]> git.saurik.com Git - apple/xnu.git/blame_incremental - osfmk/i386/cpuid.c
xnu-2422.100.13.tar.gz
[apple/xnu.git] / osfmk / i386 / cpuid.c
... / ...
CommitLineData
1/*
2 * Copyright (c) 2000-2012 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28/*
29 * @OSF_COPYRIGHT@
30 */
31#include <platforms.h>
32#include <vm/vm_page.h>
33#include <pexpert/pexpert.h>
34
35#include <i386/cpuid.h>
36
37static boolean_t cpuid_dbg
38#if DEBUG
39 = TRUE;
40#else
41 = FALSE;
42#endif
43#define DBG(x...) \
44 do { \
45 if (cpuid_dbg) \
46 kprintf(x); \
47 } while (0) \
48
49#define min(a,b) ((a) < (b) ? (a) : (b))
50#define quad(hi,lo) (((uint64_t)(hi)) << 32 | (lo))
51
52/* Only for 32bit values */
53#define bit32(n) (1U << (n))
54#define bitmask32(h,l) ((bit32(h)|(bit32(h)-1)) & ~(bit32(l)-1))
55#define bitfield32(x,h,l) ((((x) & bitmask32(h,l)) >> l))
56
57/*
58 * Leaf 2 cache descriptor encodings.
59 */
60typedef enum {
61 _NULL_, /* NULL (empty) descriptor */
62 CACHE, /* Cache */
63 TLB, /* TLB */
64 STLB, /* Shared second-level unified TLB */
65 PREFETCH /* Prefetch size */
66} cpuid_leaf2_desc_type_t;
67
68typedef enum {
69 NA, /* Not Applicable */
70 FULLY, /* Fully-associative */
71 TRACE, /* Trace Cache (P4 only) */
72 INST, /* Instruction TLB */
73 DATA, /* Data TLB */
74 DATA0, /* Data TLB, 1st level */
75 DATA1, /* Data TLB, 2nd level */
76 L1, /* L1 (unified) cache */
77 L1_INST, /* L1 Instruction cache */
78 L1_DATA, /* L1 Data cache */
79 L2, /* L2 (unified) cache */
80 L3, /* L3 (unified) cache */
81 L2_2LINESECTOR, /* L2 (unified) cache with 2 lines per sector */
82 L3_2LINESECTOR, /* L3(unified) cache with 2 lines per sector */
83 SMALL, /* Small page TLB */
84 LARGE, /* Large page TLB */
85 BOTH /* Small and Large page TLB */
86} cpuid_leaf2_qualifier_t;
87
88typedef struct cpuid_cache_descriptor {
89 uint8_t value; /* descriptor code */
90 uint8_t type; /* cpuid_leaf2_desc_type_t */
91 uint8_t level; /* level of cache/TLB hierachy */
92 uint8_t ways; /* wayness of cache */
93 uint16_t size; /* cachesize or TLB pagesize */
94 uint16_t entries; /* number of TLB entries or linesize */
95} cpuid_cache_descriptor_t;
96
97/*
98 * These multipliers are used to encode 1*K .. 64*M in a 16 bit size field
99 */
100#define K (1)
101#define M (1024)
102
103/*
104 * Intel cache descriptor table:
105 */
106static cpuid_cache_descriptor_t intel_cpuid_leaf2_descriptor_table[] = {
107// -------------------------------------------------------
108// value type level ways size entries
109// -------------------------------------------------------
110 { 0x00, _NULL_, NA, NA, NA, NA },
111 { 0x01, TLB, INST, 4, SMALL, 32 },
112 { 0x02, TLB, INST, FULLY, LARGE, 2 },
113 { 0x03, TLB, DATA, 4, SMALL, 64 },
114 { 0x04, TLB, DATA, 4, LARGE, 8 },
115 { 0x05, TLB, DATA1, 4, LARGE, 32 },
116 { 0x06, CACHE, L1_INST, 4, 8*K, 32 },
117 { 0x08, CACHE, L1_INST, 4, 16*K, 32 },
118 { 0x09, CACHE, L1_INST, 4, 32*K, 64 },
119 { 0x0A, CACHE, L1_DATA, 2, 8*K, 32 },
120 { 0x0B, TLB, INST, 4, LARGE, 4 },
121 { 0x0C, CACHE, L1_DATA, 4, 16*K, 32 },
122 { 0x0D, CACHE, L1_DATA, 4, 16*K, 64 },
123 { 0x0E, CACHE, L1_DATA, 6, 24*K, 64 },
124 { 0x21, CACHE, L2, 8, 256*K, 64 },
125 { 0x22, CACHE, L3_2LINESECTOR, 4, 512*K, 64 },
126 { 0x23, CACHE, L3_2LINESECTOR, 8, 1*M, 64 },
127 { 0x25, CACHE, L3_2LINESECTOR, 8, 2*M, 64 },
128 { 0x29, CACHE, L3_2LINESECTOR, 8, 4*M, 64 },
129 { 0x2C, CACHE, L1_DATA, 8, 32*K, 64 },
130 { 0x30, CACHE, L1_INST, 8, 32*K, 64 },
131 { 0x40, CACHE, L2, NA, 0, NA },
132 { 0x41, CACHE, L2, 4, 128*K, 32 },
133 { 0x42, CACHE, L2, 4, 256*K, 32 },
134 { 0x43, CACHE, L2, 4, 512*K, 32 },
135 { 0x44, CACHE, L2, 4, 1*M, 32 },
136 { 0x45, CACHE, L2, 4, 2*M, 32 },
137 { 0x46, CACHE, L3, 4, 4*M, 64 },
138 { 0x47, CACHE, L3, 8, 8*M, 64 },
139 { 0x48, CACHE, L2, 12, 3*M, 64 },
140 { 0x49, CACHE, L2, 16, 4*M, 64 },
141 { 0x4A, CACHE, L3, 12, 6*M, 64 },
142 { 0x4B, CACHE, L3, 16, 8*M, 64 },
143 { 0x4C, CACHE, L3, 12, 12*M, 64 },
144 { 0x4D, CACHE, L3, 16, 16*M, 64 },
145 { 0x4E, CACHE, L2, 24, 6*M, 64 },
146 { 0x4F, TLB, INST, NA, SMALL, 32 },
