]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Copyright (c) 1998-2013 Apple Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * This file contains Original Code and/or Modifications of Original Code | |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
14 | * | |
15 | * Please obtain a copy of the License at | |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
25 | * | |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ | |
27 | */ | |
28 | /* Copyright (c) 1995 NeXT Computer, Inc. All Rights Reserved */ | |
29 | /* | |
30 | * Copyright (c) 1982, 1986, 1988, 1990, 1993 | |
31 | * The Regents of the University of California. All rights reserved. | |
32 | * | |
33 | * Redistribution and use in source and binary forms, with or without | |
34 | * modification, are permitted provided that the following conditions | |
35 | * are met: | |
36 | * 1. Redistributions of source code must retain the above copyright | |
37 | * notice, this list of conditions and the following disclaimer. | |
38 | * 2. Redistributions in binary form must reproduce the above copyright | |
39 | * notice, this list of conditions and the following disclaimer in the | |
40 | * documentation and/or other materials provided with the distribution. | |
41 | * 3. All advertising materials mentioning features or use of this software | |
42 | * must display the following acknowledgement: | |
43 | * This product includes software developed by the University of | |
44 | * California, Berkeley and its contributors. | |
45 | * 4. Neither the name of the University nor the names of its contributors | |
46 | * may be used to endorse or promote products derived from this software | |
47 | * without specific prior written permission. | |
48 | * | |
49 | * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND | |
50 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
51 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |
52 | * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE | |
53 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | |
54 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | |
55 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | |
56 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | |
57 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | |
58 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | |
59 | * SUCH DAMAGE. | |
60 | * | |
61 | * @(#)uipc_socket2.c 8.1 (Berkeley) 6/10/93 | |
62 | */ | |
63 | /* | |
64 | * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce | |
65 | * support for mandatory and extensible security protections. This notice | |
66 | * is included in support of clause 2.2 (b) of the Apple Public License, | |
67 | * Version 2.0. | |
68 | */ | |
69 | ||
70 | #include <sys/param.h> | |
71 | #include <sys/systm.h> | |
72 | #include <sys/domain.h> | |
73 | #include <sys/kernel.h> | |
74 | #include <sys/proc_internal.h> | |
75 | #include <sys/kauth.h> | |
76 | #include <sys/malloc.h> | |
77 | #include <sys/mbuf.h> | |
78 | #include <sys/mcache.h> | |
79 | #include <sys/protosw.h> | |
80 | #include <sys/stat.h> | |
81 | #include <sys/socket.h> | |
82 | #include <sys/socketvar.h> | |
83 | #include <sys/signalvar.h> | |
84 | #include <sys/sysctl.h> | |
85 | #include <sys/syslog.h> | |
86 | #include <sys/ev.h> | |
87 | #include <kern/locks.h> | |
88 | #include <net/route.h> | |
89 | #include <netinet/in.h> | |
90 | #include <netinet/in_pcb.h> | |
91 | #include <sys/kdebug.h> | |
92 | #include <libkern/OSAtomic.h> | |
93 | ||
94 | #if CONFIG_MACF | |
95 | #include <security/mac_framework.h> | |
96 | #endif | |
97 | ||
98 | #include <mach/vm_param.h> | |
99 | ||
100 | /* TODO: this should be in a header file somewhere */ | |
101 | extern void postevent(struct socket *, struct sockbuf *, int); | |
102 | ||
103 | #define DBG_FNC_SBDROP NETDBG_CODE(DBG_NETSOCK, 4) | |
104 | #define DBG_FNC_SBAPPEND NETDBG_CODE(DBG_NETSOCK, 5) | |
105 | ||
106 | static inline void sbcompress(struct sockbuf *, struct mbuf *, struct mbuf *); | |
107 | static struct socket *sonewconn_internal(struct socket *, int); | |
108 | static int sbappendaddr_internal(struct sockbuf *, struct sockaddr *, | |
109 | struct mbuf *, struct mbuf *); | |
110 | static int sbappendcontrol_internal(struct sockbuf *, struct mbuf *, | |
111 | struct mbuf *); | |
112 | static void soevent_ifdenied(struct socket *); | |
113 | ||
114 | /* | |
115 | * Primitive routines for operating on sockets and socket buffers | |
116 | */ | |
117 | static int soqlimitcompat = 1; | |
118 | static int soqlencomp = 0; | |
119 | ||
120 | /* | |
121 | * Based on the number of mbuf clusters configured, high_sb_max and sb_max can | |
122 | * get scaled up or down to suit that memory configuration. high_sb_max is a | |
123 | * higher limit on sb_max that is checked when sb_max gets set through sysctl. | |
124 | */ | |
125 | ||
126 | u_int32_t sb_max = SB_MAX; /* XXX should be static */ | |
127 | u_int32_t high_sb_max = SB_MAX; | |
128 | ||
129 | static u_int32_t sb_efficiency = 8; /* parameter for sbreserve() */ | |
130 | __private_extern__ int32_t total_sbmb_cnt = 0; | |
131 | ||
132 | /* Control whether to throttle sockets eligible to be throttled */ | |
133 | __private_extern__ u_int32_t net_io_policy_throttled = 0; | |
134 | static int sysctl_io_policy_throttled SYSCTL_HANDLER_ARGS; | |
135 | ||
136 | u_int32_t net_io_policy_log = 0; /* log socket policy changes */ | |
137 | #if CONFIG_PROC_UUID_POLICY | |
138 | u_int32_t net_io_policy_uuid = 1; /* enable UUID socket policy */ | |
139 | #endif /* CONFIG_PROC_UUID_POLICY */ | |
140 | ||
141 | /* | |
142 | * Procedures to manipulate state flags of socket | |
143 | * and do appropriate wakeups. Normal sequence from the | |
144 | * active (originating) side is that soisconnecting() is | |
145 | * called during processing of connect() call, | |
146 | * resulting in an eventual call to soisconnected() if/when the | |
147 | * connection is established. When the connection is torn down | |
148 | * soisdisconnecting() is called during processing of disconnect() call, | |
149 | * and soisdisconnected() is called when the connection to the peer | |
150 | * is totally severed. The semantics of these routines are such that | |
151 | * connectionless protocols can call soisconnected() and soisdisconnected() | |
152 | * only, bypassing the in-progress calls when setting up a ``connection'' | |
153 | * takes no time. | |
154 | * | |
155 | * From the passive side, a socket is created with | |
156 | * two queues of sockets: so_incomp for connections in progress | |
157 | * and so_comp for connections already made and awaiting user acceptance. | |
158 | * As a protocol is preparing incoming connections, it creates a socket | |
159 | * structure queued on so_incomp by calling sonewconn(). When the connection | |
160 | * is established, soisconnected() is called, and transfers the | |
161 | * socket structure to so_comp, making it available to accept(). | |
162 | * | |
163 | * If a socket is closed with sockets on either | |
164 | * so_incomp or so_comp, these sockets are dropped. | |
165 | * | |
166 | * If higher level protocols are implemented in | |
167 | * the kernel, the wakeups done here will sometimes | |
168 | * cause software-interrupt process scheduling. | |
169 | */ | |
170 | void | |
171 | soisconnecting(struct socket *so) | |
172 | { | |
173 | ||
174 | so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING); | |
175 | so->so_state |= SS_ISCONNECTING; | |
176 | ||
177 | sflt_notify(so, sock_evt_connecting, NULL); | |
178 | } | |
179 | ||
180 | void | |
181 | soisconnected(struct socket *so) | |
182 | { | |
183 | struct socket *head = so->so_head; | |
184 | ||
185 | so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING); | |
186 | so->so_state |= SS_ISCONNECTED; | |
187 | ||
188 | sflt_notify(so, sock_evt_connected, NULL); | |
189 | ||
190 | if (head && (so->so_state & SS_INCOMP)) { | |
191 | so->so_state &= ~SS_INCOMP; | |
192 | so->so_state |= SS_COMP; | |
193 | if (head->so_proto->pr_getlock != NULL) { | |
194 | socket_unlock(so, 0); | |
195 | socket_lock(head, 1); | |
196 | } | |
197 | postevent(head, 0, EV_RCONN); | |
198 | TAILQ_REMOVE(&head->so_incomp, so, so_list); | |
199 | head->so_incqlen--; | |
200 | TAILQ_INSERT_TAIL(&head->so_comp, so, so_list); | |
201 | sorwakeup(head); | |
202 | wakeup_one((caddr_t)&head->so_timeo); | |
203 | if (head->so_proto->pr_getlock != NULL) { | |
204 | socket_unlock(head, 1); | |
205 | socket_lock(so, 0); | |
206 | } | |
207 | } else { | |
208 | postevent(so, 0, EV_WCONN); | |
209 | wakeup((caddr_t)&so->so_timeo); | |
210 | sorwakeup(so); | |
211 | sowwakeup(so); | |
212 | soevent(so, SO_FILT_HINT_LOCKED | SO_FILT_HINT_CONNECTED | | |
213 | SO_FILT_HINT_CONNINFO_UPDATED); | |
214 | } | |
215 | } | |
216 | ||
217 | void | |
218 | soisdisconnecting(struct socket *so) | |
219 | { | |
220 | so->so_state &= ~SS_ISCONNECTING; | |
221 | so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE); | |
222 | soevent(so, SO_FILT_HINT_LOCKED); | |
223 | sflt_notify(so, sock_evt_disconnecting, NULL); | |
224 | wakeup((caddr_t)&so->so_timeo); | |
225 | sowwakeup(so); | |
226 | sorwakeup(so); | |
227 | } | |
228 | ||
229 | void | |
230 | soisdisconnected(struct socket *so) | |
231 | { | |
232 | so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING); | |
233 | so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED); | |
234 | soevent(so, SO_FILT_HINT_LOCKED | SO_FILT_HINT_DISCONNECTED | | |
235 | SO_FILT_HINT_CONNINFO_UPDATED); | |
236 | sflt_notify(so, sock_evt_disconnected, NULL); | |
237 | wakeup((caddr_t)&so->so_timeo); | |
238 | sowwakeup(so); | |
239 | sorwakeup(so); | |
240 | } | |
241 | ||
242 | /* | |
243 | * This function will issue a wakeup like soisdisconnected but it will not | |
244 | * notify the socket filters. This will avoid unlocking the socket | |
245 | * in the midst of closing it. | |
246 | */ | |
247 | void | |
248 | sodisconnectwakeup(struct socket *so) | |
249 | { | |
250 | so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING); | |
251 | so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED); | |
252 | soevent(so, SO_FILT_HINT_LOCKED | SO_FILT_HINT_DISCONNECTED | | |
253 | SO_FILT_HINT_CONNINFO_UPDATED); | |
254 | wakeup((caddr_t)&so->so_timeo); | |
255 | sowwakeup(so); | |
256 | sorwakeup(so); | |
257 | } | |
258 | ||
259 | /* | |
260 | * When an attempt at a new connection is noted on a socket | |
261 | * which accepts connections, sonewconn is called. If the | |
262 | * connection is possible (subject to space constraints, etc.) | |
263 | * then we allocate a new structure, propoerly linked into the | |
264 | * data structure of the original socket, and return this. | |
265 | * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED. | |
266 | */ | |
267 | static struct socket * | |
268 | sonewconn_internal(struct socket *head, int connstatus) | |
269 | { | |
270 | int so_qlen, error = 0; | |
271 | struct socket *so; | |
272 | lck_mtx_t *mutex_held; | |
273 | ||
274 | if (head->so_proto->pr_getlock != NULL) | |
275 | mutex_held = (*head->so_proto->pr_getlock)(head, 0); | |
276 | else | |
277 | mutex_held = head->so_proto->pr_domain->dom_mtx; | |
278 | lck_mtx_assert(mutex_held, LCK_MTX_ASSERT_OWNED); | |
279 | ||
280 | if (!soqlencomp) { | |
281 | /* | |
282 | * This is the default case; so_qlen represents the | |
283 | * sum of both incomplete and completed queues. | |
284 | */ | |
285 | so_qlen = head->so_qlen; | |
286 | } else { | |
287 | /* | |
288 | * When kern.ipc.soqlencomp is set to 1, so_qlen | |
289 | * represents only the completed queue. Since we | |
290 | * cannot let the incomplete queue goes unbounded | |
291 | * (in case of SYN flood), we cap the incomplete | |
