]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Copyright (c) 2000-2012 Apple Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * This file contains Original Code and/or Modifications of Original Code | |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
14 | * | |
15 | * Please obtain a copy of the License at | |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
25 | * | |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ | |
27 | */ | |
28 | /* | |
29 | * @OSF_COPYRIGHT@ | |
30 | */ | |
31 | ||
32 | #include <mach_rt.h> | |
33 | #include <mach_kdp.h> | |
34 | #include <mach_ldebug.h> | |
35 | #include <gprof.h> | |
36 | ||
37 | #include <mach/mach_types.h> | |
38 | #include <mach/kern_return.h> | |
39 | ||
40 | #include <kern/kern_types.h> | |
41 | #include <kern/startup.h> | |
42 | #include <kern/timer_queue.h> | |
43 | #include <kern/processor.h> | |
44 | #include <kern/cpu_number.h> | |
45 | #include <kern/cpu_data.h> | |
46 | #include <kern/assert.h> | |
47 | #include <kern/machine.h> | |
48 | #include <kern/pms.h> | |
49 | #include <kern/misc_protos.h> | |
50 | #include <kern/timer_call.h> | |
51 | #include <kern/kalloc.h> | |
52 | #include <kern/queue.h> | |
53 | ||
54 | #include <vm/vm_map.h> | |
55 | #include <vm/vm_kern.h> | |
56 | ||
57 | #include <profiling/profile-mk.h> | |
58 | ||
59 | #include <i386/proc_reg.h> | |
60 | #include <i386/cpu_threads.h> | |
61 | #include <i386/mp_desc.h> | |
62 | #include <i386/misc_protos.h> | |
63 | #include <i386/trap.h> | |
64 | #include <i386/postcode.h> | |
65 | #include <i386/machine_routines.h> | |
66 | #include <i386/mp.h> | |
67 | #include <i386/mp_events.h> | |
68 | #include <i386/lapic.h> | |
69 | #include <i386/cpuid.h> | |
70 | #include <i386/fpu.h> | |
71 | #include <i386/machine_cpu.h> | |
72 | #include <i386/pmCPU.h> | |
73 | #if CONFIG_MCA | |
74 | #include <i386/machine_check.h> | |
75 | #endif | |
76 | #include <i386/acpi.h> | |
77 | ||
78 | #include <chud/chud_xnu.h> | |
79 | #include <chud/chud_xnu_private.h> | |
80 | ||
81 | #include <sys/kdebug.h> | |
82 | ||
83 | #include <console/serial_protos.h> | |
84 | ||
85 | #if MP_DEBUG | |
86 | #define PAUSE delay(1000000) | |
87 | #define DBG(x...) kprintf(x) | |
88 | #else | |
89 | #define DBG(x...) | |
90 | #define PAUSE | |
91 | #endif /* MP_DEBUG */ | |
92 | ||
93 | /* Debugging/test trace events: */ | |
94 | #define TRACE_MP_TLB_FLUSH MACHDBG_CODE(DBG_MACH_MP, 0) | |
95 | #define TRACE_MP_CPUS_CALL MACHDBG_CODE(DBG_MACH_MP, 1) | |
96 | #define TRACE_MP_CPUS_CALL_LOCAL MACHDBG_CODE(DBG_MACH_MP, 2) | |
97 | #define TRACE_MP_CPUS_CALL_ACTION MACHDBG_CODE(DBG_MACH_MP, 3) | |
98 | #define TRACE_MP_CPUS_CALL_NOBUF MACHDBG_CODE(DBG_MACH_MP, 4) | |
99 | #define TRACE_MP_CPU_FAST_START MACHDBG_CODE(DBG_MACH_MP, 5) | |
100 | #define TRACE_MP_CPU_START MACHDBG_CODE(DBG_MACH_MP, 6) | |
101 | #define TRACE_MP_CPU_DEACTIVATE MACHDBG_CODE(DBG_MACH_MP, 7) | |
102 | ||
103 | #define ABS(v) (((v) > 0)?(v):-(v)) | |
104 | ||
105 | void slave_boot_init(void); | |
106 | void i386_cpu_IPI(int cpu); | |
107 | ||
108 | #if MACH_KDP | |
109 | static void mp_kdp_wait(boolean_t flush, boolean_t isNMI); | |
110 | #endif /* MACH_KDP */ | |
111 | static void mp_rendezvous_action(void); | |
112 | static void mp_broadcast_action(void); | |
113 | ||
114 | #if MACH_KDP | |
115 | static boolean_t cpu_signal_pending(int cpu, mp_event_t event); | |
116 | #endif /* MACH_KDP */ | |
117 | static int NMIInterruptHandler(x86_saved_state_t *regs); | |
118 | ||
119 | boolean_t smp_initialized = FALSE; | |
120 | uint32_t TSC_sync_margin = 0xFFF; | |
121 | volatile boolean_t force_immediate_debugger_NMI = FALSE; | |
122 | volatile boolean_t pmap_tlb_flush_timeout = FALSE; | |
123 | decl_simple_lock_data(,mp_kdp_lock); | |
124 | ||
125 | decl_lck_mtx_data(static, mp_cpu_boot_lock); | |
126 | lck_mtx_ext_t mp_cpu_boot_lock_ext; | |
127 | ||
128 | /* Variables needed for MP rendezvous. */ | |
129 | decl_simple_lock_data(,mp_rv_lock); | |
130 | static void (*mp_rv_setup_func)(void *arg); | |
131 | static void (*mp_rv_action_func)(void *arg); | |
132 | static void (*mp_rv_teardown_func)(void *arg); | |
133 | static void *mp_rv_func_arg; | |
134 | static volatile int mp_rv_ncpus; | |
135 | /* Cache-aligned barriers: */ | |
136 | static volatile long mp_rv_entry __attribute__((aligned(64))); | |
137 | static volatile long mp_rv_exit __attribute__((aligned(64))); | |
138 | static volatile long mp_rv_complete __attribute__((aligned(64))); | |
139 | ||
140 | volatile uint64_t debugger_entry_time; | |
141 | volatile uint64_t debugger_exit_time; | |
142 | #if MACH_KDP | |
143 | #include <kdp/kdp.h> | |
144 | extern int kdp_snapshot; | |
145 | static struct _kdp_xcpu_call_func { | |
146 | kdp_x86_xcpu_func_t func; | |
147 | void *arg0, *arg1; | |
148 | volatile long ret; | |
149 | volatile uint16_t cpu; | |
150 | } kdp_xcpu_call_func = { | |
151 | .cpu = KDP_XCPU_NONE | |
152 | }; | |
153 | ||
154 | #endif | |
155 | ||
156 | /* Variables needed for MP broadcast. */ | |
157 | static void (*mp_bc_action_func)(void *arg); | |
158 | static void *mp_bc_func_arg; | |
159 | static int mp_bc_ncpus; | |
160 | static volatile long mp_bc_count; | |
161 | decl_lck_mtx_data(static, mp_bc_lock); | |
162 | lck_mtx_ext_t mp_bc_lock_ext; | |
163 | static volatile int debugger_cpu = -1; | |
164 | volatile long NMIPI_acks = 0; | |
165 | volatile long NMI_count = 0; | |
166 | ||
167 | extern void NMI_cpus(void); | |
168 | ||
169 | static void mp_cpus_call_init(void); | |
170 | static void mp_cpus_call_cpu_init(void); | |
171 | static void mp_cpus_call_action(void); | |
172 | static void mp_call_PM(void); | |
173 | ||
174 | char mp_slave_stack[PAGE_SIZE] __attribute__((aligned(PAGE_SIZE))); // Temp stack for slave init | |
175 | ||
176 | /* PAL-related routines */ | |
177 | boolean_t i386_smp_init(int nmi_vector, i386_intr_func_t nmi_handler, | |
178 | int ipi_vector, i386_intr_func_t ipi_handler); | |
179 | void i386_start_cpu(int lapic_id, int cpu_num); | |
180 | void i386_send_NMI(int cpu); | |
181 | ||
182 | #if GPROF | |
183 | /* | |
184 | * Initialize dummy structs for profiling. These aren't used but | |
185 | * allows hertz_tick() to be built with GPROF defined. | |
186 | */ | |
187 | struct profile_vars _profile_vars; | |
188 | struct profile_vars *_profile_vars_cpus[MAX_CPUS] = { &_profile_vars }; | |
189 | #define GPROF_INIT() \ | |
190 | { \ | |
191 | int i; \ | |
192 | \ | |
193 | /* Hack to initialize pointers to unused profiling structs */ \ | |
194 | for (i = 1; i < MAX_CPUS; i++) \ | |
195 | _profile_vars_cpus[i] = &_profile_vars; \ | |
196 | } | |
197 | #else | |
198 | #define GPROF_INIT() | |
199 | #endif /* GPROF */ | |
200 | ||
201 | static lck_grp_t smp_lck_grp; | |
202 | static lck_grp_attr_t smp_lck_grp_attr; | |
203 | ||
204 | #define NUM_CPU_WARM_CALLS 20 | |
205 | struct timer_call cpu_warm_call_arr[NUM_CPU_WARM_CALLS]; | |
206 | queue_head_t cpu_warm_call_list; | |
207 | decl_simple_lock_data(static, cpu_warm_lock); | |
208 | ||
209 | typedef struct cpu_warm_data { | |
210 | timer_call_t cwd_call; | |
211 | uint64_t cwd_deadline; | |
212 | int cwd_result; | |
213 | } *cpu_warm_data_t; | |
214 | ||
215 | static void cpu_prewarm_init(void); | |
216 | static void cpu_warm_timer_call_func(call_entry_param_t p0, call_entry_param_t p1); | |
217 | static void _cpu_warm_setup(void *arg); | |
218 | static timer_call_t grab_warm_timer_call(void); | |
219 | static void free_warm_timer_call(timer_call_t call); | |
220 | ||
221 | void | |
222 | smp_init(void) | |
223 | { | |
224 | simple_lock_init(&mp_kdp_lock, 0); | |
225 | simple_lock_init(&mp_rv_lock, 0); | |
