]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Copyright (c) 2000-2007 Apple Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * This file contains Original Code and/or Modifications of Original Code | |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
14 | * | |
15 | * Please obtain a copy of the License at | |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
25 | * | |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ | |
27 | */ | |
28 | /* | |
29 | * @OSF_COPYRIGHT@ | |
30 | */ | |
31 | /* | |
32 | * Mach Operating System | |
33 | * Copyright (c) 1991,1990,1989,1988 Carnegie Mellon University | |
34 | * All Rights Reserved. | |
35 | * | |
36 | * Permission to use, copy, modify and distribute this software and its | |
37 | * documentation is hereby granted, provided that both the copyright | |
38 | * notice and this permission notice appear in all copies of the | |
39 | * software, derivative works or modified versions, and any portions | |
40 | * thereof, and that both notices appear in supporting documentation. | |
41 | * | |
42 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" | |
43 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR | |
44 | * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. | |
45 | * | |
46 | * Carnegie Mellon requests users of this software to return to | |
47 | * | |
48 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU | |
49 | * School of Computer Science | |
50 | * Carnegie Mellon University | |
51 | * Pittsburgh PA 15213-3890 | |
52 | * | |
53 | * any improvements or extensions that they make and grant Carnegie Mellon | |
54 | * the rights to redistribute these changes. | |
55 | */ | |
56 | /* | |
57 | */ | |
58 | /* | |
59 | * File: vm/vm_user.c | |
60 | * Author: Avadis Tevanian, Jr., Michael Wayne Young | |
61 | * | |
62 | * User-exported virtual memory functions. | |
63 | */ | |
64 | ||
65 | /* | |
66 | * There are three implementations of the "XXX_allocate" functionality in | |
67 | * the kernel: mach_vm_allocate (for any task on the platform), vm_allocate | |
68 | * (for a task with the same address space size, especially the current task), | |
69 | * and vm32_vm_allocate (for the specific case of a 32-bit task). vm_allocate | |
70 | * in the kernel should only be used on the kernel_task. vm32_vm_allocate only | |
71 | * makes sense on platforms where a user task can either be 32 or 64, or the kernel | |
72 | * task can be 32 or 64. mach_vm_allocate makes sense everywhere, and is preferred | |
73 | * for new code. | |
74 | * | |
75 | * The entrypoints into the kernel are more complex. All platforms support a | |
76 | * mach_vm_allocate-style API (subsystem 4800) which operates with the largest | |
77 | * size types for the platform. On platforms that only support U32/K32, | |
78 | * subsystem 4800 is all you need. On platforms that support both U32 and U64, | |
79 | * subsystem 3800 is used disambiguate the size of parameters, and they will | |
80 | * always be 32-bit and call into the vm32_vm_allocate APIs. On non-U32/K32 platforms, | |
81 | * the MIG glue should never call into vm_allocate directly, because the calling | |
82 | * task and kernel_task are unlikely to use the same size parameters | |
83 | * | |
84 | * New VM call implementations should be added here and to mach_vm.defs | |
85 | * (subsystem 4800), and use mach_vm_* "wide" types. | |
86 | */ | |
87 | ||
88 | #include <debug.h> | |
89 | ||
90 | #include <vm_cpm.h> | |
91 | #include <mach/boolean.h> | |
92 | #include <mach/kern_return.h> | |
93 | #include <mach/mach_types.h> /* to get vm_address_t */ | |
94 | #include <mach/memory_object.h> | |
95 | #include <mach/std_types.h> /* to get pointer_t */ | |
96 | #include <mach/upl.h> | |
97 | #include <mach/vm_attributes.h> | |
98 | #include <mach/vm_param.h> | |
99 | #include <mach/vm_statistics.h> | |
100 | #include <mach/mach_syscalls.h> | |
101 | #include <mach/sdt.h> | |
102 | ||
103 | #include <mach/host_priv_server.h> | |
104 | #include <mach/mach_vm_server.h> | |
105 | #include <mach/memory_entry_server.h> | |
106 | #include <mach/vm_map_server.h> | |
107 | ||
108 | #include <kern/host.h> | |
109 | #include <kern/kalloc.h> | |
110 | #include <kern/task.h> | |
111 | #include <kern/misc_protos.h> | |
112 | #include <vm/vm_fault.h> | |
113 | #include <vm/vm_map.h> | |
114 | #include <vm/vm_object.h> | |
115 | #include <vm/vm_page.h> | |
116 | #include <vm/memory_object.h> | |
117 | #include <vm/vm_pageout.h> | |
118 | #include <vm/vm_protos.h> | |
119 | #include <vm/vm_purgeable_internal.h> | |
120 | #include <vm/vm_init.h> | |
121 | ||
122 | #include <san/kasan.h> | |
123 | ||
124 | #include <libkern/OSDebug.h> | |
125 | ||
126 | vm_size_t upl_offset_to_pagelist = 0; | |
127 | ||
128 | #if VM_CPM | |
129 | #include <vm/cpm.h> | |
130 | #endif /* VM_CPM */ | |
131 | ||
132 | /* | |
133 | * mach_vm_allocate allocates "zero fill" memory in the specfied | |
134 | * map. | |
135 | */ | |
136 | kern_return_t | |
137 | mach_vm_allocate_external( | |
138 | vm_map_t map, | |
139 | mach_vm_offset_t *addr, | |
140 | mach_vm_size_t size, | |
141 | int flags) | |
142 | { | |
143 | vm_tag_t tag; | |
144 | ||
145 | VM_GET_FLAGS_ALIAS(flags, tag); | |
146 | return mach_vm_allocate_kernel(map, addr, size, flags, tag); | |
147 | } | |
148 | ||
149 | kern_return_t | |
150 | mach_vm_allocate_kernel( | |
151 | vm_map_t map, | |
152 | mach_vm_offset_t *addr, | |
153 | mach_vm_size_t size, | |
154 | int flags, | |
155 | vm_tag_t tag) | |
156 | { | |
157 | vm_map_offset_t map_addr; | |
158 | vm_map_size_t map_size; | |
159 | kern_return_t result; | |
160 | boolean_t anywhere; | |
161 | ||
162 | /* filter out any kernel-only flags */ | |
163 | if (flags & ~VM_FLAGS_USER_ALLOCATE) { | |
164 | return KERN_INVALID_ARGUMENT; | |
165 | } | |
166 | ||
167 | if (map == VM_MAP_NULL) { | |
168 | return KERN_INVALID_ARGUMENT; | |
169 | } | |
170 | if (size == 0) { | |
171 | *addr = 0; | |
172 | return KERN_SUCCESS; | |
173 | } | |
174 | ||
175 | anywhere = ((VM_FLAGS_ANYWHERE & flags) != 0); | |
176 | if (anywhere) { | |
177 | /* | |
178 | * No specific address requested, so start candidate address | |
179 | * search at the minimum address in the map. However, if that | |
180 | * minimum is 0, bump it up by PAGE_SIZE. We want to limit | |
181 | * allocations of PAGEZERO to explicit requests since its | |
182 | * normal use is to catch dereferences of NULL and many | |
183 | * applications also treat pointers with a value of 0 as | |
184 | * special and suddenly having address 0 contain useable | |
185 | * memory would tend to confuse those applications. | |
186 | */ | |
187 | map_addr = vm_map_min(map); | |
188 | if (map_addr == 0) { | |
189 | map_addr += VM_MAP_PAGE_SIZE(map); | |
190 | } | |
191 | } else { | |
192 | map_addr = vm_map_trunc_page(*addr, | |
193 | VM_MAP_PAGE_MASK(map)); | |
194 | } | |
195 | map_size = vm_map_round_page(size, | |
196 | VM_MAP_PAGE_MASK(map)); | |
197 | if (map_size == 0) { | |
198 | return KERN_INVALID_ARGUMENT; | |
199 | } | |
200 | ||
201 | result = vm_map_enter( | |
202 | map, | |
203 | &map_addr, | |
204 | map_size, | |
205 | (vm_map_offset_t)0, | |
206 | flags, | |
207 | VM_MAP_KERNEL_FLAGS_NONE, | |
208 | tag, | |
209 | VM_OBJECT_NULL, | |
210 | (vm_object_offset_t)0, | |
211 | FALSE, | |
212 | VM_PROT_DEFAULT, | |
213 | VM_PROT_ALL, | |
214 | VM_INHERIT_DEFAULT); | |
215 | ||
216 | *addr = map_addr; | |
217 | return result; | |
218 | } | |
219 | ||
220 | /* | |
221 | * vm_allocate | |
222 | * Legacy routine that allocates "zero fill" memory in the specfied | |
223 | * map (which is limited to the same size as the kernel). | |
224 | */ | |
225 | kern_return_t | |
226 | vm_allocate_external( | |
227 | vm_map_t map, | |
228 | vm_offset_t *addr, | |
229 | vm_size_t size, | |
230 | int flags) | |
231 | { | |
232 | vm_tag_t tag; | |
233 | ||
234 | VM_GET_FLAGS_ALIAS(flags, tag); | |
235 | return vm_allocate_kernel(map, addr, size, flags, tag); | |
236 | } | |
237 | ||
238 | kern_return_t | |
239 | vm_allocate_kernel( | |
240 | vm_map_t map, | |
241 | vm_offset_t *addr, | |
242 | vm_size_t size, | |
243 | int flags, | |
244 | vm_tag_t tag) | |
245 | { | |
246 | vm_map_offset_t map_addr; | |
247 | vm_map_size_t map_size; | |
248 | kern_return_t result; | |
249 | boolean_t anywhere; | |
250 | ||
251 | /* filter out any kernel-only flags */ | |
252 | if (flags & ~VM_FLAGS_USER_ALLOCATE) { | |
253 | return KERN_INVALID_ARGUMENT; | |
254 | } | |
255 | ||
256 | if (map == VM_MAP_NULL) { | |
257 | return KERN_INVALID_ARGUMENT; | |
258 | } | |
259 | if (size == 0) { | |
260 | *addr = 0; | |
261 | return KERN_SUCCESS; | |
262 | } | |
263 | ||
264 | anywhere = ((VM_FLAGS_ANYWHERE & flags) != 0); | |
265 | if (anywhere) { | |
266 | /* | |
267 | * No specific address requested, so start candidate address | |
268 | * search at the minimum address in the map. However, if that | |
269 | * minimum is 0, bump it up by PAGE_SIZE. We want to limit | |
270 | * allocations of PAGEZERO to explicit requests since its | |
271 | * normal use is to catch dereferences of NULL and many | |
272 | * applications also treat pointers with a value of 0 as | |
273 | * special and suddenly having address 0 contain useable | |
274 | * memory would tend to confuse those applications. | |
275 | */ | |
276 | map_addr = vm_map_min(map); | |
277 | if (map_addr == 0) { | |
278 | map_addr += VM_MAP_PAGE_SIZE(map); | |
279 | } | |
280 | } else { | |
281 | map_addr = vm_map_trunc_page(*addr, | |
282 | VM_MAP_PAGE_MASK(map)); | |
283 | } | |
284 | map_size = vm_map_round_page(size, | |
285 | VM_MAP_PAGE_MASK(map)); | |
286 | if (map_size == 0) { | |
287 | return KERN_INVALID_ARGUMENT; | |
288 | } | |
289 | ||
290 | result = vm_map_enter( | |
291 | map, | |
292 | &map_addr, | |
293 | map_size, | |
294 | (vm_map_offset_t)0, | |
295 | flags, | |
296 | VM_MAP_KERNEL_FLAGS_NONE, | |
297 | tag, | |
298 | VM_OBJECT_NULL, | |
299 | (vm_object_offset_t)0, | |
300 | FALSE, | |
301 | VM_PROT_DEFAULT, | |
302 | VM_PROT_ALL, | |
303 | VM_INHERIT_DEFAULT); | |
304 | ||
305 | #if KASAN | |
306 | if (result == KERN_SUCCESS && map->pmap == kernel_pmap) { | |
307 | kasan_notify_address(map_addr, map_size); | |
308 | } | |
309 | #endif | |
310 | ||
311 | *addr = CAST_DOWN(vm_offset_t, map_addr); | |
312 | return result; | |
313 | } | |
314 | ||
315 | /* | |
316 | * mach_vm_deallocate - | |
317 | * deallocates the specified range of addresses in the | |
318 | * specified address map. | |
319 | */ | |
320 | kern_return_t | |
321 | mach_vm_deallocate( | |
322 | vm_map_t map, | |
323 | mach_vm_offset_t start, | |
324 | mach_vm_size_t size) | |
325 | { | |
326 | if ((map == VM_MAP_NULL) || (start + size < start)) { | |
327 | return KERN_INVALID_ARGUMENT; | |
328 | } | |
329 | ||
330 | if (size == (mach_vm_offset_t) 0) { | |
331 | return KERN_SUCCESS; | |
332 | } | |
333 | ||
334 | return vm_map_remove(map, | |
335 | vm_map_trunc_page(start, | |
336 | VM_MAP_PAGE_MASK(map)), | |
337 | vm_map_round_page(start + size, | |
338 | VM_MAP_PAGE_MASK(map)), | |
339 | VM_MAP_REMOVE_NO_FLAGS); | |
340 | } | |
341 | ||
342 | /* | |
343 | * vm_deallocate - | |
344 | * deallocates the specified range of addresses in the | |
345 | * specified address map (limited to addresses the same | |
346 | * size as the kernel). | |
347 | */ | |
348 | kern_return_t | |
349 | vm_deallocate( | |
350 | vm_map_t map, | |
351 | vm_offset_t start, | |
352 | vm_size_t size) | |
353 | { | |
354 | if ((map == VM_MAP_NULL) || (start + size < start)) { | |
355 | return KERN_INVALID_ARGUMENT; | |
356 | } | |
357 | ||
358 | if (size == (vm_offset_t) 0) { | |
359 | return KERN_SUCCESS; | |
360 | } | |
361 | ||
362 | return vm_map_remove(map, | |
363 | vm_map_trunc_page(start, | |
364 | VM_MAP_PAGE_MASK(map)), | |
365 | vm_map_round_page(start + size, | |
366 | VM_MAP_PAGE_MASK(map)), | |
367 | VM_MAP_REMOVE_NO_FLAGS); | |
368 | } | |
369 | ||
370 | /* | |
371 | * mach_vm_inherit - | |
372 | * Sets the inheritance of the specified range in the | |
373 | * specified map. | |
374 | */ | |
375 | kern_return_t | |
376 | mach_vm_inherit( | |
377 | vm_map_t map, | |
378 | mach_vm_offset_t start, | |
379 | mach_vm_size_t size, | |
380 | vm_inherit_t new_inheritance) | |
381 | { | |
382 | if ((map == VM_MAP_NULL) || (start + size < start) || | |
383 | (new_inheritance > VM_INHERIT_LAST_VALID)) { | |
384 | return KERN_INVALID_ARGUMENT; | |
385 | } | |
386 | ||
387 | if (size == 0) { | |
388 | return KERN_SUCCESS; | |
389 | } | |
390 | ||
391 | return vm_map_inherit(map, | |
392 | vm_map_trunc_page(start, | |
393 | VM_MAP_PAGE_MASK(map)), | |
394 | vm_map_round_page(start + size, | |
395 | VM_MAP_PAGE_MASK(map)), | |
396 | new_inheritance); | |
397 | } | |
398 | ||
399 | /* | |
400 | * vm_inherit - | |
401 | * Sets the inheritance of the specified range in the | |
402 | * specified map (range limited to addresses | |
403 | */ | |
404 | kern_return_t | |
405 | vm_inherit( | |
406 | vm_map_t map, | |
407 | vm_offset_t start, | |
408 | vm_size_t size, | |
409 | vm_inherit_t new_inheritance) | |
410 | { | |
411 | if ((map == VM_MAP_NULL) || (start + size < start) || | |
412 | (new_inheritance > VM_INHERIT_LAST_VALID)) { | |
413 | return KERN_INVALID_ARGUMENT; | |
414 | } | |
415 | ||
416 | if (size == 0) { | |
417 | return KERN_SUCCESS; | |
418 | } | |
419 | ||