292 | * queue length to at most somaxconn, and use that | |
293 | * as so_qlen so that we fail immediately below. | |
294 | */ | |
295 | so_qlen = head->so_qlen - head->so_incqlen; | |
296 | if (head->so_incqlen > somaxconn) | |
297 | so_qlen = somaxconn; | |
298 | } | |
299 | ||
300 | if (so_qlen >= | |
301 | (soqlimitcompat ? head->so_qlimit : (3 * head->so_qlimit / 2))) | |
302 | return ((struct socket *)0); | |
303 | so = soalloc(1, SOCK_DOM(head), head->so_type); | |
304 | if (so == NULL) | |
305 | return ((struct socket *)0); | |
306 | /* check if head was closed during the soalloc */ | |
307 | if (head->so_proto == NULL) { | |
308 | sodealloc(so); | |
309 | return ((struct socket *)0); | |
310 | } | |
311 | ||
312 | so->so_type = head->so_type; | |
313 | so->so_options = head->so_options &~ SO_ACCEPTCONN; | |
314 | so->so_linger = head->so_linger; | |
315 | so->so_state = head->so_state | SS_NOFDREF; | |
316 | so->so_proto = head->so_proto; | |
317 | so->so_timeo = head->so_timeo; | |
318 | so->so_pgid = head->so_pgid; | |
319 | kauth_cred_ref(head->so_cred); | |
320 | so->so_cred = head->so_cred; | |
321 | so->last_pid = head->last_pid; | |
322 | so->last_upid = head->last_upid; | |
323 | memcpy(so->last_uuid, head->last_uuid, sizeof (so->last_uuid)); | |
324 | if (head->so_flags & SOF_DELEGATED) { | |
325 | so->e_pid = head->e_pid; | |
326 | so->e_upid = head->e_upid; | |
327 | memcpy(so->e_uuid, head->e_uuid, sizeof (so->e_uuid)); | |
328 | } | |
329 | /* inherit socket options stored in so_flags */ | |
330 | so->so_flags = head->so_flags & | |
331 | (SOF_NOSIGPIPE | SOF_NOADDRAVAIL | SOF_REUSESHAREUID | | |
332 | SOF_NOTIFYCONFLICT | SOF_BINDRANDOMPORT | SOF_NPX_SETOPTSHUT | | |
333 | SOF_NODEFUNCT | SOF_PRIVILEGED_TRAFFIC_CLASS| SOF_NOTSENT_LOWAT | | |
334 | SOF_USELRO | SOF_DELEGATED); | |
335 | so->so_usecount = 1; | |
336 | so->next_lock_lr = 0; | |
337 | so->next_unlock_lr = 0; | |
338 | ||
339 | so->so_rcv.sb_flags |= SB_RECV; /* XXX */ | |
340 | so->so_rcv.sb_so = so->so_snd.sb_so = so; | |
341 | TAILQ_INIT(&so->so_evlist); | |
342 | ||
343 | #if CONFIG_MACF_SOCKET | |
344 | mac_socket_label_associate_accept(head, so); | |
345 | #endif | |
346 | ||
347 | /* inherit traffic management properties of listener */ | |
348 | so->so_traffic_mgt_flags = | |
349 | head->so_traffic_mgt_flags & (TRAFFIC_MGT_SO_BACKGROUND); | |
350 | so->so_background_thread = head->so_background_thread; | |
351 | so->so_traffic_class = head->so_traffic_class; | |
352 | ||
353 | if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) { | |
354 | sodealloc(so); | |
355 | return ((struct socket *)0); | |
356 | } | |
357 | so->so_rcv.sb_flags |= (head->so_rcv.sb_flags & SB_USRSIZE); | |
358 | so->so_snd.sb_flags |= (head->so_snd.sb_flags & SB_USRSIZE); | |
359 | ||
360 | /* | |
361 | * Must be done with head unlocked to avoid deadlock | |
362 | * for protocol with per socket mutexes. | |
363 | */ | |
364 | if (head->so_proto->pr_unlock) | |
365 | socket_unlock(head, 0); | |
366 | if (((*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL) != 0) || | |
367 | error) { | |
368 | sodealloc(so); | |
369 | if (head->so_proto->pr_unlock) | |
370 | socket_lock(head, 0); | |
371 | return ((struct socket *)0); | |
372 | } | |
373 | if (head->so_proto->pr_unlock) { | |
374 | socket_lock(head, 0); | |
375 | /* | |
376 | * Radar 7385998 Recheck that the head is still accepting | |
377 | * to avoid race condition when head is getting closed. | |
378 | */ | |
379 | if ((head->so_options & SO_ACCEPTCONN) == 0) { | |
380 | so->so_state &= ~SS_NOFDREF; | |
381 | soclose(so); | |
382 | return ((struct socket *)0); | |
383 | } | |
384 | } | |
385 | ||
386 | atomic_add_32(&so->so_proto->pr_domain->dom_refs, 1); | |
387 | ||
388 | /* Insert in head appropriate lists */ | |
389 | so->so_head = head; | |
390 | ||
391 | /* | |
392 | * Since this socket is going to be inserted into the incomp | |
393 | * queue, it can be picked up by another thread in | |
394 | * tcp_dropdropablreq to get dropped before it is setup.. | |
395 | * To prevent this race, set in-progress flag which can be | |
396 | * cleared later | |
397 | */ | |
398 | so->so_flags |= SOF_INCOMP_INPROGRESS; | |
399 | ||
400 | if (connstatus) { | |
401 | TAILQ_INSERT_TAIL(&head->so_comp, so, so_list); | |
402 | so->so_state |= SS_COMP; | |
403 | } else { | |
404 | TAILQ_INSERT_TAIL(&head->so_incomp, so, so_list); | |
405 | so->so_state |= SS_INCOMP; | |
406 | head->so_incqlen++; | |
407 | } | |
408 | head->so_qlen++; | |
409 | ||
410 | /* Attach socket filters for this protocol */ | |
411 | sflt_initsock(so); | |
412 | ||
413 | if (connstatus) { | |
414 | so->so_state |= connstatus; | |
415 | sorwakeup(head); | |
416 | wakeup((caddr_t)&head->so_timeo); | |
417 | } | |
418 | return (so); | |
419 | } | |
420 | ||
421 | ||
422 | struct socket * | |
423 | sonewconn(struct socket *head, int connstatus, const struct sockaddr *from) | |
424 | { | |
425 | int error = sflt_connectin(head, from); | |
426 | if (error) { | |
427 | return (NULL); | |
428 | } | |
429 | ||
430 | return (sonewconn_internal(head, connstatus)); | |
431 | } | |
432 | ||
433 | /* | |
434 | * Socantsendmore indicates that no more data will be sent on the | |
435 | * socket; it would normally be applied to a socket when the user | |
436 | * informs the system that no more data is to be sent, by the protocol | |
437 | * code (in case PRU_SHUTDOWN). Socantrcvmore indicates that no more data | |
438 | * will be received, and will normally be applied to the socket by a | |
439 | * protocol when it detects that the peer will send no more data. | |
440 | * Data queued for reading in the socket may yet be read. | |
441 | */ | |
442 | ||
443 | void | |
444 | socantsendmore(struct socket *so) | |
445 | { | |
446 | so->so_state |= SS_CANTSENDMORE; | |
447 | soevent(so, SO_FILT_HINT_LOCKED | SO_FILT_HINT_CANTSENDMORE); | |
448 | sflt_notify(so, sock_evt_cantsendmore, NULL); | |
449 | sowwakeup(so); | |
450 | } | |
451 | ||
452 | void | |
453 | socantrcvmore(struct socket *so) | |
454 | { | |
455 | so->so_state |= SS_CANTRCVMORE; | |
456 | soevent(so, SO_FILT_HINT_LOCKED | SO_FILT_HINT_CANTRCVMORE); | |
457 | sflt_notify(so, sock_evt_cantrecvmore, NULL); | |
458 | sorwakeup(so); | |
459 | } | |
460 | ||
461 | /* | |
462 | * Wait for data to arrive at/drain from a socket buffer. | |
463 | */ | |
464 | int | |
465 | sbwait(struct sockbuf *sb) | |
466 | { | |
467 | boolean_t nointr = (sb->sb_flags & SB_NOINTR); | |
468 | void *lr_saved = __builtin_return_address(0); | |
469 | struct socket *so = sb->sb_so; | |
470 | lck_mtx_t *mutex_held; | |
471 | struct timespec ts; | |
472 | int error = 0; | |
473 | ||
474 | if (so == NULL) { | |
475 | panic("%s: null so, sb=%p sb_flags=0x%x lr=%p\n", | |
476 | __func__, sb, sb->sb_flags, lr_saved); | |
477 | /* NOTREACHED */ | |
478 | } else if (so->so_usecount < 1) { | |
479 | panic("%s: sb=%p sb_flags=0x%x sb_so=%p usecount=%d lr=%p " | |
480 | "lrh= %s\n", __func__, sb, sb->sb_flags, so, | |
481 | so->so_usecount, lr_saved, solockhistory_nr(so)); | |
482 | /* NOTREACHED */ | |
483 | } | |
484 | ||
485 | if (so->so_proto->pr_getlock != NULL) | |
486 | mutex_held = (*so->so_proto->pr_getlock)(so, 0); | |
487 | else | |
488 | mutex_held = so->so_proto->pr_domain->dom_mtx; | |
489 | ||
490 | lck_mtx_assert(mutex_held, LCK_MTX_ASSERT_OWNED); | |
491 | ||
492 | ts.tv_sec = sb->sb_timeo.tv_sec; | |
493 | ts.tv_nsec = sb->sb_timeo.tv_usec * 1000; | |
494 | ||
495 | sb->sb_waiters++; | |
496 | VERIFY(sb->sb_waiters != 0); | |
497 | ||
498 | error = msleep((caddr_t)&sb->sb_cc, mutex_held, | |
499 | nointr ? PSOCK : PSOCK | PCATCH, | |
500 | nointr ? "sbwait_nointr" : "sbwait", &ts); | |
501 | ||
502 | VERIFY(sb->sb_waiters != 0); | |
503 | sb->sb_waiters--; | |
504 | ||
505 | if (so->so_usecount < 1) { | |
506 | panic("%s: 2 sb=%p sb_flags=0x%x sb_so=%p usecount=%d lr=%p " | |
507 | "lrh= %s\n", __func__, sb, sb->sb_flags, so, | |
508 | so->so_usecount, lr_saved, solockhistory_nr(so)); | |
509 | /* NOTREACHED */ | |
510 | } | |
511 | ||
512 | if ((so->so_state & SS_DRAINING) || (so->so_flags & SOF_DEFUNCT)) { | |
513 | error = EBADF; | |
514 | if (so->so_flags & SOF_DEFUNCT) { | |
515 | SODEFUNCTLOG(("%s[%d]: defunct so 0x%llx [%d,%d] " | |
516 | "(%d)\n", __func__, proc_selfpid(), | |
517 | (uint64_t)VM_KERNEL_ADDRPERM(so), | |
518 | SOCK_DOM(so), SOCK_TYPE(so), error)); | |
519 | } | |
520 | } | |
521 | ||
522 | return (error); | |
523 | } | |
524 | ||
525 | void | |
526 | sbwakeup(struct sockbuf *sb) | |
527 | { | |
528 | if (sb->sb_waiters > 0) | |
529 | wakeup((caddr_t)&sb->sb_cc); | |
530 | } | |
531 | ||
532 | /* | |
533 | * Wakeup processes waiting on a socket buffer. | |
534 | * Do asynchronous notification via SIGIO | |
535 | * if the socket has the SS_ASYNC flag set. | |
536 | */ | |
537 | void | |
538 | sowakeup(struct socket *so, struct sockbuf *sb) | |
539 | { | |
540 | if (so->so_flags & SOF_DEFUNCT) { | |
541 | SODEFUNCTLOG(("%s[%d]: defunct so 0x%llx [%d,%d] si 0x%x, " | |
542 | "fl 0x%x [%s]\n", __func__, proc_selfpid(), | |
543 | (uint64_t)VM_KERNEL_ADDRPERM(so), SOCK_DOM(so), | |
544 | SOCK_TYPE(so), (uint32_t)sb->sb_sel.si_flags, sb->sb_flags, | |
545 | (sb->sb_flags & SB_RECV) ? "rcv" : "snd")); | |
546 | } | |
547 | ||
548 | sb->sb_flags &= ~SB_SEL; | |
549 | selwakeup(&sb->sb_sel); | |
550 | sbwakeup(sb); | |
551 | if (so->so_state & SS_ASYNC) { | |
552 | if (so->so_pgid < 0) | |
553 | gsignal(-so->so_pgid, SIGIO); | |
554 | else if (so->so_pgid > 0) | |
555 | proc_signal(so->so_pgid, SIGIO); | |
556 | } | |
557 | if (sb->sb_flags & SB_KNOTE) { | |
558 | KNOTE(&sb->sb_sel.si_note, SO_FILT_HINT_LOCKED); | |
559 | } | |
560 | if (sb->sb_flags & SB_UPCALL) { | |
561 | void (*sb_upcall)(struct socket *, void *, int); | |
562 | caddr_t sb_upcallarg; | |
563 | ||
564 | sb_upcall = sb->sb_upcall; | |
565 | sb_upcallarg = sb->sb_upcallarg; | |
566 | /* Let close know that we're about to do an upcall */ | |
567 | so->so_upcallusecount++; | |
568 | ||
569 | socket_unlock(so, 0); | |
570 | (*sb_upcall)(so, sb_upcallarg, M_DONTWAIT); | |
571 | socket_lock(so, 0); | |
572 | ||
573 | so->so_upcallusecount--; | |
574 | /* Tell close that it's safe to proceed */ | |
575 | if ((so->so_flags & SOF_CLOSEWAIT) && | |
576 | so->so_upcallusecount == 0) | |
577 | wakeup((caddr_t)&so->so_upcallusecount); | |
578 | } | |
579 | } | |
580 | ||
581 | /* | |
582 | * Socket buffer (struct sockbuf) utility routines. | |
583 | * | |
584 | * Each socket contains two socket buffers: one for sending data and | |
585 | * one for receiving data. Each buffer contains a queue of mbufs, | |
586 | * information about the number of mbufs and amount of data in the | |
587 | * queue, and other fields allowing select() statements and notification | |
588 | * on data availability to be implemented. | |
589 | * | |
590 | * Data stored in a socket buffer is maintained as a list of records. | |
591 | * Each record is a list of mbufs chained together with the m_next | |
592 | * field. Records are chained together with the m_nextpkt field. The upper | |
593 | * level routine soreceive() expects the following conventions to be | |
594 | * observed when placing information in the receive buffer: | |
595 | * | |
596 | * 1. If the protocol requires each message be preceded by the sender's | |
597 | * name, then a record containing that name must be present before | |
598 | * any associated data (mbuf's must be of type MT_SONAME). | |
599 | * 2. If the protocol supports the exchange of ``access rights'' (really | |
600 | * just additional data associated with the message), and there are | |
601 | * ``rights'' to be received, then a record containing this data | |