226 | lck_grp_attr_setdefault(&smp_lck_grp_attr); | |
227 | lck_grp_init(&smp_lck_grp, "i386_smp", &smp_lck_grp_attr); | |
228 | lck_mtx_init_ext(&mp_cpu_boot_lock, &mp_cpu_boot_lock_ext, &smp_lck_grp, LCK_ATTR_NULL); | |
229 | lck_mtx_init_ext(&mp_bc_lock, &mp_bc_lock_ext, &smp_lck_grp, LCK_ATTR_NULL); | |
230 | console_init(); | |
231 | ||
232 | if(!i386_smp_init(LAPIC_NMI_INTERRUPT, NMIInterruptHandler, | |
233 | LAPIC_VECTOR(INTERPROCESSOR), cpu_signal_handler)) | |
234 | return; | |
235 | ||
236 | cpu_thread_init(); | |
237 | ||
238 | GPROF_INIT(); | |
239 | DBGLOG_CPU_INIT(master_cpu); | |
240 | ||
241 | mp_cpus_call_init(); | |
242 | mp_cpus_call_cpu_init(); | |
243 | ||
244 | if (PE_parse_boot_argn("TSC_sync_margin", | |
245 | &TSC_sync_margin, sizeof(TSC_sync_margin))) { | |
246 | kprintf("TSC sync Margin 0x%x\n", TSC_sync_margin); | |
247 | } else if (cpuid_vmm_present()) { | |
248 | kprintf("TSC sync margin disabled\n"); | |
249 | TSC_sync_margin = 0; | |
250 | } | |
251 | smp_initialized = TRUE; | |
252 | ||
253 | cpu_prewarm_init(); | |
254 | ||
255 | return; | |
256 | } | |
257 | ||
258 | typedef struct { | |
259 | int target_cpu; | |
260 | int target_lapic; | |
261 | int starter_cpu; | |
262 | } processor_start_info_t; | |
263 | static processor_start_info_t start_info __attribute__((aligned(64))); | |
264 | ||
265 | /* | |
266 | * Cache-alignment is to avoid cross-cpu false-sharing interference. | |
267 | */ | |
268 | static volatile long tsc_entry_barrier __attribute__((aligned(64))); | |
269 | static volatile long tsc_exit_barrier __attribute__((aligned(64))); | |
270 | static volatile uint64_t tsc_target __attribute__((aligned(64))); | |
271 | ||
272 | /* | |
273 | * Poll a CPU to see when it has marked itself as running. | |
274 | */ | |
275 | static void | |
276 | mp_wait_for_cpu_up(int slot_num, unsigned int iters, unsigned int usecdelay) | |
277 | { | |
278 | while (iters-- > 0) { | |
279 | if (cpu_datap(slot_num)->cpu_running) | |
280 | break; | |
281 | delay(usecdelay); | |
282 | } | |
283 | } | |
284 | ||
285 | /* | |
286 | * Quickly bring a CPU back online which has been halted. | |
287 | */ | |
288 | kern_return_t | |
289 | intel_startCPU_fast(int slot_num) | |
290 | { | |
291 | kern_return_t rc; | |
292 | ||
293 | /* | |
294 | * Try to perform a fast restart | |
295 | */ | |
296 | rc = pmCPUExitHalt(slot_num); | |
297 | if (rc != KERN_SUCCESS) | |
298 | /* | |
299 | * The CPU was not eligible for a fast restart. | |
300 | */ | |
301 | return(rc); | |
302 | ||
303 | KERNEL_DEBUG_CONSTANT( | |
304 | TRACE_MP_CPU_FAST_START | DBG_FUNC_START, | |
305 | slot_num, 0, 0, 0, 0); | |
306 | ||
307 | /* | |
308 | * Wait until the CPU is back online. | |
309 | */ | |
310 | mp_disable_preemption(); | |
311 | ||
312 | /* | |
313 | * We use short pauses (1us) for low latency. 30,000 iterations is | |
314 | * longer than a full restart would require so it should be more | |
315 | * than long enough. | |
316 | */ | |
317 | ||
318 | mp_wait_for_cpu_up(slot_num, 30000, 1); | |
319 | mp_enable_preemption(); | |
320 | ||
321 | KERNEL_DEBUG_CONSTANT( | |
322 | TRACE_MP_CPU_FAST_START | DBG_FUNC_END, | |
323 | slot_num, cpu_datap(slot_num)->cpu_running, 0, 0, 0); | |
324 | ||
325 | /* | |
326 | * Check to make sure that the CPU is really running. If not, | |
327 | * go through the slow path. | |
328 | */ | |
329 | if (cpu_datap(slot_num)->cpu_running) | |
330 | return(KERN_SUCCESS); | |
331 | else | |
332 | return(KERN_FAILURE); | |
333 | } | |
334 | ||
335 | static void | |
336 | started_cpu(void) | |
337 | { | |
338 | /* Here on the started cpu with cpu_running set TRUE */ | |
339 | ||
340 | if (TSC_sync_margin && | |
341 | start_info.target_cpu == cpu_number()) { | |
342 | /* | |
343 | * I've just started-up, synchronize again with the starter cpu | |
344 | * and then snap my TSC. | |
345 | */ | |
346 | tsc_target = 0; | |
347 | atomic_decl(&tsc_entry_barrier, 1); | |
348 | while (tsc_entry_barrier != 0) | |
349 | ; /* spin for starter and target at barrier */ | |
350 | tsc_target = rdtsc64(); | |
351 | atomic_decl(&tsc_exit_barrier, 1); | |
352 | } | |
353 | } | |
354 | ||
355 | static void | |
356 | start_cpu(void *arg) | |
357 | { | |
358 | int i = 1000; | |
359 | processor_start_info_t *psip = (processor_start_info_t *) arg; | |
360 | ||
361 | /* Ignore this if the current processor is not the starter */ | |
362 | if (cpu_number() != psip->starter_cpu) | |
363 | return; | |
364 | ||
365 | DBG("start_cpu(%p) about to start cpu %d, lapic %d\n", | |
366 | arg, psip->target_cpu, psip->target_lapic); | |
367 | ||
368 | KERNEL_DEBUG_CONSTANT( | |
369 | TRACE_MP_CPU_START | DBG_FUNC_START, | |
370 | psip->target_cpu, | |
371 | psip->target_lapic, 0, 0, 0); | |
372 | ||
373 | i386_start_cpu(psip->target_lapic, psip->target_cpu); | |
374 | ||
375 | #ifdef POSTCODE_DELAY | |
376 | /* Wait much longer if postcodes are displayed for a delay period. */ | |
377 | i *= 10000; | |
378 | #endif | |
379 | DBG("start_cpu(%p) about to wait for cpu %d\n", | |
380 | arg, psip->target_cpu); | |
381 | ||
382 | mp_wait_for_cpu_up(psip->target_cpu, i*100, 100); | |
383 | ||
384 | KERNEL_DEBUG_CONSTANT( | |
385 | TRACE_MP_CPU_START | DBG_FUNC_END, | |
386 | psip->target_cpu, | |
387 | cpu_datap(psip->target_cpu)->cpu_running, 0, 0, 0); | |
388 | ||
389 | if (TSC_sync_margin && | |
390 | cpu_datap(psip->target_cpu)->cpu_running) { | |
391 | /* | |
392 | * Compare the TSC from the started processor with ours. | |
393 | * Report and log/panic if it diverges by more than | |
394 | * TSC_sync_margin (TSC_SYNC_MARGIN) ticks. This margin | |
395 | * can be overriden by boot-arg (with 0 meaning no checking). | |
396 | */ | |
397 | uint64_t tsc_starter; | |
398 | int64_t tsc_delta; | |
399 | atomic_decl(&tsc_entry_barrier, 1); | |
400 | while (tsc_entry_barrier != 0) | |
401 | ; /* spin for both processors at barrier */ | |
402 | tsc_starter = rdtsc64(); | |
403 | atomic_decl(&tsc_exit_barrier, 1); | |
404 | while (tsc_exit_barrier != 0) | |
405 | ; /* spin for target to store its TSC */ | |
406 | tsc_delta = tsc_target - tsc_starter; | |
407 | kprintf("TSC sync for cpu %d: 0x%016llx delta 0x%llx (%lld)\n", | |
408 | psip->target_cpu, tsc_target, tsc_delta, tsc_delta); | |
409 | if (ABS(tsc_delta) > (int64_t) TSC_sync_margin) { | |
410 | #if DEBUG | |
411 | panic( | |
412 | #else | |
413 | printf( | |
414 | #endif | |
415 | "Unsynchronized TSC for cpu %d: " | |
416 | "0x%016llx, delta 0x%llx\n", | |
417 | psip->target_cpu, tsc_target, tsc_delta); | |
418 | } | |
419 | } | |
420 | } | |
421 | ||
422 | kern_return_t | |
423 | intel_startCPU( | |
424 | int slot_num) | |
425 | { | |
426 | int lapic = cpu_to_lapic[slot_num]; | |
427 | boolean_t istate; | |
428 | ||
429 | assert(lapic != -1); | |
430 | ||
431 | DBGLOG_CPU_INIT(slot_num); | |
432 | ||
433 | DBG("intel_startCPU(%d) lapic_id=%d\n", slot_num, lapic); | |
434 | DBG("IdlePTD(%p): 0x%x\n", &IdlePTD, (int) (uintptr_t)IdlePTD); | |
435 | ||
436 | /* | |
437 | * Initialize (or re-initialize) the descriptor tables for this cpu. | |
438 | * Propagate processor mode to slave. | |
439 | */ | |
440 | cpu_desc_init64(cpu_datap(slot_num)); | |
441 | ||
442 | /* Serialize use of the slave boot stack, etc. */ | |
443 | lck_mtx_lock(&mp_cpu_boot_lock); | |
444 | ||
445 | istate = ml_set_interrupts_enabled(FALSE); | |
446 | if (slot_num == get_cpu_number()) { | |
447 | ml_set_interrupts_enabled(istate); | |
448 | lck_mtx_unlock(&mp_cpu_boot_lock); | |
449 | return KERN_SUCCESS; | |
450 | } | |
451 | ||
452 | start_info.starter_cpu = cpu_number(); | |
