]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Copyright (c) 2000 Apple Computer, Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * The contents of this file constitute Original Code as defined in and | |
7 | * are subject to the Apple Public Source License Version 1.1 (the | |
8 | * "License"). You may not use this file except in compliance with the | |
9 | * License. Please obtain a copy of the License at | |
10 | * http://www.apple.com/publicsource and read it before using this file. | |
11 | * | |
12 | * This Original Code and all software distributed under the License are | |
13 | * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
14 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
15 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
16 | * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the | |
17 | * License for the specific language governing rights and limitations | |
18 | * under the License. | |
19 | * | |
20 | * @APPLE_LICENSE_HEADER_END@ | |
21 | */ | |
22 | /* | |
23 | * @OSF_COPYRIGHT@ | |
24 | */ | |
25 | /* | |
26 | * Mach Operating System | |
27 | * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University | |
28 | * All Rights Reserved. | |
29 | * | |
30 | * Permission to use, copy, modify and distribute this software and its | |
31 | * documentation is hereby granted, provided that both the copyright | |
32 | * notice and this permission notice appear in all copies of the | |
33 | * software, derivative works or modified versions, and any portions | |
34 | * thereof, and that both notices appear in supporting documentation. | |
35 | * | |
36 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" | |
37 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR | |
38 | * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. | |
39 | * | |
40 | * Carnegie Mellon requests users of this software to return to | |
41 | * | |
42 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU | |
43 | * School of Computer Science | |
44 | * Carnegie Mellon University | |
45 | * Pittsburgh PA 15213-3890 | |
46 | * | |
47 | * any improvements or extensions that they make and grant Carnegie Mellon | |
48 | * the rights to redistribute these changes. | |
49 | */ | |
50 | /* | |
51 | */ | |
52 | /* | |
53 | * File: vm/vm_pageout.c | |
54 | * Author: Avadis Tevanian, Jr., Michael Wayne Young | |
55 | * Date: 1985 | |
56 | * | |
57 | * The proverbial page-out daemon. | |
58 | */ | |
59 | ||
60 | #include <mach_pagemap.h> | |
61 | #include <mach_cluster_stats.h> | |
62 | #include <mach_kdb.h> | |
63 | #include <advisory_pageout.h> | |
64 | ||
65 | #include <mach/mach_types.h> | |
66 | #include <mach/memory_object.h> | |
67 | #include <mach/memory_object_default.h> | |
68 | #include <mach/memory_object_control_server.h> | |
69 | #include <mach/mach_host_server.h> | |
70 | #include <mach/vm_param.h> | |
71 | #include <mach/vm_statistics.h> | |
72 | #include <kern/host_statistics.h> | |
73 | #include <kern/counters.h> | |
74 | #include <kern/thread.h> | |
75 | #include <kern/xpr.h> | |
76 | #include <vm/pmap.h> | |
77 | #include <vm/vm_map.h> | |
78 | #include <vm/vm_object.h> | |
79 | #include <vm/vm_page.h> | |
80 | #include <vm/vm_pageout.h> | |
81 | #include <machine/vm_tuning.h> | |
82 | #include <kern/misc_protos.h> | |
83 | ||
84 | extern ipc_port_t memory_manager_default; | |
85 | ||
86 | #ifndef VM_PAGE_LAUNDRY_MAX | |
87 | #define VM_PAGE_LAUNDRY_MAX 6 /* outstanding DMM page cleans */ | |
88 | #endif /* VM_PAGEOUT_LAUNDRY_MAX */ | |
89 | ||
90 | #ifndef VM_PAGEOUT_BURST_MAX | |
91 | #define VM_PAGEOUT_BURST_MAX 32 /* simultaneous EMM page cleans */ | |
92 | #endif /* VM_PAGEOUT_BURST_MAX */ | |
93 | ||
94 | #ifndef VM_PAGEOUT_DISCARD_MAX | |
95 | #define VM_PAGEOUT_DISCARD_MAX 68 /* simultaneous EMM page cleans */ | |
96 | #endif /* VM_PAGEOUT_DISCARD_MAX */ | |
97 | ||
98 | #ifndef VM_PAGEOUT_BURST_WAIT | |
99 | #define VM_PAGEOUT_BURST_WAIT 30 /* milliseconds per page */ | |
100 | #endif /* VM_PAGEOUT_BURST_WAIT */ | |
101 | ||
102 | #ifndef VM_PAGEOUT_EMPTY_WAIT | |
103 | #define VM_PAGEOUT_EMPTY_WAIT 200 /* milliseconds */ | |
104 | #endif /* VM_PAGEOUT_EMPTY_WAIT */ | |
105 | ||
106 | /* | |
107 | * To obtain a reasonable LRU approximation, the inactive queue | |
108 | * needs to be large enough to give pages on it a chance to be | |
109 | * referenced a second time. This macro defines the fraction | |
110 | * of active+inactive pages that should be inactive. | |
111 | * The pageout daemon uses it to update vm_page_inactive_target. | |
112 | * | |
113 | * If vm_page_free_count falls below vm_page_free_target and | |
114 | * vm_page_inactive_count is below vm_page_inactive_target, | |
115 | * then the pageout daemon starts running. | |
116 | */ | |
117 | ||
118 | #ifndef VM_PAGE_INACTIVE_TARGET | |
119 | #define VM_PAGE_INACTIVE_TARGET(avail) ((avail) * 1 / 3) | |
120 | #endif /* VM_PAGE_INACTIVE_TARGET */ | |
121 | ||
122 | /* | |
123 | * Once the pageout daemon starts running, it keeps going | |
124 | * until vm_page_free_count meets or exceeds vm_page_free_target. | |
125 | */ | |
126 | ||
127 | #ifndef VM_PAGE_FREE_TARGET | |
128 | #define VM_PAGE_FREE_TARGET(free) (15 + (free) / 80) | |
129 | #endif /* VM_PAGE_FREE_TARGET */ | |
130 | ||
131 | /* | |
132 | * The pageout daemon always starts running once vm_page_free_count | |
133 | * falls below vm_page_free_min. | |
134 | */ | |
135 | ||
136 | #ifndef VM_PAGE_FREE_MIN | |
137 | #define VM_PAGE_FREE_MIN(free) (10 + (free) / 100) | |
138 | #endif /* VM_PAGE_FREE_MIN */ | |
139 | ||
140 | /* | |
141 | * When vm_page_free_count falls below vm_page_free_reserved, | |
142 | * only vm-privileged threads can allocate pages. vm-privilege | |
143 | * allows the pageout daemon and default pager (and any other | |
144 | * associated threads needed for default pageout) to continue | |
145 | * operation by dipping into the reserved pool of pages. | |
146 | */ | |
147 | ||
148 | #ifndef VM_PAGE_FREE_RESERVED | |
149 | #define VM_PAGE_FREE_RESERVED \ | |
150 | ((16 * VM_PAGE_LAUNDRY_MAX) + NCPUS) | |
151 | #endif /* VM_PAGE_FREE_RESERVED */ | |
152 | ||
153 | /* | |
154 | * Exported variable used to broadcast the activation of the pageout scan | |
155 | * Working Set uses this to throttle its use of pmap removes. In this | |
156 | * way, code which runs within memory in an uncontested context does | |
157 | * not keep encountering soft faults. | |
158 | */ | |
159 | ||
160 | unsigned int vm_pageout_scan_event_counter = 0; | |
161 | ||
162 | /* | |
163 | * Forward declarations for internal routines. | |
164 | */ | |
165 | extern void vm_pageout_continue(void); | |
166 | extern void vm_pageout_scan(void); | |
167 | extern void vm_pageout_throttle(vm_page_t m); | |
168 | extern vm_page_t vm_pageout_cluster_page( | |
169 | vm_object_t object, | |
170 | vm_object_offset_t offset, | |
171 | boolean_t precious_clean); | |
172 | ||
173 | unsigned int vm_pageout_reserved_internal = 0; | |
174 | unsigned int vm_pageout_reserved_really = 0; | |
175 | ||
176 | unsigned int vm_page_laundry_max = 0; /* # of clusters outstanding */ | |
177 | unsigned int vm_page_laundry_min = 0; | |
178 | unsigned int vm_pageout_burst_max = 0; | |
179 | unsigned int vm_pageout_burst_wait = 0; /* milliseconds per page */ | |
180 | unsigned int vm_pageout_empty_wait = 0; /* milliseconds */ | |
181 | unsigned int vm_pageout_burst_min = 0; | |
182 | unsigned int vm_pageout_pause_count = 0; | |
183 | unsigned int vm_pageout_pause_max = 0; | |
184 | unsigned int vm_free_page_pause = 100; /* milliseconds */ | |
185 | ||
186 | /* | |
187 | * These variables record the pageout daemon's actions: | |
188 | * how many pages it looks at and what happens to those pages. | |
189 | * No locking needed because only one thread modifies the variables. | |
190 | */ | |
191 | ||
192 | unsigned int vm_pageout_active = 0; /* debugging */ | |
193 | unsigned int vm_pageout_inactive = 0; /* debugging */ | |
194 | unsigned int vm_pageout_inactive_throttled = 0; /* debugging */ | |
195 | unsigned int vm_pageout_inactive_forced = 0; /* debugging */ | |
196 | unsigned int vm_pageout_inactive_nolock = 0; /* debugging */ | |
197 | unsigned int vm_pageout_inactive_avoid = 0; /* debugging */ | |
198 | unsigned int vm_pageout_inactive_busy = 0; /* debugging */ | |
199 | unsigned int vm_pageout_inactive_absent = 0; /* debugging */ | |
200 | unsigned int vm_pageout_inactive_used = 0; /* debugging */ | |
201 | unsigned int vm_pageout_inactive_clean = 0; /* debugging */ | |
202 | unsigned int vm_pageout_inactive_dirty = 0; /* debugging */ | |
203 | unsigned int vm_pageout_dirty_no_pager = 0; /* debugging */ | |
204 | unsigned int vm_stat_discard = 0; /* debugging */ | |
205 | unsigned int vm_stat_discard_sent = 0; /* debugging */ | |
206 | unsigned int vm_stat_discard_failure = 0; /* debugging */ | |
207 | unsigned int vm_stat_discard_throttle = 0; /* debugging */ | |
208 | unsigned int vm_pageout_scan_active_emm_throttle = 0; /* debugging */ | |
209 | unsigned int vm_pageout_scan_active_emm_throttle_success = 0; /* debugging */ | |
210 | unsigned int vm_pageout_scan_active_emm_throttle_failure = 0; /* debugging */ | |
211 | unsigned int vm_pageout_scan_inactive_emm_throttle = 0; /* debugging */ | |
212 | unsigned int vm_pageout_scan_inactive_emm_throttle_success = 0; /* debugging */ | |
213 | unsigned int vm_pageout_scan_inactive_emm_throttle_failure = 0; /* debugging */ | |
214 | ||
215 | ||
216 | unsigned int vm_pageout_out_of_line = 0; | |
217 | unsigned int vm_pageout_in_place = 0; | |
218 | /* | |
219 | * Routine: vm_pageout_object_allocate | |
220 | * Purpose: | |
221 | * Allocate an object for use as out-of-line memory in a | |
222 | * data_return/data_initialize message. | |
223 | * The page must be in an unlocked object. | |
224 | * | |
225 | * If the page belongs to a trusted pager, cleaning in place | |
226 | * will be used, which utilizes a special "pageout object" | |
227 | * containing private alias pages for the real page frames. | |
228 | * Untrusted pagers use normal out-of-line memory. | |
229 | */ | |
230 | vm_object_t | |
231 | vm_pageout_object_allocate( | |
232 | vm_page_t m, | |
233 | vm_size_t size, | |
234 | vm_object_offset_t offset) | |
235 | { | |
236 | vm_object_t object = m->object; | |
237 | vm_object_t new_object; | |
238 | ||
239 | assert(object->pager_ready); | |
240 | ||
241 | if (object->pager_trusted || object->internal) | |
242 | vm_pageout_throttle(m); | |
243 | ||
244 | new_object = vm_object_allocate(size); | |
245 | ||
246 | if (object->pager_trusted) { | |
247 | assert (offset < object->size); | |
248 | ||
249 | vm_object_lock(new_object); | |
250 | new_object->pageout = TRUE; | |
251 | new_object->shadow = object; | |
252 | new_object->can_persist = FALSE; | |
253 | new_object->copy_strategy = MEMORY_OBJECT_COPY_NONE; | |
254 | new_object->shadow_offset = offset; | |
255 | vm_object_unlock(new_object); | |
256 | ||
257 | /* | |
258 | * Take a paging reference on the object. This will be dropped | |
259 | * in vm_pageout_object_terminate() | |
260 | */ | |
261 | vm_object_lock(object); | |
262 | vm_object_paging_begin(object); | |
263 | vm_object_unlock(object); | |
264 | ||
265 | vm_pageout_in_place++; | |
266 | } else | |
267 | vm_pageout_out_of_line++; | |
268 | return(new_object); | |
269 | } | |
270 | ||
271 | #if MACH_CLUSTER_STATS | |
272 | unsigned long vm_pageout_cluster_dirtied = 0; | |
273 | unsigned long vm_pageout_cluster_cleaned = 0; | |
274 | unsigned long vm_pageout_cluster_collisions = 0; | |
275 | unsigned long vm_pageout_cluster_clusters = 0; | |
276 | unsigned long vm_pageout_cluster_conversions = 0; | |
277 | unsigned long vm_pageout_target_collisions = 0; | |
278 | unsigned long vm_pageout_target_page_dirtied = 0; | |
279 | unsigned long vm_pageout_target_page_freed = 0; | |
280 | #define CLUSTER_STAT(clause) clause | |
281 | #else /* MACH_CLUSTER_STATS */ | |
282 | #define CLUSTER_STAT(clause) | |
283 | #endif /* MACH_CLUSTER_STATS */ | |
284 | ||
285 | /* | |
286 | * Routine: vm_pageout_object_terminate | |
287 | * Purpose: | |
288 | * Destroy the pageout_object allocated by | |
289 | * vm_pageout_object_allocate(), and perform all of the | |
290 | * required cleanup actions. | |
291 | * | |
292 | * In/Out conditions: | |
293 | * The object must be locked, and will be returned locked. | |
294 | */ | |
295 | void | |
296 | vm_pageout_object_terminate( | |
297 | vm_object_t object) | |
298 | { | |
299 | vm_object_t shadow_object; | |
300 | ||
301 | /* | |
302 | * Deal with the deallocation (last reference) of a pageout object | |
303 | * (used for cleaning-in-place) by dropping the paging references/ | |
304 | * freeing pages in the original object. | |
305 | */ | |
306 | ||
307 | assert(object->pageout); | |
308 | shadow_object = object->shadow; | |
309 | vm_object_lock(shadow_object); | |
310 | ||
311 | while (!queue_empty(&object->memq)) { | |
312 | vm_page_t p, m; | |
313 | vm_object_offset_t offset; | |
314 | ||
315 | p = (vm_page_t) queue_first(&object->memq); | |
316 | ||
317 | assert(p->private); | |
318 | assert(p->pageout); | |
319 | p->pageout = FALSE; | |
320 | assert(!p->cleaning); | |
321 | ||
322 | offset = p->offset; | |
323 | VM_PAGE_FREE(p); | |
324 | p = VM_PAGE_NULL; | |
325 | ||
326 | m = vm_page_lookup(shadow_object, | |
327 | offset + object->shadow_offset); | |
328 | ||
329 | if(m == VM_PAGE_NULL) | |
330 | continue; | |
331 | assert(m->cleaning); | |
332 | /* used as a trigger on upl_commit etc to recognize the */ | |
333 | /* pageout daemon's subseqent desire to pageout a cleaning */ | |
334 | /* page. When the bit is on the upl commit code will */ | |
335 | /* respect the pageout bit in the target page over the */ | |
336 | /* caller's page list indication */ | |
337 | m->dump_cleaning = FALSE; | |
338 | ||
339 | /* | |
340 | * Account for the paging reference taken when | |
341 | * m->cleaning was set on this page. | |
342 | */ | |
343 | vm_object_paging_end(shadow_object); | |
344 | assert((m->dirty) || (m->precious) || | |
345 | (m->busy && m->cleaning)); | |
346 | ||
347 | /* | |
348 | * Handle the trusted pager throttle. | |
349 | */ | |
350 | vm_page_lock_queues(); | |
351 | if (m->laundry) { | |
352 | vm_page_laundry_count--; | |
353 | m->laundry = FALSE; | |
354 | if (vm_page_laundry_count < vm_page_laundry_min) { | |
355 | vm_page_laundry_min = 0; | |
356 | thread_wakeup((event_t) &vm_page_laundry_count); | |
357 | } | |
358 | } | |
359 | ||
360 | /* | |
361 | * Handle the "target" page(s). These pages are to be freed if | |
362 | * successfully cleaned. Target pages are always busy, and are | |
363 | * wired exactly once. The initial target pages are not mapped, | |
364 | * (so cannot be referenced or modified) but converted target | |
365 | * pages may have been modified between the selection as an | |
366 | * adjacent page and conversion to a target. | |
367 | */ | |
368 | if (m->pageout) { | |
369 | assert(m->busy); | |
370 | assert(m->wire_count == 1); | |
