]>
Commit | Line | Data |
---|---|---|
1 | /*- | |
2 | * Copyright (c) 2008-2010 Apple Inc. | |
3 | * All rights reserved. | |
4 | * | |
5 | * Redistribution and use in source and binary forms, with or without | |
6 | * modification, are permitted provided that the following conditions | |
7 | * are met: | |
8 | * | |
9 | * 1. Redistributions of source code must retain the above copyright | |
10 | * notice, this list of conditions and the following disclaimer. | |
11 | * 2. Redistributions in binary form must reproduce the above copyright | |
12 | * notice, this list of conditions and the following disclaimer in the | |
13 | * documentation and/or other materials provided with the distribution. | |
14 | * 3. Neither the name of Apple Inc. ("Apple") nor the names of | |
15 | * its contributors may be used to endorse or promote products derived | |
16 | * from this software without specific prior written permission. | |
17 | * | |
18 | * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY | |
19 | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED | |
20 | * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE | |
21 | * DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY | |
22 | * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES | |
23 | * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | |
24 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND | |
25 | * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |
26 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF | |
27 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
28 | */ | |
29 | ||
30 | #include <string.h> | |
31 | ||
32 | #include <sys/kernel.h> | |
33 | #include <sys/proc.h> | |
34 | #include <sys/systm.h> | |
35 | ||
36 | #include <kern/host.h> | |
37 | #include <kern/kalloc.h> | |
38 | #include <kern/locks.h> | |
39 | #include <kern/sched_prim.h> | |
40 | ||
41 | #include <libkern/OSAtomic.h> | |
42 | ||
43 | #include <bsm/audit.h> | |
44 | #include <bsm/audit_internal.h> | |
45 | ||
46 | #include <security/audit/audit_bsd.h> | |
47 | #include <security/audit/audit.h> | |
48 | #include <security/audit/audit_private.h> | |
49 | ||
50 | #include <mach/host_priv.h> | |
51 | #include <mach/host_special_ports.h> | |
52 | #include <mach/audit_triggers_server.h> | |
53 | ||
54 | #if CONFIG_AUDIT | |
55 | struct mhdr { | |
56 | size_t mh_size; | |
57 | au_malloc_type_t *mh_type; | |
58 | u_long mh_magic; | |
59 | char mh_data[0]; | |
60 | }; | |
61 | ||
62 | /* | |
63 | * The lock group for the audit subsystem. | |
64 | */ | |
65 | static lck_grp_t *audit_lck_grp = NULL; | |
66 | ||
67 | #define AUDIT_MHMAGIC 0x4D656C53 | |
68 | ||
69 | #if AUDIT_MALLOC_DEBUG | |
70 | #define AU_MAX_SHORTDESC 20 | |
71 | #define AU_MAX_LASTCALLER 20 | |
72 | struct au_malloc_debug_info { | |
73 | SInt64 md_size; | |
74 | SInt64 md_maxsize; | |
75 | SInt32 md_inuse; | |
76 | SInt32 md_maxused; | |
77 | unsigned md_type; | |
78 | unsigned md_magic; | |
79 | char md_shortdesc[AU_MAX_SHORTDESC]; | |