147 { 0x50, TLB, INST, NA, BOTH, 64 },
148 { 0x51, TLB, INST, NA, BOTH, 128 },
149 { 0x52, TLB, INST, NA, BOTH, 256 },
150 { 0x55, TLB, INST, FULLY, BOTH, 7 },
151 { 0x56, TLB, DATA0, 4, LARGE, 16 },
152 { 0x57, TLB, DATA0, 4, SMALL, 16 },
153 { 0x59, TLB, DATA0, FULLY, SMALL, 16 },
154 { 0x5A, TLB, DATA0, 4, LARGE, 32 },
155 { 0x5B, TLB, DATA, NA, BOTH, 64 },
156 { 0x5C, TLB, DATA, NA, BOTH, 128 },
157 { 0x5D, TLB, DATA, NA, BOTH, 256 },
158 { 0x60, CACHE, L1, 16*K, 8, 64 },
159 { 0x61, CACHE, L1, 4, 8*K, 64 },
160 { 0x62, CACHE, L1, 4, 16*K, 64 },
161 { 0x63, CACHE, L1, 4, 32*K, 64 },
162 { 0x70, CACHE, TRACE, 8, 12*K, NA },
163 { 0x71, CACHE, TRACE, 8, 16*K, NA },
164 { 0x72, CACHE, TRACE, 8, 32*K, NA },
165 { 0x76, TLB, INST, NA, BOTH, 8 },
166 { 0x78, CACHE, L2, 4, 1*M, 64 },
167 { 0x79, CACHE, L2_2LINESECTOR, 8, 128*K, 64 },
168 { 0x7A, CACHE, L2_2LINESECTOR, 8, 256*K, 64 },
169 { 0x7B, CACHE, L2_2LINESECTOR, 8, 512*K, 64 },
170 { 0x7C, CACHE, L2_2LINESECTOR, 8, 1*M, 64 },
171 { 0x7D, CACHE, L2, 8, 2*M, 64 },
172 { 0x7F, CACHE, L2, 2, 512*K, 64 },
173 { 0x80, CACHE, L2, 8, 512*K, 64 },
174 { 0x82, CACHE, L2, 8, 256*K, 32 },
175 { 0x83, CACHE, L2, 8, 512*K, 32 },
176 { 0x84, CACHE, L2, 8, 1*M, 32 },
177 { 0x85, CACHE, L2, 8, 2*M, 32 },
178 { 0x86, CACHE, L2, 4, 512*K, 64 },
179 { 0x87, CACHE, L2, 8, 1*M, 64 },
180 { 0xB0, TLB, INST, 4, SMALL, 128 },
181 { 0xB1, TLB, INST, 4, LARGE, 8 },
182 { 0xB2, TLB, INST, 4, SMALL, 64 },
183 { 0xB3, TLB, DATA, 4, SMALL, 128 },
184 { 0xB4, TLB, DATA1, 4, SMALL, 256 },
185 { 0xB5, TLB, DATA1, 8, SMALL, 64 },
186 { 0xB6, TLB, DATA1, 8, SMALL, 128 },
187 { 0xBA, TLB, DATA1, 4, BOTH, 64 },
188 { 0xC1, STLB, DATA1, 8, SMALL, 1024},
189 { 0xCA, STLB, DATA1, 4, SMALL, 512 },
190 { 0xD0, CACHE, L3, 4, 512*K, 64 },
191 { 0xD1, CACHE, L3, 4, 1*M, 64 },
192 { 0xD2, CACHE, L3, 4, 2*M, 64 },
193 { 0xD3, CACHE, L3, 4, 4*M, 64 },
194 { 0xD4, CACHE, L3, 4, 8*M, 64 },
195 { 0xD6, CACHE, L3, 8, 1*M, 64 },
196 { 0xD7, CACHE, L3, 8, 2*M, 64 },
197 { 0xD8, CACHE, L3, 8, 4*M, 64 },
198 { 0xD9, CACHE, L3, 8, 8*M, 64 },
199 { 0xDA, CACHE, L3, 8, 12*M, 64 },
200 { 0xDC, CACHE, L3, 12, 1536*K, 64 },
201 { 0xDD, CACHE, L3, 12, 3*M, 64 },
202 { 0xDE, CACHE, L3, 12, 6*M, 64 },
203 { 0xDF, CACHE, L3, 12, 12*M, 64 },
204 { 0xE0, CACHE, L3, 12, 18*M, 64 },
205 { 0xE2, CACHE, L3, 16, 2*M, 64 },
206 { 0xE3, CACHE, L3, 16, 4*M, 64 },
207 { 0xE4, CACHE, L3, 16, 8*M, 64 },
208 { 0xE5, CACHE, L3, 16, 16*M, 64 },
209 { 0xE6, CACHE, L3, 16, 24*M, 64 },
210 { 0xF0, PREFETCH, NA, NA, 64, NA },
211 { 0xF1, PREFETCH, NA, NA, 128, NA },
212 { 0xFF, CACHE, NA, NA, 0, NA }
213};
214#define INTEL_LEAF2_DESC_NUM (sizeof(intel_cpuid_leaf2_descriptor_table) / \
215 sizeof(cpuid_cache_descriptor_t))
216
217static inline cpuid_cache_descriptor_t *
218cpuid_leaf2_find(uint8_t value)
219{
220 unsigned int i;
221
222 for (i = 0; i < INTEL_LEAF2_DESC_NUM; i++)
223 if (intel_cpuid_leaf2_descriptor_table[i].value == value)
224 return &intel_cpuid_leaf2_descriptor_table[i];
225 return NULL;
226}
227
228/*
229 * CPU identification routines.
230 */
231
232static i386_cpu_info_t cpuid_cpu_info;
233static i386_cpu_info_t *cpuid_cpu_infop = NULL;
234
235static void cpuid_fn(uint32_t selector, uint32_t *result)
236{
237 do_cpuid(selector, result);
238 DBG("cpuid_fn(0x%08x) eax:0x%08x ebx:0x%08x ecx:0x%08x edx:0x%08x\n",
239 selector, result[0], result[1], result[2], result[3]);
240}
241
242static const char *cache_type_str[LCACHE_MAX] = {
243 "Lnone", "L1I", "L1D", "L2U", "L3U"
244};
245
246/* this function is Intel-specific */
247static void
248cpuid_set_cache_info( i386_cpu_info_t * info_p )
249{
250 uint32_t cpuid_result[4];
251 uint32_t reg[4];
252 uint32_t index;
253 uint32_t linesizes[LCACHE_MAX];
254 unsigned int i;
255 unsigned int j;
256 boolean_t cpuid_deterministic_supported = FALSE;
257
258 DBG("cpuid_set_cache_info(%p)\n", info_p);
259
260 bzero( linesizes, sizeof(linesizes) );
261
262 /* Get processor cache descriptor info using leaf 2. We don't use
263 * this internally, but must publish it for KEXTs.
