsigned int
5913get_maxmtu(struct rtentry *rt)
5914{
5915 unsigned int maxmtu = 0;
5916
5917 RT_LOCK_ASSERT_NOTHELD(rt);
5918
5919 RT_LOCK(rt);
5920
5921 if (rt_key(rt)->sa_family == AF_INET6) {
5922 maxmtu = tcp_maxmtu6(rt);
5923 } else {
5924 maxmtu = tcp_maxmtu(rt);
5925 }
5926
5927 RT_UNLOCK(rt);
5928
5929 return maxmtu;
5930}
5931
5932/*
5933 * Determine a reasonable value for maxseg size.
5934 * If the route is known, check route for mtu.
5935 * If none, use an mss that can be handled on the outgoing
5936 * interface without forcing IP to fragment; if bigger than
5937 * an mbuf cluster (MCLBYTES), round down to nearest multiple of MCLBYTES
5938 * to utilize large mbufs. If no route is found, route has no mtu,
5939 * or the destination isn't local, use a default, hopefully conservative
5940 * size (usually 512 or the default IP max size, but no more than the mtu
5941 * of the interface), as we can't discover anything about intervening
5942 * gateways or networks. We also initialize the congestion/slow start
5943 * window. While looking at the routing entry, we also initialize
5944 * other path-dependent parameters from pre-set or cached values
5945 * in the routing entry.
5946 *
5947 * Also take into account the space needed for options that we
5948 * send regularly. Make maxseg shorter by that amount to assure
5949 * that we can send maxseg amount of data even when the options
5950 * are present. Store the upper limit of the length of options plus
5951 * data in maxopd.
5952 *
5953 * NOTE that this routine is only called when we process an incoming
5954 * segment, for outgoing segments only tcp_mssopt is called.
5955 *
5956 */
5957void
5958tcp_mss(struct tcpcb *tp, int offer, unsigned int input_ifscope)
5959{
5960 struct rtentry *rt;
5961 struct ifnet *ifp;
5962 int rtt, mss;
5963 u_int32_t bufsize;
5964 struct inpcb *inp;
5965 struct socket *so;
5966 int origoffer = offer;
5967 u_int32_t sb_max_corrected;
5968 int isnetlocal = 0;
5969 int isipv6;
5970 int min_protoh;
5971
5972 inp = tp->t_inpcb;
5973
5974 so = inp->inp_socket;
5975 /*
5976 * Nothing left to send after the socket is defunct or TCP is in the closed state
5977 */
5978 if ((so->so_state & SS_DEFUNCT) || tp->t_state == TCPS_CLOSED) {
5979 return;
5980 }
5981
5982 isipv6 = ((inp->inp_vflag & INP_IPV6) != 0) ? 1 : 0;
5983 min_protoh = isipv6 ? sizeof(struct ip6_hdr) + sizeof(struct tcphdr)
5984 : sizeof(struct tcpiphdr);
5985
5986 if (isipv6) {
5987 rt = tcp_rtlookup6(inp, input_ifscope);
5988 } else {
5989 rt = tcp_rtlookup(inp, input_ifscope);
5990 }
5991 isnetlocal = (tp->t_flags & TF_LOCAL);
5992
5993 if (rt == NULL) {
5994 tp->t_maxopd = tp->t_maxseg = isipv6 ? tcp_v6mssdflt : tcp_mssdflt;
5995 return;
5996 }
5997 ifp = rt->rt_ifp;
5998 /*
5999 * Slower link window correction:
6000 * If a value is specificied for slowlink_wsize use it for
6001 * PPP links believed to be on a serial modem (speed <128Kbps).
6002 * Excludes 9600bps as it is the default value adversized
6003 * by pseudo-devices over ppp.
6004 */
6005 if (ifp->if_type == IFT_PPP && slowlink_wsize > 0 &&
6006 ifp->if_baudrate > 9600 && ifp->if_baudrate <= 128000) {
6007 tp->t_flags |= TF_SLOWLINK;
6008 }
6009
6010 /*
6011 * Offer == -1 means that we didn't receive SYN yet. Use 0 then.
6012 */
6013 if (offer == -1) {
6014 offer = rt->rt_rmx.rmx_filler[0];
6015 }
6016 /*
6017 * Offer == 0 means that there was no MSS on the SYN segment,
6018 * in this case we use tcp_mssdflt.
6019 */
6020 if (offer == 0) {
6021 offer = isipv6 ? tcp_v6mssdflt : tcp_mssdflt;
6022 } else {
6023 /*
6024 * Prevent DoS attack with too small MSS. Round up
6025 * to at least minmss.