453 | start_info.target_cpu = slot_num; | |
454 | start_info.target_lapic = lapic; | |
455 | tsc_entry_barrier = 2; | |
456 | tsc_exit_barrier = 2; | |
457 | ||
458 | /* | |
459 | * Perform the processor startup sequence with all running | |
460 | * processors rendezvous'ed. This is required during periods when | |
461 | * the cache-disable bit is set for MTRR/PAT initialization. | |
462 | */ | |
463 | mp_rendezvous_no_intrs(start_cpu, (void *) &start_info); | |
464 | ||
465 | start_info.target_cpu = 0; | |
466 | ||
467 | ml_set_interrupts_enabled(istate); | |
468 | lck_mtx_unlock(&mp_cpu_boot_lock); | |
469 | ||
470 | if (!cpu_datap(slot_num)->cpu_running) { | |
471 | kprintf("Failed to start CPU %02d\n", slot_num); | |
472 | printf("Failed to start CPU %02d, rebooting...\n", slot_num); | |
473 | delay(1000000); | |
474 | halt_cpu(); | |
475 | return KERN_SUCCESS; | |
476 | } else { | |
477 | kprintf("Started cpu %d (lapic id %08x)\n", slot_num, lapic); | |
478 | return KERN_SUCCESS; | |
479 | } | |
480 | } | |
481 | ||
482 | #if MP_DEBUG | |
483 | cpu_signal_event_log_t *cpu_signal[MAX_CPUS]; | |
484 | cpu_signal_event_log_t *cpu_handle[MAX_CPUS]; | |
485 | ||
486 | MP_EVENT_NAME_DECL(); | |
487 | ||
488 | #endif /* MP_DEBUG */ | |
489 | ||
490 | int | |
491 | cpu_signal_handler(x86_saved_state_t *regs) | |
492 | { | |
493 | #if !MACH_KDP | |
494 | #pragma unused (regs) | |
495 | #endif /* !MACH_KDP */ | |
496 | int my_cpu; | |
497 | volatile int *my_word; | |
498 | ||
499 | SCHED_STATS_IPI(current_processor()); | |
500 | ||
501 | my_cpu = cpu_number(); | |
502 | my_word = &cpu_data_ptr[my_cpu]->cpu_signals; | |
503 | /* Store the initial set of signals for diagnostics. New | |
504 | * signals could arrive while these are being processed | |
505 | * so it's no more than a hint. | |
506 | */ | |
507 | ||
508 | cpu_data_ptr[my_cpu]->cpu_prior_signals = *my_word; | |
509 | ||
510 | do { | |
511 | #if MACH_KDP | |
512 | if (i_bit(MP_KDP, my_word) && regs != NULL) { | |
513 | DBGLOG(cpu_handle,my_cpu,MP_KDP); | |
514 | i_bit_clear(MP_KDP, my_word); | |
515 | /* Ensure that the i386_kernel_state at the base of the | |
516 | * current thread's stack (if any) is synchronized with the | |
517 | * context at the moment of the interrupt, to facilitate | |
518 | * access through the debugger. | |
519 | */ | |
520 | sync_iss_to_iks(regs); | |
521 | if (pmsafe_debug && !kdp_snapshot) | |
522 | pmSafeMode(¤t_cpu_datap()->lcpu, PM_SAFE_FL_SAFE); | |
523 | mp_kdp_wait(TRUE, FALSE); | |
524 | if (pmsafe_debug && !kdp_snapshot) | |
525 | pmSafeMode(¤t_cpu_datap()->lcpu, PM_SAFE_FL_NORMAL); | |
526 | } else | |
527 | #endif /* MACH_KDP */ | |
528 | if (i_bit(MP_TLB_FLUSH, my_word)) { | |
529 | DBGLOG(cpu_handle,my_cpu,MP_TLB_FLUSH); | |
530 | i_bit_clear(MP_TLB_FLUSH, my_word); | |
531 | pmap_update_interrupt(); | |
532 | } else if (i_bit(MP_AST, my_word)) { | |
533 | DBGLOG(cpu_handle,my_cpu,MP_AST); | |
534 | i_bit_clear(MP_AST, my_word); | |
535 | ast_check(cpu_to_processor(my_cpu)); | |
536 | } else if (i_bit(MP_RENDEZVOUS, my_word)) { | |
537 | DBGLOG(cpu_handle,my_cpu,MP_RENDEZVOUS); | |
538 | i_bit_clear(MP_RENDEZVOUS, my_word); | |
539 | mp_rendezvous_action(); | |
540 | } else if (i_bit(MP_BROADCAST, my_word)) { | |
541 | DBGLOG(cpu_handle,my_cpu,MP_BROADCAST); | |
542 | i_bit_clear(MP_BROADCAST, my_word); | |
543 | mp_broadcast_action(); | |
544 | } else if (i_bit(MP_CHUD, my_word)) { | |
545 | DBGLOG(cpu_handle,my_cpu,MP_CHUD); | |
546 | i_bit_clear(MP_CHUD, my_word); | |
547 | chudxnu_cpu_signal_handler(); | |
548 | } else if (i_bit(MP_CALL, my_word)) { | |
549 | DBGLOG(cpu_handle,my_cpu,MP_CALL); | |
550 | i_bit_clear(MP_CALL, my_word); | |
551 | mp_cpus_call_action(); | |
552 | } else if (i_bit(MP_CALL_PM, my_word)) { | |
553 | DBGLOG(cpu_handle,my_cpu,MP_CALL_PM); | |
554 | i_bit_clear(MP_CALL_PM, my_word); | |
555 | mp_call_PM(); | |
556 | } | |
557 | } while (*my_word); | |
558 | ||
559 | return 0; | |
560 | } | |
561 | ||
562 | static int | |
563 | NMIInterruptHandler(x86_saved_state_t *regs) | |
564 | { | |
565 | void *stackptr; | |
566 | ||
567 | if (panic_active() && !panicDebugging) { | |
568 | if (pmsafe_debug) | |
569 | pmSafeMode(¤t_cpu_datap()->lcpu, PM_SAFE_FL_SAFE); | |
570 | for(;;) | |
571 | cpu_pause(); | |
572 | } | |
573 | ||
574 | atomic_incl(&NMIPI_acks, 1); | |
575 | atomic_incl(&NMI_count, 1); | |
576 | sync_iss_to_iks_unconditionally(regs); | |
577 | __asm__ volatile("movq %%rbp, %0" : "=m" (stackptr)); | |
578 | ||
579 | if (cpu_number() == debugger_cpu) | |
580 | goto NMExit; | |
581 | ||
582 | if (spinlock_timed_out) { | |
583 | char pstr[192]; | |
584 | snprintf(&pstr[0], sizeof(pstr), "Panic(CPU %d): NMIPI for spinlock acquisition timeout, spinlock: %p, spinlock owner: %p, current_thread: %p, spinlock_owner_cpu: 0x%x\n", cpu_number(), spinlock_timed_out, (void *) spinlock_timed_out->interlock.lock_data, current_thread(), spinlock_owner_cpu); | |
585 | panic_i386_backtrace(stackptr, 64, &pstr[0], TRUE, regs); | |
586 | } else if (pmap_tlb_flush_timeout == TRUE) { | |
587 | char pstr[128]; | |
588 | snprintf(&pstr[0], sizeof(pstr), "Panic(CPU %d): Unresponsive processor (this CPU did not acknowledge interrupts) TLB state:0x%x\n", cpu_number(), current_cpu_datap()->cpu_tlb_invalid); | |
589 | panic_i386_backtrace(stackptr, 48, &pstr[0], TRUE, regs); | |
590 | } | |
591 | ||
592 | #if MACH_KDP | |
593 | if (pmsafe_debug && !kdp_snapshot) | |
594 | pmSafeMode(¤t_cpu_datap()->lcpu, PM_SAFE_FL_SAFE); | |
595 | current_cpu_datap()->cpu_NMI_acknowledged = TRUE; | |
596 | i_bit_clear(MP_KDP, ¤t_cpu_datap()->cpu_signals); | |
597 | mp_kdp_wait(FALSE, pmap_tlb_flush_timeout || spinlock_timed_out || panic_active()); | |
598 | if (pmsafe_debug && !kdp_snapshot) | |
599 | pmSafeMode(¤t_cpu_datap()->lcpu, PM_SAFE_FL_NORMAL); | |
600 | #endif | |
601 | NMExit: | |
602 | return 1; | |
603 | } | |
604 | ||
605 | ||
606 | /* | |
607 | * cpu_interrupt is really just to be used by the scheduler to | |
608 | * get a CPU's attention it may not always issue an IPI. If an | |
609 | * IPI is always needed then use i386_cpu_IPI. | |
610 | */ | |
611 | void | |
612 | cpu_interrupt(int cpu) | |
613 | { | |
614 | boolean_t did_IPI = FALSE; | |
615 | ||
616 | if (smp_initialized | |
617 | && pmCPUExitIdle(cpu_datap(cpu))) { | |
618 | i386_cpu_IPI(cpu); | |
619 | did_IPI = TRUE; | |
620 | } | |
621 | ||
622 | KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_REMOTE_AST), cpu, did_IPI, 0, 0, 0); | |
623 | } | |
624 | ||
625 | /* | |
626 | * Send a true NMI via the local APIC to the specified CPU. | |
627 | */ | |
628 | void | |
629 | cpu_NMI_interrupt(int cpu) | |
630 | { | |
631 | if (smp_initialized) { | |
632 | i386_send_NMI(cpu); | |
633 | } | |
634 | } | |
635 | ||
636 | void | |
637 | NMI_cpus(void) | |
638 | { | |
639 | unsigned int cpu; | |
640 | boolean_t intrs_enabled; | |
641 | uint64_t tsc_timeout; | |
642 | ||
643 | intrs_enabled = ml_set_interrupts_enabled(FALSE); | |
644 | ||
645 | for (cpu = 0; cpu < real_ncpus; cpu++) { | |
646 | if (!cpu_datap(cpu)->cpu_running) | |
647 | continue; | |
648 | cpu_datap(cpu)->cpu_NMI_acknowledged = FALSE; | |
649 | cpu_NMI_interrupt(cpu); | |
650 | tsc_timeout = !machine_timeout_suspended() ? | |
651 | rdtsc64() + (1000 * 1000 * 1000 * 10ULL) : | |
652 | ~0ULL; | |
653 | while (!cpu_datap(cpu)->cpu_NMI_acknowledged) { | |
654 | handle_pending_TLB_flushes(); | |
655 | cpu_pause(); | |
656 | if (rdtsc64() > tsc_timeout) | |
657 | panic("NMI_cpus() timeout cpu %d", cpu); | |
658 | } | |
659 | cpu_datap(cpu)->cpu_NMI_acknowledged = FALSE; | |
660 | } | |
661 | ||
662 | ml_set_interrupts_enabled(intrs_enabled); | |