264 */
265 cpuid_fn(2, cpuid_result);
266 for (j = 0; j < 4; j++) {
267 if ((cpuid_result[j] >> 31) == 1) /* bit31 is validity */
268 continue;
269 ((uint32_t *) info_p->cache_info)[j] = cpuid_result[j];
270 }
271 /* first byte gives number of cpuid calls to get all descriptors */
272 for (i = 1; i < info_p->cache_info[0]; i++) {
273 if (i*16 > sizeof(info_p->cache_info))
274 break;
275 cpuid_fn(2, cpuid_result);
276 for (j = 0; j < 4; j++) {
277 if ((cpuid_result[j] >> 31) == 1)
278 continue;
279 ((uint32_t *) info_p->cache_info)[4*i+j] =
280 cpuid_result[j];
281 }
282 }
283
284 /*
285 * Get cache info using leaf 4, the "deterministic cache parameters."
286 * Most processors Mac OS X supports implement this flavor of CPUID.
287 * Loop over each cache on the processor.
288 */
289 cpuid_fn(0, cpuid_result);
290 if (cpuid_result[eax] >= 4)
291 cpuid_deterministic_supported = TRUE;
292
293 for (index = 0; cpuid_deterministic_supported; index++) {
294 cache_type_t type = Lnone;
295 uint32_t cache_type;
296 uint32_t cache_level;
297 uint32_t cache_sharing;
298 uint32_t cache_linesize;
299 uint32_t cache_sets;
300 uint32_t cache_associativity;
301 uint32_t cache_size;
302 uint32_t cache_partitions;
303 uint32_t colors;
304
305 reg[eax] = 4; /* cpuid request 4 */
306 reg[ecx] = index; /* index starting at 0 */
307 cpuid(reg);
308 DBG("cpuid(4) index=%d eax=0x%x\n", index, reg[eax]);
309 cache_type = bitfield32(reg[eax], 4, 0);
310 if (cache_type == 0)
311 break; /* no more caches */
312 cache_level = bitfield32(reg[eax], 7, 5);
313 cache_sharing = bitfield32(reg[eax], 25, 14) + 1;
314 info_p->cpuid_cores_per_package
315 = bitfield32(reg[eax], 31, 26) + 1;
316 cache_linesize = bitfield32(reg[ebx], 11, 0) + 1;
317 cache_partitions = bitfield32(reg[ebx], 21, 12) + 1;
318 cache_associativity = bitfield32(reg[ebx], 31, 22) + 1;
319 cache_sets = bitfield32(reg[ecx], 31, 0) + 1;
320
321 /* Map type/levels returned by CPUID into cache_type_t */
322 switch (cache_level) {
323 case 1:
324 type = cache_type == 1 ? L1D :
325 cache_type == 2 ? L1I :
326 Lnone;
327 break;
328 case 2:
329 type = cache_type == 3 ? L2U :
330 Lnone;
331 break;
332 case 3:
333 type = cache_type == 3 ? L3U :
334 Lnone;
335 break;
336 default:
337 type = Lnone;
338 }
339
340 /* The total size of a cache is:
341 * ( linesize * sets * associativity * partitions )
342 */
343 if (type != Lnone) {
344 cache_size = cache_linesize * cache_sets *
345 cache_associativity * cache_partitions;
346 info_p->cache_size[type] = cache_size;
347 info_p->cache_sharing[type] = cache_sharing;
348 info_p->cache_partitions[type] = cache_partitions;
349 linesizes[type] = cache_linesize;
350
351 DBG(" cache_size[%s] : %d\n",
352 cache_type_str[type], cache_size);
353 DBG(" cache_sharing[%s] : %d\n",
354 cache_type_str[type], cache_sharing);
355 DBG(" cache_partitions[%s]: %d\n",
356 cache_type_str[type], cache_partitions);
357
358 /*
359 * Overwrite associativity determined via
360 * CPUID.0x80000006 -- this leaf is more
361 * accurate
362 */
363 if (type == L2U)
364 info_p->cpuid_cache_L2_associativity = cache_associativity;
365
366 /* Compute the number of page colors for this cache,
367 * which is:
368 * ( linesize * sets ) / page_size
369 *
370 * To help visualize this, consider two views of a
371 * physical address. To the cache, it is composed
372 * of a line offset, a set selector, and a tag.
373 * To VM, it is composed of a page offset, a page
374 * color, and other bits in the pageframe number:
375 *
376 * +-----------------+---------+--------+
377 * cache: | tag | set | offset |
378 * +-----------------+---------+--------+
379 *
380 * +-----------------+-------+----------+
381 * VM: | don't care | color | pg offset|
382 * +-----------------+-------+----------+
383 *
384 * The color is those bits in (set+offset) not covered
385 * by the page offset.
386 */
387 colors = ( cache_linesize * cache_sets ) >> 12;
388
389 if ( colors > vm_cache_geometry_colors )
390 vm_cache_geometry_colors = colors;
391 }
392 }
393 DBG(" vm_cache_geometry_colors: %d\n", vm_cache_geometry_colors);
394
395 /*
396 * If deterministic cache parameters are not available, use
397 * something else
398 */
399 if (info_p->cpuid_cores_per_package == 0) {
400 info_p->cpuid_cores_per_package = 1;
401
402 /* cpuid define in 1024 quantities */
403 info_p->cache_size[L2U] = info_p->cpuid_cache_size * 1024;
404 info_p->cache_sharing[L2U] = 1;
405 info_p->cache_partitions[L2U] = 1;
406
407 linesizes[L2U] = info_p->cpuid_cache_linesize;
408
409 DBG(" cache_size[L2U] : %d\n",
410 info_p->cache_size[L2U]);
411 DBG(" cache_sharing[L2U] : 1\n");
412 DBG(" cache_partitions[L2U]: 1\n");
413 DBG(" linesizes[L2U] : %d\n",
414 info_p->cpuid_cache_linesize);
415 }
416
417 /*
418 * What linesize to publish? We use the L2 linesize if any,
419 * else the L1D.
420 */
421 if ( linesizes[L2U] )
422 info_p->cache_linesize = linesizes[L2U];
423 else if (linesizes[L1D])
424 info_p->cache_linesize = linesizes[L1D];
425 else panic("no linesize");
426 DBG(" cache_linesize : %d\n", info_p->cache_linesize);
427
428 /*
429 * Extract and publish TLB information from Leaf 2 descriptors.