371 | m->cleaning = FALSE; | |
372 | m->pageout = FALSE; | |
373 | #if MACH_CLUSTER_STATS | |
374 | if (m->wanted) vm_pageout_target_collisions++; | |
375 | #endif | |
376 | /* | |
377 | * Revoke all access to the page. Since the object is | |
378 | * locked, and the page is busy, this prevents the page | |
379 | * from being dirtied after the pmap_is_modified() call | |
380 | * returns. | |
381 | */ | |
382 | pmap_page_protect(m->phys_addr, VM_PROT_NONE); | |
383 | ||
384 | /* | |
385 | * Since the page is left "dirty" but "not modifed", we | |
386 | * can detect whether the page was redirtied during | |
387 | * pageout by checking the modify state. | |
388 | */ | |
389 | m->dirty = pmap_is_modified(m->phys_addr); | |
390 | ||
391 | if (m->dirty) { | |
392 | CLUSTER_STAT(vm_pageout_target_page_dirtied++;) | |
393 | vm_page_unwire(m);/* reactivates */ | |
394 | VM_STAT(reactivations++); | |
395 | PAGE_WAKEUP_DONE(m); | |
396 | } else { | |
397 | CLUSTER_STAT(vm_pageout_target_page_freed++;) | |
398 | vm_page_free(m);/* clears busy, etc. */ | |
399 | } | |
400 | vm_page_unlock_queues(); | |
401 | continue; | |
402 | } | |
403 | /* | |
404 | * Handle the "adjacent" pages. These pages were cleaned in | |
405 | * place, and should be left alone. | |
406 | * If prep_pin_count is nonzero, then someone is using the | |
407 | * page, so make it active. | |
408 | */ | |
409 | if (!m->active && !m->inactive && !m->private) { | |
410 | if (m->reference) | |
411 | vm_page_activate(m); | |
412 | else | |
413 | vm_page_deactivate(m); | |
414 | } | |
415 | if((m->busy) && (m->cleaning)) { | |
416 | ||
417 | /* the request_page_list case, (COPY_OUT_FROM FALSE) */ | |
418 | m->busy = FALSE; | |
419 | ||
420 | /* We do not re-set m->dirty ! */ | |
421 | /* The page was busy so no extraneous activity */ | |
422 | /* could have occured. COPY_INTO is a read into the */ | |
423 | /* new pages. CLEAN_IN_PLACE does actually write */ | |
424 | /* out the pages but handling outside of this code */ | |
425 | /* will take care of resetting dirty. We clear the */ | |
426 | /* modify however for the Programmed I/O case. */ | |
427 | pmap_clear_modify(m->phys_addr); | |
428 | if(m->absent) { | |
429 | m->absent = FALSE; | |
430 | if(shadow_object->absent_count == 1) | |
431 | vm_object_absent_release(shadow_object); | |
432 | else | |
433 | shadow_object->absent_count--; | |
434 | } | |
435 | m->overwriting = FALSE; | |
436 | } else if (m->overwriting) { | |
437 | /* alternate request page list, write to page_list */ | |
438 | /* case. Occurs when the original page was wired */ | |
439 | /* at the time of the list request */ | |
440 | assert(m->wire_count != 0); | |
441 | vm_page_unwire(m);/* reactivates */ | |
442 | m->overwriting = FALSE; | |
443 | } else { | |
444 | /* | |
445 | * Set the dirty state according to whether or not the page was | |
446 | * modified during the pageout. Note that we purposefully do | |
447 | * NOT call pmap_clear_modify since the page is still mapped. | |
448 | * If the page were to be dirtied between the 2 calls, this | |
449 | * this fact would be lost. This code is only necessary to | |
450 | * maintain statistics, since the pmap module is always | |
451 | * consulted if m->dirty is false. | |
452 | */ | |
453 | #if MACH_CLUSTER_STATS | |
454 | m->dirty = pmap_is_modified(m->phys_addr); | |
455 | ||
456 | if (m->dirty) vm_pageout_cluster_dirtied++; | |
457 | else vm_pageout_cluster_cleaned++; | |
458 | if (m->wanted) vm_pageout_cluster_collisions++; | |
459 | #else | |
460 | m->dirty = 0; | |
461 | #endif | |
462 | } | |
463 | m->cleaning = FALSE; | |
464 | ||
465 | ||
466 | /* | |
467 | * Wakeup any thread waiting for the page to be un-cleaning. | |
468 | */ | |
469 | PAGE_WAKEUP(m); | |
470 | vm_page_unlock_queues(); | |
471 | } | |
472 | /* | |
473 | * Account for the paging reference taken in vm_paging_object_allocate. | |
474 | */ | |
475 | vm_object_paging_end(shadow_object); | |
476 | vm_object_unlock(shadow_object); | |
477 | ||
478 | assert(object->ref_count == 0); | |
479 | assert(object->paging_in_progress == 0); | |
480 | assert(object->resident_page_count == 0); | |
481 | return; | |
482 | } | |
483 | ||
484 | /* | |
485 | * Routine: vm_pageout_setup | |
486 | * Purpose: | |
487 | * Set up a page for pageout (clean & flush). | |
488 | * | |
489 | * Move the page to a new object, as part of which it will be | |
490 | * sent to its memory manager in a memory_object_data_write or | |
491 | * memory_object_initialize message. | |
492 | * | |
493 | * The "new_object" and "new_offset" arguments | |
494 | * indicate where the page should be moved. | |
495 | * | |
496 | * In/Out conditions: | |
497 | * The page in question must not be on any pageout queues, | |
498 | * and must be busy. The object to which it belongs | |
499 | * must be unlocked, and the caller must hold a paging | |
500 | * reference to it. The new_object must not be locked. | |
501 | * | |
502 | * This routine returns a pointer to a place-holder page, | |
503 | * inserted at the same offset, to block out-of-order | |
504 | * requests for the page. The place-holder page must | |
505 | * be freed after the data_write or initialize message | |
506 | * has been sent. | |
507 | * | |
508 | * The original page is put on a paging queue and marked | |
509 | * not busy on exit. | |
510 | */ | |
511 | vm_page_t | |
512 | vm_pageout_setup( | |
513 | register vm_page_t m, | |
514 | register vm_object_t new_object, | |
515 | vm_object_offset_t new_offset) | |
516 | { | |
517 | register vm_object_t old_object = m->object; | |
518 | vm_object_offset_t paging_offset; | |
519 | vm_object_offset_t offset; | |
520 | register vm_page_t holding_page; | |
521 | register vm_page_t new_m; | |
522 | register vm_page_t new_page; | |
523 | boolean_t need_to_wire = FALSE; | |
524 | ||
525 | ||
526 | XPR(XPR_VM_PAGEOUT, | |
527 | "vm_pageout_setup, obj 0x%X off 0x%X page 0x%X new obj 0x%X offset 0x%X\n", | |
528 | (integer_t)m->object, (integer_t)m->offset, | |
529 | (integer_t)m, (integer_t)new_object, | |
530 | (integer_t)new_offset); | |
531 | assert(m && m->busy && !m->absent && !m->fictitious && !m->error && | |
532 | !m->restart); | |
533 | ||
534 | assert(m->dirty || m->precious); | |
535 | ||
536 | /* | |
537 | * Create a place-holder page where the old one was, to prevent | |
538 | * attempted pageins of this page while we're unlocked. | |
539 | */ | |
540 | VM_PAGE_GRAB_FICTITIOUS(holding_page); | |
541 | ||
542 | vm_object_lock(old_object); | |
543 | ||
544 | offset = m->offset; | |
545 | paging_offset = offset + old_object->paging_offset; | |
546 | ||
547 | if (old_object->pager_trusted) { | |
548 | /* | |
549 | * This pager is trusted, so we can clean this page | |
550 | * in place. Leave it in the old object, and mark it | |
551 | * cleaning & pageout. | |
552 | */ | |
553 | new_m = holding_page; | |
554 | holding_page = VM_PAGE_NULL; | |
555 | ||
556 | /* | |
557 | * Set up new page to be private shadow of real page. | |
558 | */ | |
559 | new_m->phys_addr = m->phys_addr; | |
560 | new_m->fictitious = FALSE; | |
561 | new_m->pageout = TRUE; | |
562 | ||
563 | /* | |
564 | * Mark real page as cleaning (indicating that we hold a | |
565 | * paging reference to be released via m_o_d_r_c) and | |
566 | * pageout (indicating that the page should be freed | |
567 | * when the pageout completes). | |
568 | */ | |
569 | pmap_clear_modify(m->phys_addr); | |
570 | vm_page_lock_queues(); | |
571 | new_m->private = TRUE; | |
572 | vm_page_wire(new_m); | |
573 | m->cleaning = TRUE; | |
574 | m->pageout = TRUE; | |
575 | ||
576 | vm_page_wire(m); | |
577 | assert(m->wire_count == 1); | |
578 | vm_page_unlock_queues(); | |
579 | ||
580 | m->dirty = TRUE; | |
581 | m->precious = FALSE; | |
582 | m->page_lock = VM_PROT_NONE; | |
583 | m->unusual = FALSE; | |
584 | m->unlock_request = VM_PROT_NONE; | |
585 | } else { | |
586 | /* | |
587 | * Cannot clean in place, so rip the old page out of the | |
588 | * object, and stick the holding page in. Set new_m to the | |
589 | * page in the new object. | |
590 | */ | |
591 | vm_page_lock_queues(); | |
592 | VM_PAGE_QUEUES_REMOVE(m); | |
593 | vm_page_remove(m); | |
594 | ||
595 | vm_page_insert(holding_page, old_object, offset); | |
596 | vm_page_unlock_queues(); | |
597 | ||
598 | m->dirty = TRUE; | |
599 | m->precious = FALSE; | |
600 | new_m = m; | |
601 | new_m->page_lock = VM_PROT_NONE; | |
602 | new_m->unlock_request = VM_PROT_NONE; | |
603 | ||
604 | if (old_object->internal) | |
605 | need_to_wire = TRUE; | |
606 | } | |
607 | /* | |
608 | * Record that this page has been written out | |
609 | */ | |
610 | #if MACH_PAGEMAP | |
611 | vm_external_state_set(old_object->existence_map, offset); | |
612 | #endif /* MACH_PAGEMAP */ | |
613 | ||
614 | vm_object_unlock(old_object); | |
615 | ||
616 | vm_object_lock(new_object); | |
617 | ||
618 | /* | |
619 | * Put the page into the new object. If it is a not wired | |
620 | * (if it's the real page) it will be activated. | |
621 | */ | |
622 | ||
623 | vm_page_lock_queues(); | |
624 | vm_page_insert(new_m, new_object, new_offset); | |
625 | if (need_to_wire) | |
626 | vm_page_wire(new_m); | |
627 | else | |
628 | vm_page_activate(new_m); | |
629 | PAGE_WAKEUP_DONE(new_m); | |
630 | vm_page_unlock_queues(); | |
631 | ||
632 | vm_object_unlock(new_object); | |
633 | ||
634 | /* | |
635 | * Return the placeholder page to simplify cleanup. | |
636 | */ | |
637 | return (holding_page); | |
638 | } | |
639 | ||
640 | /* | |
641 | * Routine: vm_pageclean_setup | |
642 | * | |
643 | * Purpose: setup a page to be cleaned (made non-dirty), but not | |
644 | * necessarily flushed from the VM page cache. | |
645 | * This is accomplished by cleaning in place. | |
646 | * | |
647 | * The page must not be busy, and the object and page | |
648 | * queues must be locked. | |
649 | * | |
650 | */ | |
651 | void | |
652 | vm_pageclean_setup( | |
653 | vm_page_t m, | |
654 | vm_page_t new_m, | |
655 | vm_object_t new_object, | |
656 | vm_object_offset_t new_offset) | |
657 | { | |
658 | vm_object_t old_object = m->object; | |
659 | assert(!m->busy); | |
660 | assert(!m->cleaning); | |
661 | ||
662 | XPR(XPR_VM_PAGEOUT, | |
663 | "vm_pageclean_setup, obj 0x%X off 0x%X page 0x%X new 0x%X new_off 0x%X\n", | |
664 | (integer_t)old_object, m->offset, (integer_t)m, | |
665 | (integer_t)new_m, new_offset); | |
666 | ||
667 | pmap_clear_modify(m->phys_addr); | |
668 | vm_object_paging_begin(old_object); | |
669 | ||
670 | /* | |
671 | * Record that this page has been written out | |
672 | */ | |
673 | #if MACH_PAGEMAP | |
674 | vm_external_state_set(old_object->existence_map, m->offset); | |
675 | #endif /*MACH_PAGEMAP*/ | |
676 | ||
677 | /* | |
678 | * Mark original page as cleaning in place. | |
679 | */ | |
680 | m->cleaning = TRUE; | |
681 | m->dirty = TRUE; | |
682 | m->precious = FALSE; | |
683 | ||
684 | /* | |
685 | * Convert the fictitious page to a private shadow of | |
686 | * the real page. | |
687 | */ | |
688 | assert(new_m->fictitious); | |
689 | new_m->fictitious = FALSE; | |
690 | new_m->private = TRUE; | |
691 | new_m->pageout = TRUE; | |
692 | new_m->phys_addr = m->phys_addr; | |
693 | vm_page_wire(new_m); | |
694 | ||
695 | vm_page_insert(new_m, new_object, new_offset); | |
696 | assert(!new_m->wanted); | |
697 | new_m->busy = FALSE; | |
698 | } | |
699 | ||
700 | void | |
701 | vm_pageclean_copy( | |
702 | vm_page_t m, | |
703 | vm_page_t new_m, | |
704 | vm_object_t new_object, | |
705 | vm_object_offset_t new_offset) | |
706 | { | |
707 | XPR(XPR_VM_PAGEOUT, | |
708 | "vm_pageclean_copy, page 0x%X new_m 0x%X new_obj 0x%X offset 0x%X\n", | |
709 | m, new_m, new_object, new_offset, 0); | |
710 | ||
711 | assert((!m->busy) && (!m->cleaning)); | |
712 | ||
713 | assert(!new_m->private && !new_m->fictitious); | |
714 | ||
715 | pmap_clear_modify(m->phys_addr); | |
716 | ||
717 | m->busy = TRUE; | |
718 | vm_object_paging_begin(m->object); | |
719 | vm_page_unlock_queues(); | |
720 | vm_object_unlock(m->object); | |
721 | ||
722 | /* | |
723 | * Copy the original page to the new page. | |
724 | */ | |
725 | vm_page_copy(m, new_m); | |
726 | ||
727 | /* | |
728 | * Mark the old page as clean. A request to pmap_is_modified | |
729 | * will get the right answer. | |
730 | */ | |
731 | vm_object_lock(m->object); | |
732 | m->dirty = FALSE; | |
733 | ||
734 | vm_object_paging_end(m->object); | |
735 | ||
736 | vm_page_lock_queues(); | |
737 | if (!m->active && !m->inactive) | |
738 | vm_page_activate(m); | |
739 | PAGE_WAKEUP_DONE(m); | |
740 | ||
741 | vm_page_insert(new_m, new_object, new_offset); | |
742 | vm_page_activate(new_m); | |
743 | new_m->busy = FALSE; /* No other thread can be waiting */ | |
744 | } | |
745 | ||
746 | ||
747 | /* | |
748 | * Routine: vm_pageout_initialize_page | |
749 | * Purpose: | |
750 | * Causes the specified page to be initialized in | |
751 | * the appropriate memory object. This routine is used to push | |
752 | * pages into a copy-object when they are modified in the | |
753 | * permanent object. | |
754 | * | |
755 | * The page is moved to a temporary object and paged out. | |
756 | * | |
757 | * In/out conditions: | |
758 | * The page in question must not be on any pageout queues. | |
759 | * The object to which it belongs must be locked. | |
760 | * The page must be busy, but not hold a paging reference. | |
761 | * | |
762 | * Implementation: | |
763 | * Move this page to a completely new object. | |
764 | */ | |
765 | void | |
766 | vm_pageout_initialize_page( | |
767 | vm_page_t m) | |
768 | { | |
769 | vm_map_copy_t copy; | |
770 | vm_object_t new_object; | |
771 | vm_object_t object; | |
772 | vm_object_offset_t paging_offset; | |
773 | vm_page_t holding_page; | |
774 | ||
775 | ||
776 | XPR(XPR_VM_PAGEOUT, | |
777 | "vm_pageout_initialize_page, page 0x%X\n", | |
778 | (integer_t)m, 0, 0, 0, 0); | |
779 | assert(m->busy); | |
780 | ||
781 | /* | |
782 | * Verify that we really want to clean this page | |
783 | */ | |
784 | assert(!m->absent); | |
785 | assert(!m->error); | |
786 | assert(m->dirty); | |
787 | ||
788 | /* | |
789 | * Create a paging reference to let us play with the object. | |
790 | */ | |
791 | object = m->object; | |
792 | paging_offset = m->offset + object->paging_offset; | |
793 | vm_object_paging_begin(object); | |
794 | vm_object_unlock(object); | |
795 | if (m->absent || m->error || m->restart || | |
796 | (!m->dirty && !m->precious)) { | |
797 | VM_PAGE_FREE(m); | |
798 | panic("reservation without pageout?"); /* alan */ | |
799 | return; | |
800 | } | |
801 | ||
802 | /* set the page for future call to vm_fault_list_request */ | |
803 | holding_page = NULL; | |
804 | vm_object_lock(m->object); | |
805 | vm_page_lock_queues(); | |
806 | pmap_clear_modify(m->phys_addr); | |
807 | m->dirty = TRUE; | |
808 | m->busy = TRUE; | |
809 | m->list_req_pending = TRUE; | |
810 | m->cleaning = TRUE; | |
811 | m->pageout = TRUE; | |
812 | vm_page_wire(m); | |
813 | vm_page_unlock_queues(); | |
