]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Copyright (c) 2000-2007 Apple Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * This file contains Original Code and/or Modifications of Original Code | |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
14 | * | |
15 | * Please obtain a copy of the License at | |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
25 | * | |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ | |
27 | */ | |
28 | /* Copyright (c) 1995, 1997 Apple Computer, Inc. All Rights Reserved */ | |
29 | /* | |
30 | * Copyright (c) 1982, 1986, 1989, 1991, 1993 | |
31 | * The Regents of the University of California. All rights reserved. | |
32 | * (c) UNIX System Laboratories, Inc. | |
33 | * All or some portions of this file are derived from material licensed | |
34 | * to the University of California by American Telephone and Telegraph | |
35 | * Co. or Unix System Laboratories, Inc. and are reproduced herein with | |
36 | * the permission of UNIX System Laboratories, Inc. | |
37 | * | |
38 | * Redistribution and use in source and binary forms, with or without | |
39 | * modification, are permitted provided that the following conditions | |
40 | * are met: | |
41 | * 1. Redistributions of source code must retain the above copyright | |
42 | * notice, this list of conditions and the following disclaimer. | |
43 | * 2. Redistributions in binary form must reproduce the above copyright | |
44 | * notice, this list of conditions and the following disclaimer in the | |
45 | * documentation and/or other materials provided with the distribution. | |
46 | * 3. All advertising materials mentioning features or use of this software | |
47 | * must display the following acknowledgement: | |
48 | * This product includes software developed by the University of | |
49 | * California, Berkeley and its contributors. | |
50 | * 4. Neither the name of the University nor the names of its contributors | |
51 | * may be used to endorse or promote products derived from this software | |
52 | * without specific prior written permission. | |
53 | * | |
54 | * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND | |
55 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
56 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |
57 | * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE | |
58 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | |
59 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | |
60 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | |
61 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | |
62 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | |
63 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | |
64 | * SUCH DAMAGE. | |
65 | * | |
66 | * @(#)kern_fork.c 8.8 (Berkeley) 2/14/95 | |
67 | */ | |
68 | /* | |
69 | * NOTICE: This file was modified by McAfee Research in 2004 to introduce | |
70 | * support for mandatory and extensible security protections. This notice | |
71 | * is included in support of clause 2.2 (b) of the Apple Public License, | |
72 | * Version 2.0. | |
73 | */ | |
74 | /* | |
75 | * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce | |
76 | * support for mandatory and extensible security protections. This notice | |
77 | * is included in support of clause 2.2 (b) of the Apple Public License, | |
78 | * Version 2.0. | |
79 | */ | |
80 | ||
81 | #include <kern/assert.h> | |
82 | #include <sys/param.h> | |
83 | #include <sys/systm.h> | |
84 | #include <sys/filedesc.h> | |
85 | #include <sys/kernel.h> | |
86 | #include <sys/malloc.h> | |
87 | #include <sys/proc_internal.h> | |
88 | #include <sys/kauth.h> | |
89 | #include <sys/user.h> | |
90 | #include <sys/resourcevar.h> | |
91 | #include <sys/vnode_internal.h> | |
92 | #include <sys/file_internal.h> | |
93 | #include <sys/acct.h> | |
94 | #include <sys/codesign.h> | |
95 | #include <sys/sysproto.h> | |
96 | #if CONFIG_DTRACE | |
97 | /* Do not include dtrace.h, it redefines kmem_[alloc/free] */ | |
98 | extern void dtrace_fasttrap_fork(proc_t, proc_t); | |
99 | extern void (*dtrace_helpers_fork)(proc_t, proc_t); | |
100 | extern void dtrace_lazy_dofs_duplicate(proc_t, proc_t); | |
101 | ||
102 | #include <sys/dtrace_ptss.h> | |
103 | #endif | |
104 | ||
105 | #include <security/audit/audit.h> | |
106 | ||
107 | #include <mach/mach_types.h> | |
108 | #include <kern/kern_types.h> | |
109 | #include <kern/kalloc.h> | |
110 | #include <kern/mach_param.h> | |
111 | #include <kern/task.h> | |
112 | #include <kern/thread_call.h> | |
113 | #include <kern/zalloc.h> | |
114 | ||
115 | #include <machine/spl.h> | |
116 | ||
117 | #if CONFIG_MACF | |
118 | #include <security/mac.h> | |
119 | #include <security/mac_mach_internal.h> | |
120 | #endif | |
121 | ||
122 | #include <vm/vm_map.h> | |
123 | #include <vm/vm_protos.h> | |
124 | #include <vm/vm_shared_region.h> | |
125 | ||
126 | #include <sys/shm_internal.h> /* for shmfork() */ | |
127 | #include <mach/task.h> /* for thread_create() */ | |
128 | #include <mach/thread_act.h> /* for thread_resume() */ | |
129 | ||
130 | #include <sys/sdt.h> | |
131 | ||
132 | ||
133 | /* XXX routines which should have Mach prototypes, but don't */ | |
134 | void thread_set_parent(thread_t parent, int pid); | |
135 | extern void act_thread_catt(void *ctx); | |
136 | void thread_set_child(thread_t child, int pid); | |
137 | void *act_thread_csave(void); | |
138 | ||
139 | ||
140 | thread_t cloneproc(task_t, proc_t, int); | |
141 | proc_t forkproc(proc_t); | |
142 | void forkproc_free(proc_t); | |
143 | thread_t fork_create_child(task_t parent_task, proc_t child, int inherit_memory, int is64bit); | |
144 | void proc_vfork_begin(proc_t parent_proc); | |
145 | void proc_vfork_end(proc_t parent_proc); | |
146 | ||
147 | #define DOFORK 0x1 /* fork() system call */ | |
148 | #define DOVFORK 0x2 /* vfork() system call */ | |
149 | ||
150 | /* | |
151 | * proc_vfork_begin | |
152 | * | |
153 | * Description: start a vfork on a process | |
154 | * | |
155 | * Parameters: parent_proc process (re)entering vfork state | |
156 | * | |
157 | * Returns: (void) | |
158 | * | |
159 | * Notes: Although this function increments a count, a count in | |
160 | * excess of 1 is not currently supported. According to the | |
161 | * POSIX standard, calling anything other than execve() or | |
162 | * _exit() fillowing a vfork(), including calling vfork() | |
163 | * itself again, will result in undefned behaviour | |
164 | */ | |
165 | void | |
166 | proc_vfork_begin(proc_t parent_proc) | |
167 | { | |
168 | proc_lock(parent_proc); | |
169 | parent_proc->p_lflag |= P_LVFORK; | |
170 | parent_proc->p_vforkcnt++; | |
171 | proc_unlock(parent_proc); | |
172 | } | |
173 | ||
174 | /* | |
175 | * proc_vfork_end | |
176 | * | |
177 | * Description: stop a vfork on a process | |
178 | * | |
179 | * Parameters: parent_proc process leaving vfork state | |
180 | * | |
181 | * Returns: (void) | |
182 | * | |
183 | * Notes: Decerements the count; currently, reentrancy of vfork() | |
184 | * is unsupported on the current process | |
185 | */ | |
186 | void | |
187 | proc_vfork_end(proc_t parent_proc) | |
188 | { | |
189 | proc_lock(parent_proc); | |
190 | parent_proc->p_vforkcnt--; | |
191 | if (parent_proc->p_vforkcnt < 0) | |
192 | panic("vfork cnt is -ve"); | |
193 | /* resude the vfork count; clear the flag when it goes to 0 */ | |
194 | if (parent_proc->p_vforkcnt == 0) | |
