]> git.saurik.com Git - apple/xnu.git/blame_incremental - bsd/kern/kern_fork.c
xnu-1504.9.17.tar.gz
[apple/xnu.git] / bsd / kern / kern_fork.c
... / ...
CommitLineData
1/*
2 * Copyright (c) 2000-2007 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28/* Copyright (c) 1995, 1997 Apple Computer, Inc. All Rights Reserved */
29/*
30 * Copyright (c) 1982, 1986, 1989, 1991, 1993
31 * The Regents of the University of California. All rights reserved.
32 * (c) UNIX System Laboratories, Inc.
33 * All or some portions of this file are derived from material licensed
34 * to the University of California by American Telephone and Telegraph
35 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
36 * the permission of UNIX System Laboratories, Inc.
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. All advertising materials mentioning features or use of this software
47 * must display the following acknowledgement:
48 * This product includes software developed by the University of
49 * California, Berkeley and its contributors.
50 * 4. Neither the name of the University nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
65 *
66 * @(#)kern_fork.c 8.8 (Berkeley) 2/14/95
67 */
68/*
69 * NOTICE: This file was modified by McAfee Research in 2004 to introduce
70 * support for mandatory and extensible security protections. This notice
71 * is included in support of clause 2.2 (b) of the Apple Public License,
72 * Version 2.0.
73 */
74/*
75 * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce
76 * support for mandatory and extensible security protections. This notice
77 * is included in support of clause 2.2 (b) of the Apple Public License,
78 * Version 2.0.
79 */
80
81#include <kern/assert.h>
82#include <sys/param.h>
83#include <sys/systm.h>
84#include <sys/filedesc.h>
85#include <sys/kernel.h>
86#include <sys/malloc.h>
87#include <sys/proc_internal.h>
88#include <sys/kauth.h>
89#include <sys/user.h>
90#include <sys/resourcevar.h>
91#include <sys/vnode_internal.h>
92#include <sys/file_internal.h>
93#include <sys/acct.h>
94#include <sys/codesign.h>
95#include <sys/sysproto.h>
96#if CONFIG_DTRACE
97/* Do not include dtrace.h, it redefines kmem_[alloc/free] */
98extern void dtrace_fasttrap_fork(proc_t, proc_t);
99extern void (*dtrace_helpers_fork)(proc_t, proc_t);
100extern void dtrace_lazy_dofs_duplicate(proc_t, proc_t);
101
102#include <sys/dtrace_ptss.h>
103#endif
104
105#include <security/audit/audit.h>
106
107#include <mach/mach_types.h>
108#include <kern/kern_types.h>
109#include <kern/kalloc.h>
110#include <kern/mach_param.h>
111#include <kern/task.h>
112#include <kern/thread_call.h>
113#include <kern/zalloc.h>
114
115#include <machine/spl.h>
116
117#if CONFIG_MACF
118#include <security/mac.h>
119#include <security/mac_mach_internal.h>
120#endif
121
122#include <vm/vm_map.h>
123#include <vm/vm_protos.h>
124#include <vm/vm_shared_region.h>
125
126#include <sys/shm_internal.h> /* for shmfork() */
127#include <mach/task.h> /* for thread_create() */
128#include <mach/thread_act.h> /* for thread_resume() */
129
130#include <sys/sdt.h>
131
132
133/* XXX routines which should have Mach prototypes, but don't */
134void thread_set_parent(thread_t parent, int pid);
135extern void act_thread_catt(void *ctx);
136void thread_set_child(thread_t child, int pid);
137void *act_thread_csave(void);
138
139
140thread_t cloneproc(task_t, proc_t, int);
141proc_t forkproc(proc_t);
142void forkproc_free(proc_t);
143thread_t fork_create_child(task_t parent_task, proc_t child, int inherit_memory, int is64bit);
144void proc_vfork_begin(proc_t parent_proc);
145void proc_vfork_end(proc_t parent_proc);
146
147#define DOFORK 0x1 /* fork() system call */
148#define DOVFORK 0x2 /* vfork() system call */
149
150/*
151 * proc_vfork_begin
152 *
153 * Description: start a vfork on a process
154 *
155 * Parameters: parent_proc process (re)entering vfork state
156 *
157 * Returns: (void)
158 *
159 * Notes: Although this function increments a count, a count in
160 * excess of 1 is not currently supported. According to the
161 * POSIX standard, calling anything other than execve() or
162 * _exit() fillowing a vfork(), including calling vfork()
163 * itself again, will result in undefned behaviour
164 */
165void
166proc_vfork_begin(proc_t parent_proc)
167{
168 proc_lock(parent_proc);
169 parent_proc->p_lflag |= P_LVFORK;
170 parent_proc->p_vforkcnt++;
171 proc_unlock(parent_proc);
172}
173
174/*
175 * proc_vfork_end
176 *
177 * Description: stop a vfork on a process
178 *
179 * Parameters: parent_proc process leaving vfork state
180 *
181 * Returns: (void)
182 *
183 * Notes: Decerements the count; currently, reentrancy of vfork()
184 * is unsupported on the current process
185 */
186void
187proc_vfork_end(proc_t parent_proc)
188{
189 proc_lock(parent_proc);
190 parent_proc->p_vforkcnt--;
191 if (parent_proc->p_vforkcnt < 0)
192 panic("vfork cnt is -ve");
193 /* resude the vfork count; clear the flag when it goes to 0 */
194 if (parent_proc->p_vforkcnt == 0)
195 parent_proc->p_lflag &= ~P_LVFORK;
196 proc_unlock(parent_proc);
197}
198
199
200/*
201 * vfork
202 *
203 * Description: vfork system call
204 *
205 * Parameters: void [no arguments]
206 *
207 * Retval: 0 (to child process)
208 * !0 pid of child (to parent process)
209 * -1 error (see "Returns:")
210 *
211 * Returns: EAGAIN Administrative limit reached
212 * EINVAL vfork() called during vfork()
213 * ENOMEM Failed to allocate new process
214 *
215 * Note: After a successful call to this function, the parent process
216 * has its task, thread, and uthread lent to the child process,
217 * and control is returned to the caller; if this function is
218 * invoked as a system call, the return is to user space, and
219 * is effectively running on the child process.
220 *
221 * Subsequent calls that operate on process state are permitted,
222 * though discouraged, and will operate on the child process; any
223 * operations on the task, thread, or uthread will result in
224 * changes in the parent state, and, if inheritable, the child
225 * state, when a task, thread, and uthread are realized for the
226 * child process at execve() time, will also be effected. Given
227 * this, it's recemmended that people use the posix_spawn() call
228 * instead.
229 *
230 * BLOCK DIAGRAM OF VFORK
231 *
232 * Before:
233 *
234 * ,----------------. ,-------------.
235 * | | task | |
236 * | parent_thread | ------> | parent_task |
237 * | | <.list. | |
238 * `----------------' `-------------'
239 * uthread | ^ bsd_info | ^
240 * v | vc_thread v | task
241 * ,----------------. ,-------------.