814 | vm_object_unlock(m->object); | |
815 | vm_pageout_throttle(m); | |
816 | ||
817 | /* | |
818 | * Write the data to its pager. | |
819 | * Note that the data is passed by naming the new object, | |
820 | * not a virtual address; the pager interface has been | |
821 | * manipulated to use the "internal memory" data type. | |
822 | * [The object reference from its allocation is donated | |
823 | * to the eventual recipient.] | |
824 | */ | |
825 | memory_object_data_initialize(object->pager, | |
826 | paging_offset, | |
827 | PAGE_SIZE); | |
828 | ||
829 | vm_object_lock(object); | |
830 | } | |
831 | ||
832 | #if MACH_CLUSTER_STATS | |
833 | #define MAXCLUSTERPAGES 16 | |
834 | struct { | |
835 | unsigned long pages_in_cluster; | |
836 | unsigned long pages_at_higher_offsets; | |
837 | unsigned long pages_at_lower_offsets; | |
838 | } cluster_stats[MAXCLUSTERPAGES]; | |
839 | #endif /* MACH_CLUSTER_STATS */ | |
840 | ||
841 | boolean_t allow_clustered_pageouts = FALSE; | |
842 | ||
843 | /* | |
844 | * vm_pageout_cluster: | |
845 | * | |
846 | * Given a page, page it out, and attempt to clean adjacent pages | |
847 | * in the same operation. | |
848 | * | |
849 | * The page must be busy, and the object unlocked w/ paging reference | |
850 | * to prevent deallocation or collapse. The page must not be on any | |
851 | * pageout queue. | |
852 | */ | |
853 | void | |
854 | vm_pageout_cluster( | |
855 | vm_page_t m) | |
856 | { | |
857 | vm_object_t object = m->object; | |
858 | vm_object_offset_t offset = m->offset; /* from vm_object start */ | |
859 | vm_object_offset_t paging_offset = m->offset + object->paging_offset; | |
860 | vm_object_t new_object; | |
861 | vm_object_offset_t new_offset; | |
862 | vm_size_t cluster_size; | |
863 | vm_object_offset_t cluster_offset; /* from memory_object start */ | |
864 | vm_object_offset_t cluster_lower_bound; /* from vm_object_start */ | |
865 | vm_object_offset_t cluster_upper_bound; /* from vm_object_start */ | |
866 | vm_object_offset_t cluster_start, cluster_end;/* from vm_object start */ | |
867 | vm_object_offset_t offset_within_cluster; | |
868 | vm_size_t length_of_data; | |
869 | vm_page_t friend, holding_page; | |
870 | kern_return_t rc; | |
871 | boolean_t precious_clean = TRUE; | |
872 | int pages_in_cluster; | |
873 | ||
874 | CLUSTER_STAT(int pages_at_higher_offsets = 0;) | |
875 | CLUSTER_STAT(int pages_at_lower_offsets = 0;) | |
876 | ||
877 | XPR(XPR_VM_PAGEOUT, | |
878 | "vm_pageout_cluster, object 0x%X offset 0x%X page 0x%X\n", | |
879 | (integer_t)object, offset, (integer_t)m, 0, 0); | |
880 | ||
881 | CLUSTER_STAT(vm_pageout_cluster_clusters++;) | |
882 | /* | |
883 | * Only a certain kind of page is appreciated here. | |
884 | */ | |
885 | assert(m->busy && (m->dirty || m->precious) && (m->wire_count == 0)); | |
886 | assert(!m->cleaning && !m->pageout && !m->inactive && !m->active); | |
887 | ||
888 | vm_object_lock(object); | |
889 | cluster_size = object->cluster_size; | |
890 | ||
891 | assert(cluster_size >= PAGE_SIZE); | |
892 | if (cluster_size < PAGE_SIZE) cluster_size = PAGE_SIZE; | |
893 | assert(object->pager_created && object->pager_initialized); | |
894 | assert(object->internal || object->pager_ready); | |
895 | ||
896 | if (m->precious && !m->dirty) | |
897 | precious_clean = TRUE; | |
898 | ||
899 | if (!object->pager_trusted || !allow_clustered_pageouts) | |
900 | cluster_size = PAGE_SIZE; | |
901 | vm_object_unlock(object); | |
902 | ||
903 | cluster_offset = paging_offset & (vm_object_offset_t)(cluster_size - 1); | |
904 | /* bytes from beginning of cluster */ | |
905 | /* | |
906 | * Due to unaligned mappings, we have to be careful | |
907 | * of negative offsets into the VM object. Clip the cluster | |
908 | * boundary to the VM object, not the memory object. | |
909 | */ | |
910 | if (offset > cluster_offset) { | |
911 | cluster_lower_bound = offset - cluster_offset; | |
912 | /* from vm_object */ | |
913 | } else { | |
914 | cluster_lower_bound = 0; | |
915 | } | |
916 | cluster_upper_bound = (offset - cluster_offset) + | |
917 | (vm_object_offset_t)cluster_size; | |
918 | ||
919 | /* set the page for future call to vm_fault_list_request */ | |
920 | holding_page = NULL; | |
921 | vm_object_lock(m->object); | |
922 | vm_page_lock_queues(); | |
923 | m->busy = TRUE; | |
924 | m->list_req_pending = TRUE; | |
925 | m->cleaning = TRUE; | |
926 | m->pageout = TRUE; | |
927 | vm_page_wire(m); | |
928 | vm_page_unlock_queues(); | |
929 | vm_object_unlock(m->object); | |
930 | vm_pageout_throttle(m); | |
931 | ||
932 | /* | |
933 | * Search backward for adjacent eligible pages to clean in | |
934 | * this operation. | |
935 | */ | |
936 | ||
937 | cluster_start = offset; | |
938 | if (offset) { /* avoid wrap-around at zero */ | |
939 | for (cluster_start = offset - PAGE_SIZE_64; | |
940 | cluster_start >= cluster_lower_bound; | |
941 | cluster_start -= PAGE_SIZE_64) { | |
942 | assert(cluster_size > PAGE_SIZE); | |
943 | ||
944 | vm_object_lock(object); | |
945 | vm_page_lock_queues(); | |
946 | ||
947 | if ((friend = vm_pageout_cluster_page(object, cluster_start, | |
948 | precious_clean)) == VM_PAGE_NULL) { | |
949 | vm_page_unlock_queues(); | |
950 | vm_object_unlock(object); | |
951 | break; | |
952 | } | |
953 | new_offset = (cluster_start + object->paging_offset) | |
954 | & (cluster_size - 1); | |
955 | ||
956 | assert(new_offset < cluster_offset); | |
957 | m->list_req_pending = TRUE; | |
958 | m->cleaning = TRUE; | |
959 | /* do nothing except advance the write request, all we really need to */ | |
960 | /* do is push the target page and let the code at the other end decide */ | |
961 | /* what is really the right size */ | |
962 | if (vm_page_free_count <= vm_page_free_reserved) { | |
963 | m->busy = TRUE; | |
964 | m->pageout = TRUE; | |
965 | vm_page_wire(m); | |
966 | } | |
967 | ||
968 | vm_page_unlock_queues(); | |
969 | vm_object_unlock(object); | |
970 | if(m->dirty || m->object->internal) { | |
971 | CLUSTER_STAT(pages_at_lower_offsets++;) | |
972 | } | |
973 | ||
974 | } | |
975 | cluster_start += PAGE_SIZE_64; | |
976 | } | |
977 | assert(cluster_start >= cluster_lower_bound); | |
978 | assert(cluster_start <= offset); | |
979 | /* | |
980 | * Search forward for adjacent eligible pages to clean in | |
981 | * this operation. | |
982 | */ | |
983 | for (cluster_end = offset + PAGE_SIZE_64; | |
984 | cluster_end < cluster_upper_bound; | |
985 | cluster_end += PAGE_SIZE_64) { | |
986 | assert(cluster_size > PAGE_SIZE); | |
987 | ||
988 | vm_object_lock(object); | |
989 | vm_page_lock_queues(); | |
990 | ||
991 | if ((friend = vm_pageout_cluster_page(object, cluster_end, | |
992 | precious_clean)) == VM_PAGE_NULL) { | |
993 | vm_page_unlock_queues(); | |
994 | vm_object_unlock(object); | |
995 | break; | |
996 | } | |
997 | new_offset = (cluster_end + object->paging_offset) | |
998 | & (cluster_size - 1); | |
999 | ||
1000 | assert(new_offset < cluster_size); | |
1001 | m->list_req_pending = TRUE; | |
1002 | m->cleaning = TRUE; | |
1003 | /* do nothing except advance the write request, all we really need to */ | |
1004 | /* do is push the target page and let the code at the other end decide */ | |
1005 | /* what is really the right size */ | |
1006 | if (vm_page_free_count <= vm_page_free_reserved) { | |
1007 | m->busy = TRUE; | |
1008 | m->pageout = TRUE; | |
1009 | vm_page_wire(m); | |
1010 | } | |
1011 | ||
1012 | vm_page_unlock_queues(); | |
1013 | vm_object_unlock(object); | |
1014 | ||
1015 | if(m->dirty || m->object->internal) { | |
1016 | CLUSTER_STAT(pages_at_higher_offsets++;) | |
1017 | } | |
1018 | } | |
1019 | assert(cluster_end <= cluster_upper_bound); | |
1020 | assert(cluster_end >= offset + PAGE_SIZE); | |
1021 | ||
1022 | /* | |
1023 | * (offset - cluster_offset) is beginning of cluster_object | |
1024 | * relative to vm_object start. | |
1025 | */ | |
1026 | offset_within_cluster = cluster_start - (offset - cluster_offset); | |
1027 | length_of_data = cluster_end - cluster_start; | |
1028 | ||
1029 | assert(offset_within_cluster < cluster_size); | |
1030 | assert((offset_within_cluster + length_of_data) <= cluster_size); | |
1031 | ||
1032 | rc = KERN_SUCCESS; | |
1033 | assert(rc == KERN_SUCCESS); | |
1034 | ||
1035 | pages_in_cluster = length_of_data/PAGE_SIZE; | |
1036 | ||
1037 | #if MACH_CLUSTER_STATS | |
1038 | (cluster_stats[pages_at_lower_offsets].pages_at_lower_offsets)++; | |
1039 | (cluster_stats[pages_at_higher_offsets].pages_at_higher_offsets)++; | |
1040 | (cluster_stats[pages_in_cluster].pages_in_cluster)++; | |
1041 | #endif /* MACH_CLUSTER_STATS */ | |
1042 | ||
1043 | /* | |
1044 | * Send the data to the pager. | |
1045 | */ | |
1046 | paging_offset = cluster_start + object->paging_offset; | |
1047 | ||
1048 | rc = memory_object_data_return(object->pager, | |
1049 | paging_offset, | |
1050 | length_of_data, | |
1051 | !precious_clean, | |
1052 | FALSE); | |
1053 | ||
1054 | vm_object_lock(object); | |
1055 | vm_object_paging_end(object); | |
1056 | ||
1057 | if (holding_page) { | |
1058 | assert(!object->pager_trusted); | |
1059 | VM_PAGE_FREE(holding_page); | |
1060 | vm_object_paging_end(object); | |
1061 | } | |
1062 | ||
1063 | vm_object_unlock(object); | |
1064 | } | |
1065 | ||
1066 | /* | |
1067 | * Trusted pager throttle. | |
1068 | * Object must be unlocked, page queues must be unlocked. | |
1069 | */ | |
1070 | void | |
1071 | vm_pageout_throttle( | |
1072 | register vm_page_t m) | |
1073 | { | |
1074 | vm_page_lock_queues(); | |
1075 | assert(!m->laundry); | |
1076 | m->laundry = TRUE; | |
1077 | while (vm_page_laundry_count >= vm_page_laundry_max) { | |
1078 | /* | |
1079 | * Set the threshold for when vm_page_free() | |
1080 | * should wake us up. | |
1081 | */ | |
1082 | vm_page_laundry_min = vm_page_laundry_max/2; | |
1083 | ||
1084 | assert_wait((event_t) &vm_page_laundry_count, THREAD_UNINT); | |
1085 | vm_page_unlock_queues(); | |
1086 | ||
1087 | /* | |
1088 | * Pause to let the default pager catch up. | |
1089 | */ | |
1090 | thread_block((void (*)(void)) 0); | |
1091 | vm_page_lock_queues(); | |
1092 | } | |
1093 | vm_page_laundry_count++; | |
1094 | vm_page_unlock_queues(); | |
1095 | } | |
1096 | ||
1097 | /* | |
1098 | * The global variable vm_pageout_clean_active_pages controls whether | |
1099 | * active pages are considered valid to be cleaned in place during a | |
1100 | * clustered pageout. Performance measurements are necessary to determine | |
1101 | * the best policy. | |
1102 | */ | |
1103 | int vm_pageout_clean_active_pages = 1; | |
1104 | /* | |
1105 | * vm_pageout_cluster_page: [Internal] | |
1106 | * | |
1107 | * return a vm_page_t to the page at (object,offset) if it is appropriate | |
1108 | * to clean in place. Pages that are non-existent, busy, absent, already | |
1109 | * cleaning, or not dirty are not eligible to be cleaned as an adjacent | |
1110 | * page in a cluster. | |
1111 | * | |
1112 | * The object must be locked on entry, and remains locked throughout | |
1113 | * this call. | |
1114 | */ | |
1115 | ||
1116 | vm_page_t | |
1117 | vm_pageout_cluster_page( | |
1118 | vm_object_t object, | |
1119 | vm_object_offset_t offset, | |
1120 | boolean_t precious_clean) | |
1121 | { | |
1122 | vm_page_t m; | |
1123 | ||
1124 | XPR(XPR_VM_PAGEOUT, | |
1125 | "vm_pageout_cluster_page, object 0x%X offset 0x%X\n", | |
1126 | (integer_t)object, offset, 0, 0, 0); | |
1127 | ||
1128 | if ((m = vm_page_lookup(object, offset)) == VM_PAGE_NULL) | |
1129 | return(VM_PAGE_NULL); | |
1130 | ||
1131 | if (m->busy || m->absent || m->cleaning || | |
1132 | (m->wire_count != 0) || m->error) | |
1133 | return(VM_PAGE_NULL); | |
1134 | ||
1135 | if (vm_pageout_clean_active_pages) { | |
1136 | if (!m->active && !m->inactive) return(VM_PAGE_NULL); | |
1137 | } else { | |
1138 | if (!m->inactive) return(VM_PAGE_NULL); | |
1139 | } | |
1140 | ||
1141 | assert(!m->private); | |
1142 | assert(!m->fictitious); | |
1143 | ||
1144 | if (!m->dirty) m->dirty = pmap_is_modified(m->phys_addr); | |
1145 | ||
1146 | if (precious_clean) { | |
1147 | if (!m->precious || !m->dirty) | |
1148 | return(VM_PAGE_NULL); | |
1149 | } else { | |
1150 | if (!m->dirty) | |
1151 | return(VM_PAGE_NULL); | |
1152 | } | |
1153 | return(m); | |
1154 | } | |
1155 | ||
1156 | /* | |
1157 | * vm_pageout_scan does the dirty work for the pageout daemon. | |
1158 | * It returns with vm_page_queue_free_lock held and | |
1159 | * vm_page_free_wanted == 0. | |
1160 | */ | |
1161 | extern void vm_pageout_scan_continue(void); /* forward; */ | |
1162 | ||
1163 | void | |
1164 | vm_pageout_scan(void) | |
1165 | { | |
1166 | unsigned int burst_count; | |
1167 | boolean_t now = FALSE; | |
1168 | unsigned int laundry_pages; | |
1169 | boolean_t need_more_inactive_pages; | |
1170 | unsigned int loop_detect; | |
1171 | ||
1172 | XPR(XPR_VM_PAGEOUT, "vm_pageout_scan\n", 0, 0, 0, 0, 0); | |
1173 | ||
1174 | /*???*/ /* | |
1175 | * We want to gradually dribble pages from the active queue | |
1176 | * to the inactive queue. If we let the inactive queue get | |
1177 | * very small, and then suddenly dump many pages into it, | |
1178 | * those pages won't get a sufficient chance to be referenced | |
1179 | * before we start taking them from the inactive queue. | |
1180 | * | |
1181 | * We must limit the rate at which we send pages to the pagers. | |
1182 | * data_write messages consume memory, for message buffers and | |
1183 | * for map-copy objects. If we get too far ahead of the pagers, | |
1184 | * we can potentially run out of memory. | |
1185 | * | |
1186 | * We can use the laundry count to limit directly the number | |
1187 | * of pages outstanding to the default pager. A similar | |
1188 | * strategy for external pagers doesn't work, because | |
1189 | * external pagers don't have to deallocate the pages sent them, | |
1190 | * and because we might have to send pages to external pagers | |
1191 | * even if they aren't processing writes. So we also | |
1192 | * use a burst count to limit writes to external pagers. | |
1193 | * | |
1194 | * When memory is very tight, we can't rely on external pagers to | |
1195 | * clean pages. They probably aren't running, because they | |
1196 | * aren't vm-privileged. If we kept sending dirty pages to them, | |
1197 | * we could exhaust the free list. However, we can't just ignore | |
1198 | * pages belonging to external objects, because there might be no | |
1199 | * pages belonging to internal objects. Hence, we get the page | |
1200 | * into an internal object and then immediately double-page it, | |
1201 | * sending it to the default pager. | |
1202 | * | |
1203 | * consider_zone_gc should be last, because the other operations | |
1204 | * might return memory to zones. | |
1205 | */ | |
1206 | ||
1207 | ||
1208 | Restart: | |
1209 | ||
1210 | #if THREAD_SWAPPER | |
1211 | mutex_lock(&vm_page_queue_free_lock); | |
1212 | now = (vm_page_free_count < vm_page_free_min); | |
1213 | mutex_unlock(&vm_page_queue_free_lock); | |