195 | parent_proc->p_lflag &= ~P_LVFORK; | |
196 | proc_unlock(parent_proc); | |
197 | } | |
198 | ||
199 | ||
200 | /* | |
201 | * vfork | |
202 | * | |
203 | * Description: vfork system call | |
204 | * | |
205 | * Parameters: void [no arguments] | |
206 | * | |
207 | * Retval: 0 (to child process) | |
208 | * !0 pid of child (to parent process) | |
209 | * -1 error (see "Returns:") | |
210 | * | |
211 | * Returns: EAGAIN Administrative limit reached | |
212 | * EINVAL vfork() called during vfork() | |
213 | * ENOMEM Failed to allocate new process | |
214 | * | |
215 | * Note: After a successful call to this function, the parent process | |
216 | * has its task, thread, and uthread lent to the child process, | |
217 | * and control is returned to the caller; if this function is | |
218 | * invoked as a system call, the return is to user space, and | |
219 | * is effectively running on the child process. | |
220 | * | |
221 | * Subsequent calls that operate on process state are permitted, | |
222 | * though discouraged, and will operate on the child process; any | |
223 | * operations on the task, thread, or uthread will result in | |
224 | * changes in the parent state, and, if inheritable, the child | |
225 | * state, when a task, thread, and uthread are realized for the | |
226 | * child process at execve() time, will also be effected. Given | |
227 | * this, it's recemmended that people use the posix_spawn() call | |
228 | * instead. | |
229 | * | |
230 | * BLOCK DIAGRAM OF VFORK | |
231 | * | |
232 | * Before: | |
233 | * | |
234 | * ,----------------. ,-------------. | |
235 | * | | task | | | |
236 | * | parent_thread | ------> | parent_task | | |
237 | * | | <.list. | | | |
238 | * `----------------' `-------------' | |
239 | * uthread | ^ bsd_info | ^ | |
240 | * v | vc_thread v | task | |
241 | * ,----------------. ,-------------. | |
242 | * | | | | | |
243 | * | parent_uthread | <.list. | parent_proc | <-- current_proc() | |
244 | * | | | | | |
245 | * `----------------' `-------------' | |
246 | * uu_proc | | |
247 | * v | |
248 | * NULL | |
249 | * | |
250 | * After: | |
251 | * | |
252 | * ,----------------. ,-------------. | |
253 | * | | task | | | |
254 | * ,----> | parent_thread | ------> | parent_task | | |
255 | * | | | <.list. | | | |
256 | * | `----------------' `-------------' | |
257 | * | uthread | ^ bsd_info | ^ | |
258 | * | v | vc_thread v | task | |
259 | * | ,----------------. ,-------------. | |
260 | * | | | | | | |
261 | * | | parent_uthread | <.list. | parent_proc | | |
262 | * | | | | | | |
263 | * | `----------------' `-------------' | |
264 | * | uu_proc | . list | |
265 | * | v v | |
266 | * | ,----------------. | |
267 | * `----- | | | |
268 | * p_vforkact | child_proc | <-- current_proc() | |
269 | * | | | |
270 | * `----------------' | |
271 | */ | |
272 | int | |
273 | vfork(proc_t parent_proc, __unused struct vfork_args *uap, int32_t *retval) | |
274 | { | |
275 | thread_t child_thread; | |
276 | int err; | |
277 | ||
278 | if ((err = fork1(parent_proc, &child_thread, PROC_CREATE_VFORK)) != 0) { | |
279 | retval[1] = 0; | |
280 | } else { | |
281 | /* | |
282 | * kludge: rely on uu_proc being set in the vfork case, | |
283 | * rather than returning the actual thread. We can remove | |
284 | * this when we remove the uu_proc/current_proc() kludge. | |
285 | */ | |
286 | proc_t child_proc = current_proc(); | |
287 | ||
288 | retval[0] = child_proc->p_pid; | |
289 | retval[1] = 1; /* flag child return for user space */ | |
290 | ||
291 | /* | |
292 | * Drop the signal lock on the child which was taken on our | |
293 | * behalf by forkproc()/cloneproc() to prevent signals being | |
294 | * received by the child in a partially constructed state. | |
295 | */ | |
296 | proc_signalend(child_proc, 0); | |
297 | proc_transend(child_proc, 0); | |
298 | ||
299 | /* flag the fork has occurred */ | |
300 | proc_knote(parent_proc, NOTE_FORK | child_proc->p_pid); | |
301 | DTRACE_PROC1(create, proc_t, child_proc); | |
302 | } | |
303 | ||
304 | return(err); | |
305 | } | |
306 | ||
307 | ||
308 | /* | |
309 | * fork1 | |
310 | * | |
311 | * Description: common code used by all new process creation other than the | |
312 | * bootstrap of the initial process on the system | |
313 | * | |
314 | * Parameters: parent_proc parent process of the process being | |
315 | * child_threadp pointer to location to receive the | |
316 | * Mach thread_t of the child process | |
317 | * breated | |
318 | * kind kind of creation being requested | |
319 | * | |
320 | * Notes: Permissable values for 'kind': | |
321 | * | |
322 | * PROC_CREATE_FORK Create a complete process which will | |
323 | * return actively running in both the | |
324 | * parent and the child; the child copies | |
325 | * the parent address space. | |
326 | * PROC_CREATE_SPAWN Create a complete process which will | |
327 | * return actively running in the parent | |
328 | * only after returning actively running | |
329 | * in the child; the child address space | |
330 | * is newly created by an image activator, | |
331 | * after which the child is run. | |
332 | * PROC_CREATE_VFORK Creates a partial process which will | |
333 | * borrow the parent task, thread, and | |
334 | * uthread to return running in the child; | |
335 | * the child address space and other parts | |
336 | * are lazily created at execve() time, or | |
337 | * the child is terminated, and the parent | |
338 | * does not actively run until that | |
339 | * happens. | |
340 | * | |
341 | * At first it may seem strange that we return the child thread | |
342 | * address rather than process structure, since the process is | |
343 | * the only part guaranteed to be "new"; however, since we do | |
344 | * not actualy adjust other references between Mach and BSD (see | |
345 | * the block diagram above the implementation of vfork()), this | |
346 | * is the only method which guarantees us the ability to get | |
347 | * back to the other information. | |
348 | */ | |
349 | int | |
350 | fork1(proc_t parent_proc, thread_t *child_threadp, int kind) | |
351 | { | |
352 | thread_t parent_thread = (thread_t)current_thread(); | |
353 | uthread_t parent_uthread = (uthread_t)get_bsdthread_info(parent_thread); | |
354 | proc_t child_proc = NULL; /* set in switch, but compiler... */ | |
355 | thread_t child_thread = NULL; | |
356 | uid_t uid; | |
357 | int count; | |
358 | int err = 0; | |
359 | int spawn = 0; | |
360 | ||
361 | /* | |
362 | * Although process entries are dynamically created, we still keep | |
363 | * a global limit on the maximum number we will create. Don't allow | |
364 | * a nonprivileged user to use the last process; don't let root | |
365 | * exceed the limit. The variable nprocs is the current number of | |
366 | * processes, maxproc is the limit. | |
367 | */ | |
368 | uid = kauth_cred_get()->cr_ruid; | |
369 | proc_list_lock(); | |
370 | if ((nprocs >= maxproc - 1 && uid != 0) || nprocs >= maxproc) { | |
371 | proc_list_unlock(); | |
372 | tablefull("proc"); | |
373 | return (EAGAIN); | |
374 | } | |
375 | proc_list_unlock(); | |
376 | ||
377 | /* | |
378 | * Increment the count of procs running with this uid. Don't allow | |
379 | * a nonprivileged user to exceed their current limit, which is | |
380 | * always less than what an rlim_t can hold. | |
381 | * (locking protection is provided by list lock held in chgproccnt) | |