80 | char md_lastcaller[AU_MAX_LASTCALLER]; | |
81 | }; | |
82 | typedef struct au_malloc_debug_info au_malloc_debug_info_t; | |
83 | ||
84 | au_malloc_type_t *audit_malloc_types[NUM_MALLOC_TYPES]; | |
85 | ||
86 | static int audit_sysctl_malloc_debug(struct sysctl_oid *oidp, void *arg1, | |
87 | int arg2, struct sysctl_req *req); | |
88 | ||
89 | SYSCTL_PROC(_kern, OID_AUTO, audit_malloc_debug, CTLFLAG_RD, NULL, 0, | |
90 | audit_sysctl_malloc_debug, "S,audit_malloc_debug", | |
91 | "Current malloc debug info for auditing."); | |
92 | ||
93 | #define AU_MALLOC_DBINFO_SZ \ | |
94 | (NUM_MALLOC_TYPES * sizeof(au_malloc_debug_info_t)) | |
95 | ||
96 | /* | |
97 | * Copy out the malloc debug info via the sysctl interface. The userland code | |
98 | * is something like the following: | |
99 | * | |
100 | * error = sysctlbyname("kern.audit_malloc_debug", buffer_ptr, &buffer_len, | |
101 | * NULL, 0); | |
102 | */ | |
103 | static int | |
104 | audit_sysctl_malloc_debug(__unused struct sysctl_oid *oidp, __unused void *arg1, | |
105 | __unused int arg2, struct sysctl_req *req) | |
106 | { | |
107 | int i; | |
108 | size_t sz; | |
109 | au_malloc_debug_info_t *amdi_ptr, *nxt_ptr; | |
110 | int err; | |
111 | ||
112 | /* | |
113 | * This provides a read-only node. | |
114 | */ | |
115 | if (req->newptr != USER_ADDR_NULL) | |
116 | return (EPERM); | |
117 | ||
118 | /* | |
119 | * If just querying then return the space required. | |
120 | */ | |
121 | if (req->oldptr == USER_ADDR_NULL) { | |
122 | req->oldidx = AU_MALLOC_DBINFO_SZ; | |
123 | return (0); | |
124 | } | |
125 | ||
126 | /* | |
127 | * Alloc a temporary buffer. | |
128 | */ | |
129 | if (req->oldlen < AU_MALLOC_DBINFO_SZ) | |
130 | return (ENOMEM); | |
131 | amdi_ptr = (au_malloc_debug_info_t *)kalloc(AU_MALLOC_DBINFO_SZ); | |
132 | if (amdi_ptr == NULL) | |
133 | return (ENOMEM); | |
134 | bzero(amdi_ptr, AU_MALLOC_DBINFO_SZ); | |
135 | ||
136 | /* | |
137 | * Build the record array. | |
138 | */ | |
139 | sz = 0; | |
140 | nxt_ptr = amdi_ptr; | |
141 | for(i = 0; i < NUM_MALLOC_TYPES; i++) { | |
142 | if (audit_malloc_types[i] == NULL) | |
143 | continue; | |
144 | if (audit_malloc_types[i]->mt_magic != M_MAGIC) { | |
145 | nxt_ptr->md_magic = audit_malloc_types[i]->mt_magic; | |
146 | continue; | |
147 | } | |
148 | nxt_ptr->md_magic = audit_malloc_types[i]->mt_magic; | |
149 | nxt_ptr->md_size = audit_malloc_types[i]->mt_size; | |
150 | nxt_ptr->md_maxsize = audit_malloc_types[i]->mt_maxsize; | |
151 | nxt_ptr->md_inuse = (int)audit_malloc_types[i]->mt_inuse; | |
152 | nxt_ptr->md_maxused = (int)audit_malloc_types[i]->mt_maxused; | |
153 | strlcpy(nxt_ptr->md_shortdesc, | |
154 | audit_malloc_types[i]->mt_shortdesc, AU_MAX_SHORTDESC - 1); | |
155 | strlcpy(nxt_ptr->md_lastcaller, | |
156 | audit_malloc_types[i]->mt_lastcaller, AU_MAX_LASTCALLER-1); | |
157 | sz += sizeof(au_malloc_debug_info_t); | |
158 | nxt_ptr++; | |
159 | } | |
160 | ||
161 | req->oldlen = sz; | |