602 | * should be present (mbuf's must be of type MT_RIGHTS). | |
603 | * 3. If a name or rights record exists, then it must be followed by | |
604 | * a data record, perhaps of zero length. | |
605 | * | |
606 | * Before using a new socket structure it is first necessary to reserve | |
607 | * buffer space to the socket, by calling sbreserve(). This should commit | |
608 | * some of the available buffer space in the system buffer pool for the | |
609 | * socket (currently, it does nothing but enforce limits). The space | |
610 | * should be released by calling sbrelease() when the socket is destroyed. | |
611 | */ | |
612 | ||
613 | /* | |
614 | * Returns: 0 Success | |
615 | * ENOBUFS | |
616 | */ | |
617 | int | |
618 | soreserve(struct socket *so, u_int32_t sndcc, u_int32_t rcvcc) | |
619 | { | |
620 | ||
621 | if (sbreserve(&so->so_snd, sndcc) == 0) | |
622 | goto bad; | |
623 | else | |
624 | so->so_snd.sb_idealsize = sndcc; | |
625 | ||
626 | if (sbreserve(&so->so_rcv, rcvcc) == 0) | |
627 | goto bad2; | |
628 | else | |
629 | so->so_rcv.sb_idealsize = rcvcc; | |
630 | ||
631 | if (so->so_rcv.sb_lowat == 0) | |
632 | so->so_rcv.sb_lowat = 1; | |
633 | if (so->so_snd.sb_lowat == 0) | |
634 | so->so_snd.sb_lowat = MCLBYTES; | |
635 | if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat) | |
636 | so->so_snd.sb_lowat = so->so_snd.sb_hiwat; | |
637 | return (0); | |
638 | bad2: | |
639 | so->so_snd.sb_flags &= ~SB_SEL; | |
640 | selthreadclear(&so->so_snd.sb_sel); | |
641 | sbrelease(&so->so_snd); | |
642 | bad: | |
643 | return (ENOBUFS); | |
644 | } | |
645 | ||
646 | /* | |
647 | * Allot mbufs to a sockbuf. | |
648 | * Attempt to scale mbmax so that mbcnt doesn't become limiting | |
649 | * if buffering efficiency is near the normal case. | |
650 | */ | |
651 | int | |
652 | sbreserve(struct sockbuf *sb, u_int32_t cc) | |
653 | { | |
654 | if ((u_quad_t)cc > (u_quad_t)sb_max * MCLBYTES / (MSIZE + MCLBYTES)) | |
655 | return (0); | |
656 | sb->sb_hiwat = cc; | |
657 | sb->sb_mbmax = min(cc * sb_efficiency, sb_max); | |
658 | if (sb->sb_lowat > sb->sb_hiwat) | |
659 | sb->sb_lowat = sb->sb_hiwat; | |
660 | return (1); | |
661 | } | |
662 | ||
663 | /* | |
664 | * Free mbufs held by a socket, and reserved mbuf space. | |
665 | */ | |
666 | /* WARNING needs to do selthreadclear() before calling this */ | |
667 | void | |
668 | sbrelease(struct sockbuf *sb) | |
669 | { | |
670 | sbflush(sb); | |
671 | sb->sb_hiwat = 0; | |
672 | sb->sb_mbmax = 0; | |
673 | } | |
674 | ||
675 | /* | |
676 | * Routines to add and remove | |
677 | * data from an mbuf queue. | |
678 | * | |
679 | * The routines sbappend() or sbappendrecord() are normally called to | |
680 | * append new mbufs to a socket buffer, after checking that adequate | |
681 | * space is available, comparing the function sbspace() with the amount | |
682 | * of data to be added. sbappendrecord() differs from sbappend() in | |
683 | * that data supplied is treated as the beginning of a new record. | |
684 | * To place a sender's address, optional access rights, and data in a | |
685 | * socket receive buffer, sbappendaddr() should be used. To place | |
686 | * access rights and data in a socket receive buffer, sbappendrights() | |
687 | * should be used. In either case, the new data begins a new record. | |
688 | * Note that unlike sbappend() and sbappendrecord(), these routines check | |
689 | * for the caller that there will be enough space to store the data. | |
690 | * Each fails if there is not enough space, or if it cannot find mbufs | |
691 | * to store additional information in. | |
692 | * | |
693 | * Reliable protocols may use the socket send buffer to hold data | |
694 | * awaiting acknowledgement. Data is normally copied from a socket | |
695 | * send buffer in a protocol with m_copy for output to a peer, | |
696 | * and then removing the data from the socket buffer with sbdrop() | |
697 | * or sbdroprecord() when the data is acknowledged by the peer. | |
698 | */ | |
699 | ||
700 | /* | |
701 | * Append mbuf chain m to the last record in the | |
702 | * socket buffer sb. The additional space associated | |
703 | * the mbuf chain is recorded in sb. Empty mbufs are | |
704 | * discarded and mbufs are compacted where possible. | |
705 | */ | |
706 | int | |
707 | sbappend(struct sockbuf *sb, struct mbuf *m) | |
708 | { | |
709 | struct socket *so = sb->sb_so; | |
710 | ||
711 | if (m == NULL || (sb->sb_flags & SB_DROP)) { | |
712 | if (m != NULL) | |
713 | m_freem(m); | |
714 | return (0); | |
715 | } | |
716 | ||
717 | SBLASTRECORDCHK(sb, "sbappend 1"); | |
718 | ||
719 | if (sb->sb_lastrecord != NULL && (sb->sb_mbtail->m_flags & M_EOR)) | |
720 | return (sbappendrecord(sb, m)); | |
721 | ||
722 | if (sb->sb_flags & SB_RECV) { | |
723 | int error = sflt_data_in(so, NULL, &m, NULL, 0); | |
724 | SBLASTRECORDCHK(sb, "sbappend 2"); | |
725 | if (error != 0) { | |
726 | if (error != EJUSTRETURN) | |
727 | m_freem(m); | |
728 | return (0); | |
729 | } | |
730 | } | |
731 | ||
732 | /* If this is the first record, it's also the last record */ | |
733 | if (sb->sb_lastrecord == NULL) | |
734 | sb->sb_lastrecord = m; | |
735 | ||
736 | sbcompress(sb, m, sb->sb_mbtail); | |
737 | SBLASTRECORDCHK(sb, "sbappend 3"); | |
738 | return (1); | |
739 | } | |
740 | ||
741 | /* | |
742 | * Similar to sbappend, except that this is optimized for stream sockets. | |
743 | */ | |
744 | int | |
745 | sbappendstream(struct sockbuf *sb, struct mbuf *m) | |
746 | { | |
747 | struct socket *so = sb->sb_so; | |
748 | ||
749 | if (m == NULL || (sb->sb_flags & SB_DROP)) { | |
750 | if (m != NULL) | |
751 | m_freem(m); | |
752 | return (0); | |
753 | } | |
754 | ||
755 | if (m->m_nextpkt != NULL || (sb->sb_mb != sb->sb_lastrecord)) { | |
756 | panic("sbappendstream: nexpkt %p || mb %p != lastrecord %p\n", | |
757 | m->m_nextpkt, sb->sb_mb, sb->sb_lastrecord); | |
758 | /* NOTREACHED */ | |
759 | } | |
760 | ||
761 | SBLASTMBUFCHK(sb, __func__); | |
762 | ||
763 | if (sb->sb_flags & SB_RECV) { | |
764 | int error = sflt_data_in(so, NULL, &m, NULL, 0); | |
765 | SBLASTRECORDCHK(sb, "sbappendstream 1"); | |
766 | if (error != 0) { | |
767 | if (error != EJUSTRETURN) | |
768 | m_freem(m); | |
769 | return (0); | |
770 | } | |
771 | } | |
772 | ||
773 | sbcompress(sb, m, sb->sb_mbtail); | |
774 | sb->sb_lastrecord = sb->sb_mb; | |
775 | SBLASTRECORDCHK(sb, "sbappendstream 2"); | |
776 | return (1); | |
777 | } | |
778 | ||
779 | #ifdef SOCKBUF_DEBUG | |
780 | void | |
781 | sbcheck(struct sockbuf *sb) | |
782 | { | |
783 | struct mbuf *m; | |
784 | struct mbuf *n = 0; | |
785 | u_int32_t len = 0, mbcnt = 0; | |
786 | lck_mtx_t *mutex_held; | |
787 | ||
788 | if (sb->sb_so->so_proto->pr_getlock != NULL) | |
789 | mutex_held = (*sb->sb_so->so_proto->pr_getlock)(sb->sb_so, 0); | |
790 | else | |
791 | mutex_held = sb->sb_so->so_proto->pr_domain->dom_mtx; | |
792 | ||
793 | lck_mtx_assert(mutex_held, LCK_MTX_ASSERT_OWNED); | |
794 | ||
795 | if (sbchecking == 0) | |
796 | return; | |
797 | ||
798 | for (m = sb->sb_mb; m; m = n) { | |
799 | n = m->m_nextpkt; | |
800 | for (; m; m = m->m_next) { | |
801 | len += m->m_len; | |
802 | mbcnt += MSIZE; | |
803 | /* XXX pretty sure this is bogus */ | |
804 | if (m->m_flags & M_EXT) | |
805 | mbcnt += m->m_ext.ext_size; | |
806 | } | |
807 | } | |
808 | if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) { | |
809 | panic("cc %ld != %ld || mbcnt %ld != %ld\n", len, sb->sb_cc, | |
810 | mbcnt, sb->sb_mbcnt); | |
811 | } | |
812 | } | |
813 | #endif | |
814 | ||
815 | void | |
816 | sblastrecordchk(struct sockbuf *sb, const char *where) | |
817 | { | |
818 | struct mbuf *m = sb->sb_mb; | |
819 | ||
820 | while (m && m->m_nextpkt) | |
821 | m = m->m_nextpkt; | |
822 | ||
823 | if (m != sb->sb_lastrecord) { | |
824 | printf("sblastrecordchk: mb %p lastrecord %p last %p\n", | |
825 | sb->sb_mb, sb->sb_lastrecord, m); | |
826 | printf("packet chain:\n"); | |
827 | for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) | |
828 | printf("\t%p\n", m); | |
829 | panic("sblastrecordchk from %s", where); | |
830 | } | |
831 | } | |
832 | ||
833 | void | |
834 | sblastmbufchk(struct sockbuf *sb, const char *where) | |
835 | { | |
836 | struct mbuf *m = sb->sb_mb; | |
837 | struct mbuf *n; | |
838 | ||
839 | while (m && m->m_nextpkt) | |
840 | m = m->m_nextpkt; | |
841 | ||
842 | while (m && m->m_next) | |
843 | m = m->m_next; | |
844 | ||
845 | if (m != sb->sb_mbtail) { | |
846 | printf("sblastmbufchk: mb %p mbtail %p last %p\n", | |
847 | sb->sb_mb, sb->sb_mbtail, m); | |
848 | printf("packet tree:\n"); | |
849 | for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) { | |
850 | printf("\t"); | |
851 | for (n = m; n != NULL; n = n->m_next) | |
852 | printf("%p ", n); | |
853 | printf("\n"); | |
854 | } | |
855 | panic("sblastmbufchk from %s", where); | |
856 | } | |
857 | } | |
858 | ||
859 | /* | |
860 | * Similar to sbappend, except the mbuf chain begins a new record. | |
861 | */ | |
862 | int | |
863 | sbappendrecord(struct sockbuf *sb, struct mbuf *m0) | |
864 | { | |
865 | struct mbuf *m; | |
866 | int space = 0; | |
867 | ||
868 | if (m0 == NULL || (sb->sb_flags & SB_DROP)) { | |
869 | if (m0 != NULL) | |
870 | m_freem(m0); | |
871 | return (0); | |
872 | } | |
873 | ||
874 | for (m = m0; m != NULL; m = m->m_next) | |
875 | space += m->m_len; | |
876 | ||
877 | if (space > sbspace(sb) && !(sb->sb_flags & SB_UNIX)) { | |
878 | m_freem(m0); | |
879 | return (0); | |
880 | } | |
881 | ||
882 | if (sb->sb_flags & SB_RECV) { | |
883 | int error = sflt_data_in(sb->sb_so, NULL, &m0, NULL, | |
884 | sock_data_filt_flag_record); | |
885 | if (error != 0) { | |
886 | SBLASTRECORDCHK(sb, "sbappendrecord 1"); | |
887 | if (error != EJUSTRETURN) | |
888 | m_freem(m0); | |
889 | return (0); | |
890 | } | |
891 | } | |
892 | ||
893 | /* | |
894 | * Note this permits zero length records. | |
895 | */ | |
896 | sballoc(sb, m0); | |
897 | SBLASTRECORDCHK(sb, "sbappendrecord 2"); | |
898 | if (sb->sb_lastrecord != NULL) { | |
899 | sb->sb_lastrecord->m_nextpkt = m0; | |
900 | } else { | |
901 | sb->sb_mb = m0; | |
902 | } | |
903 | sb->sb_lastrecord = m0; | |
904 | sb->sb_mbtail = m0; | |
905 | ||
906 | m = m0->m_next; | |
907 | m0->m_next = 0; | |
908 | if (m && (m0->m_flags & M_EOR)) { | |
909 | m0->m_flags &= ~M_EOR; | |
910 | m->m_flags |= M_EOR; | |
911 | } | |
912 | sbcompress(sb, m, m0); | |
913 | SBLASTRECORDCHK(sb, "sbappendrecord 3"); | |
914 | return (1); | |
915 | } | |
916 | ||
917 | /* | |
918 | * As above except that OOB data | |
919 | * is inserted at the beginning of the sockbuf, | |
920 | * but after any other OOB data. | |
921 | */ | |
922 | int | |
923 | sbinsertoob(struct sockbuf *sb, struct mbuf *m0) | |
924 | { | |
925 | struct mbuf *m; | |
926 | struct mbuf **mp; | |
927 | ||
928 | if (m0 == 0) | |
929 | return (0); | |
930 | ||
931 | SBLASTRECORDCHK(sb, "sbinsertoob 1"); | |
932 | ||
933 | if ((sb->sb_flags & SB_RECV) != 0) { | |
934 | int error = sflt_data_in(sb->sb_so, NULL, &m0, NULL, | |
935 | sock_data_filt_flag_oob); | |
936 | ||
937 | SBLASTRECORDCHK(sb, "sbinsertoob 2"); | |
938 | if (error) { | |
939 | if (error != EJUSTRETURN) { | |
940 | m_freem(m0); | |
941 | } | |
942 | return (0); | |
943 | } | |
944 | } | |
945 | ||
946 | for (mp = &sb->sb_mb; *mp; mp = &((*mp)->m_nextpkt)) { | |
947 | m = *mp; | |
948 | again: | |
949 | switch (m->m_type) { | |
950 | ||
951 | case MT_OOBDATA: | |
952 | continue; /* WANT next train */ | |
953 | ||
954 | case MT_CONTROL: | |
955 | m = m->m_next; | |
956 | if (m) | |
957 | goto again; /* inspect THIS train further */ | |
958 | } | |
959 | break; | |
960 | } | |
961 | /* | |
962 | * Put the first mbuf on the queue. | |