382 | */ | |
383 | count = chgproccnt(uid, 1); | |
384 | if (uid != 0 && | |
385 | (rlim_t)count > parent_proc->p_rlimit[RLIMIT_NPROC].rlim_cur) { | |
386 | err = EAGAIN; | |
387 | goto bad; | |
388 | } | |
389 | ||
390 | #if CONFIG_MACF | |
391 | /* | |
392 | * Determine if MAC policies applied to the process will allow | |
393 | * it to fork. This is an advisory-only check. | |
394 | */ | |
395 | err = mac_proc_check_fork(parent_proc); | |
396 | if (err != 0) { | |
397 | goto bad; | |
398 | } | |
399 | #endif | |
400 | ||
401 | switch(kind) { | |
402 | case PROC_CREATE_VFORK: | |
403 | /* | |
404 | * Prevent a vfork while we are in vfork(); we should | |
405 | * also likely preventing a fork here as well, and this | |
406 | * check should then be outside the switch statement, | |
407 | * since the proc struct contents will copy from the | |
408 | * child and the tash/thread/uthread from the parent in | |
409 | * that case. We do not support vfork() in vfork() | |
410 | * because we don't have to; the same non-requirement | |
411 | * is true of both fork() and posix_spawn() and any | |
412 | * call other than execve() amd _exit(), but we've | |
413 | * been historically lenient, so we continue to be so | |
414 | * (for now). | |
415 | * | |
416 | * <rdar://6640521> Probably a source of random panics | |
417 | */ | |
418 | if (parent_uthread->uu_flag & UT_VFORK) { | |
419 | printf("fork1 called within vfork by %s\n", parent_proc->p_comm); | |
420 | err = EINVAL; | |
421 | goto bad; | |
422 | } | |
423 | ||
424 | /* | |
425 | * Flag us in progress; if we chose to support vfork() in | |
426 | * vfork(), we would chain our parent at this point (in | |
427 | * effect, a stack push). We don't, since we actually want | |
428 | * to disallow everything not specified in the standard | |
429 | */ | |
430 | proc_vfork_begin(parent_proc); | |
431 | ||
432 | /* The newly created process comes with signal lock held */ | |
433 | if ((child_proc = forkproc(parent_proc)) == NULL) { | |
434 | /* Failed to allocate new process */ | |
435 | proc_vfork_end(parent_proc); | |
436 | err = ENOMEM; | |
437 | goto bad; | |
438 | } | |
439 | ||
440 | // XXX BEGIN: wants to move to be common code (and safe) | |
441 | #if CONFIG_MACF | |
442 | /* | |
443 | * allow policies to associate the credential/label that | |
444 | * we referenced from the parent ... with the child | |
445 | * JMM - this really isn't safe, as we can drop that | |
446 | * association without informing the policy in other | |
447 | * situations (keep long enough to get policies changed) | |
448 | */ | |
449 | mac_cred_label_associate_fork(child_proc->p_ucred, child_proc); | |
450 | #endif | |
451 | ||
452 | /* | |
453 | * Propogate change of PID - may get new cred if auditing. | |
454 | * | |
455 | * NOTE: This has no effect in the vfork case, since | |
456 | * child_proc->task != current_task(), but we duplicate it | |
457 | * because this is probably, ultimately, wrong, since we | |
458 | * will be running in the "child" which is the parent task | |
459 | * with the wrong token until we get to the execve() or | |
460 | * _exit() call; a lot of "undefined" can happen before | |
461 | * that. | |
462 | * | |
463 | * <rdar://6640530> disallow everything but exeve()/_exit()? | |
464 | */ | |
465 | set_security_token(child_proc); | |
466 | ||
467 | AUDIT_ARG(pid, child_proc->p_pid); | |
468 | ||
469 | AUDIT_SESSION_PROCNEW(child_proc->p_ucred); | |
470 | // XXX END: wants to move to be common code (and safe) | |
471 | ||
472 | /* | |
473 | * BORROW PARENT TASK, THREAD, UTHREAD FOR CHILD | |
474 | * | |
475 | * Note: this is where we would "push" state instead of setting | |
476 | * it for nested vfork() support (see proc_vfork_end() for | |
477 | * description if issues here). | |
478 | */ | |
479 | child_proc->task = parent_proc->task; | |
480 | ||
481 | child_proc->p_lflag |= P_LINVFORK; | |
482 | child_proc->p_vforkact = parent_thread; | |
483 | child_proc->p_stat = SRUN; | |
484 | ||
485 | parent_uthread->uu_flag |= UT_VFORK; | |
486 | parent_uthread->uu_proc = child_proc; | |
487 | parent_uthread->uu_userstate = (void *)act_thread_csave(); | |
488 | parent_uthread->uu_vforkmask = parent_uthread->uu_sigmask; | |
489 | ||
490 | /* temporarily drop thread-set-id state */ | |
491 | if (parent_uthread->uu_flag & UT_SETUID) { | |
492 | parent_uthread->uu_flag |= UT_WASSETUID; | |
493 | parent_uthread->uu_flag &= ~UT_SETUID; | |
494 | } | |
495 | ||
496 | /* blow thread state information */ | |
497 | /* XXX is this actually necessary, given syscall return? */ | |
498 | thread_set_child(parent_thread, child_proc->p_pid); | |
499 | ||
500 | child_proc->p_acflag = AFORK; /* forked but not exec'ed */ | |
501 | ||
502 | /* | |
503 | * Preserve synchronization semantics of vfork. If | |
504 | * waiting for child to exec or exit, set P_PPWAIT | |
505 | * on child, and sleep on our proc (in case of exit). | |
506 | */ | |
507 | child_proc->p_lflag |= P_LPPWAIT; | |
508 | pinsertchild(parent_proc, child_proc); /* set visible */ | |
509 | ||
510 | break; | |
511 | ||
512 | case PROC_CREATE_SPAWN: | |
513 | /* | |
514 | * A spawned process differs from a forked process in that | |
515 | * the spawned process does not carry around the parents | |
516 | * baggage with regard to address space copying, dtrace, | |
517 | * and so on. | |
518 | */ | |
519 | spawn = 1; | |
520 | ||
521 | /* FALLSTHROUGH */ | |
522 | ||
523 | case PROC_CREATE_FORK: | |
524 | /* | |
525 | * When we clone the parent process, we are going to inherit | |
526 | * its task attributes and memory, since when we fork, we | |
527 | * will, in effect, create a duplicate of it, with only minor | |
528 | * differences. Contrarily, spawned processes do not inherit. | |
529 | */ | |
530 | if ((child_thread = cloneproc(parent_proc->task, parent_proc, spawn ? FALSE : TRUE)) == NULL) { | |
531 | /* Failed to create thread */ | |
532 | err = EAGAIN; | |
533 | goto bad; | |
534 | } | |
535 | ||
536 | /* copy current thread state into the child thread (only for fork) */ | |
537 | if (!spawn) { | |
538 | thread_dup(child_thread); | |
539 | } | |
540 | ||
541 | /* child_proc = child_thread->task->proc; */ | |
542 | child_proc = (proc_t)(get_bsdtask_info(get_threadtask(child_thread))); | |
543 | ||
544 | // XXX BEGIN: wants to move to be common code (and safe) | |
545 | #if CONFIG_MACF | |
546 | /* | |
547 | * allow policies to associate the credential/label that | |
548 | * we referenced from the parent ... with the child | |
549 | * JMM - this really isn't safe, as we can drop that | |
550 | * association without informing the policy in other | |
551 | * situations (keep long enough to get policies changed) | |
552 | */ | |
553 | mac_cred_label_associate_fork(child_proc->p_ucred, child_proc); | |
554 | #endif | |
555 | ||
556 | /* | |
557 | * Propogate change of PID - may get new cred if auditing. | |
558 | * | |
559 | * NOTE: This has no effect in the vfork case, since | |
560 | * child_proc->task != current_task(), but we duplicate it | |
561 | * because this is probably, ultimately, wrong, since we | |
562 | * will be running in the "child" which is the parent task | |
563 | * with the wrong token until we get to the execve() or | |
564 | * _exit() call; a lot of "undefined" can happen before | |
565 | * that. | |
566 | * | |
567 | * <rdar://6640530> disallow everything but exeve()/_exit()? | |
