]> git.saurik.com Git - apple/xnu.git/blame_incremental - osfmk/i386/mp.c
xnu-2422.115.4.tar.gz
[apple/xnu.git] / osfmk / i386 / mp.c
... / ...
CommitLineData
1/*
2 * Copyright (c) 2000-2012 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28/*
29 * @OSF_COPYRIGHT@
30 */
31
32#include <mach_rt.h>
33#include <mach_kdp.h>
34#include <mach_ldebug.h>
35#include <gprof.h>
36
37#include <mach/mach_types.h>
38#include <mach/kern_return.h>
39
40#include <kern/kern_types.h>
41#include <kern/startup.h>
42#include <kern/timer_queue.h>
43#include <kern/processor.h>
44#include <kern/cpu_number.h>
45#include <kern/cpu_data.h>
46#include <kern/assert.h>
47#include <kern/machine.h>
48#include <kern/pms.h>
49#include <kern/misc_protos.h>
50#include <kern/timer_call.h>
51#include <kern/kalloc.h>
52#include <kern/queue.h>
53
54#include <vm/vm_map.h>
55#include <vm/vm_kern.h>
56
57#include <profiling/profile-mk.h>
58
59#include <i386/proc_reg.h>
60#include <i386/cpu_threads.h>
61#include <i386/mp_desc.h>
62#include <i386/misc_protos.h>
63#include <i386/trap.h>
64#include <i386/postcode.h>
65#include <i386/machine_routines.h>
66#include <i386/mp.h>
67#include <i386/mp_events.h>
68#include <i386/lapic.h>
69#include <i386/cpuid.h>
70#include <i386/fpu.h>
71#include <i386/machine_cpu.h>
72#include <i386/pmCPU.h>
73#if CONFIG_MCA
74#include <i386/machine_check.h>
75#endif
76#include <i386/acpi.h>
77
78#include <chud/chud_xnu.h>
79#include <chud/chud_xnu_private.h>
80
81#include <sys/kdebug.h>
82
83#include <console/serial_protos.h>
84
85#if MP_DEBUG
86#define PAUSE delay(1000000)
87#define DBG(x...) kprintf(x)
88#else
89#define DBG(x...)
90#define PAUSE
91#endif /* MP_DEBUG */
92
93/* Debugging/test trace events: */
94#define TRACE_MP_TLB_FLUSH MACHDBG_CODE(DBG_MACH_MP, 0)
95#define TRACE_MP_CPUS_CALL MACHDBG_CODE(DBG_MACH_MP, 1)
96#define TRACE_MP_CPUS_CALL_LOCAL MACHDBG_CODE(DBG_MACH_MP, 2)
97#define TRACE_MP_CPUS_CALL_ACTION MACHDBG_CODE(DBG_MACH_MP, 3)
98#define TRACE_MP_CPUS_CALL_NOBUF MACHDBG_CODE(DBG_MACH_MP, 4)
99#define TRACE_MP_CPU_FAST_START MACHDBG_CODE(DBG_MACH_MP, 5)
100#define TRACE_MP_CPU_START MACHDBG_CODE(DBG_MACH_MP, 6)
101#define TRACE_MP_CPU_DEACTIVATE MACHDBG_CODE(DBG_MACH_MP, 7)
102
103#define ABS(v) (((v) > 0)?(v):-(v))
104
105void slave_boot_init(void);
106void i386_cpu_IPI(int cpu);
107
108#if MACH_KDP
109static void mp_kdp_wait(boolean_t flush, boolean_t isNMI);
110#endif /* MACH_KDP */
111static void mp_rendezvous_action(void);
112static void mp_broadcast_action(void);
113
114#if MACH_KDP
115static boolean_t cpu_signal_pending(int cpu, mp_event_t event);
116#endif /* MACH_KDP */
117static int NMIInterruptHandler(x86_saved_state_t *regs);
118
119boolean_t smp_initialized = FALSE;
120uint32_t TSC_sync_margin = 0xFFF;
121volatile boolean_t force_immediate_debugger_NMI = FALSE;
122volatile boolean_t pmap_tlb_flush_timeout = FALSE;
123decl_simple_lock_data(,mp_kdp_lock);
124
125decl_lck_mtx_data(static, mp_cpu_boot_lock);
126lck_mtx_ext_t mp_cpu_boot_lock_ext;
127
128/* Variables needed for MP rendezvous. */
129decl_simple_lock_data(,mp_rv_lock);
130static void (*mp_rv_setup_func)(void *arg);
131static void (*mp_rv_action_func)(void *arg);
132static void (*mp_rv_teardown_func)(void *arg);
133static void *mp_rv_func_arg;
134static volatile int mp_rv_ncpus;
135 /* Cache-aligned barriers: */
136static volatile long mp_rv_entry __attribute__((aligned(64)));
137static volatile long mp_rv_exit __attribute__((aligned(64)));
138static volatile long mp_rv_complete __attribute__((aligned(64)));
139
140volatile uint64_t debugger_entry_time;
141volatile uint64_t debugger_exit_time;
142#if MACH_KDP
143#include <kdp/kdp.h>
144extern int kdp_snapshot;
145static struct _kdp_xcpu_call_func {
146 kdp_x86_xcpu_func_t func;
147 void *arg0, *arg1;
148 volatile long ret;
149 volatile uint16_t cpu;
150} kdp_xcpu_call_func = {
151 .cpu = KDP_XCPU_NONE
152};
153
154#endif
155
156/* Variables needed for MP broadcast. */
157static void (*mp_bc_action_func)(void *arg);
158static void *mp_bc_func_arg;
159static int mp_bc_ncpus;
160static volatile long mp_bc_count;
161decl_lck_mtx_data(static, mp_bc_lock);
162lck_mtx_ext_t mp_bc_lock_ext;
163static volatile int debugger_cpu = -1;
164volatile long NMIPI_acks = 0;
165volatile long NMI_count = 0;
166
167extern void NMI_cpus(void);
168
169static void mp_cpus_call_init(void);
170static void mp_cpus_call_cpu_init(void);
171static void mp_cpus_call_action(void);
172static void mp_call_PM(void);
173
174char mp_slave_stack[PAGE_SIZE] __attribute__((aligned(PAGE_SIZE))); // Temp stack for slave init
175
176/* PAL-related routines */
177boolean_t i386_smp_init(int nmi_vector, i386_intr_func_t nmi_handler,
178 int ipi_vector, i386_intr_func_t ipi_handler);
179void i386_start_cpu(int lapic_id, int cpu_num);
180void i386_send_NMI(int cpu);
181
182#if GPROF
183/*
184 * Initialize dummy structs for profiling. These aren't used but
185 * allows hertz_tick() to be built with GPROF defined.
186 */
187struct profile_vars _profile_vars;
188struct profile_vars *_profile_vars_cpus[MAX_CPUS] = { &_profile_vars };
189#define GPROF_INIT() \
190{ \
191 int i; \
192 \
193 /* Hack to initialize pointers to unused profiling structs */ \
194 for (i = 1; i < MAX_CPUS; i++) \
195 _profile_vars_cpus[i] = &_profile_vars; \
196}
197#else
198#define GPROF_INIT()
199#endif /* GPROF */
200
201static lck_grp_t smp_lck_grp;
202static lck_grp_attr_t smp_lck_grp_attr;
203
204#define NUM_CPU_WARM_CALLS 20
205struct timer_call cpu_warm_call_arr[NUM_CPU_WARM_CALLS];
206queue_head_t cpu_warm_call_list;
207decl_simple_lock_data(static, cpu_warm_lock);
208
209typedef struct cpu_warm_data {
210 timer_call_t cwd_call;
211 uint64_t cwd_deadline;
212 int cwd_result;
213} *cpu_warm_data_t;
214
215static void cpu_prewarm_init(void);
216static void cpu_warm_timer_call_func(call_entry_param_t p0, call_entry_param_t p1);
217static void _cpu_warm_setup(void *arg);
218static timer_call_t grab_warm_timer_call(void);
219static void free_warm_timer_call(timer_call_t call);
220
221void
222smp_init(void)
223{
224 simple_lock_init(&mp_kdp_lock, 0);
225 simple_lock_init(&mp_rv_lock, 0);
226 lck_grp_attr_setdefault(&smp_lck_grp_attr);
227 lck_grp_init(&smp_lck_grp, "i386_smp", &smp_lck_grp_attr);
228 lck_mtx_init_ext(&mp_cpu_boot_lock, &mp_cpu_boot_lock_ext, &smp_lck_grp, LCK_ATTR_NULL);
229 lck_mtx_init_ext(&mp_bc_lock, &mp_bc_lock_ext, &smp_lck_grp, LCK_ATTR_NULL);
230 console_init();
231
232 if(!i386_smp_init(LAPIC_NMI_INTERRUPT, NMIInterruptHandler,
233 LAPIC_VECTOR(INTERPROCESSOR), cpu_signal_handler))
234 return;
235
236 cpu_thread_init();
237
238 GPROF_INIT();
239 DBGLOG_CPU_INIT(master_cpu);
240
241 mp_cpus_call_init();
242 mp_cpus_call_cpu_init();
243
244 if (PE_parse_boot_argn("TSC_sync_margin",
245 &TSC_sync_margin, sizeof(TSC_sync_margin))) {
246 kprintf("TSC sync Margin 0x%x\n", TSC_sync_margin);
247 } else if (cpuid_vmm_present()) {
248 kprintf("TSC sync margin disabled\n");
249 TSC_sync_margin = 0;
250 }
251 smp_initialized = TRUE;
252
253 cpu_prewarm_init();
254
255 return;
256}
257
258typedef struct {
259 int target_cpu;
260 int target_lapic;
261 int starter_cpu;
262} processor_start_info_t;
263static processor_start_info_t start_info __attribute__((aligned(64)));
264
265/*
266 * Cache-alignment is to avoid cross-cpu false-sharing interference.