663 | } | |
664 | ||
665 | static void (* volatile mp_PM_func)(void) = NULL; | |
666 | ||
667 | static void | |
668 | mp_call_PM(void) | |
669 | { | |
670 | assert(!ml_get_interrupts_enabled()); | |
671 | ||
672 | if (mp_PM_func != NULL) | |
673 | mp_PM_func(); | |
674 | } | |
675 | ||
676 | void | |
677 | cpu_PM_interrupt(int cpu) | |
678 | { | |
679 | assert(!ml_get_interrupts_enabled()); | |
680 | ||
681 | if (mp_PM_func != NULL) { | |
682 | if (cpu == cpu_number()) | |
683 | mp_PM_func(); | |
684 | else | |
685 | i386_signal_cpu(cpu, MP_CALL_PM, ASYNC); | |
686 | } | |
687 | } | |
688 | ||
689 | void | |
690 | PM_interrupt_register(void (*fn)(void)) | |
691 | { | |
692 | mp_PM_func = fn; | |
693 | } | |
694 | ||
695 | void | |
696 | i386_signal_cpu(int cpu, mp_event_t event, mp_sync_t mode) | |
697 | { | |
698 | volatile int *signals = &cpu_datap(cpu)->cpu_signals; | |
699 | uint64_t tsc_timeout; | |
700 | ||
701 | ||
702 | if (!cpu_datap(cpu)->cpu_running) | |
703 | return; | |
704 | ||
705 | if (event == MP_TLB_FLUSH) | |
706 | KERNEL_DEBUG(TRACE_MP_TLB_FLUSH | DBG_FUNC_START, cpu, 0, 0, 0, 0); | |
707 | ||
708 | DBGLOG(cpu_signal, cpu, event); | |
709 | ||
710 | i_bit_set(event, signals); | |
711 | i386_cpu_IPI(cpu); | |
712 | if (mode == SYNC) { | |
713 | again: | |
714 | tsc_timeout = !machine_timeout_suspended() ? | |
715 | rdtsc64() + (1000*1000*1000) : | |
716 | ~0ULL; | |
717 | while (i_bit(event, signals) && rdtsc64() < tsc_timeout) { | |
718 | cpu_pause(); | |
719 | } | |
720 | if (i_bit(event, signals)) { | |
721 | DBG("i386_signal_cpu(%d, 0x%x, SYNC) timed out\n", | |
722 | cpu, event); | |
723 | goto again; | |
724 | } | |
725 | } | |
726 | if (event == MP_TLB_FLUSH) | |
727 | KERNEL_DEBUG(TRACE_MP_TLB_FLUSH | DBG_FUNC_END, cpu, 0, 0, 0, 0); | |
728 | } | |
729 | ||
730 | /* | |
731 | * Send event to all running cpus. | |
732 | * Called with the topology locked. | |
733 | */ | |
734 | void | |
735 | i386_signal_cpus(mp_event_t event, mp_sync_t mode) | |
736 | { | |
737 | unsigned int cpu; | |
738 | unsigned int my_cpu = cpu_number(); | |
739 | ||
740 | assert(hw_lock_held((hw_lock_t)&x86_topo_lock)); | |
741 | ||
742 | for (cpu = 0; cpu < real_ncpus; cpu++) { | |
743 | if (cpu == my_cpu || !cpu_datap(cpu)->cpu_running) | |
744 | continue; | |
745 | i386_signal_cpu(cpu, event, mode); | |
746 | } | |
747 | } | |
748 | ||
749 | /* | |
750 | * Return the number of running cpus. | |
751 | * Called with the topology locked. | |
752 | */ | |
753 | int | |
754 | i386_active_cpus(void) | |
755 | { | |
756 | unsigned int cpu; | |
757 | unsigned int ncpus = 0; | |
758 | ||
759 | assert(hw_lock_held((hw_lock_t)&x86_topo_lock)); | |
760 | ||
761 | for (cpu = 0; cpu < real_ncpus; cpu++) { | |
762 | if (cpu_datap(cpu)->cpu_running) | |
763 | ncpus++; | |
764 | } | |
765 | return(ncpus); | |
766 | } | |
767 | ||
768 | /* | |
769 | * Helper function called when busy-waiting: panic if too long | |
770 | * a TSC-based time has elapsed since the start of the spin. | |
771 | */ | |
772 | static void | |
773 | mp_spin_timeout_check(uint64_t tsc_start, const char *msg) | |
774 | { | |
775 | uint64_t tsc_timeout; | |
776 | ||
777 | cpu_pause(); | |
778 | if (machine_timeout_suspended()) | |
779 | return; | |
780 | ||
781 | /* | |
782 | * The timeout is 4 * the spinlock timeout period | |
783 | * unless we have serial console printing (kprintf) enabled | |
784 | * in which case we allow an even greater margin. | |
785 | */ | |
786 | tsc_timeout = disable_serial_output ? (uint64_t) LockTimeOutTSC << 2 | |
787 | : (uint64_t) LockTimeOutTSC << 4; | |
788 | if (rdtsc64() > tsc_start + tsc_timeout) | |
789 | panic("%s: spin timeout", msg); | |
790 | } | |
791 | ||
792 | /* | |
793 | * All-CPU rendezvous: | |
794 | * - CPUs are signalled, | |
795 | * - all execute the setup function (if specified), | |
796 | * - rendezvous (i.e. all cpus reach a barrier), | |
797 | * - all execute the action function (if specified), | |
798 | * - rendezvous again, | |
799 | * - execute the teardown function (if specified), and then | |
800 | * - resume. | |
801 | * | |
802 | * Note that the supplied external functions _must_ be reentrant and aware | |
803 | * that they are running in parallel and in an unknown lock context. | |
804 | */ | |
805 | ||
806 | static void | |
807 | mp_rendezvous_action(void) | |
808 | { | |
809 | boolean_t intrs_enabled; | |
810 | uint64_t tsc_spin_start; | |
811 | ||
812 | /* setup function */ | |
813 | if (mp_rv_setup_func != NULL) | |
814 | mp_rv_setup_func(mp_rv_func_arg); | |
815 | ||
816 | intrs_enabled = ml_get_interrupts_enabled(); | |
817 | ||
818 | /* spin on entry rendezvous */ | |
819 | atomic_incl(&mp_rv_entry, 1); | |
820 | tsc_spin_start = rdtsc64(); | |
821 | while (mp_rv_entry < mp_rv_ncpus) { | |
822 | /* poll for pesky tlb flushes if interrupts disabled */ | |
823 | if (!intrs_enabled) | |
824 | handle_pending_TLB_flushes(); | |
825 | mp_spin_timeout_check(tsc_spin_start, | |
826 | "mp_rendezvous_action() entry"); | |
827 | } | |
828 | ||
829 | /* action function */ | |
830 | if (mp_rv_action_func != NULL) | |
831 | mp_rv_action_func(mp_rv_func_arg); | |
832 | ||
833 | /* spin on exit rendezvous */ | |
834 | atomic_incl(&mp_rv_exit, 1); | |
835 | tsc_spin_start = rdtsc64(); | |
836 | while (mp_rv_exit < mp_rv_ncpus) { | |
837 | if (!intrs_enabled) | |
838 | handle_pending_TLB_flushes(); | |
839 | mp_spin_timeout_check(tsc_spin_start, | |
840 | "mp_rendezvous_action() exit"); | |
841 | } | |
842 | ||
843 | /* teardown function */ | |
844 | if (mp_rv_teardown_func != NULL) | |
845 | mp_rv_teardown_func(mp_rv_func_arg); | |
846 | ||
847 | /* Bump completion count */ | |
848 | atomic_incl(&mp_rv_complete, 1); | |
849 | } | |
850 | ||
851 | void | |
852 | mp_rendezvous(void (*setup_func)(void *), | |
853 | void (*action_func)(void *), | |
854 | void (*teardown_func)(void *), | |
855 | void *arg) | |
856 | { | |
857 | uint64_t tsc_spin_start; | |
858 | ||
859 | if (!smp_initialized) { | |
860 | if (setup_func != NULL) | |
861 | setup_func(arg); | |
862 | if (action_func != NULL) | |
863 | action_func(arg); | |
864 | if (teardown_func != NULL) | |
865 | teardown_func(arg); | |
866 | return; | |
867 | } | |
868 | ||
869 | /* obtain rendezvous lock */ | |
870 | simple_lock(&mp_rv_lock); | |
871 | ||
872 | /* set static function pointers */ | |
873 | mp_rv_setup_func = setup_func; | |
874 | mp_rv_action_func = action_func; | |
875 | mp_rv_teardown_func = teardown_func; | |
876 | mp_rv_func_arg = arg; | |
877 | ||
878 | mp_rv_entry = 0; | |
879 | mp_rv_exit = 0; | |
880 | mp_rv_complete = 0; | |
881 | ||
882 | /* | |
883 | * signal other processors, which will call mp_rendezvous_action() | |
884 | * with interrupts disabled | |
885 | */ | |
886 | simple_lock(&x86_topo_lock); | |
887 | mp_rv_ncpus = i386_active_cpus(); | |
888 | i386_signal_cpus(MP_RENDEZVOUS, ASYNC); | |
889 | simple_unlock(&x86_topo_lock); | |
890 | ||
891 | /* call executor function on this cpu */ | |
892 | mp_rendezvous_action(); | |
893 | ||
894 | /* | |
895 | * Spin for everyone to complete. | |
896 | * This is necessary to ensure that all processors have proceeded | |
897 | * from the exit barrier before we release the rendezvous structure. | |
898 | */ | |
899 | tsc_spin_start = rdtsc64(); | |
900 | while (mp_rv_complete < mp_rv_ncpus) { | |
901 | mp_spin_timeout_check(tsc_spin_start, "mp_rendezvous()"); | |
902 | } | |
903 | ||
904 | /* Tidy up */ | |
905 | mp_rv_setup_func = NULL; | |
906 | mp_rv_action_func = NULL; | |
907 | mp_rv_teardown_func = NULL; | |
908 | mp_rv_func_arg = NULL; | |
909 | ||