1214 | ||
1215 | swapout_threads(now); | |
1216 | #endif /* THREAD_SWAPPER */ | |
1217 | ||
1218 | stack_collect(); | |
1219 | consider_task_collect(); | |
1220 | consider_thread_collect(); | |
1221 | consider_zone_gc(); | |
1222 | consider_machine_collect(); | |
1223 | ||
1224 | loop_detect = vm_page_active_count + vm_page_inactive_count; | |
1225 | #if 0 | |
1226 | if (vm_page_free_count <= vm_page_free_reserved) { | |
1227 | need_more_inactive_pages = TRUE; | |
1228 | } else { | |
1229 | need_more_inactive_pages = FALSE; | |
1230 | } | |
1231 | #else | |
1232 | need_more_inactive_pages = FALSE; | |
1233 | #endif | |
1234 | ||
1235 | for (burst_count = 0;;) { | |
1236 | register vm_page_t m; | |
1237 | register vm_object_t object; | |
1238 | ||
1239 | /* | |
1240 | * Recalculate vm_page_inactivate_target. | |
1241 | */ | |
1242 | ||
1243 | vm_page_lock_queues(); | |
1244 | vm_page_inactive_target = | |
1245 | VM_PAGE_INACTIVE_TARGET(vm_page_active_count + | |
1246 | vm_page_inactive_count); | |
1247 | ||
1248 | /* | |
1249 | * Move pages from active to inactive. | |
1250 | */ | |
1251 | ||
1252 | while ((vm_page_inactive_count < vm_page_inactive_target || | |
1253 | need_more_inactive_pages) && | |
1254 | !queue_empty(&vm_page_queue_active)) { | |
1255 | register vm_object_t object; | |
1256 | ||
1257 | vm_pageout_active++; | |
1258 | m = (vm_page_t) queue_first(&vm_page_queue_active); | |
1259 | ||
1260 | /* | |
1261 | * If we're getting really low on memory, | |
1262 | * try selecting a page that will go | |
1263 | * directly to the default_pager. | |
1264 | * If there are no such pages, we have to | |
1265 | * page out a page backed by an EMM, | |
1266 | * so that the default_pager can recover | |
1267 | * it eventually. | |
1268 | */ | |
1269 | if (need_more_inactive_pages && | |
1270 | (IP_VALID(memory_manager_default))) { | |
1271 | vm_pageout_scan_active_emm_throttle++; | |
1272 | do { | |
1273 | assert(m->active && !m->inactive); | |
1274 | object = m->object; | |
1275 | ||
1276 | if (vm_object_lock_try(object)) { | |
1277 | #if 0 | |
1278 | if (object->pager_trusted || | |
1279 | object->internal) { | |
1280 | /* found one ! */ | |
1281 | vm_pageout_scan_active_emm_throttle_success++; | |
1282 | goto object_locked_active; | |
1283 | } | |
1284 | #else | |
1285 | vm_pageout_scan_active_emm_throttle_success++; | |
1286 | goto object_locked_active; | |
1287 | #endif | |
1288 | vm_object_unlock(object); | |
1289 | } | |
1290 | m = (vm_page_t) queue_next(&m->pageq); | |
1291 | } while (!queue_end(&vm_page_queue_active, | |
1292 | (queue_entry_t) m)); | |
1293 | if (queue_end(&vm_page_queue_active, | |
1294 | (queue_entry_t) m)) { | |
1295 | vm_pageout_scan_active_emm_throttle_failure++; | |
1296 | m = (vm_page_t) | |
1297 | queue_first(&vm_page_queue_active); | |
1298 | } | |
1299 | } | |
1300 | ||
1301 | assert(m->active && !m->inactive); | |
1302 | ||
1303 | object = m->object; | |
1304 | if (!vm_object_lock_try(object)) { | |
1305 | /* | |
1306 | * Move page to end and continue. | |
1307 | */ | |
1308 | ||
1309 | queue_remove(&vm_page_queue_active, m, | |
1310 | vm_page_t, pageq); | |
1311 | queue_enter(&vm_page_queue_active, m, | |
1312 | vm_page_t, pageq); | |
1313 | vm_page_unlock_queues(); | |
1314 | ||
1315 | mutex_pause(); | |
1316 | vm_page_lock_queues(); | |
1317 | continue; | |
1318 | } | |
1319 | ||
1320 | object_locked_active: | |
1321 | /* | |
1322 | * If the page is busy, then we pull it | |
1323 | * off the active queue and leave it alone. | |
1324 | */ | |
1325 | ||
1326 | if (m->busy) { | |
1327 | vm_object_unlock(object); | |
1328 | queue_remove(&vm_page_queue_active, m, | |
1329 | vm_page_t, pageq); | |
1330 | m->active = FALSE; | |
1331 | if (!m->fictitious) | |
1332 | vm_page_active_count--; | |
1333 | continue; | |
1334 | } | |
1335 | ||
1336 | /* | |
1337 | * Deactivate the page while holding the object | |
1338 | * locked, so we know the page is still not busy. | |
1339 | * This should prevent races between pmap_enter | |
1340 | * and pmap_clear_reference. The page might be | |
1341 | * absent or fictitious, but vm_page_deactivate | |
1342 | * can handle that. | |
1343 | */ | |
1344 | ||
1345 | vm_page_deactivate(m); | |
1346 | vm_object_unlock(object); | |
1347 | } | |
1348 | ||
1349 | /* | |
1350 | * We are done if we have met our target *and* | |
1351 | * nobody is still waiting for a page. | |
1352 | */ | |
1353 | if (vm_page_free_count >= vm_page_free_target) { | |
1354 | mutex_lock(&vm_page_queue_free_lock); | |
1355 | if ((vm_page_free_count >= vm_page_free_target) && | |
1356 | (vm_page_free_wanted == 0)) { | |
1357 | vm_page_unlock_queues(); | |
1358 | break; | |
1359 | } | |
1360 | mutex_unlock(&vm_page_queue_free_lock); | |
1361 | } | |
1362 | /* | |
1363 | * Sometimes we have to pause: | |
1364 | * 1) No inactive pages - nothing to do. | |
1365 | * 2) Flow control - wait for untrusted pagers to catch up. | |
1366 | */ | |
1367 | ||
1368 | if (queue_empty(&vm_page_queue_inactive) || | |
1369 | ((--loop_detect) == 0) || | |
1370 | (burst_count >= vm_pageout_burst_max)) { | |
1371 | unsigned int pages, msecs; | |
1372 | int wait_result; | |
1373 | ||
1374 | consider_machine_adjust(); | |
1375 | /* | |
1376 | * vm_pageout_burst_wait is msecs/page. | |
1377 | * If there is nothing for us to do, we wait | |
1378 | * at least vm_pageout_empty_wait msecs. | |
1379 | */ | |
1380 | pages = burst_count; | |
1381 | ||
1382 | if (loop_detect == 0) { | |
1383 | printf("Warning: No physical memory suitable for pageout or reclaim, pageout thread temporarily going to sleep\n"); | |
1384 | msecs = vm_free_page_pause; | |
1385 | } | |
1386 | else { | |
1387 | msecs = burst_count * vm_pageout_burst_wait; | |
1388 | } | |
1389 | ||
1390 | if (queue_empty(&vm_page_queue_inactive) && | |
1391 | (msecs < vm_pageout_empty_wait)) | |
1392 | msecs = vm_pageout_empty_wait; | |
1393 | vm_page_unlock_queues(); | |
1394 | ||
1395 | assert_wait_timeout(msecs, THREAD_INTERRUPTIBLE); | |
1396 | counter(c_vm_pageout_scan_block++); | |
1397 | ||
1398 | /* | |
1399 | * Unfortunately, we don't have call_continuation | |
1400 | * so we can't rely on tail-recursion. | |
1401 | */ | |
1402 | wait_result = thread_block((void (*)(void)) 0); | |
1403 | if (wait_result != THREAD_TIMED_OUT) | |
1404 | thread_cancel_timer(); | |
1405 | vm_pageout_scan_continue(); | |
1406 | ||
1407 | goto Restart; | |
1408 | /*NOTREACHED*/ | |
1409 | } | |
1410 | ||
1411 | vm_pageout_inactive++; | |
1412 | m = (vm_page_t) queue_first(&vm_page_queue_inactive); | |
1413 | ||
1414 | if ((vm_page_free_count <= vm_page_free_reserved) && | |
1415 | (IP_VALID(memory_manager_default))) { | |
1416 | /* | |
1417 | * We're really low on memory. Try to select a page that | |
1418 | * would go directly to the default_pager. | |
1419 | * If there are no such pages, we have to page out a | |
1420 | * page backed by an EMM, so that the default_pager | |
1421 | * can recover it eventually. | |
1422 | */ | |
1423 | vm_pageout_scan_inactive_emm_throttle++; | |
1424 | do { | |
1425 | assert(!m->active && m->inactive); | |
1426 | object = m->object; | |
1427 | ||
1428 | if (vm_object_lock_try(object)) { | |
1429 | #if 0 | |
1430 | if (object->pager_trusted || | |
1431 | object->internal) { | |
1432 | /* found one ! */ | |
1433 | vm_pageout_scan_inactive_emm_throttle_success++; | |
1434 | goto object_locked_inactive; | |
1435 | } | |
1436 | #else | |
1437 | vm_pageout_scan_inactive_emm_throttle_success++; | |
1438 | goto object_locked_inactive; | |
1439 | #endif /* 0 */ | |
1440 | vm_object_unlock(object); | |
1441 | } | |
1442 | m = (vm_page_t) queue_next(&m->pageq); | |
1443 | } while (!queue_end(&vm_page_queue_inactive, | |
1444 | (queue_entry_t) m)); | |
1445 | if (queue_end(&vm_page_queue_inactive, | |
1446 | (queue_entry_t) m)) { | |
1447 | vm_pageout_scan_inactive_emm_throttle_failure++; | |
1448 | /* | |
1449 | * We should check the "active" queue | |
1450 | * for good candidates to page out. | |
1451 | */ | |
1452 | need_more_inactive_pages = TRUE; | |
1453 | ||
1454 | m = (vm_page_t) | |
1455 | queue_first(&vm_page_queue_inactive); | |
1456 | } | |
1457 | } | |
1458 | ||
1459 | assert(!m->active && m->inactive); | |
1460 | object = m->object; | |
1461 | ||
1462 | /* | |
1463 | * Try to lock object; since we've got the | |
1464 | * page queues lock, we can only try for this one. | |
1465 | */ | |
1466 | ||
1467 | if (!vm_object_lock_try(object)) { | |
1468 | /* | |
1469 | * Move page to end and continue. | |
1470 | * Don't re-issue ticket | |
1471 | */ | |
1472 | queue_remove(&vm_page_queue_inactive, m, | |
1473 | vm_page_t, pageq); | |
1474 | queue_enter(&vm_page_queue_inactive, m, | |
1475 | vm_page_t, pageq); | |
1476 | vm_page_unlock_queues(); | |
1477 | ||
1478 | mutex_pause(); | |
1479 | vm_pageout_inactive_nolock++; | |
1480 | continue; | |
1481 | } | |
1482 | ||
1483 | object_locked_inactive: | |
1484 | /* | |
1485 | * Paging out pages of objects which pager is being | |
1486 | * created by another thread must be avoided, because | |
1487 | * this thread may claim for memory, thus leading to a | |
1488 | * possible dead lock between it and the pageout thread | |
1489 | * which will wait for pager creation, if such pages are | |
1490 | * finally chosen. The remaining assumption is that there | |
1491 | * will finally be enough available pages in the inactive | |
1492 | * pool to page out in order to satisfy all memory claimed | |
1493 | * by the thread which concurrently creates the pager. | |
1494 | */ | |
1495 | ||
1496 | if (!object->pager_initialized && object->pager_created) { | |
1497 | /* | |
1498 | * Move page to end and continue, hoping that | |
1499 | * there will be enough other inactive pages to | |
1500 | * page out so that the thread which currently | |
1501 | * initializes the pager will succeed. | |
1502 | * Don't re-grant the ticket, the page should | |
1503 | * pulled from the queue and paged out whenever | |
1504 | * one of its logically adjacent fellows is | |
1505 | * targeted. | |
1506 | */ | |
1507 | queue_remove(&vm_page_queue_inactive, m, | |
1508 | vm_page_t, pageq); | |
1509 | queue_enter(&vm_page_queue_inactive, m, | |
1510 | vm_page_t, pageq); | |
1511 | vm_page_unlock_queues(); | |
1512 | vm_object_unlock(object); | |
1513 | vm_pageout_inactive_avoid++; | |
1514 | continue; | |
1515 | } | |
1516 | ||
1517 | /* | |
1518 | * Remove the page from the inactive list. | |
1519 | */ | |
1520 | ||
1521 | queue_remove(&vm_page_queue_inactive, m, vm_page_t, pageq); | |
1522 | m->inactive = FALSE; | |
1523 | if (!m->fictitious) | |
1524 | vm_page_inactive_count--; | |
1525 | ||
1526 | if (m->busy || !object->alive) { | |
1527 | /* | |
1528 | * Somebody is already playing with this page. | |
1529 | * Leave it off the pageout queues. | |
1530 | */ | |
1531 | ||
1532 | vm_page_unlock_queues(); | |
1533 | vm_object_unlock(object); | |
1534 | vm_pageout_inactive_busy++; | |
1535 | continue; | |
1536 | } | |
1537 | ||
1538 | /* | |
1539 | * If it's absent or in error, we can reclaim the page. | |
1540 | */ | |
1541 | ||
1542 | if (m->absent || m->error) { | |
1543 | vm_pageout_inactive_absent++; | |
1544 | reclaim_page: | |
1545 | vm_page_free(m); | |
1546 | vm_page_unlock_queues(); | |
1547 | vm_object_unlock(object); | |
1548 | continue; | |
1549 | } | |
1550 | ||
1551 | assert(!m->private); | |
1552 | assert(!m->fictitious); | |
1553 | ||
1554 | /* | |
1555 | * If already cleaning this page in place, convert from | |
1556 | * "adjacent" to "target". We can leave the page mapped, | |
1557 | * and vm_pageout_object_terminate will determine whether | |
1558 | * to free or reactivate. | |
1559 | */ | |
1560 | ||
1561 | if (m->cleaning) { | |
1562 | #if MACH_CLUSTER_STATS | |
1563 | vm_pageout_cluster_conversions++; | |
1564 | #endif | |
1565 | m->busy = TRUE; | |
1566 | m->pageout = TRUE; | |
1567 | m->dump_cleaning = TRUE; | |
1568 | vm_page_wire(m); | |
1569 | vm_object_unlock(object); | |
1570 | vm_page_unlock_queues(); | |
1571 | continue; | |
1572 | } | |
1573 | ||
1574 | /* | |
1575 | * If it's being used, reactivate. | |
1576 | * (Fictitious pages are either busy or absent.) | |
1577 | */ | |
1578 | ||
1579 | if (m->reference || pmap_is_referenced(m->phys_addr)) { | |
1580 | vm_pageout_inactive_used++; | |
1581 | reactivate_page: | |
1582 | #if ADVISORY_PAGEOUT | |
1583 | if (m->discard_request) { | |
1584 | m->discard_request = FALSE; | |
1585 | } | |
1586 | #endif /* ADVISORY_PAGEOUT */ | |
1587 | vm_object_unlock(object); | |
1588 | vm_page_activate(m); | |
1589 | VM_STAT(reactivations++); | |
1590 | vm_page_unlock_queues(); | |
1591 | continue; | |
1592 | } | |
1593 | ||
1594 | #if ADVISORY_PAGEOUT | |
1595 | if (object->advisory_pageout) { | |
1596 | boolean_t do_throttle; | |
1597 | memory_object_t pager; | |
1598 | vm_object_offset_t discard_offset; | |
1599 | ||
1600 | if (m->discard_request) { | |
1601 | vm_stat_discard_failure++; | |
1602 | goto mandatory_pageout; | |
1603 | } | |
1604 | ||
1605 | assert(object->pager_initialized); | |
1606 | m->discard_request = TRUE; | |
1607 | pager = object->pager; | |
1608 | ||
1609 | /* system-wide throttle */ | |
1610 | do_throttle = (vm_page_free_count <= | |
1611 | vm_page_free_reserved); | |
1612 | ||
1613 | #if 0 | |
1614 | /* | |
1615 | * JMM - Do we need a replacement throttle | |
1616 | * mechanism for pagers? | |
1617 | */ | |
1618 | if (!do_throttle) { | |
1619 | /* throttle on this pager */ | |
1620 | /* XXX lock ordering ? */ | |
1621 | ip_lock(port); | |
1622 | do_throttle= imq_full(&port->ip_messages); | |
1623 | ip_unlock(port); | |
1624 | } | |
1625 | #endif | |
1626 | ||
1627 | if (do_throttle) { | |
1628 | vm_stat_discard_throttle++; | |
1629 | #if 0 | |
1630 | /* ignore this page and skip to next */ | |
1631 | vm_page_unlock_queues(); | |
1632 | vm_object_unlock(object); | |
1633 | continue; | |
1634 | #else | |
1635 | /* force mandatory pageout */ | |
1636 | goto mandatory_pageout; | |
1637 | #endif | |
1638 | } | |
1639 | ||
1640 | /* proceed with discard_request */ | |
1641 | vm_page_activate(m); | |
1642 | vm_stat_discard++; | |
1643 | VM_STAT(reactivations++); | |
1644 | discard_offset = m->offset + object->paging_offset; | |
1645 | vm_stat_discard_sent++; | |
1646 | vm_page_unlock_queues(); | |
1647 | vm_object_unlock(object); | |
1648 | ||
1649 | /* | |
1650 | memory_object_discard_request(object->pager, | |
1651 | discard_offset, | |
1652 | PAGE_SIZE); | |
1653 | */ | |
1654 | continue; | |
1655 | } | |
1656 | mandatory_pageout: | |
1657 | #endif /* ADVISORY_PAGEOUT */ | |
1658 | ||
1659 | XPR(XPR_VM_PAGEOUT, | |
1660 | "vm_pageout_scan, replace object 0x%X offset 0x%X page 0x%X\n", | |
1661 | (integer_t)object, (integer_t)m->offset, (integer_t)m, 0,0); | |
1662 | ||
1663 | /* | |
1664 | * Eliminate all mappings. | |
1665 | */ | |
1666 | ||
1667 | m->busy = TRUE; | |
1668 | pmap_page_protect(m->phys_addr, VM_PROT_NONE); | |
1669 | ||
1670 | if (!m->dirty) | |
1671 | m->dirty = pmap_is_modified(m->phys_addr); | |