267 */
268static volatile long tsc_entry_barrier __attribute__((aligned(64)));
269static volatile long tsc_exit_barrier __attribute__((aligned(64)));
270static volatile uint64_t tsc_target __attribute__((aligned(64)));
271
272/*
273 * Poll a CPU to see when it has marked itself as running.
274 */
275static void
276mp_wait_for_cpu_up(int slot_num, unsigned int iters, unsigned int usecdelay)
277{
278 while (iters-- > 0) {
279 if (cpu_datap(slot_num)->cpu_running)
280 break;
281 delay(usecdelay);
282 }
283}
284
285/*
286 * Quickly bring a CPU back online which has been halted.
287 */
288kern_return_t
289intel_startCPU_fast(int slot_num)
290{
291 kern_return_t rc;
292
293 /*
294 * Try to perform a fast restart
295 */
296 rc = pmCPUExitHalt(slot_num);
297 if (rc != KERN_SUCCESS)
298 /*
299 * The CPU was not eligible for a fast restart.
300 */
301 return(rc);
302
303 KERNEL_DEBUG_CONSTANT(
304 TRACE_MP_CPU_FAST_START | DBG_FUNC_START,
305 slot_num, 0, 0, 0, 0);
306
307 /*
308 * Wait until the CPU is back online.
309 */
310 mp_disable_preemption();
311
312 /*
313 * We use short pauses (1us) for low latency. 30,000 iterations is
314 * longer than a full restart would require so it should be more
315 * than long enough.
316 */
317
318 mp_wait_for_cpu_up(slot_num, 30000, 1);
319 mp_enable_preemption();
320
321 KERNEL_DEBUG_CONSTANT(
322 TRACE_MP_CPU_FAST_START | DBG_FUNC_END,
323 slot_num, cpu_datap(slot_num)->cpu_running, 0, 0, 0);
324
325 /*
326 * Check to make sure that the CPU is really running. If not,
327 * go through the slow path.
328 */
329 if (cpu_datap(slot_num)->cpu_running)
330 return(KERN_SUCCESS);
331 else
332 return(KERN_FAILURE);
333}
334
335static void
336started_cpu(void)
337{
338 /* Here on the started cpu with cpu_running set TRUE */
339
340 if (TSC_sync_margin &&
341 start_info.target_cpu == cpu_number()) {
342 /*
343 * I've just started-up, synchronize again with the starter cpu
344 * and then snap my TSC.
345 */
346 tsc_target = 0;
347 atomic_decl(&tsc_entry_barrier, 1);
348 while (tsc_entry_barrier != 0)
349 ; /* spin for starter and target at barrier */
350 tsc_target = rdtsc64();
351 atomic_decl(&tsc_exit_barrier, 1);
352 }
353}
354
355static void
356start_cpu(void *arg)
357{
358 int i = 1000;
359 processor_start_info_t *psip = (processor_start_info_t *) arg;
360
361 /* Ignore this if the current processor is not the starter */
362 if (cpu_number() != psip->starter_cpu)
363 return;
364
365 DBG("start_cpu(%p) about to start cpu %d, lapic %d\n",
366 arg, psip->target_cpu, psip->target_lapic);
367
368 KERNEL_DEBUG_CONSTANT(
369 TRACE_MP_CPU_START | DBG_FUNC_START,
370 psip->target_cpu,
371 psip->target_lapic, 0, 0, 0);
372
373 i386_start_cpu(psip->target_lapic, psip->target_cpu);
374
375#ifdef POSTCODE_DELAY
376 /* Wait much longer if postcodes are displayed for a delay period. */
377 i *= 10000;
378#endif
379 DBG("start_cpu(%p) about to wait for cpu %d\n",
380 arg, psip->target_cpu);
381
382 mp_wait_for_cpu_up(psip->target_cpu, i*100, 100);
383
384 KERNEL_DEBUG_CONSTANT(
385 TRACE_MP_CPU_START | DBG_FUNC_END,
386 psip->target_cpu,
387 cpu_datap(psip->target_cpu)->cpu_running, 0, 0, 0);
388
389 if (TSC_sync_margin &&
390 cpu_datap(psip->target_cpu)->cpu_running) {
391 /*
392 * Compare the TSC from the started processor with ours.
393 * Report and log/panic if it diverges by more than
394 * TSC_sync_margin (TSC_SYNC_MARGIN) ticks. This margin
395 * can be overriden by boot-arg (with 0 meaning no checking).
396 */
397 uint64_t tsc_starter;
398 int64_t tsc_delta;
399 atomic_decl(&tsc_entry_barrier, 1);
400 while (tsc_entry_barrier != 0)
401 ; /* spin for both processors at barrier */
402 tsc_starter = rdtsc64();
403 atomic_decl(&tsc_exit_barrier, 1);
404 while (tsc_exit_barrier != 0)
405 ; /* spin for target to store its TSC */
406 tsc_delta = tsc_target - tsc_starter;
407 kprintf("TSC sync for cpu %d: 0x%016llx delta 0x%llx (%lld)\n",
408 psip->target_cpu, tsc_target, tsc_delta, tsc_delta);
409 if (ABS(tsc_delta) > (int64_t) TSC_sync_margin) {
410#if DEBUG
411 panic(
412#else
413 printf(
414#endif
415 "Unsynchronized TSC for cpu %d: "
416 "0x%016llx, delta 0x%llx\n",
417 psip->target_cpu, tsc_target, tsc_delta);
418 }
419 }
420}
421
422kern_return_t
423intel_startCPU(
424 int slot_num)
425{
426 int lapic = cpu_to_lapic[slot_num];
427 boolean_t istate;
428
429 assert(lapic != -1);
430
431 DBGLOG_CPU_INIT(slot_num);
432
433 DBG("intel_startCPU(%d) lapic_id=%d\n", slot_num, lapic);
434 DBG("IdlePTD(%p): 0x%x\n", &IdlePTD, (int) (uintptr_t)IdlePTD);
435
436 /*
437 * Initialize (or re-initialize) the descriptor tables for this cpu.
438 * Propagate processor mode to slave.
439 */
440 cpu_desc_init64(cpu_datap(slot_num));
441
442 /* Serialize use of the slave boot stack, etc. */
443 lck_mtx_lock(&mp_cpu_boot_lock);
444
445 istate = ml_set_interrupts_enabled(FALSE);
446 if (slot_num == get_cpu_number()) {
447 ml_set_interrupts_enabled(istate);
448 lck_mtx_unlock(&mp_cpu_boot_lock);
449 return KERN_SUCCESS;
450 }
451
452 start_info.starter_cpu = cpu_number();
453 start_info.target_cpu = slot_num;
454 start_info.target_lapic = lapic;
455 tsc_entry_barrier = 2;
456 tsc_exit_barrier = 2;
457
458 /*
459 * Perform the processor startup sequence with all running
460 * processors rendezvous'ed. This is required during periods when
461 * the cache-disable bit is set for MTRR/PAT initialization.