420 | return vm_map_inherit(map, | |
421 | vm_map_trunc_page(start, | |
422 | VM_MAP_PAGE_MASK(map)), | |
423 | vm_map_round_page(start + size, | |
424 | VM_MAP_PAGE_MASK(map)), | |
425 | new_inheritance); | |
426 | } | |
427 | ||
428 | /* | |
429 | * mach_vm_protect - | |
430 | * Sets the protection of the specified range in the | |
431 | * specified map. | |
432 | */ | |
433 | ||
434 | kern_return_t | |
435 | mach_vm_protect( | |
436 | vm_map_t map, | |
437 | mach_vm_offset_t start, | |
438 | mach_vm_size_t size, | |
439 | boolean_t set_maximum, | |
440 | vm_prot_t new_protection) | |
441 | { | |
442 | if ((map == VM_MAP_NULL) || (start + size < start) || | |
443 | (new_protection & ~(VM_PROT_ALL | VM_PROT_COPY))) { | |
444 | return KERN_INVALID_ARGUMENT; | |
445 | } | |
446 | ||
447 | if (size == 0) { | |
448 | return KERN_SUCCESS; | |
449 | } | |
450 | ||
451 | return vm_map_protect(map, | |
452 | vm_map_trunc_page(start, | |
453 | VM_MAP_PAGE_MASK(map)), | |
454 | vm_map_round_page(start + size, | |
455 | VM_MAP_PAGE_MASK(map)), | |
456 | new_protection, | |
457 | set_maximum); | |
458 | } | |
459 | ||
460 | /* | |
461 | * vm_protect - | |
462 | * Sets the protection of the specified range in the | |
463 | * specified map. Addressability of the range limited | |
464 | * to the same size as the kernel. | |
465 | */ | |
466 | ||
467 | kern_return_t | |
468 | vm_protect( | |
469 | vm_map_t map, | |
470 | vm_offset_t start, | |
471 | vm_size_t size, | |
472 | boolean_t set_maximum, | |
473 | vm_prot_t new_protection) | |
474 | { | |
475 | if ((map == VM_MAP_NULL) || (start + size < start) || | |
476 | (new_protection & ~(VM_PROT_ALL | VM_PROT_COPY))) { | |
477 | return KERN_INVALID_ARGUMENT; | |
478 | } | |
479 | ||
480 | if (size == 0) { | |
481 | return KERN_SUCCESS; | |
482 | } | |
483 | ||
484 | return vm_map_protect(map, | |
485 | vm_map_trunc_page(start, | |
486 | VM_MAP_PAGE_MASK(map)), | |
487 | vm_map_round_page(start + size, | |
488 | VM_MAP_PAGE_MASK(map)), | |
489 | new_protection, | |
490 | set_maximum); | |
491 | } | |
492 | ||
493 | /* | |
494 | * mach_vm_machine_attributes - | |
495 | * Handle machine-specific attributes for a mapping, such | |
496 | * as cachability, migrability, etc. | |
497 | */ | |
498 | kern_return_t | |
499 | mach_vm_machine_attribute( | |
500 | vm_map_t map, | |
501 | mach_vm_address_t addr, | |
502 | mach_vm_size_t size, | |
503 | vm_machine_attribute_t attribute, | |
504 | vm_machine_attribute_val_t* value) /* IN/OUT */ | |
505 | { | |
506 | if ((map == VM_MAP_NULL) || (addr + size < addr)) { | |
507 | return KERN_INVALID_ARGUMENT; | |
508 | } | |
509 | ||
510 | if (size == 0) { | |
511 | return KERN_SUCCESS; | |
512 | } | |
513 | ||
514 | return vm_map_machine_attribute( | |
515 | map, | |
516 | vm_map_trunc_page(addr, | |
517 | VM_MAP_PAGE_MASK(map)), | |
518 | vm_map_round_page(addr + size, | |
519 | VM_MAP_PAGE_MASK(map)), | |
520 | attribute, | |
521 | value); | |
522 | } | |
523 | ||
524 | /* | |
525 | * vm_machine_attribute - | |
526 | * Handle machine-specific attributes for a mapping, such | |
527 | * as cachability, migrability, etc. Limited addressability | |
528 | * (same range limits as for the native kernel map). | |
529 | */ | |
530 | kern_return_t | |
531 | vm_machine_attribute( | |
532 | vm_map_t map, | |
533 | vm_address_t addr, | |
534 | vm_size_t size, | |
535 | vm_machine_attribute_t attribute, | |
536 | vm_machine_attribute_val_t* value) /* IN/OUT */ | |
537 | { | |
538 | if ((map == VM_MAP_NULL) || (addr + size < addr)) { | |
539 | return KERN_INVALID_ARGUMENT; | |
540 | } | |
541 | ||
542 | if (size == 0) { | |
543 | return KERN_SUCCESS; | |
544 | } | |
545 | ||
546 | return vm_map_machine_attribute( | |
547 | map, | |
548 | vm_map_trunc_page(addr, | |
549 | VM_MAP_PAGE_MASK(map)), | |
550 | vm_map_round_page(addr + size, | |
551 | VM_MAP_PAGE_MASK(map)), | |
552 | attribute, | |
553 | value); | |
554 | } | |
555 | ||
556 | /* | |
557 | * mach_vm_read - | |
558 | * Read/copy a range from one address space and return it to the caller. | |
559 | * | |
560 | * It is assumed that the address for the returned memory is selected by | |
561 | * the IPC implementation as part of receiving the reply to this call. | |
562 | * If IPC isn't used, the caller must deal with the vm_map_copy_t object | |
563 | * that gets returned. | |
564 | * | |
565 | * JMM - because of mach_msg_type_number_t, this call is limited to a | |
566 | * single 4GB region at this time. | |
567 | * | |
568 | */ | |
569 | kern_return_t | |
570 | mach_vm_read( | |
571 | vm_map_t map, | |
572 | mach_vm_address_t addr, | |
573 | mach_vm_size_t size, | |
574 | pointer_t *data, | |
575 | mach_msg_type_number_t *data_size) | |
576 | { | |
577 | kern_return_t error; | |
578 | vm_map_copy_t ipc_address; | |
579 | ||
580 | if (map == VM_MAP_NULL) { | |
581 | return KERN_INVALID_ARGUMENT; | |
582 | } | |
583 | ||
584 | if ((mach_msg_type_number_t) size != size) { | |
585 | return KERN_INVALID_ARGUMENT; | |
586 | } | |
587 | ||
588 | error = vm_map_copyin(map, | |
589 | (vm_map_address_t)addr, | |
590 | (vm_map_size_t)size, | |
591 | FALSE, /* src_destroy */ | |
592 | &ipc_address); | |
593 | ||
594 | if (KERN_SUCCESS == error) { | |
595 | *data = (pointer_t) ipc_address; | |
596 | *data_size = (mach_msg_type_number_t) size; | |
597 | assert(*data_size == size); | |
598 | } | |
599 | return error; | |
600 | } | |
601 | ||
602 | /* | |
603 | * vm_read - | |
604 | * Read/copy a range from one address space and return it to the caller. | |
605 | * Limited addressability (same range limits as for the native kernel map). | |
606 | * | |
607 | * It is assumed that the address for the returned memory is selected by | |
608 | * the IPC implementation as part of receiving the reply to this call. | |
609 | * If IPC isn't used, the caller must deal with the vm_map_copy_t object | |
610 | * that gets returned. | |
611 | */ | |
612 | kern_return_t | |
613 | vm_read( | |
614 | vm_map_t map, | |
615 | vm_address_t addr, | |
616 | vm_size_t size, | |
617 | pointer_t *data, | |
618 | mach_msg_type_number_t *data_size) | |
619 | { | |
620 | kern_return_t error; | |
621 | vm_map_copy_t ipc_address; | |
622 | ||
623 | if (map == VM_MAP_NULL) { | |
624 | return KERN_INVALID_ARGUMENT; | |
625 | } | |
626 | ||
627 | mach_msg_type_number_t dsize; | |
628 | if (os_convert_overflow(size, &dsize)) { | |
629 | /* | |
630 | * The kernel could handle a 64-bit "size" value, but | |
631 | * it could not return the size of the data in "*data_size" | |
632 | * without overflowing. | |
633 | * Let's reject this "size" as invalid. | |
634 | */ | |
635 | return KERN_INVALID_ARGUMENT; | |
636 | } | |
637 | ||
638 | error = vm_map_copyin(map, | |
639 | (vm_map_address_t)addr, | |
640 | (vm_map_size_t)size, | |
641 | FALSE, /* src_destroy */ | |
642 | &ipc_address); | |
643 | ||
644 | if (KERN_SUCCESS == error) { | |
645 | *data = (pointer_t) ipc_address; | |
646 | *data_size = dsize; | |
647 | assert(*data_size == size); | |
648 | } | |
649 | return error; | |
650 | } | |
651 | ||
652 | /* | |
653 | * mach_vm_read_list - | |
654 | * Read/copy a list of address ranges from specified map. | |
655 | * | |
656 | * MIG does not know how to deal with a returned array of | |
657 | * vm_map_copy_t structures, so we have to do the copyout | |
658 | * manually here. | |
659 | */ | |
660 | kern_return_t | |
661 | mach_vm_read_list( | |
662 | vm_map_t map, | |
663 | mach_vm_read_entry_t data_list, | |
664 | natural_t count) | |
665 | { | |
666 | mach_msg_type_number_t i; | |
667 | kern_return_t error; | |
668 | vm_map_copy_t copy; | |
669 | ||
670 | if (map == VM_MAP_NULL || | |
671 | count > VM_MAP_ENTRY_MAX) { | |
672 | return KERN_INVALID_ARGUMENT; | |
673 | } | |
674 | ||
675 | error = KERN_SUCCESS; | |
676 | for (i = 0; i < count; i++) { | |
677 | vm_map_address_t map_addr; | |
678 | vm_map_size_t map_size; | |
679 | ||
680 | map_addr = (vm_map_address_t)(data_list[i].address); | |
681 | map_size = (vm_map_size_t)(data_list[i].size); | |
682 | ||
683 | if (map_size != 0) { | |
684 | error = vm_map_copyin(map, | |
685 | map_addr, | |
686 | map_size, | |
687 | FALSE, /* src_destroy */ | |
688 | ©); | |
689 | if (KERN_SUCCESS == error) { | |
690 | error = vm_map_copyout( | |
691 | current_task()->map, | |
692 | &map_addr, | |
693 | copy); | |
694 | if (KERN_SUCCESS == error) { | |
695 | data_list[i].address = map_addr; | |
696 | continue; | |
697 | } | |
698 | vm_map_copy_discard(copy); | |
699 | } | |
700 | } | |
701 | data_list[i].address = (mach_vm_address_t)0; | |
702 | data_list[i].size = (mach_vm_size_t)0; | |
703 | } | |
704 | return error; | |
705 | } | |
706 | ||
707 | /* | |
708 | * vm_read_list - | |
709 | * Read/copy a list of address ranges from specified map. | |
710 | * | |
711 | * MIG does not know how to deal with a returned array of | |
712 | * vm_map_copy_t structures, so we have to do the copyout | |
713 | * manually here. | |
714 | * | |
715 | * The source and destination ranges are limited to those | |
716 | * that can be described with a vm_address_t (i.e. same | |
717 | * size map as the kernel). | |
718 | * | |
719 | * JMM - If the result of the copyout is an address range | |
720 | * that cannot be described with a vm_address_t (i.e. the | |
721 | * caller had a larger address space but used this call | |
722 | * anyway), it will result in a truncated address being | |
723 | * returned (and a likely confused caller). | |
724 | */ | |
725 | ||
726 | kern_return_t | |
727 | vm_read_list( | |
728 | vm_map_t map, | |
729 | vm_read_entry_t data_list, | |
730 | natural_t count) | |
731 | { | |
732 | mach_msg_type_number_t i; | |
733 | kern_return_t error; | |
734 | vm_map_copy_t copy; | |
735 | ||
736 | if (map == VM_MAP_NULL || | |
737 | count > VM_MAP_ENTRY_MAX) { | |
738 | return KERN_INVALID_ARGUMENT; | |
739 | } | |
740 | ||
741 | error = KERN_SUCCESS; | |
742 | for (i = 0; i < count; i++) { | |
743 | vm_map_address_t map_addr; | |
744 | vm_map_size_t map_size; | |
745 | ||
746 | map_addr = (vm_map_address_t)(data_list[i].address); | |
747 | map_size = (vm_map_size_t)(data_list[i].size); | |
748 | ||
749 | if (map_size != 0) { | |
750 | error = vm_map_copyin(map, | |
751 | map_addr, | |
752 | map_size, | |
753 | FALSE, /* src_destroy */ | |
754 | ©); | |
755 | if (KERN_SUCCESS == error) { | |
756 | error = vm_map_copyout(current_task()->map, | |
757 | &map_addr, | |
758 | copy); | |
759 | if (KERN_SUCCESS == error) { | |
760 | data_list[i].address = | |
761 | CAST_DOWN(vm_offset_t, map_addr); | |
762 | continue; | |
763 | } | |
764 | vm_map_copy_discard(copy); | |
765 | } | |
766 | } | |
767 | data_list[i].address = (mach_vm_address_t)0; | |
768 | data_list[i].size = (mach_vm_size_t)0; | |
769 | } | |
770 | return error; | |
771 | } | |
772 | ||
773 | /* | |
774 | * mach_vm_read_overwrite - | |
775 | * Overwrite a range of the current map with data from the specified | |
776 | * map/address range. | |
777 | * | |
778 | * In making an assumption that the current thread is local, it is | |
779 | * no longer cluster-safe without a fully supportive local proxy | |
780 | * thread/task (but we don't support cluster's anymore so this is moot). | |
781 | */ | |
782 | ||
783 | kern_return_t | |
784 | mach_vm_read_overwrite( | |
785 | vm_map_t map, | |
786 | mach_vm_address_t address, | |
787 | mach_vm_size_t size, | |
788 | mach_vm_address_t data, | |
789 | mach_vm_size_t *data_size) | |
790 | { | |
791 | kern_return_t error; | |
792 | vm_map_copy_t copy; | |
793 | ||
794 | if (map == VM_MAP_NULL) { | |
795 | return KERN_INVALID_ARGUMENT; | |
796 | } | |
797 | ||
798 | error = vm_map_copyin(map, (vm_map_address_t)address, | |
799 | (vm_map_size_t)size, FALSE, ©); | |
800 | ||
801 | if (KERN_SUCCESS == error) { | |
802 | error = vm_map_copy_overwrite(current_thread()->map, | |
803 | (vm_map_address_t)data, | |
804 | copy, FALSE); | |
805 | if (KERN_SUCCESS == error) { | |
806 | *data_size = size; | |
807 | return error; | |
808 | } | |
809 | vm_map_copy_discard(copy); | |
810 | } | |
811 | return error; | |
812 | } | |
813 | ||
814 | /* | |
815 | * vm_read_overwrite - | |
816 | * Overwrite a range of the current map with data from the specified | |
817 | * map/address range. | |
818 | * | |
819 | * This routine adds the additional limitation that the source and | |
820 | * destination ranges must be describable with vm_address_t values | |
821 | * (i.e. the same size address spaces as the kernel, or at least the | |
822 | * the ranges are in that first portion of the respective address | |
823 | * spaces). | |
824 | */ | |
825 | ||
826 | kern_return_t | |
827 | vm_read_overwrite( | |
828 | vm_map_t map, | |
829 | vm_address_t address, | |
830 | vm_size_t size, | |
831 | vm_address_t data, | |
832 | vm_size_t *data_size) | |
833 | { | |
834 | kern_return_t error; | |
835 | vm_map_copy_t copy; | |
836 | ||
837 | if (map == VM_MAP_NULL) { | |
838 | return KERN_INVALID_ARGUMENT; | |
839 | } | |
840 | ||
841 | error = vm_map_copyin(map, (vm_map_address_t)address, | |
842 | (vm_map_size_t)size, FALSE, ©); | |
843 | ||
844 | if (KERN_SUCCESS == error) { | |
845 | error = vm_map_copy_overwrite(current_thread()->map, | |
846 | (vm_map_address_t)data, | |
847 | copy, FALSE); | |
848 | if (KERN_SUCCESS == error) { | |
849 | *data_size = size; | |