242 * | | | |
243 * | parent_uthread | <.list. | parent_proc | <-- current_proc()
244 * | | | |
245 * `----------------' `-------------'
246 * uu_proc |
247 * v
248 * NULL
249 *
250 * After:
251 *
252 * ,----------------. ,-------------.
253 * | | task | |
254 * ,----> | parent_thread | ------> | parent_task |
255 * | | | <.list. | |
256 * | `----------------' `-------------'
257 * | uthread | ^ bsd_info | ^
258 * | v | vc_thread v | task
259 * | ,----------------. ,-------------.
260 * | | | | |
261 * | | parent_uthread | <.list. | parent_proc |
262 * | | | | |
263 * | `----------------' `-------------'
264 * | uu_proc | . list
265 * | v v
266 * | ,----------------.
267 * `----- | |
268 * p_vforkact | child_proc | <-- current_proc()
269 * | |
270 * `----------------'
271 */
272int
273vfork(proc_t parent_proc, __unused struct vfork_args *uap, int32_t *retval)
274{
275 thread_t child_thread;
276 int err;
277
278 if ((err = fork1(parent_proc, &child_thread, PROC_CREATE_VFORK)) != 0) {
279 retval[1] = 0;
280 } else {
281 /*
282 * kludge: rely on uu_proc being set in the vfork case,
283 * rather than returning the actual thread. We can remove
284 * this when we remove the uu_proc/current_proc() kludge.
285 */
286 proc_t child_proc = current_proc();
287
288 retval[0] = child_proc->p_pid;
289 retval[1] = 1; /* flag child return for user space */
290
291 /*
292 * Drop the signal lock on the child which was taken on our
293 * behalf by forkproc()/cloneproc() to prevent signals being
294 * received by the child in a partially constructed state.
295 */
296 proc_signalend(child_proc, 0);
297 proc_transend(child_proc, 0);
298
299 /* flag the fork has occurred */
300 proc_knote(parent_proc, NOTE_FORK | child_proc->p_pid);
301 DTRACE_PROC1(create, proc_t, child_proc);
302 }
303
304 return(err);
305}
306
307
308/*
309 * fork1
310 *
311 * Description: common code used by all new process creation other than the
312 * bootstrap of the initial process on the system
313 *
314 * Parameters: parent_proc parent process of the process being
315 * child_threadp pointer to location to receive the
316 * Mach thread_t of the child process
317 * breated
318 * kind kind of creation being requested
319 *
320 * Notes: Permissable values for 'kind':
321 *
322 * PROC_CREATE_FORK Create a complete process which will
323 * return actively running in both the
324 * parent and the child; the child copies
325 * the parent address space.
326 * PROC_CREATE_SPAWN Create a complete process which will
327 * return actively running in the parent
328 * only after returning actively running
329 * in the child; the child address space
330 * is newly created by an image activator,
331 * after which the child is run.
332 * PROC_CREATE_VFORK Creates a partial process which will
333 * borrow the parent task, thread, and
334 * uthread to return running in the child;
335 * the child address space and other parts
336 * are lazily created at execve() time, or
337 * the child is terminated, and the parent
338 * does not actively run until that
339 * happens.
340 *
341 * At first it may seem strange that we return the child thread
342 * address rather than process structure, since the process is
343 * the only part guaranteed to be "new"; however, since we do
344 * not actualy adjust other references between Mach and BSD (see
345 * the block diagram above the implementation of vfork()), this
346 * is the only method which guarantees us the ability to get
347 * back to the other information.
348 */
349int
350fork1(proc_t parent_proc, thread_t *child_threadp, int kind)
351{
352 thread_t parent_thread = (thread_t)current_thread();
353 uthread_t parent_uthread = (uthread_t)get_bsdthread_info(parent_thread);
354 proc_t child_proc = NULL; /* set in switch, but compiler... */
355 thread_t child_thread = NULL;
356 uid_t uid;
357 int count;
358 int err = 0;
359 int spawn = 0;
360
361 /*
362 * Although process entries are dynamically created, we still keep
363 * a global limit on the maximum number we will create. Don't allow
364 * a nonprivileged user to use the last process; don't let root
365 * exceed the limit. The variable nprocs is the current number of
366 * processes, maxproc is the limit.
367 */
368 uid = kauth_cred_get()->cr_ruid;
369 proc_list_lock();
370 if ((nprocs >= maxproc - 1 && uid != 0) || nprocs >= maxproc) {
371 proc_list_unlock();
372 tablefull("proc");
373 return (EAGAIN);
374 }
375 proc_list_unlock();
376
377 /*
378 * Increment the count of procs running with this uid. Don't allow
379 * a nonprivileged user to exceed their current limit, which is
380 * always less than what an rlim_t can hold.
381 * (locking protection is provided by list lock held in chgproccnt)
382 */
383 count = chgproccnt(uid, 1);
384 if (uid != 0 &&
385 (rlim_t)count > parent_proc->p_rlimit[RLIMIT_NPROC].rlim_cur) {
386 err = EAGAIN;
387 goto bad;
388 }
389
390#if CONFIG_MACF
391 /*
392 * Determine if MAC policies applied to the process will allow
393 * it to fork. This is an advisory-only check.
394 */
395 err = mac_proc_check_fork(parent_proc);
396 if (err != 0) {
397 goto bad;
398 }
399#endif
400
401 switch(kind) {
402 case PROC_CREATE_VFORK:
403 /*
404 * Prevent a vfork while we are in vfork(); we should
405 * also likely preventing a fork here as well, and this
406 * check should then be outside the switch statement,
407 * since the proc struct contents will copy from the
408 * child and the tash/thread/uthread from the parent in
409 * that case. We do not support vfork() in vfork()
410 * because we don't have to; the same non-requirement
411 * is true of both fork() and posix_spawn() and any
412 * call other than execve() amd _exit(), but we've
413 * been historically lenient, so we continue to be so
414 * (for now).
415 *
416 * <rdar://6640521> Probably a source of random panics
417 */
418 if (parent_uthread->uu_flag & UT_VFORK) {
419 printf("fork1 called within vfork by %s\n", parent_proc->p_comm);
420 err = EINVAL;
421 goto bad;
422 }
423
424 /*
425 * Flag us in progress; if we chose to support vfork() in
426 * vfork(), we would chain our parent at this point (in
427 * effect, a stack push). We don't, since we actually want
428 * to disallow everything not specified in the standard
429 */
430 proc_vfork_begin(parent_proc);
431
432 /* The newly created process comes with signal lock held */
433 if ((child_proc = forkproc(parent_proc)) == NULL) {
434 /* Failed to allocate new process */
435 proc_vfork_end(parent_proc);
436 err = ENOMEM;
437 goto bad;
438 }
439
440// XXX BEGIN: wants to move to be common code (and safe)
441#if CONFIG_MACF
442 /*
443 * allow policies to associate the credential/label that
444 * we referenced from the parent ... with the child
445 * JMM - this really isn't safe, as we can drop that
446 * association without informing the policy in other
447 * situations (keep long enough to get policies changed)
448 */
449 mac_cred_label_associate_fork(child_proc->p_ucred, child_proc);
450#endif
451
452 /*
453 * Propogate change of PID - may get new cred if auditing.