430 */
431 DBG(" %ld leaf2 descriptors:\n", sizeof(info_p->cache_info));
432 for (i = 1; i < sizeof(info_p->cache_info); i++) {
433 cpuid_cache_descriptor_t *descp;
434 int id;
435 int level;
436 int page;
437
438 DBG(" 0x%02x", info_p->cache_info[i]);
439 descp = cpuid_leaf2_find(info_p->cache_info[i]);
440 if (descp == NULL)
441 continue;
442
443 switch (descp->type) {
444 case TLB:
445 page = (descp->size == SMALL) ? TLB_SMALL : TLB_LARGE;
446 /* determine I or D: */
447 switch (descp->level) {
448 case INST:
449 id = TLB_INST;
450 break;
451 case DATA:
452 case DATA0:
453 case DATA1:
454 id = TLB_DATA;
455 break;
456 default:
457 continue;
458 }
459 /* determine level: */
460 switch (descp->level) {
461 case DATA1:
462 level = 1;
463 break;
464 default:
465 level = 0;
466 }
467 info_p->cpuid_tlb[id][page][level] = descp->entries;
468 break;
469 case STLB:
470 info_p->cpuid_stlb = descp->entries;
471 }
472 }
473 DBG("\n");
474}
475
476static void
477cpuid_set_generic_info(i386_cpu_info_t *info_p)
478{
479 uint32_t reg[4];
480 char str[128], *p;
481
482 DBG("cpuid_set_generic_info(%p)\n", info_p);
483
484 /* do cpuid 0 to get vendor */
485 cpuid_fn(0, reg);
486 info_p->cpuid_max_basic = reg[eax];
487 bcopy((char *)&reg[ebx], &info_p->cpuid_vendor[0], 4); /* ug */
488 bcopy((char *)&reg[ecx], &info_p->cpuid_vendor[8], 4);
489 bcopy((char *)&reg[edx], &info_p->cpuid_vendor[4], 4);
490 info_p->cpuid_vendor[12] = 0;
491
492 /* get extended cpuid results */
493 cpuid_fn(0x80000000, reg);
494 info_p->cpuid_max_ext = reg[eax];
495
496 /* check to see if we can get brand string */
497 if (info_p->cpuid_max_ext >= 0x80000004) {
498 /*
499 * The brand string 48 bytes (max), guaranteed to
500 * be NUL terminated.
501 */
502 cpuid_fn(0x80000002, reg);
503 bcopy((char *)reg, &str[0], 16);
504 cpuid_fn(0x80000003, reg);
505 bcopy((char *)reg, &str[16], 16);
506 cpuid_fn(0x80000004, reg);
507 bcopy((char *)reg, &str[32], 16);
508 for (p = str; *p != '\0'; p++) {
509 if (*p != ' ') break;
510 }
511 strlcpy(info_p->cpuid_brand_string,
512 p, sizeof(info_p->cpuid_brand_string));
513
514 if (!strncmp(info_p->cpuid_brand_string, CPUID_STRING_UNKNOWN,
515 min(sizeof(info_p->cpuid_brand_string),
516 strlen(CPUID_STRING_UNKNOWN) + 1))) {
517 /*
518 * This string means we have a firmware-programmable brand string,
519 * and the firmware couldn't figure out what sort of CPU we have.
520 */
521 info_p->cpuid_brand_string[0] = '\0';
522 }
523 }
524
525 /* Get cache and addressing info. */
526 if (info_p->cpuid_max_ext >= 0x80000006) {
527 uint32_t assoc;
528 cpuid_fn(0x80000006, reg);
529 info_p->cpuid_cache_linesize = bitfield32(reg[ecx], 7, 0);
530 assoc = bitfield32(reg[ecx],15,12);
531 /*
532 * L2 associativity is encoded, though in an insufficiently
533 * descriptive fashion, e.g. 24-way is mapped to 16-way.
534 * Represent a fully associative cache as 0xFFFF.
535 * Overwritten by associativity as determined via CPUID.4
536 * if available.
537 */
538 if (assoc == 6)
539 assoc = 8;
540 else if (assoc == 8)
541 assoc = 16;
542 else if (assoc == 0xF)
543 assoc = 0xFFFF;
544 info_p->cpuid_cache_L2_associativity = assoc;
545 info_p->cpuid_cache_size = bitfield32(reg[ecx],31,16);
546 cpuid_fn(0x80000008, reg);
547 info_p->cpuid_address_bits_physical =
548 bitfield32(reg[eax], 7, 0);
549 info_p->cpuid_address_bits_virtual =
550 bitfield32(reg[eax],15, 8);
551 }
552
553 /*
554 * Get processor signature and decode
555 * and bracket this with the approved procedure for reading the
556 * the microcode version number a.k.a. signature a.k.a. BIOS ID
557 */
558 wrmsr64(MSR_IA32_BIOS_SIGN_ID, 0);
559 cpuid_fn(1, reg);
560 info_p->cpuid_microcode_version =
561 (uint32_t) (rdmsr64(MSR_IA32_BIOS_SIGN_ID) >> 32);
562 info_p->cpuid_signature = reg[eax];
563 info_p->cpuid_stepping = bitfield32(reg[eax], 3, 0);
564 info_p->cpuid_model = bitfield32(reg[eax], 7, 4);
565 info_p->cpuid_family = bitfield32(reg[eax], 11, 8);
566 info_p->cpuid_type = bitfield32(reg[eax], 13, 12);
567 info_p->cpuid_extmodel = bitfield32(reg[eax], 19, 16);
568 info_p->cpuid_extfamily = bitfield32(reg[eax], 27, 20);
569 info_p->cpuid_brand = bitfield32(reg[ebx], 7, 0);
570 info_p->cpuid_features = quad(reg[ecx], reg[edx]);
571
572 /* Get "processor flag"; necessary for microcode update matching */