850 | return error; | |
851 | } | |
852 | vm_map_copy_discard(copy); | |
853 | } | |
854 | return error; | |
855 | } | |
856 | ||
857 | ||
858 | /* | |
859 | * mach_vm_write - | |
860 | * Overwrite the specified address range with the data provided | |
861 | * (from the current map). | |
862 | */ | |
863 | kern_return_t | |
864 | mach_vm_write( | |
865 | vm_map_t map, | |
866 | mach_vm_address_t address, | |
867 | pointer_t data, | |
868 | __unused mach_msg_type_number_t size) | |
869 | { | |
870 | if (map == VM_MAP_NULL) { | |
871 | return KERN_INVALID_ARGUMENT; | |
872 | } | |
873 | ||
874 | return vm_map_copy_overwrite(map, (vm_map_address_t)address, | |
875 | (vm_map_copy_t) data, FALSE /* interruptible XXX */); | |
876 | } | |
877 | ||
878 | /* | |
879 | * vm_write - | |
880 | * Overwrite the specified address range with the data provided | |
881 | * (from the current map). | |
882 | * | |
883 | * The addressability of the range of addresses to overwrite is | |
884 | * limited bu the use of a vm_address_t (same size as kernel map). | |
885 | * Either the target map is also small, or the range is in the | |
886 | * low addresses within it. | |
887 | */ | |
888 | kern_return_t | |
889 | vm_write( | |
890 | vm_map_t map, | |
891 | vm_address_t address, | |
892 | pointer_t data, | |
893 | __unused mach_msg_type_number_t size) | |
894 | { | |
895 | if (map == VM_MAP_NULL) { | |
896 | return KERN_INVALID_ARGUMENT; | |
897 | } | |
898 | ||
899 | return vm_map_copy_overwrite(map, (vm_map_address_t)address, | |
900 | (vm_map_copy_t) data, FALSE /* interruptible XXX */); | |
901 | } | |
902 | ||
903 | /* | |
904 | * mach_vm_copy - | |
905 | * Overwrite one range of the specified map with the contents of | |
906 | * another range within that same map (i.e. both address ranges | |
907 | * are "over there"). | |
908 | */ | |
909 | kern_return_t | |
910 | mach_vm_copy( | |
911 | vm_map_t map, | |
912 | mach_vm_address_t source_address, | |
913 | mach_vm_size_t size, | |
914 | mach_vm_address_t dest_address) | |
915 | { | |
916 | vm_map_copy_t copy; | |
917 | kern_return_t kr; | |
918 | ||
919 | if (map == VM_MAP_NULL) { | |
920 | return KERN_INVALID_ARGUMENT; | |
921 | } | |
922 | ||
923 | kr = vm_map_copyin(map, (vm_map_address_t)source_address, | |
924 | (vm_map_size_t)size, FALSE, ©); | |
925 | ||
926 | if (KERN_SUCCESS == kr) { | |
927 | kr = vm_map_copy_overwrite(map, | |
928 | (vm_map_address_t)dest_address, | |
929 | copy, FALSE /* interruptible XXX */); | |
930 | ||
931 | if (KERN_SUCCESS != kr) { | |
932 | vm_map_copy_discard(copy); | |
933 | } | |
934 | } | |
935 | return kr; | |
936 | } | |
937 | ||
938 | kern_return_t | |
939 | vm_copy( | |
940 | vm_map_t map, | |
941 | vm_address_t source_address, | |
942 | vm_size_t size, | |
943 | vm_address_t dest_address) | |
944 | { | |
945 | vm_map_copy_t copy; | |
946 | kern_return_t kr; | |
947 | ||
948 | if (map == VM_MAP_NULL) { | |
949 | return KERN_INVALID_ARGUMENT; | |
950 | } | |
951 | ||
952 | kr = vm_map_copyin(map, (vm_map_address_t)source_address, | |
953 | (vm_map_size_t)size, FALSE, ©); | |
954 | ||
955 | if (KERN_SUCCESS == kr) { | |
956 | kr = vm_map_copy_overwrite(map, | |
957 | (vm_map_address_t)dest_address, | |
958 | copy, FALSE /* interruptible XXX */); | |
959 | ||
960 | if (KERN_SUCCESS != kr) { | |
961 | vm_map_copy_discard(copy); | |
962 | } | |
963 | } | |
964 | return kr; | |
965 | } | |
966 | ||
967 | /* | |
968 | * mach_vm_map - | |
969 | * Map some range of an object into an address space. | |
970 | * | |
971 | * The object can be one of several types of objects: | |
972 | * NULL - anonymous memory | |
973 | * a named entry - a range within another address space | |
974 | * or a range within a memory object | |
975 | * a whole memory object | |
976 | * | |
977 | */ | |
978 | kern_return_t | |
979 | mach_vm_map_external( | |
980 | vm_map_t target_map, | |
981 | mach_vm_offset_t *address, | |
982 | mach_vm_size_t initial_size, | |
983 | mach_vm_offset_t mask, | |
984 | int flags, | |
985 | ipc_port_t port, | |
986 | vm_object_offset_t offset, | |
987 | boolean_t copy, | |
988 | vm_prot_t cur_protection, | |
989 | vm_prot_t max_protection, | |
990 | vm_inherit_t inheritance) | |
991 | { | |
992 | vm_tag_t tag; | |
993 | ||
994 | VM_GET_FLAGS_ALIAS(flags, tag); | |
995 | return mach_vm_map_kernel(target_map, address, initial_size, mask, | |
996 | flags, VM_MAP_KERNEL_FLAGS_NONE, tag, | |
997 | port, offset, copy, | |
998 | cur_protection, max_protection, | |
999 | inheritance); | |
1000 | } | |
1001 | ||
1002 | kern_return_t | |
1003 | mach_vm_map_kernel( | |
1004 | vm_map_t target_map, | |
1005 | mach_vm_offset_t *address, | |
1006 | mach_vm_size_t initial_size, | |
1007 | mach_vm_offset_t mask, | |
1008 | int flags, | |
1009 | vm_map_kernel_flags_t vmk_flags, | |
1010 | vm_tag_t tag, | |
1011 | ipc_port_t port, | |
1012 | vm_object_offset_t offset, | |
1013 | boolean_t copy, | |
1014 | vm_prot_t cur_protection, | |
1015 | vm_prot_t max_protection, | |
1016 | vm_inherit_t inheritance) | |
1017 | { | |
1018 | kern_return_t kr; | |
1019 | vm_map_offset_t vmmaddr; | |
1020 | ||
1021 | vmmaddr = (vm_map_offset_t) *address; | |
1022 | ||
1023 | /* filter out any kernel-only flags */ | |
1024 | if (flags & ~VM_FLAGS_USER_MAP) { | |
1025 | return KERN_INVALID_ARGUMENT; | |
1026 | } | |
1027 | ||
1028 | kr = vm_map_enter_mem_object(target_map, | |
1029 | &vmmaddr, | |
1030 | initial_size, | |
1031 | mask, | |
1032 | flags, | |
1033 | vmk_flags, | |
1034 | tag, | |
1035 | port, | |
1036 | offset, | |
1037 | copy, | |
1038 | cur_protection, | |
1039 | max_protection, | |
1040 | inheritance); | |
1041 | ||
1042 | #if KASAN | |
1043 | if (kr == KERN_SUCCESS && target_map->pmap == kernel_pmap) { | |
1044 | kasan_notify_address(vmmaddr, initial_size); | |
1045 | } | |
1046 | #endif | |
1047 | ||
1048 | *address = vmmaddr; | |
1049 | return kr; | |
1050 | } | |
1051 | ||
1052 | ||
1053 | /* legacy interface */ | |
1054 | kern_return_t | |
1055 | vm_map_64_external( | |
1056 | vm_map_t target_map, | |
1057 | vm_offset_t *address, | |
1058 | vm_size_t size, | |
1059 | vm_offset_t mask, | |
1060 | int flags, | |
1061 | ipc_port_t port, | |
1062 | vm_object_offset_t offset, | |
1063 | boolean_t copy, | |
1064 | vm_prot_t cur_protection, | |
1065 | vm_prot_t max_protection, | |
1066 | vm_inherit_t inheritance) | |
1067 | { | |
1068 | vm_tag_t tag; | |
1069 | ||
1070 | VM_GET_FLAGS_ALIAS(flags, tag); | |
1071 | return vm_map_64_kernel(target_map, address, size, mask, | |
1072 | flags, VM_MAP_KERNEL_FLAGS_NONE, | |
1073 | tag, port, offset, copy, | |
1074 | cur_protection, max_protection, | |
1075 | inheritance); | |
1076 | } | |
1077 | ||
1078 | kern_return_t | |
1079 | vm_map_64_kernel( | |
1080 | vm_map_t target_map, | |
1081 | vm_offset_t *address, | |
1082 | vm_size_t size, | |
1083 | vm_offset_t mask, | |
1084 | int flags, | |
1085 | vm_map_kernel_flags_t vmk_flags, | |
1086 | vm_tag_t tag, | |
1087 | ipc_port_t port, | |
1088 | vm_object_offset_t offset, | |
1089 | boolean_t copy, | |
1090 | vm_prot_t cur_protection, | |
1091 | vm_prot_t max_protection, | |
1092 | vm_inherit_t inheritance) | |
1093 | { | |
1094 | mach_vm_address_t map_addr; | |
1095 | mach_vm_size_t map_size; | |
1096 | mach_vm_offset_t map_mask; | |
1097 | kern_return_t kr; | |
1098 | ||
1099 | map_addr = (mach_vm_address_t)*address; | |
1100 | map_size = (mach_vm_size_t)size; | |
1101 | map_mask = (mach_vm_offset_t)mask; | |
1102 | ||
1103 | kr = mach_vm_map_kernel(target_map, &map_addr, map_size, map_mask, | |
1104 | flags, vmk_flags, tag, | |
1105 | port, offset, copy, | |
1106 | cur_protection, max_protection, inheritance); | |
1107 | *address = CAST_DOWN(vm_offset_t, map_addr); | |
1108 | return kr; | |
1109 | } | |
1110 | ||
1111 | /* temporary, until world build */ | |
1112 | kern_return_t | |
1113 | vm_map_external( | |
1114 | vm_map_t target_map, | |
1115 | vm_offset_t *address, | |
1116 | vm_size_t size, | |
1117 | vm_offset_t mask, | |
1118 | int flags, | |
1119 | ipc_port_t port, | |
1120 | vm_offset_t offset, | |
1121 | boolean_t copy, | |
1122 | vm_prot_t cur_protection, | |
1123 | vm_prot_t max_protection, | |
1124 | vm_inherit_t inheritance) | |
1125 | { | |
1126 | vm_tag_t tag; | |
1127 | ||
1128 | VM_GET_FLAGS_ALIAS(flags, tag); | |
1129 | return vm_map_kernel(target_map, address, size, mask, | |
1130 | flags, VM_MAP_KERNEL_FLAGS_NONE, tag, | |
1131 | port, offset, copy, | |
1132 | cur_protection, max_protection, inheritance); | |
1133 | } | |
1134 | ||
1135 | kern_return_t | |
1136 | vm_map_kernel( | |
1137 | vm_map_t target_map, | |
1138 | vm_offset_t *address, | |
1139 | vm_size_t size, | |
1140 | vm_offset_t mask, | |
1141 | int flags, | |
1142 | vm_map_kernel_flags_t vmk_flags, | |
1143 | vm_tag_t tag, | |
1144 | ipc_port_t port, | |
1145 | vm_offset_t offset, | |
1146 | boolean_t copy, | |
1147 | vm_prot_t cur_protection, | |
1148 | vm_prot_t max_protection, | |
1149 | vm_inherit_t inheritance) | |
1150 | { | |
1151 | mach_vm_address_t map_addr; | |
1152 | mach_vm_size_t map_size; | |
1153 | mach_vm_offset_t map_mask; | |
1154 | vm_object_offset_t obj_offset; | |
1155 | kern_return_t kr; | |
1156 | ||
1157 | map_addr = (mach_vm_address_t)*address; | |
1158 | map_size = (mach_vm_size_t)size; | |
1159 | map_mask = (mach_vm_offset_t)mask; | |
1160 | obj_offset = (vm_object_offset_t)offset; | |
1161 | ||
1162 | kr = mach_vm_map_kernel(target_map, &map_addr, map_size, map_mask, | |
1163 | flags, vmk_flags, tag, | |
1164 | port, obj_offset, copy, | |
1165 | cur_protection, max_protection, inheritance); | |
1166 | *address = CAST_DOWN(vm_offset_t, map_addr); | |
1167 | return kr; | |
1168 | } | |
1169 | ||
1170 | /* | |
1171 | * mach_vm_remap - | |
1172 | * Remap a range of memory from one task into another, | |
1173 | * to another address range within the same task, or | |
1174 | * over top of itself (with altered permissions and/or | |
1175 | * as an in-place copy of itself). | |
1176 | */ | |
1177 | kern_return_t | |
1178 | mach_vm_remap_external( | |
1179 | vm_map_t target_map, | |
1180 | mach_vm_offset_t *address, | |
1181 | mach_vm_size_t size, | |
1182 | mach_vm_offset_t mask, | |
1183 | int flags, | |
1184 | vm_map_t src_map, | |
1185 | mach_vm_offset_t memory_address, | |
1186 | boolean_t copy, | |
1187 | vm_prot_t *cur_protection, | |
1188 | vm_prot_t *max_protection, | |
1189 | vm_inherit_t inheritance) | |
1190 | { | |
1191 | vm_tag_t tag; | |
1192 | VM_GET_FLAGS_ALIAS(flags, tag); | |
1193 | ||
1194 | return mach_vm_remap_kernel(target_map, address, size, mask, flags, tag, src_map, memory_address, | |
1195 | copy, cur_protection, max_protection, inheritance); | |
1196 | } | |
1197 | ||
1198 | kern_return_t | |
1199 | mach_vm_remap_kernel( | |
1200 | vm_map_t target_map, | |
1201 | mach_vm_offset_t *address, | |
1202 | mach_vm_size_t size, | |
1203 | mach_vm_offset_t mask, | |
1204 | int flags, | |
1205 | vm_tag_t tag, | |
1206 | vm_map_t src_map, | |
1207 | mach_vm_offset_t memory_address, | |
1208 | boolean_t copy, | |
1209 | vm_prot_t *cur_protection, | |
1210 | vm_prot_t *max_protection, | |
1211 | vm_inherit_t inheritance) | |
1212 | { | |
1213 | vm_map_offset_t map_addr; | |
1214 | kern_return_t kr; | |
1215 | ||
1216 | if (VM_MAP_NULL == target_map || VM_MAP_NULL == src_map) { | |
1217 | return KERN_INVALID_ARGUMENT; | |
1218 | } | |
1219 | ||
1220 | /* filter out any kernel-only flags */ | |
1221 | if (flags & ~VM_FLAGS_USER_REMAP) { | |
1222 | return KERN_INVALID_ARGUMENT; | |
1223 | } | |
1224 | ||
1225 | map_addr = (vm_map_offset_t)*address; | |
1226 | ||
1227 | kr = vm_map_remap(target_map, | |
1228 | &map_addr, | |
1229 | size, | |
1230 | mask, | |
1231 | flags, | |
1232 | VM_MAP_KERNEL_FLAGS_NONE, | |
1233 | tag, | |
1234 | src_map, | |
1235 | memory_address, | |
1236 | copy, | |
1237 | cur_protection, | |
1238 | max_protection, | |
1239 | inheritance); | |
1240 | *address = map_addr; | |
1241 | return kr; | |
1242 | } | |
1243 | ||
1244 | /* | |
1245 | * vm_remap - | |
1246 | * Remap a range of memory from one task into another, | |
1247 | * to another address range within the same task, or | |
1248 | * over top of itself (with altered permissions and/or | |
1249 | * as an in-place copy of itself). | |
1250 | * | |
1251 | * The addressability of the source and target address | |
1252 | * range is limited by the size of vm_address_t (in the | |
1253 | * kernel context). | |
1254 | */ | |
1255 | kern_return_t | |
1256 | vm_remap_external( | |
1257 | vm_map_t target_map, | |
1258 | vm_offset_t *address, | |
1259 | vm_size_t size, | |
1260 | vm_offset_t mask, | |
1261 | int flags, | |
1262 | vm_map_t src_map, | |
1263 | vm_offset_t memory_address, | |
1264 | boolean_t copy, | |
1265 | vm_prot_t *cur_protection, | |
1266 | vm_prot_t *max_protection, | |
1267 | vm_inherit_t inheritance) | |
1268 | { | |
1269 | vm_tag_t tag; | |
1270 | VM_GET_FLAGS_ALIAS(flags, tag); | |
1271 | ||
1272 | return vm_remap_kernel(target_map, address, size, mask, flags, tag, src_map, | |
1273 | memory_address, copy, cur_protection, max_protection, inheritance); | |
1274 | } | |
1275 | ||
1276 | kern_return_t | |
1277 | vm_remap_kernel( | |
1278 | vm_map_t target_map, | |
1279 | vm_offset_t *address, | |
1280 | vm_size_t size, | |
1281 | vm_offset_t mask, | |
1282 | int flags, | |