462 */
463 mp_rendezvous_no_intrs(start_cpu, (void *) &start_info);
464
465 start_info.target_cpu = 0;
466
467 ml_set_interrupts_enabled(istate);
468 lck_mtx_unlock(&mp_cpu_boot_lock);
469
470 if (!cpu_datap(slot_num)->cpu_running) {
471 kprintf("Failed to start CPU %02d\n", slot_num);
472 printf("Failed to start CPU %02d, rebooting...\n", slot_num);
473 delay(1000000);
474 halt_cpu();
475 return KERN_SUCCESS;
476 } else {
477 kprintf("Started cpu %d (lapic id %08x)\n", slot_num, lapic);
478 return KERN_SUCCESS;
479 }
480}
481
482#if MP_DEBUG
483cpu_signal_event_log_t *cpu_signal[MAX_CPUS];
484cpu_signal_event_log_t *cpu_handle[MAX_CPUS];
485
486MP_EVENT_NAME_DECL();
487
488#endif /* MP_DEBUG */
489
490int
491cpu_signal_handler(x86_saved_state_t *regs)
492{
493#if !MACH_KDP
494#pragma unused (regs)
495#endif /* !MACH_KDP */
496 int my_cpu;
497 volatile int *my_word;
498
499 SCHED_STATS_IPI(current_processor());
500
501 my_cpu = cpu_number();
502 my_word = &cpu_data_ptr[my_cpu]->cpu_signals;
503 /* Store the initial set of signals for diagnostics. New
504 * signals could arrive while these are being processed
505 * so it's no more than a hint.
506 */
507
508 cpu_data_ptr[my_cpu]->cpu_prior_signals = *my_word;
509
510 do {
511#if MACH_KDP
512 if (i_bit(MP_KDP, my_word) && regs != NULL) {
513 DBGLOG(cpu_handle,my_cpu,MP_KDP);
514 i_bit_clear(MP_KDP, my_word);
515/* Ensure that the i386_kernel_state at the base of the
516 * current thread's stack (if any) is synchronized with the
517 * context at the moment of the interrupt, to facilitate
518 * access through the debugger.
519 */
520 sync_iss_to_iks(regs);
521 if (pmsafe_debug && !kdp_snapshot)
522 pmSafeMode(&current_cpu_datap()->lcpu, PM_SAFE_FL_SAFE);
523 mp_kdp_wait(TRUE, FALSE);
524 if (pmsafe_debug && !kdp_snapshot)
525 pmSafeMode(&current_cpu_datap()->lcpu, PM_SAFE_FL_NORMAL);
526 } else
527#endif /* MACH_KDP */
528 if (i_bit(MP_TLB_FLUSH, my_word)) {
529 DBGLOG(cpu_handle,my_cpu,MP_TLB_FLUSH);
530 i_bit_clear(MP_TLB_FLUSH, my_word);
531 pmap_update_interrupt();
532 } else if (i_bit(MP_AST, my_word)) {
533 DBGLOG(cpu_handle,my_cpu,MP_AST);
534 i_bit_clear(MP_AST, my_word);
535 ast_check(cpu_to_processor(my_cpu));
536 } else if (i_bit(MP_RENDEZVOUS, my_word)) {
537 DBGLOG(cpu_handle,my_cpu,MP_RENDEZVOUS);
538 i_bit_clear(MP_RENDEZVOUS, my_word);
539 mp_rendezvous_action();
540 } else if (i_bit(MP_BROADCAST, my_word)) {
541 DBGLOG(cpu_handle,my_cpu,MP_BROADCAST);
542 i_bit_clear(MP_BROADCAST, my_word);
543 mp_broadcast_action();
544 } else if (i_bit(MP_CHUD, my_word)) {
545 DBGLOG(cpu_handle,my_cpu,MP_CHUD);
546 i_bit_clear(MP_CHUD, my_word);
547 chudxnu_cpu_signal_handler();
548 } else if (i_bit(MP_CALL, my_word)) {
549 DBGLOG(cpu_handle,my_cpu,MP_CALL);
550 i_bit_clear(MP_CALL, my_word);
551 mp_cpus_call_action();
552 } else if (i_bit(MP_CALL_PM, my_word)) {
553 DBGLOG(cpu_handle,my_cpu,MP_CALL_PM);
554 i_bit_clear(MP_CALL_PM, my_word);
555 mp_call_PM();
556 }
557 } while (*my_word);
558
559 return 0;
560}
561
562static int
563NMIInterruptHandler(x86_saved_state_t *regs)
564{
565 void *stackptr;
566
567 if (panic_active() && !panicDebugging) {
568 if (pmsafe_debug)
569 pmSafeMode(&current_cpu_datap()->lcpu, PM_SAFE_FL_SAFE);
570 for(;;)
571 cpu_pause();
572 }
573
574 atomic_incl(&NMIPI_acks, 1);
575 atomic_incl(&NMI_count, 1);
576 sync_iss_to_iks_unconditionally(regs);
577 __asm__ volatile("movq %%rbp, %0" : "=m" (stackptr));
578
579 if (cpu_number() == debugger_cpu)
580 goto NMExit;
581
582 if (spinlock_timed_out) {
583 char pstr[192];
584 snprintf(&pstr[0], sizeof(pstr), "Panic(CPU %d): NMIPI for spinlock acquisition timeout, spinlock: %p, spinlock owner: %p, current_thread: %p, spinlock_owner_cpu: 0x%x\n", cpu_number(), spinlock_timed_out, (void *) spinlock_timed_out->interlock.lock_data, current_thread(), spinlock_owner_cpu);
585 panic_i386_backtrace(stackptr, 64, &pstr[0], TRUE, regs);
586 } else if (pmap_tlb_flush_timeout == TRUE) {
587 char pstr[128];
588 snprintf(&pstr[0], sizeof(pstr), "Panic(CPU %d): Unresponsive processor (this CPU did not acknowledge interrupts) TLB state:0x%x\n", cpu_number(), current_cpu_datap()->cpu_tlb_invalid);
589 panic_i386_backtrace(stackptr, 48, &pstr[0], TRUE, regs);
590 }
591
592#if MACH_KDP
593 if (pmsafe_debug && !kdp_snapshot)
594 pmSafeMode(&current_cpu_datap()->lcpu, PM_SAFE_FL_SAFE);
595 current_cpu_datap()->cpu_NMI_acknowledged = TRUE;
596 i_bit_clear(MP_KDP, &current_cpu_datap()->cpu_signals);
597 mp_kdp_wait(FALSE, pmap_tlb_flush_timeout || spinlock_timed_out || panic_active());
598 if (pmsafe_debug && !kdp_snapshot)
599 pmSafeMode(&current_cpu_datap()->lcpu, PM_SAFE_FL_NORMAL);
600#endif
601NMExit:
602 return 1;
603}
604
605
606/*
607 * cpu_interrupt is really just to be used by the scheduler to
608 * get a CPU's attention it may not always issue an IPI. If an
609 * IPI is always needed then use i386_cpu_IPI.
610 */
611void
612cpu_interrupt(int cpu)
613{
614 boolean_t did_IPI = FALSE;
615
616 if (smp_initialized
617 && pmCPUExitIdle(cpu_datap(cpu))) {
618 i386_cpu_IPI(cpu);
619 did_IPI = TRUE;
620 }
621
622 KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_REMOTE_AST), cpu, did_IPI, 0, 0, 0);
623}
624
625/*
626 * Send a true NMI via the local APIC to the specified CPU.
627 */
628void
629cpu_NMI_interrupt(int cpu)
630{
631 if (smp_initialized) {
632 i386_send_NMI(cpu);
633 }
634}
635
636void
637NMI_cpus(void)
638{
639 unsigned int cpu;
640 boolean_t intrs_enabled;
641 uint64_t tsc_timeout;
642
643 intrs_enabled = ml_set_interrupts_enabled(FALSE);
644
645 for (cpu = 0; cpu < real_ncpus; cpu++) {
646 if (!cpu_datap(cpu)->cpu_running)
647 continue;
648 cpu_datap(cpu)->cpu_NMI_acknowledged = FALSE;
649 cpu_NMI_interrupt(cpu);
650 tsc_timeout = !machine_timeout_suspended() ?