568 | */ | |
569 | set_security_token(child_proc); | |
570 | ||
571 | AUDIT_ARG(pid, child_proc->p_pid); | |
572 | ||
573 | AUDIT_SESSION_PROCNEW(child_proc->p_ucred); | |
574 | // XXX END: wants to move to be common code (and safe) | |
575 | ||
576 | /* | |
577 | * Blow thread state information; this is what gives the child | |
578 | * process its "return" value from a fork() call. | |
579 | * | |
580 | * Note: this should probably move to fork() proper, since it | |
581 | * is not relevent to spawn, and the value won't matter | |
582 | * until we resume the child there. If you are in here | |
583 | * refactoring code, consider doing this at the same time. | |
584 | */ | |
585 | thread_set_child(child_thread, child_proc->p_pid); | |
586 | ||
587 | child_proc->p_acflag = AFORK; /* forked but not exec'ed */ | |
588 | ||
589 | // <rdar://6598155> dtrace code cleanup needed | |
590 | #if CONFIG_DTRACE | |
591 | /* | |
592 | * This code applies to new processes who are copying the task | |
593 | * and thread state and address spaces of their parent process. | |
594 | */ | |
595 | if (!spawn) { | |
596 | // <rdar://6598155> call dtrace specific function here instead of all this... | |
597 | /* | |
598 | * APPLE NOTE: Solaris does a sprlock() and drops the | |
599 | * proc_lock here. We're cheating a bit and only taking | |
600 | * the p_dtrace_sprlock lock. A full sprlock would | |
601 | * task_suspend the parent. | |
602 | */ | |
603 | lck_mtx_lock(&parent_proc->p_dtrace_sprlock); | |
604 | ||
605 | /* | |
606 | * Remove all DTrace tracepoints from the child process. We | |
607 | * need to do this _before_ duplicating USDT providers since | |
608 | * any associated probes may be immediately enabled. | |
609 | */ | |
610 | if (parent_proc->p_dtrace_count > 0) { | |
611 | dtrace_fasttrap_fork(parent_proc, child_proc); | |
612 | } | |
613 | ||
614 | lck_mtx_unlock(&parent_proc->p_dtrace_sprlock); | |
615 | ||
616 | /* | |
617 | * Duplicate any lazy dof(s). This must be done while NOT | |
618 | * holding the parent sprlock! Lock ordering is | |
619 | * dtrace_dof_mode_lock, then sprlock. It is imperative we | |
620 | * always call dtrace_lazy_dofs_duplicate, rather than null | |
621 | * check and call if !NULL. If we NULL test, during lazy dof | |
622 | * faulting we can race with the faulting code and proceed | |
623 | * from here to beyond the helpers copy. The lazy dof | |
624 | * faulting will then fail to copy the helpers to the child | |
625 | * process. | |
626 | */ | |
627 | dtrace_lazy_dofs_duplicate(parent_proc, child_proc); | |
628 | ||
629 | /* | |
630 | * Duplicate any helper actions and providers. The SFORKING | |
631 | * we set above informs the code to enable USDT probes that | |
632 | * sprlock() may fail because the child is being forked. | |
633 | */ | |
634 | /* | |
635 | * APPLE NOTE: As best I can tell, Apple's sprlock() equivalent | |
636 | * never fails to find the child. We do not set SFORKING. | |
637 | */ | |
638 | if (parent_proc->p_dtrace_helpers != NULL && dtrace_helpers_fork) { | |
639 | (*dtrace_helpers_fork)(parent_proc, child_proc); | |
640 | } | |
641 | ||
642 | } | |
643 | #endif /* CONFIG_DTRACE */ | |
644 | ||
645 | break; | |
646 | ||
647 | default: | |
648 | panic("fork1 called with unknown kind %d", kind); | |
649 | break; | |
650 | } | |
651 | ||
652 | ||
653 | /* return the thread pointer to the caller */ | |
654 | *child_threadp = child_thread; | |
655 | ||
656 | bad: | |
657 | /* | |
658 | * In the error case, we return a 0 value for the returned pid (but | |
659 | * it is ignored in the trampoline due to the error return); this | |
660 | * is probably not necessary. | |
661 | */ | |
662 | if (err) { | |
663 | (void)chgproccnt(uid, -1); | |
664 | } | |
665 | ||
666 | return (err); | |
667 | } | |
668 | ||
669 | ||
670 | /* | |
671 | * vfork_return | |
672 | * | |
673 | * Description: "Return" to parent vfork thread() following execve/_exit; | |
674 | * this is done by reassociating the parent process structure | |
675 | * with the task, thread, and uthread. | |
676 | * | |
677 | * Parameters: child_proc Child process | |
678 | * retval System call return value array | |
679 | * rval Return value to present to parent | |
680 | * | |
681 | * Returns: void | |
682 | * | |
683 | * Note: The caller resumes or exits the parent, as appropriate, after | |
684 | * callling this function. | |
685 | */ | |
686 | void | |
687 | vfork_return(proc_t child_proc, int32_t *retval, int rval) | |
688 | { | |
689 | proc_t parent_proc = child_proc->p_pptr; | |
690 | thread_t parent_thread = (thread_t)current_thread(); | |
691 | uthread_t parent_uthread = (uthread_t)get_bsdthread_info(parent_thread); | |
692 | ||
693 | ||
694 | act_thread_catt(parent_uthread->uu_userstate); | |
695 | ||
696 | /* end vfork in parent */ | |
697 | proc_vfork_end(parent_proc); | |
698 | ||
699 | /* REPATRIATE PARENT TASK, THREAD, UTHREAD */ | |
700 | parent_uthread->uu_userstate = 0; | |
701 | parent_uthread->uu_flag &= ~UT_VFORK; | |
702 | /* restore thread-set-id state */ | |
703 | if (parent_uthread->uu_flag & UT_WASSETUID) { | |
704 | parent_uthread->uu_flag |= UT_SETUID; | |
705 | parent_uthread->uu_flag &= UT_WASSETUID; | |
706 | } | |
707 | parent_uthread->uu_proc = 0; | |
708 | parent_uthread->uu_sigmask = parent_uthread->uu_vforkmask; | |
709 | child_proc->p_lflag &= ~P_LINVFORK; | |
710 | child_proc->p_vforkact = (void *)0; | |
711 | ||
712 | thread_set_parent(parent_thread, rval); | |
713 | ||
714 | if (retval) { | |
715 | retval[0] = rval; | |
716 | retval[1] = 0; /* mark parent */ | |
717 | } | |
718 | ||
719 | return; | |
720 | } | |
721 | ||
722 | ||
723 | /* | |
724 | * fork_create_child | |
725 | * | |
726 | * Description: Common operations associated with the creation of a child | |
727 | * process | |
728 | * | |
729 | * Parameters: parent_task parent task | |
730 | * child_proc child process | |
731 | * inherit_memory TRUE, if the parents address space is | |
732 | * to be inherited by the child | |
733 | * is64bit TRUE, if the child being created will | |
734 | * be associated with a 64 bit process | |
735 | * rather than a 32 bit process | |
736 | * | |
737 | * Note: This code is called in the fork() case, from the execve() call | |
738 | * graph, if implementing an execve() following a vfork(), from | |
739 | * the posix_spawn() call graph (which implicitly includes a | |
740 | * vfork() equivalent call, and in the system bootstrap case. | |
741 | * | |
742 | * It creates a new task and thread (and as a side effect of the | |
743 | * thread creation, a uthread), which is then associated with the | |
744 | * process 'child'. If the parent process address space is to | |
745 | * be inherited, then a flag indicates that the newly created | |
746 | * task should inherit this from the child task. | |
747 | * | |
748 | * As a special concession to bootstrapping the initial process | |
749 | * in the system, it's possible for 'parent_task' to be TASK_NULL; | |
750 | * in this case, 'inherit_memory' MUST be FALSE. | |
751 | */ | |
752 | thread_t | |
753 | fork_create_child(task_t parent_task, proc_t child_proc, int inherit_memory, int is64bit) | |
754 | { | |
755 | thread_t child_thread = NULL; | |
756 | task_t child_task; | |
757 | kern_return_t result; | |
758 | ||
759 | /* Create a new task for the child process */ | |
760 | result = task_create_internal(parent_task, | |