1283 | vm_tag_t tag, | |
1284 | vm_map_t src_map, | |
1285 | vm_offset_t memory_address, | |
1286 | boolean_t copy, | |
1287 | vm_prot_t *cur_protection, | |
1288 | vm_prot_t *max_protection, | |
1289 | vm_inherit_t inheritance) | |
1290 | { | |
1291 | vm_map_offset_t map_addr; | |
1292 | kern_return_t kr; | |
1293 | ||
1294 | if (VM_MAP_NULL == target_map || VM_MAP_NULL == src_map) { | |
1295 | return KERN_INVALID_ARGUMENT; | |
1296 | } | |
1297 | ||
1298 | /* filter out any kernel-only flags */ | |
1299 | if (flags & ~VM_FLAGS_USER_REMAP) { | |
1300 | return KERN_INVALID_ARGUMENT; | |
1301 | } | |
1302 | ||
1303 | map_addr = (vm_map_offset_t)*address; | |
1304 | ||
1305 | kr = vm_map_remap(target_map, | |
1306 | &map_addr, | |
1307 | size, | |
1308 | mask, | |
1309 | flags, | |
1310 | VM_MAP_KERNEL_FLAGS_NONE, | |
1311 | tag, | |
1312 | src_map, | |
1313 | memory_address, | |
1314 | copy, | |
1315 | cur_protection, | |
1316 | max_protection, | |
1317 | inheritance); | |
1318 | *address = CAST_DOWN(vm_offset_t, map_addr); | |
1319 | return kr; | |
1320 | } | |
1321 | ||
1322 | /* | |
1323 | * NOTE: these routine (and this file) will no longer require mach_host_server.h | |
1324 | * when mach_vm_wire and vm_wire are changed to use ledgers. | |
1325 | */ | |
1326 | #include <mach/mach_host_server.h> | |
1327 | /* | |
1328 | * mach_vm_wire | |
1329 | * Specify that the range of the virtual address space | |
1330 | * of the target task must not cause page faults for | |
1331 | * the indicated accesses. | |
1332 | * | |
1333 | * [ To unwire the pages, specify VM_PROT_NONE. ] | |
1334 | */ | |
1335 | kern_return_t | |
1336 | mach_vm_wire_external( | |
1337 | host_priv_t host_priv, | |
1338 | vm_map_t map, | |
1339 | mach_vm_offset_t start, | |
1340 | mach_vm_size_t size, | |
1341 | vm_prot_t access) | |
1342 | { | |
1343 | return mach_vm_wire_kernel(host_priv, map, start, size, access, VM_KERN_MEMORY_MLOCK); | |
1344 | } | |
1345 | ||
1346 | kern_return_t | |
1347 | mach_vm_wire_kernel( | |
1348 | host_priv_t host_priv, | |
1349 | vm_map_t map, | |
1350 | mach_vm_offset_t start, | |
1351 | mach_vm_size_t size, | |
1352 | vm_prot_t access, | |
1353 | vm_tag_t tag) | |
1354 | { | |
1355 | kern_return_t rc; | |
1356 | ||
1357 | if (host_priv == HOST_PRIV_NULL) { | |
1358 | return KERN_INVALID_HOST; | |
1359 | } | |
1360 | ||
1361 | assert(host_priv == &realhost); | |
1362 | ||
1363 | if (map == VM_MAP_NULL) { | |
1364 | return KERN_INVALID_TASK; | |
1365 | } | |
1366 | ||
1367 | if (access & ~VM_PROT_ALL || (start + size < start)) { | |
1368 | return KERN_INVALID_ARGUMENT; | |
1369 | } | |
1370 | ||
1371 | if (access != VM_PROT_NONE) { | |
1372 | rc = vm_map_wire_kernel(map, | |
1373 | vm_map_trunc_page(start, | |
1374 | VM_MAP_PAGE_MASK(map)), | |
1375 | vm_map_round_page(start + size, | |
1376 | VM_MAP_PAGE_MASK(map)), | |
1377 | access, tag, | |
1378 | TRUE); | |
1379 | } else { | |
1380 | rc = vm_map_unwire(map, | |
1381 | vm_map_trunc_page(start, | |
1382 | VM_MAP_PAGE_MASK(map)), | |
1383 | vm_map_round_page(start + size, | |
1384 | VM_MAP_PAGE_MASK(map)), | |
1385 | TRUE); | |
1386 | } | |
1387 | return rc; | |
1388 | } | |
1389 | ||
1390 | /* | |
1391 | * vm_wire - | |
1392 | * Specify that the range of the virtual address space | |
1393 | * of the target task must not cause page faults for | |
1394 | * the indicated accesses. | |
1395 | * | |
1396 | * [ To unwire the pages, specify VM_PROT_NONE. ] | |
1397 | */ | |
1398 | kern_return_t | |
1399 | vm_wire( | |
1400 | host_priv_t host_priv, | |
1401 | vm_map_t map, | |
1402 | vm_offset_t start, | |
1403 | vm_size_t size, | |
1404 | vm_prot_t access) | |
1405 | { | |
1406 | kern_return_t rc; | |
1407 | ||
1408 | if (host_priv == HOST_PRIV_NULL) { | |
1409 | return KERN_INVALID_HOST; | |
1410 | } | |
1411 | ||
1412 | assert(host_priv == &realhost); | |
1413 | ||
1414 | if (map == VM_MAP_NULL) { | |
1415 | return KERN_INVALID_TASK; | |
1416 | } | |
1417 | ||
1418 | if ((access & ~VM_PROT_ALL) || (start + size < start)) { | |
1419 | return KERN_INVALID_ARGUMENT; | |
1420 | } | |
1421 | ||
1422 | if (size == 0) { | |
1423 | rc = KERN_SUCCESS; | |
1424 | } else if (access != VM_PROT_NONE) { | |
1425 | rc = vm_map_wire_kernel(map, | |
1426 | vm_map_trunc_page(start, | |
1427 | VM_MAP_PAGE_MASK(map)), | |
1428 | vm_map_round_page(start + size, | |
1429 | VM_MAP_PAGE_MASK(map)), | |
1430 | access, VM_KERN_MEMORY_OSFMK, | |
1431 | TRUE); | |
1432 | } else { | |
1433 | rc = vm_map_unwire(map, | |
1434 | vm_map_trunc_page(start, | |
1435 | VM_MAP_PAGE_MASK(map)), | |
1436 | vm_map_round_page(start + size, | |
1437 | VM_MAP_PAGE_MASK(map)), | |
1438 | TRUE); | |
1439 | } | |
1440 | return rc; | |
1441 | } | |
1442 | ||
1443 | /* | |
1444 | * vm_msync | |
1445 | * | |
1446 | * Synchronises the memory range specified with its backing store | |
1447 | * image by either flushing or cleaning the contents to the appropriate | |
1448 | * memory manager. | |
1449 | * | |
1450 | * interpretation of sync_flags | |
1451 | * VM_SYNC_INVALIDATE - discard pages, only return precious | |
1452 | * pages to manager. | |
1453 | * | |
1454 | * VM_SYNC_INVALIDATE & (VM_SYNC_SYNCHRONOUS | VM_SYNC_ASYNCHRONOUS) | |
1455 | * - discard pages, write dirty or precious | |
1456 | * pages back to memory manager. | |
1457 | * | |
1458 | * VM_SYNC_SYNCHRONOUS | VM_SYNC_ASYNCHRONOUS | |
1459 | * - write dirty or precious pages back to | |
1460 | * the memory manager. | |
1461 | * | |
1462 | * VM_SYNC_CONTIGUOUS - does everything normally, but if there | |
1463 | * is a hole in the region, and we would | |
1464 | * have returned KERN_SUCCESS, return | |
1465 | * KERN_INVALID_ADDRESS instead. | |
1466 | * | |
1467 | * RETURNS | |
1468 | * KERN_INVALID_TASK Bad task parameter | |
1469 | * KERN_INVALID_ARGUMENT both sync and async were specified. | |
1470 | * KERN_SUCCESS The usual. | |
1471 | * KERN_INVALID_ADDRESS There was a hole in the region. | |
1472 | */ | |
1473 | ||
1474 | kern_return_t | |
1475 | mach_vm_msync( | |
1476 | vm_map_t map, | |
1477 | mach_vm_address_t address, | |
1478 | mach_vm_size_t size, | |
1479 | vm_sync_t sync_flags) | |
1480 | { | |
1481 | if (map == VM_MAP_NULL) { | |
1482 | return KERN_INVALID_TASK; | |
1483 | } | |
1484 | ||
1485 | return vm_map_msync(map, (vm_map_address_t)address, | |
1486 | (vm_map_size_t)size, sync_flags); | |
1487 | } | |
1488 | ||
1489 | /* | |
1490 | * vm_msync | |
1491 | * | |
1492 | * Synchronises the memory range specified with its backing store | |
1493 | * image by either flushing or cleaning the contents to the appropriate | |
1494 | * memory manager. | |
1495 | * | |
1496 | * interpretation of sync_flags | |
1497 | * VM_SYNC_INVALIDATE - discard pages, only return precious | |
1498 | * pages to manager. | |
1499 | * | |
1500 | * VM_SYNC_INVALIDATE & (VM_SYNC_SYNCHRONOUS | VM_SYNC_ASYNCHRONOUS) | |
1501 | * - discard pages, write dirty or precious | |
1502 | * pages back to memory manager. | |
1503 | * | |
1504 | * VM_SYNC_SYNCHRONOUS | VM_SYNC_ASYNCHRONOUS | |
1505 | * - write dirty or precious pages back to | |
1506 | * the memory manager. | |
1507 | * | |
1508 | * VM_SYNC_CONTIGUOUS - does everything normally, but if there | |
1509 | * is a hole in the region, and we would | |
1510 | * have returned KERN_SUCCESS, return | |
1511 | * KERN_INVALID_ADDRESS instead. | |
1512 | * | |
1513 | * The addressability of the range is limited to that which can | |
1514 | * be described by a vm_address_t. | |
1515 | * | |
1516 | * RETURNS | |
1517 | * KERN_INVALID_TASK Bad task parameter | |
1518 | * KERN_INVALID_ARGUMENT both sync and async were specified. | |
1519 | * KERN_SUCCESS The usual. | |
1520 | * KERN_INVALID_ADDRESS There was a hole in the region. | |
1521 | */ | |
1522 | ||
1523 | kern_return_t | |
1524 | vm_msync( | |
1525 | vm_map_t map, | |
1526 | vm_address_t address, | |
1527 | vm_size_t size, | |
1528 | vm_sync_t sync_flags) | |
1529 | { | |
1530 | if (map == VM_MAP_NULL) { | |
1531 | return KERN_INVALID_TASK; | |
1532 | } | |
1533 | ||
1534 | return vm_map_msync(map, (vm_map_address_t)address, | |
1535 | (vm_map_size_t)size, sync_flags); | |
1536 | } | |
1537 | ||
1538 | ||
1539 | int | |
1540 | vm_toggle_entry_reuse(int toggle, int *old_value) | |
1541 | { | |
1542 | vm_map_t map = current_map(); | |
1543 | ||
1544 | assert(!map->is_nested_map); | |
1545 | if (toggle == VM_TOGGLE_GETVALUE && old_value != NULL) { | |
1546 | *old_value = map->disable_vmentry_reuse; | |
1547 | } else if (toggle == VM_TOGGLE_SET) { | |
1548 | vm_map_entry_t map_to_entry; | |
1549 | ||
1550 | vm_map_lock(map); | |
1551 | vm_map_disable_hole_optimization(map); | |
1552 | map->disable_vmentry_reuse = TRUE; | |
1553 | __IGNORE_WCASTALIGN(map_to_entry = vm_map_to_entry(map)); | |
1554 | if (map->first_free == map_to_entry) { | |
1555 | map->highest_entry_end = vm_map_min(map); | |
1556 | } else { | |
1557 | map->highest_entry_end = map->first_free->vme_end; | |
1558 | } | |
1559 | vm_map_unlock(map); | |
1560 | } else if (toggle == VM_TOGGLE_CLEAR) { | |
1561 | vm_map_lock(map); | |
1562 | map->disable_vmentry_reuse = FALSE; | |
1563 | vm_map_unlock(map); | |
1564 | } else { | |
1565 | return KERN_INVALID_ARGUMENT; | |
1566 | } | |
1567 | ||
1568 | return KERN_SUCCESS; | |
1569 | } | |
1570 | ||
1571 | /* | |
1572 | * mach_vm_behavior_set | |
1573 | * | |
1574 | * Sets the paging behavior attribute for the specified range | |
1575 | * in the specified map. | |
1576 | * | |
1577 | * This routine will fail with KERN_INVALID_ADDRESS if any address | |
1578 | * in [start,start+size) is not a valid allocated memory region. | |
1579 | */ | |
1580 | kern_return_t | |
1581 | mach_vm_behavior_set( | |
1582 | vm_map_t map, | |
1583 | mach_vm_offset_t start, | |
1584 | mach_vm_size_t size, | |
1585 | vm_behavior_t new_behavior) | |
1586 | { | |
1587 | vm_map_offset_t align_mask; | |
1588 | ||
1589 | if ((map == VM_MAP_NULL) || (start + size < start)) { | |
1590 | return KERN_INVALID_ARGUMENT; | |
1591 | } | |
1592 | ||
1593 | if (size == 0) { | |
1594 | return KERN_SUCCESS; | |
1595 | } | |
1596 | ||
1597 | switch (new_behavior) { | |
1598 | case VM_BEHAVIOR_REUSABLE: | |
1599 | case VM_BEHAVIOR_REUSE: | |
1600 | case VM_BEHAVIOR_CAN_REUSE: | |
1601 | /* | |
1602 | * Align to the hardware page size, to allow | |
1603 | * malloc() to maximize the amount of re-usability, | |
1604 | * even on systems with larger software page size. | |
1605 | */ | |
1606 | align_mask = PAGE_MASK; | |
1607 | break; | |
1608 | default: | |
1609 | align_mask = VM_MAP_PAGE_MASK(map); | |
1610 | break; | |
1611 | } | |
1612 | ||
1613 | return vm_map_behavior_set(map, | |
1614 | vm_map_trunc_page(start, align_mask), | |
1615 | vm_map_round_page(start + size, align_mask), | |
1616 | new_behavior); | |
1617 | } | |
1618 | ||
1619 | /* | |
1620 | * vm_behavior_set | |
1621 | * | |
1622 | * Sets the paging behavior attribute for the specified range | |
1623 | * in the specified map. | |
1624 | * | |
1625 | * This routine will fail with KERN_INVALID_ADDRESS if any address | |
1626 | * in [start,start+size) is not a valid allocated memory region. | |
1627 | * | |
1628 | * This routine is potentially limited in addressibility by the | |
1629 | * use of vm_offset_t (if the map provided is larger than the | |
1630 | * kernel's). | |
1631 | */ | |
1632 | kern_return_t | |
1633 | vm_behavior_set( | |
1634 | vm_map_t map, | |
1635 | vm_offset_t start, | |
1636 | vm_size_t size, | |
1637 | vm_behavior_t new_behavior) | |
1638 | { | |
1639 | if (start + size < start) { | |
1640 | return KERN_INVALID_ARGUMENT; | |
1641 | } | |
1642 | ||
1643 | return mach_vm_behavior_set(map, | |
1644 | (mach_vm_offset_t) start, | |
1645 | (mach_vm_size_t) size, | |
1646 | new_behavior); | |
1647 | } | |
1648 | ||
1649 | /* | |
1650 | * mach_vm_region: | |
1651 | * | |
1652 | * User call to obtain information about a region in | |
1653 | * a task's address map. Currently, only one flavor is | |
1654 | * supported. | |
1655 | * | |
1656 | * XXX The reserved and behavior fields cannot be filled | |
1657 | * in until the vm merge from the IK is completed, and | |
1658 | * vm_reserve is implemented. | |
1659 | * | |
1660 | * XXX Dependency: syscall_vm_region() also supports only one flavor. | |
1661 | */ | |
1662 | ||
1663 | kern_return_t | |
1664 | mach_vm_region( | |
1665 | vm_map_t map, | |
1666 | mach_vm_offset_t *address, /* IN/OUT */ | |
1667 | mach_vm_size_t *size, /* OUT */ | |
1668 | vm_region_flavor_t flavor, /* IN */ | |
1669 | vm_region_info_t info, /* OUT */ | |
1670 | mach_msg_type_number_t *count, /* IN/OUT */ | |
1671 | mach_port_t *object_name) /* OUT */ | |
1672 | { | |
1673 | vm_map_offset_t map_addr; | |
1674 | vm_map_size_t map_size; | |
1675 | kern_return_t kr; | |
1676 | ||
1677 | if (VM_MAP_NULL == map) { | |
1678 | return KERN_INVALID_ARGUMENT; | |
1679 | } | |
1680 | ||
1681 | map_addr = (vm_map_offset_t)*address; | |
1682 | map_size = (vm_map_size_t)*size; | |
1683 | ||
1684 | /* legacy conversion */ | |
1685 | if (VM_REGION_BASIC_INFO == flavor) { | |
1686 | flavor = VM_REGION_BASIC_INFO_64; | |
1687 | } | |
1688 | ||
1689 | kr = vm_map_region(map, | |
1690 | &map_addr, &map_size, | |
1691 | flavor, info, count, | |
1692 | object_name); | |
1693 | ||
1694 | *address = map_addr; | |
1695 | *size = map_size; | |
1696 | return kr; | |