963 | * Note this permits zero length records. | |
964 | */ | |
965 | sballoc(sb, m0); | |
966 | m0->m_nextpkt = *mp; | |
967 | if (*mp == NULL) { | |
968 | /* m0 is actually the new tail */ | |
969 | sb->sb_lastrecord = m0; | |
970 | } | |
971 | *mp = m0; | |
972 | m = m0->m_next; | |
973 | m0->m_next = 0; | |
974 | if (m && (m0->m_flags & M_EOR)) { | |
975 | m0->m_flags &= ~M_EOR; | |
976 | m->m_flags |= M_EOR; | |
977 | } | |
978 | sbcompress(sb, m, m0); | |
979 | SBLASTRECORDCHK(sb, "sbinsertoob 3"); | |
980 | return (1); | |
981 | } | |
982 | ||
983 | /* | |
984 | * Append address and data, and optionally, control (ancillary) data | |
985 | * to the receive queue of a socket. If present, | |
986 | * m0 must include a packet header with total length. | |
987 | * Returns 0 if no space in sockbuf or insufficient mbufs. | |
988 | * | |
989 | * Returns: 0 No space/out of mbufs | |
990 | * 1 Success | |
991 | */ | |
992 | static int | |
993 | sbappendaddr_internal(struct sockbuf *sb, struct sockaddr *asa, | |
994 | struct mbuf *m0, struct mbuf *control) | |
995 | { | |
996 | struct mbuf *m, *n, *nlast; | |
997 | int space = asa->sa_len; | |
998 | ||
999 | if (m0 && (m0->m_flags & M_PKTHDR) == 0) | |
1000 | panic("sbappendaddr"); | |
1001 | ||
1002 | if (m0) | |
1003 | space += m0->m_pkthdr.len; | |
1004 | for (n = control; n; n = n->m_next) { | |
1005 | space += n->m_len; | |
1006 | if (n->m_next == 0) /* keep pointer to last control buf */ | |
1007 | break; | |
1008 | } | |
1009 | if (space > sbspace(sb)) | |
1010 | return (0); | |
1011 | if (asa->sa_len > MLEN) | |
1012 | return (0); | |
1013 | MGET(m, M_DONTWAIT, MT_SONAME); | |
1014 | if (m == 0) | |
1015 | return (0); | |
1016 | m->m_len = asa->sa_len; | |
1017 | bcopy((caddr_t)asa, mtod(m, caddr_t), asa->sa_len); | |
1018 | if (n) | |
1019 | n->m_next = m0; /* concatenate data to control */ | |
1020 | else | |
1021 | control = m0; | |
1022 | m->m_next = control; | |
1023 | ||
1024 | SBLASTRECORDCHK(sb, "sbappendadddr 1"); | |
1025 | ||
1026 | for (n = m; n->m_next != NULL; n = n->m_next) | |
1027 | sballoc(sb, n); | |
1028 | sballoc(sb, n); | |
1029 | nlast = n; | |
1030 | ||
1031 | if (sb->sb_lastrecord != NULL) { | |
1032 | sb->sb_lastrecord->m_nextpkt = m; | |
1033 | } else { | |
1034 | sb->sb_mb = m; | |
1035 | } | |
1036 | sb->sb_lastrecord = m; | |
1037 | sb->sb_mbtail = nlast; | |
1038 | ||
1039 | SBLASTMBUFCHK(sb, __func__); | |
1040 | SBLASTRECORDCHK(sb, "sbappendadddr 2"); | |
1041 | ||
1042 | postevent(0, sb, EV_RWBYTES); | |
1043 | return (1); | |
1044 | } | |
1045 | ||
1046 | /* | |
1047 | * Returns: 0 Error: No space/out of mbufs/etc. | |
1048 | * 1 Success | |
1049 | * | |
1050 | * Imputed: (*error_out) errno for error | |
1051 | * ENOBUFS | |
1052 | * sflt_data_in:??? [whatever a filter author chooses] | |
1053 | */ | |
1054 | int | |
1055 | sbappendaddr(struct sockbuf *sb, struct sockaddr *asa, struct mbuf *m0, | |
1056 | struct mbuf *control, int *error_out) | |
1057 | { | |
1058 | int result = 0; | |
1059 | boolean_t sb_unix = (sb->sb_flags & SB_UNIX); | |
1060 | ||
1061 | if (error_out) | |
1062 | *error_out = 0; | |
1063 | ||
1064 | if (m0 && (m0->m_flags & M_PKTHDR) == 0) | |
1065 | panic("sbappendaddrorfree"); | |
1066 | ||
1067 | if (sb->sb_flags & SB_DROP) { | |
1068 | if (m0 != NULL) | |
1069 | m_freem(m0); | |
1070 | if (control != NULL && !sb_unix) | |
1071 | m_freem(control); | |
1072 | if (error_out != NULL) | |
1073 | *error_out = EINVAL; | |
1074 | return (0); | |
1075 | } | |
1076 | ||
1077 | /* Call socket data in filters */ | |
1078 | if ((sb->sb_flags & SB_RECV) != 0) { | |
1079 | int error; | |
1080 | error = sflt_data_in(sb->sb_so, asa, &m0, &control, 0); | |
1081 | SBLASTRECORDCHK(sb, __func__); | |
1082 | if (error) { | |
1083 | if (error != EJUSTRETURN) { | |
1084 | if (m0) | |
1085 | m_freem(m0); | |
1086 | if (control != NULL && !sb_unix) | |
1087 | m_freem(control); | |
1088 | if (error_out) | |
1089 | *error_out = error; | |
1090 | } | |
1091 | return (0); | |
1092 | } | |
1093 | } | |
1094 | ||
1095 | result = sbappendaddr_internal(sb, asa, m0, control); | |
1096 | if (result == 0) { | |
1097 | if (m0) | |
1098 | m_freem(m0); | |
1099 | if (control != NULL && !sb_unix) | |
1100 | m_freem(control); | |
1101 | if (error_out) | |
1102 | *error_out = ENOBUFS; | |
1103 | } | |
1104 | ||
1105 | return (result); | |
1106 | } | |
1107 | ||
1108 | static int | |
1109 | sbappendcontrol_internal(struct sockbuf *sb, struct mbuf *m0, | |
1110 | struct mbuf *control) | |
1111 | { | |
1112 | struct mbuf *m, *mlast, *n; | |
1113 | int space = 0; | |
1114 | ||
1115 | if (control == 0) | |
1116 | panic("sbappendcontrol"); | |
1117 | ||
1118 | for (m = control; ; m = m->m_next) { | |
1119 | space += m->m_len; | |
1120 | if (m->m_next == 0) | |
1121 | break; | |
1122 | } | |
1123 | n = m; /* save pointer to last control buffer */ | |
1124 | for (m = m0; m; m = m->m_next) | |
1125 | space += m->m_len; | |
1126 | if (space > sbspace(sb) && !(sb->sb_flags & SB_UNIX)) | |
1127 | return (0); | |
1128 | n->m_next = m0; /* concatenate data to control */ | |
1129 | SBLASTRECORDCHK(sb, "sbappendcontrol 1"); | |
1130 | ||
1131 | for (m = control; m->m_next != NULL; m = m->m_next) | |
1132 | sballoc(sb, m); | |
1133 | sballoc(sb, m); | |
1134 | mlast = m; | |
1135 | ||
1136 | if (sb->sb_lastrecord != NULL) { | |
1137 | sb->sb_lastrecord->m_nextpkt = control; | |
1138 | } else { | |
1139 | sb->sb_mb = control; | |
1140 | } | |
1141 | sb->sb_lastrecord = control; | |
1142 | sb->sb_mbtail = mlast; | |
1143 | ||
1144 | SBLASTMBUFCHK(sb, __func__); | |
1145 | SBLASTRECORDCHK(sb, "sbappendcontrol 2"); | |
1146 | ||
1147 | postevent(0, sb, EV_RWBYTES); | |
1148 | return (1); | |
1149 | } | |
1150 | ||
1151 | int | |
1152 | sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control, | |
1153 | int *error_out) | |
1154 | { | |
1155 | int result = 0; | |
1156 | boolean_t sb_unix = (sb->sb_flags & SB_UNIX); | |
1157 | ||
1158 | if (error_out) | |
1159 | *error_out = 0; | |
1160 | ||
1161 | if (sb->sb_flags & SB_DROP) { | |
1162 | if (m0 != NULL) | |
1163 | m_freem(m0); | |
1164 | if (control != NULL && !sb_unix) | |
1165 | m_freem(control); | |
1166 | if (error_out != NULL) | |
1167 | *error_out = EINVAL; | |
1168 | return (0); | |
1169 | } | |
1170 | ||
1171 | if (sb->sb_flags & SB_RECV) { | |
1172 | int error; | |
1173 | ||
1174 | error = sflt_data_in(sb->sb_so, NULL, &m0, &control, 0); | |
1175 | SBLASTRECORDCHK(sb, __func__); | |
1176 | if (error) { | |
1177 | if (error != EJUSTRETURN) { | |
1178 | if (m0) | |
1179 | m_freem(m0); | |
1180 | if (control != NULL && !sb_unix) | |
1181 | m_freem(control); | |
1182 | if (error_out) | |
1183 | *error_out = error; | |
1184 | } | |
1185 | return (0); | |
1186 | } | |
1187 | } | |
1188 | ||
1189 | result = sbappendcontrol_internal(sb, m0, control); | |
1190 | if (result == 0) { | |
1191 | if (m0) | |
1192 | m_freem(m0); | |
1193 | if (control != NULL && !sb_unix) | |
1194 | m_freem(control); | |
1195 | if (error_out) | |
1196 | *error_out = ENOBUFS; | |
1197 | } | |
1198 | ||
1199 | return (result); | |
1200 | } | |
1201 | ||
1202 | /* | |
1203 | * Append a contiguous TCP data blob with TCP sequence number as control data | |
1204 | * as a new msg to the receive socket buffer. | |
1205 | */ | |
1206 | int | |
1207 | sbappendmsgstream_rcv(struct sockbuf *sb, struct mbuf *m, uint32_t seqnum, | |
1208 | int unordered) | |
1209 | { | |
1210 | struct mbuf *m_eor = NULL; | |
1211 | u_int32_t data_len = 0; | |
1212 | int ret = 0; | |
1213 | struct socket *so = sb->sb_so; | |
1214 | ||
1215 | VERIFY((m->m_flags & M_PKTHDR) && m_pktlen(m) > 0); | |
1216 | VERIFY(so->so_msg_state != NULL); | |
1217 | VERIFY(sb->sb_flags & SB_RECV); | |
1218 | ||
1219 | /* Keep the TCP sequence number in the mbuf pkthdr */ | |
1220 | m->m_pkthdr.msg_seq = seqnum; | |
1221 | ||
1222 | /* find last mbuf and set M_EOR */ | |
1223 | for (m_eor = m; ; m_eor = m_eor->m_next) { | |
1224 | /* | |
1225 | * If the msg is unordered, we need to account for | |
1226 | * these bytes in receive socket buffer size. Otherwise, | |
1227 | * the receive window advertised will shrink because | |
1228 | * of the additional unordered bytes added to the | |
1229 | * receive buffer. | |
1230 | */ | |
1231 | if (unordered) { | |
1232 | m_eor->m_flags |= M_UNORDERED_DATA; | |
1233 | data_len += m_eor->m_len; | |
1234 | so->so_msg_state->msg_uno_bytes += m_eor->m_len; | |
1235 | } else { | |
1236 | m_eor->m_flags &= ~M_UNORDERED_DATA; | |
1237 | } | |
1238 | ||
1239 | if (m_eor->m_next == NULL) | |
1240 | break; | |
1241 | } | |
1242 | ||
1243 | /* set EOR flag at end of byte blob */ | |
1244 | m_eor->m_flags |= M_EOR; | |
1245 | ||
1246 | /* expand the receive socket buffer to allow unordered data */ | |
1247 | if (unordered && !sbreserve(sb, sb->sb_hiwat + data_len)) { | |
1248 | /* | |
1249 | * Could not allocate memory for unordered data, it | |
1250 | * means this packet will have to be delivered in order | |
1251 | */ | |
1252 | printf("%s: could not reserve space for unordered data\n", | |
1253 | __func__); | |
1254 | } | |
1255 | ||
1256 | ret = sbappendrecord(sb, m); | |
1257 | return (ret); | |
1258 | } | |
1259 | ||
1260 | /* | |
1261 | * TCP streams have message based out of order delivery support, or have | |
1262 | * Multipath TCP support, or are regular TCP sockets | |
1263 | */ | |
1264 | int | |
1265 | sbappendstream_rcvdemux(struct socket *so, struct mbuf *m, uint32_t seqnum, | |
1266 | int unordered) | |
1267 | { | |
1268 | int ret = 0; | |
1269 | ||
1270 | if ((m != NULL) && (m_pktlen(m) <= 0)) { | |
1271 | m_freem(m); | |
1272 | return (ret); | |
1273 | } | |
1274 | ||
1275 | if (so->so_flags & SOF_ENABLE_MSGS) { | |
1276 | ret = sbappendmsgstream_rcv(&so->so_rcv, m, seqnum, unordered); | |
1277 | } | |
1278 | #if MPTCP | |
1279 | else if (so->so_flags & SOF_MPTCP_TRUE) { | |
1280 | ret = sbappendmptcpstream_rcv(&so->so_rcv, m); | |
1281 | } | |
1282 | #endif /* MPTCP */ | |
1283 | else { | |
1284 | ret = sbappendstream(&so->so_rcv, m); | |
1285 | } | |
1286 | return (ret); | |
1287 | } | |
1288 | ||
1289 | #if MPTCP | |
1290 | int | |
1291 | sbappendmptcpstream_rcv(struct sockbuf *sb, struct mbuf *m) | |
1292 | { | |
1293 | struct socket *so = sb->sb_so; | |
1294 | ||
1295 | VERIFY(m == NULL || (m->m_flags & M_PKTHDR)); | |
1296 | /* SB_NOCOMPRESS must be set prevent loss of M_PKTHDR data */ | |
1297 | VERIFY((sb->sb_flags & (SB_RECV|SB_NOCOMPRESS)) == | |
1298 | (SB_RECV|SB_NOCOMPRESS)); | |
1299 | ||
1300 | if (m == NULL || m_pktlen(m) == 0 || (sb->sb_flags & SB_DROP) || | |
1301 | (so->so_state & SS_CANTRCVMORE)) { | |
1302 | if (m != NULL) | |
1303 | m_freem(m); | |
1304 | return (0); | |
1305 | } | |
1306 | /* the socket is not closed, so SOF_MP_SUBFLOW must be set */ | |
1307 | VERIFY(so->so_flags & SOF_MP_SUBFLOW); | |
1308 | ||
1309 | if (m->m_nextpkt != NULL || (sb->sb_mb != sb->sb_lastrecord)) { | |
1310 | panic("%s: nexpkt %p || mb %p != lastrecord %p\n", __func__, | |
1311 | m->m_nextpkt, sb->sb_mb, sb->sb_lastrecord); | |
1312 | /* NOTREACHED */ | |
1313 | } | |
1314 | ||
1315 | SBLASTMBUFCHK(sb, __func__); | |
1316 | ||
1317 | mptcp_adj_rmap(so, m); | |
1318 | ||
1319 | /* No filter support (SB_RECV) on mptcp subflow sockets */ | |
1320 | ||
1321 | sbcompress(sb, m, sb->sb_mbtail); | |
1322 | sb->sb_lastrecord = sb->sb_mb; | |
1323 | SBLASTRECORDCHK(sb, __func__); | |
1324 | return (1); | |
1325 | } | |
1326 | #endif /* MPTCP */ | |
1327 | ||
1328 | /* | |
1329 | * Append message to send socket buffer based on priority. | |
1330 | */ | |
1331 | int | |
1332 | sbappendmsg_snd(struct sockbuf *sb, struct mbuf *m) | |
1333 | { | |
1334 | struct socket *so = sb->sb_so; | |