162 | err = SYSCTL_OUT(req, amdi_ptr, sz); | |
163 | kfree(amdi_ptr, AU_MALLOC_DBINFO_SZ); | |
164 | ||
165 | return (err); | |
166 | } | |
167 | #endif /* AUDIT_MALLOC_DEBUG */ | |
168 | ||
169 | /* | |
170 | * BSD malloc() | |
171 | * | |
172 | * If the M_NOWAIT flag is set then it may not block and return NULL. | |
173 | * If the M_ZERO flag is set then zero out the buffer. | |
174 | */ | |
175 | void * | |
176 | #if AUDIT_MALLOC_DEBUG | |
177 | _audit_malloc(size_t size, au_malloc_type_t *type, int flags, const char *fn) | |
178 | #else | |
179 | _audit_malloc(size_t size, au_malloc_type_t *type, int flags) | |
180 | #endif | |
181 | { | |
182 | struct mhdr *hdr; | |
183 | size_t memsize = sizeof (*hdr) + size; | |
184 | ||
185 | if (size == 0) | |
186 | return (NULL); | |
187 | if (flags & M_NOWAIT) { | |
188 | hdr = (void *)kalloc_noblock(memsize); | |
189 | } else { | |
190 | hdr = (void *)kalloc(memsize); | |
191 | if (hdr == NULL) | |
192 | panic("_audit_malloc: kernel memory exhausted"); | |
193 | } | |
194 | if (hdr == NULL) | |
195 | return (NULL); | |
196 | hdr->mh_size = memsize; | |
197 | hdr->mh_type = type; | |
198 | hdr->mh_magic = AUDIT_MHMAGIC; | |
199 | if (flags & M_ZERO) | |
200 | memset(hdr->mh_data, 0, size); | |
201 | #if AUDIT_MALLOC_DEBUG | |
202 | if (type != NULL && type->mt_type < NUM_MALLOC_TYPES) { | |
203 | OSAddAtomic64(memsize, &type->mt_size); | |
204 | type->mt_maxsize = max(type->mt_size, type->mt_maxsize); | |
205 | OSAddAtomic(1, &type->mt_inuse); | |
206 | type->mt_maxused = max(type->mt_inuse, type->mt_maxused); | |
207 | type->mt_lastcaller = fn; | |
208 | audit_malloc_types[type->mt_type] = type; | |
209 | } | |
210 | #endif /* AUDIT_MALLOC_DEBUG */ | |
211 | return (hdr->mh_data); | |
212 | } | |
213 | ||
214 | /* | |
215 | * BSD free() | |
216 | */ | |
217 | void | |
218 | #if AUDIT_MALLOC_DEBUG | |
219 | _audit_free(void *addr, au_malloc_type_t *type) | |
220 | #else | |
221 | _audit_free(void *addr, __unused au_malloc_type_t *type) | |
222 | #endif | |
223 | { | |
224 | struct mhdr *hdr; | |
225 | ||
226 | if (addr == NULL) | |
227 | return; | |
228 | hdr = addr; hdr--; | |
229 | ||
230 | KASSERT(hdr->mh_magic == AUDIT_MHMAGIC, | |
231 | ("_audit_free(): hdr->mh_magic != AUDIT_MHMAGIC")); | |
232 | ||
233 | #if AUDIT_MALLOC_DEBUG | |
234 | if (type != NULL) { | |
235 | OSAddAtomic64(-hdr->mh_size, &type->mt_size); | |
236 | OSAddAtomic(-1, &type->mt_inuse); | |
237 | } | |
238 | #endif /* AUDIT_MALLOC_DEBUG */ | |
239 | kfree(hdr, hdr->mh_size); | |
240 | } | |
241 | ||
242 | /* | |
243 | * Initialize a condition variable. Must be called before use. | |
244 | */ | |
245 | void | |
246 | _audit_cv_init(struct cv *cvp, const char *desc) | |
247 | { | |
248 | ||
249 | if (desc == NULL) | |
250 | cvp->cv_description = "UNKNOWN"; | |
251 | else | |
252 | cvp->cv_description = desc; | |
253 | cvp->cv_waiters = 0; | |
254 | } | |
255 | ||
256 | /* | |
257 | * Destory a condition variable. | |
258 | */ | |
259 | void | |