1697 | } | |
1698 | ||
1699 | /* | |
1700 | * vm_region_64 and vm_region: | |
1701 | * | |
1702 | * User call to obtain information about a region in | |
1703 | * a task's address map. Currently, only one flavor is | |
1704 | * supported. | |
1705 | * | |
1706 | * XXX The reserved and behavior fields cannot be filled | |
1707 | * in until the vm merge from the IK is completed, and | |
1708 | * vm_reserve is implemented. | |
1709 | * | |
1710 | * XXX Dependency: syscall_vm_region() also supports only one flavor. | |
1711 | */ | |
1712 | ||
1713 | kern_return_t | |
1714 | vm_region_64( | |
1715 | vm_map_t map, | |
1716 | vm_offset_t *address, /* IN/OUT */ | |
1717 | vm_size_t *size, /* OUT */ | |
1718 | vm_region_flavor_t flavor, /* IN */ | |
1719 | vm_region_info_t info, /* OUT */ | |
1720 | mach_msg_type_number_t *count, /* IN/OUT */ | |
1721 | mach_port_t *object_name) /* OUT */ | |
1722 | { | |
1723 | vm_map_offset_t map_addr; | |
1724 | vm_map_size_t map_size; | |
1725 | kern_return_t kr; | |
1726 | ||
1727 | if (VM_MAP_NULL == map) { | |
1728 | return KERN_INVALID_ARGUMENT; | |
1729 | } | |
1730 | ||
1731 | map_addr = (vm_map_offset_t)*address; | |
1732 | map_size = (vm_map_size_t)*size; | |
1733 | ||
1734 | /* legacy conversion */ | |
1735 | if (VM_REGION_BASIC_INFO == flavor) { | |
1736 | flavor = VM_REGION_BASIC_INFO_64; | |
1737 | } | |
1738 | ||
1739 | kr = vm_map_region(map, | |
1740 | &map_addr, &map_size, | |
1741 | flavor, info, count, | |
1742 | object_name); | |
1743 | ||
1744 | *address = CAST_DOWN(vm_offset_t, map_addr); | |
1745 | *size = CAST_DOWN(vm_size_t, map_size); | |
1746 | ||
1747 | if (KERN_SUCCESS == kr && map_addr + map_size > VM_MAX_ADDRESS) { | |
1748 | return KERN_INVALID_ADDRESS; | |
1749 | } | |
1750 | return kr; | |
1751 | } | |
1752 | ||
1753 | kern_return_t | |
1754 | vm_region( | |
1755 | vm_map_t map, | |
1756 | vm_address_t *address, /* IN/OUT */ | |
1757 | vm_size_t *size, /* OUT */ | |
1758 | vm_region_flavor_t flavor, /* IN */ | |
1759 | vm_region_info_t info, /* OUT */ | |
1760 | mach_msg_type_number_t *count, /* IN/OUT */ | |
1761 | mach_port_t *object_name) /* OUT */ | |
1762 | { | |
1763 | vm_map_address_t map_addr; | |
1764 | vm_map_size_t map_size; | |
1765 | kern_return_t kr; | |
1766 | ||
1767 | if (VM_MAP_NULL == map) { | |
1768 | return KERN_INVALID_ARGUMENT; | |
1769 | } | |
1770 | ||
1771 | map_addr = (vm_map_address_t)*address; | |
1772 | map_size = (vm_map_size_t)*size; | |
1773 | ||
1774 | kr = vm_map_region(map, | |
1775 | &map_addr, &map_size, | |
1776 | flavor, info, count, | |
1777 | object_name); | |
1778 | ||
1779 | *address = CAST_DOWN(vm_address_t, map_addr); | |
1780 | *size = CAST_DOWN(vm_size_t, map_size); | |
1781 | ||
1782 | if (KERN_SUCCESS == kr && map_addr + map_size > VM_MAX_ADDRESS) { | |
1783 | return KERN_INVALID_ADDRESS; | |
1784 | } | |
1785 | return kr; | |
1786 | } | |
1787 | ||
1788 | /* | |
1789 | * vm_region_recurse: A form of vm_region which follows the | |
1790 | * submaps in a target map | |
1791 | * | |
1792 | */ | |
1793 | kern_return_t | |
1794 | mach_vm_region_recurse( | |
1795 | vm_map_t map, | |
1796 | mach_vm_address_t *address, | |
1797 | mach_vm_size_t *size, | |
1798 | uint32_t *depth, | |
1799 | vm_region_recurse_info_t info, | |
1800 | mach_msg_type_number_t *infoCnt) | |
1801 | { | |
1802 | vm_map_address_t map_addr; | |
1803 | vm_map_size_t map_size; | |
1804 | kern_return_t kr; | |
1805 | ||
1806 | if (VM_MAP_NULL == map) { | |
1807 | return KERN_INVALID_ARGUMENT; | |
1808 | } | |
1809 | ||
1810 | map_addr = (vm_map_address_t)*address; | |
1811 | map_size = (vm_map_size_t)*size; | |
1812 | ||
1813 | kr = vm_map_region_recurse_64( | |
1814 | map, | |
1815 | &map_addr, | |
1816 | &map_size, | |
1817 | depth, | |
1818 | (vm_region_submap_info_64_t)info, | |
1819 | infoCnt); | |
1820 | ||
1821 | *address = map_addr; | |
1822 | *size = map_size; | |
1823 | return kr; | |
1824 | } | |
1825 | ||
1826 | /* | |
1827 | * vm_region_recurse: A form of vm_region which follows the | |
1828 | * submaps in a target map | |
1829 | * | |
1830 | */ | |
1831 | kern_return_t | |
1832 | vm_region_recurse_64( | |
1833 | vm_map_t map, | |
1834 | vm_address_t *address, | |
1835 | vm_size_t *size, | |
1836 | uint32_t *depth, | |
1837 | vm_region_recurse_info_64_t info, | |
1838 | mach_msg_type_number_t *infoCnt) | |
1839 | { | |
1840 | vm_map_address_t map_addr; | |
1841 | vm_map_size_t map_size; | |
1842 | kern_return_t kr; | |
1843 | ||
1844 | if (VM_MAP_NULL == map) { | |
1845 | return KERN_INVALID_ARGUMENT; | |
1846 | } | |
1847 | ||
1848 | map_addr = (vm_map_address_t)*address; | |
1849 | map_size = (vm_map_size_t)*size; | |
1850 | ||
1851 | kr = vm_map_region_recurse_64( | |
1852 | map, | |
1853 | &map_addr, | |
1854 | &map_size, | |
1855 | depth, | |
1856 | (vm_region_submap_info_64_t)info, | |
1857 | infoCnt); | |
1858 | ||
1859 | *address = CAST_DOWN(vm_address_t, map_addr); | |
1860 | *size = CAST_DOWN(vm_size_t, map_size); | |
1861 | ||
1862 | if (KERN_SUCCESS == kr && map_addr + map_size > VM_MAX_ADDRESS) { | |
1863 | return KERN_INVALID_ADDRESS; | |
1864 | } | |
1865 | return kr; | |
1866 | } | |
1867 | ||
1868 | kern_return_t | |
1869 | vm_region_recurse( | |
1870 | vm_map_t map, | |
1871 | vm_offset_t *address, /* IN/OUT */ | |
1872 | vm_size_t *size, /* OUT */ | |
1873 | natural_t *depth, /* IN/OUT */ | |
1874 | vm_region_recurse_info_t info32, /* IN/OUT */ | |
1875 | mach_msg_type_number_t *infoCnt) /* IN/OUT */ | |
1876 | { | |
1877 | vm_region_submap_info_data_64_t info64; | |
1878 | vm_region_submap_info_t info; | |
1879 | vm_map_address_t map_addr; | |
1880 | vm_map_size_t map_size; | |
1881 | kern_return_t kr; | |
1882 | ||
1883 | if (VM_MAP_NULL == map || *infoCnt < VM_REGION_SUBMAP_INFO_COUNT) { | |
1884 | return KERN_INVALID_ARGUMENT; | |
1885 | } | |
1886 | ||
1887 | ||
1888 | map_addr = (vm_map_address_t)*address; | |
1889 | map_size = (vm_map_size_t)*size; | |
1890 | info = (vm_region_submap_info_t)info32; | |
1891 | *infoCnt = VM_REGION_SUBMAP_INFO_COUNT_64; | |
1892 | ||
1893 | kr = vm_map_region_recurse_64(map, &map_addr, &map_size, | |
1894 | depth, &info64, infoCnt); | |
1895 | ||
1896 | info->protection = info64.protection; | |
1897 | info->max_protection = info64.max_protection; | |
1898 | info->inheritance = info64.inheritance; | |
1899 | info->offset = (uint32_t)info64.offset; /* trouble-maker */ | |
1900 | info->user_tag = info64.user_tag; | |
1901 | info->pages_resident = info64.pages_resident; | |
1902 | info->pages_shared_now_private = info64.pages_shared_now_private; | |
1903 | info->pages_swapped_out = info64.pages_swapped_out; | |
1904 | info->pages_dirtied = info64.pages_dirtied; | |
1905 | info->ref_count = info64.ref_count; | |
1906 | info->shadow_depth = info64.shadow_depth; | |
1907 | info->external_pager = info64.external_pager; | |
1908 | info->share_mode = info64.share_mode; | |
1909 | info->is_submap = info64.is_submap; | |
1910 | info->behavior = info64.behavior; | |
1911 | info->object_id = info64.object_id; | |
1912 | info->user_wired_count = info64.user_wired_count; | |
1913 | ||
1914 | *address = CAST_DOWN(vm_address_t, map_addr); | |
1915 | *size = CAST_DOWN(vm_size_t, map_size); | |
1916 | *infoCnt = VM_REGION_SUBMAP_INFO_COUNT; | |
1917 | ||
1918 | if (KERN_SUCCESS == kr && map_addr + map_size > VM_MAX_ADDRESS) { | |
1919 | return KERN_INVALID_ADDRESS; | |
1920 | } | |
1921 | return kr; | |
1922 | } | |
1923 | ||
1924 | kern_return_t | |
1925 | mach_vm_purgable_control( | |
1926 | vm_map_t map, | |
1927 | mach_vm_offset_t address, | |
1928 | vm_purgable_t control, | |
1929 | int *state) | |
1930 | { | |
1931 | if (VM_MAP_NULL == map) { | |
1932 | return KERN_INVALID_ARGUMENT; | |
1933 | } | |
1934 | ||
1935 | if (control == VM_PURGABLE_SET_STATE_FROM_KERNEL) { | |
1936 | /* not allowed from user-space */ | |
1937 | return KERN_INVALID_ARGUMENT; | |
1938 | } | |
1939 | ||
1940 | return vm_map_purgable_control(map, | |
1941 | vm_map_trunc_page(address, PAGE_MASK), | |
1942 | control, | |
1943 | state); | |
1944 | } | |
1945 | ||
1946 | kern_return_t | |
1947 | vm_purgable_control( | |
1948 | vm_map_t map, | |
1949 | vm_offset_t address, | |
1950 | vm_purgable_t control, | |
1951 | int *state) | |
1952 | { | |
1953 | if (VM_MAP_NULL == map) { | |
1954 | return KERN_INVALID_ARGUMENT; | |
1955 | } | |
1956 | ||
1957 | if (control == VM_PURGABLE_SET_STATE_FROM_KERNEL) { | |
1958 | /* not allowed from user-space */ | |
1959 | return KERN_INVALID_ARGUMENT; | |
1960 | } | |
1961 | ||
1962 | return vm_map_purgable_control(map, | |
1963 | vm_map_trunc_page(address, PAGE_MASK), | |
1964 | control, | |
1965 | state); | |
1966 | } | |
1967 | ||
1968 | ||
1969 | /* | |
1970 | * Ordinarily, the right to allocate CPM is restricted | |
1971 | * to privileged applications (those that can gain access | |
1972 | * to the host priv port). Set this variable to zero if | |
1973 | * you want to let any application allocate CPM. | |
1974 | */ | |
1975 | unsigned int vm_allocate_cpm_privileged = 0; | |
1976 | ||
1977 | /* | |
1978 | * Allocate memory in the specified map, with the caveat that | |
1979 | * the memory is physically contiguous. This call may fail | |
1980 | * if the system can't find sufficient contiguous memory. | |
1981 | * This call may cause or lead to heart-stopping amounts of | |
1982 | * paging activity. | |
1983 | * | |
1984 | * Memory obtained from this call should be freed in the | |
1985 | * normal way, viz., via vm_deallocate. | |
1986 | */ | |
1987 | kern_return_t | |
1988 | vm_allocate_cpm( | |
1989 | host_priv_t host_priv, | |
1990 | vm_map_t map, | |
1991 | vm_address_t *addr, | |
1992 | vm_size_t size, | |
1993 | int flags) | |
1994 | { | |
1995 | vm_map_address_t map_addr; | |
1996 | vm_map_size_t map_size; | |
1997 | kern_return_t kr; | |
1998 | ||
1999 | if (vm_allocate_cpm_privileged && HOST_PRIV_NULL == host_priv) { | |
2000 | return KERN_INVALID_HOST; | |
2001 | } | |
2002 | ||
2003 | if (VM_MAP_NULL == map) { | |
2004 | return KERN_INVALID_ARGUMENT; | |
2005 | } | |
2006 | ||
2007 | map_addr = (vm_map_address_t)*addr; | |
2008 | map_size = (vm_map_size_t)size; | |
2009 | ||
2010 | kr = vm_map_enter_cpm(map, | |
2011 | &map_addr, | |
2012 | map_size, | |
2013 | flags); | |
2014 | ||
2015 | *addr = CAST_DOWN(vm_address_t, map_addr); | |
2016 | return kr; | |
2017 | } | |
2018 | ||
2019 | ||
2020 | kern_return_t | |
2021 | mach_vm_page_query( | |
2022 | vm_map_t map, | |
2023 | mach_vm_offset_t offset, | |
2024 | int *disposition, | |
2025 | int *ref_count) | |
2026 | { | |
2027 | if (VM_MAP_NULL == map) { | |
2028 | return KERN_INVALID_ARGUMENT; | |
2029 | } | |
2030 | ||
2031 | return vm_map_page_query_internal( | |
2032 | map, | |
2033 | vm_map_trunc_page(offset, PAGE_MASK), | |
2034 | disposition, ref_count); | |
2035 | } | |
2036 | ||
2037 | kern_return_t | |
2038 | vm_map_page_query( | |
2039 | vm_map_t map, | |
2040 | vm_offset_t offset, | |
2041 | int *disposition, | |
2042 | int *ref_count) | |
2043 | { | |
2044 | if (VM_MAP_NULL == map) { | |
2045 | return KERN_INVALID_ARGUMENT; | |
2046 | } | |
2047 | ||
2048 | return vm_map_page_query_internal( | |
2049 | map, | |
2050 | vm_map_trunc_page(offset, PAGE_MASK), | |
2051 | disposition, ref_count); | |
2052 | } | |
2053 | ||
2054 | kern_return_t | |
2055 | mach_vm_page_range_query( | |
2056 | vm_map_t map, | |
2057 | mach_vm_offset_t address, | |
2058 | mach_vm_size_t size, | |
2059 | mach_vm_address_t dispositions_addr, | |
2060 | mach_vm_size_t *dispositions_count) | |
2061 | { | |
2062 | kern_return_t kr = KERN_SUCCESS; | |
2063 | int num_pages = 0, i = 0; | |
2064 | mach_vm_size_t curr_sz = 0, copy_sz = 0; | |
2065 | mach_vm_size_t disp_buf_req_size = 0, disp_buf_total_size = 0; | |
2066 | mach_msg_type_number_t count = 0; | |
2067 | ||
2068 | void *info = NULL; | |
2069 | void *local_disp = NULL;; | |
2070 | vm_map_size_t info_size = 0, local_disp_size = 0; | |
2071 | mach_vm_offset_t start = 0, end = 0; | |
2072 | ||
2073 | if (map == VM_MAP_NULL || dispositions_count == NULL) { | |
2074 | return KERN_INVALID_ARGUMENT; | |
2075 | } | |
2076 | ||
2077 | disp_buf_req_size = (*dispositions_count * sizeof(int)); | |
2078 | start = mach_vm_trunc_page(address); | |
2079 | end = mach_vm_round_page(address + size); | |
2080 | ||
2081 | if (end < start) { | |
2082 | return KERN_INVALID_ARGUMENT; | |
2083 | } | |
2084 | ||
2085 | if ((end - start) < size) { | |
2086 | /* | |
2087 | * Aligned size is less than unaligned size. | |
2088 | */ | |
2089 | return KERN_INVALID_ARGUMENT; | |
2090 | } | |
2091 | ||
2092 | if (disp_buf_req_size == 0 || (end == start)) { | |
2093 | return KERN_SUCCESS; | |
2094 | } | |
2095 | ||
2096 | /* | |
2097 | * For large requests, we will go through them | |
2098 | * MAX_PAGE_RANGE_QUERY chunk at a time. | |
2099 | */ | |
2100 | ||
2101 | curr_sz = MIN(end - start, MAX_PAGE_RANGE_QUERY); | |
2102 | num_pages = (int) (curr_sz >> PAGE_SHIFT); | |
2103 | ||
2104 | info_size = num_pages * sizeof(vm_page_info_basic_data_t); | |
2105 | info = kalloc(info_size); | |
2106 | ||
2107 | if (info == NULL) { | |
2108 | return KERN_RESOURCE_SHORTAGE; | |
2109 | } | |
2110 | ||
2111 | local_disp_size = num_pages * sizeof(int); | |
2112 | local_disp = kalloc(local_disp_size); | |
2113 | ||
2114 | if (local_disp == NULL) { | |