454 *
455 * NOTE: This has no effect in the vfork case, since
456 * child_proc->task != current_task(), but we duplicate it
457 * because this is probably, ultimately, wrong, since we
458 * will be running in the "child" which is the parent task
459 * with the wrong token until we get to the execve() or
460 * _exit() call; a lot of "undefined" can happen before
461 * that.
462 *
463 * <rdar://6640530> disallow everything but exeve()/_exit()?
464 */
465 set_security_token(child_proc);
466
467 AUDIT_ARG(pid, child_proc->p_pid);
468
469 AUDIT_SESSION_PROCNEW(child_proc->p_ucred);
470// XXX END: wants to move to be common code (and safe)
471
472 /*
473 * BORROW PARENT TASK, THREAD, UTHREAD FOR CHILD
474 *
475 * Note: this is where we would "push" state instead of setting
476 * it for nested vfork() support (see proc_vfork_end() for
477 * description if issues here).
478 */
479 child_proc->task = parent_proc->task;
480
481 child_proc->p_lflag |= P_LINVFORK;
482 child_proc->p_vforkact = parent_thread;
483 child_proc->p_stat = SRUN;
484
485 parent_uthread->uu_flag |= UT_VFORK;
486 parent_uthread->uu_proc = child_proc;
487 parent_uthread->uu_userstate = (void *)act_thread_csave();
488 parent_uthread->uu_vforkmask = parent_uthread->uu_sigmask;
489
490 /* temporarily drop thread-set-id state */
491 if (parent_uthread->uu_flag & UT_SETUID) {
492 parent_uthread->uu_flag |= UT_WASSETUID;
493 parent_uthread->uu_flag &= ~UT_SETUID;
494 }
495
496 /* blow thread state information */
497 /* XXX is this actually necessary, given syscall return? */
498 thread_set_child(parent_thread, child_proc->p_pid);
499
500 child_proc->p_acflag = AFORK; /* forked but not exec'ed */
501
502 /*
503 * Preserve synchronization semantics of vfork. If
504 * waiting for child to exec or exit, set P_PPWAIT
505 * on child, and sleep on our proc (in case of exit).
506 */
507 child_proc->p_lflag |= P_LPPWAIT;
508 pinsertchild(parent_proc, child_proc); /* set visible */
509
510 break;
511
512 case PROC_CREATE_SPAWN:
513 /*
514 * A spawned process differs from a forked process in that
515 * the spawned process does not carry around the parents
516 * baggage with regard to address space copying, dtrace,
517 * and so on.
518 */
519 spawn = 1;
520
521 /* FALLSTHROUGH */
522
523 case PROC_CREATE_FORK:
524 /*
525 * When we clone the parent process, we are going to inherit
526 * its task attributes and memory, since when we fork, we
527 * will, in effect, create a duplicate of it, with only minor
528 * differences. Contrarily, spawned processes do not inherit.
529 */
530 if ((child_thread = cloneproc(parent_proc->task, parent_proc, spawn ? FALSE : TRUE)) == NULL) {
531 /* Failed to create thread */
532 err = EAGAIN;
533 goto bad;
534 }
535
536 /* copy current thread state into the child thread (only for fork) */
537 if (!spawn) {
538 thread_dup(child_thread);
539 }
540
541 /* child_proc = child_thread->task->proc; */
542 child_proc = (proc_t)(get_bsdtask_info(get_threadtask(child_thread)));
543
544// XXX BEGIN: wants to move to be common code (and safe)
545#if CONFIG_MACF
546 /*
547 * allow policies to associate the credential/label that
548 * we referenced from the parent ... with the child
549 * JMM - this really isn't safe, as we can drop that
550 * association without informing the policy in other
551 * situations (keep long enough to get policies changed)
552 */
553 mac_cred_label_associate_fork(child_proc->p_ucred, child_proc);
554#endif
555
556 /*
557 * Propogate change of PID - may get new cred if auditing.
558 *
559 * NOTE: This has no effect in the vfork case, since
560 * child_proc->task != current_task(), but we duplicate it
561 * because this is probably, ultimately, wrong, since we
562 * will be running in the "child" which is the parent task
563 * with the wrong token until we get to the execve() or
564 * _exit() call; a lot of "undefined" can happen before
565 * that.
566 *
567 * <rdar://6640530> disallow everything but exeve()/_exit()?
568 */
569 set_security_token(child_proc);
570
571 AUDIT_ARG(pid, child_proc->p_pid);
572
573 AUDIT_SESSION_PROCNEW(child_proc->p_ucred);
574// XXX END: wants to move to be common code (and safe)
575
576 /*
577 * Blow thread state information; this is what gives the child
578 * process its "return" value from a fork() call.
579 *
580 * Note: this should probably move to fork() proper, since it
581 * is not relevent to spawn, and the value won't matter
582 * until we resume the child there. If you are in here
583 * refactoring code, consider doing this at the same time.
584 */
585 thread_set_child(child_thread, child_proc->p_pid);
586
587 child_proc->p_acflag = AFORK; /* forked but not exec'ed */
588
589// <rdar://6598155> dtrace code cleanup needed
590#if CONFIG_DTRACE
591 /*
592 * This code applies to new processes who are copying the task
593 * and thread state and address spaces of their parent process.
594 */
595 if (!spawn) {
596// <rdar://6598155> call dtrace specific function here instead of all this...
597 /*
598 * APPLE NOTE: Solaris does a sprlock() and drops the
599 * proc_lock here. We're cheating a bit and only taking
600 * the p_dtrace_sprlock lock. A full sprlock would
601 * task_suspend the parent.
602 */
603 lck_mtx_lock(&parent_proc->p_dtrace_sprlock);
604
605 /*
606 * Remove all DTrace tracepoints from the child process. We
607 * need to do this _before_ duplicating USDT providers since
608 * any associated probes may be immediately enabled.
609 */
610 if (parent_proc->p_dtrace_count > 0) {
611 dtrace_fasttrap_fork(parent_proc, child_proc);
612 }
613
614 lck_mtx_unlock(&parent_proc->p_dtrace_sprlock);
615
616 /*
617 * Duplicate any lazy dof(s). This must be done while NOT
618 * holding the parent sprlock! Lock ordering is
619 * dtrace_dof_mode_lock, then sprlock. It is imperative we
620 * always call dtrace_lazy_dofs_duplicate, rather than null
621 * check and call if !NULL. If we NULL test, during lazy dof
622 * faulting we can race with the faulting code and proceed
623 * from here to beyond the helpers copy. The lazy dof
624 * faulting will then fail to copy the helpers to the child
625 * process.