651 rdtsc64() + (1000 * 1000 * 1000 * 10ULL) :
652 ~0ULL;
653 while (!cpu_datap(cpu)->cpu_NMI_acknowledged) {
654 handle_pending_TLB_flushes();
655 cpu_pause();
656 if (rdtsc64() > tsc_timeout)
657 panic("NMI_cpus() timeout cpu %d", cpu);
658 }
659 cpu_datap(cpu)->cpu_NMI_acknowledged = FALSE;
660 }
661
662 ml_set_interrupts_enabled(intrs_enabled);
663}
664
665static void (* volatile mp_PM_func)(void) = NULL;
666
667static void
668mp_call_PM(void)
669{
670 assert(!ml_get_interrupts_enabled());
671
672 if (mp_PM_func != NULL)
673 mp_PM_func();
674}
675
676void
677cpu_PM_interrupt(int cpu)
678{
679 assert(!ml_get_interrupts_enabled());
680
681 if (mp_PM_func != NULL) {
682 if (cpu == cpu_number())
683 mp_PM_func();
684 else
685 i386_signal_cpu(cpu, MP_CALL_PM, ASYNC);
686 }
687}
688
689void
690PM_interrupt_register(void (*fn)(void))
691{
692 mp_PM_func = fn;
693}
694
695void
696i386_signal_cpu(int cpu, mp_event_t event, mp_sync_t mode)
697{
698 volatile int *signals = &cpu_datap(cpu)->cpu_signals;
699 uint64_t tsc_timeout;
700
701
702 if (!cpu_datap(cpu)->cpu_running)
703 return;
704
705 if (event == MP_TLB_FLUSH)
706 KERNEL_DEBUG(TRACE_MP_TLB_FLUSH | DBG_FUNC_START, cpu, 0, 0, 0, 0);
707
708 DBGLOG(cpu_signal, cpu, event);
709
710 i_bit_set(event, signals);
711 i386_cpu_IPI(cpu);
712 if (mode == SYNC) {
713 again:
714 tsc_timeout = !machine_timeout_suspended() ?
715 rdtsc64() + (1000*1000*1000) :
716 ~0ULL;
717 while (i_bit(event, signals) && rdtsc64() < tsc_timeout) {
718 cpu_pause();
719 }
720 if (i_bit(event, signals)) {
721 DBG("i386_signal_cpu(%d, 0x%x, SYNC) timed out\n",
722 cpu, event);
723 goto again;
724 }
725 }
726 if (event == MP_TLB_FLUSH)
727 KERNEL_DEBUG(TRACE_MP_TLB_FLUSH | DBG_FUNC_END, cpu, 0, 0, 0, 0);
728}
729
730/*
731 * Send event to all running cpus.
732 * Called with the topology locked.
733 */
734void
735i386_signal_cpus(mp_event_t event, mp_sync_t mode)
736{
737 unsigned int cpu;
738 unsigned int my_cpu = cpu_number();
739
740 assert(hw_lock_held((hw_lock_t)&x86_topo_lock));
741
742 for (cpu = 0; cpu < real_ncpus; cpu++) {
743 if (cpu == my_cpu || !cpu_datap(cpu)->cpu_running)
744 continue;
745 i386_signal_cpu(cpu, event, mode);
746 }
747}
748
749/*
750 * Return the number of running cpus.
751 * Called with the topology locked.
752 */
753int
754i386_active_cpus(void)
755{
756 unsigned int cpu;
757 unsigned int ncpus = 0;
758
759 assert(hw_lock_held((hw_lock_t)&x86_topo_lock));
760
761 for (cpu = 0; cpu < real_ncpus; cpu++) {
762 if (cpu_datap(cpu)->cpu_running)
763 ncpus++;
764 }
765 return(ncpus);
766}
767
768/*
769 * Helper function called when busy-waiting: panic if too long
770 * a TSC-based time has elapsed since the start of the spin.
771 */
772static void
773mp_spin_timeout_check(uint64_t tsc_start, const char *msg)
774{
775 uint64_t tsc_timeout;
776
777 cpu_pause();
778 if (machine_timeout_suspended())
779 return;
780
781 /*
782 * The timeout is 4 * the spinlock timeout period
783 * unless we have serial console printing (kprintf) enabled
784 * in which case we allow an even greater margin.
785 */
786 tsc_timeout = disable_serial_output ? (uint64_t) LockTimeOutTSC << 2
787 : (uint64_t) LockTimeOutTSC << 4;
788 if (rdtsc64() > tsc_start + tsc_timeout)
789 panic("%s: spin timeout", msg);
790}
791
792/*
793 * All-CPU rendezvous:
794 * - CPUs are signalled,
795 * - all execute the setup function (if specified),
796 * - rendezvous (i.e. all cpus reach a barrier),
797 * - all execute the action function (if specified),
798 * - rendezvous again,
799 * - execute the teardown function (if specified), and then
800 * - resume.
801 *
802 * Note that the supplied external functions _must_ be reentrant and aware
803 * that they are running in parallel and in an unknown lock context.
804 */
805
806static void
807mp_rendezvous_action(void)
808{
809 boolean_t intrs_enabled;
810 uint64_t tsc_spin_start;
811
812 /* setup function */
813 if (mp_rv_setup_func != NULL)
814 mp_rv_setup_func(mp_rv_func_arg);
815
816 intrs_enabled = ml_get_interrupts_enabled();
817
818 /* spin on entry rendezvous */
819 atomic_incl(&mp_rv_entry, 1);
820 tsc_spin_start = rdtsc64();
821 while (mp_rv_entry < mp_rv_ncpus) {
822 /* poll for pesky tlb flushes if interrupts disabled */
823 if (!intrs_enabled)
824 handle_pending_TLB_flushes();
825 mp_spin_timeout_check(tsc_spin_start,
826 "mp_rendezvous_action() entry");
827 }
828
829 /* action function */
830 if (mp_rv_action_func != NULL)
831 mp_rv_action_func(mp_rv_func_arg);
832
833 /* spin on exit rendezvous */
834 atomic_incl(&mp_rv_exit, 1);
835 tsc_spin_start = rdtsc64();
836 while (mp_rv_exit < mp_rv_ncpus) {
837 if (!intrs_enabled)
838 handle_pending_TLB_flushes();
839 mp_spin_timeout_check(tsc_spin_start,
840 "mp_rendezvous_action() exit");
841 }
842
843 /* teardown function */
844 if (mp_rv_teardown_func != NULL)
845 mp_rv_teardown_func(mp_rv_func_arg);
846
847 /* Bump completion count */
848 atomic_incl(&mp_rv_complete, 1);
849}
850
851void
852mp_rendezvous(void (*setup_func)(void *),
853 void (*action_func)(void *),
854 void (*teardown_func)(void *),
855 void *arg)
856{
857 uint64_t tsc_spin_start;
858
859 if (!smp_initialized) {
860 if (setup_func != NULL)
861 setup_func(arg);
862 if (action_func != NULL)
863 action_func(arg);
864 if (teardown_func != NULL)
865 teardown_func(arg);
866 return;
867 }
868
869 /* obtain rendezvous lock */
870 simple_lock(&mp_rv_lock);
871
872 /* set static function pointers */
873 mp_rv_setup_func = setup_func;
874 mp_rv_action_func = action_func;
875 mp_rv_teardown_func = teardown_func;
876 mp_rv_func_arg = arg;
877
878 mp_rv_entry = 0;
879 mp_rv_exit = 0;
880 mp_rv_complete = 0;
881
882 /*
883 * signal other processors, which will call mp_rendezvous_action()
884 * with interrupts disabled
885 */
886 simple_lock(&x86_topo_lock);
887 mp_rv_ncpus = i386_active_cpus();
888 i386_signal_cpus(MP_RENDEZVOUS, ASYNC);
889 simple_unlock(&x86_topo_lock);
890
891 /* call executor function on this cpu */
892 mp_rendezvous_action();
893
894 /*
895 * Spin for everyone to complete.
896 * This is necessary to ensure that all processors have proceeded
897 * from the exit barrier before we release the rendezvous structure.