6026 */
6027 offer = max(offer, tcp_minmss);
6028 /*
6029 * Sanity check: make sure that maxopd will be large
6030 * enough to allow some data on segments even is the
6031 * all the option space is used (40bytes). Otherwise
6032 * funny things may happen in tcp_output.
6033 */
6034 offer = max(offer, 64);
6035 }
6036 rt->rt_rmx.rmx_filler[0] = offer;
6037
6038 /*
6039 * While we're here, check if there's an initial rtt
6040 * or rttvar. Convert from the route-table units
6041 * to scaled multiples of the slow timeout timer.
6042 */
6043 if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt) != 0) {
6044 tcp_getrt_rtt(tp, rt);
6045 } else {
6046 tp->t_rttmin = isnetlocal ? tcp_TCPTV_MIN : TCPTV_REXMTMIN;
6047 }
6048
6049 mss = (isipv6 ? tcp_maxmtu6(rt) : tcp_maxmtu(rt));
6050
6051#if NECP
6052 // At this point, the mss is just the MTU. Adjust if necessary.
6053 mss = necp_socket_get_effective_mtu(inp, mss);
6054#endif /* NECP */
6055
6056 mss -= min_protoh;
6057
6058 if (rt->rt_rmx.rmx_mtu == 0) {
6059 if (isipv6) {
6060 if (!isnetlocal) {
6061 mss = min(mss, tcp_v6mssdflt);
6062 }
6063 } else if (!isnetlocal) {
6064 mss = min(mss, tcp_mssdflt);
6065 }
6066 }
6067
6068 mss = min(mss, offer);
6069 /*
6070 * maxopd stores the maximum length of data AND options
6071 * in a segment; maxseg is the amount of data in a normal
6072 * segment. We need to store this value (maxopd) apart
6073 * from maxseg, because now every segment carries options
6074 * and thus we normally have somewhat less data in segments.
6075 */
6076 tp->t_maxopd = mss;
6077
6078 /*
6079 * origoffer==-1 indicates, that no segments were received yet.
6080 * In this case we just guess.
6081 */
6082 if ((tp->t_flags & (TF_REQ_TSTMP | TF_NOOPT)) == TF_REQ_TSTMP &&
6083 (origoffer == -1 ||
6084 (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)) {
6085 mss -= TCPOLEN_TSTAMP_APPA;
6086 }
6087
6088#if MPTCP
6089 mss -= mptcp_adj_mss(tp, FALSE);
6090#endif /* MPTCP */
6091 tp->t_maxseg = mss;
6092
6093 /*
6094 * Calculate corrected value for sb_max; ensure to upgrade the
6095 * numerator for large sb_max values else it will overflow.
6096 */
6097 sb_max_corrected = (sb_max * (u_int64_t)MCLBYTES) / (MSIZE + MCLBYTES);
6098
6099 /*
6100 * If there's a pipesize (ie loopback), change the socket
6101 * buffer to that size only if it's bigger than the current
6102 * sockbuf size. Make the socket buffers an integral
6103 * number of mss units; if the mss is larger than
6104 * the socket buffer, decrease the mss.
6105 */
6106#if RTV_SPIPE
6107 bufsize = rt->rt_rmx.rmx_sendpipe;
6108 if (bufsize < so->so_snd.sb_hiwat)
6109#endif
6110 bufsize = so->so_snd.sb_hiwat;
6111 if (bufsize < mss) {
6112 mss = bufsize;
6113 } else {
6114 bufsize = (((bufsize + (u_int64_t)mss - 1) / (u_int64_t)mss) * (u_int64_t)mss);
6115 if (bufsize > sb_max_corrected) {
6116 bufsize = sb_max_corrected;
6117 }
6118 (void)sbreserve(&so->so_snd, bufsize);
6119 }
6120 tp->t_maxseg = mss;
6121
6122 ASSERT(tp->t_maxseg);
6123
6124 /*
6125 * Update MSS using recommendation from link status report. This is
6126 * temporary
6127 */
6128 tcp_update_mss_locked(so, ifp);
6129
6130#if RTV_RPIPE
6131 bufsize = rt->rt_rmx.rmx_recvpipe;
6132 if (bufsize < so->so_rcv.sb_hiwat)
6133#endif
6134 bufsize = so->so_rcv.sb_hiwat;
6135 if (bufsize > mss) {
6136 bufsize = (((bufsize + (u_int64_t)mss - 1) / (u_int64_t)mss) * (u_int64_t)mss);
6137 if (bufsize > sb_max_corrected) {
6138 bufsize = sb_max_corrected;
6139 }
6140 (void)sbreserve(&so->so_rcv, bufsize);
6141 }
6142
6143 set_tcp_stream_priority(so);
6144
6145 if (rt->rt_rmx.rmx_ssthresh) {
6146 /*
6147 * There's some sort of gateway or interface
6148 * buffer limit on the path. Use this to set
6149 * slow-start threshold, but set the threshold to
6150 * no less than 2*mss.