626 */
627 dtrace_lazy_dofs_duplicate(parent_proc, child_proc);
628
629 /*
630 * Duplicate any helper actions and providers. The SFORKING
631 * we set above informs the code to enable USDT probes that
632 * sprlock() may fail because the child is being forked.
633 */
634 /*
635 * APPLE NOTE: As best I can tell, Apple's sprlock() equivalent
636 * never fails to find the child. We do not set SFORKING.
637 */
638 if (parent_proc->p_dtrace_helpers != NULL && dtrace_helpers_fork) {
639 (*dtrace_helpers_fork)(parent_proc, child_proc);
640 }
641
642 }
643#endif /* CONFIG_DTRACE */
644
645 break;
646
647 default:
648 panic("fork1 called with unknown kind %d", kind);
649 break;
650 }
651
652
653 /* return the thread pointer to the caller */
654 *child_threadp = child_thread;
655
656bad:
657 /*
658 * In the error case, we return a 0 value for the returned pid (but
659 * it is ignored in the trampoline due to the error return); this
660 * is probably not necessary.
661 */
662 if (err) {
663 (void)chgproccnt(uid, -1);
664 }
665
666 return (err);
667}
668
669
670/*
671 * vfork_return
672 *
673 * Description: "Return" to parent vfork thread() following execve/_exit;
674 * this is done by reassociating the parent process structure
675 * with the task, thread, and uthread.
676 *
677 * Parameters: child_proc Child process
678 * retval System call return value array
679 * rval Return value to present to parent
680 *
681 * Returns: void
682 *
683 * Note: The caller resumes or exits the parent, as appropriate, after
684 * callling this function.
685 */
686void
687vfork_return(proc_t child_proc, int32_t *retval, int rval)
688{
689 proc_t parent_proc = child_proc->p_pptr;
690 thread_t parent_thread = (thread_t)current_thread();
691 uthread_t parent_uthread = (uthread_t)get_bsdthread_info(parent_thread);
692
693
694 act_thread_catt(parent_uthread->uu_userstate);
695
696 /* end vfork in parent */
697 proc_vfork_end(parent_proc);
698
699 /* REPATRIATE PARENT TASK, THREAD, UTHREAD */
700 parent_uthread->uu_userstate = 0;
701 parent_uthread->uu_flag &= ~UT_VFORK;
702 /* restore thread-set-id state */
703 if (parent_uthread->uu_flag & UT_WASSETUID) {
704 parent_uthread->uu_flag |= UT_SETUID;
705 parent_uthread->uu_flag &= UT_WASSETUID;
706 }
707 parent_uthread->uu_proc = 0;
708 parent_uthread->uu_sigmask = parent_uthread->uu_vforkmask;
709 child_proc->p_lflag &= ~P_LINVFORK;
710 child_proc->p_vforkact = (void *)0;
711
712 thread_set_parent(parent_thread, rval);
713
714 if (retval) {
715 retval[0] = rval;
716 retval[1] = 0; /* mark parent */
717 }
718
719 return;
720}
721
722
723/*
724 * fork_create_child
725 *
726 * Description: Common operations associated with the creation of a child
727 * process
728 *
729 * Parameters: parent_task parent task
730 * child_proc child process
731 * inherit_memory TRUE, if the parents address space is
732 * to be inherited by the child
733 * is64bit TRUE, if the child being created will
734 * be associated with a 64 bit process
735 * rather than a 32 bit process
736 *
737 * Note: This code is called in the fork() case, from the execve() call
738 * graph, if implementing an execve() following a vfork(), from
739 * the posix_spawn() call graph (which implicitly includes a
740 * vfork() equivalent call, and in the system bootstrap case.
741 *
742 * It creates a new task and thread (and as a side effect of the
743 * thread creation, a uthread), which is then associated with the
744 * process 'child'. If the parent process address space is to
745 * be inherited, then a flag indicates that the newly created
746 * task should inherit this from the child task.
747 *
748 * As a special concession to bootstrapping the initial process
749 * in the system, it's possible for 'parent_task' to be TASK_NULL;
750 * in this case, 'inherit_memory' MUST be FALSE.
751 */
752thread_t
753fork_create_child(task_t parent_task, proc_t child_proc, int inherit_memory, int is64bit)
754{
755 thread_t child_thread = NULL;
756 task_t child_task;
757 kern_return_t result;
758
759 /* Create a new task for the child process */
760 result = task_create_internal(parent_task,
761 inherit_memory,
762 is64bit,
763 &child_task);
764 if (result != KERN_SUCCESS) {
765 printf("execve: task_create_internal failed. Code: %d\n", result);
766 goto bad;
767 }
768
769 /* Set the child process task to the new task */
770 child_proc->task = child_task;
771
772 /* Set child task process to child proc */
773 set_bsdtask_info(child_task, child_proc);
774
775 /* Propagate CPU limit timer from parent */
776 if (timerisset(&child_proc->p_rlim_cpu))
777 task_vtimer_set(child_task, TASK_VTIMER_RLIM);
778
779 /* Set/clear 64 bit vm_map flag */
780 if (is64bit)
781 vm_map_set_64bit(get_task_map(child_task));
782 else
783 vm_map_set_32bit(get_task_map(child_task));
784
785#if CONFIG_MACF
786 /* Update task for MAC framework */
787 /* valid to use p_ucred as child is still not running ... */
788 mac_task_label_update_cred(child_proc->p_ucred, child_task);
789#endif
790
791 /*
792 * Set child process BSD visible scheduler priority if nice value
793 * inherited from parent
794 */
795 if (child_proc->p_nice != 0)
796 resetpriority(child_proc);
797
798 /* Create a new thread for the child process */
799 result = thread_create(child_task, &child_thread);
800 if (result != KERN_SUCCESS) {
801 printf("execve: thread_create failed. Code: %d\n", result);
802 task_deallocate(child_task);
803 child_task = NULL;
804 }
805bad:
806 thread_yield_internal(1);
807
808 return(child_thread);
809}
810
811
812/*
813 * fork
814 *
815 * Description: fork system call.
816 *
817 * Parameters: parent Parent process to fork
818 * uap (void) [unused]
819 * retval Return value
820 *
821 * Returns: 0 Success
822 * EAGAIN Resource unavailable, try again
823 *
824 * Notes: Attempts to create a new child process which inherits state
825 * from the parent process. If successful, the call returns
826 * having created an initially suspended child process with an
827 * extra Mach task and thread reference, for which the thread
828 * is initially suspended. Until we resume the child process,
829 * it is not yet running.
830 *
831 * The return information to the child is contained in the
832 * thread state structure of the new child, and does not
833 * become visible to the child through a normal return process,
834 * since it never made the call into the kernel itself in the
835 * first place.
836 *
837 * After resuming the thread, this function returns directly to
838 * the parent process which invoked the fork() system call.