898 */
899 tsc_spin_start = rdtsc64();
900 while (mp_rv_complete < mp_rv_ncpus) {
901 mp_spin_timeout_check(tsc_spin_start, "mp_rendezvous()");
902 }
903
904 /* Tidy up */
905 mp_rv_setup_func = NULL;
906 mp_rv_action_func = NULL;
907 mp_rv_teardown_func = NULL;
908 mp_rv_func_arg = NULL;
909
910 /* release lock */
911 simple_unlock(&mp_rv_lock);
912}
913
914void
915mp_rendezvous_break_lock(void)
916{
917 simple_lock_init(&mp_rv_lock, 0);
918}
919
920static void
921setup_disable_intrs(__unused void * param_not_used)
922{
923 /* disable interrupts before the first barrier */
924 boolean_t intr = ml_set_interrupts_enabled(FALSE);
925
926 current_cpu_datap()->cpu_iflag = intr;
927 DBG("CPU%d: %s\n", get_cpu_number(), __FUNCTION__);
928}
929
930static void
931teardown_restore_intrs(__unused void * param_not_used)
932{
933 /* restore interrupt flag following MTRR changes */
934 ml_set_interrupts_enabled(current_cpu_datap()->cpu_iflag);
935 DBG("CPU%d: %s\n", get_cpu_number(), __FUNCTION__);
936}
937
938/*
939 * A wrapper to mp_rendezvous() to call action_func() with interrupts disabled.
940 * This is exported for use by kexts.
941 */
942void
943mp_rendezvous_no_intrs(
944 void (*action_func)(void *),
945 void *arg)
946{
947 mp_rendezvous(setup_disable_intrs,
948 action_func,
949 teardown_restore_intrs,
950 arg);
951}
952
953
954typedef struct {
955 queue_chain_t link; /* queue linkage */
956 void (*func)(void *,void *); /* routine to call */
957 void *arg0; /* routine's 1st arg */
958 void *arg1; /* routine's 2nd arg */
959 volatile long *countp; /* completion counter */
960} mp_call_t;
961
962
963typedef struct {
964 queue_head_t queue;
965 decl_simple_lock_data(, lock);
966} mp_call_queue_t;
967#define MP_CPUS_CALL_BUFS_PER_CPU MAX_CPUS
968static mp_call_queue_t mp_cpus_call_freelist;
969static mp_call_queue_t mp_cpus_call_head[MAX_CPUS];
970
971static inline boolean_t
972mp_call_head_lock(mp_call_queue_t *cqp)
973{
974 boolean_t intrs_enabled;
975
976 intrs_enabled = ml_set_interrupts_enabled(FALSE);
977 simple_lock(&cqp->lock);
978
979 return intrs_enabled;
980}
981
982static inline boolean_t
983mp_call_head_is_locked(mp_call_queue_t *cqp)
984{
985 return !ml_get_interrupts_enabled() &&
986 hw_lock_held((hw_lock_t)&cqp->lock);
987}
988
989static inline void
990mp_call_head_unlock(mp_call_queue_t *cqp, boolean_t intrs_enabled)
991{
992 simple_unlock(&cqp->lock);
993 ml_set_interrupts_enabled(intrs_enabled);
994}
995
996static inline mp_call_t *
997mp_call_alloc(void)
998{
999 mp_call_t *callp = NULL;
1000 boolean_t intrs_enabled;
1001 mp_call_queue_t *cqp = &mp_cpus_call_freelist;
1002
1003 intrs_enabled = mp_call_head_lock(cqp);
1004 if (!queue_empty(&cqp->queue))
1005 queue_remove_first(&cqp->queue, callp, typeof(callp), link);
1006 mp_call_head_unlock(cqp, intrs_enabled);
1007
1008 return callp;
1009}
1010
1011static inline void
1012mp_call_free(mp_call_t *callp)
1013{
1014 boolean_t intrs_enabled;
1015 mp_call_queue_t *cqp = &mp_cpus_call_freelist;
1016
1017 intrs_enabled = mp_call_head_lock(cqp);
1018 queue_enter_first(&cqp->queue, callp, typeof(callp), link);
1019 mp_call_head_unlock(cqp, intrs_enabled);
1020}
1021
1022static inline mp_call_t *
1023mp_call_dequeue_locked(mp_call_queue_t *cqp)
1024{
1025 mp_call_t *callp = NULL;
1026
1027 assert(mp_call_head_is_locked(cqp));
1028 if (!queue_empty(&cqp->queue))
1029 queue_remove_first(&cqp->queue, callp, typeof(callp), link);
1030 return callp;
1031}
1032
1033static inline void
1034mp_call_enqueue_locked(
1035 mp_call_queue_t *cqp,
1036 mp_call_t *callp)
1037{
1038 queue_enter(&cqp->queue, callp, typeof(callp), link);
1039}
1040
1041/* Called on the boot processor to initialize global structures */
1042static void
1043mp_cpus_call_init(void)
1044{
1045 mp_call_queue_t *cqp = &mp_cpus_call_freelist;
1046
1047 DBG("mp_cpus_call_init()\n");
1048 simple_lock_init(&cqp->lock, 0);
1049 queue_init(&cqp->queue);
1050}
1051
1052/*
1053 * Called by each processor to add call buffers to the free list
1054 * and to initialize the per-cpu call queue.
1055 * Also called but ignored on slave processors on re-start/wake.
1056 */
1057static void
1058mp_cpus_call_cpu_init(void)
1059{
1060 int i;
1061 mp_call_queue_t *cqp = &mp_cpus_call_head[cpu_number()];
1062 mp_call_t *callp;
1063
1064 if (cqp->queue.next != NULL)
1065 return; /* restart/wake case: called already */
1066
1067 simple_lock_init(&cqp->lock, 0);
1068 queue_init(&cqp->queue);
1069 for (i = 0; i < MP_CPUS_CALL_BUFS_PER_CPU; i++) {
1070 callp = (mp_call_t *) kalloc(sizeof(mp_call_t));
1071 mp_call_free(callp);
1072 }
1073
1074 DBG("mp_cpus_call_init() done on cpu %d\n", cpu_number());
1075}
1076
1077/*
1078 * This is called from cpu_signal_handler() to process an MP_CALL signal.
1079 * And also from i386_deactivate_cpu() when a cpu is being taken offline.
1080 */
1081static void
1082mp_cpus_call_action(void)
1083{
1084 mp_call_queue_t *cqp;
1085 boolean_t intrs_enabled;
1086 mp_call_t *callp;
1087 mp_call_t call;
1088
1089 assert(!ml_get_interrupts_enabled());
1090 cqp = &mp_cpus_call_head[cpu_number()];
1091 intrs_enabled = mp_call_head_lock(cqp);
1092 while ((callp = mp_call_dequeue_locked(cqp)) != NULL) {
1093 /* Copy call request to the stack to free buffer */
1094 call = *callp;
1095 mp_call_free(callp);
1096 if (call.func != NULL) {
1097 mp_call_head_unlock(cqp, intrs_enabled);
1098 KERNEL_DEBUG_CONSTANT(
1099 TRACE_MP_CPUS_CALL_ACTION,
1100 call.func, call.arg0, call.arg1, call.countp, 0);
1101 call.func(call.arg0, call.arg1);
1102 (void) mp_call_head_lock(cqp);
1103 }
1104 if (call.countp != NULL)
1105 atomic_incl(call.countp, 1);
1106 }
1107 mp_call_head_unlock(cqp, intrs_enabled);
1108}
1109
1110/*
1111 * mp_cpus_call() runs a given function on cpus specified in a given cpu mask.
1112 * Possible modes are:
1113 * SYNC: function is called serially on target cpus in logical cpu order
1114 * waiting for each call to be acknowledged before proceeding
1115 * ASYNC: function call is queued to the specified cpus
1116 * waiting for all calls to complete in parallel before returning
1117 * NOSYNC: function calls are queued
1118 * but we return before confirmation of calls completing.
1119 * The action function may be NULL.
1120 * The cpu mask may include the local cpu. Offline cpus are ignored.
1121 * The return value is the number of cpus on which the call was made or queued.