1335 | struct msg_priq *priq; | |
1336 | int set_eor = 0; | |
1337 | ||
1338 | VERIFY(so->so_msg_state != NULL); | |
1339 | ||
1340 | if (m->m_nextpkt != NULL || (sb->sb_mb != sb->sb_lastrecord)) | |
1341 | panic("sbappendstream: nexpkt %p || mb %p != lastrecord %p\n", | |
1342 | m->m_nextpkt, sb->sb_mb, sb->sb_lastrecord); | |
1343 | ||
1344 | SBLASTMBUFCHK(sb, __func__); | |
1345 | ||
1346 | if (m == NULL || (sb->sb_flags & SB_DROP) || so->so_msg_state == NULL) { | |
1347 | if (m != NULL) | |
1348 | m_freem(m); | |
1349 | return (0); | |
1350 | } | |
1351 | ||
1352 | priq = &so->so_msg_state->msg_priq[m->m_pkthdr.msg_pri]; | |
1353 | ||
1354 | /* note if we need to propogate M_EOR to the last mbuf */ | |
1355 | if (m->m_flags & M_EOR) { | |
1356 | set_eor = 1; | |
1357 | ||
1358 | /* Reset M_EOR from the first mbuf */ | |
1359 | m->m_flags &= ~(M_EOR); | |
1360 | } | |
1361 | ||
1362 | if (priq->msgq_head == NULL) { | |
1363 | VERIFY(priq->msgq_tail == NULL && priq->msgq_lastmsg == NULL); | |
1364 | priq->msgq_head = priq->msgq_lastmsg = m; | |
1365 | } else { | |
1366 | VERIFY(priq->msgq_tail->m_next == NULL); | |
1367 | ||
1368 | /* Check if the last message has M_EOR flag set */ | |
1369 | if (priq->msgq_tail->m_flags & M_EOR) { | |
1370 | /* Insert as a new message */ | |
1371 | priq->msgq_lastmsg->m_nextpkt = m; | |
1372 | ||
1373 | /* move the lastmsg pointer */ | |
1374 | priq->msgq_lastmsg = m; | |
1375 | } else { | |
1376 | /* Append to the existing message */ | |
1377 | priq->msgq_tail->m_next = m; | |
1378 | } | |
1379 | } | |
1380 | ||
1381 | /* Update accounting and the queue tail pointer */ | |
1382 | ||
1383 | while (m->m_next != NULL) { | |
1384 | sballoc(sb, m); | |
1385 | priq->msgq_bytes += m->m_len; | |
1386 | m = m->m_next; | |
1387 | } | |
1388 | sballoc(sb, m); | |
1389 | priq->msgq_bytes += m->m_len; | |
1390 | ||
1391 | if (set_eor) { | |
1392 | m->m_flags |= M_EOR; | |
1393 | ||
1394 | /* | |
1395 | * Since the user space can not write a new msg | |
1396 | * without completing the previous one, we can | |
1397 | * reset this flag to start sending again. | |
1398 | */ | |
1399 | priq->msgq_flags &= ~(MSGQ_MSG_NOTDONE); | |
1400 | } | |
1401 | ||
1402 | priq->msgq_tail = m; | |
1403 | ||
1404 | SBLASTRECORDCHK(sb, "sbappendstream 2"); | |
1405 | postevent(0, sb, EV_RWBYTES); | |
1406 | return (1); | |
1407 | } | |
1408 | ||
1409 | /* | |
1410 | * Pull data from priority queues to the serial snd queue | |
1411 | * right before sending. | |
1412 | */ | |
1413 | void | |
1414 | sbpull_unordered_data(struct socket *so, int32_t off, int32_t len) | |
1415 | { | |
1416 | int32_t topull, i; | |
1417 | struct msg_priq *priq = NULL; | |
1418 | ||
1419 | VERIFY(so->so_msg_state != NULL); | |
1420 | ||
1421 | topull = (off + len) - so->so_msg_state->msg_serial_bytes; | |
1422 | ||
1423 | i = MSG_PRI_MAX; | |
1424 | while (i >= MSG_PRI_MIN && topull > 0) { | |
1425 | struct mbuf *m = NULL, *mqhead = NULL, *mend = NULL; | |
1426 | priq = &so->so_msg_state->msg_priq[i]; | |
1427 | if ((priq->msgq_flags & MSGQ_MSG_NOTDONE) && | |
1428 | priq->msgq_head == NULL) { | |
1429 | /* | |
1430 | * We were in the middle of sending | |
1431 | * a message and we have not seen the | |
1432 | * end of it. | |
1433 | */ | |
1434 | VERIFY(priq->msgq_lastmsg == NULL && | |
1435 | priq->msgq_tail == NULL); | |
1436 | return; | |
1437 | } | |
1438 | if (priq->msgq_head != NULL) { | |
1439 | int32_t bytes = 0, topull_tmp = topull; | |
1440 | /* | |
1441 | * We found a msg while scanning the priority | |
1442 | * queue from high to low priority. | |
1443 | */ | |
1444 | m = priq->msgq_head; | |
1445 | mqhead = m; | |
1446 | mend = m; | |
1447 | ||
1448 | /* | |
1449 | * Move bytes from the priority queue to the | |
1450 | * serial queue. Compute the number of bytes | |
1451 | * being added. | |
1452 | */ | |
1453 | while (mqhead->m_next != NULL && topull_tmp > 0) { | |
1454 | bytes += mqhead->m_len; | |
1455 | topull_tmp -= mqhead->m_len; | |
1456 | mend = mqhead; | |
1457 | mqhead = mqhead->m_next; | |
1458 | } | |
1459 | ||
1460 | if (mqhead->m_next == NULL) { | |
1461 | /* | |
1462 | * If we have only one more mbuf left, | |
1463 | * move the last mbuf of this message to | |
1464 | * serial queue and set the head of the | |
1465 | * queue to be the next message. | |
1466 | */ | |
1467 | bytes += mqhead->m_len; | |
1468 | mend = mqhead; | |
1469 | mqhead = m->m_nextpkt; | |
1470 | if (!(mend->m_flags & M_EOR)) { | |
1471 | /* | |
1472 | * We have not seen the end of | |
1473 | * this message, so we can not | |
1474 | * pull anymore. | |
1475 | */ | |
1476 | priq->msgq_flags |= MSGQ_MSG_NOTDONE; | |
1477 | } else { | |
1478 | /* Reset M_EOR */ | |
1479 | mend->m_flags &= ~(M_EOR); | |
1480 | } | |
1481 | } else { | |
1482 | /* propogate the next msg pointer */ | |
1483 | mqhead->m_nextpkt = m->m_nextpkt; | |
1484 | } | |
1485 | priq->msgq_head = mqhead; | |
1486 | ||
1487 | /* | |
1488 | * if the lastmsg pointer points to | |
1489 | * the mbuf that is being dequeued, update | |
1490 | * it to point to the new head. | |
1491 | */ | |
1492 | if (priq->msgq_lastmsg == m) | |
1493 | priq->msgq_lastmsg = priq->msgq_head; | |
1494 | ||
1495 | m->m_nextpkt = NULL; | |
1496 | mend->m_next = NULL; | |
1497 | ||
1498 | if (priq->msgq_head == NULL) { | |
1499 | /* Moved all messages, update tail */ | |
1500 | priq->msgq_tail = NULL; | |
1501 | VERIFY(priq->msgq_lastmsg == NULL); | |
1502 | } | |
1503 | ||
1504 | /* Move it to serial sb_mb queue */ | |
1505 | if (so->so_snd.sb_mb == NULL) { | |
1506 | so->so_snd.sb_mb = m; | |
1507 | } else { | |
1508 | so->so_snd.sb_mbtail->m_next = m; | |
1509 | } | |
1510 | ||
1511 | priq->msgq_bytes -= bytes; | |
1512 | VERIFY(priq->msgq_bytes >= 0); | |
1513 | sbwakeup(&so->so_snd); | |
1514 | ||
1515 | so->so_msg_state->msg_serial_bytes += bytes; | |
1516 | so->so_snd.sb_mbtail = mend; | |
1517 | so->so_snd.sb_lastrecord = so->so_snd.sb_mb; | |
1518 | ||
1519 | topull = | |
1520 | (off + len) - so->so_msg_state->msg_serial_bytes; | |
1521 | ||
1522 | if (priq->msgq_flags & MSGQ_MSG_NOTDONE) | |
1523 | break; | |
1524 | } else { | |
1525 | --i; | |
1526 | } | |
1527 | } | |
1528 | sblastrecordchk(&so->so_snd, "sbpull_unordered_data"); | |
1529 | sblastmbufchk(&so->so_snd, "sbpull_unordered_data"); | |
1530 | } | |
1531 | ||
1532 | /* | |
1533 | * Compress mbuf chain m into the socket | |
1534 | * buffer sb following mbuf n. If n | |
1535 | * is null, the buffer is presumed empty. | |
1536 | */ | |
1537 | static inline void | |
1538 | sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n) | |
1539 | { | |
1540 | int eor = 0, compress = (!(sb->sb_flags & SB_NOCOMPRESS)); | |
1541 | struct mbuf *o; | |
1542 | ||
1543 | if (m == NULL) { | |
1544 | /* There is nothing to compress; just update the tail */ | |
1545 | for (; n->m_next != NULL; n = n->m_next) | |
1546 | ; | |
1547 | sb->sb_mbtail = n; | |
1548 | goto done; | |
1549 | } | |
1550 | ||
1551 | while (m != NULL) { | |
1552 | eor |= m->m_flags & M_EOR; | |
1553 | if (compress && m->m_len == 0 && (eor == 0 || | |
1554 | (((o = m->m_next) || (o = n)) && o->m_type == m->m_type))) { | |
1555 | if (sb->sb_lastrecord == m) | |
1556 | sb->sb_lastrecord = m->m_next; | |
1557 | m = m_free(m); | |
1558 | continue; | |
1559 | } | |
1560 | if (compress && n != NULL && (n->m_flags & M_EOR) == 0 && | |
1561 | #ifndef __APPLE__ | |
1562 | M_WRITABLE(n) && | |
1563 | #endif | |
1564 | m->m_len <= MCLBYTES / 4 && /* XXX: Don't copy too much */ | |
1565 | m->m_len <= M_TRAILINGSPACE(n) && | |
1566 | n->m_type == m->m_type) { | |
1567 | bcopy(mtod(m, caddr_t), mtod(n, caddr_t) + n->m_len, | |
1568 | (unsigned)m->m_len); | |
1569 | n->m_len += m->m_len; | |
1570 | sb->sb_cc += m->m_len; | |
1571 | if (m->m_type != MT_DATA && m->m_type != MT_HEADER && | |
1572 | m->m_type != MT_OOBDATA) { | |
1573 | /* XXX: Probably don't need */ | |
1574 | sb->sb_ctl += m->m_len; | |
1575 | } | |
1576 | m = m_free(m); | |
1577 | continue; | |
1578 | } | |
1579 | if (n != NULL) | |
1580 | n->m_next = m; | |
1581 | else | |
1582 | sb->sb_mb = m; | |
1583 | sb->sb_mbtail = m; | |
1584 | sballoc(sb, m); | |
1585 | n = m; | |
1586 | m->m_flags &= ~M_EOR; | |
1587 | m = m->m_next; | |
1588 | n->m_next = NULL; | |
1589 | } | |
1590 | if (eor != 0) { | |
1591 | if (n != NULL) | |
1592 | n->m_flags |= eor; | |
1593 | else | |
1594 | printf("semi-panic: sbcompress\n"); | |
1595 | } | |
1596 | done: | |
1597 | SBLASTMBUFCHK(sb, __func__); | |
1598 | postevent(0, sb, EV_RWBYTES); | |
1599 | } | |
1600 | ||
1601 | void | |
1602 | sb_empty_assert(struct sockbuf *sb, const char *where) | |
1603 | { | |
1604 | if (!(sb->sb_cc == 0 && sb->sb_mb == NULL && sb->sb_mbcnt == 0 && | |
1605 | sb->sb_mbtail == NULL && sb->sb_lastrecord == NULL)) { | |
1606 | panic("%s: sb %p so %p cc %d mbcnt %d mb %p mbtail %p " | |
1607 | "lastrecord %p\n", where, sb, sb->sb_so, sb->sb_cc, | |
1608 | sb->sb_mbcnt, sb->sb_mb, sb->sb_mbtail, | |
1609 | sb->sb_lastrecord); | |
1610 | /* NOTREACHED */ | |
1611 | } | |
1612 | } | |
1613 | ||
1614 | static void | |
1615 | sbflush_priq(struct msg_priq *priq) | |
1616 | { | |
1617 | struct mbuf *m; | |
1618 | m = priq->msgq_head; | |
1619 | if (m != NULL) | |
1620 | m_freem_list(m); | |
1621 | priq->msgq_head = priq->msgq_tail = priq->msgq_lastmsg = NULL; | |
1622 | priq->msgq_bytes = priq->msgq_flags = 0; | |
1623 | } | |
1624 | ||
1625 | /* | |
1626 | * Free all mbufs in a sockbuf. | |
1627 | * Check that all resources are reclaimed. | |
1628 | */ | |
1629 | void | |
1630 | sbflush(struct sockbuf *sb) | |
1631 | { | |
1632 | void *lr_saved = __builtin_return_address(0); | |
1633 | struct socket *so = sb->sb_so; | |
1634 | #ifdef notyet | |
1635 | lck_mtx_t *mutex_held; | |
1636 | #endif | |
1637 | u_int32_t i; | |
1638 | ||
1639 | /* so_usecount may be 0 if we get here from sofreelastref() */ | |
1640 | if (so == NULL) { | |
1641 | panic("%s: null so, sb=%p sb_flags=0x%x lr=%p\n", | |
1642 | __func__, sb, sb->sb_flags, lr_saved); | |
1643 | /* NOTREACHED */ | |
1644 | } else if (so->so_usecount < 0) { | |
1645 | panic("%s: sb=%p sb_flags=0x%x sb_so=%p usecount=%d lr=%p " | |
1646 | "lrh= %s\n", __func__, sb, sb->sb_flags, so, | |
1647 | so->so_usecount, lr_saved, solockhistory_nr(so)); | |
1648 | /* NOTREACHED */ | |
1649 | } | |
1650 | #ifdef notyet | |
1651 | /* | |
1652 | * XXX: This code is currently commented out, because we may get here | |
1653 | * as part of sofreelastref(), and at that time, pr_getlock() may no | |
1654 | * longer be able to return us the lock; this will be fixed in future. | |
1655 | */ | |
1656 | if (so->so_proto->pr_getlock != NULL) | |
1657 | mutex_held = (*so->so_proto->pr_getlock)(so, 0); | |
1658 | else | |
1659 | mutex_held = so->so_proto->pr_domain->dom_mtx; | |
1660 | ||
1661 | lck_mtx_assert(mutex_held, LCK_MTX_ASSERT_OWNED); | |
1662 | #endif | |
1663 | ||
1664 | /* | |
1665 | * Obtain lock on the socket buffer (SB_LOCK). This is required | |
1666 | * to prevent the socket buffer from being unexpectedly altered | |
1667 | * while it is used by another thread in socket send/receive. | |
1668 | * | |
1669 | * sblock() must not fail here, hence the assertion. | |
1670 | */ | |
1671 | (void) sblock(sb, SBL_WAIT | SBL_NOINTR | SBL_IGNDEFUNCT); | |
1672 | VERIFY(sb->sb_flags & SB_LOCK); | |
1673 | ||
1674 | while (sb->sb_mbcnt > 0) { | |
1675 | /* | |
1676 | * Don't call sbdrop(sb, 0) if the leading mbuf is non-empty: | |
1677 | * we would loop forever. Panic instead. | |
1678 | */ | |
1679 | if (!sb->sb_cc && (sb->sb_mb == NULL || sb->sb_mb->m_len)) | |
1680 | break; | |
1681 | sbdrop(sb, (int)sb->sb_cc); | |
1682 | } | |
1683 | ||
1684 | if (!(sb->sb_flags & SB_RECV) && (so->so_flags & SOF_ENABLE_MSGS)) { | |