839 *
840 * Important: The child thread_resume occurs before the parent returns;
841 * depending on scheduling latency, this means that it is not
842 * deterministic as to whether the parent or child is scheduled
843 * to run first. It is entirely possible that the child could
844 * run to completion prior to the parent running.
845 */
846int
847fork(proc_t parent_proc, __unused struct fork_args *uap, int32_t *retval)
848{
849 thread_t child_thread;
850 int err;
851
852 retval[1] = 0; /* flag parent return for user space */
853
854 if ((err = fork1(parent_proc, &child_thread, PROC_CREATE_FORK)) == 0) {
855 task_t child_task;
856 proc_t child_proc;
857
858 /* Return to the parent */
859 child_proc = (proc_t)get_bsdthreadtask_info(child_thread);
860 retval[0] = child_proc->p_pid;
861
862 /*
863 * Drop the signal lock on the child which was taken on our
864 * behalf by forkproc()/cloneproc() to prevent signals being
865 * received by the child in a partially constructed state.
866 */
867 proc_signalend(child_proc, 0);
868 proc_transend(child_proc, 0);
869
870 /* flag the fork has occurred */
871 proc_knote(parent_proc, NOTE_FORK | child_proc->p_pid);
872 DTRACE_PROC1(create, proc_t, child_proc);
873
874 /* "Return" to the child */
875 (void)thread_resume(child_thread);
876
877 /* drop the extra references we got during the creation */
878 if ((child_task = (task_t)get_threadtask(child_thread)) != NULL) {
879 task_deallocate(child_task);
880 }
881 thread_deallocate(child_thread);
882 }
883
884 return(err);
885}
886
887
888/*
889 * cloneproc
890 *
891 * Description: Create a new process from a specified process.
892 *
893 * Parameters: parent_task The parent task to be cloned, or
894 * TASK_NULL is task characteristics
895 * are not to be inherited
896 * be cloned, or TASK_NULL if the new
897 * task is not to inherit the VM
898 * characteristics of the parent
899 * parent_proc The parent process to be cloned
900 * inherit_memory True if the child is to inherit
901 * memory from the parent; if this is
902 * non-NULL, then the parent_task must
903 * also be non-NULL
904 *
905 * Returns: !NULL pointer to new child thread
906 * NULL Failure (unspecified)
907 *
908 * Note: On return newly created child process has signal lock held
909 * to block delivery of signal to it if called with lock set.
910 * fork() code needs to explicity remove this lock before
911 * signals can be delivered
912 *
913 * In the case of bootstrap, this function can be called from
914 * bsd_utaskbootstrap() in order to bootstrap the first process;
915 * the net effect is to provide a uthread structure for the
916 * kernel process associated with the kernel task.
917 *
918 * XXX: Tristating using the value parent_task as the major key
919 * and inherit_memory as the minor key is something we should
920 * refactor later; we owe the current semantics, ultimately,
921 * to the semantics of task_create_internal. For now, we will
922 * live with this being somewhat awkward.
923 */
924thread_t
925cloneproc(task_t parent_task, proc_t parent_proc, int inherit_memory)
926{
927 task_t child_task;
928 proc_t child_proc;
929 thread_t child_thread = NULL;
930
931 if ((child_proc = forkproc(parent_proc)) == NULL) {
932 /* Failed to allocate new process */
933 goto bad;
934 }
935
936 child_thread = fork_create_child(parent_task, child_proc, inherit_memory, (parent_task == TASK_NULL) ? FALSE : (parent_proc->p_flag & P_LP64));
937
938 if (child_thread == NULL) {
939 /*
940 * Failed to create thread; now we must deconstruct the new
941 * process previously obtained from forkproc().
942 */
943 forkproc_free(child_proc);
944 goto bad;
945 }
946
947 child_task = get_threadtask(child_thread);
948 if (parent_proc->p_flag & P_LP64) {
949 task_set_64bit(child_task, TRUE);
950 OSBitOrAtomic(P_LP64, (UInt32 *)&child_proc->p_flag);
951#ifdef __ppc__
952 /*
953 * PPC51: ppc64 is limited to 51-bit addresses.
954 * Memory above that limit is handled specially at
955 * the pmap level.
956 */
957 pmap_map_sharedpage(child_task, get_map_pmap(get_task_map(child_task)));
958#endif /* __ppc__ */
959 } else {
960 task_set_64bit(child_task, FALSE);
961 OSBitAndAtomic(~((uint32_t)P_LP64), (UInt32 *)&child_proc->p_flag);
962 }
963
964 /* make child visible */
965 pinsertchild(parent_proc, child_proc);
966
967 /*
968 * Make child runnable, set start time.
969 */
970 child_proc->p_stat = SRUN;
971bad:
972 return(child_thread);
973}
974
975
976/*
977 * Destroy a process structure that resulted from a call to forkproc(), but
978 * which must be returned to the system because of a subsequent failure
979 * preventing it from becoming active.
980 *
981 * Parameters: p The incomplete process from forkproc()
982 *
983 * Returns: (void)
984 *
985 * Note: This function should only be used in an error handler following
986 * a call to forkproc().
987 *
988 * Operations occur in reverse order of those in forkproc().
989 */
990void
991forkproc_free(proc_t p)
992{
993
994 /* We held signal and a transition locks; drop them */
995 proc_signalend(p, 0);
996 proc_transend(p, 0);
997
998 /*
999 * If we have our own copy of the resource limits structure, we
1000 * need to free it. If it's a shared copy, we need to drop our
1001 * reference on it.
1002 */
1003 proc_limitdrop(p, 0);
1004 p->p_limit = NULL;
1005
1006#if SYSV_SHM
1007 /* Need to drop references to the shared memory segment(s), if any */
1008 if (p->vm_shm) {
1009 /*
1010 * Use shmexec(): we have no address space, so no mappings
1011 *
1012 * XXX Yes, the routine is badly named.
1013 */
1014 shmexec(p);
1015 }
1016#endif
1017
1018 /* Need to undo the effects of the fdcopy(), if any */
1019 fdfree(p);
1020
1021 /*
1022 * Drop the reference on a text vnode pointer, if any
1023 * XXX This code is broken in forkproc(); see <rdar://4256419>;
1024 * XXX if anyone ever uses this field, we will be extremely unhappy.
1025 */
1026 if (p->p_textvp) {
1027 vnode_rele(p->p_textvp);
1028 p->p_textvp = NULL;
1029 }
1030
1031 /* Stop the profiling clock */
1032 stopprofclock(p);
1033
1034 /* Release the credential reference */
1035 kauth_cred_unref(&p->p_ucred);
1036
1037 proc_list_lock();
1038 /* Decrement the count of processes in the system */
1039 nprocs--;
1040 proc_list_unlock();
1041
1042 thread_call_free(p->p_rcall);
1043
1044 /* Free allocated memory */
1045 FREE_ZONE(p->p_sigacts, sizeof *p->p_sigacts, M_SIGACTS);
1046 FREE_ZONE(p->p_stats, sizeof *p->p_stats, M_PSTATS);
1047 proc_checkdeadrefs(p);
1048 FREE_ZONE(p, sizeof *p, M_PROC);
1049}
1050
1051
1052/*
1053 * forkproc
1054 *
1055 * Description: Create a new process structure, given a parent process
1056 * structure.