6151 */
6152 tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
6153 tcpstat.tcps_usedssthresh++;
6154 } else {
6155 tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
6156 }
6157
6158 /*
6159 * Set the slow-start flight size depending on whether this
6160 * is a local network or not.
6161 */
6162 if (CC_ALGO(tp)->cwnd_init != NULL) {
6163 CC_ALGO(tp)->cwnd_init(tp);
6164 }
6165
6166 tcp_ccdbg_trace(tp, NULL, TCP_CC_CWND_INIT);
6167
6168 /* Route locked during lookup above */
6169 RT_UNLOCK(rt);
6170}
6171
6172/*
6173 * Determine the MSS option to send on an outgoing SYN.
6174 */
6175int
6176tcp_mssopt(struct tcpcb *tp)
6177{
6178 struct rtentry *rt;
6179 int mss;
6180 int isipv6;
6181 int min_protoh;
6182
6183 isipv6 = ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) ? 1 : 0;
6184 min_protoh = isipv6 ? sizeof(struct ip6_hdr) + sizeof(struct tcphdr)
6185 : sizeof(struct tcpiphdr);
6186
6187 if (isipv6) {
6188 rt = tcp_rtlookup6(tp->t_inpcb, IFSCOPE_NONE);
6189 } else {
6190 rt = tcp_rtlookup(tp->t_inpcb, IFSCOPE_NONE);
6191 }
6192 if (rt == NULL) {
6193 return isipv6 ? tcp_v6mssdflt : tcp_mssdflt;
6194 }
6195 /*
6196 * Slower link window correction:
6197 * If a value is specificied for slowlink_wsize use it for PPP links
6198 * believed to be on a serial modem (speed <128Kbps). Excludes 9600bps as
6199 * it is the default value adversized by pseudo-devices over ppp.
6200 */
6201 if (rt->rt_ifp->if_type == IFT_PPP && slowlink_wsize > 0 &&
6202 rt->rt_ifp->if_baudrate > 9600 && rt->rt_ifp->if_baudrate <= 128000) {
6203 tp->t_flags |= TF_SLOWLINK;
6204 }
6205
6206 mss = (isipv6 ? tcp_maxmtu6(rt) : tcp_maxmtu(rt));
6207 /* Route locked during lookup above */
6208 RT_UNLOCK(rt);
6209
6210#if NECP
6211 // At this point, the mss is just the MTU. Adjust if necessary.
6212 mss = necp_socket_get_effective_mtu(tp->t_inpcb, mss);
6213#endif /* NECP */
6214
6215 return mss - min_protoh;
6216}
6217
6218/*
6219 * On a partial ack arrives, force the retransmission of the
6220 * next unacknowledged segment. Do not clear tp->t_dupacks.
6221 * By setting snd_nxt to th_ack, this forces retransmission timer to
6222 * be started again.
6223 */
6224static void
6225tcp_newreno_partial_ack(struct tcpcb *tp, struct tcphdr *th)
6226{
6227 tcp_seq onxt = tp->snd_nxt;
6228 u_int32_t ocwnd = tp->snd_cwnd;
6229 tp->t_timer[TCPT_REXMT] = 0;
6230 tp->t_timer[TCPT_PTO] = 0;
6231 tp->t_rtttime = 0;
6232 tp->snd_nxt = th->th_ack;
6233 /*
6234 * Set snd_cwnd to one segment beyond acknowledged offset
6235 * (tp->snd_una has not yet been updated when this function
6236 * is called)
6237 */
6238 tp->snd_cwnd = tp->t_maxseg + BYTES_ACKED(th, tp);
6239 (void) tcp_output(tp);
6240 tp->snd_cwnd = ocwnd;
6241 if (SEQ_GT(onxt, tp->snd_nxt)) {
6242 tp->snd_nxt = onxt;
6243 }
6244 /*
6245 * Partial window deflation. Relies on fact that tp->snd_una
6246 * not updated yet.