1672 | /* | |
1673 | * If it's clean and not precious, we can free the page. | |
1674 | */ | |
1675 | ||
1676 | if (!m->dirty && !m->precious) { | |
1677 | vm_pageout_inactive_clean++; | |
1678 | goto reclaim_page; | |
1679 | } | |
1680 | vm_page_unlock_queues(); | |
1681 | ||
1682 | /* | |
1683 | * If there is no memory object for the page, create | |
1684 | * one and hand it to the default pager. | |
1685 | */ | |
1686 | ||
1687 | if (!object->pager_initialized) | |
1688 | vm_object_collapse(object); | |
1689 | if (!object->pager_initialized) | |
1690 | vm_object_pager_create(object); | |
1691 | if (!object->pager_initialized) { | |
1692 | /* | |
1693 | * Still no pager for the object. | |
1694 | * Reactivate the page. | |
1695 | * | |
1696 | * Should only happen if there is no | |
1697 | * default pager. | |
1698 | */ | |
1699 | vm_page_lock_queues(); | |
1700 | vm_page_activate(m); | |
1701 | vm_page_unlock_queues(); | |
1702 | ||
1703 | /* | |
1704 | * And we are done with it. | |
1705 | */ | |
1706 | PAGE_WAKEUP_DONE(m); | |
1707 | vm_object_unlock(object); | |
1708 | ||
1709 | /* | |
1710 | * break here to get back to the preemption | |
1711 | * point in the outer loop so that we don't | |
1712 | * spin forever if there is no default pager. | |
1713 | */ | |
1714 | vm_pageout_dirty_no_pager++; | |
1715 | /* | |
1716 | * Well there's no pager, but we can still reclaim | |
1717 | * free pages out of the inactive list. Go back | |
1718 | * to top of loop and look for suitable pages. | |
1719 | */ | |
1720 | continue; | |
1721 | } | |
1722 | ||
1723 | if ((object->pager_initialized) && | |
1724 | (object->pager == MEMORY_OBJECT_NULL)) { | |
1725 | /* | |
1726 | * This pager has been destroyed by either | |
1727 | * memory_object_destroy or vm_object_destroy, and | |
1728 | * so there is nowhere for the page to go. | |
1729 | * Just free the page. | |
1730 | */ | |
1731 | VM_PAGE_FREE(m); | |
1732 | vm_object_unlock(object); | |
1733 | continue; | |
1734 | } | |
1735 | ||
1736 | vm_pageout_inactive_dirty++; | |
1737 | /* | |
1738 | if (!object->internal) | |
1739 | burst_count++; | |
1740 | */ | |
1741 | vm_object_paging_begin(object); | |
1742 | vm_object_unlock(object); | |
1743 | vm_pageout_cluster(m); /* flush it */ | |
1744 | } | |
1745 | consider_machine_adjust(); | |
1746 | } | |
1747 | ||
1748 | counter(unsigned int c_vm_pageout_scan_continue = 0;) | |
1749 | ||
1750 | void | |
1751 | vm_pageout_scan_continue(void) | |
1752 | { | |
1753 | /* | |
1754 | * We just paused to let the pagers catch up. | |
1755 | * If vm_page_laundry_count is still high, | |
1756 | * then we aren't waiting long enough. | |
1757 | * If we have paused some vm_pageout_pause_max times without | |
1758 | * adjusting vm_pageout_burst_wait, it might be too big, | |
1759 | * so we decrease it. | |
1760 | */ | |
1761 | ||
1762 | vm_page_lock_queues(); | |
1763 | counter(++c_vm_pageout_scan_continue); | |
1764 | if (vm_page_laundry_count > vm_pageout_burst_min) { | |
1765 | vm_pageout_burst_wait++; | |
1766 | vm_pageout_pause_count = 0; | |
1767 | } else if (++vm_pageout_pause_count > vm_pageout_pause_max) { | |
1768 | vm_pageout_burst_wait = (vm_pageout_burst_wait * 3) / 4; | |
1769 | if (vm_pageout_burst_wait < 1) | |
1770 | vm_pageout_burst_wait = 1; | |
1771 | vm_pageout_pause_count = 0; | |
1772 | } | |
1773 | vm_page_unlock_queues(); | |
1774 | } | |
1775 | ||
1776 | void vm_page_free_reserve(int pages); | |
1777 | int vm_page_free_count_init; | |
1778 | ||
1779 | void | |
1780 | vm_page_free_reserve( | |
1781 | int pages) | |
1782 | { | |
1783 | int free_after_reserve; | |
1784 | ||
1785 | vm_page_free_reserved += pages; | |
1786 | ||
1787 | free_after_reserve = vm_page_free_count_init - vm_page_free_reserved; | |
1788 | ||
1789 | vm_page_free_min = vm_page_free_reserved + | |
1790 | VM_PAGE_FREE_MIN(free_after_reserve); | |
1791 | ||
1792 | vm_page_free_target = vm_page_free_reserved + | |
1793 | VM_PAGE_FREE_TARGET(free_after_reserve); | |
1794 | ||
1795 | if (vm_page_free_target < vm_page_free_min + 5) | |
1796 | vm_page_free_target = vm_page_free_min + 5; | |
1797 | } | |
1798 | ||
1799 | /* | |
1800 | * vm_pageout is the high level pageout daemon. | |
1801 | */ | |
1802 | ||
1803 | ||
1804 | void | |
1805 | vm_pageout(void) | |
1806 | { | |
1807 | thread_t self = current_thread(); | |
1808 | spl_t s; | |
1809 | ||
1810 | /* | |
1811 | * Set thread privileges. | |
1812 | */ | |
1813 | self->vm_privilege = TRUE; | |
1814 | stack_privilege(self); | |
1815 | ||
1816 | s = splsched(); | |
1817 | thread_lock(self); | |
1818 | ||
1819 | self->priority = BASEPRI_PREEMPT - 1; | |
1820 | self->sched_pri = self->priority; | |
1821 | ||
1822 | thread_unlock(self); | |
1823 | splx(s); | |
1824 | ||
1825 | /* | |
1826 | * Initialize some paging parameters. | |
1827 | */ | |
1828 | ||
1829 | if (vm_page_laundry_max == 0) | |
1830 | vm_page_laundry_max = VM_PAGE_LAUNDRY_MAX; | |
1831 | ||
1832 | if (vm_pageout_burst_max == 0) | |
1833 | vm_pageout_burst_max = VM_PAGEOUT_BURST_MAX; | |
1834 | ||
1835 | if (vm_pageout_burst_wait == 0) | |
1836 | vm_pageout_burst_wait = VM_PAGEOUT_BURST_WAIT; | |
1837 | ||
1838 | if (vm_pageout_empty_wait == 0) | |
1839 | vm_pageout_empty_wait = VM_PAGEOUT_EMPTY_WAIT; | |
1840 | ||
1841 | vm_page_free_count_init = vm_page_free_count; | |
1842 | /* | |
1843 | * even if we've already called vm_page_free_reserve | |
1844 | * call it again here to insure that the targets are | |
1845 | * accurately calculated (it uses vm_page_free_count_init) | |
1846 | * calling it with an arg of 0 will not change the reserve | |
1847 | * but will re-calculate free_min and free_target | |
1848 | */ | |
1849 | if (vm_page_free_reserved < VM_PAGE_FREE_RESERVED) | |
1850 | vm_page_free_reserve(VM_PAGE_FREE_RESERVED - vm_page_free_reserved); | |
1851 | else | |
1852 | vm_page_free_reserve(0); | |
1853 | ||
1854 | /* | |
1855 | * vm_pageout_scan will set vm_page_inactive_target. | |
1856 | * | |
1857 | * The pageout daemon is never done, so loop forever. | |
1858 | * We should call vm_pageout_scan at least once each | |
1859 | * time we are woken, even if vm_page_free_wanted is | |
1860 | * zero, to check vm_page_free_target and | |
1861 | * vm_page_inactive_target. | |
1862 | */ | |
1863 | for (;;) { | |
1864 | vm_pageout_scan_event_counter++; | |
1865 | vm_pageout_scan(); | |
1866 | /* we hold vm_page_queue_free_lock now */ | |
1867 | assert(vm_page_free_wanted == 0); | |
1868 | assert_wait((event_t) &vm_page_free_wanted, THREAD_UNINT); | |
1869 | mutex_unlock(&vm_page_queue_free_lock); | |
1870 | counter(c_vm_pageout_block++); | |
1871 | thread_block((void (*)(void)) 0); | |
1872 | } | |
1873 | /*NOTREACHED*/ | |
1874 | } | |
1875 | ||
1876 | ||
1877 | static upl_t | |
1878 | upl_create( | |
1879 | boolean_t internal) | |
1880 | { | |
1881 | upl_t upl; | |
1882 | ||
1883 | if(internal) { | |
1884 | upl = (upl_t)kalloc(sizeof(struct upl) | |
1885 | + (sizeof(struct upl_page_info)*MAX_UPL_TRANSFER)); | |
1886 | } else { | |
1887 | upl = (upl_t)kalloc(sizeof(struct upl)); | |
1888 | } | |
1889 | upl->flags = 0; | |
1890 | upl->src_object = NULL; | |
1891 | upl->kaddr = (vm_offset_t)0; | |
1892 | upl->size = 0; | |
1893 | upl->map_object = NULL; | |
1894 | upl->ref_count = 1; | |
1895 | upl_lock_init(upl); | |
1896 | #ifdef UBC_DEBUG | |
1897 | upl->ubc_alias1 = 0; | |
1898 | upl->ubc_alias2 = 0; | |
1899 | #endif /* UBC_DEBUG */ | |
1900 | return(upl); | |
1901 | } | |
1902 | ||
1903 | static void | |
1904 | upl_destroy( | |
1905 | upl_t upl) | |
1906 | { | |
1907 | ||
1908 | #ifdef UBC_DEBUG | |
1909 | { | |
1910 | upl_t upl_ele; | |
1911 | vm_object_lock(upl->map_object->shadow); | |
1912 | queue_iterate(&upl->map_object->shadow->uplq, | |
1913 | upl_ele, upl_t, uplq) { | |
1914 | if(upl_ele == upl) { | |
1915 | queue_remove(&upl->map_object->shadow->uplq, | |
1916 | upl_ele, upl_t, uplq); | |
1917 | break; | |
1918 | } | |
1919 | } | |
1920 | vm_object_unlock(upl->map_object->shadow); | |
1921 | } | |
1922 | #endif /* UBC_DEBUG */ | |
1923 | #ifdef notdefcdy | |
1924 | if(!(upl->flags & UPL_DEVICE_MEMORY)) | |
1925 | #endif | |
1926 | vm_object_deallocate(upl->map_object); | |
1927 | if(upl->flags & UPL_INTERNAL) { | |
1928 | kfree((vm_offset_t)upl, | |
1929 | sizeof(struct upl) + | |
1930 | (sizeof(struct upl_page_info) * MAX_UPL_TRANSFER)); | |
1931 | } else { | |
1932 | kfree((vm_offset_t)upl, sizeof(struct upl)); | |
1933 | } | |
1934 | } | |
1935 | ||
1936 | __private_extern__ void | |
1937 | uc_upl_dealloc( | |
1938 | upl_t upl) | |
1939 | { | |
1940 | upl->ref_count -= 1; | |
1941 | if(upl->ref_count == 0) { | |
1942 | upl_destroy(upl); | |
1943 | } | |
1944 | } | |
1945 | ||
1946 | void | |
1947 | upl_deallocate( | |
1948 | upl_t upl) | |
1949 | { | |
1950 | ||
1951 | upl->ref_count -= 1; | |
1952 | if(upl->ref_count == 0) { | |
1953 | upl_destroy(upl); | |
1954 | } | |
1955 | } | |
1956 | ||
1957 | /* | |
1958 | * Routine: vm_object_upl_request | |
1959 | * Purpose: | |
1960 | * Cause the population of a portion of a vm_object. | |
1961 | * Depending on the nature of the request, the pages | |
1962 | * returned may be contain valid data or be uninitialized. | |
1963 | * A page list structure, listing the physical pages | |
1964 | * will be returned upon request. | |
1965 | * This function is called by the file system or any other | |
1966 | * supplier of backing store to a pager. | |
1967 | * IMPORTANT NOTE: The caller must still respect the relationship | |
1968 | * between the vm_object and its backing memory object. The | |
1969 | * caller MUST NOT substitute changes in the backing file | |
1970 | * without first doing a memory_object_lock_request on the | |
1971 | * target range unless it is know that the pages are not | |
1972 | * shared with another entity at the pager level. | |
1973 | * Copy_in_to: | |
1974 | * if a page list structure is present | |
1975 | * return the mapped physical pages, where a | |
1976 | * page is not present, return a non-initialized | |
1977 | * one. If the no_sync bit is turned on, don't | |
1978 | * call the pager unlock to synchronize with other | |
1979 | * possible copies of the page. Leave pages busy | |
1980 | * in the original object, if a page list structure | |
1981 | * was specified. When a commit of the page list | |
1982 | * pages is done, the dirty bit will be set for each one. | |
1983 | * Copy_out_from: | |
1984 | * If a page list structure is present, return | |
1985 | * all mapped pages. Where a page does not exist | |
1986 | * map a zero filled one. Leave pages busy in | |
1987 | * the original object. If a page list structure | |
1988 | * is not specified, this call is a no-op. | |
1989 | * | |
1990 | * Note: access of default pager objects has a rather interesting | |
1991 | * twist. The caller of this routine, presumably the file system | |
1992 | * page cache handling code, will never actually make a request | |
1993 | * against a default pager backed object. Only the default | |
1994 | * pager will make requests on backing store related vm_objects | |
1995 | * In this way the default pager can maintain the relationship | |
1996 | * between backing store files (abstract memory objects) and | |
1997 | * the vm_objects (cache objects), they support. | |
1998 | * | |
1999 | */ | |
2000 | __private_extern__ kern_return_t | |
2001 | vm_object_upl_request( | |
2002 | vm_object_t object, | |
2003 | vm_object_offset_t offset, | |
2004 | vm_size_t size, | |
2005 | upl_t *upl_ptr, | |
2006 | upl_page_info_array_t user_page_list, | |
2007 | unsigned int *page_list_count, | |
2008 | int cntrl_flags) | |
2009 | { | |
2010 | vm_page_t dst_page; | |
2011 | vm_object_offset_t dst_offset = offset; | |
2012 | vm_size_t xfer_size = size; | |
2013 | boolean_t do_m_lock = FALSE; | |
2014 | boolean_t dirty; | |
2015 | upl_t upl = NULL; | |
2016 | int entry; | |
2017 | boolean_t encountered_lrp = FALSE; | |
2018 | ||
2019 | vm_page_t alias_page = NULL; | |
2020 | int page_ticket; | |
2021 | ||
2022 | ||
2023 | page_ticket = (cntrl_flags & UPL_PAGE_TICKET_MASK) | |
2024 | >> UPL_PAGE_TICKET_SHIFT; | |
2025 | ||
2026 | if(((size/page_size) > MAX_UPL_TRANSFER) && !object->phys_contiguous) { | |
2027 | size = MAX_UPL_TRANSFER * page_size; | |
2028 | } | |
2029 | ||
2030 | if(cntrl_flags & UPL_SET_INTERNAL) | |
2031 | if(page_list_count != NULL) | |
2032 | *page_list_count = MAX_UPL_TRANSFER; | |
2033 | if(((cntrl_flags & UPL_SET_INTERNAL) && !(object->phys_contiguous)) && | |
2034 | ((page_list_count != NULL) && (*page_list_count != 0) | |
2035 | && *page_list_count < (size/page_size))) | |
2036 | return KERN_INVALID_ARGUMENT; | |
2037 | ||
2038 | if((!object->internal) && (object->paging_offset != 0)) | |
2039 | panic("vm_object_upl_request: vnode object with non-zero paging offset\n"); | |
2040 | ||
2041 | if((cntrl_flags & UPL_COPYOUT_FROM) && (upl_ptr == NULL)) { | |
2042 | return KERN_SUCCESS; | |
2043 | } | |
2044 | if(upl_ptr) { | |
2045 | if(cntrl_flags & UPL_SET_INTERNAL) { | |
2046 | upl = upl_create(TRUE); | |
2047 | user_page_list = (upl_page_info_t *) | |
2048 | (((vm_offset_t)upl) + sizeof(struct upl)); | |
2049 | upl->flags |= UPL_INTERNAL; | |
2050 | } else { | |
2051 | upl = upl_create(FALSE); | |
2052 | } | |
2053 | if(object->phys_contiguous) { | |
2054 | upl->size = size; | |
2055 | upl->offset = offset + object->paging_offset; | |
2056 | *upl_ptr = upl; | |
2057 | if(user_page_list) { | |
2058 | user_page_list[0].phys_addr = | |
2059 | offset + object->shadow_offset; | |
2060 | user_page_list[0].device = TRUE; | |
2061 | } | |
2062 | upl->map_object = vm_object_allocate(size); | |
2063 | vm_object_lock(upl->map_object); | |
2064 | upl->map_object->shadow = object; | |
2065 | upl->flags = UPL_DEVICE_MEMORY | UPL_INTERNAL; | |
2066 | upl->map_object->pageout = TRUE; | |
2067 | upl->map_object->can_persist = FALSE; | |
2068 | upl->map_object->copy_strategy | |
2069 | = MEMORY_OBJECT_COPY_NONE; | |
2070 | upl->map_object->shadow_offset = offset; | |
2071 | vm_object_unlock(upl->map_object); | |
2072 | return KERN_SUCCESS; | |
2073 | } | |
2074 | ||
2075 | ||
2076 | upl->map_object = vm_object_allocate(size); | |
2077 | vm_object_lock(upl->map_object); | |
2078 | upl->map_object->shadow = object; | |
2079 | upl->size = size; | |
2080 | upl->offset = offset + object->paging_offset; | |
2081 | upl->map_object->pageout = TRUE; | |
2082 | upl->map_object->can_persist = FALSE; | |
2083 | upl->map_object->copy_strategy = MEMORY_OBJECT_COPY_NONE; | |
2084 | upl->map_object->shadow_offset = offset; | |
2085 | vm_object_unlock(upl->map_object); | |
2086 | *upl_ptr = upl; | |
2087 | } | |
2088 | VM_PAGE_GRAB_FICTITIOUS(alias_page); | |
2089 | vm_object_lock(object); | |
2090 | #ifdef UBC_DEBUG | |
2091 | if(upl_ptr) | |
2092 | queue_enter(&object->uplq, upl, upl_t, uplq); | |
2093 | #endif /* UBC_DEBUG */ | |
2094 | vm_object_paging_begin(object); | |
2095 | entry = 0; | |
2096 | if(cntrl_flags & UPL_COPYOUT_FROM) { | |