910 | /* release lock */ | |
911 | simple_unlock(&mp_rv_lock); | |
912 | } | |
913 | ||
914 | void | |
915 | mp_rendezvous_break_lock(void) | |
916 | { | |
917 | simple_lock_init(&mp_rv_lock, 0); | |
918 | } | |
919 | ||
920 | static void | |
921 | setup_disable_intrs(__unused void * param_not_used) | |
922 | { | |
923 | /* disable interrupts before the first barrier */ | |
924 | boolean_t intr = ml_set_interrupts_enabled(FALSE); | |
925 | ||
926 | current_cpu_datap()->cpu_iflag = intr; | |
927 | DBG("CPU%d: %s\n", get_cpu_number(), __FUNCTION__); | |
928 | } | |
929 | ||
930 | static void | |
931 | teardown_restore_intrs(__unused void * param_not_used) | |
932 | { | |
933 | /* restore interrupt flag following MTRR changes */ | |
934 | ml_set_interrupts_enabled(current_cpu_datap()->cpu_iflag); | |
935 | DBG("CPU%d: %s\n", get_cpu_number(), __FUNCTION__); | |
936 | } | |
937 | ||
938 | /* | |
939 | * A wrapper to mp_rendezvous() to call action_func() with interrupts disabled. | |
940 | * This is exported for use by kexts. | |
941 | */ | |
942 | void | |
943 | mp_rendezvous_no_intrs( | |
944 | void (*action_func)(void *), | |
945 | void *arg) | |
946 | { | |
947 | mp_rendezvous(setup_disable_intrs, | |
948 | action_func, | |
949 | teardown_restore_intrs, | |
950 | arg); | |
951 | } | |
952 | ||
953 | ||
954 | typedef struct { | |
955 | queue_chain_t link; /* queue linkage */ | |
956 | void (*func)(void *,void *); /* routine to call */ | |
957 | void *arg0; /* routine's 1st arg */ | |
958 | void *arg1; /* routine's 2nd arg */ | |
959 | volatile long *countp; /* completion counter */ | |
960 | } mp_call_t; | |
961 | ||
962 | ||
963 | typedef struct { | |
964 | queue_head_t queue; | |
965 | decl_simple_lock_data(, lock); | |
966 | } mp_call_queue_t; | |
967 | #define MP_CPUS_CALL_BUFS_PER_CPU MAX_CPUS | |
968 | static mp_call_queue_t mp_cpus_call_freelist; | |
969 | static mp_call_queue_t mp_cpus_call_head[MAX_CPUS]; | |
970 | ||
971 | static inline boolean_t | |
972 | mp_call_head_lock(mp_call_queue_t *cqp) | |
973 | { | |
974 | boolean_t intrs_enabled; | |
975 | ||
976 | intrs_enabled = ml_set_interrupts_enabled(FALSE); | |
977 | simple_lock(&cqp->lock); | |
978 | ||
979 | return intrs_enabled; | |
980 | } | |
981 | ||
982 | static inline boolean_t | |
983 | mp_call_head_is_locked(mp_call_queue_t *cqp) | |
984 | { | |
985 | return !ml_get_interrupts_enabled() && | |
986 | hw_lock_held((hw_lock_t)&cqp->lock); | |
987 | } | |
988 | ||
989 | static inline void | |
990 | mp_call_head_unlock(mp_call_queue_t *cqp, boolean_t intrs_enabled) | |
991 | { | |
992 | simple_unlock(&cqp->lock); | |
993 | ml_set_interrupts_enabled(intrs_enabled); | |
994 | } | |
995 | ||
996 | static inline mp_call_t * | |
997 | mp_call_alloc(void) | |
998 | { | |
999 | mp_call_t *callp = NULL; | |
1000 | boolean_t intrs_enabled; | |
1001 | mp_call_queue_t *cqp = &mp_cpus_call_freelist; | |
1002 | ||
1003 | intrs_enabled = mp_call_head_lock(cqp); | |
1004 | if (!queue_empty(&cqp->queue)) | |
1005 | queue_remove_first(&cqp->queue, callp, typeof(callp), link); | |
1006 | mp_call_head_unlock(cqp, intrs_enabled); | |
1007 | ||
1008 | return callp; | |
1009 | } | |
1010 | ||
1011 | static inline void | |
1012 | mp_call_free(mp_call_t *callp) | |
1013 | { | |
1014 | boolean_t intrs_enabled; | |
1015 | mp_call_queue_t *cqp = &mp_cpus_call_freelist; | |
1016 | ||
1017 | intrs_enabled = mp_call_head_lock(cqp); | |
1018 | queue_enter_first(&cqp->queue, callp, typeof(callp), link); | |
1019 | mp_call_head_unlock(cqp, intrs_enabled); | |
1020 | } | |
1021 | ||
1022 | static inline mp_call_t * | |
1023 | mp_call_dequeue_locked(mp_call_queue_t *cqp) | |
1024 | { | |
1025 | mp_call_t *callp = NULL; | |
1026 | ||
1027 | assert(mp_call_head_is_locked(cqp)); | |
1028 | if (!queue_empty(&cqp->queue)) | |
1029 | queue_remove_first(&cqp->queue, callp, typeof(callp), link); | |
1030 | return callp; | |
1031 | } | |
1032 | ||
1033 | static inline void | |
1034 | mp_call_enqueue_locked( | |
1035 | mp_call_queue_t *cqp, | |
1036 | mp_call_t *callp) | |
1037 | { | |
1038 | queue_enter(&cqp->queue, callp, typeof(callp), link); | |
1039 | } | |
1040 | ||
1041 | /* Called on the boot processor to initialize global structures */ | |
1042 | static void | |
1043 | mp_cpus_call_init(void) | |
1044 | { | |
1045 | mp_call_queue_t *cqp = &mp_cpus_call_freelist; | |
1046 | ||
1047 | DBG("mp_cpus_call_init()\n"); | |
1048 | simple_lock_init(&cqp->lock, 0); | |
1049 | queue_init(&cqp->queue); | |
1050 | } | |
1051 | ||
1052 | /* | |
1053 | * Called by each processor to add call buffers to the free list | |
1054 | * and to initialize the per-cpu call queue. | |
1055 | * Also called but ignored on slave processors on re-start/wake. | |
1056 | */ | |
1057 | static void | |
1058 | mp_cpus_call_cpu_init(void) | |
1059 | { | |
1060 | int i; | |
1061 | mp_call_queue_t *cqp = &mp_cpus_call_head[cpu_number()]; | |
1062 | mp_call_t *callp; | |
1063 | ||
1064 | if (cqp->queue.next != NULL) | |
1065 | return; /* restart/wake case: called already */ | |
1066 | ||
1067 | simple_lock_init(&cqp->lock, 0); | |
1068 | queue_init(&cqp->queue); | |
1069 | for (i = 0; i < MP_CPUS_CALL_BUFS_PER_CPU; i++) { | |
1070 | callp = (mp_call_t *) kalloc(sizeof(mp_call_t)); | |
1071 | mp_call_free(callp); | |
1072 | } | |
1073 | ||
1074 | DBG("mp_cpus_call_init() done on cpu %d\n", cpu_number()); | |
1075 | } | |
1076 | ||
1077 | /* | |
1078 | * This is called from cpu_signal_handler() to process an MP_CALL signal. | |
1079 | * And also from i386_deactivate_cpu() when a cpu is being taken offline. | |
1080 | */ | |
1081 | static void | |
1082 | mp_cpus_call_action(void) | |
1083 | { | |
1084 | mp_call_queue_t *cqp; | |
1085 | boolean_t intrs_enabled; | |
1086 | mp_call_t *callp; | |
1087 | mp_call_t call; | |
1088 | ||
1089 | assert(!ml_get_interrupts_enabled()); | |
1090 | cqp = &mp_cpus_call_head[cpu_number()]; | |
1091 | intrs_enabled = mp_call_head_lock(cqp); | |
1092 | while ((callp = mp_call_dequeue_locked(cqp)) != NULL) { | |
1093 | /* Copy call request to the stack to free buffer */ | |
1094 | call = *callp; | |
1095 | mp_call_free(callp); | |
1096 | if (call.func != NULL) { | |
1097 | mp_call_head_unlock(cqp, intrs_enabled); | |
1098 | KERNEL_DEBUG_CONSTANT( | |
1099 | TRACE_MP_CPUS_CALL_ACTION, | |
1100 | call.func, call.arg0, call.arg1, call.countp, 0); | |
1101 | call.func(call.arg0, call.arg1); | |
1102 | (void) mp_call_head_lock(cqp); | |
1103 | } | |
1104 | if (call.countp != NULL) | |
1105 | atomic_incl(call.countp, 1); | |
1106 | } | |
1107 | mp_call_head_unlock(cqp, intrs_enabled); | |
1108 | } | |
1109 | ||
1110 | /* | |
1111 | * mp_cpus_call() runs a given function on cpus specified in a given cpu mask. | |
1112 | * Possible modes are: | |
1113 | * SYNC: function is called serially on target cpus in logical cpu order | |
1114 | * waiting for each call to be acknowledged before proceeding | |
1115 | * ASYNC: function call is queued to the specified cpus | |
1116 | * waiting for all calls to complete in parallel before returning | |
1117 | * NOSYNC: function calls are queued | |
1118 | * but we return before confirmation of calls completing. | |
1119 | * The action function may be NULL. | |
1120 | * The cpu mask may include the local cpu. Offline cpus are ignored. | |
1121 | * The return value is the number of cpus on which the call was made or queued. | |
1122 | */ | |
1123 | cpu_t | |
1124 | mp_cpus_call( | |
1125 | cpumask_t cpus, | |
1126 | mp_sync_t mode, | |
1127 | void (*action_func)(void *), | |
1128 | void *arg) | |
1129 | { | |
1130 | return mp_cpus_call1( | |
1131 | cpus, | |
1132 | mode, | |