6247 */
6248 if (tp->snd_cwnd > BYTES_ACKED(th, tp)) {
6249 tp->snd_cwnd -= BYTES_ACKED(th, tp);
6250 } else {
6251 tp->snd_cwnd = 0;
6252 }
6253 tp->snd_cwnd += tp->t_maxseg;
6254}
6255
6256/*
6257 * Drop a random TCP connection that hasn't been serviced yet and
6258 * is eligible for discard. There is a one in qlen chance that
6259 * we will return a null, saying that there are no dropable
6260 * requests. In this case, the protocol specific code should drop
6261 * the new request. This insures fairness.
6262 *
6263 * The listening TCP socket "head" must be locked
6264 */
6265static int
6266tcp_dropdropablreq(struct socket *head)
6267{
6268 struct socket *so, *sonext;
6269 unsigned int i, j, qlen;
6270 static u_int32_t rnd = 0;
6271 static u_int64_t old_runtime;
6272 static unsigned int cur_cnt, old_cnt;
6273 u_int64_t now_sec;
6274 struct inpcb *inp = NULL;
6275 struct tcpcb *tp;
6276
6277 if ((head->so_options & SO_ACCEPTCONN) == 0) {
6278 return 0;
6279 }
6280
6281 if (TAILQ_EMPTY(&head->so_incomp)) {
6282 return 0;
6283 }
6284
6285 so_acquire_accept_list(head, NULL);
6286 socket_unlock(head, 0);
6287
6288 /*
6289 * Check if there is any socket in the incomp queue
6290 * that is closed because of a reset from the peer and is
6291 * waiting to be garbage collected. If so, pick that as
6292 * the victim
6293 */
6294 TAILQ_FOREACH_SAFE(so, &head->so_incomp, so_list, sonext) {
6295 inp = sotoinpcb(so);
6296 tp = intotcpcb(inp);
6297 if (tp != NULL && tp->t_state == TCPS_CLOSED &&
6298 so->so_head != NULL &&
6299 (so->so_state & (SS_INCOMP | SS_CANTSENDMORE | SS_CANTRCVMORE)) ==
6300 (SS_INCOMP | SS_CANTSENDMORE | SS_CANTRCVMORE)) {
6301 /*
6302 * The listen socket is already locked but we
6303 * can lock this socket here without lock ordering
6304 * issues because it is in the incomp queue and
6305 * is not visible to others.
6306 */
6307 if (socket_try_lock(so)) {
6308 so->so_usecount++;
6309 goto found_victim;
6310 } else {
6311 continue;
6312 }
6313 }
6314 }
6315
6316 so = TAILQ_FIRST(&head->so_incomp);
6317
6318 now_sec = net_uptime();
6319 if ((i = (now_sec - old_runtime)) != 0) {
6320 old_runtime = now_sec;
6321 old_cnt = cur_cnt / i;
6322 cur_cnt = 0;
6323 }
6324
6325 qlen = head->so_incqlen;
6326 if (rnd == 0) {
6327 rnd = RandomULong();
6328 }
6329
6330 if (++cur_cnt > qlen || old_cnt > qlen) {
6331 rnd = (314159 * rnd + 66329) & 0xffff;
6332 j = ((qlen + 1) * rnd) >> 16;
6333
6334 while (j-- && so) {
6335 so = TAILQ_NEXT(so, so_list);
6336 }
6337 }
6338 /* Find a connection that is not already closing (or being served) */
6339 while (so) {
6340 inp = (struct inpcb *)so->so_pcb;
6341
6342 sonext = TAILQ_NEXT(so, so_list);
6343
6344 if (in_pcb_checkstate(inp, WNT_ACQUIRE, 0) != WNT_STOPUSING) {
6345 /*
6346 * Avoid the issue of a socket being accepted
6347 * by one input thread and being dropped by
6348 * another input thread. If we can't get a hold
6349 * on this mutex, then grab the next socket in
6350 * line.
6351 */
6352 if (socket_try_lock(so)) {
6353 so->so_usecount++;
6354 if ((so->so_usecount == 2) &&
6355 (so->so_state & SS_INCOMP) &&
6356 !(so->so_flags & SOF_INCOMP_INPROGRESS)) {
6357 break;
6358 } else {
6359 /*
6360 * don't use if being accepted or
6361 * used in any other way
6362 */
6363 in_pcb_checkstate(inp, WNT_RELEASE, 1);
6364 socket_unlock(so, 1);
6365 }
6366 } else {
6367 /*
6368 * do not try to lock the inp in
6369 * in_pcb_checkstate because the lock
6370 * is already held in some other thread.