2115 | kfree(info, info_size); | |
2116 | info = NULL; | |
2117 | return KERN_RESOURCE_SHORTAGE; | |
2118 | } | |
2119 | ||
2120 | while (size) { | |
2121 | count = VM_PAGE_INFO_BASIC_COUNT; | |
2122 | kr = vm_map_page_range_info_internal( | |
2123 | map, | |
2124 | start, | |
2125 | mach_vm_round_page(start + curr_sz), | |
2126 | VM_PAGE_INFO_BASIC, | |
2127 | (vm_page_info_t) info, | |
2128 | &count); | |
2129 | ||
2130 | assert(kr == KERN_SUCCESS); | |
2131 | ||
2132 | for (i = 0; i < num_pages; i++) { | |
2133 | ((int*)local_disp)[i] = ((vm_page_info_basic_t)info)[i].disposition; | |
2134 | } | |
2135 | ||
2136 | copy_sz = MIN(disp_buf_req_size, num_pages * sizeof(int) /* an int per page */); | |
2137 | kr = copyout(local_disp, (mach_vm_address_t)dispositions_addr, copy_sz); | |
2138 | ||
2139 | start += curr_sz; | |
2140 | disp_buf_req_size -= copy_sz; | |
2141 | disp_buf_total_size += copy_sz; | |
2142 | ||
2143 | if (kr != 0) { | |
2144 | break; | |
2145 | } | |
2146 | ||
2147 | if ((disp_buf_req_size == 0) || (curr_sz >= size)) { | |
2148 | /* | |
2149 | * We might have inspected the full range OR | |
2150 | * more than it esp. if the user passed in | |
2151 | * non-page aligned start/size and/or if we | |
2152 | * descended into a submap. We are done here. | |
2153 | */ | |
2154 | ||
2155 | size = 0; | |
2156 | } else { | |
2157 | dispositions_addr += copy_sz; | |
2158 | ||
2159 | size -= curr_sz; | |
2160 | ||
2161 | curr_sz = MIN(mach_vm_round_page(size), MAX_PAGE_RANGE_QUERY); | |
2162 | num_pages = (int)(curr_sz >> PAGE_SHIFT); | |
2163 | } | |
2164 | } | |
2165 | ||
2166 | *dispositions_count = disp_buf_total_size / sizeof(int); | |
2167 | ||
2168 | kfree(local_disp, local_disp_size); | |
2169 | local_disp = NULL; | |
2170 | ||
2171 | kfree(info, info_size); | |
2172 | info = NULL; | |
2173 | ||
2174 | return kr; | |
2175 | } | |
2176 | ||
2177 | kern_return_t | |
2178 | mach_vm_page_info( | |
2179 | vm_map_t map, | |
2180 | mach_vm_address_t address, | |
2181 | vm_page_info_flavor_t flavor, | |
2182 | vm_page_info_t info, | |
2183 | mach_msg_type_number_t *count) | |
2184 | { | |
2185 | kern_return_t kr; | |
2186 | ||
2187 | if (map == VM_MAP_NULL) { | |
2188 | return KERN_INVALID_ARGUMENT; | |
2189 | } | |
2190 | ||
2191 | kr = vm_map_page_info(map, address, flavor, info, count); | |
2192 | return kr; | |
2193 | } | |
2194 | ||
2195 | /* map a (whole) upl into an address space */ | |
2196 | kern_return_t | |
2197 | vm_upl_map( | |
2198 | vm_map_t map, | |
2199 | upl_t upl, | |
2200 | vm_address_t *dst_addr) | |
2201 | { | |
2202 | vm_map_offset_t map_addr; | |
2203 | kern_return_t kr; | |
2204 | ||
2205 | if (VM_MAP_NULL == map) { | |
2206 | return KERN_INVALID_ARGUMENT; | |
2207 | } | |
2208 | ||
2209 | kr = vm_map_enter_upl(map, upl, &map_addr); | |
2210 | *dst_addr = CAST_DOWN(vm_address_t, map_addr); | |
2211 | return kr; | |
2212 | } | |
2213 | ||
2214 | kern_return_t | |
2215 | vm_upl_unmap( | |
2216 | vm_map_t map, | |
2217 | upl_t upl) | |
2218 | { | |
2219 | if (VM_MAP_NULL == map) { | |
2220 | return KERN_INVALID_ARGUMENT; | |
2221 | } | |
2222 | ||
2223 | return vm_map_remove_upl(map, upl); | |
2224 | } | |
2225 | ||
2226 | /* Retrieve a upl for an object underlying an address range in a map */ | |
2227 | ||
2228 | kern_return_t | |
2229 | vm_map_get_upl( | |
2230 | vm_map_t map, | |
2231 | vm_map_offset_t map_offset, | |
2232 | upl_size_t *upl_size, | |
2233 | upl_t *upl, | |
2234 | upl_page_info_array_t page_list, | |
2235 | unsigned int *count, | |
2236 | upl_control_flags_t *flags, | |
2237 | vm_tag_t tag, | |
2238 | int force_data_sync) | |
2239 | { | |
2240 | upl_control_flags_t map_flags; | |
2241 | kern_return_t kr; | |
2242 | ||
2243 | if (VM_MAP_NULL == map) { | |
2244 | return KERN_INVALID_ARGUMENT; | |
2245 | } | |
2246 | ||
2247 | map_flags = *flags & ~UPL_NOZEROFILL; | |
2248 | if (force_data_sync) { | |
2249 | map_flags |= UPL_FORCE_DATA_SYNC; | |
2250 | } | |
2251 | ||
2252 | kr = vm_map_create_upl(map, | |
2253 | map_offset, | |
2254 | upl_size, | |
2255 | upl, | |
2256 | page_list, | |
2257 | count, | |
2258 | &map_flags, | |
2259 | tag); | |
2260 | ||
2261 | *flags = (map_flags & ~UPL_FORCE_DATA_SYNC); | |
2262 | return kr; | |
2263 | } | |
2264 | ||
2265 | #if CONFIG_EMBEDDED | |
2266 | extern int proc_selfpid(void); | |
2267 | extern char *proc_name_address(void *p); | |
2268 | int cs_executable_mem_entry = 0; | |
2269 | int log_executable_mem_entry = 0; | |
2270 | #endif /* CONFIG_EMBEDDED */ | |
2271 | ||
2272 | /* | |
2273 | * mach_make_memory_entry_64 | |
2274 | * | |
2275 | * Think of it as a two-stage vm_remap() operation. First | |
2276 | * you get a handle. Second, you get map that handle in | |
2277 | * somewhere else. Rather than doing it all at once (and | |
2278 | * without needing access to the other whole map). | |
2279 | */ | |
2280 | kern_return_t | |
2281 | mach_make_memory_entry_64( | |
2282 | vm_map_t target_map, | |
2283 | memory_object_size_t *size, | |
2284 | memory_object_offset_t offset, | |
2285 | vm_prot_t permission, | |
2286 | ipc_port_t *object_handle, | |
2287 | ipc_port_t parent_handle) | |
2288 | { | |
2289 | if ((permission & MAP_MEM_FLAGS_MASK) & ~MAP_MEM_FLAGS_USER) { | |
2290 | /* | |
2291 | * Unknown flag: reject for forward compatibility. | |
2292 | */ | |
2293 | return KERN_INVALID_VALUE; | |
2294 | } | |
2295 | ||
2296 | return mach_make_memory_entry_internal(target_map, | |
2297 | size, | |
2298 | offset, | |
2299 | permission, | |
2300 | object_handle, | |
2301 | parent_handle); | |
2302 | } | |
2303 | ||
2304 | kern_return_t | |
2305 | mach_make_memory_entry_internal( | |
2306 | vm_map_t target_map, | |
2307 | memory_object_size_t *size, | |
2308 | memory_object_offset_t offset, | |
2309 | vm_prot_t permission, | |
2310 | ipc_port_t *object_handle, | |
2311 | ipc_port_t parent_handle) | |
2312 | { | |
2313 | vm_map_version_t version; | |
2314 | vm_named_entry_t parent_entry; | |
2315 | vm_named_entry_t user_entry; | |
2316 | ipc_port_t user_handle; | |
2317 | kern_return_t kr; | |
2318 | vm_map_t real_map; | |
2319 | ||
2320 | /* needed for call to vm_map_lookup_locked */ | |
2321 | boolean_t wired; | |
2322 | boolean_t iskernel; | |
2323 | vm_object_offset_t obj_off; | |
2324 | vm_prot_t prot; | |
2325 | struct vm_object_fault_info fault_info = {}; | |
2326 | vm_object_t object; | |
2327 | vm_object_t shadow_object; | |
2328 | ||
2329 | /* needed for direct map entry manipulation */ | |
2330 | vm_map_entry_t map_entry; | |
2331 | vm_map_entry_t next_entry; | |
2332 | vm_map_t local_map; | |
2333 | vm_map_t original_map = target_map; | |
2334 | vm_map_size_t total_size, map_size; | |
2335 | vm_map_offset_t map_start, map_end; | |
2336 | vm_map_offset_t local_offset; | |
2337 | vm_object_size_t mappable_size; | |
2338 | ||
2339 | /* | |
2340 | * Stash the offset in the page for use by vm_map_enter_mem_object() | |
2341 | * in the VM_FLAGS_RETURN_DATA_ADDR/MAP_MEM_USE_DATA_ADDR case. | |
2342 | */ | |
2343 | vm_object_offset_t offset_in_page; | |
2344 | ||
2345 | unsigned int access; | |
2346 | vm_prot_t protections; | |
2347 | vm_prot_t original_protections, mask_protections; | |
2348 | unsigned int wimg_mode; | |
2349 | ||
2350 | boolean_t force_shadow = FALSE; | |
2351 | boolean_t use_data_addr; | |
2352 | boolean_t use_4K_compat; | |
2353 | #if VM_NAMED_ENTRY_LIST | |
2354 | int alias = -1; | |
2355 | #endif /* VM_NAMED_ENTRY_LIST */ | |
2356 | ||
2357 | if ((permission & MAP_MEM_FLAGS_MASK) & ~MAP_MEM_FLAGS_ALL) { | |
2358 | /* | |
2359 | * Unknown flag: reject for forward compatibility. | |
2360 | */ | |
2361 | return KERN_INVALID_VALUE; | |
2362 | } | |
2363 | ||
2364 | if (IP_VALID(parent_handle) && | |
2365 | ip_kotype(parent_handle) == IKOT_NAMED_ENTRY) { | |
2366 | parent_entry = (vm_named_entry_t) parent_handle->ip_kobject; | |
2367 | } else { | |
2368 | parent_entry = NULL; | |
2369 | } | |
2370 | ||
2371 | if (parent_entry && parent_entry->is_copy) { | |
2372 | return KERN_INVALID_ARGUMENT; | |
2373 | } | |
2374 | ||
2375 | original_protections = permission & VM_PROT_ALL; | |
2376 | protections = original_protections; | |
2377 | mask_protections = permission & VM_PROT_IS_MASK; | |
2378 | access = GET_MAP_MEM(permission); | |
2379 | use_data_addr = ((permission & MAP_MEM_USE_DATA_ADDR) != 0); | |
2380 | use_4K_compat = ((permission & MAP_MEM_4K_DATA_ADDR) != 0); | |
2381 | ||
2382 | user_handle = IP_NULL; | |
2383 | user_entry = NULL; | |
2384 | ||
2385 | map_start = vm_map_trunc_page(offset, PAGE_MASK); | |
2386 | ||
2387 | if (permission & MAP_MEM_ONLY) { | |
2388 | boolean_t parent_is_object; | |
2389 | ||
2390 | map_end = vm_map_round_page(offset + *size, PAGE_MASK); | |
2391 | map_size = map_end - map_start; | |
2392 | ||
2393 | if (use_data_addr || use_4K_compat || parent_entry == NULL) { | |
2394 | return KERN_INVALID_ARGUMENT; | |
2395 | } | |
2396 | ||
2397 | parent_is_object = !parent_entry->is_sub_map; | |
2398 | object = parent_entry->backing.object; | |
2399 | if (parent_is_object && object != VM_OBJECT_NULL) { | |
2400 | wimg_mode = object->wimg_bits; | |
2401 | } else { | |
2402 | wimg_mode = VM_WIMG_USE_DEFAULT; | |
2403 | } | |
2404 | if ((access != GET_MAP_MEM(parent_entry->protection)) && | |
2405 | !(parent_entry->protection & VM_PROT_WRITE)) { | |
2406 | return KERN_INVALID_RIGHT; | |
2407 | } | |
2408 | vm_prot_to_wimg(access, &wimg_mode); | |
2409 | if (access != MAP_MEM_NOOP) { | |
2410 | SET_MAP_MEM(access, parent_entry->protection); | |
2411 | } | |
2412 | if (parent_is_object && object && | |
2413 | (access != MAP_MEM_NOOP) && | |
2414 | (!(object->nophyscache))) { | |
2415 | if (object->wimg_bits != wimg_mode) { | |
2416 | vm_object_lock(object); | |
2417 | vm_object_change_wimg_mode(object, wimg_mode); | |
2418 | vm_object_unlock(object); | |
2419 | } | |
2420 | } | |
2421 | if (object_handle) { | |
2422 | *object_handle = IP_NULL; | |
2423 | } | |
2424 | return KERN_SUCCESS; | |
2425 | } else if (permission & MAP_MEM_NAMED_CREATE) { | |
2426 | map_end = vm_map_round_page(offset + *size, PAGE_MASK); | |
2427 | map_size = map_end - map_start; | |
2428 | ||
2429 | if (use_data_addr || use_4K_compat) { | |
2430 | return KERN_INVALID_ARGUMENT; | |
2431 | } | |
2432 | ||
2433 | kr = mach_memory_entry_allocate(&user_entry, &user_handle); | |
2434 | if (kr != KERN_SUCCESS) { | |
2435 | return KERN_FAILURE; | |
2436 | } | |
2437 | ||
2438 | /* | |
2439 | * Force the creation of the VM object now. | |
2440 | */ | |
2441 | if (map_size > (vm_map_size_t) ANON_MAX_SIZE) { | |
2442 | /* | |
2443 | * LP64todo - for now, we can only allocate 4GB-4096 | |
2444 | * internal objects because the default pager can't | |
2445 | * page bigger ones. Remove this when it can. | |
2446 | */ | |
2447 | kr = KERN_FAILURE; | |
2448 | goto make_mem_done; | |
2449 | } | |
2450 | ||
2451 | object = vm_object_allocate(map_size); | |
2452 | assert(object != VM_OBJECT_NULL); | |
2453 | ||
2454 | if (permission & MAP_MEM_PURGABLE) { | |
2455 | task_t owner; | |
2456 | ||
2457 | if (!(permission & VM_PROT_WRITE)) { | |
2458 | /* if we can't write, we can't purge */ | |
2459 | vm_object_deallocate(object); | |
2460 | kr = KERN_INVALID_ARGUMENT; | |
2461 | goto make_mem_done; | |
2462 | } | |
2463 | object->purgable = VM_PURGABLE_NONVOLATILE; | |
2464 | if (permission & MAP_MEM_PURGABLE_KERNEL_ONLY) { | |
2465 | object->purgeable_only_by_kernel = TRUE; | |
2466 | } | |
2467 | assert(object->vo_owner == NULL); | |
2468 | assert(object->resident_page_count == 0); | |
2469 | assert(object->wired_page_count == 0); | |
2470 | vm_object_lock(object); | |
2471 | owner = current_task(); | |
2472 | #if __arm64__ | |
2473 | if (owner->task_legacy_footprint) { | |
2474 | /* | |
2475 | * For ios11, we failed to account for | |
2476 | * this memory. Keep doing that for | |
2477 | * legacy apps (built before ios12), | |
2478 | * for backwards compatibility's sake... | |
2479 | */ | |
2480 | owner = kernel_task; | |
2481 | } | |
2482 | #endif /* __arm64__ */ | |
2483 | vm_purgeable_nonvolatile_enqueue(object, owner); | |
2484 | vm_object_unlock(object); | |
2485 | } | |
2486 | ||
2487 | if (permission & MAP_MEM_LEDGER_TAG_NETWORK) { | |
2488 | /* make this object owned by the calling task */ | |
2489 | vm_object_lock(object); | |
2490 | vm_object_ownership_change( | |
2491 | object, | |
2492 | VM_OBJECT_LEDGER_TAG_NETWORK, | |
2493 | current_task(), /* new owner */ | |
2494 | FALSE); /* task_objq locked? */ | |
2495 | vm_object_unlock(object); | |
2496 | } | |
2497 | ||
2498 | #if CONFIG_SECLUDED_MEMORY | |
2499 | if (secluded_for_iokit && /* global boot-arg */ | |
2500 | ((permission & MAP_MEM_GRAB_SECLUDED) | |
2501 | #if 11 | |
2502 | /* XXX FBDP for my testing only */ | |
2503 | || (secluded_for_fbdp && map_size == 97550336) | |
2504 | #endif | |
2505 | )) { | |
2506 | #if 11 | |
2507 | if (!(permission & MAP_MEM_GRAB_SECLUDED) && | |
2508 | secluded_for_fbdp) { | |
2509 | printf("FBDP: object %p size %lld can grab secluded\n", object, (uint64_t) map_size); | |
2510 | } | |
2511 | #endif | |
2512 | object->can_grab_secluded = TRUE; | |
2513 | assert(!object->eligible_for_secluded); | |
2514 | } | |
2515 | #endif /* CONFIG_SECLUDED_MEMORY */ | |
2516 | ||
2517 | /* | |
2518 | * The VM object is brand new and nobody else knows about it, | |