260 | _audit_cv_destroy(struct cv *cvp) | |
261 | { | |
262 | ||
263 | cvp->cv_description = NULL; | |
264 | cvp->cv_waiters = 0; | |
265 | } | |
266 | ||
267 | /* | |
268 | * Signal a condition variable, wakes up one waiting thread. | |
269 | */ | |
270 | void | |
271 | _audit_cv_signal(struct cv *cvp) | |
272 | { | |
273 | ||
274 | if (cvp->cv_waiters > 0) { | |
275 | wakeup_one((caddr_t)cvp); | |
276 | cvp->cv_waiters--; | |
277 | } | |
278 | } | |
279 | ||
280 | /* | |
281 | * Broadcast a signal to a condition variable. | |
282 | */ | |
283 | void | |
284 | _audit_cv_broadcast(struct cv *cvp) | |
285 | { | |
286 | ||
287 | if (cvp->cv_waiters > 0) { | |
288 | wakeup((caddr_t)cvp); | |
289 | cvp->cv_waiters = 0; | |
290 | } | |
291 | } | |
292 | ||
293 | /* | |
294 | * Wait on a condition variable. A cv_signal or cv_broadcast on the same | |
295 | * condition variable will resume the thread. It is recommended that the mutex | |
296 | * be held when cv_signal or cv_broadcast are called. | |
297 | */ | |
298 | void | |
299 | _audit_cv_wait(struct cv *cvp, lck_mtx_t *mp, const char *desc) | |
300 | { | |
301 | ||
302 | cvp->cv_waiters++; | |
303 | (void) msleep(cvp, mp, PZERO, desc, 0); | |
304 | } | |
305 | ||
306 | /* | |
307 | * Wait on a condition variable, allowing interruption by signals. Return 0 | |
308 | * if the thread was resumed with cv_signal or cv_broadcast, EINTR or | |
309 | * ERESTART if a signal was caught. If ERESTART is returned the system call | |
310 | * should be restarted if possible. | |
311 | */ | |
312 | int | |
313 | _audit_cv_wait_sig(struct cv *cvp, lck_mtx_t *mp, const char *desc) | |
314 | { | |
315 | ||
316 | cvp->cv_waiters++; | |
317 | return (msleep(cvp, mp, PSOCK | PCATCH, desc, 0)); | |
318 | } | |
319 | ||
320 | /* | |
321 | * BSD Mutexes. | |
322 | */ | |
323 | void | |
324 | #if DIAGNOSTIC | |
325 | _audit_mtx_init(struct mtx *mp, const char *lckname) | |
326 | #else | |
327 | _audit_mtx_init(struct mtx *mp, __unused const char *lckname) | |
328 | #endif | |
329 | { | |
330 | mp->mtx_lock = lck_mtx_alloc_init(audit_lck_grp, LCK_ATTR_NULL); | |
331 | KASSERT(mp->mtx_lock != NULL, | |
332 | ("_audit_mtx_init: Could not allocate a mutex.")); | |
333 | #if DIAGNOSTIC | |
334 | strlcpy(mp->mtx_name, lckname, AU_MAX_LCK_NAME); | |
335 | #endif | |
336 | } | |
337 | ||
338 | void | |
339 | _audit_mtx_destroy(struct mtx *mp) | |
340 | { | |
341 | ||
342 | if (mp->mtx_lock) { | |
343 | lck_mtx_free(mp->mtx_lock, audit_lck_grp); | |
344 | mp->mtx_lock = NULL; | |
345 | } | |
346 | } | |
347 | ||
348 | /* | |
349 | * BSD rw locks. | |
350 | */ | |
351 | void | |
352 | #if DIAGNOSTIC | |
353 | _audit_rw_init(struct rwlock *lp, const char *lckname) | |
354 | #else | |
355 | _audit_rw_init(struct rwlock *lp, __unused const char *lckname) | |
356 | #endif | |
357 | { | |
358 | lp->rw_lock = lck_rw_alloc_init(audit_lck_grp, LCK_ATTR_NULL); | |
359 | KASSERT(lp->rw_lock != NULL, | |
360 | ("_audit_rw_init: Could not allocate a rw lock.")); | |