573 info_p->cpuid_processor_flag = (rdmsr64(MSR_IA32_PLATFORM_ID)>> 50) & 0x7;
574
575 /* Fold extensions into family/model */
576 if (info_p->cpuid_family == 0x0f)
577 info_p->cpuid_family += info_p->cpuid_extfamily;
578 if (info_p->cpuid_family == 0x0f || info_p->cpuid_family == 0x06)
579 info_p->cpuid_model += (info_p->cpuid_extmodel << 4);
580
581 if (info_p->cpuid_features & CPUID_FEATURE_HTT)
582 info_p->cpuid_logical_per_package =
583 bitfield32(reg[ebx], 23, 16);
584 else
585 info_p->cpuid_logical_per_package = 1;
586
587 if (info_p->cpuid_max_ext >= 0x80000001) {
588 cpuid_fn(0x80000001, reg);
589 info_p->cpuid_extfeatures =
590 quad(reg[ecx], reg[edx]);
591 }
592
593 DBG(" max_basic : %d\n", info_p->cpuid_max_basic);
594 DBG(" max_ext : 0x%08x\n", info_p->cpuid_max_ext);
595 DBG(" vendor : %s\n", info_p->cpuid_vendor);
596 DBG(" brand_string : %s\n", info_p->cpuid_brand_string);
597 DBG(" signature : 0x%08x\n", info_p->cpuid_signature);
598 DBG(" stepping : %d\n", info_p->cpuid_stepping);
599 DBG(" model : %d\n", info_p->cpuid_model);
600 DBG(" family : %d\n", info_p->cpuid_family);
601 DBG(" type : %d\n", info_p->cpuid_type);
602 DBG(" extmodel : %d\n", info_p->cpuid_extmodel);
603 DBG(" extfamily : %d\n", info_p->cpuid_extfamily);
604 DBG(" brand : %d\n", info_p->cpuid_brand);
605 DBG(" features : 0x%016llx\n", info_p->cpuid_features);
606 DBG(" extfeatures : 0x%016llx\n", info_p->cpuid_extfeatures);
607 DBG(" logical_per_package : %d\n", info_p->cpuid_logical_per_package);
608 DBG(" microcode_version : 0x%08x\n", info_p->cpuid_microcode_version);
609
610 /* Fold in the Invariant TSC feature bit, if present */
611 if (info_p->cpuid_max_ext >= 0x80000007) {
612 cpuid_fn(0x80000007, reg);
613 info_p->cpuid_extfeatures |=
614 reg[edx] & (uint32_t)CPUID_EXTFEATURE_TSCI;
615 DBG(" extfeatures : 0x%016llx\n",
616 info_p->cpuid_extfeatures);
617 }
618
619 if (info_p->cpuid_max_basic >= 0x5) {
620 cpuid_mwait_leaf_t *cmp = &info_p->cpuid_mwait_leaf;
621
622 /*
623 * Extract the Monitor/Mwait Leaf info:
624 */
625 cpuid_fn(5, reg);
626 cmp->linesize_min = reg[eax];
627 cmp->linesize_max = reg[ebx];
628 cmp->extensions = reg[ecx];
629 cmp->sub_Cstates = reg[edx];
630 info_p->cpuid_mwait_leafp = cmp;
631
632 DBG(" Monitor/Mwait Leaf:\n");
633 DBG(" linesize_min : %d\n", cmp->linesize_min);
634 DBG(" linesize_max : %d\n", cmp->linesize_max);
635 DBG(" extensions : %d\n", cmp->extensions);
636 DBG(" sub_Cstates : 0x%08x\n", cmp->sub_Cstates);
637 }
638
639 if (info_p->cpuid_max_basic >= 0x6) {
640 cpuid_thermal_leaf_t *ctp = &info_p->cpuid_thermal_leaf;
641
642 /*
643 * The thermal and Power Leaf:
644 */
645 cpuid_fn(6, reg);
646 ctp->sensor = bitfield32(reg[eax], 0, 0);
647 ctp->dynamic_acceleration = bitfield32(reg[eax], 1, 1);
648 ctp->invariant_APIC_timer = bitfield32(reg[eax], 2, 2);
649 ctp->core_power_limits = bitfield32(reg[eax], 4, 4);
650 ctp->fine_grain_clock_mod = bitfield32(reg[eax], 5, 5);
651 ctp->package_thermal_intr = bitfield32(reg[eax], 6, 6);
652 ctp->thresholds = bitfield32(reg[ebx], 3, 0);
653 ctp->ACNT_MCNT = bitfield32(reg[ecx], 0, 0);
654 ctp->hardware_feedback = bitfield32(reg[ecx], 1, 1);
655 ctp->energy_policy = bitfield32(reg[ecx], 3, 3);
656 info_p->cpuid_thermal_leafp = ctp;
657
658 DBG(" Thermal/Power Leaf:\n");
659 DBG(" sensor : %d\n", ctp->sensor);
660 DBG(" dynamic_acceleration : %d\n", ctp->dynamic_acceleration);
661 DBG(" invariant_APIC_timer : %d\n", ctp->invariant_APIC_timer);
662 DBG(" core_power_limits : %d\n", ctp->core_power_limits);
663 DBG(" fine_grain_clock_mod : %d\n", ctp->fine_grain_clock_mod);
664 DBG(" package_thermal_intr : %d\n", ctp->package_thermal_intr);
665 DBG(" thresholds : %d\n", ctp->thresholds);
666 DBG(" ACNT_MCNT : %d\n", ctp->ACNT_MCNT);
667 DBG(" ACNT2 : %d\n", ctp->hardware_feedback);
668 DBG(" energy_policy : %d\n", ctp->energy_policy);
669 }
670
671 if (info_p->cpuid_max_basic >= 0xa) {
672 cpuid_arch_perf_leaf_t *capp = &info_p->cpuid_arch_perf_leaf;
673
674 /*
675 * Architectural Performance Monitoring Leaf:
676 */
677 cpuid_fn(0xa, reg);
678 capp->version = bitfield32(reg[eax], 7, 0);
679 capp->number = bitfield32(reg[eax], 15, 8);
680 capp->width = bitfield32(reg[eax], 23, 16);
681 capp->events_number = bitfield32(reg[eax], 31, 24);
682 capp->events = reg[ebx];
683 capp->fixed_number = bitfield32(reg[edx], 4, 0);