2097 | upl->flags |= UPL_PAGE_SYNC_DONE; | |
2098 | while (xfer_size) { | |
2099 | if(alias_page == NULL) { | |
2100 | vm_object_unlock(object); | |
2101 | VM_PAGE_GRAB_FICTITIOUS(alias_page); | |
2102 | vm_object_lock(object); | |
2103 | } | |
2104 | if(((dst_page = vm_page_lookup(object, | |
2105 | dst_offset)) == VM_PAGE_NULL) || | |
2106 | dst_page->fictitious || | |
2107 | dst_page->absent || | |
2108 | dst_page->error || | |
2109 | (dst_page->wire_count != 0 && | |
2110 | !dst_page->pageout) || | |
2111 | ((!(dst_page->dirty || dst_page->precious || | |
2112 | pmap_is_modified(dst_page->phys_addr))) | |
2113 | && (cntrl_flags & UPL_RET_ONLY_DIRTY)) || | |
2114 | ((!(dst_page->inactive)) | |
2115 | && (dst_page->page_ticket != page_ticket) | |
2116 | && ((dst_page->page_ticket+1) != page_ticket) | |
2117 | && (cntrl_flags & UPL_PAGEOUT)) || | |
2118 | ((!dst_page->list_req_pending) && | |
2119 | (cntrl_flags & UPL_RET_ONLY_DIRTY) && | |
2120 | pmap_is_referenced(dst_page->phys_addr))) { | |
2121 | if(user_page_list) | |
2122 | user_page_list[entry].phys_addr = 0; | |
2123 | } else { | |
2124 | ||
2125 | if(dst_page->busy && | |
2126 | (!(dst_page->list_req_pending && | |
2127 | dst_page->pageout))) { | |
2128 | if(cntrl_flags & UPL_NOBLOCK) { | |
2129 | if(user_page_list) | |
2130 | user_page_list[entry] | |
2131 | .phys_addr = 0; | |
2132 | entry++; | |
2133 | dst_offset += PAGE_SIZE_64; | |
2134 | xfer_size -= PAGE_SIZE; | |
2135 | continue; | |
2136 | } | |
2137 | /*someone else is playing with the */ | |
2138 | /* page. We will have to wait. */ | |
2139 | PAGE_ASSERT_WAIT( | |
2140 | dst_page, THREAD_UNINT); | |
2141 | vm_object_unlock(object); | |
2142 | thread_block((void(*)(void))0); | |
2143 | vm_object_lock(object); | |
2144 | continue; | |
2145 | } | |
2146 | /* Someone else already cleaning the page? */ | |
2147 | if((dst_page->cleaning || dst_page->absent || | |
2148 | dst_page->wire_count != 0) && | |
2149 | !dst_page->list_req_pending) { | |
2150 | if(user_page_list) | |
2151 | user_page_list[entry].phys_addr = 0; | |
2152 | entry++; | |
2153 | dst_offset += PAGE_SIZE_64; | |
2154 | xfer_size -= PAGE_SIZE; | |
2155 | continue; | |
2156 | } | |
2157 | /* eliminate all mappings from the */ | |
2158 | /* original object and its prodigy */ | |
2159 | ||
2160 | vm_page_lock_queues(); | |
2161 | pmap_page_protect(dst_page->phys_addr, | |
2162 | VM_PROT_NONE); | |
2163 | ||
2164 | /* pageout statistics gathering. count */ | |
2165 | /* all the pages we will page out that */ | |
2166 | /* were not counted in the initial */ | |
2167 | /* vm_pageout_scan work */ | |
2168 | if(dst_page->list_req_pending) | |
2169 | encountered_lrp = TRUE; | |
2170 | if((dst_page->dirty || | |
2171 | (dst_page->object->internal && | |
2172 | dst_page->precious)) && | |
2173 | (dst_page->list_req_pending | |
2174 | == FALSE)) { | |
2175 | if(encountered_lrp) { | |
2176 | CLUSTER_STAT | |
2177 | (pages_at_higher_offsets++;) | |
2178 | } else { | |
2179 | CLUSTER_STAT | |
2180 | (pages_at_lower_offsets++;) | |
2181 | } | |
2182 | } | |
2183 | ||
2184 | /* Turn off busy indication on pending */ | |
2185 | /* pageout. Note: we can only get here */ | |
2186 | /* in the request pending case. */ | |
2187 | dst_page->list_req_pending = FALSE; | |
2188 | dst_page->busy = FALSE; | |
2189 | dst_page->cleaning = FALSE; | |
2190 | ||
2191 | dirty = pmap_is_modified(dst_page->phys_addr); | |
2192 | dirty = dirty ? TRUE : dst_page->dirty; | |
2193 | ||
2194 | /* use pageclean setup, it is more convenient */ | |
2195 | /* even for the pageout cases here */ | |
2196 | vm_pageclean_setup(dst_page, alias_page, | |
2197 | upl->map_object, size - xfer_size); | |
2198 | ||
2199 | if(!dirty) { | |
2200 | dst_page->dirty = FALSE; | |
2201 | dst_page->precious = TRUE; | |
2202 | } | |
2203 | ||
2204 | if(dst_page->pageout) | |
2205 | dst_page->busy = TRUE; | |
2206 | ||
2207 | alias_page->absent = FALSE; | |
2208 | alias_page = NULL; | |
2209 | if((!(cntrl_flags & UPL_CLEAN_IN_PLACE)) | |
2210 | || (cntrl_flags & UPL_PAGEOUT)) { | |
2211 | /* deny access to the target page */ | |
2212 | /* while it is being worked on */ | |
2213 | if((!dst_page->pageout) && | |
2214 | (dst_page->wire_count == 0)) { | |
2215 | dst_page->busy = TRUE; | |
2216 | dst_page->pageout = TRUE; | |
2217 | vm_page_wire(dst_page); | |
2218 | } | |
2219 | } | |
2220 | if(user_page_list) { | |
2221 | user_page_list[entry].phys_addr | |
2222 | = dst_page->phys_addr; | |
2223 | user_page_list[entry].dirty = | |
2224 | dst_page->dirty; | |
2225 | user_page_list[entry].pageout = | |
2226 | dst_page->pageout; | |
2227 | user_page_list[entry].absent = | |
2228 | dst_page->absent; | |
2229 | user_page_list[entry].precious = | |
2230 | dst_page->precious; | |
2231 | } | |
2232 | ||
2233 | vm_page_unlock_queues(); | |
2234 | } | |
2235 | entry++; | |
2236 | dst_offset += PAGE_SIZE_64; | |
2237 | xfer_size -= PAGE_SIZE; | |
2238 | } | |
2239 | } else { | |
2240 | while (xfer_size) { | |
2241 | if(alias_page == NULL) { | |
2242 | vm_object_unlock(object); | |
2243 | VM_PAGE_GRAB_FICTITIOUS(alias_page); | |
2244 | vm_object_lock(object); | |
2245 | } | |
2246 | dst_page = vm_page_lookup(object, dst_offset); | |
2247 | if(dst_page != VM_PAGE_NULL) { | |
2248 | if((dst_page->cleaning) && | |
2249 | !(dst_page->list_req_pending)) { | |
2250 | /*someone else is writing to the */ | |
2251 | /* page. We will have to wait. */ | |
2252 | PAGE_ASSERT_WAIT(dst_page,THREAD_UNINT); | |
2253 | vm_object_unlock(object); | |
2254 | thread_block((void(*)(void))0); | |
2255 | vm_object_lock(object); | |
2256 | continue; | |
2257 | } | |
2258 | if ((dst_page->fictitious && | |
2259 | dst_page->list_req_pending)) { | |
2260 | /* dump the fictitious page */ | |
2261 | dst_page->list_req_pending = FALSE; | |
2262 | dst_page->clustered = FALSE; | |
2263 | vm_page_lock_queues(); | |
2264 | vm_page_free(dst_page); | |
2265 | vm_page_unlock_queues(); | |
2266 | } else if ((dst_page->absent && | |
2267 | dst_page->list_req_pending)) { | |
2268 | /* the default_pager case */ | |
2269 | dst_page->list_req_pending = FALSE; | |
2270 | dst_page->busy = FALSE; | |
2271 | dst_page->clustered = FALSE; | |
2272 | } | |
2273 | } | |
2274 | if((dst_page = vm_page_lookup(object, dst_offset)) == | |
2275 | VM_PAGE_NULL) { | |
2276 | if(object->private) { | |
2277 | /* | |
2278 | * This is a nasty wrinkle for users | |
2279 | * of upl who encounter device or | |
2280 | * private memory however, it is | |
2281 | * unavoidable, only a fault can | |
2282 | * reslove the actual backing | |
2283 | * physical page by asking the | |
2284 | * backing device. | |
2285 | */ | |
2286 | if(user_page_list) | |
2287 | user_page_list[entry] | |
2288 | .phys_addr = 0; | |
2289 | entry++; | |
2290 | dst_offset += PAGE_SIZE_64; | |
2291 | xfer_size -= PAGE_SIZE; | |
2292 | continue; | |
2293 | } | |
2294 | /* need to allocate a page */ | |
2295 | dst_page = vm_page_alloc(object, dst_offset); | |
2296 | if (dst_page == VM_PAGE_NULL) { | |
2297 | vm_object_unlock(object); | |
2298 | VM_PAGE_WAIT(); | |
2299 | vm_object_lock(object); | |
2300 | continue; | |
2301 | } | |
2302 | dst_page->busy = FALSE; | |
2303 | #if 0 | |
2304 | if(cntrl_flags & UPL_NO_SYNC) { | |
2305 | dst_page->page_lock = 0; | |
2306 | dst_page->unlock_request = 0; | |
2307 | } | |
2308 | #endif | |
2309 | dst_page->absent = TRUE; | |
2310 | object->absent_count++; | |
2311 | } | |
2312 | #if 1 | |
2313 | if(cntrl_flags & UPL_NO_SYNC) { | |
2314 | dst_page->page_lock = 0; | |
2315 | dst_page->unlock_request = 0; | |
2316 | } | |
2317 | #endif /* 1 */ | |
2318 | dst_page->overwriting = TRUE; | |
2319 | if(dst_page->fictitious) { | |
2320 | panic("need corner case for fictitious page"); | |
2321 | } | |
2322 | if(dst_page->page_lock) { | |
2323 | do_m_lock = TRUE; | |
2324 | } | |
2325 | if(upl_ptr) { | |
2326 | ||
2327 | /* eliminate all mappings from the */ | |
2328 | /* original object and its prodigy */ | |
2329 | ||
2330 | if(dst_page->busy) { | |
2331 | /*someone else is playing with the */ | |
2332 | /* page. We will have to wait. */ | |
2333 | PAGE_ASSERT_WAIT( | |
2334 | dst_page, THREAD_UNINT); | |
2335 | vm_object_unlock(object); | |
2336 | thread_block((void(*)(void))0); | |
2337 | vm_object_lock(object); | |
2338 | continue; | |
2339 | } | |
2340 | ||
2341 | vm_page_lock_queues(); | |
2342 | pmap_page_protect(dst_page->phys_addr, | |
2343 | VM_PROT_NONE); | |
2344 | dirty = pmap_is_modified(dst_page->phys_addr); | |
2345 | dirty = dirty ? TRUE : dst_page->dirty; | |
2346 | ||
2347 | vm_pageclean_setup(dst_page, alias_page, | |
2348 | upl->map_object, size - xfer_size); | |
2349 | ||
2350 | if(cntrl_flags & UPL_CLEAN_IN_PLACE) { | |
2351 | /* clean in place for read implies */ | |
2352 | /* that a write will be done on all */ | |
2353 | /* the pages that are dirty before */ | |
2354 | /* a upl commit is done. The caller */ | |
2355 | /* is obligated to preserve the */ | |
2356 | /* contents of all pages marked */ | |
2357 | /* dirty. */ | |
2358 | upl->flags |= UPL_CLEAR_DIRTY; | |
2359 | } | |
2360 | ||
2361 | if(!dirty) { | |
2362 | dst_page->dirty = FALSE; | |
2363 | dst_page->precious = TRUE; | |
2364 | } | |
2365 | ||
2366 | if (dst_page->wire_count == 0) { | |
2367 | /* deny access to the target page while */ | |
2368 | /* it is being worked on */ | |
2369 | dst_page->busy = TRUE; | |
2370 | } else { | |
2371 | vm_page_wire(dst_page); | |
2372 | } | |
2373 | /* expect the page to be used */ | |
2374 | dst_page->reference = TRUE; | |
2375 | dst_page->precious = | |
2376 | (cntrl_flags & UPL_PRECIOUS) | |
2377 | ? TRUE : FALSE; | |
2378 | alias_page->absent = FALSE; | |
2379 | alias_page = NULL; | |
2380 | if(user_page_list) { | |
2381 | user_page_list[entry].phys_addr | |
2382 | = dst_page->phys_addr; | |
2383 | user_page_list[entry].dirty = | |
2384 | dst_page->dirty; | |
2385 | user_page_list[entry].pageout = | |
2386 | dst_page->pageout; | |
2387 | user_page_list[entry].absent = | |
2388 | dst_page->absent; | |
2389 | user_page_list[entry].precious = | |
2390 | dst_page->precious; | |
2391 | } | |
2392 | vm_page_unlock_queues(); | |
2393 | } | |
2394 | entry++; | |
2395 | dst_offset += PAGE_SIZE_64; | |
2396 | xfer_size -= PAGE_SIZE; | |
2397 | } | |
2398 | } | |
2399 | ||
2400 | if (upl->flags & UPL_INTERNAL) { | |
2401 | if(page_list_count != NULL) | |
2402 | *page_list_count = 0; | |
2403 | } else if (*page_list_count > entry) { | |
2404 | if(page_list_count != NULL) | |
2405 | *page_list_count = entry; | |
2406 | } | |
2407 | ||
2408 | if(alias_page != NULL) { | |
2409 | vm_page_lock_queues(); | |
2410 | vm_page_free(alias_page); | |
2411 | vm_page_unlock_queues(); | |
2412 | } | |
2413 | ||
2414 | if(do_m_lock) { | |
2415 | vm_prot_t access_required; | |
2416 | /* call back all associated pages from other users of the pager */ | |
2417 | /* all future updates will be on data which is based on the */ | |
2418 | /* changes we are going to make here. Note: it is assumed that */ | |
2419 | /* we already hold copies of the data so we will not be seeing */ | |
2420 | /* an avalanche of incoming data from the pager */ | |
2421 | access_required = (cntrl_flags & UPL_COPYOUT_FROM) | |
2422 | ? VM_PROT_READ : VM_PROT_WRITE; | |
2423 | while (TRUE) { | |
2424 | kern_return_t rc; | |
2425 | thread_t thread; | |
2426 | ||
2427 | if(!object->pager_ready) { | |
2428 | thread = current_thread(); | |
2429 | vm_object_assert_wait(object, | |
2430 | VM_OBJECT_EVENT_PAGER_READY, THREAD_UNINT); | |
2431 | vm_object_unlock(object); | |
2432 | thread_block((void (*)(void))0); | |
2433 | if (thread->wait_result != THREAD_AWAKENED) { | |
2434 | return(KERN_FAILURE); | |
2435 | } | |
2436 | vm_object_lock(object); | |
2437 | continue; | |
2438 | } | |
2439 | ||
2440 | vm_object_unlock(object); | |
2441 | ||
2442 | if (rc = memory_object_data_unlock( | |
2443 | object->pager, | |
2444 | dst_offset + object->paging_offset, | |
2445 | size, | |
2446 | access_required)) { | |
2447 | if (rc == MACH_SEND_INTERRUPTED) | |
2448 | continue; | |
2449 | else | |
2450 | return KERN_FAILURE; | |
2451 | } | |
2452 | break; | |
2453 | ||
2454 | } | |
2455 | /* lets wait on the last page requested */ | |
2456 | /* NOTE: we will have to update lock completed routine to signal */ | |
2457 | if(dst_page != VM_PAGE_NULL && | |
2458 | (access_required & dst_page->page_lock) != access_required) { | |
2459 | PAGE_ASSERT_WAIT(dst_page, THREAD_UNINT); | |
2460 | thread_block((void (*)(void))0); | |
2461 | vm_object_lock(object); | |
2462 | } | |
2463 | } | |
2464 | vm_object_unlock(object); | |
2465 | return KERN_SUCCESS; | |
2466 | } | |
2467 | ||
2468 | /* JMM - Backward compatability for now */ | |
2469 | kern_return_t | |
2470 | vm_fault_list_request( | |
2471 | memory_object_control_t control, | |
2472 | vm_object_offset_t offset, | |
2473 | vm_size_t size, | |
2474 | upl_t *upl_ptr, | |
2475 | upl_page_info_t **user_page_list_ptr, | |
2476 | int page_list_count, | |
2477 | int cntrl_flags) | |
2478 | { | |
2479 | int local_list_count; | |
2480 | upl_page_info_t *user_page_list; | |
2481 | kern_return_t kr; | |
2482 | ||
2483 | if (user_page_list_ptr != NULL) { | |
2484 | local_list_count = page_list_count; | |
2485 | user_page_list = *user_page_list_ptr; | |
2486 | } else { | |
2487 | local_list_count = 0; | |
2488 | user_page_list = NULL; | |
2489 | } | |
2490 | kr = memory_object_upl_request(control, | |
2491 | offset, | |
2492 | size, | |
2493 | upl_ptr, | |
2494 | user_page_list, | |
2495 | &local_list_count, | |
2496 | cntrl_flags); | |
2497 | ||
2498 | if(kr != KERN_SUCCESS) | |
2499 | return kr; | |
2500 | ||
2501 | if ((user_page_list_ptr != NULL) && (cntrl_flags & UPL_INTERNAL)) { | |
2502 | *user_page_list_ptr = UPL_GET_INTERNAL_PAGE_LIST(*upl_ptr); | |
2503 | } | |
2504 | ||
2505 | return KERN_SUCCESS; | |
2506 | } | |
2507 | ||
2508 | ||
2509 | ||
2510 | /* | |
2511 | * Routine: vm_object_super_upl_request | |
2512 | * Purpose: | |
2513 | * Cause the population of a portion of a vm_object | |
2514 | * in much the same way as memory_object_upl_request. | |
2515 | * Depending on the nature of the request, the pages | |
2516 | * returned may be contain valid data or be uninitialized. | |
2517 | * However, the region may be expanded up to the super | |
2518 | * cluster size provided. | |
2519 | */ | |
2520 | ||
2521 | __private_extern__ kern_return_t | |
2522 | vm_object_super_upl_request( | |
2523 | vm_object_t object, | |
2524 | vm_object_offset_t offset, | |
2525 | vm_size_t size, | |
2526 | vm_size_t super_cluster, | |
2527 | upl_t *upl, | |
2528 | upl_page_info_t *user_page_list, | |
2529 | unsigned int *page_list_count, | |
2530 | int cntrl_flags) | |
2531 | { | |
2532 | vm_page_t target_page; | |
2533 | int ticket; | |
2534 | ||
2535 | if(object->paging_offset > offset) | |
2536 | return KERN_FAILURE; | |
2537 | ||
2538 | offset = offset - object->paging_offset; | |
2539 | if(cntrl_flags & UPL_PAGEOUT) { | |
2540 | if((target_page = vm_page_lookup(object, offset)) | |