1122 */
1123cpu_t
1124mp_cpus_call(
1125 cpumask_t cpus,
1126 mp_sync_t mode,
1127 void (*action_func)(void *),
1128 void *arg)
1129{
1130 return mp_cpus_call1(
1131 cpus,
1132 mode,
1133 (void (*)(void *,void *))action_func,
1134 arg,
1135 NULL,
1136 NULL,
1137 NULL);
1138}
1139
1140static void
1141mp_cpus_call_wait(boolean_t intrs_enabled,
1142 long mp_cpus_signals,
1143 volatile long *mp_cpus_calls)
1144{
1145 mp_call_queue_t *cqp;
1146 uint64_t tsc_spin_start;
1147
1148 cqp = &mp_cpus_call_head[cpu_number()];
1149
1150 tsc_spin_start = rdtsc64();
1151 while (*mp_cpus_calls < mp_cpus_signals) {
1152 if (!intrs_enabled) {
1153 /* Sniffing w/o locking */
1154 if (!queue_empty(&cqp->queue))
1155 mp_cpus_call_action();
1156 handle_pending_TLB_flushes();
1157 }
1158 mp_spin_timeout_check(tsc_spin_start, "mp_cpus_call_wait()");
1159 }
1160}
1161
1162cpu_t
1163mp_cpus_call1(
1164 cpumask_t cpus,
1165 mp_sync_t mode,
1166 void (*action_func)(void *, void *),
1167 void *arg0,
1168 void *arg1,
1169 cpumask_t *cpus_calledp,
1170 cpumask_t *cpus_notcalledp)
1171{
1172 cpu_t cpu;
1173 boolean_t intrs_enabled = FALSE;
1174 boolean_t call_self = FALSE;
1175 cpumask_t cpus_called = 0;
1176 cpumask_t cpus_notcalled = 0;
1177 long mp_cpus_signals = 0;
1178 volatile long mp_cpus_calls = 0;
1179 uint64_t tsc_spin_start;
1180
1181 KERNEL_DEBUG_CONSTANT(
1182 TRACE_MP_CPUS_CALL | DBG_FUNC_START,
1183 cpus, mode, VM_KERNEL_UNSLIDE(action_func), arg0, arg1);
1184
1185 if (!smp_initialized) {
1186 if ((cpus & CPUMASK_SELF) == 0)
1187 goto out;
1188 if (action_func != NULL) {
1189 intrs_enabled = ml_set_interrupts_enabled(FALSE);
1190 action_func(arg0, arg1);
1191 ml_set_interrupts_enabled(intrs_enabled);
1192 }
1193 call_self = TRUE;
1194 goto out;
1195 }
1196
1197 /*
1198 * Queue the call for each non-local requested cpu.
1199 * The topo lock is not taken. Instead we sniff the cpu_running state
1200 * and then re-check it after taking the call lock. A cpu being taken
1201 * offline runs the action function after clearing the cpu_running.
1202 */
1203 mp_disable_preemption(); /* interrupts may be enabled */
1204 tsc_spin_start = rdtsc64();
1205 for (cpu = 0; cpu < (cpu_t) real_ncpus; cpu++) {
1206 if (((cpu_to_cpumask(cpu) & cpus) == 0) ||
1207 !cpu_datap(cpu)->cpu_running)
1208 continue;
1209 if (cpu == (cpu_t) cpu_number()) {
1210 /*
1211 * We don't IPI ourself and if calling asynchronously,
1212 * we defer our call until we have signalled all others.
1213 */
1214 call_self = TRUE;
1215 cpus_called |= cpu_to_cpumask(cpu);
1216 if (mode == SYNC && action_func != NULL) {
1217 KERNEL_DEBUG_CONSTANT(
1218 TRACE_MP_CPUS_CALL_LOCAL,
1219 VM_KERNEL_UNSLIDE(action_func),
1220 arg0, arg1, 0, 0);
1221 action_func(arg0, arg1);
1222 }
1223 } else {
1224 /*
1225 * Here to queue a call to cpu and IPI.
1226 * Spinning for request buffer unless NOSYNC.
1227 */
1228 mp_call_t *callp = NULL;
1229 mp_call_queue_t *cqp = &mp_cpus_call_head[cpu];
1230
1231 queue_call:
1232 if (callp == NULL)
1233 callp = mp_call_alloc();
1234 intrs_enabled = mp_call_head_lock(cqp);
1235 if (!cpu_datap(cpu)->cpu_running) {
1236 mp_call_head_unlock(cqp, intrs_enabled);
1237 continue;
1238 }
1239 if (mode == NOSYNC) {
1240 if (callp == NULL) {
1241 cpus_notcalled |= cpu_to_cpumask(cpu);
1242 mp_call_head_unlock(cqp, intrs_enabled);
1243 KERNEL_DEBUG_CONSTANT(
1244 TRACE_MP_CPUS_CALL_NOBUF,
1245 cpu, 0, 0, 0, 0);
1246 continue;
1247 }
1248 callp->countp = NULL;
1249 } else {
1250 if (callp == NULL) {
1251 mp_call_head_unlock(cqp, intrs_enabled);
1252 KERNEL_DEBUG_CONSTANT(
1253 TRACE_MP_CPUS_CALL_NOBUF,
1254 cpu, 0, 0, 0, 0);
1255 if (!intrs_enabled) {
1256 /* Sniffing w/o locking */
1257 if (!queue_empty(&cqp->queue))
1258 mp_cpus_call_action();
1259 handle_pending_TLB_flushes();
1260 }
1261 mp_spin_timeout_check(
1262 tsc_spin_start,
1263 "mp_cpus_call1()");
1264 goto queue_call;
1265 }
1266 callp->countp = &mp_cpus_calls;
1267 }
1268 callp->func = action_func;
1269 callp->arg0 = arg0;
1270 callp->arg1 = arg1;
1271 mp_call_enqueue_locked(cqp, callp);
1272 mp_cpus_signals++;
1273 cpus_called |= cpu_to_cpumask(cpu);
1274 i386_signal_cpu(cpu, MP_CALL, ASYNC);
1275 mp_call_head_unlock(cqp, intrs_enabled);
1276 if (mode == SYNC) {
1277 mp_cpus_call_wait(intrs_enabled, mp_cpus_signals, &mp_cpus_calls);
1278 }
1279 }
1280 }
1281
1282 /* Call locally if mode not SYNC */
1283 if (mode != SYNC && call_self ) {
1284 KERNEL_DEBUG_CONSTANT(
1285 TRACE_MP_CPUS_CALL_LOCAL,
1286 VM_KERNEL_UNSLIDE(action_func), arg0, arg1, 0, 0);
1287 if (action_func != NULL) {
1288 ml_set_interrupts_enabled(FALSE);
1289 action_func(arg0, arg1);
1290 ml_set_interrupts_enabled(intrs_enabled);
1291 }
1292 }
1293
1294 /* Safe to allow pre-emption now */
1295 mp_enable_preemption();
1296
1297 /* For ASYNC, now wait for all signaled cpus to complete their calls */
1298 if (mode == ASYNC) {
1299 mp_cpus_call_wait(intrs_enabled, mp_cpus_signals, &mp_cpus_calls);
1300 }
1301
1302out:
1303 cpu = (cpu_t) mp_cpus_signals + (call_self ? 1 : 0);
1304
1305 if (cpus_calledp)
1306 *cpus_calledp = cpus_called;
1307 if (cpus_notcalledp)
1308 *cpus_notcalledp = cpus_notcalled;
1309
1310 KERNEL_DEBUG_CONSTANT(
1311 TRACE_MP_CPUS_CALL | DBG_FUNC_END,
1312 cpu, cpus_called, cpus_notcalled, 0, 0);
1313
1314 return cpu;
1315}
1316
1317
1318static void
1319mp_broadcast_action(void)
1320{
1321 /* call action function */
1322 if (mp_bc_action_func != NULL)
1323 mp_bc_action_func(mp_bc_func_arg);
1324
1325 /* if we're the last one through, wake up the instigator */
1326 if (atomic_decl_and_test(&mp_bc_count, 1))
1327 thread_wakeup(((event_t)(uintptr_t) &mp_bc_count));
1328}
1329
1330/*
1331 * mp_broadcast() runs a given function on all active cpus.
1332 * The caller blocks until the functions has run on all cpus.
1333 * The caller will also block if there is another pending braodcast.