6371 * Only drop the inp_wntcnt reference.
6372 */
6373 in_pcb_checkstate(inp, WNT_RELEASE, 1);
6374 }
6375 }
6376 so = sonext;
6377 }
6378 if (so == NULL) {
6379 socket_lock(head, 0);
6380 so_release_accept_list(head);
6381 return 0;
6382 }
6383
6384 /* Makes sure socket is still in the right state to be discarded */
6385
6386 if (in_pcb_checkstate(inp, WNT_RELEASE, 1) == WNT_STOPUSING) {
6387 socket_unlock(so, 1);
6388 socket_lock(head, 0);
6389 so_release_accept_list(head);
6390 return 0;
6391 }
6392
6393found_victim:
6394 if (so->so_usecount != 2 || !(so->so_state & SS_INCOMP)) {
6395 /* do not discard: that socket is being accepted */
6396 socket_unlock(so, 1);
6397 socket_lock(head, 0);
6398 so_release_accept_list(head);
6399 return 0;
6400 }
6401
6402 socket_lock(head, 0);
6403 TAILQ_REMOVE(&head->so_incomp, so, so_list);
6404 head->so_incqlen--;
6405 head->so_qlen--;
6406 so->so_state &= ~SS_INCOMP;
6407 so->so_flags |= SOF_OVERFLOW;
6408 so->so_head = NULL;
6409 so_release_accept_list(head);
6410 socket_unlock(head, 0);
6411
6412 socket_lock_assert_owned(so);
6413 tp = sototcpcb(so);
6414
6415 tcp_close(tp);
6416 if (inp->inp_wantcnt > 0 && inp->inp_wantcnt != WNT_STOPUSING) {
6417 /*
6418 * Some one has a wantcnt on this pcb. Since WNT_ACQUIRE
6419 * doesn't require a lock, it could have happened while
6420 * we are holding the lock. This pcb will have to
6421 * be garbage collected later.
6422 * Release the reference held for so_incomp queue
6423 */
6424 VERIFY(so->so_usecount > 0);
6425 so->so_usecount--;
6426 socket_unlock(so, 1);
6427 } else {
6428 /*
6429 * Unlock this socket and leave the reference on.
6430 * We need to acquire the pcbinfo lock in order to
6431 * fully dispose it off
6432 */
6433 socket_unlock(so, 0);
6434
6435 lck_rw_lock_exclusive(tcbinfo.ipi_lock);
6436
6437 socket_lock(so, 0);
6438 /* Release the reference held for so_incomp queue */
6439 VERIFY(so->so_usecount > 0);
6440 so->so_usecount--;
6441
6442 if (so->so_usecount != 1 ||
6443 (inp->inp_wantcnt > 0 &&
6444 inp->inp_wantcnt != WNT_STOPUSING)) {
6445 /*
6446 * There is an extra wantcount or usecount
6447 * that must have been added when the socket
6448 * was unlocked. This socket will have to be
6449 * garbage collected later
6450 */
6451 socket_unlock(so, 1);
6452 } else {
6453 /* Drop the reference held for this function */
6454 VERIFY(so->so_usecount > 0);
6455 so->so_usecount--;
6456
6457 in_pcbdispose(inp);
6458 }
6459 lck_rw_done(tcbinfo.ipi_lock);
6460 }
6461 tcpstat.tcps_drops++;
6462
6463 socket_lock(head, 0);
6464 return 1;
6465}
6466
6467/* Set background congestion control on a socket */
6468void
6469tcp_set_background_cc(struct socket *so)
6470{
6471 tcp_set_new_cc(so, TCP_CC_ALGO_BACKGROUND_INDEX);
6472}
6473
6474/* Set foreground congestion control on a socket */
6475void
6476tcp_set_foreground_cc(struct socket *so)
6477{
6478 if (tcp_use_newreno) {
6479 tcp_set_new_cc(so, TCP_CC_ALGO_NEWRENO_INDEX);
6480 } else {
6481 tcp_set_new_cc(so, TCP_CC_ALGO_CUBIC_INDEX);
6482 }
6483}
6484
6485static void
6486tcp_set_new_cc(struct socket *so, uint16_t cc_index)
6487{
6488 struct inpcb *inp = sotoinpcb(so);
6489 struct tcpcb *tp = intotcpcb(inp);
6490 u_char old_cc_index = 0;
6491 if (tp->tcp_cc_index != cc_index) {
6492 old_cc_index = tp->tcp_cc_index;