2541 | != VM_PAGE_NULL) { | |
2542 | ticket = target_page->page_ticket; | |
2543 | cntrl_flags = cntrl_flags & ~(int)UPL_PAGE_TICKET_MASK; | |
2544 | cntrl_flags = cntrl_flags | | |
2545 | ((ticket << UPL_PAGE_TICKET_SHIFT) | |
2546 | & UPL_PAGE_TICKET_MASK); | |
2547 | } | |
2548 | } | |
2549 | ||
2550 | ||
2551 | /* turns off super cluster exercised by the default_pager */ | |
2552 | /* | |
2553 | super_cluster = size; | |
2554 | */ | |
2555 | if ((super_cluster > size) && | |
2556 | (vm_page_free_count > vm_page_free_reserved)) { | |
2557 | ||
2558 | vm_object_offset_t base_offset; | |
2559 | vm_size_t super_size; | |
2560 | ||
2561 | base_offset = (offset & | |
2562 | ~((vm_object_offset_t) super_cluster - 1)); | |
2563 | super_size = (offset+size) > (base_offset + super_cluster) ? | |
2564 | super_cluster<<1 : super_cluster; | |
2565 | super_size = ((base_offset + super_size) > object->size) ? | |
2566 | (object->size - base_offset) : super_size; | |
2567 | if(offset > (base_offset + super_size)) | |
2568 | panic("vm_object_super_upl_request: Missed target pageout 0x%x,0x%x, 0x%x, 0x%x, 0x%x, 0x%x\n", offset, base_offset, super_size, super_cluster, size, object->paging_offset); | |
2569 | /* apparently there is a case where the vm requests a */ | |
2570 | /* page to be written out who's offset is beyond the */ | |
2571 | /* object size */ | |
2572 | if((offset + size) > (base_offset + super_size)) | |
2573 | super_size = (offset + size) - base_offset; | |
2574 | ||
2575 | offset = base_offset; | |
2576 | size = super_size; | |
2577 | } | |
2578 | vm_object_upl_request(object, offset, size, | |
2579 | upl, user_page_list, page_list_count, | |
2580 | cntrl_flags); | |
2581 | } | |
2582 | ||
2583 | ||
2584 | kern_return_t | |
2585 | vm_upl_map( | |
2586 | vm_map_t map, | |
2587 | upl_t upl, | |
2588 | vm_offset_t *dst_addr) | |
2589 | { | |
2590 | vm_size_t size; | |
2591 | vm_object_offset_t offset; | |
2592 | vm_offset_t addr; | |
2593 | vm_page_t m; | |
2594 | kern_return_t kr; | |
2595 | ||
2596 | if (upl == UPL_NULL) | |
2597 | return KERN_INVALID_ARGUMENT; | |
2598 | ||
2599 | upl_lock(upl); | |
2600 | ||
2601 | /* check to see if already mapped */ | |
2602 | if(UPL_PAGE_LIST_MAPPED & upl->flags) { | |
2603 | upl_unlock(upl); | |
2604 | return KERN_FAILURE; | |
2605 | } | |
2606 | ||
2607 | offset = 0; /* Always map the entire object */ | |
2608 | size = upl->size; | |
2609 | ||
2610 | vm_object_lock(upl->map_object); | |
2611 | upl->map_object->ref_count++; | |
2612 | vm_object_res_reference(upl->map_object); | |
2613 | vm_object_unlock(upl->map_object); | |
2614 | ||
2615 | *dst_addr = 0; | |
2616 | ||
2617 | ||
2618 | /* NEED A UPL_MAP ALIAS */ | |
2619 | kr = vm_map_enter(map, dst_addr, size, (vm_offset_t) 0, TRUE, | |
2620 | upl->map_object, offset, FALSE, | |
2621 | VM_PROT_DEFAULT, VM_PROT_ALL, VM_INHERIT_DEFAULT); | |
2622 | ||
2623 | if (kr != KERN_SUCCESS) { | |
2624 | upl_unlock(upl); | |
2625 | return(kr); | |
2626 | } | |
2627 | ||
2628 | for(addr=*dst_addr; size > 0; size-=PAGE_SIZE,addr+=PAGE_SIZE) { | |
2629 | m = vm_page_lookup(upl->map_object, offset); | |
2630 | if(m) { | |
2631 | PMAP_ENTER(map->pmap, addr, m, VM_PROT_ALL, TRUE); | |
2632 | } | |
2633 | offset+=PAGE_SIZE_64; | |
2634 | } | |
2635 | upl->ref_count++; /* hold a reference for the mapping */ | |
2636 | upl->flags |= UPL_PAGE_LIST_MAPPED; | |
2637 | upl->kaddr = *dst_addr; | |
2638 | upl_unlock(upl); | |
2639 | return KERN_SUCCESS; | |
2640 | } | |
2641 | ||
2642 | ||
2643 | kern_return_t | |
2644 | vm_upl_unmap( | |
2645 | vm_map_t map, | |
2646 | upl_t upl) | |
2647 | { | |
2648 | vm_address_t addr; | |
2649 | vm_size_t size; | |
2650 | ||
2651 | if (upl == UPL_NULL) | |
2652 | return KERN_INVALID_ARGUMENT; | |
2653 | ||
2654 | upl_lock(upl); | |
2655 | if(upl->flags & UPL_PAGE_LIST_MAPPED) { | |
2656 | addr = upl->kaddr; | |
2657 | size = upl->size; | |
2658 | assert(upl->ref_count > 1); | |
2659 | upl->ref_count--; /* removing mapping ref */ | |
2660 | upl->flags &= ~UPL_PAGE_LIST_MAPPED; | |
2661 | upl->kaddr = (vm_offset_t) 0; | |
2662 | upl_unlock(upl); | |
2663 | ||
2664 | vm_deallocate(map, addr, size); | |
2665 | return KERN_SUCCESS; | |
2666 | } | |
2667 | upl_unlock(upl); | |
2668 | return KERN_FAILURE; | |
2669 | } | |
2670 | ||
2671 | kern_return_t | |
2672 | upl_commit_range( | |
2673 | upl_t upl, | |
2674 | vm_offset_t offset, | |
2675 | vm_size_t size, | |
2676 | int flags, | |
2677 | upl_page_info_t *page_list, | |
2678 | mach_msg_type_number_t count, | |
2679 | boolean_t *empty) | |
2680 | { | |
2681 | vm_size_t xfer_size = size; | |
2682 | vm_object_t shadow_object = upl->map_object->shadow; | |
2683 | vm_object_t object = upl->map_object; | |
2684 | vm_object_offset_t target_offset; | |
2685 | vm_object_offset_t page_offset; | |
2686 | int entry; | |
2687 | ||
2688 | *empty = FALSE; | |
2689 | ||
2690 | if (upl == UPL_NULL) | |
2691 | return KERN_INVALID_ARGUMENT; | |
2692 | ||
2693 | if (count == 0) | |
2694 | page_list = NULL; | |
2695 | ||
2696 | upl_lock(upl); | |
2697 | if(upl->flags & UPL_DEVICE_MEMORY) { | |
2698 | xfer_size = 0; | |
2699 | } else if ((offset + size) > upl->size) { | |
2700 | upl_unlock(upl); | |
2701 | return KERN_FAILURE; | |
2702 | } | |
2703 | ||
2704 | vm_object_lock(shadow_object); | |
2705 | ||
2706 | entry = offset/PAGE_SIZE; | |
2707 | target_offset = (vm_object_offset_t)offset; | |
2708 | while(xfer_size) { | |
2709 | vm_page_t t,m; | |
2710 | upl_page_info_t *p; | |
2711 | ||
2712 | if((t = vm_page_lookup(object, target_offset)) != NULL) { | |
2713 | ||
2714 | t->pageout = FALSE; | |
2715 | page_offset = t->offset; | |
2716 | VM_PAGE_FREE(t); | |
2717 | t = VM_PAGE_NULL; | |
2718 | m = vm_page_lookup(shadow_object, | |
2719 | page_offset + object->shadow_offset); | |
2720 | if(m != VM_PAGE_NULL) { | |
2721 | vm_object_paging_end(shadow_object); | |
2722 | vm_page_lock_queues(); | |
2723 | if ((upl->flags & UPL_CLEAR_DIRTY) || | |
2724 | (flags & UPL_COMMIT_CLEAR_DIRTY)) { | |
2725 | pmap_clear_modify(m->phys_addr); | |
2726 | m->dirty = FALSE; | |
2727 | } | |
2728 | if(page_list) { | |
2729 | p = &(page_list[entry]); | |
2730 | if(p->phys_addr && p->pageout && !m->pageout) { | |
2731 | m->busy = TRUE; | |
2732 | m->pageout = TRUE; | |
2733 | vm_page_wire(m); | |
2734 | } else if (page_list[entry].phys_addr && | |
2735 | !p->pageout && m->pageout && | |
2736 | !m->dump_cleaning) { | |
2737 | m->pageout = FALSE; | |
2738 | m->absent = FALSE; | |
2739 | m->overwriting = FALSE; | |
2740 | vm_page_unwire(m); | |
2741 | PAGE_WAKEUP_DONE(m); | |
2742 | } | |
2743 | page_list[entry].phys_addr = 0; | |
2744 | } | |
2745 | m->dump_cleaning = FALSE; | |
2746 | if(m->laundry) { | |
2747 | vm_page_laundry_count--; | |
2748 | m->laundry = FALSE; | |
2749 | if (vm_page_laundry_count < vm_page_laundry_min) { | |
2750 | vm_page_laundry_min = 0; | |
2751 | thread_wakeup((event_t) | |
2752 | &vm_page_laundry_count); | |
2753 | } | |
2754 | } | |
2755 | if(m->pageout) { | |
2756 | m->cleaning = FALSE; | |
2757 | m->pageout = FALSE; | |
2758 | #if MACH_CLUSTER_STATS | |
2759 | if (m->wanted) vm_pageout_target_collisions++; | |
2760 | #endif | |
2761 | pmap_page_protect(m->phys_addr, VM_PROT_NONE); | |
2762 | m->dirty = pmap_is_modified(m->phys_addr); | |
2763 | if(m->dirty) { | |
2764 | CLUSTER_STAT( | |
2765 | vm_pageout_target_page_dirtied++;) | |
2766 | vm_page_unwire(m);/* reactivates */ | |
2767 | VM_STAT(reactivations++); | |
2768 | PAGE_WAKEUP_DONE(m); | |
2769 | } else { | |
2770 | CLUSTER_STAT( | |
2771 | vm_pageout_target_page_freed++;) | |
2772 | vm_page_free(m);/* clears busy, etc. */ | |
2773 | VM_STAT(pageouts++); | |
2774 | } | |
2775 | vm_page_unlock_queues(); | |
2776 | target_offset += PAGE_SIZE_64; | |
2777 | xfer_size -= PAGE_SIZE; | |
2778 | entry++; | |
2779 | continue; | |
2780 | } | |
2781 | if (flags & UPL_COMMIT_INACTIVATE) { | |
2782 | vm_page_deactivate(m); | |
2783 | m->reference = FALSE; | |
2784 | pmap_clear_reference(m->phys_addr); | |
2785 | } else if (!m->active && !m->inactive) { | |
2786 | if (m->reference) | |
2787 | vm_page_activate(m); | |
2788 | else | |
2789 | vm_page_deactivate(m); | |
2790 | } | |
2791 | #if MACH_CLUSTER_STATS | |
2792 | m->dirty = pmap_is_modified(m->phys_addr); | |
2793 | ||
2794 | if (m->dirty) vm_pageout_cluster_dirtied++; | |
2795 | else vm_pageout_cluster_cleaned++; | |
2796 | if (m->wanted) vm_pageout_cluster_collisions++; | |
2797 | #else | |
2798 | m->dirty = 0; | |
2799 | #endif | |
2800 | ||
2801 | if((m->busy) && (m->cleaning)) { | |
2802 | /* the request_page_list case */ | |
2803 | if(m->absent) { | |
2804 | m->absent = FALSE; | |
2805 | if(shadow_object->absent_count == 1) | |
2806 | vm_object_absent_release(shadow_object); | |
2807 | else | |
2808 | shadow_object->absent_count--; | |
2809 | } | |
2810 | m->overwriting = FALSE; | |
2811 | m->busy = FALSE; | |
2812 | m->dirty = FALSE; | |
2813 | } | |
2814 | else if (m->overwriting) { | |
2815 | /* alternate request page list, write to | |
2816 | /* page_list case. Occurs when the original | |
2817 | /* page was wired at the time of the list | |
2818 | /* request */ | |
2819 | assert(m->wire_count != 0); | |
2820 | vm_page_unwire(m);/* reactivates */ | |
2821 | m->overwriting = FALSE; | |
2822 | } | |
2823 | m->cleaning = FALSE; | |
2824 | /* It is a part of the semantic of COPYOUT_FROM */ | |
2825 | /* UPLs that a commit implies cache sync */ | |
2826 | /* between the vm page and the backing store */ | |
2827 | /* this can be used to strip the precious bit */ | |
2828 | /* as well as clean */ | |
2829 | if (upl->flags & UPL_PAGE_SYNC_DONE) | |
2830 | m->precious = FALSE; | |
2831 | ||
2832 | if (flags & UPL_COMMIT_SET_DIRTY) { | |
2833 | m->dirty = TRUE; | |
2834 | } | |
2835 | /* | |
2836 | * Wakeup any thread waiting for the page to be un-cleaning. | |
2837 | */ | |
2838 | PAGE_WAKEUP(m); | |
2839 | vm_page_unlock_queues(); | |
2840 | ||
2841 | } | |
2842 | } | |
2843 | target_offset += PAGE_SIZE_64; | |
2844 | xfer_size -= PAGE_SIZE; | |
2845 | entry++; | |
2846 | } | |
2847 | ||
2848 | vm_object_unlock(shadow_object); | |
2849 | if(flags & UPL_COMMIT_NOTIFY_EMPTY) { | |
2850 | if((upl->flags & UPL_DEVICE_MEMORY) | |
2851 | || (queue_empty(&upl->map_object->memq))) | |
2852 | *empty = TRUE; | |
2853 | } | |
2854 | upl_unlock(upl); | |
2855 | ||
2856 | return KERN_SUCCESS; | |
2857 | } | |
2858 | ||
2859 | kern_return_t | |
2860 | upl_abort_range( | |
2861 | upl_t upl, | |
2862 | vm_offset_t offset, | |
2863 | vm_size_t size, | |
2864 | int error, | |
2865 | boolean_t *empty) | |
2866 | { | |
2867 | vm_size_t xfer_size = size; | |
2868 | vm_object_t shadow_object = upl->map_object->shadow; | |
2869 | vm_object_t object = upl->map_object; | |
2870 | vm_object_offset_t target_offset; | |
2871 | vm_object_offset_t page_offset; | |
2872 | int entry; | |
2873 | ||
2874 | *empty = FALSE; | |
2875 | ||
2876 | if (upl == UPL_NULL) | |
2877 | return KERN_INVALID_ARGUMENT; | |
2878 | ||
2879 | upl_lock(upl); | |
2880 | if(upl->flags & UPL_DEVICE_MEMORY) { | |
2881 | xfer_size = 0; | |
2882 | } else if ((offset + size) > upl->size) { | |
2883 | upl_unlock(upl); | |
2884 | return KERN_FAILURE; | |
2885 | } | |
2886 | ||
2887 | vm_object_lock(shadow_object); | |
2888 | ||
2889 | entry = offset/PAGE_SIZE; | |
2890 | target_offset = (vm_object_offset_t)offset; | |
2891 | while(xfer_size) { | |
2892 | vm_page_t t,m; | |
2893 | upl_page_info_t *p; | |
2894 | ||
2895 | if((t = vm_page_lookup(object, target_offset)) != NULL) { | |
2896 | ||
2897 | t->pageout = FALSE; | |
2898 | page_offset = t->offset; | |
2899 | VM_PAGE_FREE(t); | |
2900 | t = VM_PAGE_NULL; | |
2901 | m = vm_page_lookup(shadow_object, | |
2902 | page_offset + object->shadow_offset); | |
2903 | if(m != VM_PAGE_NULL) { | |
2904 | vm_object_paging_end(m->object); | |
2905 | vm_page_lock_queues(); | |
2906 | if(m->absent) { | |
2907 | /* COPYOUT = FALSE case */ | |
2908 | /* check for error conditions which must */ | |
2909 | /* be passed back to the pages customer */ | |
2910 | if(error & UPL_ABORT_RESTART) { | |
2911 | m->restart = TRUE; | |
2912 | m->absent = FALSE; | |
2913 | vm_object_absent_release(m->object); | |
2914 | m->page_error = KERN_MEMORY_ERROR; | |
2915 | m->error = TRUE; | |
2916 | } else if(error & UPL_ABORT_UNAVAILABLE) { | |
2917 | m->restart = FALSE; | |
2918 | m->unusual = TRUE; | |
2919 | m->clustered = FALSE; | |
2920 | } else if(error & UPL_ABORT_ERROR) { | |
2921 | m->restart = FALSE; | |
2922 | m->absent = FALSE; | |
2923 | vm_object_absent_release(m->object); | |
2924 | m->page_error = KERN_MEMORY_ERROR; | |
2925 | m->error = TRUE; | |
2926 | } else if(error & UPL_ABORT_DUMP_PAGES) { | |
2927 | m->clustered = TRUE; | |
2928 | } else { | |
2929 | m->clustered = TRUE; | |
2930 | } | |
2931 | ||
2932 | ||
2933 | m->cleaning = FALSE; | |
2934 | m->overwriting = FALSE; | |
2935 | PAGE_WAKEUP_DONE(m); | |
2936 | if(m->clustered) { | |
2937 | vm_page_free(m); | |
2938 | } else { | |
2939 | vm_page_activate(m); | |
2940 | } | |
2941 | ||
2942 | vm_page_unlock_queues(); | |
2943 | target_offset += PAGE_SIZE_64; | |
2944 | xfer_size -= PAGE_SIZE; | |
2945 | entry++; | |
2946 | continue; | |
2947 | } | |
2948 | /* | |
2949 | * Handle the trusted pager throttle. | |
2950 | */ | |
2951 | if (m->laundry) { | |
2952 | vm_page_laundry_count--; | |
2953 | m->laundry = FALSE; | |
2954 | if (vm_page_laundry_count | |
2955 | < vm_page_laundry_min) { | |
2956 | vm_page_laundry_min = 0; | |
2957 | thread_wakeup((event_t) | |
2958 | &vm_page_laundry_count); | |
2959 | } | |
2960 | } | |
2961 | if(m->pageout) { | |
2962 | assert(m->busy); | |
2963 | assert(m->wire_count == 1); | |
2964 | m->pageout = FALSE; | |
2965 | vm_page_unwire(m); | |
2966 | } | |
2967 | m->dump_cleaning = FALSE; | |
2968 | m->cleaning = FALSE; | |
2969 | m->busy = FALSE; | |
2970 | m->overwriting = FALSE; | |
2971 | #if MACH_PAGEMAP | |
2972 | vm_external_state_clr( | |
2973 | m->object->existence_map, m->offset); | |
2974 | #endif /* MACH_PAGEMAP */ | |
2975 | if(error & UPL_ABORT_DUMP_PAGES) { | |
2976 | vm_page_free(m); | |
2977 | pmap_page_protect(m->phys_addr, VM_PROT_NONE); | |
2978 | } else { | |
2979 | PAGE_WAKEUP(m); | |
2980 | } | |
2981 | vm_page_unlock_queues(); | |
2982 | } | |
2983 | } | |
2984 | target_offset += PAGE_SIZE_64; | |
2985 | xfer_size -= PAGE_SIZE; | |
2986 | entry++; | |
2987 | } | |
2988 | vm_object_unlock(shadow_object); | |
2989 | if(error & UPL_ABORT_NOTIFY_EMPTY) { | |
2990 | if((upl->flags & UPL_DEVICE_MEMORY) | |
2991 | || (queue_empty(&upl->map_object->memq))) | |
2992 | *empty = TRUE; | |
2993 | } | |
2994 | upl_unlock(upl); | |
2995 | return KERN_SUCCESS; | |
2996 | } | |
2997 | ||
2998 | kern_return_t | |
2999 | upl_abort( | |
3000 | upl_t upl, | |
3001 | int error) | |
3002 | { | |
3003 | vm_object_t object = NULL; | |
3004 | vm_object_t shadow_object = NULL; | |
3005 | vm_object_offset_t offset; | |
3006 | vm_object_offset_t shadow_offset; | |