1334 */
1335void
1336mp_broadcast(
1337 void (*action_func)(void *),
1338 void *arg)
1339{
1340 if (!smp_initialized) {
1341 if (action_func != NULL)
1342 action_func(arg);
1343 return;
1344 }
1345
1346 /* obtain broadcast lock */
1347 lck_mtx_lock(&mp_bc_lock);
1348
1349 /* set static function pointers */
1350 mp_bc_action_func = action_func;
1351 mp_bc_func_arg = arg;
1352
1353 assert_wait((event_t)(uintptr_t)&mp_bc_count, THREAD_UNINT);
1354
1355 /*
1356 * signal other processors, which will call mp_broadcast_action()
1357 */
1358 simple_lock(&x86_topo_lock);
1359 mp_bc_ncpus = i386_active_cpus(); /* total including this cpu */
1360 mp_bc_count = mp_bc_ncpus;
1361 i386_signal_cpus(MP_BROADCAST, ASYNC);
1362
1363 /* call executor function on this cpu */
1364 mp_broadcast_action();
1365 simple_unlock(&x86_topo_lock);
1366
1367 /* block for all cpus to have run action_func */
1368 if (mp_bc_ncpus > 1)
1369 thread_block(THREAD_CONTINUE_NULL);
1370 else
1371 clear_wait(current_thread(), THREAD_AWAKENED);
1372
1373 /* release lock */
1374 lck_mtx_unlock(&mp_bc_lock);
1375}
1376
1377void
1378i386_activate_cpu(void)
1379{
1380 cpu_data_t *cdp = current_cpu_datap();
1381
1382 assert(!ml_get_interrupts_enabled());
1383
1384 if (!smp_initialized) {
1385 cdp->cpu_running = TRUE;
1386 return;
1387 }
1388
1389 simple_lock(&x86_topo_lock);
1390 cdp->cpu_running = TRUE;
1391 started_cpu();
1392 simple_unlock(&x86_topo_lock);
1393 flush_tlb_raw();
1394}
1395
1396void
1397i386_deactivate_cpu(void)
1398{
1399 cpu_data_t *cdp = current_cpu_datap();
1400
1401 assert(!ml_get_interrupts_enabled());
1402
1403 KERNEL_DEBUG_CONSTANT(
1404 TRACE_MP_CPU_DEACTIVATE | DBG_FUNC_START,
1405 0, 0, 0, 0, 0);
1406
1407 simple_lock(&x86_topo_lock);
1408 cdp->cpu_running = FALSE;
1409 simple_unlock(&x86_topo_lock);
1410
1411 /*
1412 * Move all of this cpu's timers to the master/boot cpu,
1413 * and poke it in case there's a sooner deadline for it to schedule.
1414 */
1415 timer_queue_shutdown(&cdp->rtclock_timer.queue);
1416 mp_cpus_call(cpu_to_cpumask(master_cpu), ASYNC, timer_queue_expire_local, NULL);
1417
1418 /*
1419 * Open an interrupt window
1420 * and ensure any pending IPI or timer is serviced
1421 */
1422 mp_disable_preemption();
1423 ml_set_interrupts_enabled(TRUE);
1424
1425 while (cdp->cpu_signals && x86_lcpu()->rtcDeadline != EndOfAllTime)
1426 cpu_pause();
1427 /*
1428 * Ensure there's no remaining timer deadline set
1429 * - AICPM may have left one active.
1430 */
1431 setPop(0);
1432
1433 ml_set_interrupts_enabled(FALSE);
1434 mp_enable_preemption();
1435
1436 KERNEL_DEBUG_CONSTANT(
1437 TRACE_MP_CPU_DEACTIVATE | DBG_FUNC_END,
1438 0, 0, 0, 0, 0);
1439}
1440
1441int pmsafe_debug = 1;
1442
1443#if MACH_KDP
1444volatile boolean_t mp_kdp_trap = FALSE;
1445volatile unsigned long mp_kdp_ncpus;
1446boolean_t mp_kdp_state;
1447
1448
1449void
1450mp_kdp_enter(void)
1451{
1452 unsigned int cpu;
1453 unsigned int ncpus = 0;
1454 unsigned int my_cpu;
1455 uint64_t tsc_timeout;
1456
1457 DBG("mp_kdp_enter()\n");
1458
1459#if DEBUG
1460 if (!smp_initialized)
1461 simple_lock_init(&mp_kdp_lock, 0);
1462#endif
1463
1464 /*
1465 * Here to enter the debugger.
1466 * In case of races, only one cpu is allowed to enter kdp after
1467 * stopping others.
1468 */
1469 mp_kdp_state = ml_set_interrupts_enabled(FALSE);
1470 my_cpu = cpu_number();
1471
1472 if (my_cpu == (unsigned) debugger_cpu) {
1473 kprintf("\n\nRECURSIVE DEBUGGER ENTRY DETECTED\n\n");
1474 kdp_reset();
1475 return;
1476 }
1477
1478 cpu_datap(my_cpu)->debugger_entry_time = mach_absolute_time();
1479 simple_lock(&mp_kdp_lock);
1480
1481 if (pmsafe_debug && !kdp_snapshot)
1482 pmSafeMode(&current_cpu_datap()->lcpu, PM_SAFE_FL_SAFE);
1483
1484 while (mp_kdp_trap) {
1485 simple_unlock(&mp_kdp_lock);
1486 DBG("mp_kdp_enter() race lost\n");
1487#if MACH_KDP
1488 mp_kdp_wait(TRUE, FALSE);
1489#endif
1490 simple_lock(&mp_kdp_lock);
1491 }
1492 debugger_cpu = my_cpu;
1493 ncpus = 1;
1494 mp_kdp_ncpus = 1; /* self */
1495 mp_kdp_trap = TRUE;
1496 debugger_entry_time = cpu_datap(my_cpu)->debugger_entry_time;
1497 simple_unlock(&mp_kdp_lock);
1498
1499 /*
1500 * Deliver a nudge to other cpus, counting how many
1501 */
1502 DBG("mp_kdp_enter() signaling other processors\n");
1503 if (force_immediate_debugger_NMI == FALSE) {
1504 for (cpu = 0; cpu < real_ncpus; cpu++) {
1505 if (cpu == my_cpu || !cpu_datap(cpu)->cpu_running)
1506 continue;
1507 ncpus++;
1508 i386_signal_cpu(cpu, MP_KDP, ASYNC);
1509 }
1510 /*
1511 * Wait other processors to synchronize
1512 */
1513 DBG("mp_kdp_enter() waiting for (%d) processors to suspend\n", ncpus);
1514
1515 /*
1516 * This timeout is rather arbitrary; we don't want to NMI
1517 * processors that are executing at potentially
1518 * "unsafe-to-interrupt" points such as the trampolines,
1519 * but neither do we want to lose state by waiting too long.
1520 */
1521 tsc_timeout = rdtsc64() + (ncpus * 1000 * 1000 * 10ULL);
1522
1523 if (virtualized)
1524 tsc_timeout = ~0ULL;
1525
1526 while (mp_kdp_ncpus != ncpus && rdtsc64() < tsc_timeout) {
1527 /*
1528 * A TLB shootdown request may be pending--this would
1529 * result in the requesting processor waiting in
1530 * PMAP_UPDATE_TLBS() until this processor deals with it.
1531 * Process it, so it can now enter mp_kdp_wait()
1532 */
1533 handle_pending_TLB_flushes();
1534 cpu_pause();
1535 }
1536 /* If we've timed out, and some processor(s) are still unresponsive,
1537 * interrupt them with an NMI via the local APIC.
1538 */
1539 if (mp_kdp_ncpus != ncpus) {
1540 for (cpu = 0; cpu < real_ncpus; cpu++) {
1541 if (cpu == my_cpu || !cpu_datap(cpu)->cpu_running)
1542 continue;
1543 if (cpu_signal_pending(cpu, MP_KDP))
1544 cpu_NMI_interrupt(cpu);
1545 }
1546 }
1547 }
1548 else
1549 for (cpu = 0; cpu < real_ncpus; cpu++) {
1550 if (cpu == my_cpu || !cpu_datap(cpu)->cpu_running)
1551 continue;
1552 cpu_NMI_interrupt(cpu);
1553 }
1554
1555 DBG("mp_kdp_enter() %d processors done %s\n",
1556 (int)mp_kdp_ncpus, (mp_kdp_ncpus == ncpus) ? "OK" : "timed out");
1557
1558 postcode(MP_KDP_ENTER);
1559}
1560
1561static boolean_t
1562cpu_signal_pending(int cpu, mp_event_t event)
1563{
1564 volatile int *signals = &cpu_datap(cpu)->cpu_signals;
1565 boolean_t retval = FALSE;
1566
1567 if (i_bit(event, signals))
1568 retval = TRUE;
1569 return retval;
1570}
1571
1572long kdp_x86_xcpu_invoke(const uint16_t lcpu, kdp_x86_xcpu_func_t func,
1573 void *arg0, void *arg1)
1574{
1575 if (lcpu > (real_ncpus - 1))
1576 return -1;
1577
1578 if (func == NULL)
1579 return -1;
1580
1581 kdp_xcpu_call_func.func = func;
1582 kdp_xcpu_call_func.ret = -1;
1583 kdp_xcpu_call_func.arg0 = arg0;
1584 kdp_xcpu_call_func.arg1 = arg1;
1585 kdp_xcpu_call_func.cpu = lcpu;
1586 DBG("Invoking function %p on CPU %d\n", func, (int32_t)lcpu);
1587 while (kdp_xcpu_call_func.cpu != KDP_XCPU_NONE)
1588 cpu_pause();
1589 return kdp_xcpu_call_func.ret;
1590}
1591
1592static void
1593kdp_x86_xcpu_poll(void)
1594{
1595 if ((uint16_t)cpu_number() == kdp_xcpu_call_func.cpu) {
1596 kdp_xcpu_call_func.ret =
1597 kdp_xcpu_call_func.func(kdp_xcpu_call_func.arg0,
1598 kdp_xcpu_call_func.arg1,
1599 cpu_number());
1600 kdp_xcpu_call_func.cpu = KDP_XCPU_NONE;
1601 }
1602}
1603
1604static void
1605mp_kdp_wait(boolean_t flush, boolean_t isNMI)
1606{
1607 DBG("mp_kdp_wait()\n");
1608 /* If an I/O port has been specified as a debugging aid, issue a read */
1609 panic_io_port_read();
1610 current_cpu_datap()->debugger_ipi_time = mach_absolute_time();
1611#if CONFIG_MCA
1612 /* If we've trapped due to a machine-check, save MCA registers */
1613 mca_check_save();
1614#endif
1615
1616 atomic_incl((volatile long *)&mp_kdp_ncpus, 1);
1617 while (mp_kdp_trap || (isNMI == TRUE)) {
1618 /*
1619 * A TLB shootdown request may be pending--this would result
1620 * in the requesting processor waiting in PMAP_UPDATE_TLBS()
1621 * until this processor handles it.