761 | inherit_memory, | |
762 | is64bit, | |
763 | &child_task); | |
764 | if (result != KERN_SUCCESS) { | |
765 | printf("execve: task_create_internal failed. Code: %d\n", result); | |
766 | goto bad; | |
767 | } | |
768 | ||
769 | /* Set the child process task to the new task */ | |
770 | child_proc->task = child_task; | |
771 | ||
772 | /* Set child task process to child proc */ | |
773 | set_bsdtask_info(child_task, child_proc); | |
774 | ||
775 | /* Propagate CPU limit timer from parent */ | |
776 | if (timerisset(&child_proc->p_rlim_cpu)) | |
777 | task_vtimer_set(child_task, TASK_VTIMER_RLIM); | |
778 | ||
779 | /* Set/clear 64 bit vm_map flag */ | |
780 | if (is64bit) | |
781 | vm_map_set_64bit(get_task_map(child_task)); | |
782 | else | |
783 | vm_map_set_32bit(get_task_map(child_task)); | |
784 | ||
785 | #if CONFIG_MACF | |
786 | /* Update task for MAC framework */ | |
787 | /* valid to use p_ucred as child is still not running ... */ | |
788 | mac_task_label_update_cred(child_proc->p_ucred, child_task); | |
789 | #endif | |
790 | ||
791 | /* | |
792 | * Set child process BSD visible scheduler priority if nice value | |
793 | * inherited from parent | |
794 | */ | |
795 | if (child_proc->p_nice != 0) | |
796 | resetpriority(child_proc); | |
797 | ||
798 | /* Create a new thread for the child process */ | |
799 | result = thread_create(child_task, &child_thread); | |
800 | if (result != KERN_SUCCESS) { | |
801 | printf("execve: thread_create failed. Code: %d\n", result); | |
802 | task_deallocate(child_task); | |
803 | child_task = NULL; | |
804 | } | |
805 | bad: | |
806 | thread_yield_internal(1); | |
807 | ||
808 | return(child_thread); | |
809 | } | |
810 | ||
811 | ||
812 | /* | |
813 | * fork | |
814 | * | |
815 | * Description: fork system call. | |
816 | * | |
817 | * Parameters: parent Parent process to fork | |
818 | * uap (void) [unused] | |
819 | * retval Return value | |
820 | * | |
821 | * Returns: 0 Success | |
822 | * EAGAIN Resource unavailable, try again | |
823 | * | |
824 | * Notes: Attempts to create a new child process which inherits state | |
825 | * from the parent process. If successful, the call returns | |
826 | * having created an initially suspended child process with an | |
827 | * extra Mach task and thread reference, for which the thread | |
828 | * is initially suspended. Until we resume the child process, | |
829 | * it is not yet running. | |
830 | * | |
831 | * The return information to the child is contained in the | |
832 | * thread state structure of the new child, and does not | |
833 | * become visible to the child through a normal return process, | |
834 | * since it never made the call into the kernel itself in the | |
835 | * first place. | |
836 | * | |
837 | * After resuming the thread, this function returns directly to | |
838 | * the parent process which invoked the fork() system call. | |
839 | * | |
840 | * Important: The child thread_resume occurs before the parent returns; | |
841 | * depending on scheduling latency, this means that it is not | |
842 | * deterministic as to whether the parent or child is scheduled | |
843 | * to run first. It is entirely possible that the child could | |
844 | * run to completion prior to the parent running. | |
845 | */ | |
846 | int | |
847 | fork(proc_t parent_proc, __unused struct fork_args *uap, int32_t *retval) | |
848 | { | |
849 | thread_t child_thread; | |
850 | int err; | |
851 | ||
852 | retval[1] = 0; /* flag parent return for user space */ | |
853 | ||
854 | if ((err = fork1(parent_proc, &child_thread, PROC_CREATE_FORK)) == 0) { | |
855 | task_t child_task; | |
856 | proc_t child_proc; | |
857 | ||
858 | /* Return to the parent */ | |
859 | child_proc = (proc_t)get_bsdthreadtask_info(child_thread); | |
860 | retval[0] = child_proc->p_pid; | |
861 | ||
862 | /* | |
863 | * Drop the signal lock on the child which was taken on our | |
864 | * behalf by forkproc()/cloneproc() to prevent signals being | |
865 | * received by the child in a partially constructed state. | |
866 | */ | |
867 | proc_signalend(child_proc, 0); | |
868 | proc_transend(child_proc, 0); | |
869 | ||
870 | /* flag the fork has occurred */ | |
871 | proc_knote(parent_proc, NOTE_FORK | child_proc->p_pid); | |
872 | DTRACE_PROC1(create, proc_t, child_proc); | |
873 | ||
874 | /* "Return" to the child */ | |
875 | (void)thread_resume(child_thread); | |
876 | ||
877 | /* drop the extra references we got during the creation */ | |
878 | if ((child_task = (task_t)get_threadtask(child_thread)) != NULL) { | |
879 | task_deallocate(child_task); | |
880 | } | |
881 | thread_deallocate(child_thread); | |
882 | } | |
883 | ||
884 | return(err); | |
885 | } | |
886 | ||
887 | ||
888 | /* | |
889 | * cloneproc | |
890 | * | |
891 | * Description: Create a new process from a specified process. | |
892 | * | |
893 | * Parameters: parent_task The parent task to be cloned, or | |
894 | * TASK_NULL is task characteristics | |
895 | * are not to be inherited | |
896 | * be cloned, or TASK_NULL if the new | |
897 | * task is not to inherit the VM | |
898 | * characteristics of the parent | |
899 | * parent_proc The parent process to be cloned | |
900 | * inherit_memory True if the child is to inherit | |
901 | * memory from the parent; if this is | |
902 | * non-NULL, then the parent_task must | |
903 | * also be non-NULL | |
904 | * | |
905 | * Returns: !NULL pointer to new child thread | |
906 | * NULL Failure (unspecified) | |
907 | * | |
908 | * Note: On return newly created child process has signal lock held | |
909 | * to block delivery of signal to it if called with lock set. | |
910 | * fork() code needs to explicity remove this lock before | |
911 | * signals can be delivered | |
912 | * | |
913 | * In the case of bootstrap, this function can be called from | |
914 | * bsd_utaskbootstrap() in order to bootstrap the first process; | |
915 | * the net effect is to provide a uthread structure for the | |
916 | * kernel process associated with the kernel task. | |
917 | * | |
918 | * XXX: Tristating using the value parent_task as the major key | |
919 | * and inherit_memory as the minor key is something we should | |
920 | * refactor later; we owe the current semantics, ultimately, | |
921 | * to the semantics of task_create_internal. For now, we will | |
922 | * live with this being somewhat awkward. | |
923 | */ | |
924 | thread_t | |
925 | cloneproc(task_t parent_task, proc_t parent_proc, int inherit_memory) | |
926 | { | |
927 | task_t child_task; | |
928 | proc_t child_proc; | |
929 | thread_t child_thread = NULL; | |
930 | ||
931 | if ((child_proc = forkproc(parent_proc)) == NULL) { | |
932 | /* Failed to allocate new process */ | |
933 | goto bad; | |
934 | } | |
935 | ||
936 | child_thread = fork_create_child(parent_task, child_proc, inherit_memory, (parent_task == TASK_NULL) ? FALSE : (parent_proc->p_flag & P_LP64)); | |
937 | ||
938 | if (child_thread == NULL) { | |
939 | /* | |
940 | * Failed to create thread; now we must deconstruct the new | |
941 | * process previously obtained from forkproc(). | |
942 | */ | |
943 | forkproc_free(child_proc); | |
944 | goto bad; | |
945 | } | |
946 | ||
947 | child_task = get_threadtask(child_thread); | |
948 | if (parent_proc->p_flag & P_LP64) { | |
949 | task_set_64bit(child_task, TRUE); | |
950 | OSBitOrAtomic(P_LP64, (UInt32 *)&child_proc->p_flag); | |