1133 | (void (*)(void *,void *))action_func, | |
1134 | arg, | |
1135 | NULL, | |
1136 | NULL, | |
1137 | NULL); | |
1138 | } | |
1139 | ||
1140 | static void | |
1141 | mp_cpus_call_wait(boolean_t intrs_enabled, | |
1142 | long mp_cpus_signals, | |
1143 | volatile long *mp_cpus_calls) | |
1144 | { | |
1145 | mp_call_queue_t *cqp; | |
1146 | uint64_t tsc_spin_start; | |
1147 | ||
1148 | cqp = &mp_cpus_call_head[cpu_number()]; | |
1149 | ||
1150 | tsc_spin_start = rdtsc64(); | |
1151 | while (*mp_cpus_calls < mp_cpus_signals) { | |
1152 | if (!intrs_enabled) { | |
1153 | /* Sniffing w/o locking */ | |
1154 | if (!queue_empty(&cqp->queue)) | |
1155 | mp_cpus_call_action(); | |
1156 | handle_pending_TLB_flushes(); | |
1157 | } | |
1158 | mp_spin_timeout_check(tsc_spin_start, "mp_cpus_call_wait()"); | |
1159 | } | |
1160 | } | |
1161 | ||
1162 | cpu_t | |
1163 | mp_cpus_call1( | |
1164 | cpumask_t cpus, | |
1165 | mp_sync_t mode, | |
1166 | void (*action_func)(void *, void *), | |
1167 | void *arg0, | |
1168 | void *arg1, | |
1169 | cpumask_t *cpus_calledp, | |
1170 | cpumask_t *cpus_notcalledp) | |
1171 | { | |
1172 | cpu_t cpu; | |
1173 | boolean_t intrs_enabled = FALSE; | |
1174 | boolean_t call_self = FALSE; | |
1175 | cpumask_t cpus_called = 0; | |
1176 | cpumask_t cpus_notcalled = 0; | |
1177 | long mp_cpus_signals = 0; | |
1178 | volatile long mp_cpus_calls = 0; | |
1179 | uint64_t tsc_spin_start; | |
1180 | ||
1181 | KERNEL_DEBUG_CONSTANT( | |
1182 | TRACE_MP_CPUS_CALL | DBG_FUNC_START, | |
1183 | cpus, mode, VM_KERNEL_UNSLIDE(action_func), arg0, arg1); | |
1184 | ||
1185 | if (!smp_initialized) { | |
1186 | if ((cpus & CPUMASK_SELF) == 0) | |
1187 | goto out; | |
1188 | if (action_func != NULL) { | |
1189 | intrs_enabled = ml_set_interrupts_enabled(FALSE); | |
1190 | action_func(arg0, arg1); | |
1191 | ml_set_interrupts_enabled(intrs_enabled); | |
1192 | } | |
1193 | call_self = TRUE; | |
1194 | goto out; | |
1195 | } | |
1196 | ||
1197 | /* | |
1198 | * Queue the call for each non-local requested cpu. | |
1199 | * The topo lock is not taken. Instead we sniff the cpu_running state | |
1200 | * and then re-check it after taking the call lock. A cpu being taken | |
1201 | * offline runs the action function after clearing the cpu_running. | |
1202 | */ | |
1203 | mp_disable_preemption(); /* interrupts may be enabled */ | |
1204 | tsc_spin_start = rdtsc64(); | |
1205 | for (cpu = 0; cpu < (cpu_t) real_ncpus; cpu++) { | |
1206 | if (((cpu_to_cpumask(cpu) & cpus) == 0) || | |
1207 | !cpu_datap(cpu)->cpu_running) | |
1208 | continue; | |
1209 | if (cpu == (cpu_t) cpu_number()) { | |
1210 | /* | |
1211 | * We don't IPI ourself and if calling asynchronously, | |
1212 | * we defer our call until we have signalled all others. | |
1213 | */ | |
1214 | call_self = TRUE; | |
1215 | cpus_called |= cpu_to_cpumask(cpu); | |
1216 | if (mode == SYNC && action_func != NULL) { | |
1217 | KERNEL_DEBUG_CONSTANT( | |
1218 | TRACE_MP_CPUS_CALL_LOCAL, | |
1219 | VM_KERNEL_UNSLIDE(action_func), | |
1220 | arg0, arg1, 0, 0); | |
1221 | action_func(arg0, arg1); | |
1222 | } | |
1223 | } else { | |
1224 | /* | |
1225 | * Here to queue a call to cpu and IPI. | |
1226 | * Spinning for request buffer unless NOSYNC. | |
1227 | */ | |
1228 | mp_call_t *callp = NULL; | |
1229 | mp_call_queue_t *cqp = &mp_cpus_call_head[cpu]; | |
1230 | ||
1231 | queue_call: | |
1232 | if (callp == NULL) | |
1233 | callp = mp_call_alloc(); | |
1234 | intrs_enabled = mp_call_head_lock(cqp); | |
1235 | if (!cpu_datap(cpu)->cpu_running) { | |
1236 | mp_call_head_unlock(cqp, intrs_enabled); | |
1237 | continue; | |
1238 | } | |
1239 | if (mode == NOSYNC) { | |
1240 | if (callp == NULL) { | |
1241 | cpus_notcalled |= cpu_to_cpumask(cpu); | |
1242 | mp_call_head_unlock(cqp, intrs_enabled); | |
1243 | KERNEL_DEBUG_CONSTANT( | |
1244 | TRACE_MP_CPUS_CALL_NOBUF, | |
1245 | cpu, 0, 0, 0, 0); | |
1246 | continue; | |
1247 | } | |
1248 | callp->countp = NULL; | |
1249 | } else { | |
1250 | if (callp == NULL) { | |
1251 | mp_call_head_unlock(cqp, intrs_enabled); | |
1252 | KERNEL_DEBUG_CONSTANT( | |
1253 | TRACE_MP_CPUS_CALL_NOBUF, | |
1254 | cpu, 0, 0, 0, 0); | |
1255 | if (!intrs_enabled) { | |
1256 | /* Sniffing w/o locking */ | |
1257 | if (!queue_empty(&cqp->queue)) | |
1258 | mp_cpus_call_action(); | |
1259 | handle_pending_TLB_flushes(); | |
1260 | } | |
1261 | mp_spin_timeout_check( | |
1262 | tsc_spin_start, | |
1263 | "mp_cpus_call1()"); | |
1264 | goto queue_call; | |
1265 | } | |
1266 | callp->countp = &mp_cpus_calls; | |
1267 | } | |
1268 | callp->func = action_func; | |
1269 | callp->arg0 = arg0; | |
1270 | callp->arg1 = arg1; | |
1271 | mp_call_enqueue_locked(cqp, callp); | |
1272 | mp_cpus_signals++; | |
1273 | cpus_called |= cpu_to_cpumask(cpu); | |
1274 | i386_signal_cpu(cpu, MP_CALL, ASYNC); | |
1275 | mp_call_head_unlock(cqp, intrs_enabled); | |
1276 | if (mode == SYNC) { | |
1277 | mp_cpus_call_wait(intrs_enabled, mp_cpus_signals, &mp_cpus_calls); | |
1278 | } | |
1279 | } | |
1280 | } | |
1281 | ||
1282 | /* Call locally if mode not SYNC */ | |
1283 | if (mode != SYNC && call_self ) { | |
1284 | KERNEL_DEBUG_CONSTANT( | |
1285 | TRACE_MP_CPUS_CALL_LOCAL, | |
1286 | VM_KERNEL_UNSLIDE(action_func), arg0, arg1, 0, 0); | |
1287 | if (action_func != NULL) { | |
1288 | ml_set_interrupts_enabled(FALSE); | |
1289 | action_func(arg0, arg1); | |
1290 | ml_set_interrupts_enabled(intrs_enabled); | |
1291 | } | |
1292 | } | |
1293 | ||
1294 | /* Safe to allow pre-emption now */ | |
1295 | mp_enable_preemption(); | |
1296 | ||
1297 | /* For ASYNC, now wait for all signaled cpus to complete their calls */ | |
1298 | if (mode == ASYNC) { | |
1299 | mp_cpus_call_wait(intrs_enabled, mp_cpus_signals, &mp_cpus_calls); | |
1300 | } | |
1301 | ||
1302 | out: | |
1303 | cpu = (cpu_t) mp_cpus_signals + (call_self ? 1 : 0); | |
1304 | ||
1305 | if (cpus_calledp) | |
1306 | *cpus_calledp = cpus_called; | |
1307 | if (cpus_notcalledp) | |
1308 | *cpus_notcalledp = cpus_notcalled; | |
1309 | ||
1310 | KERNEL_DEBUG_CONSTANT( | |
1311 | TRACE_MP_CPUS_CALL | DBG_FUNC_END, | |
1312 | cpu, cpus_called, cpus_notcalled, 0, 0); | |
1313 | ||
1314 | return cpu; | |
1315 | } | |
1316 | ||
1317 | ||
1318 | static void | |
1319 | mp_broadcast_action(void) | |
1320 | { | |
1321 | /* call action function */ | |
1322 | if (mp_bc_action_func != NULL) | |
1323 | mp_bc_action_func(mp_bc_func_arg); | |
1324 | ||
1325 | /* if we're the last one through, wake up the instigator */ | |
1326 | if (atomic_decl_and_test(&mp_bc_count, 1)) | |
1327 | thread_wakeup(((event_t)(uintptr_t) &mp_bc_count)); | |
1328 | } | |
1329 | ||
1330 | /* | |
1331 | * mp_broadcast() runs a given function on all active cpus. | |
1332 | * The caller blocks until the functions has run on all cpus. | |
1333 | * The caller will also block if there is another pending braodcast. | |
1334 | */ | |
1335 | void | |
1336 | mp_broadcast( | |
1337 | void (*action_func)(void *), | |
1338 | void *arg) | |
1339 | { | |
1340 | if (!smp_initialized) { | |
1341 | if (action_func != NULL) | |
1342 | action_func(arg); | |
1343 | return; | |
1344 | } | |
1345 | ||
1346 | /* obtain broadcast lock */ | |
1347 | lck_mtx_lock(&mp_bc_lock); | |
1348 | ||
1349 | /* set static function pointers */ | |
1350 | mp_bc_action_func = action_func; | |
1351 | mp_bc_func_arg = arg; | |
1352 | ||
1353 | assert_wait((event_t)(uintptr_t)&mp_bc_count, THREAD_UNINT); | |
1354 | ||
1355 | /* | |
1356 | * signal other processors, which will call mp_broadcast_action() | |
1357 | */ | |
1358 | simple_lock(&x86_topo_lock); | |
1359 | mp_bc_ncpus = i386_active_cpus(); /* total including this cpu */ | |