684 capp->fixed_width = bitfield32(reg[edx], 12, 5);
685 info_p->cpuid_arch_perf_leafp = capp;
686
687 DBG(" Architectural Performance Monitoring Leaf:\n");
688 DBG(" version : %d\n", capp->version);
689 DBG(" number : %d\n", capp->number);
690 DBG(" width : %d\n", capp->width);
691 DBG(" events_number : %d\n", capp->events_number);
692 DBG(" events : %d\n", capp->events);
693 DBG(" fixed_number : %d\n", capp->fixed_number);
694 DBG(" fixed_width : %d\n", capp->fixed_width);
695 }
696
697 if (info_p->cpuid_max_basic >= 0xd) {
698 cpuid_xsave_leaf_t *xsp = &info_p->cpuid_xsave_leaf;
699 /*
700 * XSAVE Features:
701 */
702 cpuid_fn(0xd, info_p->cpuid_xsave_leaf.extended_state);
703 info_p->cpuid_xsave_leafp = xsp;
704
705 DBG(" XSAVE Leaf:\n");
706 DBG(" EAX : 0x%x\n", xsp->extended_state[eax]);
707 DBG(" EBX : 0x%x\n", xsp->extended_state[ebx]);
708 DBG(" ECX : 0x%x\n", xsp->extended_state[ecx]);
709 DBG(" EDX : 0x%x\n", xsp->extended_state[edx]);
710 }
711
712 if (info_p->cpuid_model >= CPUID_MODEL_IVYBRIDGE) {
713 /*
714 * Leaf7 Features:
715 */
716 cpuid_fn(0x7, reg);
717 info_p->cpuid_leaf7_features = reg[ebx];
718
719 DBG(" Feature Leaf7:\n");
720 DBG(" EBX : 0x%x\n", reg[ebx]);
721 }
722
723 return;
724}
725
726static uint32_t
727cpuid_set_cpufamily(i386_cpu_info_t *info_p)
728{
729 uint32_t cpufamily = CPUFAMILY_UNKNOWN;
730
731 switch (info_p->cpuid_family) {
732 case 6:
733 switch (info_p->cpuid_model) {
734 case 15:
735 cpufamily = CPUFAMILY_INTEL_MEROM;
736 break;
737 case 23:
738 cpufamily = CPUFAMILY_INTEL_PENRYN;
739 break;
740 case CPUID_MODEL_NEHALEM:
741 case CPUID_MODEL_FIELDS:
742 case CPUID_MODEL_DALES:
743 case CPUID_MODEL_NEHALEM_EX:
744 cpufamily = CPUFAMILY_INTEL_NEHALEM;
745 break;
746 case CPUID_MODEL_DALES_32NM:
747 case CPUID_MODEL_WESTMERE:
748 case CPUID_MODEL_WESTMERE_EX:
749 cpufamily = CPUFAMILY_INTEL_WESTMERE;
750 break;
751 case CPUID_MODEL_SANDYBRIDGE:
752 case CPUID_MODEL_JAKETOWN:
753 cpufamily = CPUFAMILY_INTEL_SANDYBRIDGE;
754 break;
755 case CPUID_MODEL_IVYBRIDGE:
756 case CPUID_MODEL_IVYBRIDGE_EP:
757 cpufamily = CPUFAMILY_INTEL_IVYBRIDGE;
758 break;
759 case CPUID_MODEL_HASWELL:
760 case CPUID_MODEL_HASWELL_ULT:
761 case CPUID_MODEL_CRYSTALWELL:
762 cpufamily = CPUFAMILY_INTEL_HASWELL;
763 break;
764 }
765 break;
766 }
767
768 info_p->cpuid_cpufamily = cpufamily;
769 DBG("cpuid_set_cpufamily(%p) returning 0x%x\n", info_p, cpufamily);
770 return cpufamily;
771}
772/*
773 * Must be invoked either when executing single threaded, or with
774 * independent synchronization.
775 */
776void
777cpuid_set_info(void)
778{
779 i386_cpu_info_t *info_p = &cpuid_cpu_info;
780
781 cpuid_set_generic_info(info_p);
782
783 /* verify we are running on a supported CPU */
784 if ((strncmp(CPUID_VID_INTEL, info_p->cpuid_vendor,
785 min(strlen(CPUID_STRING_UNKNOWN) + 1,
786 sizeof(info_p->cpuid_vendor)))) ||
787 (cpuid_set_cpufamily(info_p) == CPUFAMILY_UNKNOWN))
788 panic("Unsupported CPU");
789
790 info_p->cpuid_cpu_type = CPU_TYPE_X86;
791 info_p->cpuid_cpu_subtype = CPU_SUBTYPE_X86_ARCH1;
792 /* Must be invoked after set_generic_info */
793 cpuid_set_cache_info(info_p);
794
795 /*
796 * Find the number of enabled cores and threads
797 * (which determines whether SMT/Hyperthreading is active).
798 */
799 switch (info_p->cpuid_cpufamily) {
800 case CPUFAMILY_INTEL_WESTMERE: {
801 uint64_t msr = rdmsr64(MSR_CORE_THREAD_COUNT);
802 info_p->core_count = bitfield32((uint32_t)msr, 19, 16);
803 info_p->thread_count = bitfield32((uint32_t)msr, 15, 0);
804 break;
805 }
806 case CPUFAMILY_INTEL_HASWELL:
807 case CPUFAMILY_INTEL_IVYBRIDGE:
808 case CPUFAMILY_INTEL_SANDYBRIDGE:
809 case CPUFAMILY_INTEL_NEHALEM: {
810 uint64_t msr = rdmsr64(MSR_CORE_THREAD_COUNT);
811 info_p->core_count = bitfield32((uint32_t)msr, 31, 16);
812 info_p->thread_count = bitfield32((uint32_t)msr, 15, 0);
813 break;
814 }
815 }
816 if (info_p->core_count == 0) {
817 info_p->core_count = info_p->cpuid_cores_per_package;
818 info_p->thread_count = info_p->cpuid_logical_per_package;
819 }
820 DBG("cpuid_set_info():\n");
821 DBG(" core_count : %d\n", info_p->core_count);
822 DBG(" thread_count : %d\n", info_p->thread_count);
823
824 info_p->cpuid_model_string = ""; /* deprecated */
825}
826
827static struct table {
828 uint64_t mask;
829 const char *name;
830} feature_map[] = {