2519 | * so we don't need to lock it. | |
2520 | */ | |
2521 | ||
2522 | wimg_mode = object->wimg_bits; | |
2523 | vm_prot_to_wimg(access, &wimg_mode); | |
2524 | if (access != MAP_MEM_NOOP) { | |
2525 | object->wimg_bits = wimg_mode; | |
2526 | } | |
2527 | ||
2528 | /* the object has no pages, so no WIMG bits to update here */ | |
2529 | ||
2530 | /* | |
2531 | * XXX | |
2532 | * We use this path when we want to make sure that | |
2533 | * nobody messes with the object (coalesce, for | |
2534 | * example) before we map it. | |
2535 | * We might want to use these objects for transposition via | |
2536 | * vm_object_transpose() too, so we don't want any copy or | |
2537 | * shadow objects either... | |
2538 | */ | |
2539 | object->copy_strategy = MEMORY_OBJECT_COPY_NONE; | |
2540 | object->true_share = TRUE; | |
2541 | ||
2542 | user_entry->backing.object = object; | |
2543 | user_entry->internal = TRUE; | |
2544 | user_entry->is_sub_map = FALSE; | |
2545 | user_entry->offset = 0; | |
2546 | user_entry->data_offset = 0; | |
2547 | user_entry->protection = protections; | |
2548 | SET_MAP_MEM(access, user_entry->protection); | |
2549 | user_entry->size = map_size; | |
2550 | ||
2551 | /* user_object pager and internal fields are not used */ | |
2552 | /* when the object field is filled in. */ | |
2553 | ||
2554 | *size = CAST_DOWN(vm_size_t, (user_entry->size - | |
2555 | user_entry->data_offset)); | |
2556 | *object_handle = user_handle; | |
2557 | return KERN_SUCCESS; | |
2558 | } | |
2559 | ||
2560 | if (permission & MAP_MEM_VM_COPY) { | |
2561 | vm_map_copy_t copy; | |
2562 | ||
2563 | if (target_map == VM_MAP_NULL) { | |
2564 | return KERN_INVALID_TASK; | |
2565 | } | |
2566 | ||
2567 | map_end = vm_map_round_page(offset + *size, PAGE_MASK); | |
2568 | map_size = map_end - map_start; | |
2569 | if (use_data_addr || use_4K_compat) { | |
2570 | offset_in_page = offset - map_start; | |
2571 | if (use_4K_compat) { | |
2572 | offset_in_page &= ~((signed)(0xFFF)); | |
2573 | } | |
2574 | } else { | |
2575 | offset_in_page = 0; | |
2576 | } | |
2577 | ||
2578 | kr = vm_map_copyin_internal(target_map, | |
2579 | map_start, | |
2580 | map_size, | |
2581 | VM_MAP_COPYIN_ENTRY_LIST, | |
2582 | ©); | |
2583 | if (kr != KERN_SUCCESS) { | |
2584 | return kr; | |
2585 | } | |
2586 | ||
2587 | kr = mach_memory_entry_allocate(&user_entry, &user_handle); | |
2588 | if (kr != KERN_SUCCESS) { | |
2589 | vm_map_copy_discard(copy); | |
2590 | return KERN_FAILURE; | |
2591 | } | |
2592 | ||
2593 | user_entry->backing.copy = copy; | |
2594 | user_entry->internal = FALSE; | |
2595 | user_entry->is_sub_map = FALSE; | |
2596 | user_entry->is_copy = TRUE; | |
2597 | user_entry->offset = 0; | |
2598 | user_entry->protection = protections; | |
2599 | user_entry->size = map_size; | |
2600 | user_entry->data_offset = offset_in_page; | |
2601 | ||
2602 | *size = CAST_DOWN(vm_size_t, (user_entry->size - | |
2603 | user_entry->data_offset)); | |
2604 | *object_handle = user_handle; | |
2605 | return KERN_SUCCESS; | |
2606 | } | |
2607 | ||
2608 | if (permission & MAP_MEM_VM_SHARE) { | |
2609 | vm_map_copy_t copy; | |
2610 | vm_prot_t cur_prot, max_prot; | |
2611 | ||
2612 | if (target_map == VM_MAP_NULL) { | |
2613 | return KERN_INVALID_TASK; | |
2614 | } | |
2615 | ||
2616 | map_end = vm_map_round_page(offset + *size, PAGE_MASK); | |
2617 | map_size = map_end - map_start; | |
2618 | if (use_data_addr || use_4K_compat) { | |
2619 | offset_in_page = offset - map_start; | |
2620 | if (use_4K_compat) { | |
2621 | offset_in_page &= ~((signed)(0xFFF)); | |
2622 | } | |
2623 | } else { | |
2624 | offset_in_page = 0; | |
2625 | } | |
2626 | ||
2627 | cur_prot = VM_PROT_ALL; | |
2628 | kr = vm_map_copy_extract(target_map, | |
2629 | map_start, | |
2630 | map_size, | |
2631 | ©, | |
2632 | &cur_prot, | |
2633 | &max_prot); | |
2634 | if (kr != KERN_SUCCESS) { | |
2635 | return kr; | |
2636 | } | |
2637 | ||
2638 | if (mask_protections) { | |
2639 | /* | |
2640 | * We just want as much of "original_protections" | |
2641 | * as we can get out of the actual "cur_prot". | |
2642 | */ | |
2643 | protections &= cur_prot; | |
2644 | if (protections == VM_PROT_NONE) { | |
2645 | /* no access at all: fail */ | |
2646 | vm_map_copy_discard(copy); | |
2647 | return KERN_PROTECTION_FAILURE; | |
2648 | } | |
2649 | } else { | |
2650 | /* | |
2651 | * We want exactly "original_protections" | |
2652 | * out of "cur_prot". | |
2653 | */ | |
2654 | if ((cur_prot & protections) != protections) { | |
2655 | vm_map_copy_discard(copy); | |
2656 | return KERN_PROTECTION_FAILURE; | |
2657 | } | |
2658 | } | |
2659 | ||
2660 | kr = mach_memory_entry_allocate(&user_entry, &user_handle); | |
2661 | if (kr != KERN_SUCCESS) { | |
2662 | vm_map_copy_discard(copy); | |
2663 | return KERN_FAILURE; | |
2664 | } | |
2665 | ||
2666 | user_entry->backing.copy = copy; | |
2667 | user_entry->internal = FALSE; | |
2668 | user_entry->is_sub_map = FALSE; | |
2669 | user_entry->is_copy = TRUE; | |
2670 | user_entry->offset = 0; | |
2671 | user_entry->protection = protections; | |
2672 | user_entry->size = map_size; | |
2673 | user_entry->data_offset = offset_in_page; | |
2674 | ||
2675 | *size = CAST_DOWN(vm_size_t, (user_entry->size - | |
2676 | user_entry->data_offset)); | |
2677 | *object_handle = user_handle; | |
2678 | return KERN_SUCCESS; | |
2679 | } | |
2680 | ||
2681 | if (parent_entry == NULL || | |
2682 | (permission & MAP_MEM_NAMED_REUSE)) { | |
2683 | map_end = vm_map_round_page(offset + *size, PAGE_MASK); | |
2684 | map_size = map_end - map_start; | |
2685 | if (use_data_addr || use_4K_compat) { | |
2686 | offset_in_page = offset - map_start; | |
2687 | if (use_4K_compat) { | |
2688 | offset_in_page &= ~((signed)(0xFFF)); | |
2689 | } | |
2690 | } else { | |
2691 | offset_in_page = 0; | |
2692 | } | |
2693 | ||
2694 | /* Create a named object based on address range within the task map */ | |
2695 | /* Go find the object at given address */ | |
2696 | ||
2697 | if (target_map == VM_MAP_NULL) { | |
2698 | return KERN_INVALID_TASK; | |
2699 | } | |
2700 | ||
2701 | redo_lookup: | |
2702 | protections = original_protections; | |
2703 | vm_map_lock_read(target_map); | |
2704 | ||
2705 | /* get the object associated with the target address */ | |
2706 | /* note we check the permission of the range against */ | |
2707 | /* that requested by the caller */ | |
2708 | ||
2709 | kr = vm_map_lookup_locked(&target_map, map_start, | |
2710 | protections | mask_protections, | |
2711 | OBJECT_LOCK_EXCLUSIVE, &version, | |
2712 | &object, &obj_off, &prot, &wired, | |
2713 | &fault_info, | |
2714 | &real_map); | |
2715 | if (kr != KERN_SUCCESS) { | |
2716 | vm_map_unlock_read(target_map); | |
2717 | goto make_mem_done; | |
2718 | } | |
2719 | if (mask_protections) { | |
2720 | /* | |
2721 | * The caller asked us to use the "protections" as | |
2722 | * a mask, so restrict "protections" to what this | |
2723 | * mapping actually allows. | |
2724 | */ | |
2725 | protections &= prot; | |
2726 | } | |
2727 | #if CONFIG_EMBEDDED | |
2728 | /* | |
2729 | * Wiring would copy the pages to a shadow object. | |
2730 | * The shadow object would not be code-signed so | |
2731 | * attempting to execute code from these copied pages | |
2732 | * would trigger a code-signing violation. | |
2733 | */ | |
2734 | if (prot & VM_PROT_EXECUTE) { | |
2735 | if (log_executable_mem_entry) { | |
2736 | void *bsd_info; | |
2737 | bsd_info = current_task()->bsd_info; | |
2738 | printf("pid %d[%s] making memory entry out of " | |
2739 | "executable range from 0x%llx to 0x%llx:" | |
2740 | "might cause code-signing issues " | |
2741 | "later\n", | |
2742 | proc_selfpid(), | |
2743 | (bsd_info != NULL | |
2744 | ? proc_name_address(bsd_info) | |
2745 | : "?"), | |
2746 | (uint64_t) map_start, | |
2747 | (uint64_t) map_end); | |
2748 | } | |
2749 | DTRACE_VM2(cs_executable_mem_entry, | |
2750 | uint64_t, (uint64_t)map_start, | |
2751 | uint64_t, (uint64_t)map_end); | |
2752 | cs_executable_mem_entry++; | |
2753 | ||
2754 | #if 11 | |
2755 | /* | |
2756 | * We don't know how the memory entry will be used. | |
2757 | * It might never get wired and might not cause any | |
2758 | * trouble, so let's not reject this request... | |
2759 | */ | |
2760 | #else /* 11 */ | |
2761 | kr = KERN_PROTECTION_FAILURE; | |
2762 | vm_object_unlock(object); | |
2763 | vm_map_unlock_read(target_map); | |
2764 | if (real_map != target_map) { | |
2765 | vm_map_unlock_read(real_map); | |
2766 | } | |
2767 | goto make_mem_done; | |
2768 | #endif /* 11 */ | |
2769 | } | |
2770 | #endif /* CONFIG_EMBEDDED */ | |
2771 | ||
2772 | if (((prot & protections) != protections) | |
2773 | || (object == kernel_object)) { | |
2774 | kr = KERN_INVALID_RIGHT; | |
2775 | vm_object_unlock(object); | |
2776 | vm_map_unlock_read(target_map); | |
2777 | if (real_map != target_map) { | |
2778 | vm_map_unlock_read(real_map); | |
2779 | } | |
2780 | if (object == kernel_object) { | |
2781 | printf("Warning: Attempt to create a named" | |
2782 | " entry from the kernel_object\n"); | |
2783 | } | |
2784 | goto make_mem_done; | |
2785 | } | |
2786 | ||
2787 | /* We have an object, now check to see if this object */ | |
2788 | /* is suitable. If not, create a shadow and share that */ | |
2789 | ||
2790 | /* | |
2791 | * We have to unlock the VM object to avoid deadlocking with | |
2792 | * a VM map lock (the lock ordering is map, the object), if we | |
2793 | * need to modify the VM map to create a shadow object. Since | |
2794 | * we might release the VM map lock below anyway, we have | |
2795 | * to release the VM map lock now. | |
2796 | * XXX FBDP There must be a way to avoid this double lookup... | |
2797 | * | |
2798 | * Take an extra reference on the VM object to make sure it's | |
2799 | * not going to disappear. | |
2800 | */ | |
2801 | vm_object_reference_locked(object); /* extra ref to hold obj */ | |
2802 | vm_object_unlock(object); | |
2803 | ||
2804 | local_map = original_map; | |
2805 | local_offset = map_start; | |
2806 | if (target_map != local_map) { | |
2807 | vm_map_unlock_read(target_map); | |
2808 | if (real_map != target_map) { | |
2809 | vm_map_unlock_read(real_map); | |
2810 | } | |
2811 | vm_map_lock_read(local_map); | |
2812 | target_map = local_map; | |
2813 | real_map = local_map; | |
2814 | } | |
2815 | while (TRUE) { | |
2816 | if (!vm_map_lookup_entry(local_map, | |
2817 | local_offset, &map_entry)) { | |
2818 | kr = KERN_INVALID_ARGUMENT; | |
2819 | vm_map_unlock_read(target_map); | |
2820 | if (real_map != target_map) { | |
2821 | vm_map_unlock_read(real_map); | |
2822 | } | |
2823 | vm_object_deallocate(object); /* release extra ref */ | |
2824 | object = VM_OBJECT_NULL; | |
2825 | goto make_mem_done; | |
2826 | } | |
2827 | iskernel = (local_map->pmap == kernel_pmap); | |
2828 | if (!(map_entry->is_sub_map)) { | |
2829 | if (VME_OBJECT(map_entry) != object) { | |
2830 | kr = KERN_INVALID_ARGUMENT; | |
2831 | vm_map_unlock_read(target_map); | |
2832 | if (real_map != target_map) { | |
2833 | vm_map_unlock_read(real_map); | |
2834 | } | |
2835 | vm_object_deallocate(object); /* release extra ref */ | |
2836 | object = VM_OBJECT_NULL; | |
2837 | goto make_mem_done; | |
2838 | } | |
2839 | break; | |
2840 | } else { | |
2841 | vm_map_t tmap; | |
2842 | tmap = local_map; | |
2843 | local_map = VME_SUBMAP(map_entry); | |
2844 | ||
2845 | vm_map_lock_read(local_map); | |
2846 | vm_map_unlock_read(tmap); | |
2847 | target_map = local_map; | |
2848 | real_map = local_map; | |
2849 | local_offset = local_offset - map_entry->vme_start; | |
2850 | local_offset += VME_OFFSET(map_entry); | |
2851 | } | |
2852 | } | |
2853 | ||
2854 | #if VM_NAMED_ENTRY_LIST | |
2855 | alias = VME_ALIAS(map_entry); | |
2856 | #endif /* VM_NAMED_ENTRY_LIST */ | |
2857 | ||
2858 | /* | |
2859 | * We found the VM map entry, lock the VM object again. | |
2860 | */ | |
2861 | vm_object_lock(object); | |
2862 | if (map_entry->wired_count) { | |
2863 | /* JMM - The check below should be reworked instead. */ | |
2864 | object->true_share = TRUE; | |
2865 | } | |
2866 | if (mask_protections) { | |
2867 | /* | |
2868 | * The caller asked us to use the "protections" as | |
2869 | * a mask, so restrict "protections" to what this | |
2870 | * mapping actually allows. | |
2871 | */ | |
2872 | protections &= map_entry->max_protection; | |
2873 | } | |
2874 | if (((map_entry->max_protection) & protections) != protections) { | |
2875 | kr = KERN_INVALID_RIGHT; | |
2876 | vm_object_unlock(object); | |
2877 | vm_map_unlock_read(target_map); | |
2878 | if (real_map != target_map) { | |
2879 | vm_map_unlock_read(real_map); | |
2880 | } | |
2881 | vm_object_deallocate(object); | |
2882 | object = VM_OBJECT_NULL; | |
2883 | goto make_mem_done; | |
2884 | } | |
2885 | ||
2886 | mappable_size = fault_info.hi_offset - obj_off; | |
2887 | total_size = map_entry->vme_end - map_entry->vme_start; | |
2888 | if (map_size > mappable_size) { | |
2889 | /* try to extend mappable size if the entries */ | |
2890 | /* following are from the same object and are */ | |
2891 | /* compatible */ | |
2892 | next_entry = map_entry->vme_next; | |
2893 | /* lets see if the next map entry is still */ | |
2894 | /* pointing at this object and is contiguous */ | |
2895 | while (map_size > mappable_size) { | |