361 | #if DIAGNOSTIC | |
362 | strlcpy(lp->rw_name, lckname, AU_MAX_LCK_NAME); | |
363 | #endif | |
364 | } | |
365 | ||
366 | void | |
367 | _audit_rw_destroy(struct rwlock *lp) | |
368 | { | |
369 | ||
370 | if (lp->rw_lock) { | |
371 | lck_rw_free(lp->rw_lock, audit_lck_grp); | |
372 | lp->rw_lock = NULL; | |
373 | } | |
374 | } | |
375 | /* | |
376 | * Wait on a condition variable in a continuation (i.e. yield kernel stack). | |
377 | * A cv_signal or cv_broadcast on the same condition variable will cause | |
378 | * the thread to be scheduled. | |
379 | */ | |
380 | int | |
381 | _audit_cv_wait_continuation(struct cv *cvp, lck_mtx_t *mp, thread_continue_t function) | |
382 | { | |
383 | int status = KERN_SUCCESS; | |
384 | ||
385 | cvp->cv_waiters++; | |
386 | assert_wait(cvp, THREAD_UNINT); | |
387 | lck_mtx_unlock(mp); | |
388 | ||
389 | status = thread_block(function); | |
390 | ||
391 | /* should not be reached, but just in case, re-lock */ | |
392 | lck_mtx_lock(mp); | |
393 | ||
394 | return status; | |
395 | } | |
396 | ||
397 | /* | |
398 | * Simple recursive lock. | |
399 | */ | |
400 | void | |
401 | #if DIAGNOSTIC | |
402 | _audit_rlck_init(struct rlck *lp, const char *lckname) | |
403 | #else | |
404 | _audit_rlck_init(struct rlck *lp, __unused const char *lckname) | |
405 | #endif | |
406 | { | |
407 | ||
408 | lp->rl_mtx = lck_mtx_alloc_init(audit_lck_grp, LCK_ATTR_NULL); | |
409 | KASSERT(lp->rl_mtx != NULL, | |
410 | ("_audit_rlck_init: Could not allocate a recursive lock.")); | |
411 | #if DIAGNOSTIC | |
412 | strlcpy(lp->rl_name, lckname, AU_MAX_LCK_NAME); | |
413 | #endif | |
414 | lp->rl_thread = 0; | |
415 | lp->rl_recurse = 0; | |
416 | } | |
417 | ||
418 | /* | |
419 | * Recursive lock. Allow same thread to recursively lock the same lock. | |
420 | */ | |
421 | void | |
422 | _audit_rlck_lock(struct rlck *lp) | |
423 | { | |
424 | ||
425 | if (lp->rl_thread == current_thread()) { | |
426 | OSAddAtomic(1, &lp->rl_recurse); | |
427 | KASSERT(lp->rl_recurse < 10000, | |
428 | ("_audit_rlck_lock: lock nested too deep.")); | |
429 | } else { | |
430 | lck_mtx_lock(lp->rl_mtx); | |
431 | lp->rl_thread = current_thread(); | |
432 | lp->rl_recurse = 1; | |
433 | } | |
434 | } | |
435 | ||
436 | /* | |
437 | * Recursive unlock. It should be the same thread that does the unlock. | |
438 | */ | |
439 | void | |
440 | _audit_rlck_unlock(struct rlck *lp) | |
441 | { | |
442 | KASSERT(lp->rl_thread == current_thread(), | |
443 | ("_audit_rlck_unlock(): Don't own lock.")); | |
444 | ||
445 | /* Note: OSAddAtomic returns old value. */ | |
446 | if (OSAddAtomic(-1, &lp->rl_recurse) == 1) { | |
447 | lp->rl_thread = 0; | |
448 | lck_mtx_unlock(lp->rl_mtx); | |
449 | } | |
450 | } | |
451 | ||
452 | void | |
453 | _audit_rlck_destroy(struct rlck *lp) | |
454 | { | |
455 | ||
456 | if (lp->rl_mtx) { | |
457 | lck_mtx_free(lp->rl_mtx, audit_lck_grp); | |
458 | lp->rl_mtx = NULL; | |
459 | } | |
460 | } | |
461 | ||
462 | /* | |