1685 | VERIFY(so->so_msg_state != NULL); | |
1686 | for (i = MSG_PRI_MIN; i <= MSG_PRI_MAX; ++i) { | |
1687 | sbflush_priq(&so->so_msg_state->msg_priq[i]); | |
1688 | } | |
1689 | so->so_msg_state->msg_serial_bytes = 0; | |
1690 | so->so_msg_state->msg_uno_bytes = 0; | |
1691 | } | |
1692 | ||
1693 | sb_empty_assert(sb, __func__); | |
1694 | postevent(0, sb, EV_RWBYTES); | |
1695 | ||
1696 | sbunlock(sb, TRUE); /* keep socket locked */ | |
1697 | } | |
1698 | ||
1699 | /* | |
1700 | * Drop data from (the front of) a sockbuf. | |
1701 | * use m_freem_list to free the mbuf structures | |
1702 | * under a single lock... this is done by pruning | |
1703 | * the top of the tree from the body by keeping track | |
1704 | * of where we get to in the tree and then zeroing the | |
1705 | * two pertinent pointers m_nextpkt and m_next | |
1706 | * the socket buffer is then updated to point at the new | |
1707 | * top of the tree and the pruned area is released via | |
1708 | * m_freem_list. | |
1709 | */ | |
1710 | void | |
1711 | sbdrop(struct sockbuf *sb, int len) | |
1712 | { | |
1713 | struct mbuf *m, *free_list, *ml; | |
1714 | struct mbuf *next, *last; | |
1715 | ||
1716 | next = (m = sb->sb_mb) ? m->m_nextpkt : 0; | |
1717 | #if MPTCP | |
1718 | if ((m != NULL) && (len > 0) && | |
1719 | (!(sb->sb_flags & SB_RECV)) && | |
1720 | ((sb->sb_so->so_flags & SOF_MP_SUBFLOW) || | |
1721 | ((SOCK_CHECK_DOM(sb->sb_so, PF_MULTIPATH)) && | |
1722 | (SOCK_CHECK_PROTO(sb->sb_so, IPPROTO_TCP))))) { | |
1723 | mptcp_preproc_sbdrop(m, (unsigned int)len); | |
1724 | } | |
1725 | #endif /* MPTCP */ | |
1726 | KERNEL_DEBUG((DBG_FNC_SBDROP | DBG_FUNC_START), sb, len, 0, 0, 0); | |
1727 | ||
1728 | free_list = last = m; | |
1729 | ml = (struct mbuf *)0; | |
1730 | ||
1731 | while (len > 0) { | |
1732 | if (m == 0) { | |
1733 | if (next == 0) { | |
1734 | /* | |
1735 | * temporarily replacing this panic with printf | |
1736 | * because it occurs occasionally when closing | |
1737 | * a socket when there is no harm in ignoring | |
1738 | * it. This problem will be investigated | |
1739 | * further. | |
1740 | */ | |
1741 | /* panic("sbdrop"); */ | |
1742 | printf("sbdrop - count not zero\n"); | |
1743 | len = 0; | |
1744 | /* | |
1745 | * zero the counts. if we have no mbufs, | |
1746 | * we have no data (PR-2986815) | |
1747 | */ | |
1748 | sb->sb_cc = 0; | |
1749 | sb->sb_mbcnt = 0; | |
1750 | if (!(sb->sb_flags & SB_RECV) && | |
1751 | (sb->sb_so->so_flags & SOF_ENABLE_MSGS)) { | |
1752 | sb->sb_so->so_msg_state-> | |
1753 | msg_serial_bytes = 0; | |
1754 | } | |
1755 | break; | |
1756 | } | |
1757 | m = last = next; | |
1758 | next = m->m_nextpkt; | |
1759 | continue; | |
1760 | } | |
1761 | if (m->m_len > len) { | |
1762 | m->m_len -= len; | |
1763 | m->m_data += len; | |
1764 | sb->sb_cc -= len; | |
1765 | if (m->m_type != MT_DATA && m->m_type != MT_HEADER && | |
1766 | m->m_type != MT_OOBDATA) | |
1767 | sb->sb_ctl -= len; | |
1768 | break; | |
1769 | } | |
1770 | len -= m->m_len; | |
1771 | sbfree(sb, m); | |
1772 | ||
1773 | ml = m; | |
1774 | m = m->m_next; | |
1775 | } | |
1776 | while (m && m->m_len == 0) { | |
1777 | sbfree(sb, m); | |
1778 | ||
1779 | ml = m; | |
1780 | m = m->m_next; | |
1781 | } | |
1782 | if (ml) { | |
1783 | ml->m_next = (struct mbuf *)0; | |
1784 | last->m_nextpkt = (struct mbuf *)0; | |
1785 | m_freem_list(free_list); | |
1786 | } | |
1787 | if (m) { | |
1788 | sb->sb_mb = m; | |
1789 | m->m_nextpkt = next; | |
1790 | } else { | |
1791 | sb->sb_mb = next; | |
1792 | } | |
1793 | ||
1794 | /* | |
1795 | * First part is an inline SB_EMPTY_FIXUP(). Second part | |
1796 | * makes sure sb_lastrecord is up-to-date if we dropped | |
1797 | * part of the last record. | |
1798 | */ | |
1799 | m = sb->sb_mb; | |
1800 | if (m == NULL) { | |
1801 | sb->sb_mbtail = NULL; | |
1802 | sb->sb_lastrecord = NULL; | |
1803 | } else if (m->m_nextpkt == NULL) { | |
1804 | sb->sb_lastrecord = m; | |
1805 | } | |
1806 | ||
1807 | postevent(0, sb, EV_RWBYTES); | |
1808 | ||
1809 | KERNEL_DEBUG((DBG_FNC_SBDROP | DBG_FUNC_END), sb, 0, 0, 0, 0); | |
1810 | } | |
1811 | ||
1812 | /* | |
1813 | * Drop a record off the front of a sockbuf | |
1814 | * and move the next record to the front. | |
1815 | */ | |
1816 | void | |
1817 | sbdroprecord(struct sockbuf *sb) | |
1818 | { | |
1819 | struct mbuf *m, *mn; | |
1820 | ||
1821 | m = sb->sb_mb; | |
1822 | if (m) { | |
1823 | sb->sb_mb = m->m_nextpkt; | |
1824 | do { | |
1825 | sbfree(sb, m); | |
1826 | MFREE(m, mn); | |
1827 | m = mn; | |
1828 | } while (m); | |
1829 | } | |
1830 | SB_EMPTY_FIXUP(sb); | |
1831 | postevent(0, sb, EV_RWBYTES); | |
1832 | } | |
1833 | ||
1834 | /* | |
1835 | * Create a "control" mbuf containing the specified data | |
1836 | * with the specified type for presentation on a socket buffer. | |
1837 | */ | |
1838 | struct mbuf * | |
1839 | sbcreatecontrol(caddr_t p, int size, int type, int level) | |
1840 | { | |
1841 | struct cmsghdr *cp; | |
1842 | struct mbuf *m; | |
1843 | ||
1844 | if (CMSG_SPACE((u_int)size) > MLEN) | |
1845 | return ((struct mbuf *)NULL); | |
1846 | if ((m = m_get(M_DONTWAIT, MT_CONTROL)) == NULL) | |
1847 | return ((struct mbuf *)NULL); | |
1848 | cp = mtod(m, struct cmsghdr *); | |
1849 | VERIFY(IS_P2ALIGNED(cp, sizeof (u_int32_t))); | |
1850 | /* XXX check size? */ | |
1851 | (void) memcpy(CMSG_DATA(cp), p, size); | |
1852 | m->m_len = CMSG_SPACE(size); | |
1853 | cp->cmsg_len = CMSG_LEN(size); | |
1854 | cp->cmsg_level = level; | |
1855 | cp->cmsg_type = type; | |
1856 | return (m); | |
1857 | } | |
1858 | ||
1859 | struct mbuf ** | |
1860 | sbcreatecontrol_mbuf(caddr_t p, int size, int type, int level, struct mbuf **mp) | |
1861 | { | |
1862 | struct mbuf *m; | |
1863 | struct cmsghdr *cp; | |
1864 | ||
1865 | if (*mp == NULL) { | |
1866 | *mp = sbcreatecontrol(p, size, type, level); | |
1867 | return (mp); | |
1868 | } | |
1869 | ||
1870 | if (CMSG_SPACE((u_int)size) + (*mp)->m_len > MLEN) { | |
1871 | mp = &(*mp)->m_next; | |
1872 | *mp = sbcreatecontrol(p, size, type, level); | |
1873 | return (mp); | |
1874 | } | |
1875 | ||
1876 | m = *mp; | |
1877 | ||
1878 | cp = (struct cmsghdr *)(void *)(mtod(m, char *) + m->m_len); | |
1879 | /* CMSG_SPACE ensures 32-bit alignment */ | |
1880 | VERIFY(IS_P2ALIGNED(cp, sizeof (u_int32_t))); | |
1881 | m->m_len += CMSG_SPACE(size); | |
1882 | ||
1883 | /* XXX check size? */ | |
1884 | (void) memcpy(CMSG_DATA(cp), p, size); | |
1885 | cp->cmsg_len = CMSG_LEN(size); | |
1886 | cp->cmsg_level = level; | |
1887 | cp->cmsg_type = type; | |
1888 | ||
1889 | return (mp); | |
1890 | } | |
1891 | ||
1892 | ||
1893 | /* | |
1894 | * Some routines that return EOPNOTSUPP for entry points that are not | |
1895 | * supported by a protocol. Fill in as needed. | |
1896 | */ | |
1897 | int | |
1898 | pru_abort_notsupp(struct socket *so) | |
1899 | { | |
1900 | #pragma unused(so) | |
1901 | return (EOPNOTSUPP); | |
1902 | } | |
1903 | ||
1904 | int | |
1905 | pru_accept_notsupp(struct socket *so, struct sockaddr **nam) | |
1906 | { | |
1907 | #pragma unused(so, nam) | |
1908 | return (EOPNOTSUPP); | |
1909 | } | |
1910 | ||
1911 | int | |
1912 | pru_attach_notsupp(struct socket *so, int proto, struct proc *p) | |
1913 | { | |
1914 | #pragma unused(so, proto, p) | |
1915 | return (EOPNOTSUPP); | |
1916 | } | |
1917 | ||
1918 | int | |
1919 | pru_bind_notsupp(struct socket *so, struct sockaddr *nam, struct proc *p) | |
1920 | { | |
1921 | #pragma unused(so, nam, p) | |
1922 | return (EOPNOTSUPP); | |
1923 | } | |
1924 | ||
1925 | int | |
1926 | pru_connect_notsupp(struct socket *so, struct sockaddr *nam, struct proc *p) | |
1927 | { | |
1928 | #pragma unused(so, nam, p) | |
1929 | return (EOPNOTSUPP); | |
1930 | } | |
1931 | ||
1932 | int | |
1933 | pru_connect2_notsupp(struct socket *so1, struct socket *so2) | |
1934 | { | |
1935 | #pragma unused(so1, so2) | |
1936 | return (EOPNOTSUPP); | |
1937 | } | |
1938 | ||
1939 | int | |
1940 | pru_connectx_notsupp(struct socket *so, struct sockaddr_list **src_sl, | |
1941 | struct sockaddr_list **dst_sl, struct proc *p, uint32_t ifscope, | |
1942 | associd_t aid, connid_t *pcid, uint32_t flags, void *arg, | |
1943 | uint32_t arglen) | |
1944 | { | |
1945 | #pragma unused(so, src_sl, dst_sl, p, ifscope, aid, pcid, flags, arg, arglen) | |
1946 | return (EOPNOTSUPP); | |
1947 | } | |
1948 | ||
1949 | int | |
1950 | pru_control_notsupp(struct socket *so, u_long cmd, caddr_t data, | |
1951 | struct ifnet *ifp, struct proc *p) | |
1952 | { | |
1953 | #pragma unused(so, cmd, data, ifp, p) | |
1954 | return (EOPNOTSUPP); | |
1955 | } | |
1956 | ||
1957 | int | |
1958 | pru_detach_notsupp(struct socket *so) | |
1959 | { | |
1960 | #pragma unused(so) | |
1961 | return (EOPNOTSUPP); | |
1962 | } | |
1963 | ||
1964 | int | |
1965 | pru_disconnect_notsupp(struct socket *so) | |
1966 | { | |
1967 | #pragma unused(so) | |
1968 | return (EOPNOTSUPP); | |
1969 | } | |
1970 | ||
1971 | int | |
1972 | pru_disconnectx_notsupp(struct socket *so, associd_t aid, connid_t cid) | |
1973 | { | |
1974 | #pragma unused(so, aid, cid) | |
1975 | return (EOPNOTSUPP); | |
1976 | } | |
1977 | ||
1978 | int | |
1979 | pru_listen_notsupp(struct socket *so, struct proc *p) | |
1980 | { | |
1981 | #pragma unused(so, p) | |
1982 | return (EOPNOTSUPP); | |
1983 | } | |
1984 | ||
1985 | int | |
1986 | pru_peeloff_notsupp(struct socket *so, associd_t aid, struct socket **psop) | |
1987 | { | |
1988 | #pragma unused(so, aid, psop) | |
1989 | return (EOPNOTSUPP); | |
1990 | } | |
1991 | ||
1992 | int | |
1993 | pru_peeraddr_notsupp(struct socket *so, struct sockaddr **nam) | |
1994 | { | |
1995 | #pragma unused(so, nam) | |
1996 | return (EOPNOTSUPP); | |
1997 | } | |
1998 | ||
1999 | int | |
2000 | pru_rcvd_notsupp(struct socket *so, int flags) | |
2001 | { | |
2002 | #pragma unused(so, flags) | |
2003 | return (EOPNOTSUPP); | |
2004 | } | |
2005 | ||
2006 | int | |
2007 | pru_rcvoob_notsupp(struct socket *so, struct mbuf *m, int flags) | |
2008 | { | |
2009 | #pragma unused(so, m, flags) | |
2010 | return (EOPNOTSUPP); | |
2011 | } | |
2012 | ||
2013 | int | |
2014 | pru_send_notsupp(struct socket *so, int flags, struct mbuf *m, | |
2015 | struct sockaddr *addr, struct mbuf *control, struct proc *p) | |
2016 | { | |
2017 | #pragma unused(so, flags, m, addr, control, p) | |
2018 | return (EOPNOTSUPP); | |
2019 | } | |
2020 | ||
2021 | /* | |
2022 | * This isn't really a ``null'' operation, but it's the default one | |
2023 | * and doesn't do anything destructive. | |
2024 | */ | |
2025 | int | |
2026 | pru_sense_null(struct socket *so, void *ub, int isstat64) | |
2027 | { | |
2028 | if (isstat64 != 0) { | |
2029 | struct stat64 *sb64; | |
2030 | ||
2031 | sb64 = (struct stat64 *)ub; | |
2032 | sb64->st_blksize = so->so_snd.sb_hiwat; | |
2033 | } else { | |
2034 | struct stat *sb; | |
2035 | ||
2036 | sb = (struct stat *)ub; | |
2037 | sb->st_blksize = so->so_snd.sb_hiwat; | |
2038 | } | |
2039 | ||
2040 | return (0); | |
2041 | } | |
2042 | ||
2043 | ||
2044 | int | |
2045 | pru_sosend_notsupp(struct socket *so, struct sockaddr *addr, struct uio *uio, | |
2046 | struct mbuf *top, struct mbuf *control, int flags) | |
2047 | { | |
2048 | #pragma unused(so, addr, uio, top, control, flags) | |
2049 | return (EOPNOTSUPP); | |
2050 | } | |
2051 | ||
2052 | int | |
2053 | pru_soreceive_notsupp(struct socket *so, struct sockaddr **paddr, | |
2054 | struct uio *uio, struct mbuf **mp0, struct mbuf **controlp, int *flagsp) | |
2055 | { | |
2056 | #pragma unused(so, paddr, uio, mp0, controlp, flagsp) | |
2057 | return (EOPNOTSUPP); | |
2058 | } | |
2059 | ||
2060 | int | |
2061 | pru_shutdown_notsupp(struct socket *so) | |