6493
6494 if (CC_ALGO(tp)->cleanup != NULL) {
6495 CC_ALGO(tp)->cleanup(tp);
6496 }
6497 tp->tcp_cc_index = cc_index;
6498
6499 tcp_cc_allocate_state(tp);
6500
6501 if (CC_ALGO(tp)->switch_to != NULL) {
6502 CC_ALGO(tp)->switch_to(tp, old_cc_index);
6503 }
6504
6505 tcp_ccdbg_trace(tp, NULL, TCP_CC_CHANGE_ALGO);
6506 }
6507}
6508
6509void
6510tcp_set_recv_bg(struct socket *so)
6511{
6512 if (!IS_TCP_RECV_BG(so)) {
6513 so->so_flags1 |= SOF1_TRAFFIC_MGT_TCP_RECVBG;
6514 }
6515}
6516
6517void
6518tcp_clear_recv_bg(struct socket *so)
6519{
6520 if (IS_TCP_RECV_BG(so)) {
6521 so->so_flags1 &= ~(SOF1_TRAFFIC_MGT_TCP_RECVBG);
6522 }
6523}
6524
6525void
6526inp_fc_throttle_tcp(struct inpcb *inp)
6527{
6528 struct tcpcb *tp = inp->inp_ppcb;
6529
6530 if (!tcp_flow_control_response) {
6531 return;
6532 }
6533
6534 /*
6535 * Back off the slow-start threshold and enter
6536 * congestion avoidance phase
6537 */
6538 if (CC_ALGO(tp)->pre_fr != NULL) {
6539 CC_ALGO(tp)->pre_fr(tp);
6540 }
6541}
6542
6543void
6544inp_fc_unthrottle_tcp(struct inpcb *inp)
6545{
6546 struct tcpcb *tp = inp->inp_ppcb;
6547
6548 if (tcp_flow_control_response) {
6549 if (CC_ALGO(tp)->post_fr != NULL) {
6550 CC_ALGO(tp)->post_fr(tp, NULL);
6551 }
6552
6553 tp->t_bytes_acked = 0;
6554
6555 /*
6556 * Reset retransmit shift as we know that the reason
6557 * for delay in sending a packet is due to flow
6558 * control on the outgoing interface. There is no need
6559 * to backoff retransmit timer.
6560 */
6561 TCP_RESET_REXMT_STATE(tp);
6562
6563 tp->t_flagsext &= ~TF_CWND_NONVALIDATED;
6564
6565 /*
6566 * Start the output stream again. Since we are
6567 * not retransmitting data, do not reset the
6568 * retransmit timer or rtt calculation.
6569 */
6570 tcp_output(tp);
6571 return;
6572 }
6573
6574 /*
6575 * Back off the slow-start threshold and enter
6576 * congestion avoidance phase
6577 */
6578 if (CC_ALGO(tp)->pre_fr != NULL) {
6579 CC_ALGO(tp)->pre_fr(tp);
6580 }
6581
6582 tp->snd_cwnd = tp->snd_ssthresh;
6583 tp->t_flagsext &= ~TF_CWND_NONVALIDATED;
6584 /*
6585 * Restart counting for ABC as we changed the
6586 * congestion window just now.
6587 */
6588 tp->t_bytes_acked = 0;
6589
6590 /* Reset retransmit shift as we know that the reason
6591 * for delay in sending a packet is due to flow
6592 * control on the outgoing interface. There is no need
6593 * to backoff retransmit timer.
6594 */
6595 TCP_RESET_REXMT_STATE(tp);
6596
6597 /*
6598 * Start the output stream again. Since we are
6599 * not retransmitting data, do not reset the
6600 * retransmit timer or rtt calculation.
6601 */
6602 tcp_output(tp);
6603}
6604
6605static int
6606tcp_getstat SYSCTL_HANDLER_ARGS
6607{
6608#pragma unused(oidp, arg1, arg2)
6609
6610 int error;
6611 struct tcpstat *stat;
6612 stat = &tcpstat;
6613#if XNU_TARGET_OS_OSX
6614 struct tcpstat zero_stat;
6615
6616 if (tcp_disable_access_to_stats &&
6617 !kauth_cred_issuser(kauth_cred_get())) {
6618 bzero(&zero_stat, sizeof(zero_stat));
6619 stat = &zero_stat;
6620 }
6621
6622#endif /* XNU_TARGET_OS_OSX */
6623
6624 if (req->oldptr == 0) {
6625 req->oldlen = (size_t)sizeof(struct tcpstat);
6626 }
6627
6628 error = SYSCTL_OUT(req, stat, MIN(sizeof(tcpstat), req->oldlen));
6629
6630 return error;
6631}
6632
6633/*
6634 * Checksum extended TCP header and data.