1360 | mp_bc_count = mp_bc_ncpus; | |
1361 | i386_signal_cpus(MP_BROADCAST, ASYNC); | |
1362 | ||
1363 | /* call executor function on this cpu */ | |
1364 | mp_broadcast_action(); | |
1365 | simple_unlock(&x86_topo_lock); | |
1366 | ||
1367 | /* block for all cpus to have run action_func */ | |
1368 | if (mp_bc_ncpus > 1) | |
1369 | thread_block(THREAD_CONTINUE_NULL); | |
1370 | else | |
1371 | clear_wait(current_thread(), THREAD_AWAKENED); | |
1372 | ||
1373 | /* release lock */ | |
1374 | lck_mtx_unlock(&mp_bc_lock); | |
1375 | } | |
1376 | ||
1377 | void | |
1378 | i386_activate_cpu(void) | |
1379 | { | |
1380 | cpu_data_t *cdp = current_cpu_datap(); | |
1381 | ||
1382 | assert(!ml_get_interrupts_enabled()); | |
1383 | ||
1384 | if (!smp_initialized) { | |
1385 | cdp->cpu_running = TRUE; | |
1386 | return; | |
1387 | } | |
1388 | ||
1389 | simple_lock(&x86_topo_lock); | |
1390 | cdp->cpu_running = TRUE; | |
1391 | started_cpu(); | |
1392 | simple_unlock(&x86_topo_lock); | |
1393 | flush_tlb_raw(); | |
1394 | } | |
1395 | ||
1396 | void | |
1397 | i386_deactivate_cpu(void) | |
1398 | { | |
1399 | cpu_data_t *cdp = current_cpu_datap(); | |
1400 | ||
1401 | assert(!ml_get_interrupts_enabled()); | |
1402 | ||
1403 | KERNEL_DEBUG_CONSTANT( | |
1404 | TRACE_MP_CPU_DEACTIVATE | DBG_FUNC_START, | |
1405 | 0, 0, 0, 0, 0); | |
1406 | ||
1407 | simple_lock(&x86_topo_lock); | |
1408 | cdp->cpu_running = FALSE; | |
1409 | simple_unlock(&x86_topo_lock); | |
1410 | ||
1411 | /* | |
1412 | * Move all of this cpu's timers to the master/boot cpu, | |
1413 | * and poke it in case there's a sooner deadline for it to schedule. | |
1414 | */ | |
1415 | timer_queue_shutdown(&cdp->rtclock_timer.queue); | |
1416 | mp_cpus_call(cpu_to_cpumask(master_cpu), ASYNC, timer_queue_expire_local, NULL); | |
1417 | ||
1418 | /* | |
1419 | * Open an interrupt window | |
1420 | * and ensure any pending IPI or timer is serviced | |
1421 | */ | |
1422 | mp_disable_preemption(); | |
1423 | ml_set_interrupts_enabled(TRUE); | |
1424 | ||
1425 | while (cdp->cpu_signals && x86_lcpu()->rtcDeadline != EndOfAllTime) | |
1426 | cpu_pause(); | |
1427 | /* | |
1428 | * Ensure there's no remaining timer deadline set | |
1429 | * - AICPM may have left one active. | |
1430 | */ | |
1431 | setPop(0); | |
1432 | ||
1433 | ml_set_interrupts_enabled(FALSE); | |
1434 | mp_enable_preemption(); | |
1435 | ||
1436 | KERNEL_DEBUG_CONSTANT( | |
1437 | TRACE_MP_CPU_DEACTIVATE | DBG_FUNC_END, | |
1438 | 0, 0, 0, 0, 0); | |
1439 | } | |
1440 | ||
1441 | int pmsafe_debug = 1; | |
1442 | ||
1443 | #if MACH_KDP | |
1444 | volatile boolean_t mp_kdp_trap = FALSE; | |
1445 | volatile unsigned long mp_kdp_ncpus; | |
1446 | boolean_t mp_kdp_state; | |
1447 | ||
1448 | ||
1449 | void | |
1450 | mp_kdp_enter(void) | |
1451 | { | |
1452 | unsigned int cpu; | |
1453 | unsigned int ncpus = 0; | |
1454 | unsigned int my_cpu; | |
1455 | uint64_t tsc_timeout; | |
1456 | ||
1457 | DBG("mp_kdp_enter()\n"); | |
1458 | ||
1459 | #if DEBUG | |
1460 | if (!smp_initialized) | |
1461 | simple_lock_init(&mp_kdp_lock, 0); | |
1462 | #endif | |
1463 | ||
1464 | /* | |
1465 | * Here to enter the debugger. | |
1466 | * In case of races, only one cpu is allowed to enter kdp after | |
1467 | * stopping others. | |
1468 | */ | |
1469 | mp_kdp_state = ml_set_interrupts_enabled(FALSE); | |
1470 | my_cpu = cpu_number(); | |
1471 | ||
1472 | if (my_cpu == (unsigned) debugger_cpu) { | |
1473 | kprintf("\n\nRECURSIVE DEBUGGER ENTRY DETECTED\n\n"); | |
1474 | kdp_reset(); | |
1475 | return; | |
1476 | } | |
1477 | ||
1478 | cpu_datap(my_cpu)->debugger_entry_time = mach_absolute_time(); | |
1479 | simple_lock(&mp_kdp_lock); | |
1480 | ||
1481 | if (pmsafe_debug && !kdp_snapshot) | |
1482 | pmSafeMode(¤t_cpu_datap()->lcpu, PM_SAFE_FL_SAFE); | |
1483 | ||
1484 | while (mp_kdp_trap) { | |
1485 | simple_unlock(&mp_kdp_lock); | |
1486 | DBG("mp_kdp_enter() race lost\n"); | |
1487 | #if MACH_KDP | |
1488 | mp_kdp_wait(TRUE, FALSE); | |
1489 | #endif | |
1490 | simple_lock(&mp_kdp_lock); | |
1491 | } | |
1492 | debugger_cpu = my_cpu; | |
1493 | ncpus = 1; | |
1494 | mp_kdp_ncpus = 1; /* self */ | |
1495 | mp_kdp_trap = TRUE; | |
1496 | debugger_entry_time = cpu_datap(my_cpu)->debugger_entry_time; | |
1497 | simple_unlock(&mp_kdp_lock); | |
1498 | ||
1499 | /* | |
1500 | * Deliver a nudge to other cpus, counting how many | |
1501 | */ | |
1502 | DBG("mp_kdp_enter() signaling other processors\n"); | |
1503 | if (force_immediate_debugger_NMI == FALSE) { | |
1504 | for (cpu = 0; cpu < real_ncpus; cpu++) { | |
1505 | if (cpu == my_cpu || !cpu_datap(cpu)->cpu_running) | |
1506 | continue; | |
1507 | ncpus++; | |
1508 | i386_signal_cpu(cpu, MP_KDP, ASYNC); | |
1509 | } | |
1510 | /* | |
1511 | * Wait other processors to synchronize | |
1512 | */ | |
1513 | DBG("mp_kdp_enter() waiting for (%d) processors to suspend\n", ncpus); | |
1514 | ||
1515 | /* | |
1516 | * This timeout is rather arbitrary; we don't want to NMI | |
1517 | * processors that are executing at potentially | |
1518 | * "unsafe-to-interrupt" points such as the trampolines, | |
1519 | * but neither do we want to lose state by waiting too long. | |
1520 | */ | |
1521 | tsc_timeout = rdtsc64() + (ncpus * 1000 * 1000 * 10ULL); | |
1522 | ||
1523 | if (virtualized) | |
1524 | tsc_timeout = ~0ULL; | |
1525 | ||
1526 | while (mp_kdp_ncpus != ncpus && rdtsc64() < tsc_timeout) { | |
1527 | /* | |
1528 | * A TLB shootdown request may be pending--this would | |
1529 | * result in the requesting processor waiting in | |
1530 | * PMAP_UPDATE_TLBS() until this processor deals with it. | |
1531 | * Process it, so it can now enter mp_kdp_wait() | |
1532 | */ | |
1533 | handle_pending_TLB_flushes(); | |
1534 | cpu_pause(); | |
1535 | } | |
1536 | /* If we've timed out, and some processor(s) are still unresponsive, | |
1537 | * interrupt them with an NMI via the local APIC. | |
1538 | */ | |
1539 | if (mp_kdp_ncpus != ncpus) { | |
1540 | for (cpu = 0; cpu < real_ncpus; cpu++) { | |
1541 | if (cpu == my_cpu || !cpu_datap(cpu)->cpu_running) | |
1542 | continue; | |
1543 | if (cpu_signal_pending(cpu, MP_KDP)) | |
1544 | cpu_NMI_interrupt(cpu); | |
1545 | } | |
1546 | } | |
1547 | } | |
1548 | else | |
1549 | for (cpu = 0; cpu < real_ncpus; cpu++) { | |
1550 | if (cpu == my_cpu || !cpu_datap(cpu)->cpu_running) | |
1551 | continue; | |
1552 | cpu_NMI_interrupt(cpu); | |
1553 | } | |
1554 | ||
1555 | DBG("mp_kdp_enter() %d processors done %s\n", | |
1556 | (int)mp_kdp_ncpus, (mp_kdp_ncpus == ncpus) ? "OK" : "timed out"); | |
1557 | ||
1558 | postcode(MP_KDP_ENTER); | |
1559 | } | |
1560 | ||
1561 | static boolean_t | |
1562 | cpu_signal_pending(int cpu, mp_event_t event) | |
1563 | { | |
1564 | volatile int *signals = &cpu_datap(cpu)->cpu_signals; | |
1565 | boolean_t retval = FALSE; | |
1566 | ||
1567 | if (i_bit(event, signals)) | |
1568 | retval = TRUE; | |
1569 | return retval; | |
1570 | } | |
1571 | ||
1572 | long kdp_x86_xcpu_invoke(const uint16_t lcpu, kdp_x86_xcpu_func_t func, | |
1573 | void *arg0, void *arg1) | |
1574 | { | |
1575 | if (lcpu > (real_ncpus - 1)) | |
1576 | return -1; | |
1577 | ||
1578 | if (func == NULL) | |
1579 | return -1; | |
1580 | ||
1581 | kdp_xcpu_call_func.func = func; | |
1582 | kdp_xcpu_call_func.ret = -1; | |
1583 | kdp_xcpu_call_func.arg0 = arg0; | |
1584 | kdp_xcpu_call_func.arg1 = arg1; | |
1585 | kdp_xcpu_call_func.cpu = lcpu; | |
1586 | DBG("Invoking function %p on CPU %d\n", func, (int32_t)lcpu); | |
1587 | while (kdp_xcpu_call_func.cpu != KDP_XCPU_NONE) | |
1588 | cpu_pause(); | |
1589 | return kdp_xcpu_call_func.ret; | |