2062 | { | |
2063 | #pragma unused(so) | |
2064 | return (EOPNOTSUPP); | |
2065 | } | |
2066 | ||
2067 | int | |
2068 | pru_sockaddr_notsupp(struct socket *so, struct sockaddr **nam) | |
2069 | { | |
2070 | #pragma unused(so, nam) | |
2071 | return (EOPNOTSUPP); | |
2072 | } | |
2073 | ||
2074 | int | |
2075 | pru_sopoll_notsupp(struct socket *so, int events, kauth_cred_t cred, void *wql) | |
2076 | { | |
2077 | #pragma unused(so, events, cred, wql) | |
2078 | return (EOPNOTSUPP); | |
2079 | } | |
2080 | ||
2081 | int | |
2082 | pru_socheckopt_null(struct socket *so, struct sockopt *sopt) | |
2083 | { | |
2084 | #pragma unused(so, sopt) | |
2085 | /* | |
2086 | * Allow all options for set/get by default. | |
2087 | */ | |
2088 | return (0); | |
2089 | } | |
2090 | ||
2091 | void | |
2092 | pru_sanitize(struct pr_usrreqs *pru) | |
2093 | { | |
2094 | #define DEFAULT(foo, bar) if ((foo) == NULL) (foo) = (bar) | |
2095 | DEFAULT(pru->pru_abort, pru_abort_notsupp); | |
2096 | DEFAULT(pru->pru_accept, pru_accept_notsupp); | |
2097 | DEFAULT(pru->pru_attach, pru_attach_notsupp); | |
2098 | DEFAULT(pru->pru_bind, pru_bind_notsupp); | |
2099 | DEFAULT(pru->pru_connect, pru_connect_notsupp); | |
2100 | DEFAULT(pru->pru_connect2, pru_connect2_notsupp); | |
2101 | DEFAULT(pru->pru_connectx, pru_connectx_notsupp); | |
2102 | DEFAULT(pru->pru_control, pru_control_notsupp); | |
2103 | DEFAULT(pru->pru_detach, pru_detach_notsupp); | |
2104 | DEFAULT(pru->pru_disconnect, pru_disconnect_notsupp); | |
2105 | DEFAULT(pru->pru_disconnectx, pru_disconnectx_notsupp); | |
2106 | DEFAULT(pru->pru_listen, pru_listen_notsupp); | |
2107 | DEFAULT(pru->pru_peeloff, pru_peeloff_notsupp); | |
2108 | DEFAULT(pru->pru_peeraddr, pru_peeraddr_notsupp); | |
2109 | DEFAULT(pru->pru_rcvd, pru_rcvd_notsupp); | |
2110 | DEFAULT(pru->pru_rcvoob, pru_rcvoob_notsupp); | |
2111 | DEFAULT(pru->pru_send, pru_send_notsupp); | |
2112 | DEFAULT(pru->pru_sense, pru_sense_null); | |
2113 | DEFAULT(pru->pru_shutdown, pru_shutdown_notsupp); | |
2114 | DEFAULT(pru->pru_sockaddr, pru_sockaddr_notsupp); | |
2115 | DEFAULT(pru->pru_sopoll, pru_sopoll_notsupp); | |
2116 | DEFAULT(pru->pru_soreceive, pru_soreceive_notsupp); | |
2117 | DEFAULT(pru->pru_sosend, pru_sosend_notsupp); | |
2118 | DEFAULT(pru->pru_socheckopt, pru_socheckopt_null); | |
2119 | #undef DEFAULT | |
2120 | } | |
2121 | ||
2122 | /* | |
2123 | * The following are macros on BSD and functions on Darwin | |
2124 | */ | |
2125 | ||
2126 | /* | |
2127 | * Do we need to notify the other side when I/O is possible? | |
2128 | */ | |
2129 | ||
2130 | int | |
2131 | sb_notify(struct sockbuf *sb) | |
2132 | { | |
2133 | return (sb->sb_waiters > 0 || | |
2134 | (sb->sb_flags & (SB_SEL|SB_ASYNC|SB_UPCALL|SB_KNOTE))); | |
2135 | } | |
2136 | ||
2137 | /* | |
2138 | * How much space is there in a socket buffer (so->so_snd or so->so_rcv)? | |
2139 | * This is problematical if the fields are unsigned, as the space might | |
2140 | * still be negative (cc > hiwat or mbcnt > mbmax). Should detect | |
2141 | * overflow and return 0. | |
2142 | */ | |
2143 | int | |
2144 | sbspace(struct sockbuf *sb) | |
2145 | { | |
2146 | int space = imin((int)(sb->sb_hiwat - sb->sb_cc), | |
2147 | (int)(sb->sb_mbmax - sb->sb_mbcnt)); | |
2148 | if (space < 0) | |
2149 | space = 0; | |
2150 | ||
2151 | return (space); | |
2152 | } | |
2153 | ||
2154 | /* | |
2155 | * If this socket has priority queues, check if there is enough | |
2156 | * space in the priority queue for this msg. | |
2157 | */ | |
2158 | int | |
2159 | msgq_sbspace(struct socket *so, struct mbuf *control) | |
2160 | { | |
2161 | int space = 0, error; | |
2162 | u_int32_t msgpri; | |
2163 | VERIFY(so->so_type == SOCK_STREAM && SOCK_PROTO(so) == IPPROTO_TCP && | |
2164 | control != NULL); | |
2165 | error = tcp_get_msg_priority(control, &msgpri); | |
2166 | if (error) | |
2167 | return (0); | |
2168 | space = (so->so_snd.sb_idealsize / MSG_PRI_COUNT) - | |
2169 | so->so_msg_state->msg_priq[msgpri].msgq_bytes; | |
2170 | if (space < 0) | |
2171 | space = 0; | |
2172 | return (space); | |
2173 | } | |
2174 | ||
2175 | /* do we have to send all at once on a socket? */ | |
2176 | int | |
2177 | sosendallatonce(struct socket *so) | |
2178 | { | |
2179 | return (so->so_proto->pr_flags & PR_ATOMIC); | |
2180 | } | |
2181 | ||
2182 | /* can we read something from so? */ | |
2183 | int | |
2184 | soreadable(struct socket *so) | |
2185 | { | |
2186 | return (so->so_rcv.sb_cc >= so->so_rcv.sb_lowat || | |
2187 | (so->so_state & SS_CANTRCVMORE) || | |
2188 | so->so_comp.tqh_first || so->so_error); | |
2189 | } | |
2190 | ||
2191 | /* can we write something to so? */ | |
2192 | ||
2193 | int | |
2194 | sowriteable(struct socket *so) | |
2195 | { | |
2196 | return ((!so_wait_for_if_feedback(so) && | |
2197 | sbspace(&(so)->so_snd) >= (so)->so_snd.sb_lowat && | |
2198 | ((so->so_state & SS_ISCONNECTED) || | |
2199 | (so->so_proto->pr_flags & PR_CONNREQUIRED) == 0)) || | |
2200 | (so->so_state & SS_CANTSENDMORE) || | |
2201 | so->so_error); | |
2202 | } | |
2203 | ||
2204 | /* adjust counters in sb reflecting allocation of m */ | |
2205 | ||
2206 | void | |
2207 | sballoc(struct sockbuf *sb, struct mbuf *m) | |
2208 | { | |
2209 | u_int32_t cnt = 1; | |
2210 | sb->sb_cc += m->m_len; | |
2211 | if (m->m_type != MT_DATA && m->m_type != MT_HEADER && | |
2212 | m->m_type != MT_OOBDATA) | |
2213 | sb->sb_ctl += m->m_len; | |
2214 | sb->sb_mbcnt += MSIZE; | |
2215 | ||
2216 | if (m->m_flags & M_EXT) { | |
2217 | sb->sb_mbcnt += m->m_ext.ext_size; | |
2218 | cnt += (m->m_ext.ext_size >> MSIZESHIFT); | |
2219 | } | |
2220 | OSAddAtomic(cnt, &total_sbmb_cnt); | |
2221 | VERIFY(total_sbmb_cnt > 0); | |
2222 | } | |
2223 | ||
2224 | /* adjust counters in sb reflecting freeing of m */ | |
2225 | void | |
2226 | sbfree(struct sockbuf *sb, struct mbuf *m) | |
2227 | { | |
2228 | int cnt = -1; | |
2229 | ||
2230 | sb->sb_cc -= m->m_len; | |
2231 | if (m->m_type != MT_DATA && m->m_type != MT_HEADER && | |
2232 | m->m_type != MT_OOBDATA) | |
2233 | sb->sb_ctl -= m->m_len; | |
2234 | sb->sb_mbcnt -= MSIZE; | |
2235 | if (m->m_flags & M_EXT) { | |
2236 | sb->sb_mbcnt -= m->m_ext.ext_size; | |
2237 | cnt -= (m->m_ext.ext_size >> MSIZESHIFT); | |
2238 | } | |
2239 | OSAddAtomic(cnt, &total_sbmb_cnt); | |
2240 | VERIFY(total_sbmb_cnt >= 0); | |
2241 | } | |
2242 | ||
2243 | /* | |
2244 | * Set lock on sockbuf sb; sleep if lock is already held. | |
2245 | * Unless SB_NOINTR is set on sockbuf, sleep is interruptible. | |
2246 | * Returns error without lock if sleep is interrupted. | |
2247 | */ | |
2248 | int | |
2249 | sblock(struct sockbuf *sb, uint32_t flags) | |
2250 | { | |
2251 | boolean_t nointr = ((sb->sb_flags & SB_NOINTR) || (flags & SBL_NOINTR)); | |
2252 | void *lr_saved = __builtin_return_address(0); | |
2253 | struct socket *so = sb->sb_so; | |
2254 | void * wchan; | |
2255 | int error = 0; | |
2256 | ||
2257 | VERIFY((flags & SBL_VALID) == flags); | |
2258 | ||
2259 | /* so_usecount may be 0 if we get here from sofreelastref() */ | |
2260 | if (so == NULL) { | |
2261 | panic("%s: null so, sb=%p sb_flags=0x%x lr=%p\n", | |
2262 | __func__, sb, sb->sb_flags, lr_saved); | |
2263 | /* NOTREACHED */ | |
2264 | } else if (so->so_usecount < 0) { | |
2265 | panic("%s: sb=%p sb_flags=0x%x sb_so=%p usecount=%d lr=%p " | |
2266 | "lrh= %s\n", __func__, sb, sb->sb_flags, so, | |
2267 | so->so_usecount, lr_saved, solockhistory_nr(so)); | |
2268 | /* NOTREACHED */ | |
2269 | } | |
2270 | ||
2271 | if ((sb->sb_flags & SB_LOCK) && !(flags & SBL_WAIT)) | |
2272 | return (EWOULDBLOCK); | |
2273 | ||
2274 | /* | |
2275 | * We may get here from sorflush(), in which case "sb" may not | |
2276 | * point to the real socket buffer. Use the actual socket buffer | |
2277 | * address from the socket instead. | |
2278 | */ | |
2279 | wchan = (sb->sb_flags & SB_RECV) ? | |
2280 | &so->so_rcv.sb_flags : &so->so_snd.sb_flags; | |
2281 | ||
2282 | while (sb->sb_flags & SB_LOCK) { | |
2283 | lck_mtx_t *mutex_held; | |
2284 | ||
2285 | /* | |
2286 | * XXX: This code should be moved up above outside of this loop; | |
2287 | * however, we may get here as part of sofreelastref(), and | |
2288 | * at that time pr_getlock() may no longer be able to return | |
2289 | * us the lock. This will be fixed in future. | |
2290 | */ | |
2291 | if (so->so_proto->pr_getlock != NULL) | |
2292 | mutex_held = (*so->so_proto->pr_getlock)(so, 0); | |
2293 | else | |
2294 | mutex_held = so->so_proto->pr_domain->dom_mtx; | |
2295 | ||
2296 | lck_mtx_assert(mutex_held, LCK_MTX_ASSERT_OWNED); | |
2297 | ||
2298 | sb->sb_wantlock++; | |
2299 | VERIFY(sb->sb_wantlock != 0); | |
2300 | ||
2301 | error = msleep(wchan, mutex_held, | |
2302 | nointr ? PSOCK : PSOCK | PCATCH, | |
2303 | nointr ? "sb_lock_nointr" : "sb_lock", NULL); | |
2304 | ||
2305 | VERIFY(sb->sb_wantlock != 0); | |
2306 | sb->sb_wantlock--; | |
2307 | ||
2308 | if (error == 0 && (so->so_flags & SOF_DEFUNCT) && | |
2309 | !(flags & SBL_IGNDEFUNCT)) { | |
2310 | error = EBADF; | |
2311 | SODEFUNCTLOG(("%s[%d]: defunct so 0x%llx [%d,%d] " | |
2312 | "(%d)\n", __func__, proc_selfpid(), | |
2313 | (uint64_t)VM_KERNEL_ADDRPERM(so), | |
2314 | SOCK_DOM(so), SOCK_TYPE(so), error)); | |
2315 | } | |
2316 | ||
2317 | if (error != 0) | |
2318 | return (error); | |
2319 | } | |
2320 | sb->sb_flags |= SB_LOCK; | |
2321 | return (0); | |
2322 | } | |
2323 | ||
2324 | /* | |
2325 | * Release lock on sockbuf sb | |
2326 | */ | |
2327 | void | |
2328 | sbunlock(struct sockbuf *sb, boolean_t keeplocked) | |
2329 | { | |
2330 | void *lr_saved = __builtin_return_address(0); | |
2331 | struct socket *so = sb->sb_so; | |
2332 | ||
2333 | /* so_usecount may be 0 if we get here from sofreelastref() */ | |
2334 | if (so == NULL) { | |
2335 | panic("%s: null so, sb=%p sb_flags=0x%x lr=%p\n", | |
2336 | __func__, sb, sb->sb_flags, lr_saved); | |
2337 | /* NOTREACHED */ | |
2338 | } else if (so->so_usecount < 0) { | |
2339 | panic("%s: sb=%p sb_flags=0x%x sb_so=%p usecount=%d lr=%p " | |
2340 | "lrh= %s\n", __func__, sb, sb->sb_flags, so, | |
2341 | so->so_usecount, lr_saved, solockhistory_nr(so)); | |
2342 | /* NOTREACHED */ | |
2343 | } | |
2344 | ||
2345 | VERIFY(sb->sb_flags & SB_LOCK); | |
2346 | sb->sb_flags &= ~SB_LOCK; | |
2347 | ||
2348 | if (sb->sb_wantlock > 0) { | |
2349 | /* | |
2350 | * We may get here from sorflush(), in which case "sb" may not | |
2351 | * point to the real socket buffer. Use the actual socket | |
2352 | * buffer address from the socket instead. | |
2353 | */ | |
2354 | wakeup((sb->sb_flags & SB_RECV) ? &so->so_rcv.sb_flags : | |
2355 | &so->so_snd.sb_flags); | |
2356 | } | |
2357 | ||
2358 | if (!keeplocked) { /* unlock on exit */ | |
2359 | lck_mtx_t *mutex_held; | |
2360 | ||
2361 | if (so->so_proto->pr_getlock != NULL) | |
2362 | mutex_held = (*so->so_proto->pr_getlock)(so, 0); | |
2363 | else | |
2364 | mutex_held = so->so_proto->pr_domain->dom_mtx; | |
2365 | ||
2366 | lck_mtx_assert(mutex_held, LCK_MTX_ASSERT_OWNED); | |
2367 | ||
2368 | VERIFY(so->so_usecount != 0); | |
2369 | so->so_usecount--; | |
2370 | so->unlock_lr[so->next_unlock_lr] = lr_saved; | |
2371 | so->next_unlock_lr = (so->next_unlock_lr + 1) % SO_LCKDBG_MAX; | |
2372 | lck_mtx_unlock(mutex_held); | |
2373 | } | |
2374 | } | |
2375 | ||
2376 | void | |
2377 | sorwakeup(struct socket *so) | |
2378 | { | |
2379 | if (sb_notify(&so->so_rcv)) | |
2380 | sowakeup(so, &so->so_rcv); | |
2381 | } | |
2382 | ||
2383 | void | |
2384 | sowwakeup(struct socket *so) | |
2385 | { | |
2386 | if (sb_notify(&so->so_snd)) | |
2387 | sowakeup(so, &so->so_snd); | |
2388 | } | |
2389 | ||
2390 | void | |
2391 | soevent(struct socket *so, long hint) | |
2392 | { | |