6635 */
6636int
6637tcp_input_checksum(int af, struct mbuf *m, struct tcphdr *th, int off, int tlen)
6638{
6639 struct ifnet *ifp = m->m_pkthdr.rcvif;
6640
6641 switch (af) {
6642 case AF_INET: {
6643 struct ip *ip = mtod(m, struct ip *);
6644 struct ipovly *ipov = (struct ipovly *)ip;
6645
6646 /* ip_stripoptions() must have been called before we get here */
6647 ASSERT((ip->ip_hl << 2) == sizeof(*ip));
6648
6649 if ((hwcksum_rx || (ifp->if_flags & IFF_LOOPBACK) ||
6650 (m->m_pkthdr.pkt_flags & PKTF_LOOP)) &&
6651 (m->m_pkthdr.csum_flags & CSUM_DATA_VALID)) {
6652 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) {
6653 th->th_sum = m->m_pkthdr.csum_rx_val;
6654 } else {
6655 uint32_t sum = m->m_pkthdr.csum_rx_val;
6656 uint32_t start = m->m_pkthdr.csum_rx_start;
6657 int32_t trailer = (m_pktlen(m) - (off + tlen));
6658
6659 /*
6660 * Perform 1's complement adjustment of octets
6661 * that got included/excluded in the hardware-
6662 * calculated checksum value. Ignore cases
6663 * where the value already includes the entire
6664 * IP header span, as the sum for those octets
6665 * would already be 0 by the time we get here;
6666 * IP has already performed its header checksum
6667 * checks. If we do need to adjust, restore
6668 * the original fields in the IP header when
6669 * computing the adjustment value. Also take
6670 * care of any trailing bytes and subtract out
6671 * their partial sum.
6672 */
6673 ASSERT(trailer >= 0);
6674 if ((m->m_pkthdr.csum_flags & CSUM_PARTIAL) &&
6675 ((start != 0 && start != off) || trailer)) {
6676 uint32_t swbytes = (uint32_t)trailer;
6677
6678 if (start < off) {
6679 ip->ip_len += sizeof(*ip);
6680#if BYTE_ORDER != BIG_ENDIAN
6681 HTONS(ip->ip_len);
6682 HTONS(ip->ip_off);
6683#endif /* BYTE_ORDER != BIG_ENDIAN */
6684 }
6685 /* callee folds in sum */
6686 sum = m_adj_sum16(m, start, off,
6687 tlen, sum);
6688 if (off > start) {
6689 swbytes += (off - start);
6690 } else {
6691 swbytes += (start - off);
6692 }
6693
6694 if (start < off) {
6695#if BYTE_ORDER != BIG_ENDIAN
6696 NTOHS(ip->ip_off);
6697 NTOHS(ip->ip_len);
6698#endif /* BYTE_ORDER != BIG_ENDIAN */
6699 ip->ip_len -= sizeof(*ip);
6700 }
6701
6702 if (swbytes != 0) {
6703 tcp_in_cksum_stats(swbytes);
6704 }
6705 if (trailer != 0) {
6706 m_adj(m, -trailer);
6707 }
6708 }
6709
6710 /* callee folds in sum */
6711 th->th_sum = in_pseudo(ip->ip_src.s_addr,
6712 ip->ip_dst.s_addr,
6713 sum + htonl(tlen + IPPROTO_TCP));
6714 }
6715 th->th_sum ^= 0xffff;
6716 } else {
6717 uint16_t ip_sum;
6718 int len;
6719 char b[9];
6720
6721 bcopy(ipov->ih_x1, b, sizeof(ipov->ih_x1));
6722 bzero(ipov->ih_x1, sizeof(ipov->ih_x1));
6723 ip_sum = ipov->ih_len;
6724 ipov->ih_len = (u_short)tlen;
6725#if BYTE_ORDER != BIG_ENDIAN
6726 HTONS(ipov->ih_len);
6727#endif
6728 len = sizeof(struct ip) + tlen;
6729 th->th_sum = in_cksum(m, len);
6730 bcopy(b, ipov->ih_x1, sizeof(ipov->ih_x1));
6731 ipov->ih_len = ip_sum;
6732
6733 tcp_in_cksum_stats(len);
6734 }
6735 break;
6736 }
6737 case AF_INET6: {
6738 struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *);
6739
6740 if ((hwcksum_rx || (ifp->if_flags & IFF_LOOPBACK) ||
6741 (m->m_pkthdr.pkt_flags & PKTF_LOOP)) &&
6742 (m->m_pkthdr.csum_flags & CSUM_DATA_VALID)) {
6743 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) {
6744 th->th_sum = m->m_pkthdr.csum_rx_val;
6745 } else {
6746 uint32_t sum = m->m_pkthdr.csum_rx_val;
6747 uint32_t start = m->m_pkthdr.csum_rx_start;
6748 int32_t trailer = (m_pktlen(m) - (off + tlen));
6749
6750 /*
6751 * Perform 1's complement adjustment of octets
6752 * that got included/excluded in the hardware-
6753 * calculated checksum value. Also take care
6754 * of any trailing bytes and subtract out their
6755 * partial sum.