951 | #ifdef __ppc__ | |
952 | /* | |
953 | * PPC51: ppc64 is limited to 51-bit addresses. | |
954 | * Memory above that limit is handled specially at | |
955 | * the pmap level. | |
956 | */ | |
957 | pmap_map_sharedpage(child_task, get_map_pmap(get_task_map(child_task))); | |
958 | #endif /* __ppc__ */ | |
959 | } else { | |
960 | task_set_64bit(child_task, FALSE); | |
961 | OSBitAndAtomic(~((uint32_t)P_LP64), (UInt32 *)&child_proc->p_flag); | |
962 | } | |
963 | ||
964 | /* make child visible */ | |
965 | pinsertchild(parent_proc, child_proc); | |
966 | ||
967 | /* | |
968 | * Make child runnable, set start time. | |
969 | */ | |
970 | child_proc->p_stat = SRUN; | |
971 | bad: | |
972 | return(child_thread); | |
973 | } | |
974 | ||
975 | ||
976 | /* | |
977 | * Destroy a process structure that resulted from a call to forkproc(), but | |
978 | * which must be returned to the system because of a subsequent failure | |
979 | * preventing it from becoming active. | |
980 | * | |
981 | * Parameters: p The incomplete process from forkproc() | |
982 | * | |
983 | * Returns: (void) | |
984 | * | |
985 | * Note: This function should only be used in an error handler following | |
986 | * a call to forkproc(). | |
987 | * | |
988 | * Operations occur in reverse order of those in forkproc(). | |
989 | */ | |
990 | void | |
991 | forkproc_free(proc_t p) | |
992 | { | |
993 | ||
994 | /* We held signal and a transition locks; drop them */ | |
995 | proc_signalend(p, 0); | |
996 | proc_transend(p, 0); | |
997 | ||
998 | /* | |
999 | * If we have our own copy of the resource limits structure, we | |
1000 | * need to free it. If it's a shared copy, we need to drop our | |
1001 | * reference on it. | |
1002 | */ | |
1003 | proc_limitdrop(p, 0); | |
1004 | p->p_limit = NULL; | |
1005 | ||
1006 | #if SYSV_SHM | |
1007 | /* Need to drop references to the shared memory segment(s), if any */ | |
1008 | if (p->vm_shm) { | |
1009 | /* | |
1010 | * Use shmexec(): we have no address space, so no mappings | |
1011 | * | |
1012 | * XXX Yes, the routine is badly named. | |
1013 | */ | |
1014 | shmexec(p); | |
1015 | } | |
1016 | #endif | |
1017 | ||
1018 | /* Need to undo the effects of the fdcopy(), if any */ | |
1019 | fdfree(p); | |
1020 | ||
1021 | /* | |
1022 | * Drop the reference on a text vnode pointer, if any | |
1023 | * XXX This code is broken in forkproc(); see <rdar://4256419>; | |
1024 | * XXX if anyone ever uses this field, we will be extremely unhappy. | |
1025 | */ | |
1026 | if (p->p_textvp) { | |
1027 | vnode_rele(p->p_textvp); | |
1028 | p->p_textvp = NULL; | |
1029 | } | |
1030 | ||
1031 | /* Stop the profiling clock */ | |
1032 | stopprofclock(p); | |
1033 | ||
1034 | /* Release the credential reference */ | |
1035 | kauth_cred_unref(&p->p_ucred); | |
1036 | ||
1037 | proc_list_lock(); | |
1038 | /* Decrement the count of processes in the system */ | |
1039 | nprocs--; | |
1040 | proc_list_unlock(); | |
1041 | ||
1042 | thread_call_free(p->p_rcall); | |
1043 | ||
1044 | /* Free allocated memory */ | |
1045 | FREE_ZONE(p->p_sigacts, sizeof *p->p_sigacts, M_SIGACTS); | |
1046 | FREE_ZONE(p->p_stats, sizeof *p->p_stats, M_PSTATS); | |
1047 | proc_checkdeadrefs(p); | |
1048 | FREE_ZONE(p, sizeof *p, M_PROC); | |
1049 | } | |
1050 | ||
1051 | ||
1052 | /* | |
1053 | * forkproc | |
1054 | * | |
1055 | * Description: Create a new process structure, given a parent process | |
1056 | * structure. | |
1057 | * | |
1058 | * Parameters: parent_proc The parent process | |
1059 | * | |
1060 | * Returns: !NULL The new process structure | |
1061 | * NULL Error (insufficient free memory) | |
1062 | * | |
1063 | * Note: When successful, the newly created process structure is | |
1064 | * partially initialized; if a caller needs to deconstruct the | |
1065 | * returned structure, they must call forkproc_free() to do so. | |
1066 | */ | |
1067 | proc_t | |
1068 | forkproc(proc_t parent_proc) | |
1069 | { | |
1070 | proc_t child_proc; /* Our new process */ | |
1071 | static int nextpid = 0, pidwrap = 0, nextpidversion = 0; | |
1072 | int error = 0; | |
1073 | struct session *sessp; | |
1074 | uthread_t parent_uthread = (uthread_t)get_bsdthread_info(current_thread()); | |
1075 | ||
1076 | MALLOC_ZONE(child_proc, proc_t , sizeof *child_proc, M_PROC, M_WAITOK); | |
1077 | if (child_proc == NULL) { | |
1078 | printf("forkproc: M_PROC zone exhausted\n"); | |
1079 | goto bad; | |
1080 | } | |
1081 | /* zero it out as we need to insert in hash */ | |
1082 | bzero(child_proc, sizeof *child_proc); | |
1083 | ||
1084 | MALLOC_ZONE(child_proc->p_stats, struct pstats *, | |
1085 | sizeof *child_proc->p_stats, M_PSTATS, M_WAITOK); | |
1086 | if (child_proc->p_stats == NULL) { | |
1087 | printf("forkproc: M_SUBPROC zone exhausted (p_stats)\n"); | |
1088 | FREE_ZONE(child_proc, sizeof *child_proc, M_PROC); | |
1089 | child_proc = NULL; | |
1090 | goto bad; | |
1091 | } | |
1092 | MALLOC_ZONE(child_proc->p_sigacts, struct sigacts *, | |
1093 | sizeof *child_proc->p_sigacts, M_SIGACTS, M_WAITOK); | |
1094 | if (child_proc->p_sigacts == NULL) { | |
1095 | printf("forkproc: M_SUBPROC zone exhausted (p_sigacts)\n"); | |
1096 | FREE_ZONE(child_proc->p_stats, sizeof *child_proc->p_stats, M_PSTATS); | |
1097 | FREE_ZONE(child_proc, sizeof *child_proc, M_PROC); | |
1098 | child_proc = NULL; | |
1099 | goto bad; | |
1100 | } | |
1101 | ||
1102 | /* allocate a callout for use by interval timers */ | |
1103 | child_proc->p_rcall = thread_call_allocate((thread_call_func_t)realitexpire, child_proc); | |
1104 | if (child_proc->p_rcall == NULL) { | |
1105 | FREE_ZONE(child_proc->p_sigacts, sizeof *child_proc->p_sigacts, M_SIGACTS); | |
1106 | FREE_ZONE(child_proc->p_stats, sizeof *child_proc->p_stats, M_PSTATS); | |
1107 | FREE_ZONE(child_proc, sizeof *child_proc, M_PROC); | |
1108 | child_proc = NULL; | |
1109 | goto bad; | |
1110 | } | |
1111 | ||
1112 | ||
1113 | /* | |
1114 | * Find an unused PID. | |
1115 | */ | |
1116 | ||
1117 | proc_list_lock(); | |
1118 | ||
1119 | nextpid++; | |
1120 | retry: | |
1121 | /* | |
1122 | * If the process ID prototype has wrapped around, | |
1123 | * restart somewhat above 0, as the low-numbered procs | |
1124 | * tend to include daemons that don't exit. | |
1125 | */ | |
1126 | if (nextpid >= PID_MAX) { | |
1127 | nextpid = 100; | |
1128 | pidwrap = 1; | |
1129 | } | |
1130 | if (pidwrap != 0) { | |
1131 | ||
1132 | /* if the pid stays in hash both for zombie and runniing state */ | |
1133 | if (pfind_locked(nextpid) != PROC_NULL) { | |
1134 | nextpid++; | |
1135 | goto retry; | |
1136 | } | |
1137 | ||
1138 | if (pgfind_internal(nextpid) != PGRP_NULL) { | |
1139 | nextpid++; | |
1140 | goto retry; | |
1141 | } | |
1142 | if (session_find_internal(nextpid) != SESSION_NULL) { | |
1143 | nextpid++; | |
1144 | goto retry; | |
1145 | } | |
1146 | } | |
1147 | nprocs++; | |
1148 | child_proc->p_pid = nextpid; | |
1149 | child_proc->p_idversion = nextpidversion++; | |
1150 | #if 1 | |
1151 | if (child_proc->p_pid != 0) { | |
1152 | if (pfind_locked(child_proc->p_pid) != PROC_NULL) | |
1153 | panic("proc in the list already\n"); | |
1154 | } | |
1155 | #endif | |
1156 | /* Insert in the hash */ | |
1157 | child_proc->p_listflag |= (P_LIST_INHASH | P_LIST_INCREATE); | |
1158 | LIST_INSERT_HEAD(PIDHASH(child_proc->p_pid), child_proc, p_hash); | |
1159 | proc_list_unlock(); | |
1160 | ||
1161 | ||