3007 | vm_object_offset_t target_offset; | |
3008 | int i; | |
3009 | vm_page_t t,m; | |
3010 | ||
3011 | if (upl == UPL_NULL) | |
3012 | return KERN_INVALID_ARGUMENT; | |
3013 | ||
3014 | upl_lock(upl); | |
3015 | if(upl->flags & UPL_DEVICE_MEMORY) { | |
3016 | upl_unlock(upl); | |
3017 | return KERN_SUCCESS; | |
3018 | } | |
3019 | ||
3020 | object = upl->map_object; | |
3021 | ||
3022 | if (object == NULL) { | |
3023 | panic("upl_abort: upl object is not backed by an object"); | |
3024 | upl_unlock(upl); | |
3025 | return KERN_INVALID_ARGUMENT; | |
3026 | } | |
3027 | ||
3028 | shadow_object = upl->map_object->shadow; | |
3029 | shadow_offset = upl->map_object->shadow_offset; | |
3030 | offset = 0; | |
3031 | vm_object_lock(shadow_object); | |
3032 | for(i = 0; i<(upl->size); i+=PAGE_SIZE, offset += PAGE_SIZE_64) { | |
3033 | if((t = vm_page_lookup(object,offset)) != NULL) { | |
3034 | target_offset = t->offset + shadow_offset; | |
3035 | if((m = vm_page_lookup(shadow_object, target_offset)) != NULL) { | |
3036 | vm_object_paging_end(m->object); | |
3037 | vm_page_lock_queues(); | |
3038 | if(m->absent) { | |
3039 | /* COPYOUT = FALSE case */ | |
3040 | /* check for error conditions which must */ | |
3041 | /* be passed back to the pages customer */ | |
3042 | if(error & UPL_ABORT_RESTART) { | |
3043 | m->restart = TRUE; | |
3044 | m->absent = FALSE; | |
3045 | vm_object_absent_release(m->object); | |
3046 | m->page_error = KERN_MEMORY_ERROR; | |
3047 | m->error = TRUE; | |
3048 | } else if(error & UPL_ABORT_UNAVAILABLE) { | |
3049 | m->restart = FALSE; | |
3050 | m->unusual = TRUE; | |
3051 | m->clustered = FALSE; | |
3052 | } else if(error & UPL_ABORT_ERROR) { | |
3053 | m->restart = FALSE; | |
3054 | m->absent = FALSE; | |
3055 | vm_object_absent_release(m->object); | |
3056 | m->page_error = KERN_MEMORY_ERROR; | |
3057 | m->error = TRUE; | |
3058 | } else if(error & UPL_ABORT_DUMP_PAGES) { | |
3059 | m->clustered = TRUE; | |
3060 | } else { | |
3061 | m->clustered = TRUE; | |
3062 | } | |
3063 | ||
3064 | m->cleaning = FALSE; | |
3065 | m->overwriting = FALSE; | |
3066 | PAGE_WAKEUP_DONE(m); | |
3067 | if(m->clustered) { | |
3068 | vm_page_free(m); | |
3069 | } else { | |
3070 | vm_page_activate(m); | |
3071 | } | |
3072 | vm_page_unlock_queues(); | |
3073 | continue; | |
3074 | } | |
3075 | /* | |
3076 | * Handle the trusted pager throttle. | |
3077 | */ | |
3078 | if (m->laundry) { | |
3079 | vm_page_laundry_count--; | |
3080 | m->laundry = FALSE; | |
3081 | if (vm_page_laundry_count | |
3082 | < vm_page_laundry_min) { | |
3083 | vm_page_laundry_min = 0; | |
3084 | thread_wakeup((event_t) | |
3085 | &vm_page_laundry_count); | |
3086 | } | |
3087 | } | |
3088 | if(m->pageout) { | |
3089 | assert(m->busy); | |
3090 | assert(m->wire_count == 1); | |
3091 | m->pageout = FALSE; | |
3092 | vm_page_unwire(m); | |
3093 | } | |
3094 | m->dump_cleaning = FALSE; | |
3095 | m->cleaning = FALSE; | |
3096 | m->busy = FALSE; | |
3097 | m->overwriting = FALSE; | |
3098 | #if MACH_PAGEMAP | |
3099 | vm_external_state_clr( | |
3100 | m->object->existence_map, m->offset); | |
3101 | #endif /* MACH_PAGEMAP */ | |
3102 | if(error & UPL_ABORT_DUMP_PAGES) { | |
3103 | vm_page_free(m); | |
3104 | pmap_page_protect(m->phys_addr, VM_PROT_NONE); | |
3105 | } else { | |
3106 | PAGE_WAKEUP(m); | |
3107 | } | |
3108 | vm_page_unlock_queues(); | |
3109 | } | |
3110 | } | |
3111 | } | |
3112 | vm_object_unlock(shadow_object); | |
3113 | /* Remove all the pages from the map object so */ | |
3114 | /* vm_pageout_object_terminate will work properly. */ | |
3115 | while (!queue_empty(&upl->map_object->memq)) { | |
3116 | vm_page_t p; | |
3117 | ||
3118 | p = (vm_page_t) queue_first(&upl->map_object->memq); | |
3119 | ||
3120 | assert(p->private); | |
3121 | assert(p->pageout); | |
3122 | p->pageout = FALSE; | |
3123 | assert(!p->cleaning); | |
3124 | ||
3125 | VM_PAGE_FREE(p); | |
3126 | } | |
3127 | upl_unlock(upl); | |
3128 | return KERN_SUCCESS; | |
3129 | } | |
3130 | ||
3131 | /* an option on commit should be wire */ | |
3132 | kern_return_t | |
3133 | upl_commit( | |
3134 | upl_t upl, | |
3135 | upl_page_info_t *page_list, | |
3136 | mach_msg_type_number_t count) | |
3137 | { | |
3138 | if (upl == UPL_NULL) | |
3139 | return KERN_INVALID_ARGUMENT; | |
3140 | ||
3141 | if (count == 0) | |
3142 | page_list = NULL; | |
3143 | ||
3144 | upl_lock(upl); | |
3145 | if (upl->flags & UPL_DEVICE_MEMORY) | |
3146 | page_list = NULL; | |
3147 | if ((upl->flags & UPL_CLEAR_DIRTY) || | |
3148 | (upl->flags & UPL_PAGE_SYNC_DONE)) { | |
3149 | vm_object_t shadow_object = upl->map_object->shadow; | |
3150 | vm_object_t object = upl->map_object; | |
3151 | vm_object_offset_t target_offset; | |
3152 | vm_size_t xfer_end; | |
3153 | ||
3154 | vm_page_t t,m; | |
3155 | ||
3156 | vm_object_lock(shadow_object); | |
3157 | ||
3158 | target_offset = object->shadow_offset; | |
3159 | xfer_end = upl->size + object->shadow_offset; | |
3160 | ||
3161 | while(target_offset < xfer_end) { | |
3162 | if ((t = vm_page_lookup(object, | |
3163 | target_offset - object->shadow_offset)) | |
3164 | != NULL) { | |
3165 | m = vm_page_lookup( | |
3166 | shadow_object, target_offset); | |
3167 | if(m != VM_PAGE_NULL) { | |
3168 | if (upl->flags & UPL_CLEAR_DIRTY) { | |
3169 | pmap_clear_modify(m->phys_addr); | |
3170 | m->dirty = FALSE; | |
3171 | } | |
3172 | /* It is a part of the semantic of */ | |
3173 | /* COPYOUT_FROM UPLs that a commit */ | |
3174 | /* implies cache sync between the */ | |
3175 | /* vm page and the backing store */ | |
3176 | /* this can be used to strip the */ | |
3177 | /* precious bit as well as clean */ | |
3178 | if (upl->flags & UPL_PAGE_SYNC_DONE) | |
3179 | m->precious = FALSE; | |
3180 | } | |
3181 | } | |
3182 | target_offset += PAGE_SIZE_64; | |
3183 | } | |
3184 | vm_object_unlock(shadow_object); | |
3185 | } | |
3186 | if (page_list) { | |
3187 | vm_object_t shadow_object = upl->map_object->shadow; | |
3188 | vm_object_t object = upl->map_object; | |
3189 | vm_object_offset_t target_offset; | |
3190 | vm_size_t xfer_end; | |
3191 | int entry; | |
3192 | ||
3193 | vm_page_t t, m; | |
3194 | upl_page_info_t *p; | |
3195 | ||
3196 | vm_object_lock(shadow_object); | |
3197 | ||
3198 | entry = 0; | |
3199 | target_offset = object->shadow_offset; | |
3200 | xfer_end = upl->size + object->shadow_offset; | |
3201 | ||
3202 | while(target_offset < xfer_end) { | |
3203 | ||
3204 | if ((t = vm_page_lookup(object, | |
3205 | target_offset - object->shadow_offset)) | |
3206 | == NULL) { | |
3207 | target_offset += PAGE_SIZE_64; | |
3208 | entry++; | |
3209 | continue; | |
3210 | } | |
3211 | ||
3212 | m = vm_page_lookup(shadow_object, target_offset); | |
3213 | if(m != VM_PAGE_NULL) { | |
3214 | p = &(page_list[entry]); | |
3215 | if(page_list[entry].phys_addr && | |
3216 | p->pageout && !m->pageout) { | |
3217 | vm_page_lock_queues(); | |
3218 | m->busy = TRUE; | |
3219 | m->pageout = TRUE; | |
3220 | vm_page_wire(m); | |
3221 | vm_page_unlock_queues(); | |
3222 | } else if (page_list[entry].phys_addr && | |
3223 | !p->pageout && m->pageout && | |
3224 | !m->dump_cleaning) { | |
3225 | vm_page_lock_queues(); | |
3226 | m->pageout = FALSE; | |
3227 | m->absent = FALSE; | |
3228 | m->overwriting = FALSE; | |
3229 | vm_page_unwire(m); | |
3230 | PAGE_WAKEUP_DONE(m); | |
3231 | vm_page_unlock_queues(); | |
3232 | } | |
3233 | page_list[entry].phys_addr = 0; | |
3234 | } | |
3235 | target_offset += PAGE_SIZE_64; | |
3236 | entry++; | |
3237 | } | |
3238 | ||
3239 | vm_object_unlock(shadow_object); | |
3240 | } | |
3241 | upl_unlock(upl); | |
3242 | return KERN_SUCCESS; | |
3243 | } | |
3244 | ||
3245 | vm_size_t | |
3246 | upl_get_internal_pagelist_offset() | |
3247 | { | |
3248 | return sizeof(struct upl); | |
3249 | } | |
3250 | ||
3251 | void | |
3252 | upl_set_dirty( | |
3253 | upl_t upl) | |
3254 | { | |
3255 | upl->flags |= UPL_CLEAR_DIRTY; | |
3256 | } | |
3257 | ||
3258 | void | |
3259 | upl_clear_dirty( | |
3260 | upl_t upl) | |
3261 | { | |
3262 | upl->flags &= ~UPL_CLEAR_DIRTY; | |
3263 | } | |
3264 | ||
3265 | ||
3266 | #ifdef MACH_BSD | |
3267 | ||
3268 | boolean_t upl_page_present(upl_page_info_t *upl, int index) | |
3269 | { | |
3270 | return(UPL_PAGE_PRESENT(upl, index)); | |
3271 | } | |
3272 | boolean_t upl_dirty_page(upl_page_info_t *upl, int index) | |
3273 | { | |
3274 | return(UPL_DIRTY_PAGE(upl, index)); | |
3275 | } | |
3276 | boolean_t upl_valid_page(upl_page_info_t *upl, int index) | |
3277 | { | |
3278 | return(UPL_VALID_PAGE(upl, index)); | |
3279 | } | |
3280 | vm_offset_t upl_phys_page(upl_page_info_t *upl, int index) | |
3281 | { | |
3282 | return((vm_offset_t)UPL_PHYS_PAGE(upl, index)); | |
3283 | } | |
3284 | ||
3285 | void | |
3286 | vm_countdirtypages(void) | |
3287 | { | |
3288 | vm_page_t m; | |
3289 | int dpages; | |
3290 | int pgopages; | |
3291 | int precpages; | |
3292 | ||
3293 | ||
3294 | dpages=0; | |
3295 | pgopages=0; | |
3296 | precpages=0; | |
3297 | ||
3298 | vm_page_lock_queues(); | |
3299 | m = (vm_page_t) queue_first(&vm_page_queue_inactive); | |
3300 | do { | |
3301 | if (m ==(vm_page_t )0) break; | |
3302 | ||
3303 | if(m->dirty) dpages++; | |
3304 | if(m->pageout) pgopages++; | |
3305 | if(m->precious) precpages++; | |
3306 | ||
3307 | m = (vm_page_t) queue_next(&m->pageq); | |
3308 | if (m ==(vm_page_t )0) break; | |
3309 | ||
3310 | } while (!queue_end(&vm_page_queue_inactive,(queue_entry_t) m)); | |
3311 | vm_page_unlock_queues(); | |
3312 | ||
3313 | printf("IN Q: %d : %d : %d\n", dpages, pgopages, precpages); | |
3314 | ||
3315 | dpages=0; | |
3316 | pgopages=0; | |
3317 | precpages=0; | |
3318 | ||
3319 | vm_page_lock_queues(); | |
3320 | m = (vm_page_t) queue_first(&vm_page_queue_active); | |
3321 | ||
3322 | do { | |
3323 | if(m == (vm_page_t )0) break; | |
3324 | if(m->dirty) dpages++; | |
3325 | if(m->pageout) pgopages++; | |
3326 | if(m->precious) precpages++; | |
3327 | ||
3328 | m = (vm_page_t) queue_next(&m->pageq); | |
3329 | if(m == (vm_page_t )0) break; | |
3330 | ||
3331 | } while (!queue_end(&vm_page_queue_active,(queue_entry_t) m)); | |
3332 | vm_page_unlock_queues(); | |
3333 | ||
3334 | printf("AC Q: %d : %d : %d\n", dpages, pgopages, precpages); | |
3335 | ||
3336 | } | |
3337 | #endif /* MACH_BSD */ | |
3338 | ||
3339 | #ifdef UBC_DEBUG | |
3340 | kern_return_t upl_ubc_alias_set(upl_t upl, unsigned int alias1, unsigned int alias2) | |
3341 | { | |
3342 | upl->ubc_alias1 = alias1; | |
3343 | upl->ubc_alias2 = alias2; | |
3344 | return KERN_SUCCESS; | |
3345 | } | |
3346 | int upl_ubc_alias_get(upl_t upl, unsigned int * al, unsigned int * al2) | |
3347 | { | |
3348 | if(al) | |
3349 | *al = upl->ubc_alias1; | |
3350 | if(al2) | |
3351 | *al2 = upl->ubc_alias2; | |
3352 | return KERN_SUCCESS; | |
3353 | } | |
3354 | #endif /* UBC_DEBUG */ | |
3355 | ||
3356 | ||
3357 | ||
3358 | #if MACH_KDB | |
3359 | #include <ddb/db_output.h> | |
3360 | #include <ddb/db_print.h> | |
3361 | #include <vm/vm_print.h> | |
3362 | ||
3363 | #define printf kdbprintf | |
3364 | extern int db_indent; | |
3365 | void db_pageout(void); | |
3366 | ||
3367 | void | |
3368 | db_vm(void) | |
3369 | { | |
3370 | extern int vm_page_gobble_count; | |
3371 | ||
3372 | iprintf("VM Statistics:\n"); | |
3373 | db_indent += 2; | |
3374 | iprintf("pages:\n"); | |
3375 | db_indent += 2; | |
3376 | iprintf("activ %5d inact %5d free %5d", | |
3377 | vm_page_active_count, vm_page_inactive_count, | |
3378 | vm_page_free_count); | |
3379 | printf(" wire %5d gobbl %5d\n", | |
3380 | vm_page_wire_count, vm_page_gobble_count); | |
3381 | iprintf("laund %5d\n", | |
3382 | vm_page_laundry_count); | |
3383 | db_indent -= 2; | |
3384 | iprintf("target:\n"); | |
3385 | db_indent += 2; | |
3386 | iprintf("min %5d inact %5d free %5d", | |
3387 | vm_page_free_min, vm_page_inactive_target, | |
3388 | vm_page_free_target); | |
3389 | printf(" resrv %5d\n", vm_page_free_reserved); | |
3390 | db_indent -= 2; | |
3391 | ||
3392 | iprintf("burst:\n"); | |
3393 | db_indent += 2; | |
3394 | iprintf("max %5d min %5d wait %5d empty %5d\n", | |
3395 | vm_pageout_burst_max, vm_pageout_burst_min, | |
3396 | vm_pageout_burst_wait, vm_pageout_empty_wait); | |
3397 | db_indent -= 2; | |
3398 | iprintf("pause:\n"); | |
3399 | db_indent += 2; | |
3400 | iprintf("count %5d max %5d\n", | |
3401 | vm_pageout_pause_count, vm_pageout_pause_max); | |
3402 | #if MACH_COUNTERS | |
3403 | iprintf("scan_continue called %8d\n", c_vm_pageout_scan_continue); | |
3404 | #endif /* MACH_COUNTERS */ | |
3405 | db_indent -= 2; | |
3406 | db_pageout(); | |
3407 | db_indent -= 2; | |
3408 | } | |
3409 | ||
3410 | void | |
3411 | db_pageout(void) | |
3412 | { | |
3413 | #if MACH_COUNTERS | |
3414 | extern int c_laundry_pages_freed; | |
3415 | #endif /* MACH_COUNTERS */ | |
3416 | ||
3417 | iprintf("Pageout Statistics:\n"); | |
3418 | db_indent += 2; | |
3419 | iprintf("active %5d inactv %5d\n", | |
3420 | vm_pageout_active, vm_pageout_inactive); | |
3421 | iprintf("nolock %5d avoid %5d busy %5d absent %5d\n", | |
3422 | vm_pageout_inactive_nolock, vm_pageout_inactive_avoid, | |
3423 | vm_pageout_inactive_busy, vm_pageout_inactive_absent); | |
3424 | iprintf("used %5d clean %5d dirty %5d\n", | |
3425 | vm_pageout_inactive_used, vm_pageout_inactive_clean, | |
3426 | vm_pageout_inactive_dirty); | |
3427 | #if MACH_COUNTERS | |
3428 | iprintf("laundry_pages_freed %d\n", c_laundry_pages_freed); | |
3429 | #endif /* MACH_COUNTERS */ | |
3430 | #if MACH_CLUSTER_STATS | |
3431 | iprintf("Cluster Statistics:\n"); | |
3432 | db_indent += 2; | |
3433 | iprintf("dirtied %5d cleaned %5d collisions %5d\n", | |
3434 | vm_pageout_cluster_dirtied, vm_pageout_cluster_cleaned, | |
3435 | vm_pageout_cluster_collisions); | |
3436 | iprintf("clusters %5d conversions %5d\n", | |
3437 | vm_pageout_cluster_clusters, vm_pageout_cluster_conversions); | |
3438 | db_indent -= 2; | |
3439 | iprintf("Target Statistics:\n"); | |
3440 | db_indent += 2; | |
3441 | iprintf("collisions %5d page_dirtied %5d page_freed %5d\n", | |
3442 | vm_pageout_target_collisions, vm_pageout_target_page_dirtied, | |
3443 | vm_pageout_target_page_freed); | |
3444 | db_indent -= 2; | |
3445 | #endif /* MACH_CLUSTER_STATS */ | |
3446 | db_indent -= 2; | |
3447 | } | |
3448 | ||
3449 | #if MACH_CLUSTER_STATS | |
3450 | unsigned long vm_pageout_cluster_dirtied = 0; | |
3451 | unsigned long vm_pageout_cluster_cleaned = 0; | |
3452 | unsigned long vm_pageout_cluster_collisions = 0; | |
3453 | unsigned long vm_pageout_cluster_clusters = 0; | |
3454 | unsigned long vm_pageout_cluster_conversions = 0; | |
3455 | unsigned long vm_pageout_target_collisions = 0; | |
3456 | unsigned long vm_pageout_target_page_dirtied = 0; | |
3457 | unsigned long vm_pageout_target_page_freed = 0; | |
3458 | #define CLUSTER_STAT(clause) clause | |
3459 | #else /* MACH_CLUSTER_STATS */ | |
3460 | #define CLUSTER_STAT(clause) | |
3461 | #endif /* MACH_CLUSTER_STATS */ | |
3462 | ||
3463 | #endif /* MACH_KDB */ |