6756 */
6757 ASSERT(trailer >= 0);
6758 if ((m->m_pkthdr.csum_flags & CSUM_PARTIAL) &&
6759 (start != off || trailer != 0)) {
6760 uint16_t s = 0, d = 0;
6761 uint32_t swbytes = (uint32_t)trailer;
6762
6763 if (IN6_IS_SCOPE_EMBED(&ip6->ip6_src)) {
6764 s = ip6->ip6_src.s6_addr16[1];
6765 ip6->ip6_src.s6_addr16[1] = 0;
6766 }
6767 if (IN6_IS_SCOPE_EMBED(&ip6->ip6_dst)) {
6768 d = ip6->ip6_dst.s6_addr16[1];
6769 ip6->ip6_dst.s6_addr16[1] = 0;
6770 }
6771
6772 /* callee folds in sum */
6773 sum = m_adj_sum16(m, start, off,
6774 tlen, sum);
6775 if (off > start) {
6776 swbytes += (off - start);
6777 } else {
6778 swbytes += (start - off);
6779 }
6780
6781 if (IN6_IS_SCOPE_EMBED(&ip6->ip6_src)) {
6782 ip6->ip6_src.s6_addr16[1] = s;
6783 }
6784 if (IN6_IS_SCOPE_EMBED(&ip6->ip6_dst)) {
6785 ip6->ip6_dst.s6_addr16[1] = d;
6786 }
6787
6788 if (swbytes != 0) {
6789 tcp_in6_cksum_stats(swbytes);
6790 }
6791 if (trailer != 0) {
6792 m_adj(m, -trailer);
6793 }
6794 }
6795
6796 th->th_sum = in6_pseudo(
6797 &ip6->ip6_src, &ip6->ip6_dst,
6798 sum + htonl(tlen + IPPROTO_TCP));
6799 }
6800 th->th_sum ^= 0xffff;
6801 } else {
6802 tcp_in6_cksum_stats(tlen);
6803 th->th_sum = in6_cksum(m, IPPROTO_TCP, off, tlen);
6804 }
6805 break;
6806 }
6807 default:
6808 VERIFY(0);
6809 /* NOTREACHED */
6810 }
6811
6812 if (th->th_sum != 0) {
6813 tcpstat.tcps_rcvbadsum++;
6814 IF_TCP_STATINC(ifp, badformat);
6815 return -1;
6816 }
6817
6818 return 0;
6819}
6820
6821
6822SYSCTL_PROC(_net_inet_tcp, TCPCTL_STATS, stats,
6823 CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0, tcp_getstat,
6824 "S,tcpstat", "TCP statistics (struct tcpstat, netinet/tcp_var.h)");
6825
6826static int
6827sysctl_rexmtthresh SYSCTL_HANDLER_ARGS
6828{
6829#pragma unused(arg1, arg2)
6830
6831 int error, val = tcprexmtthresh;
6832
6833 error = sysctl_handle_int(oidp, &val, 0, req);
6834 if (error || !req->newptr) {
6835 return error;
6836 }
6837
6838 /*
6839 * Constrain the number of duplicate ACKs
6840 * to consider for TCP fast retransmit
6841 * to either 2 or 3
6842 */
6843
6844 if (val < 2 || val > 3) {
6845 return EINVAL;
6846 }
6847
6848 tcprexmtthresh = val;
6849
6850 return 0;
6851}
6852
6853SYSCTL_PROC(_net_inet_tcp, OID_AUTO, rexmt_thresh, CTLTYPE_INT | CTLFLAG_RW |
6854 CTLFLAG_LOCKED, &tcprexmtthresh, 0, &sysctl_rexmtthresh, "I",
6855 "Duplicate ACK Threshold for Fast Retransmit");