1590 | } | |
1591 | ||
1592 | static void | |
1593 | kdp_x86_xcpu_poll(void) | |
1594 | { | |
1595 | if ((uint16_t)cpu_number() == kdp_xcpu_call_func.cpu) { | |
1596 | kdp_xcpu_call_func.ret = | |
1597 | kdp_xcpu_call_func.func(kdp_xcpu_call_func.arg0, | |
1598 | kdp_xcpu_call_func.arg1, | |
1599 | cpu_number()); | |
1600 | kdp_xcpu_call_func.cpu = KDP_XCPU_NONE; | |
1601 | } | |
1602 | } | |
1603 | ||
1604 | static void | |
1605 | mp_kdp_wait(boolean_t flush, boolean_t isNMI) | |
1606 | { | |
1607 | DBG("mp_kdp_wait()\n"); | |
1608 | /* If an I/O port has been specified as a debugging aid, issue a read */ | |
1609 | panic_io_port_read(); | |
1610 | current_cpu_datap()->debugger_ipi_time = mach_absolute_time(); | |
1611 | #if CONFIG_MCA | |
1612 | /* If we've trapped due to a machine-check, save MCA registers */ | |
1613 | mca_check_save(); | |
1614 | #endif | |
1615 | ||
1616 | atomic_incl((volatile long *)&mp_kdp_ncpus, 1); | |
1617 | while (mp_kdp_trap || (isNMI == TRUE)) { | |
1618 | /* | |
1619 | * A TLB shootdown request may be pending--this would result | |
1620 | * in the requesting processor waiting in PMAP_UPDATE_TLBS() | |
1621 | * until this processor handles it. | |
1622 | * Process it, so it can now enter mp_kdp_wait() | |
1623 | */ | |
1624 | if (flush) | |
1625 | handle_pending_TLB_flushes(); | |
1626 | ||
1627 | kdp_x86_xcpu_poll(); | |
1628 | cpu_pause(); | |
1629 | } | |
1630 | ||
1631 | atomic_decl((volatile long *)&mp_kdp_ncpus, 1); | |
1632 | DBG("mp_kdp_wait() done\n"); | |
1633 | } | |
1634 | ||
1635 | void | |
1636 | mp_kdp_exit(void) | |
1637 | { | |
1638 | DBG("mp_kdp_exit()\n"); | |
1639 | debugger_cpu = -1; | |
1640 | atomic_decl((volatile long *)&mp_kdp_ncpus, 1); | |
1641 | ||
1642 | debugger_exit_time = mach_absolute_time(); | |
1643 | ||
1644 | mp_kdp_trap = FALSE; | |
1645 | mfence(); | |
1646 | ||
1647 | /* Wait other processors to stop spinning. XXX needs timeout */ | |
1648 | DBG("mp_kdp_exit() waiting for processors to resume\n"); | |
1649 | while (mp_kdp_ncpus > 0) { | |
1650 | /* | |
1651 | * a TLB shootdown request may be pending... this would result in the requesting | |
1652 | * processor waiting in PMAP_UPDATE_TLBS() until this processor deals with it. | |
1653 | * Process it, so it can now enter mp_kdp_wait() | |
1654 | */ | |
1655 | handle_pending_TLB_flushes(); | |
1656 | ||
1657 | cpu_pause(); | |
1658 | } | |
1659 | ||
1660 | if (pmsafe_debug && !kdp_snapshot) | |
1661 | pmSafeMode(¤t_cpu_datap()->lcpu, PM_SAFE_FL_NORMAL); | |
1662 | ||
1663 | debugger_exit_time = mach_absolute_time(); | |
1664 | ||
1665 | DBG("mp_kdp_exit() done\n"); | |
1666 | (void) ml_set_interrupts_enabled(mp_kdp_state); | |
1667 | postcode(0); | |
1668 | } | |
1669 | #endif /* MACH_KDP */ | |
1670 | ||
1671 | boolean_t | |
1672 | mp_recent_debugger_activity() { | |
1673 | uint64_t abstime = mach_absolute_time(); | |
1674 | return (((abstime - debugger_entry_time) < LastDebuggerEntryAllowance) || | |
1675 | ((abstime - debugger_exit_time) < LastDebuggerEntryAllowance)); | |
1676 | } | |
1677 | ||
1678 | /*ARGSUSED*/ | |
1679 | void | |
1680 | init_ast_check( | |
1681 | __unused processor_t processor) | |
1682 | { | |
1683 | } | |
1684 | ||
1685 | void | |
1686 | cause_ast_check( | |
1687 | processor_t processor) | |
1688 | { | |
1689 | int cpu = processor->cpu_id; | |
1690 | ||
1691 | if (cpu != cpu_number()) { | |
1692 | i386_signal_cpu(cpu, MP_AST, ASYNC); | |
1693 | KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_REMOTE_AST), cpu, 1, 0, 0, 0); | |
1694 | } | |
1695 | } | |
1696 | ||
1697 | void | |
1698 | slave_machine_init(void *param) | |
1699 | { | |
1700 | /* | |
1701 | * Here in process context, but with interrupts disabled. | |
1702 | */ | |
1703 | DBG("slave_machine_init() CPU%d\n", get_cpu_number()); | |
1704 | ||
1705 | if (param == FULL_SLAVE_INIT) { | |
1706 | /* | |
1707 | * Cold start | |
1708 | */ | |
1709 | clock_init(); | |
1710 | cpu_machine_init(); /* Interrupts enabled hereafter */ | |
1711 | mp_cpus_call_cpu_init(); | |
1712 | } else { | |
1713 | cpu_machine_init(); /* Interrupts enabled hereafter */ | |
1714 | } | |
1715 | } | |
1716 | ||
1717 | #undef cpu_number | |
1718 | int cpu_number(void) | |
1719 | { | |
1720 | return get_cpu_number(); | |
1721 | } | |
1722 | ||
1723 | static void | |
1724 | cpu_prewarm_init() | |
1725 | { | |
1726 | int i; | |
1727 | ||
1728 | simple_lock_init(&cpu_warm_lock, 0); | |
1729 | queue_init(&cpu_warm_call_list); | |
1730 | for (i = 0; i < NUM_CPU_WARM_CALLS; i++) { | |
1731 | enqueue_head(&cpu_warm_call_list, (queue_entry_t)&cpu_warm_call_arr[i]); | |
1732 | } | |
1733 | } | |
1734 | ||
1735 | static timer_call_t | |
1736 | grab_warm_timer_call() | |
1737 | { | |
1738 | spl_t x; | |
1739 | timer_call_t call = NULL; | |
1740 | ||
1741 | x = splsched(); | |
1742 | simple_lock(&cpu_warm_lock); | |
1743 | if (!queue_empty(&cpu_warm_call_list)) { | |
1744 | call = (timer_call_t) dequeue_head(&cpu_warm_call_list); | |
1745 | } | |
1746 | simple_unlock(&cpu_warm_lock); | |
1747 | splx(x); | |
1748 | ||
1749 | return call; | |
1750 | } | |
1751 | ||
1752 | static void | |
1753 | free_warm_timer_call(timer_call_t call) | |
1754 | { | |
1755 | spl_t x; | |
1756 | ||
1757 | x = splsched(); | |
1758 | simple_lock(&cpu_warm_lock); | |
1759 | enqueue_head(&cpu_warm_call_list, (queue_entry_t)call); | |
1760 | simple_unlock(&cpu_warm_lock); | |
1761 | splx(x); | |
1762 | } | |
1763 | ||
1764 | /* | |
1765 | * Runs in timer call context (interrupts disabled). | |
1766 | */ | |
1767 | static void | |
1768 | cpu_warm_timer_call_func( | |
1769 | call_entry_param_t p0, | |
1770 | __unused call_entry_param_t p1) | |
1771 | { | |
1772 | free_warm_timer_call((timer_call_t)p0); | |
1773 | return; | |
1774 | } | |
1775 | ||
1776 | /* | |
1777 | * Runs with interrupts disabled on the CPU we wish to warm (i.e. CPU 0). | |
1778 | */ | |
1779 | static void | |
1780 | _cpu_warm_setup( | |
1781 | void *arg) | |
1782 | { | |
1783 | cpu_warm_data_t cwdp = (cpu_warm_data_t)arg; | |
1784 | ||
1785 | timer_call_enter(cwdp->cwd_call, cwdp->cwd_deadline, TIMER_CALL_SYS_CRITICAL | TIMER_CALL_LOCAL); | |
1786 | cwdp->cwd_result = 0; | |
1787 | ||
1788 | return; | |
1789 | } | |
1790 | ||
1791 | /* | |
1792 | * Not safe to call with interrupts disabled. | |
1793 | */ | |
1794 | kern_return_t | |
1795 | ml_interrupt_prewarm( | |
1796 | uint64_t deadline) | |
1797 | { | |
1798 | struct cpu_warm_data cwd; | |
1799 | timer_call_t call; | |
1800 | cpu_t ct; | |
1801 | ||
1802 | if (ml_get_interrupts_enabled() == FALSE) { | |
1803 | panic("%s: Interrupts disabled?\n", __FUNCTION__); | |
1804 | } | |
1805 | ||
1806 | /* | |
1807 | * If the platform doesn't need our help, say that we succeeded. | |
1808 | */ | |
1809 | if (!ml_get_interrupt_prewake_applicable()) { | |
1810 | return KERN_SUCCESS; | |
1811 | } | |
1812 | ||
1813 | /* | |
1814 | * Grab a timer call to use. | |
1815 | */ | |
1816 | call = grab_warm_timer_call(); | |
1817 | if (call == NULL) { | |
1818 | return KERN_RESOURCE_SHORTAGE; | |
1819 | } | |
1820 | ||
1821 | timer_call_setup(call, cpu_warm_timer_call_func, call); | |
1822 | cwd.cwd_call = call; | |
1823 | cwd.cwd_deadline = deadline; | |
1824 | cwd.cwd_result = 0; | |
1825 | ||
1826 | /* | |
1827 | * For now, non-local interrupts happen on the master processor. | |
1828 | */ | |
1829 | ct = mp_cpus_call(cpu_to_cpumask(master_cpu), SYNC, _cpu_warm_setup, &cwd); | |
1830 | if (ct == 0) { | |
1831 | free_warm_timer_call(call); | |
1832 | return KERN_FAILURE; | |
1833 | } else { | |
1834 | return cwd.cwd_result; | |
1835 | } | |
1836 | } |