1162 | /* | |
1163 | * We've identified the PID we are going to use; initialize the new | |
1164 | * process structure. | |
1165 | */ | |
1166 | child_proc->p_stat = SIDL; | |
1167 | child_proc->p_pgrpid = PGRPID_DEAD; | |
1168 | ||
1169 | /* | |
1170 | * The zero'ing of the proc was at the allocation time due to need | |
1171 | * for insertion to hash. Copy the section that is to be copied | |
1172 | * directly from the parent. | |
1173 | */ | |
1174 | bcopy(&parent_proc->p_startcopy, &child_proc->p_startcopy, | |
1175 | (unsigned) ((caddr_t)&child_proc->p_endcopy - (caddr_t)&child_proc->p_startcopy)); | |
1176 | ||
1177 | /* | |
1178 | * Some flags are inherited from the parent. | |
1179 | * Duplicate sub-structures as needed. | |
1180 | * Increase reference counts on shared objects. | |
1181 | * The p_stats and p_sigacts substructs are set in vm_fork. | |
1182 | */ | |
1183 | child_proc->p_flag = (parent_proc->p_flag & (P_LP64 | P_TRANSLATED | P_AFFINITY)); | |
1184 | if (parent_proc->p_flag & P_PROFIL) | |
1185 | startprofclock(child_proc); | |
1186 | /* | |
1187 | * Note that if the current thread has an assumed identity, this | |
1188 | * credential will be granted to the new process. | |
1189 | */ | |
1190 | child_proc->p_ucred = kauth_cred_get_with_ref(); | |
1191 | ||
1192 | #ifdef CONFIG_EMBEDDED | |
1193 | lck_mtx_init(&child_proc->p_mlock, proc_lck_grp, proc_lck_attr); | |
1194 | lck_mtx_init(&child_proc->p_fdmlock, proc_lck_grp, proc_lck_attr); | |
1195 | #if CONFIG_DTRACE | |
1196 | lck_mtx_init(&child_proc->p_dtrace_sprlock, proc_lck_grp, proc_lck_attr); | |
1197 | #endif | |
1198 | lck_spin_init(&child_proc->p_slock, proc_lck_grp, proc_lck_attr); | |
1199 | #else /* !CONFIG_EMBEDDED */ | |
1200 | lck_mtx_init(&child_proc->p_mlock, proc_mlock_grp, proc_lck_attr); | |
1201 | lck_mtx_init(&child_proc->p_fdmlock, proc_fdmlock_grp, proc_lck_attr); | |
1202 | #if CONFIG_DTRACE | |
1203 | lck_mtx_init(&child_proc->p_dtrace_sprlock, proc_lck_grp, proc_lck_attr); | |
1204 | #endif | |
1205 | lck_spin_init(&child_proc->p_slock, proc_slock_grp, proc_lck_attr); | |
1206 | #endif /* !CONFIG_EMBEDDED */ | |
1207 | klist_init(&child_proc->p_klist); | |
1208 | ||
1209 | if (child_proc->p_textvp != NULLVP) { | |
1210 | /* bump references to the text vnode */ | |
1211 | /* Need to hold iocount across the ref call */ | |
1212 | if (vnode_getwithref(child_proc->p_textvp) == 0) { | |
1213 | error = vnode_ref(child_proc->p_textvp); | |
1214 | vnode_put(child_proc->p_textvp); | |
1215 | if (error != 0) | |
1216 | child_proc->p_textvp = NULLVP; | |
1217 | } | |
1218 | } | |
1219 | ||
1220 | /* | |
1221 | * Copy the parents per process open file table to the child; if | |
1222 | * there is a per-thread current working directory, set the childs | |
1223 | * per-process current working directory to that instead of the | |
1224 | * parents. | |
1225 | * | |
1226 | * XXX may fail to copy descriptors to child | |
1227 | */ | |
1228 | child_proc->p_fd = fdcopy(parent_proc, parent_uthread->uu_cdir); | |
1229 | ||
1230 | #if SYSV_SHM | |
1231 | if (parent_proc->vm_shm) { | |
1232 | /* XXX may fail to attach shm to child */ | |
1233 | (void)shmfork(parent_proc, child_proc); | |
1234 | } | |
1235 | #endif | |
1236 | /* | |
1237 | * inherit the limit structure to child | |
1238 | */ | |
1239 | proc_limitfork(parent_proc, child_proc); | |
1240 | ||
1241 | if (child_proc->p_limit->pl_rlimit[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) { | |
1242 | uint64_t rlim_cur = child_proc->p_limit->pl_rlimit[RLIMIT_CPU].rlim_cur; | |
1243 | child_proc->p_rlim_cpu.tv_sec = (rlim_cur > __INT_MAX__) ? __INT_MAX__ : rlim_cur; | |
1244 | } | |
1245 | ||
1246 | /* Intialize new process stats, including start time */ | |
1247 | /* <rdar://6640543> non-zeroed portion contains garbage AFAICT */ | |
1248 | bzero(&child_proc->p_stats->pstat_startzero, | |
1249 | (unsigned) ((caddr_t)&child_proc->p_stats->pstat_endzero - | |
1250 | (caddr_t)&child_proc->p_stats->pstat_startzero)); | |
1251 | bzero(&child_proc->p_stats->user_p_prof, sizeof(struct user_uprof)); | |
1252 | microtime(&child_proc->p_start); | |
1253 | child_proc->p_stats->p_start = child_proc->p_start; /* for compat */ | |
1254 | ||
1255 | if (parent_proc->p_sigacts != NULL) | |
1256 | (void)memcpy(child_proc->p_sigacts, | |
1257 | parent_proc->p_sigacts, sizeof *child_proc->p_sigacts); | |
1258 | else | |
1259 | (void)memset(child_proc->p_sigacts, 0, sizeof *child_proc->p_sigacts); | |
1260 | ||
1261 | sessp = proc_session(parent_proc); | |
1262 | if (sessp->s_ttyvp != NULL && parent_proc->p_flag & P_CONTROLT) | |
1263 | OSBitOrAtomic(P_CONTROLT, &child_proc->p_flag); | |
1264 | session_rele(sessp); | |
1265 | ||
1266 | /* | |
1267 | * block all signals to reach the process. | |
1268 | * no transition race should be occuring with the child yet, | |
1269 | * but indicate that the process is in (the creation) transition. | |
1270 | */ | |
1271 | proc_signalstart(child_proc, 0); | |
1272 | proc_transstart(child_proc, 0); | |
1273 | ||
1274 | child_proc->p_pcaction = (parent_proc->p_pcaction) & P_PCMAX; | |
1275 | TAILQ_INIT(&child_proc->p_uthlist); | |
1276 | TAILQ_INIT(&child_proc->p_aio_activeq); | |
1277 | TAILQ_INIT(&child_proc->p_aio_doneq); | |
1278 | ||
1279 | /* Inherit the parent flags for code sign */ | |
1280 | child_proc->p_csflags = parent_proc->p_csflags; | |
1281 | ||
1282 | /* | |
1283 | * All processes have work queue locks; cleaned up by | |
1284 | * reap_child_locked() | |
1285 | */ | |
1286 | workqueue_init_lock(child_proc); | |
1287 | ||
1288 | /* | |
1289 | * Copy work queue information | |
1290 | * | |
1291 | * Note: This should probably only happen in the case where we are | |
1292 | * creating a child that is a copy of the parent; since this | |
1293 | * routine is called in the non-duplication case of vfork() | |
1294 | * or posix_spawn(), then this information should likely not | |
1295 | * be duplicated. | |
1296 | * | |
1297 | * <rdar://6640553> Work queue pointers that no longer point to code | |
1298 | */ | |
1299 | child_proc->p_wqthread = parent_proc->p_wqthread; | |
1300 | child_proc->p_threadstart = parent_proc->p_threadstart; | |
1301 | child_proc->p_pthsize = parent_proc->p_pthsize; | |
1302 | child_proc->p_targconc = parent_proc->p_targconc; | |
1303 | if ((parent_proc->p_lflag & P_LREGISTER) != 0) { | |
1304 | child_proc->p_lflag |= P_LREGISTER; | |
1305 | } | |
1306 | child_proc->p_dispatchqueue_offset = parent_proc->p_dispatchqueue_offset; | |
1307 | #if PSYNCH | |
1308 | pth_proc_hashinit(child_proc); | |
1309 | #endif /* PSYNCH */ | |
1310 | ||
1311 | #if CONFIG_LCTX | |
1312 | child_proc->p_lctx = NULL; | |
1313 | /* Add new process to login context (if any). */ | |
1314 | if (parent_proc->p_lctx != NULL) { | |
1315 | /* | |
1316 | * <rdar://6640564> This should probably be delayed in the | |
1317 | * vfork() or posix_spawn() cases. | |
1318 | */ | |
1319 | LCTX_LOCK(parent_proc->p_lctx); | |
1320 | enterlctx(child_proc, parent_proc->p_lctx, 0); | |
1321 | } | |
1322 | #endif | |
1323 | ||
1324 | bad: | |
1325 | return(child_proc); | |
1326 | } | |
1327 | ||
1328 | void | |
1329 | proc_lock(proc_t p) | |
1330 | { | |
1331 | lck_mtx_lock(&p->p_mlock); | |
1332 | } | |
1333 | ||
1334 | void | |
1335 | proc_unlock(proc_t p) | |
1336 | { | |
1337 | lck_mtx_unlock(&p->p_mlock); | |
1338 | } | |
1339 | ||