1057 *
1058 * Parameters: parent_proc The parent process
1059 *
1060 * Returns: !NULL The new process structure
1061 * NULL Error (insufficient free memory)
1062 *
1063 * Note: When successful, the newly created process structure is
1064 * partially initialized; if a caller needs to deconstruct the
1065 * returned structure, they must call forkproc_free() to do so.
1066 */
1067proc_t
1068forkproc(proc_t parent_proc)
1069{
1070 proc_t child_proc; /* Our new process */
1071 static int nextpid = 0, pidwrap = 0, nextpidversion = 0;
1072 int error = 0;
1073 struct session *sessp;
1074 uthread_t parent_uthread = (uthread_t)get_bsdthread_info(current_thread());
1075
1076 MALLOC_ZONE(child_proc, proc_t , sizeof *child_proc, M_PROC, M_WAITOK);
1077 if (child_proc == NULL) {
1078 printf("forkproc: M_PROC zone exhausted\n");
1079 goto bad;
1080 }
1081 /* zero it out as we need to insert in hash */
1082 bzero(child_proc, sizeof *child_proc);
1083
1084 MALLOC_ZONE(child_proc->p_stats, struct pstats *,
1085 sizeof *child_proc->p_stats, M_PSTATS, M_WAITOK);
1086 if (child_proc->p_stats == NULL) {
1087 printf("forkproc: M_SUBPROC zone exhausted (p_stats)\n");
1088 FREE_ZONE(child_proc, sizeof *child_proc, M_PROC);
1089 child_proc = NULL;
1090 goto bad;
1091 }
1092 MALLOC_ZONE(child_proc->p_sigacts, struct sigacts *,
1093 sizeof *child_proc->p_sigacts, M_SIGACTS, M_WAITOK);
1094 if (child_proc->p_sigacts == NULL) {
1095 printf("forkproc: M_SUBPROC zone exhausted (p_sigacts)\n");
1096 FREE_ZONE(child_proc->p_stats, sizeof *child_proc->p_stats, M_PSTATS);
1097 FREE_ZONE(child_proc, sizeof *child_proc, M_PROC);
1098 child_proc = NULL;
1099 goto bad;
1100 }
1101
1102 /* allocate a callout for use by interval timers */
1103 child_proc->p_rcall = thread_call_allocate((thread_call_func_t)realitexpire, child_proc);
1104 if (child_proc->p_rcall == NULL) {
1105 FREE_ZONE(child_proc->p_sigacts, sizeof *child_proc->p_sigacts, M_SIGACTS);
1106 FREE_ZONE(child_proc->p_stats, sizeof *child_proc->p_stats, M_PSTATS);
1107 FREE_ZONE(child_proc, sizeof *child_proc, M_PROC);
1108 child_proc = NULL;
1109 goto bad;
1110 }
1111
1112
1113 /*
1114 * Find an unused PID.
1115 */
1116
1117 proc_list_lock();
1118
1119 nextpid++;
1120retry:
1121 /*
1122 * If the process ID prototype has wrapped around,
1123 * restart somewhat above 0, as the low-numbered procs
1124 * tend to include daemons that don't exit.
1125 */
1126 if (nextpid >= PID_MAX) {
1127 nextpid = 100;
1128 pidwrap = 1;
1129 }
1130 if (pidwrap != 0) {
1131
1132 /* if the pid stays in hash both for zombie and runniing state */
1133 if (pfind_locked(nextpid) != PROC_NULL) {
1134 nextpid++;
1135 goto retry;
1136 }
1137
1138 if (pgfind_internal(nextpid) != PGRP_NULL) {
1139 nextpid++;
1140 goto retry;
1141 }
1142 if (session_find_internal(nextpid) != SESSION_NULL) {
1143 nextpid++;
1144 goto retry;
1145 }
1146 }
1147 nprocs++;
1148 child_proc->p_pid = nextpid;
1149 child_proc->p_idversion = nextpidversion++;
1150#if 1
1151 if (child_proc->p_pid != 0) {
1152 if (pfind_locked(child_proc->p_pid) != PROC_NULL)
1153 panic("proc in the list already\n");
1154 }
1155#endif
1156 /* Insert in the hash */
1157 child_proc->p_listflag |= (P_LIST_INHASH | P_LIST_INCREATE);
1158 LIST_INSERT_HEAD(PIDHASH(child_proc->p_pid), child_proc, p_hash);
1159 proc_list_unlock();
1160
1161
1162 /*
1163 * We've identified the PID we are going to use; initialize the new
1164 * process structure.
1165 */
1166 child_proc->p_stat = SIDL;
1167 child_proc->p_pgrpid = PGRPID_DEAD;
1168
1169 /*
1170 * The zero'ing of the proc was at the allocation time due to need
1171 * for insertion to hash. Copy the section that is to be copied
1172 * directly from the parent.
1173 */
1174 bcopy(&parent_proc->p_startcopy, &child_proc->p_startcopy,
1175 (unsigned) ((caddr_t)&child_proc->p_endcopy - (caddr_t)&child_proc->p_startcopy));
1176
1177 /*
1178 * Some flags are inherited from the parent.
1179 * Duplicate sub-structures as needed.
1180 * Increase reference counts on shared objects.
1181 * The p_stats and p_sigacts substructs are set in vm_fork.
1182 */
1183 child_proc->p_flag = (parent_proc->p_flag & (P_LP64 | P_TRANSLATED | P_AFFINITY));
1184 if (parent_proc->p_flag & P_PROFIL)
1185 startprofclock(child_proc);
1186 /*
1187 * Note that if the current thread has an assumed identity, this
1188 * credential will be granted to the new process.