463 | * Recursive lock assert. | |
464 | */ | |
465 | void | |
466 | _audit_rlck_assert(struct rlck *lp, u_int assert) | |
467 | { | |
468 | thread_t cthd = current_thread(); | |
469 | ||
470 | if (assert == LCK_MTX_ASSERT_OWNED && lp->rl_thread == cthd) | |
471 | panic("recursive lock (%p) not held by this thread (%p).", | |
472 | lp, cthd); | |
473 | if (assert == LCK_MTX_ASSERT_NOTOWNED && lp->rl_thread != 0) | |
474 | panic("recursive lock (%p) held by thread (%p).", | |
475 | lp, cthd); | |
476 | } | |
477 | ||
478 | /* | |
479 | * Simple sleep lock. | |
480 | */ | |
481 | void | |
482 | #if DIAGNOSTIC | |
483 | _audit_slck_init(struct slck *lp, const char *lckname) | |
484 | #else | |
485 | _audit_slck_init(struct slck *lp, __unused const char *lckname) | |
486 | #endif | |
487 | { | |
488 | ||
489 | lp->sl_mtx = lck_mtx_alloc_init(audit_lck_grp, LCK_ATTR_NULL); | |
490 | KASSERT(lp->sl_mtx != NULL, | |
491 | ("_audit_slck_init: Could not allocate a sleep lock.")); | |
492 | #if DIAGNOSTIC | |
493 | strlcpy(lp->sl_name, lckname, AU_MAX_LCK_NAME); | |
494 | #endif | |
495 | lp->sl_locked = 0; | |
496 | lp->sl_waiting = 0; | |
497 | } | |
498 | ||
499 | /* | |
500 | * Sleep lock lock. The 'intr' flag determines if the lock is interruptible. | |
501 | * If 'intr' is true then signals or other events can interrupt the sleep lock. | |
502 | */ | |
503 | wait_result_t | |
504 | _audit_slck_lock(struct slck *lp, int intr) | |
505 | { | |
506 | wait_result_t res = THREAD_AWAKENED; | |
507 | ||
508 | lck_mtx_lock(lp->sl_mtx); | |
509 | while (lp->sl_locked && res == THREAD_AWAKENED) { | |
510 | lp->sl_waiting = 1; | |
511 | res = lck_mtx_sleep(lp->sl_mtx, LCK_SLEEP_DEFAULT, | |
512 | (event_t) lp, (intr) ? THREAD_INTERRUPTIBLE : THREAD_UNINT); | |
513 | } | |
514 | if (res == THREAD_AWAKENED) | |
515 | lp->sl_locked = 1; | |
516 | lck_mtx_unlock(lp->sl_mtx); | |
517 | ||
518 | return (res); | |
519 | } | |
520 | ||
521 | /* | |
522 | * Sleep lock unlock. Wake up all the threads waiting for this lock. | |
523 | */ | |
524 | void | |
525 | _audit_slck_unlock(struct slck *lp) | |
526 | { | |
527 | ||
528 | lck_mtx_lock(lp->sl_mtx); | |
529 | lp->sl_locked = 0; | |
530 | if (lp->sl_waiting) { | |
531 | lp->sl_waiting = 0; | |
532 | ||
533 | /* Wake up *all* sleeping threads. */ | |
534 | wakeup((event_t) lp); | |
535 | } | |
536 | lck_mtx_unlock(lp->sl_mtx); | |
537 | } | |
538 | ||
539 | /* | |
540 | * Sleep lock try. Don't sleep if it doesn't get the lock. | |
541 | */ | |
542 | int | |
543 | _audit_slck_trylock(struct slck *lp) | |
544 | { | |
545 | int result; | |
546 | ||
547 | lck_mtx_lock(lp->sl_mtx); | |
548 | result = !lp->sl_locked; | |
549 | if (result) | |
550 | lp->sl_locked = 1; | |
551 | lck_mtx_unlock(lp->sl_mtx); | |
552 | ||
553 | return (result); | |
554 | } | |
555 | ||
556 | /* | |
557 | * Sleep lock assert. | |
558 | */ | |
559 | void | |
560 | _audit_slck_assert(struct slck *lp, u_int assert) | |
561 | { | |
562 | ||