1340 | void | |
1341 | proc_spinlock(proc_t p) | |
1342 | { | |
1343 | lck_spin_lock(&p->p_slock); | |
1344 | } | |
1345 | ||
1346 | void | |
1347 | proc_spinunlock(proc_t p) | |
1348 | { | |
1349 | lck_spin_unlock(&p->p_slock); | |
1350 | } | |
1351 | ||
1352 | void | |
1353 | proc_list_lock(void) | |
1354 | { | |
1355 | lck_mtx_lock(proc_list_mlock); | |
1356 | } | |
1357 | ||
1358 | void | |
1359 | proc_list_unlock(void) | |
1360 | { | |
1361 | lck_mtx_unlock(proc_list_mlock); | |
1362 | } | |
1363 | ||
1364 | #include <kern/zalloc.h> | |
1365 | ||
1366 | struct zone *uthread_zone; | |
1367 | static int uthread_zone_inited = 0; | |
1368 | ||
1369 | static void | |
1370 | uthread_zone_init(void) | |
1371 | { | |
1372 | if (!uthread_zone_inited) { | |
1373 | uthread_zone = zinit(sizeof(struct uthread), | |
1374 | thread_max * sizeof(struct uthread), | |
1375 | THREAD_CHUNK * sizeof(struct uthread), | |
1376 | "uthreads"); | |
1377 | uthread_zone_inited = 1; | |
1378 | ||
1379 | zone_change(uthread_zone, Z_NOENCRYPT, TRUE); | |
1380 | } | |
1381 | } | |
1382 | ||
1383 | void * | |
1384 | uthread_alloc(task_t task, thread_t thread, int noinherit) | |
1385 | { | |
1386 | proc_t p; | |
1387 | uthread_t uth; | |
1388 | uthread_t uth_parent; | |
1389 | void *ut; | |
1390 | ||
1391 | if (!uthread_zone_inited) | |
1392 | uthread_zone_init(); | |
1393 | ||
1394 | ut = (void *)zalloc(uthread_zone); | |
1395 | bzero(ut, sizeof(struct uthread)); | |
1396 | ||
1397 | p = (proc_t) get_bsdtask_info(task); | |
1398 | uth = (uthread_t)ut; | |
1399 | ||
1400 | /* | |
1401 | * Thread inherits credential from the creating thread, if both | |
1402 | * are in the same task. | |
1403 | * | |
1404 | * If the creating thread has no credential or is from another | |
1405 | * task we can leave the new thread credential NULL. If it needs | |
1406 | * one later, it will be lazily assigned from the task's process. | |
1407 | */ | |
1408 | uth_parent = (uthread_t)get_bsdthread_info(current_thread()); | |
1409 | if ((noinherit == 0) && task == current_task() && | |
1410 | uth_parent != NULL && | |
1411 | IS_VALID_CRED(uth_parent->uu_ucred)) { | |
1412 | /* | |
1413 | * XXX The new thread is, in theory, being created in context | |
1414 | * XXX of parent thread, so a direct reference to the parent | |
1415 | * XXX is OK. | |
1416 | */ | |
1417 | kauth_cred_ref(uth_parent->uu_ucred); | |
1418 | uth->uu_ucred = uth_parent->uu_ucred; | |
1419 | /* the credential we just inherited is an assumed credential */ | |
1420 | if (uth_parent->uu_flag & UT_SETUID) | |
1421 | uth->uu_flag |= UT_SETUID; | |
1422 | } else { | |
1423 | /* sometimes workqueue threads are created out task context */ | |
1424 | if ((task != kernel_task) && (p != PROC_NULL)) | |
1425 | uth->uu_ucred = kauth_cred_proc_ref(p); | |
1426 | else | |
1427 | uth->uu_ucred = NOCRED; | |
1428 | } | |
1429 | ||
1430 | ||
1431 | if ((task != kernel_task) && p) { | |
1432 | ||
1433 | proc_lock(p); | |
1434 | if (noinherit != 0) { | |
1435 | /* workq threads will not inherit masks */ | |
1436 | uth->uu_sigmask = ~workq_threadmask; | |
1437 | } else if (uth_parent) { | |
1438 | if (uth_parent->uu_flag & UT_SAS_OLDMASK) | |
1439 | uth->uu_sigmask = uth_parent->uu_oldmask; | |
1440 | else | |
1441 | uth->uu_sigmask = uth_parent->uu_sigmask; | |
1442 | } | |
1443 | uth->uu_context.vc_thread = thread; | |
1444 | TAILQ_INSERT_TAIL(&p->p_uthlist, uth, uu_list); | |
1445 | proc_unlock(p); | |
1446 | ||
1447 | #if CONFIG_DTRACE | |
1448 | if (p->p_dtrace_ptss_pages != NULL) { | |
1449 | uth->t_dtrace_scratch = dtrace_ptss_claim_entry(p); | |
1450 | } | |
1451 | #endif | |
1452 | } | |
1453 | ||
1454 | return (ut); | |
1455 | } | |
1456 | ||
1457 | ||
1458 | /* | |
1459 | * This routine frees all the BSD context in uthread except the credential. | |
1460 | * It does not free the uthread structure as well | |
1461 | */ | |
1462 | void | |
1463 | uthread_cleanup(task_t task, void *uthread, void * bsd_info) | |
1464 | { | |
1465 | struct _select *sel; | |
1466 | uthread_t uth = (uthread_t)uthread; | |
1467 | proc_t p = (proc_t)bsd_info; | |
1468 | ||
1469 | ||
1470 | if (uth->uu_lowpri_window || uth->uu_throttle_info) { | |
1471 | /* | |
1472 | * task is marked as a low priority I/O type | |
1473 | * and we've somehow managed to not dismiss the throttle | |
1474 | * through the normal exit paths back to user space... | |
1475 | * no need to throttle this thread since its going away | |
1476 | * but we do need to update our bookeeping w/r to throttled threads | |
1477 | * | |
1478 | * Calling this routine will clean up any throttle info reference | |
1479 | * still inuse by the thread. | |
1480 | */ | |
1481 | throttle_lowpri_io(FALSE); | |
1482 | } | |
1483 | /* | |
1484 | * Per-thread audit state should never last beyond system | |
1485 | * call return. Since we don't audit the thread creation/ | |
1486 | * removal, the thread state pointer should never be | |
1487 | * non-NULL when we get here. | |
1488 | */ | |
1489 | assert(uth->uu_ar == NULL); | |
1490 | ||
1491 | sel = &uth->uu_select; | |
1492 | /* cleanup the select bit space */ | |
1493 | if (sel->nbytes) { | |
1494 | FREE(sel->ibits, M_TEMP); | |
1495 | FREE(sel->obits, M_TEMP); | |
1496 | sel->nbytes = 0; | |
1497 | } | |
1498 | ||
1499 | if (uth->uu_cdir) { | |
1500 | vnode_rele(uth->uu_cdir); | |
1501 | uth->uu_cdir = NULLVP; | |
1502 | } | |
1503 | ||
1504 | if (uth->uu_allocsize && uth->uu_wqset){ | |
1505 | kfree(uth->uu_wqset, uth->uu_allocsize); | |
1506 | sel->count = 0; | |
1507 | uth->uu_allocsize = 0; | |
1508 | uth->uu_wqset = 0; | |
1509 | sel->wql = 0; | |
1510 | } | |
1511 | ||
1512 | if(uth->pth_name != NULL) | |
1513 | { | |
1514 | kfree(uth->pth_name, MAXTHREADNAMESIZE); | |
1515 | uth->pth_name = 0; | |
1516 | } | |
1517 | if ((task != kernel_task) && p) { | |
1518 | ||
1519 | if (((uth->uu_flag & UT_VFORK) == UT_VFORK) && (uth->uu_proc != PROC_NULL)) { | |
1520 | vfork_exit_internal(uth->uu_proc, 0, 1); | |
1521 | } | |
1522 | /* | |
1523 | * Remove the thread from the process list and | |
1524 | * transfer [appropriate] pending signals to the process. | |
1525 | */ | |
1526 | if (get_bsdtask_info(task) == p) { | |
1527 | proc_lock(p); | |
1528 | TAILQ_REMOVE(&p->p_uthlist, uth, uu_list); | |
1529 | p->p_siglist |= (uth->uu_siglist & execmask & (~p->p_sigignore | sigcantmask)); | |
1530 | proc_unlock(p); | |
1531 | } | |
1532 | #if CONFIG_DTRACE | |
1533 | struct dtrace_ptss_page_entry *tmpptr = uth->t_dtrace_scratch; | |
1534 | uth->t_dtrace_scratch = NULL; | |
1535 | if (tmpptr != NULL) { | |
1536 | dtrace_ptss_release_entry(p, tmpptr); | |
1537 | } | |
1538 | #endif | |
1539 | } | |
1540 | } | |
1541 | ||
1542 | /* This routine releases the credential stored in uthread */ | |
1543 | void | |
1544 | uthread_cred_free(void *uthread) | |
1545 | { | |
1546 | uthread_t uth = (uthread_t)uthread; | |
1547 | ||
1548 | /* and free the uthread itself */ | |
1549 | if (IS_VALID_CRED(uth->uu_ucred)) { | |
1550 | kauth_cred_t oldcred = uth->uu_ucred; | |
1551 | uth->uu_ucred = NOCRED; | |
1552 | kauth_cred_unref(&oldcred); | |
1553 | } | |
1554 | } | |
1555 | ||
1556 | /* This routine frees the uthread structure held in thread structure */ | |
1557 | void | |
1558 | uthread_zone_free(void *uthread) | |
1559 | { | |
1560 | /* and free the uthread itself */ | |
1561 | zfree(uthread_zone, uthread); | |
1562 | } |