1622 * Process it, so it can now enter mp_kdp_wait()
1623 */
1624 if (flush)
1625 handle_pending_TLB_flushes();
1626
1627 kdp_x86_xcpu_poll();
1628 cpu_pause();
1629 }
1630
1631 atomic_decl((volatile long *)&mp_kdp_ncpus, 1);
1632 DBG("mp_kdp_wait() done\n");
1633}
1634
1635void
1636mp_kdp_exit(void)
1637{
1638 DBG("mp_kdp_exit()\n");
1639 debugger_cpu = -1;
1640 atomic_decl((volatile long *)&mp_kdp_ncpus, 1);
1641
1642 debugger_exit_time = mach_absolute_time();
1643
1644 mp_kdp_trap = FALSE;
1645 mfence();
1646
1647 /* Wait other processors to stop spinning. XXX needs timeout */
1648 DBG("mp_kdp_exit() waiting for processors to resume\n");
1649 while (mp_kdp_ncpus > 0) {
1650 /*
1651 * a TLB shootdown request may be pending... this would result in the requesting
1652 * processor waiting in PMAP_UPDATE_TLBS() until this processor deals with it.
1653 * Process it, so it can now enter mp_kdp_wait()
1654 */
1655 handle_pending_TLB_flushes();
1656
1657 cpu_pause();
1658 }
1659
1660 if (pmsafe_debug && !kdp_snapshot)
1661 pmSafeMode(&current_cpu_datap()->lcpu, PM_SAFE_FL_NORMAL);
1662
1663 debugger_exit_time = mach_absolute_time();
1664
1665 DBG("mp_kdp_exit() done\n");
1666 (void) ml_set_interrupts_enabled(mp_kdp_state);
1667 postcode(0);
1668}
1669#endif /* MACH_KDP */
1670
1671boolean_t
1672mp_recent_debugger_activity() {
1673 uint64_t abstime = mach_absolute_time();
1674 return (((abstime - debugger_entry_time) < LastDebuggerEntryAllowance) ||
1675 ((abstime - debugger_exit_time) < LastDebuggerEntryAllowance));
1676}
1677
1678/*ARGSUSED*/
1679void
1680init_ast_check(
1681 __unused processor_t processor)
1682{
1683}
1684
1685void
1686cause_ast_check(
1687 processor_t processor)
1688{
1689 int cpu = processor->cpu_id;
1690
1691 if (cpu != cpu_number()) {
1692 i386_signal_cpu(cpu, MP_AST, ASYNC);
1693 KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_REMOTE_AST), cpu, 1, 0, 0, 0);
1694 }
1695}
1696
1697void
1698slave_machine_init(void *param)
1699{
1700 /*
1701 * Here in process context, but with interrupts disabled.
1702 */
1703 DBG("slave_machine_init() CPU%d\n", get_cpu_number());
1704
1705 if (param == FULL_SLAVE_INIT) {
1706 /*
1707 * Cold start
1708 */
1709 clock_init();
1710 cpu_machine_init(); /* Interrupts enabled hereafter */
1711 mp_cpus_call_cpu_init();
1712 } else {
1713 cpu_machine_init(); /* Interrupts enabled hereafter */
1714 }
1715}
1716
1717#undef cpu_number
1718int cpu_number(void)
1719{
1720 return get_cpu_number();
1721}
1722
1723static void
1724cpu_prewarm_init()
1725{
1726 int i;
1727
1728 simple_lock_init(&cpu_warm_lock, 0);
1729 queue_init(&cpu_warm_call_list);
1730 for (i = 0; i < NUM_CPU_WARM_CALLS; i++) {
1731 enqueue_head(&cpu_warm_call_list, (queue_entry_t)&cpu_warm_call_arr[i]);
1732 }
1733}
1734
1735static timer_call_t
1736grab_warm_timer_call()
1737{
1738 spl_t x;
1739 timer_call_t call = NULL;
1740
1741 x = splsched();
1742 simple_lock(&cpu_warm_lock);
1743 if (!queue_empty(&cpu_warm_call_list)) {
1744 call = (timer_call_t) dequeue_head(&cpu_warm_call_list);
1745 }
1746 simple_unlock(&cpu_warm_lock);
1747 splx(x);
1748
1749 return call;
1750}
1751
1752static void
1753free_warm_timer_call(timer_call_t call)
1754{
1755 spl_t x;
1756
1757 x = splsched();
1758 simple_lock(&cpu_warm_lock);
1759 enqueue_head(&cpu_warm_call_list, (queue_entry_t)call);
1760 simple_unlock(&cpu_warm_lock);
1761 splx(x);
1762}
1763
1764/*
1765 * Runs in timer call context (interrupts disabled).
1766 */
1767static void
1768cpu_warm_timer_call_func(
1769 call_entry_param_t p0,
1770 __unused call_entry_param_t p1)
1771{
1772 free_warm_timer_call((timer_call_t)p0);
1773 return;
1774}
1775
1776/*
1777 * Runs with interrupts disabled on the CPU we wish to warm (i.e. CPU 0).
1778 */
1779static void
1780_cpu_warm_setup(
1781 void *arg)
1782{
1783 cpu_warm_data_t cwdp = (cpu_warm_data_t)arg;
1784
1785 timer_call_enter(cwdp->cwd_call, cwdp->cwd_deadline, TIMER_CALL_SYS_CRITICAL | TIMER_CALL_LOCAL);
1786 cwdp->cwd_result = 0;
1787
1788 return;
1789}
1790
1791/*
1792 * Not safe to call with interrupts disabled.
1793 */
1794kern_return_t
1795ml_interrupt_prewarm(
1796 uint64_t deadline)
1797{
1798 struct cpu_warm_data cwd;
1799 timer_call_t call;
1800 cpu_t ct;
1801
1802 if (ml_get_interrupts_enabled() == FALSE) {
1803 panic("%s: Interrupts disabled?\n", __FUNCTION__);
1804 }
1805
1806 /*
1807 * If the platform doesn't need our help, say that we succeeded.
1808 */
1809 if (!ml_get_interrupt_prewake_applicable()) {
1810 return KERN_SUCCESS;
1811 }
1812
1813 /*
1814 * Grab a timer call to use.
1815 */
1816 call = grab_warm_timer_call();
1817 if (call == NULL) {
1818 return KERN_RESOURCE_SHORTAGE;
1819 }
1820
1821 timer_call_setup(call, cpu_warm_timer_call_func, call);
1822 cwd.cwd_call = call;
1823 cwd.cwd_deadline = deadline;
1824 cwd.cwd_result = 0;
1825
1826 /*
1827 * For now, non-local interrupts happen on the master processor.
1828 */
1829 ct = mp_cpus_call(cpu_to_cpumask(master_cpu), SYNC, _cpu_warm_setup, &cwd);
1830 if (ct == 0) {
1831 free_warm_timer_call(call);
1832 return KERN_FAILURE;
1833 } else {
1834 return cwd.cwd_result;
1835 }
1836}