1189 */
1190 child_proc->p_ucred = kauth_cred_get_with_ref();
1191
1192#ifdef CONFIG_EMBEDDED
1193 lck_mtx_init(&child_proc->p_mlock, proc_lck_grp, proc_lck_attr);
1194 lck_mtx_init(&child_proc->p_fdmlock, proc_lck_grp, proc_lck_attr);
1195#if CONFIG_DTRACE
1196 lck_mtx_init(&child_proc->p_dtrace_sprlock, proc_lck_grp, proc_lck_attr);
1197#endif
1198 lck_spin_init(&child_proc->p_slock, proc_lck_grp, proc_lck_attr);
1199#else /* !CONFIG_EMBEDDED */
1200 lck_mtx_init(&child_proc->p_mlock, proc_mlock_grp, proc_lck_attr);
1201 lck_mtx_init(&child_proc->p_fdmlock, proc_fdmlock_grp, proc_lck_attr);
1202#if CONFIG_DTRACE
1203 lck_mtx_init(&child_proc->p_dtrace_sprlock, proc_lck_grp, proc_lck_attr);
1204#endif
1205 lck_spin_init(&child_proc->p_slock, proc_slock_grp, proc_lck_attr);
1206#endif /* !CONFIG_EMBEDDED */
1207 klist_init(&child_proc->p_klist);
1208
1209 if (child_proc->p_textvp != NULLVP) {
1210 /* bump references to the text vnode */
1211 /* Need to hold iocount across the ref call */
1212 if (vnode_getwithref(child_proc->p_textvp) == 0) {
1213 error = vnode_ref(child_proc->p_textvp);
1214 vnode_put(child_proc->p_textvp);
1215 if (error != 0)
1216 child_proc->p_textvp = NULLVP;
1217 }
1218 }
1219
1220 /*
1221 * Copy the parents per process open file table to the child; if
1222 * there is a per-thread current working directory, set the childs
1223 * per-process current working directory to that instead of the
1224 * parents.
1225 *
1226 * XXX may fail to copy descriptors to child
1227 */
1228 child_proc->p_fd = fdcopy(parent_proc, parent_uthread->uu_cdir);
1229
1230#if SYSV_SHM
1231 if (parent_proc->vm_shm) {
1232 /* XXX may fail to attach shm to child */
1233 (void)shmfork(parent_proc, child_proc);
1234 }
1235#endif
1236 /*
1237 * inherit the limit structure to child
1238 */
1239 proc_limitfork(parent_proc, child_proc);
1240
1241 if (child_proc->p_limit->pl_rlimit[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
1242 uint64_t rlim_cur = child_proc->p_limit->pl_rlimit[RLIMIT_CPU].rlim_cur;
1243 child_proc->p_rlim_cpu.tv_sec = (rlim_cur > __INT_MAX__) ? __INT_MAX__ : rlim_cur;
1244 }
1245
1246 /* Intialize new process stats, including start time */
1247 /* <rdar://6640543> non-zeroed portion contains garbage AFAICT */
1248 bzero(&child_proc->p_stats->pstat_startzero,
1249 (unsigned) ((caddr_t)&child_proc->p_stats->pstat_endzero -
1250 (caddr_t)&child_proc->p_stats->pstat_startzero));
1251 bzero(&child_proc->p_stats->user_p_prof, sizeof(struct user_uprof));
1252 microtime(&child_proc->p_start);
1253 child_proc->p_stats->p_start = child_proc->p_start; /* for compat */
1254
1255 if (parent_proc->p_sigacts != NULL)
1256 (void)memcpy(child_proc->p_sigacts,
1257 parent_proc->p_sigacts, sizeof *child_proc->p_sigacts);
1258 else
1259 (void)memset(child_proc->p_sigacts, 0, sizeof *child_proc->p_sigacts);
1260
1261 sessp = proc_session(parent_proc);
1262 if (sessp->s_ttyvp != NULL && parent_proc->p_flag & P_CONTROLT)
1263 OSBitOrAtomic(P_CONTROLT, &child_proc->p_flag);
1264 session_rele(sessp);
1265
1266 /*
1267 * block all signals to reach the process.
1268 * no transition race should be occuring with the child yet,
1269 * but indicate that the process is in (the creation) transition.
1270 */
1271 proc_signalstart(child_proc, 0);
1272 proc_transstart(child_proc, 0);
1273
1274 child_proc->p_pcaction = (parent_proc->p_pcaction) & P_PCMAX;
1275 TAILQ_INIT(&child_proc->p_uthlist);
1276 TAILQ_INIT(&child_proc->p_aio_activeq);
1277 TAILQ_INIT(&child_proc->p_aio_doneq);
1278
1279 /* Inherit the parent flags for code sign */
1280 child_proc->p_csflags = parent_proc->p_csflags;
1281
1282 /*
1283 * All processes have work queue locks; cleaned up by
1284 * reap_child_locked()
1285 */
1286 workqueue_init_lock(child_proc);
1287
1288 /*
1289 * Copy work queue information
1290 *
1291 * Note: This should probably only happen in the case where we are
1292 * creating a child that is a copy of the parent; since this
1293 * routine is called in the non-duplication case of vfork()
1294 * or posix_spawn(), then this information should likely not
1295 * be duplicated.
1296 *
1297 * <rdar://6640553> Work queue pointers that no longer point to code
1298 */
1299 child_proc->p_wqthread = parent_proc->p_wqthread;
1300 child_proc->p_threadstart = parent_proc->p_threadstart;
1301 child_proc->p_pthsize = parent_proc->p_pthsize;
1302 child_proc->p_targconc = parent_proc->p_targconc;
1303 if ((parent_proc->p_lflag & P_LREGISTER) != 0) {
1304 child_proc->p_lflag |= P_LREGISTER;
1305 }
1306 child_proc->p_dispatchqueue_offset = parent_proc->p_dispatchqueue_offset;
1307#if PSYNCH
1308 pth_proc_hashinit(child_proc);
1309#endif /* PSYNCH */
1310
1311#if CONFIG_LCTX
1312 child_proc->p_lctx = NULL;
1313 /* Add new process to login context (if any). */
1314 if (parent_proc->p_lctx != NULL) {
1315 /*
1316 * <rdar://6640564> This should probably be delayed in the
1317 * vfork() or posix_spawn() cases.
1318 */
1319 LCTX_LOCK(parent_proc->p_lctx);
1320 enterlctx(child_proc, parent_proc->p_lctx, 0);
1321 }
1322#endif
1323
1324bad:
1325 return(child_proc);
1326}
1327
1328void
1329proc_lock(proc_t p)
1330{
1331 lck_mtx_lock(&p->p_mlock);
1332}
1333
1334void
1335proc_unlock(proc_t p)
1336{
1337 lck_mtx_unlock(&p->p_mlock);
1338}
1339
1340void
1341proc_spinlock(proc_t p)
1342{
1343 lck_spin_lock(&p->p_slock);
1344}
1345
1346void
1347proc_spinunlock(proc_t p)
1348{
1349 lck_spin_unlock(&p->p_slock);
1350}
1351
1352void
1353proc_list_lock(void)
1354{
1355 lck_mtx_lock(proc_list_mlock);
1356}
1357
1358void
1359proc_list_unlock(void)
1360{
1361 lck_mtx_unlock(proc_list_mlock);
1362}
1363
1364#include <kern/zalloc.h>
1365
1366struct zone *uthread_zone;
1367static int uthread_zone_inited = 0;
1368
1369static void
1370uthread_zone_init(void)
1371{
1372 if (!uthread_zone_inited) {
1373 uthread_zone = zinit(sizeof(struct uthread),
1374 thread_max * sizeof(struct uthread),
1375 THREAD_CHUNK * sizeof(struct uthread),
1376 "uthreads");
1377 uthread_zone_inited = 1;
1378
1379 zone_change(uthread_zone, Z_NOENCRYPT, TRUE);
1380 }
1381}
1382
1383void *
1384uthread_alloc(task_t task, thread_t thread, int noinherit)
1385{
1386 proc_t p;
1387 uthread_t uth;
1388 uthread_t uth_parent;
1389 void *ut;
1390
1391 if (!uthread_zone_inited)
1392 uthread_zone_init();
1393
1394 ut = (void *)zalloc(uthread_zone);
1395 bzero(ut, sizeof(struct uthread));
1396
1397 p = (proc_t) get_bsdtask_info(task);
1398 uth = (uthread_t)ut;
1399
1400 /*
1401 * Thread inherits credential from the creating thread, if both
1402 * are in the same task.