563 | if (assert == LCK_MTX_ASSERT_OWNED && lp->sl_locked == 0) | |
564 | panic("sleep lock (%p) not held.", lp); | |
565 | if (assert == LCK_MTX_ASSERT_NOTOWNED && lp->sl_locked == 1) | |
566 | panic("sleep lock (%p) held.", lp); | |
567 | } | |
568 | ||
569 | void | |
570 | _audit_slck_destroy(struct slck *lp) | |
571 | { | |
572 | ||
573 | if (lp->sl_mtx) { | |
574 | lck_mtx_free(lp->sl_mtx, audit_lck_grp); | |
575 | lp->sl_mtx = NULL; | |
576 | } | |
577 | } | |
578 | ||
579 | /* | |
580 | * XXXss - This code was taken from bsd/netinet6/icmp6.c. Maybe ppsratecheck() | |
581 | * should be made global in icmp6.c. | |
582 | */ | |
583 | #ifndef timersub | |
584 | #define timersub(tvp, uvp, vvp) \ | |
585 | do { \ | |
586 | (vvp)->tv_sec = (tvp)->tv_sec - (uvp)->tv_sec; \ | |
587 | (vvp)->tv_usec = (tvp)->tv_usec - (uvp)->tv_usec; \ | |
588 | if ((vvp)->tv_usec < 0) { \ | |
589 | (vvp)->tv_sec--; \ | |
590 | (vvp)->tv_usec += 1000000; \ | |
591 | } \ | |
592 | } while (0) | |
593 | #endif | |
594 | ||
595 | /* | |
596 | * Packets (or events) per second limitation. | |
597 | */ | |
598 | int | |
599 | _audit_ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps) | |
600 | { | |
601 | struct timeval tv, delta; | |
602 | int rv; | |
603 | ||
604 | microtime(&tv); | |
605 | ||
606 | timersub(&tv, lasttime, &delta); | |
607 | ||
608 | /* | |
609 | * Check for 0,0 so that the message will be seen at least once. | |
610 | * If more than one second has passed since the last update of | |
611 | * lasttime, reset the counter. | |
612 | * | |
613 | * we do increment *curpps even in *curpps < maxpps case, as some may | |
614 | * try to use *curpps for stat purposes as well. | |
615 | */ | |
616 | if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) || | |
617 | delta.tv_sec >= 1) { | |
618 | *lasttime = tv; | |
619 | *curpps = 0; | |
620 | rv = 1; | |
621 | } else if (maxpps < 0) | |
622 | rv = 1; | |
623 | else if (*curpps < maxpps) | |
624 | rv = 1; | |
625 | else | |
626 | rv = 0; | |
627 | if (*curpps + 1 > 0) | |
628 | *curpps = *curpps + 1; | |
629 | ||
630 | return (rv); | |
631 | } | |
632 | ||
633 | /* | |
634 | * Initialize lock group for audit related locks/mutexes. | |
635 | */ | |
636 | void | |
637 | _audit_lck_grp_init(void) | |
638 | { | |
639 | audit_lck_grp = lck_grp_alloc_init("Audit", LCK_GRP_ATTR_NULL); | |
640 | ||
641 | KASSERT(audit_lck_grp != NULL, | |
642 | ("audit_get_lck_grp: Could not allocate the audit lock group.")); | |
643 | } | |
644 | ||
645 | int | |
646 | audit_send_trigger(unsigned int trigger) | |
647 | { | |
648 | mach_port_t audit_port; | |
649 | int error; | |
650 | ||
651 | error = host_get_audit_control_port(host_priv_self(), &audit_port); | |
652 | if (error == KERN_SUCCESS && audit_port != MACH_PORT_NULL) { | |
653 | audit_triggers(audit_port, trigger); | |
654 | return (0); | |
655 | } else { | |
656 | printf("Cannot get audit control port\n"); | |
657 | return (error); | |
658 | } | |
659 | } | |
660 | #endif /* CONFIG_AUDIT */ |