831 {CPUID_FEATURE_FPU, "FPU"},
832 {CPUID_FEATURE_VME, "VME"},
833 {CPUID_FEATURE_DE, "DE"},
834 {CPUID_FEATURE_PSE, "PSE"},
835 {CPUID_FEATURE_TSC, "TSC"},
836 {CPUID_FEATURE_MSR, "MSR"},
837 {CPUID_FEATURE_PAE, "PAE"},
838 {CPUID_FEATURE_MCE, "MCE"},
839 {CPUID_FEATURE_CX8, "CX8"},
840 {CPUID_FEATURE_APIC, "APIC"},
841 {CPUID_FEATURE_SEP, "SEP"},
842 {CPUID_FEATURE_MTRR, "MTRR"},
843 {CPUID_FEATURE_PGE, "PGE"},
844 {CPUID_FEATURE_MCA, "MCA"},
845 {CPUID_FEATURE_CMOV, "CMOV"},
846 {CPUID_FEATURE_PAT, "PAT"},
847 {CPUID_FEATURE_PSE36, "PSE36"},
848 {CPUID_FEATURE_PSN, "PSN"},
849 {CPUID_FEATURE_CLFSH, "CLFSH"},
850 {CPUID_FEATURE_DS, "DS"},
851 {CPUID_FEATURE_ACPI, "ACPI"},
852 {CPUID_FEATURE_MMX, "MMX"},
853 {CPUID_FEATURE_FXSR, "FXSR"},
854 {CPUID_FEATURE_SSE, "SSE"},
855 {CPUID_FEATURE_SSE2, "SSE2"},
856 {CPUID_FEATURE_SS, "SS"},
857 {CPUID_FEATURE_HTT, "HTT"},
858 {CPUID_FEATURE_TM, "TM"},
859 {CPUID_FEATURE_PBE, "PBE"},
860 {CPUID_FEATURE_SSE3, "SSE3"},
861 {CPUID_FEATURE_PCLMULQDQ, "PCLMULQDQ"},
862 {CPUID_FEATURE_DTES64, "DTES64"},
863 {CPUID_FEATURE_MONITOR, "MON"},
864 {CPUID_FEATURE_DSCPL, "DSCPL"},
865 {CPUID_FEATURE_VMX, "VMX"},
866 {CPUID_FEATURE_SMX, "SMX"},
867 {CPUID_FEATURE_EST, "EST"},
868 {CPUID_FEATURE_TM2, "TM2"},
869 {CPUID_FEATURE_SSSE3, "SSSE3"},
870 {CPUID_FEATURE_CID, "CID"},
871 {CPUID_FEATURE_FMA, "FMA"},
872 {CPUID_FEATURE_CX16, "CX16"},
873 {CPUID_FEATURE_xTPR, "TPR"},
874 {CPUID_FEATURE_PDCM, "PDCM"},
875 {CPUID_FEATURE_SSE4_1, "SSE4.1"},
876 {CPUID_FEATURE_SSE4_2, "SSE4.2"},
877 {CPUID_FEATURE_x2APIC, "x2APIC"},
878 {CPUID_FEATURE_MOVBE, "MOVBE"},
879 {CPUID_FEATURE_POPCNT, "POPCNT"},
880 {CPUID_FEATURE_AES, "AES"},
881 {CPUID_FEATURE_VMM, "VMM"},
882 {CPUID_FEATURE_PCID, "PCID"},
883 {CPUID_FEATURE_XSAVE, "XSAVE"},
884 {CPUID_FEATURE_OSXSAVE, "OSXSAVE"},
885 {CPUID_FEATURE_SEGLIM64, "SEGLIM64"},
886 {CPUID_FEATURE_TSCTMR, "TSCTMR"},
887 {CPUID_FEATURE_AVX1_0, "AVX1.0"},
888 {CPUID_FEATURE_RDRAND, "RDRAND"},
889 {CPUID_FEATURE_F16C, "F16C"},
890 {0, 0}
891},
892extfeature_map[] = {
893 {CPUID_EXTFEATURE_SYSCALL, "SYSCALL"},
894 {CPUID_EXTFEATURE_XD, "XD"},
895 {CPUID_EXTFEATURE_1GBPAGE, "1GBPAGE"},
896 {CPUID_EXTFEATURE_EM64T, "EM64T"},
897 {CPUID_EXTFEATURE_LAHF, "LAHF"},
898 {CPUID_EXTFEATURE_RDTSCP, "RDTSCP"},
899 {CPUID_EXTFEATURE_TSCI, "TSCI"},
900 {0, 0}
901
902},
903leaf7_feature_map[] = {
904 {CPUID_LEAF7_FEATURE_SMEP, "SMEP"},
905 {CPUID_LEAF7_FEATURE_ENFSTRG, "ENFSTRG"},
906 {CPUID_LEAF7_FEATURE_RDWRFSGS, "RDWRFSGS"},
907 {CPUID_LEAF7_FEATURE_TSCOFF, "TSC_THREAD_OFFSET"},
908 {CPUID_LEAF7_FEATURE_BMI1, "BMI1"},
909 {CPUID_LEAF7_FEATURE_HLE, "HLE"},
910 {CPUID_LEAF7_FEATURE_AVX2, "AVX2"},
911 {CPUID_LEAF7_FEATURE_BMI2, "BMI2"},
912 {CPUID_LEAF7_FEATURE_INVPCID, "INVPCID"},
913 {CPUID_LEAF7_FEATURE_RTM, "RTM"},
914 {0, 0}
915};
916
917static char *
918cpuid_get_names(struct table *map, uint64_t bits, char *buf, unsigned buf_len)
919{
920 size_t len = 0;
921 char *p = buf;
922 int i;
923
924 for (i = 0; map[i].mask != 0; i++) {
925 if ((bits & map[i].mask) == 0)
926 continue;
927 if (len && ((size_t) (p - buf) < (buf_len - 1)))
928 *p++ = ' ';
929 len = min(strlen(map[i].name), (size_t)((buf_len-1)-(p-buf)));
930 if (len == 0)
931 break;
932 bcopy(map[i].name, p, len);
933 p += len;
934 }
935 *p = '\0';
936 return buf;
937}
938
939i386_cpu_info_t *
940cpuid_info(void)
941{
942 /* Set-up the cpuid_info stucture lazily */
943 if (cpuid_cpu_infop == NULL) {
944 PE_parse_boot_argn("-cpuid", &cpuid_dbg, sizeof(cpuid_dbg));
945 cpuid_set_info();
946 cpuid_cpu_infop = &cpuid_cpu_info;
947 }
948 return cpuid_cpu_infop;
949}
950
951char *
952cpuid_get_feature_names(uint64_t features, char *buf, unsigned buf_len)
953{
954 return cpuid_get_names(feature_map, features, buf, buf_len);
955}
956
957char *
958cpuid_get_extfeature_names(uint64_t extfeatures, char *buf, unsigned buf_len)
959{
960 return cpuid_get_names(extfeature_map, extfeatures, buf, buf_len);
961}
962
963char *
964cpuid_get_leaf7_feature_names(uint64_t features, char *buf, unsigned buf_len)
965{
966 return cpuid_get_names(leaf7_feature_map, features, buf, buf_len);
967}
968
969void
970cpuid_feature_display(
971 const char *header)
972{
973 char buf[256];
974
975 kprintf("%s: %s", header,
976 cpuid_get_feature_names(cpuid_features(), buf, sizeof(buf)));
977 if (cpuid_leaf7_features())