1403 *
1404 * If the creating thread has no credential or is from another
1405 * task we can leave the new thread credential NULL. If it needs
1406 * one later, it will be lazily assigned from the task's process.
1407 */
1408 uth_parent = (uthread_t)get_bsdthread_info(current_thread());
1409 if ((noinherit == 0) && task == current_task() &&
1410 uth_parent != NULL &&
1411 IS_VALID_CRED(uth_parent->uu_ucred)) {
1412 /*
1413 * XXX The new thread is, in theory, being created in context
1414 * XXX of parent thread, so a direct reference to the parent
1415 * XXX is OK.
1416 */
1417 kauth_cred_ref(uth_parent->uu_ucred);
1418 uth->uu_ucred = uth_parent->uu_ucred;
1419 /* the credential we just inherited is an assumed credential */
1420 if (uth_parent->uu_flag & UT_SETUID)
1421 uth->uu_flag |= UT_SETUID;
1422 } else {
1423 /* sometimes workqueue threads are created out task context */
1424 if ((task != kernel_task) && (p != PROC_NULL))
1425 uth->uu_ucred = kauth_cred_proc_ref(p);
1426 else
1427 uth->uu_ucred = NOCRED;
1428 }
1429
1430
1431 if ((task != kernel_task) && p) {
1432
1433 proc_lock(p);
1434 if (noinherit != 0) {
1435 /* workq threads will not inherit masks */
1436 uth->uu_sigmask = ~workq_threadmask;
1437 } else if (uth_parent) {
1438 if (uth_parent->uu_flag & UT_SAS_OLDMASK)
1439 uth->uu_sigmask = uth_parent->uu_oldmask;
1440 else
1441 uth->uu_sigmask = uth_parent->uu_sigmask;
1442 }
1443 uth->uu_context.vc_thread = thread;
1444 TAILQ_INSERT_TAIL(&p->p_uthlist, uth, uu_list);
1445 proc_unlock(p);
1446
1447#if CONFIG_DTRACE
1448 if (p->p_dtrace_ptss_pages != NULL) {
1449 uth->t_dtrace_scratch = dtrace_ptss_claim_entry(p);
1450 }
1451#endif
1452 }
1453
1454 return (ut);
1455}
1456
1457
1458/*
1459 * This routine frees all the BSD context in uthread except the credential.
1460 * It does not free the uthread structure as well
1461 */
1462void
1463uthread_cleanup(task_t task, void *uthread, void * bsd_info)
1464{
1465 struct _select *sel;
1466 uthread_t uth = (uthread_t)uthread;
1467 proc_t p = (proc_t)bsd_info;
1468
1469
1470 if (uth->uu_lowpri_window || uth->uu_throttle_info) {
1471 /*
1472 * task is marked as a low priority I/O type
1473 * and we've somehow managed to not dismiss the throttle
1474 * through the normal exit paths back to user space...
1475 * no need to throttle this thread since its going away
1476 * but we do need to update our bookeeping w/r to throttled threads
1477 *
1478 * Calling this routine will clean up any throttle info reference
1479 * still inuse by the thread.
1480 */
1481 throttle_lowpri_io(FALSE);
1482 }
1483 /*
1484 * Per-thread audit state should never last beyond system
1485 * call return. Since we don't audit the thread creation/
1486 * removal, the thread state pointer should never be
1487 * non-NULL when we get here.
1488 */
1489 assert(uth->uu_ar == NULL);
1490
1491 sel = &uth->uu_select;
1492 /* cleanup the select bit space */
1493 if (sel->nbytes) {
1494 FREE(sel->ibits, M_TEMP);
1495 FREE(sel->obits, M_TEMP);
1496 sel->nbytes = 0;
1497 }
1498
1499 if (uth->uu_cdir) {
1500 vnode_rele(uth->uu_cdir);
1501 uth->uu_cdir = NULLVP;
1502 }
1503
1504 if (uth->uu_allocsize && uth->uu_wqset){
1505 kfree(uth->uu_wqset, uth->uu_allocsize);
1506 sel->count = 0;
1507 uth->uu_allocsize = 0;
1508 uth->uu_wqset = 0;
1509 sel->wql = 0;
1510 }
1511
1512 if(uth->pth_name != NULL)
1513 {
1514 kfree(uth->pth_name, MAXTHREADNAMESIZE);
1515 uth->pth_name = 0;
1516 }
1517 if ((task != kernel_task) && p) {
1518
1519 if (((uth->uu_flag & UT_VFORK) == UT_VFORK) && (uth->uu_proc != PROC_NULL)) {
1520 vfork_exit_internal(uth->uu_proc, 0, 1);
1521 }
1522 /*
1523 * Remove the thread from the process list and
1524 * transfer [appropriate] pending signals to the process.
1525 */
1526 if (get_bsdtask_info(task) == p) {
1527 proc_lock(p);
1528 TAILQ_REMOVE(&p->p_uthlist, uth, uu_list);
1529 p->p_siglist |= (uth->uu_siglist & execmask & (~p->p_sigignore | sigcantmask));
1530 proc_unlock(p);
1531 }
1532#if CONFIG_DTRACE
1533 struct dtrace_ptss_page_entry *tmpptr = uth->t_dtrace_scratch;
1534 uth->t_dtrace_scratch = NULL;
1535 if (tmpptr != NULL) {
1536 dtrace_ptss_release_entry(p, tmpptr);
1537 }
1538#endif
1539 }
1540}
1541
1542/* This routine releases the credential stored in uthread */
1543void
1544uthread_cred_free(void *uthread)
1545{
1546 uthread_t uth = (uthread_t)uthread;
1547
1548 /* and free the uthread itself */
1549 if (IS_VALID_CRED(uth->uu_ucred)) {
1550 kauth_cred_t oldcred = uth->uu_ucred;
1551 uth->uu_ucred = NOCRED;
1552 kauth_cred_unref(&oldcred);
1553 }
1554}
1555
1556/* This routine frees the uthread structure held in thread structure */
1557void
1558uthread_zone_free(void *uthread)
1559{
1560 /* and free the uthread itself */
1561 zfree(uthread_zone, uthread);
1562}