2393 | if (so->so_flags & SOF_KNOTE) | |
2394 | KNOTE(&so->so_klist, hint); | |
2395 | ||
2396 | soevupcall(so, hint); | |
2397 | ||
2398 | /* Don't post an event if this a subflow socket */ | |
2399 | if ((hint & SO_FILT_HINT_IFDENIED) && !(so->so_flags & SOF_MP_SUBFLOW)) | |
2400 | soevent_ifdenied(so); | |
2401 | } | |
2402 | ||
2403 | void | |
2404 | soevupcall(struct socket *so, u_int32_t hint) | |
2405 | { | |
2406 | void (*so_event)(struct socket *, void *, uint32_t); | |
2407 | ||
2408 | if ((so_event = so->so_event) != NULL) { | |
2409 | caddr_t so_eventarg = so->so_eventarg; | |
2410 | ||
2411 | hint &= so->so_eventmask; | |
2412 | if (hint != 0) { | |
2413 | socket_unlock(so, 0); | |
2414 | so->so_event(so, so_eventarg, hint); | |
2415 | socket_lock(so, 0); | |
2416 | } | |
2417 | } | |
2418 | } | |
2419 | ||
2420 | static void | |
2421 | soevent_ifdenied(struct socket *so) | |
2422 | { | |
2423 | struct kev_netpolicy_ifdenied ev_ifdenied; | |
2424 | ||
2425 | bzero(&ev_ifdenied, sizeof (ev_ifdenied)); | |
2426 | /* | |
2427 | * The event consumer is interested about the effective {upid,pid,uuid} | |
2428 | * info which can be different than the those related to the process | |
2429 | * that recently performed a system call on the socket, i.e. when the | |
2430 | * socket is delegated. | |
2431 | */ | |
2432 | if (so->so_flags & SOF_DELEGATED) { | |
2433 | ev_ifdenied.ev_data.eupid = so->e_upid; | |
2434 | ev_ifdenied.ev_data.epid = so->e_pid; | |
2435 | uuid_copy(ev_ifdenied.ev_data.euuid, so->e_uuid); | |
2436 | } else { | |
2437 | ev_ifdenied.ev_data.eupid = so->last_upid; | |
2438 | ev_ifdenied.ev_data.epid = so->last_pid; | |
2439 | uuid_copy(ev_ifdenied.ev_data.euuid, so->last_uuid); | |
2440 | } | |
2441 | ||
2442 | if (++so->so_ifdenied_notifies > 1) { | |
2443 | /* | |
2444 | * Allow for at most one kernel event to be generated per | |
2445 | * socket; so_ifdenied_notifies is reset upon changes in | |
2446 | * the UUID policy. See comments in inp_update_policy. | |
2447 | */ | |
2448 | if (net_io_policy_log) { | |
2449 | uuid_string_t buf; | |
2450 | ||
2451 | uuid_unparse(ev_ifdenied.ev_data.euuid, buf); | |
2452 | log(LOG_DEBUG, "%s[%d]: so 0x%llx [%d,%d] epid %d " | |
2453 | "euuid %s%s has %d redundant events supressed\n", | |
2454 | __func__, so->last_pid, | |
2455 | (uint64_t)VM_KERNEL_ADDRPERM(so), SOCK_DOM(so), | |
2456 | SOCK_TYPE(so), ev_ifdenied.ev_data.epid, buf, | |
2457 | ((so->so_flags & SOF_DELEGATED) ? | |
2458 | " [delegated]" : ""), so->so_ifdenied_notifies); | |
2459 | } | |
2460 | } else { | |
2461 | if (net_io_policy_log) { | |
2462 | uuid_string_t buf; | |
2463 | ||
2464 | uuid_unparse(ev_ifdenied.ev_data.euuid, buf); | |
2465 | log(LOG_DEBUG, "%s[%d]: so 0x%llx [%d,%d] epid %d " | |
2466 | "euuid %s%s event posted\n", __func__, | |
2467 | so->last_pid, (uint64_t)VM_KERNEL_ADDRPERM(so), | |
2468 | SOCK_DOM(so), SOCK_TYPE(so), | |
2469 | ev_ifdenied.ev_data.epid, buf, | |
2470 | ((so->so_flags & SOF_DELEGATED) ? | |
2471 | " [delegated]" : "")); | |
2472 | } | |
2473 | netpolicy_post_msg(KEV_NETPOLICY_IFDENIED, &ev_ifdenied.ev_data, | |
2474 | sizeof (ev_ifdenied)); | |
2475 | } | |
2476 | } | |
2477 | ||
2478 | /* | |
2479 | * Make a copy of a sockaddr in a malloced buffer of type M_SONAME. | |
2480 | */ | |
2481 | struct sockaddr * | |
2482 | dup_sockaddr(struct sockaddr *sa, int canwait) | |
2483 | { | |
2484 | struct sockaddr *sa2; | |
2485 | ||
2486 | MALLOC(sa2, struct sockaddr *, sa->sa_len, M_SONAME, | |
2487 | canwait ? M_WAITOK : M_NOWAIT); | |
2488 | if (sa2) | |
2489 | bcopy(sa, sa2, sa->sa_len); | |
2490 | return (sa2); | |
2491 | } | |
2492 | ||
2493 | /* | |
2494 | * Create an external-format (``xsocket'') structure using the information | |
2495 | * in the kernel-format socket structure pointed to by so. This is done | |
2496 | * to reduce the spew of irrelevant information over this interface, | |
2497 | * to isolate user code from changes in the kernel structure, and | |
2498 | * potentially to provide information-hiding if we decide that | |
2499 | * some of this information should be hidden from users. | |
2500 | */ | |
2501 | void | |
2502 | sotoxsocket(struct socket *so, struct xsocket *xso) | |
2503 | { | |
2504 | xso->xso_len = sizeof (*xso); | |
2505 | xso->xso_so = (_XSOCKET_PTR(struct socket *))VM_KERNEL_ADDRPERM(so); | |
2506 | xso->so_type = so->so_type; | |
2507 | xso->so_options = (short)(so->so_options & 0xffff); | |
2508 | xso->so_linger = so->so_linger; | |
2509 | xso->so_state = so->so_state; | |
2510 | xso->so_pcb = (_XSOCKET_PTR(caddr_t))VM_KERNEL_ADDRPERM(so->so_pcb); | |
2511 | if (so->so_proto) { | |
2512 | xso->xso_protocol = SOCK_PROTO(so); | |
2513 | xso->xso_family = SOCK_DOM(so); | |
2514 | } else { | |
2515 | xso->xso_protocol = xso->xso_family = 0; | |
2516 | } | |
2517 | xso->so_qlen = so->so_qlen; | |
2518 | xso->so_incqlen = so->so_incqlen; | |
2519 | xso->so_qlimit = so->so_qlimit; | |
2520 | xso->so_timeo = so->so_timeo; | |
2521 | xso->so_error = so->so_error; | |
2522 | xso->so_pgid = so->so_pgid; | |
2523 | xso->so_oobmark = so->so_oobmark; | |
2524 | sbtoxsockbuf(&so->so_snd, &xso->so_snd); | |
2525 | sbtoxsockbuf(&so->so_rcv, &xso->so_rcv); | |
2526 | xso->so_uid = kauth_cred_getuid(so->so_cred); | |
2527 | } | |
2528 | ||
2529 | ||
2530 | ||
2531 | void | |
2532 | sotoxsocket64(struct socket *so, struct xsocket64 *xso) | |
2533 | { | |
2534 | xso->xso_len = sizeof (*xso); | |
2535 | xso->xso_so = (u_int64_t)VM_KERNEL_ADDRPERM(so); | |
2536 | xso->so_type = so->so_type; | |
2537 | xso->so_options = (short)(so->so_options & 0xffff); | |
2538 | xso->so_linger = so->so_linger; | |
2539 | xso->so_state = so->so_state; | |
2540 | xso->so_pcb = (u_int64_t)VM_KERNEL_ADDRPERM(so->so_pcb); | |
2541 | if (so->so_proto) { | |
2542 | xso->xso_protocol = SOCK_PROTO(so); | |
2543 | xso->xso_family = SOCK_DOM(so); | |
2544 | } else { | |
2545 | xso->xso_protocol = xso->xso_family = 0; | |
2546 | } | |
2547 | xso->so_qlen = so->so_qlen; | |
2548 | xso->so_incqlen = so->so_incqlen; | |
2549 | xso->so_qlimit = so->so_qlimit; | |
2550 | xso->so_timeo = so->so_timeo; | |
2551 | xso->so_error = so->so_error; | |
2552 | xso->so_pgid = so->so_pgid; | |
2553 | xso->so_oobmark = so->so_oobmark; | |
2554 | sbtoxsockbuf(&so->so_snd, &xso->so_snd); | |
2555 | sbtoxsockbuf(&so->so_rcv, &xso->so_rcv); | |
2556 | xso->so_uid = kauth_cred_getuid(so->so_cred); | |
2557 | } | |
2558 | ||
2559 | ||
2560 | /* | |
2561 | * This does the same for sockbufs. Note that the xsockbuf structure, | |
2562 | * since it is always embedded in a socket, does not include a self | |
2563 | * pointer nor a length. We make this entry point public in case | |
2564 | * some other mechanism needs it. | |
2565 | */ | |
2566 | void | |
2567 | sbtoxsockbuf(struct sockbuf *sb, struct xsockbuf *xsb) | |
2568 | { | |
2569 | xsb->sb_cc = sb->sb_cc; | |
2570 | xsb->sb_hiwat = sb->sb_hiwat; | |
2571 | xsb->sb_mbcnt = sb->sb_mbcnt; | |
2572 | xsb->sb_mbmax = sb->sb_mbmax; | |
2573 | xsb->sb_lowat = sb->sb_lowat; | |
2574 | xsb->sb_flags = sb->sb_flags; | |
2575 | xsb->sb_timeo = (short) | |
2576 | (sb->sb_timeo.tv_sec * hz) + sb->sb_timeo.tv_usec / tick; | |
2577 | if (xsb->sb_timeo == 0 && sb->sb_timeo.tv_usec != 0) | |
2578 | xsb->sb_timeo = 1; | |
2579 | } | |
2580 | ||
2581 | /* | |
2582 | * Based on the policy set by an all knowing decison maker, throttle sockets | |
2583 | * that either have been marked as belonging to "background" process. | |
2584 | */ | |
2585 | int | |
2586 | soisthrottled(struct socket *so) | |
2587 | { | |
2588 | /* | |
2589 | * On non-embedded, we rely on implicit throttling by the | |
2590 | * application, as we're missing the system wide "decision maker" | |
2591 | */ | |
2592 | return ( | |
2593 | (so->so_traffic_mgt_flags & TRAFFIC_MGT_SO_BACKGROUND)); | |
2594 | } | |
2595 | ||
2596 | int | |
2597 | soisprivilegedtraffic(struct socket *so) | |
2598 | { | |
2599 | return ((so->so_flags & SOF_PRIVILEGED_TRAFFIC_CLASS) ? 1 : 0); | |
2600 | } | |
2601 | ||
2602 | int | |
2603 | soissrcbackground(struct socket *so) | |
2604 | { | |
2605 | return ((so->so_traffic_mgt_flags & TRAFFIC_MGT_SO_BACKGROUND) || | |
2606 | IS_SO_TC_BACKGROUND(so->so_traffic_class)); | |
2607 | } | |
2608 | ||
2609 | /* | |
2610 | * Here is the definition of some of the basic objects in the kern.ipc | |
2611 | * branch of the MIB. | |
2612 | */ | |
2613 | SYSCTL_NODE(_kern, KERN_IPC, ipc, | |
2614 | CTLFLAG_RW|CTLFLAG_LOCKED|CTLFLAG_ANYBODY, 0, "IPC"); | |
2615 | ||
2616 | /* Check that the maximum socket buffer size is within a range */ | |
2617 | ||
2618 | static int | |
2619 | sysctl_sb_max SYSCTL_HANDLER_ARGS | |
2620 | { | |
2621 | #pragma unused(oidp, arg1, arg2) | |
2622 | u_int32_t new_value; | |
2623 | int changed = 0; | |
2624 | int error = sysctl_io_number(req, sb_max, sizeof (u_int32_t), | |
2625 | &new_value, &changed); | |
2626 | if (!error && changed) { | |
2627 | if (new_value > LOW_SB_MAX && new_value <= high_sb_max) { | |
2628 | sb_max = new_value; | |
2629 | } else { | |
2630 | error = ERANGE; | |
2631 | } | |
2632 | } | |
2633 | return (error); | |
2634 | } | |
2635 | ||
2636 | static int | |
2637 | sysctl_io_policy_throttled SYSCTL_HANDLER_ARGS | |
2638 | { | |
2639 | #pragma unused(arg1, arg2) | |
2640 | int i, err; | |
2641 | ||
2642 | i = net_io_policy_throttled; | |
2643 | ||
2644 | err = sysctl_handle_int(oidp, &i, 0, req); | |
2645 | if (err != 0 || req->newptr == USER_ADDR_NULL) | |
2646 | return (err); | |
2647 | ||
2648 | if (i != net_io_policy_throttled) | |
2649 | SOTHROTTLELOG(("throttle: network IO policy throttling is " | |
2650 | "now %s\n", i ? "ON" : "OFF")); | |
2651 | ||
2652 | net_io_policy_throttled = i; | |
2653 | ||
2654 | return (err); | |
2655 | } | |
2656 | ||
2657 | SYSCTL_PROC(_kern_ipc, KIPC_MAXSOCKBUF, maxsockbuf, | |
2658 | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, | |
2659 | &sb_max, 0, &sysctl_sb_max, "IU", "Maximum socket buffer size"); | |
2660 | ||
2661 | SYSCTL_INT(_kern_ipc, OID_AUTO, maxsockets, | |
2662 | CTLFLAG_RD | CTLFLAG_LOCKED, &maxsockets, 0, | |
2663 | "Maximum number of sockets avaliable"); | |
2664 | ||
2665 | SYSCTL_INT(_kern_ipc, KIPC_SOCKBUF_WASTE, sockbuf_waste_factor, | |
2666 | CTLFLAG_RW | CTLFLAG_LOCKED, &sb_efficiency, 0, ""); | |
2667 | ||
2668 | SYSCTL_INT(_kern_ipc, KIPC_NMBCLUSTERS, nmbclusters, | |
2669 | CTLFLAG_RD | CTLFLAG_LOCKED, &nmbclusters, 0, ""); | |
2670 | ||
2671 | SYSCTL_INT(_kern_ipc, OID_AUTO, njcl, | |
2672 | CTLFLAG_RD | CTLFLAG_LOCKED, &njcl, 0, ""); | |
2673 | ||
2674 | SYSCTL_INT(_kern_ipc, OID_AUTO, njclbytes, | |
2675 | CTLFLAG_RD | CTLFLAG_LOCKED, &njclbytes, 0, ""); | |
2676 | ||
2677 | SYSCTL_INT(_kern_ipc, KIPC_SOQLIMITCOMPAT, soqlimitcompat, | |
2678 | CTLFLAG_RW | CTLFLAG_LOCKED, &soqlimitcompat, 1, | |
2679 | "Enable socket queue limit compatibility"); | |
2680 | ||
2681 | SYSCTL_INT(_kern_ipc, OID_AUTO, soqlencomp, CTLFLAG_RW | CTLFLAG_LOCKED, | |
2682 | &soqlencomp, 0, "Listen backlog represents only complete queue"); | |
2683 | ||
2684 | SYSCTL_NODE(_kern_ipc, OID_AUTO, io_policy, CTLFLAG_RW, 0, "network IO policy"); | |
2685 | ||
2686 | SYSCTL_PROC(_kern_ipc_io_policy, OID_AUTO, throttled, | |
2687 | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, &net_io_policy_throttled, 0, | |
2688 | sysctl_io_policy_throttled, "I", ""); | |
2689 | ||
2690 | SYSCTL_INT(_kern_ipc_io_policy, OID_AUTO, log, CTLFLAG_RW | CTLFLAG_LOCKED, | |
2691 | &net_io_policy_log, 0, ""); | |
2692 | ||
2693 | #if CONFIG_PROC_UUID_POLICY | |
2694 | SYSCTL_INT(_kern_ipc_io_policy, OID_AUTO, uuid, CTLFLAG_RW | CTLFLAG_LOCKED, | |
2695 | &net_io_policy_uuid, 0, ""); | |
2696 | #endif /* CONFIG_PROC_UUID_POLICY */ |