978 kprintf(" %s", cpuid_get_leaf7_feature_names(
979 cpuid_leaf7_features(), buf, sizeof(buf)));
980 kprintf("\n");
981 if (cpuid_features() & CPUID_FEATURE_HTT) {
982#define s_if_plural(n) ((n > 1) ? "s" : "")
983 kprintf(" HTT: %d core%s per package;"
984 " %d logical cpu%s per package\n",
985 cpuid_cpu_infop->cpuid_cores_per_package,
986 s_if_plural(cpuid_cpu_infop->cpuid_cores_per_package),
987 cpuid_cpu_infop->cpuid_logical_per_package,
988 s_if_plural(cpuid_cpu_infop->cpuid_logical_per_package));
989 }
990}
991
992void
993cpuid_extfeature_display(
994 const char *header)
995{
996 char buf[256];
997
998 kprintf("%s: %s\n", header,
999 cpuid_get_extfeature_names(cpuid_extfeatures(),
1000 buf, sizeof(buf)));
1001}
1002
1003void
1004cpuid_cpu_display(
1005 const char *header)
1006{
1007 if (cpuid_cpu_infop->cpuid_brand_string[0] != '\0') {
1008 kprintf("%s: %s\n", header, cpuid_cpu_infop->cpuid_brand_string);
1009 }
1010}
1011
1012unsigned int
1013cpuid_family(void)
1014{
1015 return cpuid_info()->cpuid_family;
1016}
1017
1018uint32_t
1019cpuid_cpufamily(void)
1020{
1021 return cpuid_info()->cpuid_cpufamily;
1022}
1023
1024cpu_type_t
1025cpuid_cputype(void)
1026{
1027 return cpuid_info()->cpuid_cpu_type;
1028}
1029
1030cpu_subtype_t
1031cpuid_cpusubtype(void)
1032{
1033 return cpuid_info()->cpuid_cpu_subtype;
1034}
1035
1036uint64_t
1037cpuid_features(void)
1038{
1039 static int checked = 0;
1040 char fpu_arg[20] = { 0 };
1041
1042 (void) cpuid_info();
1043 if (!checked) {
1044 /* check for boot-time fpu limitations */
1045 if (PE_parse_boot_argn("_fpu", &fpu_arg[0], sizeof (fpu_arg))) {
1046 printf("limiting fpu features to: %s\n", fpu_arg);
1047 if (!strncmp("387", fpu_arg, sizeof("387")) || !strncmp("mmx", fpu_arg, sizeof("mmx"))) {
1048 printf("no sse or sse2\n");
1049 cpuid_cpu_infop->cpuid_features &= ~(CPUID_FEATURE_SSE | CPUID_FEATURE_SSE2 | CPUID_FEATURE_FXSR);
1050 } else if (!strncmp("sse", fpu_arg, sizeof("sse"))) {
1051 printf("no sse2\n");
1052 cpuid_cpu_infop->cpuid_features &= ~(CPUID_FEATURE_SSE2);
1053 }
1054 }
1055 checked = 1;
1056 }
1057 return cpuid_cpu_infop->cpuid_features;
1058}
1059
1060uint64_t
1061cpuid_extfeatures(void)
1062{
1063 return cpuid_info()->cpuid_extfeatures;
1064}
1065
1066uint64_t
1067cpuid_leaf7_features(void)
1068{
1069 return cpuid_info()->cpuid_leaf7_features;
1070}
1071
1072static i386_vmm_info_t *_cpuid_vmm_infop = NULL;
1073static i386_vmm_info_t _cpuid_vmm_info;
1074
1075static void
1076cpuid_init_vmm_info(i386_vmm_info_t *info_p)
1077{
1078 uint32_t reg[4];
1079 uint32_t max_vmm_leaf;
1080
1081 bzero(info_p, sizeof(*info_p));
1082
1083 if (!cpuid_vmm_present())
1084 return;
1085
1086 DBG("cpuid_init_vmm_info(%p)\n", info_p);
1087
1088 /* do cpuid 0x40000000 to get VMM vendor */
1089 cpuid_fn(0x40000000, reg);
1090 max_vmm_leaf = reg[eax];
1091 bcopy((char *)&reg[ebx], &info_p->cpuid_vmm_vendor[0], 4);
1092 bcopy((char *)&reg[ecx], &info_p->cpuid_vmm_vendor[4], 4);
1093 bcopy((char *)&reg[edx], &info_p->cpuid_vmm_vendor[8], 4);
1094 info_p->cpuid_vmm_vendor[12] = '\0';
1095
1096 if (0 == strcmp(info_p->cpuid_vmm_vendor, CPUID_VMM_ID_VMWARE)) {
1097 /* VMware identification string: kb.vmware.com/kb/1009458 */
1098 info_p->cpuid_vmm_family = CPUID_VMM_FAMILY_VMWARE;
1099 } else {
1100 info_p->cpuid_vmm_family = CPUID_VMM_FAMILY_UNKNOWN;
1101 }
1102
1103 /* VMM generic leaves: https://lkml.org/lkml/2008/10/1/246 */
1104 if (max_vmm_leaf >= 0x40000010) {
1105 cpuid_fn(0x40000010, reg);
1106
1107 info_p->cpuid_vmm_tsc_frequency = reg[eax];
1108 info_p->cpuid_vmm_bus_frequency = reg[ebx];
1109 }
1110
1111 DBG(" vmm_vendor : %s\n", info_p->cpuid_vmm_vendor);
1112 DBG(" vmm_family : %u\n", info_p->cpuid_vmm_family);
1113 DBG(" vmm_bus_frequency : %u\n", info_p->cpuid_vmm_bus_frequency);
1114 DBG(" vmm_tsc_frequency : %u\n", info_p->cpuid_vmm_tsc_frequency);
1115}
1116
1117boolean_t
1118cpuid_vmm_present(void)
1119{
1120 return (cpuid_features() & CPUID_FEATURE_VMM) ? TRUE : FALSE;
1121}
1122
1123i386_vmm_info_t *
1124cpuid_vmm_info(void)
1125{
1126 if (_cpuid_vmm_infop == NULL) {
1127 cpuid_init_vmm_info(&_cpuid_vmm_info);
1128 _cpuid_vmm_infop = &_cpuid_vmm_info;
1129 }
1130 return _cpuid_vmm_infop;
1131}
1132
1133uint32_t
1134cpuid_vmm_family(void)
1135{
1136 return cpuid_vmm_info()->cpuid_vmm_family;
1137}
1138