2896 | if ((VME_OBJECT(next_entry) == object) && | |
2897 | (next_entry->vme_start == | |
2898 | next_entry->vme_prev->vme_end) && | |
2899 | (VME_OFFSET(next_entry) == | |
2900 | (VME_OFFSET(next_entry->vme_prev) + | |
2901 | (next_entry->vme_prev->vme_end - | |
2902 | next_entry->vme_prev->vme_start)))) { | |
2903 | if (mask_protections) { | |
2904 | /* | |
2905 | * The caller asked us to use | |
2906 | * the "protections" as a mask, | |
2907 | * so restrict "protections" to | |
2908 | * what this mapping actually | |
2909 | * allows. | |
2910 | */ | |
2911 | protections &= next_entry->max_protection; | |
2912 | } | |
2913 | if ((next_entry->wired_count) && | |
2914 | (map_entry->wired_count == 0)) { | |
2915 | break; | |
2916 | } | |
2917 | if (((next_entry->max_protection) | |
2918 | & protections) != protections) { | |
2919 | break; | |
2920 | } | |
2921 | if (next_entry->needs_copy != | |
2922 | map_entry->needs_copy) { | |
2923 | break; | |
2924 | } | |
2925 | mappable_size += next_entry->vme_end | |
2926 | - next_entry->vme_start; | |
2927 | total_size += next_entry->vme_end | |
2928 | - next_entry->vme_start; | |
2929 | next_entry = next_entry->vme_next; | |
2930 | } else { | |
2931 | break; | |
2932 | } | |
2933 | } | |
2934 | } | |
2935 | ||
2936 | /* vm_map_entry_should_cow_for_true_share() checks for malloc tags, | |
2937 | * never true in kernel */ | |
2938 | if (!iskernel && vm_map_entry_should_cow_for_true_share(map_entry) && | |
2939 | object->vo_size > map_size && | |
2940 | map_size != 0) { | |
2941 | /* | |
2942 | * Set up the targeted range for copy-on-write to | |
2943 | * limit the impact of "true_share"/"copy_delay" to | |
2944 | * that range instead of the entire VM object... | |
2945 | */ | |
2946 | ||
2947 | vm_object_unlock(object); | |
2948 | if (vm_map_lock_read_to_write(target_map)) { | |
2949 | vm_object_deallocate(object); | |
2950 | target_map = original_map; | |
2951 | goto redo_lookup; | |
2952 | } | |
2953 | ||
2954 | vm_map_clip_start(target_map, | |
2955 | map_entry, | |
2956 | vm_map_trunc_page(map_start, | |
2957 | VM_MAP_PAGE_MASK(target_map))); | |
2958 | vm_map_clip_end(target_map, | |
2959 | map_entry, | |
2960 | (vm_map_round_page(map_end, | |
2961 | VM_MAP_PAGE_MASK(target_map)))); | |
2962 | force_shadow = TRUE; | |
2963 | ||
2964 | if ((map_entry->vme_end - offset) < map_size) { | |
2965 | map_size = map_entry->vme_end - map_start; | |
2966 | } | |
2967 | total_size = map_entry->vme_end - map_entry->vme_start; | |
2968 | ||
2969 | vm_map_lock_write_to_read(target_map); | |
2970 | vm_object_lock(object); | |
2971 | } | |
2972 | ||
2973 | if (object->internal) { | |
2974 | /* vm_map_lookup_locked will create a shadow if */ | |
2975 | /* needs_copy is set but does not check for the */ | |
2976 | /* other two conditions shown. It is important to */ | |
2977 | /* set up an object which will not be pulled from */ | |
2978 | /* under us. */ | |
2979 | ||
2980 | if (force_shadow || | |
2981 | ((map_entry->needs_copy || | |
2982 | object->shadowed || | |
2983 | (object->vo_size > total_size && | |
2984 | (VME_OFFSET(map_entry) != 0 || | |
2985 | object->vo_size > | |
2986 | vm_map_round_page(total_size, | |
2987 | VM_MAP_PAGE_MASK(target_map))))) | |
2988 | && !object->true_share | |
2989 | && object->copy_strategy == MEMORY_OBJECT_COPY_SYMMETRIC)) { | |
2990 | /* | |
2991 | * We have to unlock the VM object before | |
2992 | * trying to upgrade the VM map lock, to | |
2993 | * honor lock ordering (map then object). | |
2994 | * Otherwise, we would deadlock if another | |
2995 | * thread holds a read lock on the VM map and | |
2996 | * is trying to acquire the VM object's lock. | |
2997 | * We still hold an extra reference on the | |
2998 | * VM object, guaranteeing that it won't | |
2999 | * disappear. | |
3000 | */ | |
3001 | vm_object_unlock(object); | |
3002 | ||
3003 | if (vm_map_lock_read_to_write(target_map)) { | |
3004 | /* | |
3005 | * We couldn't upgrade our VM map lock | |
3006 | * from "read" to "write" and we lost | |
3007 | * our "read" lock. | |
3008 | * Start all over again... | |
3009 | */ | |
3010 | vm_object_deallocate(object); /* extra ref */ | |
3011 | target_map = original_map; | |
3012 | goto redo_lookup; | |
3013 | } | |
3014 | #if 00 | |
3015 | vm_object_lock(object); | |
3016 | #endif | |
3017 | ||
3018 | /* | |
3019 | * JMM - We need to avoid coming here when the object | |
3020 | * is wired by anybody, not just the current map. Why | |
3021 | * couldn't we use the standard vm_object_copy_quickly() | |
3022 | * approach here? | |
3023 | */ | |
3024 | ||
3025 | /* create a shadow object */ | |
3026 | VME_OBJECT_SHADOW(map_entry, total_size); | |
3027 | shadow_object = VME_OBJECT(map_entry); | |
3028 | #if 00 | |
3029 | vm_object_unlock(object); | |
3030 | #endif | |
3031 | ||
3032 | prot = map_entry->protection & ~VM_PROT_WRITE; | |
3033 | ||
3034 | if (override_nx(target_map, | |
3035 | VME_ALIAS(map_entry)) | |
3036 | && prot) { | |
3037 | prot |= VM_PROT_EXECUTE; | |
3038 | } | |
3039 | ||
3040 | vm_object_pmap_protect( | |
3041 | object, VME_OFFSET(map_entry), | |
3042 | total_size, | |
3043 | ((map_entry->is_shared | |
3044 | || target_map->mapped_in_other_pmaps) | |
3045 | ? PMAP_NULL : | |
3046 | target_map->pmap), | |
3047 | map_entry->vme_start, | |
3048 | prot); | |
3049 | total_size -= (map_entry->vme_end | |
3050 | - map_entry->vme_start); | |
3051 | next_entry = map_entry->vme_next; | |
3052 | map_entry->needs_copy = FALSE; | |
3053 | ||
3054 | vm_object_lock(shadow_object); | |
3055 | while (total_size) { | |
3056 | assert((next_entry->wired_count == 0) || | |
3057 | (map_entry->wired_count)); | |
3058 | ||
3059 | if (VME_OBJECT(next_entry) == object) { | |
3060 | vm_object_reference_locked(shadow_object); | |
3061 | VME_OBJECT_SET(next_entry, | |
3062 | shadow_object); | |
3063 | vm_object_deallocate(object); | |
3064 | VME_OFFSET_SET( | |
3065 | next_entry, | |
3066 | (VME_OFFSET(next_entry->vme_prev) + | |
3067 | (next_entry->vme_prev->vme_end | |
3068 | - next_entry->vme_prev->vme_start))); | |
3069 | next_entry->use_pmap = TRUE; | |
3070 | next_entry->needs_copy = FALSE; | |
3071 | } else { | |
3072 | panic("mach_make_memory_entry_64:" | |
3073 | " map entries out of sync\n"); | |
3074 | } | |
3075 | total_size -= | |
3076 | next_entry->vme_end | |
3077 | - next_entry->vme_start; | |
3078 | next_entry = next_entry->vme_next; | |
3079 | } | |
3080 | ||
3081 | /* | |
3082 | * Transfer our extra reference to the | |
3083 | * shadow object. | |
3084 | */ | |
3085 | vm_object_reference_locked(shadow_object); | |
3086 | vm_object_deallocate(object); /* extra ref */ | |
3087 | object = shadow_object; | |
3088 | ||
3089 | obj_off = ((local_offset - map_entry->vme_start) | |
3090 | + VME_OFFSET(map_entry)); | |
3091 | ||
3092 | vm_map_lock_write_to_read(target_map); | |
3093 | } | |
3094 | } | |
3095 | ||
3096 | /* note: in the future we can (if necessary) allow for */ | |
3097 | /* memory object lists, this will better support */ | |
3098 | /* fragmentation, but is it necessary? The user should */ | |
3099 | /* be encouraged to create address space oriented */ | |
3100 | /* shared objects from CLEAN memory regions which have */ | |
3101 | /* a known and defined history. i.e. no inheritence */ | |
3102 | /* share, make this call before making the region the */ | |
3103 | /* target of ipc's, etc. The code above, protecting */ | |
3104 | /* against delayed copy, etc. is mostly defensive. */ | |
3105 | ||
3106 | wimg_mode = object->wimg_bits; | |
3107 | if (!(object->nophyscache)) { | |
3108 | vm_prot_to_wimg(access, &wimg_mode); | |
3109 | } | |
3110 | ||
3111 | #if VM_OBJECT_TRACKING_OP_TRUESHARE | |
3112 | if (!object->true_share && | |
3113 | vm_object_tracking_inited) { | |
3114 | void *bt[VM_OBJECT_TRACKING_BTDEPTH]; | |
3115 | int num = 0; | |
3116 | ||
3117 | num = OSBacktrace(bt, | |
3118 | VM_OBJECT_TRACKING_BTDEPTH); | |
3119 | btlog_add_entry(vm_object_tracking_btlog, | |
3120 | object, | |
3121 | VM_OBJECT_TRACKING_OP_TRUESHARE, | |
3122 | bt, | |
3123 | num); | |
3124 | } | |
3125 | #endif /* VM_OBJECT_TRACKING_OP_TRUESHARE */ | |
3126 | ||
3127 | vm_object_lock_assert_exclusive(object); | |
3128 | object->true_share = TRUE; | |
3129 | if (object->copy_strategy == MEMORY_OBJECT_COPY_SYMMETRIC) { | |
3130 | object->copy_strategy = MEMORY_OBJECT_COPY_DELAY; | |
3131 | } | |
3132 | ||
3133 | /* | |
3134 | * The memory entry now points to this VM object and we | |
3135 | * need to hold a reference on the VM object. Use the extra | |
3136 | * reference we took earlier to keep the object alive when we | |
3137 | * had to unlock it. | |
3138 | */ | |
3139 | ||
3140 | vm_map_unlock_read(target_map); | |
3141 | if (real_map != target_map) { | |
3142 | vm_map_unlock_read(real_map); | |
3143 | } | |
3144 | ||
3145 | if (object->wimg_bits != wimg_mode) { | |
3146 | vm_object_change_wimg_mode(object, wimg_mode); | |
3147 | } | |
3148 | ||
3149 | /* the size of mapped entry that overlaps with our region */ | |
3150 | /* which is targeted for share. */ | |
3151 | /* (entry_end - entry_start) - */ | |
3152 | /* offset of our beg addr within entry */ | |
3153 | /* it corresponds to this: */ | |
3154 | ||
3155 | if (map_size > mappable_size) { | |
3156 | map_size = mappable_size; | |
3157 | } | |
3158 | ||
3159 | if (permission & MAP_MEM_NAMED_REUSE) { | |
3160 | /* | |
3161 | * Compare what we got with the "parent_entry". | |
3162 | * If they match, re-use the "parent_entry" instead | |
3163 | * of creating a new one. | |
3164 | */ | |
3165 | if (parent_entry != NULL && | |
3166 | parent_entry->backing.object == object && | |
3167 | parent_entry->internal == object->internal && | |
3168 | parent_entry->is_sub_map == FALSE && | |
3169 | parent_entry->offset == obj_off && | |
3170 | parent_entry->protection == protections && | |
3171 | parent_entry->size == map_size && | |
3172 | ((!(use_data_addr || use_4K_compat) && | |
3173 | (parent_entry->data_offset == 0)) || | |
3174 | ((use_data_addr || use_4K_compat) && | |
3175 | (parent_entry->data_offset == offset_in_page)))) { | |
3176 | /* | |
3177 | * We have a match: re-use "parent_entry". | |
3178 | */ | |
3179 | /* release our extra reference on object */ | |
3180 | vm_object_unlock(object); | |
3181 | vm_object_deallocate(object); | |
3182 | /* parent_entry->ref_count++; XXX ? */ | |
3183 | /* Get an extra send-right on handle */ | |
3184 | ipc_port_copy_send(parent_handle); | |
3185 | ||
3186 | *size = CAST_DOWN(vm_size_t, | |
3187 | (parent_entry->size - | |
3188 | parent_entry->data_offset)); | |
3189 | *object_handle = parent_handle; | |
3190 | return KERN_SUCCESS; | |
3191 | } else { | |
3192 | /* | |
3193 | * No match: we need to create a new entry. | |
3194 | * fall through... | |
3195 | */ | |
3196 | } | |
3197 | } | |
3198 | ||
3199 | vm_object_unlock(object); | |
3200 | if (mach_memory_entry_allocate(&user_entry, &user_handle) | |
3201 | != KERN_SUCCESS) { | |
3202 | /* release our unused reference on the object */ | |
3203 | vm_object_deallocate(object); | |
3204 | return KERN_FAILURE; | |
3205 | } | |
3206 | ||
3207 | user_entry->backing.object = object; | |
3208 | user_entry->internal = object->internal; | |
3209 | user_entry->is_sub_map = FALSE; | |
3210 | user_entry->offset = obj_off; | |
3211 | user_entry->data_offset = offset_in_page; | |
3212 | user_entry->protection = protections; | |
3213 | SET_MAP_MEM(GET_MAP_MEM(permission), user_entry->protection); | |
3214 | user_entry->size = map_size; | |
3215 | #if VM_NAMED_ENTRY_LIST | |
3216 | user_entry->named_entry_alias = alias; | |
3217 | #endif /* VM_NAMED_ENTRY_LIST */ | |
3218 | ||
3219 | /* user_object pager and internal fields are not used */ | |
3220 | /* when the object field is filled in. */ | |
3221 | ||
3222 | *size = CAST_DOWN(vm_size_t, (user_entry->size - | |
3223 | user_entry->data_offset)); | |
3224 | *object_handle = user_handle; | |
3225 | return KERN_SUCCESS; | |
3226 | } else { | |
3227 | /* The new object will be base on an existing named object */ | |
3228 | if (parent_entry == NULL) { | |
3229 | kr = KERN_INVALID_ARGUMENT; | |
3230 | goto make_mem_done; | |
3231 | } | |
3232 | ||
3233 | if (use_data_addr || use_4K_compat) { | |
3234 | /* | |
3235 | * submaps and pagers should only be accessible from within | |
3236 | * the kernel, which shouldn't use the data address flag, so can fail here. | |
3237 | */ | |
3238 | if (parent_entry->is_sub_map) { | |
3239 | panic("Shouldn't be using data address with a parent entry that is a submap."); | |
3240 | } | |
3241 | /* | |
3242 | * Account for offset to data in parent entry and | |
3243 | * compute our own offset to data. | |
3244 | */ | |
3245 | if ((offset + *size + parent_entry->data_offset) > parent_entry->size) { | |
3246 | kr = KERN_INVALID_ARGUMENT; | |
3247 | goto make_mem_done; | |
3248 | } | |
3249 | ||
3250 | map_start = vm_map_trunc_page(offset + parent_entry->data_offset, PAGE_MASK); | |
3251 | offset_in_page = (offset + parent_entry->data_offset) - map_start; | |
3252 | if (use_4K_compat) { | |
3253 | offset_in_page &= ~((signed)(0xFFF)); | |
3254 | } | |
3255 | map_end = vm_map_round_page(offset + parent_entry->data_offset + *size, PAGE_MASK); | |
3256 | map_size = map_end - map_start; | |
3257 | } else { | |
3258 | map_end = vm_map_round_page(offset + *size, PAGE_MASK); | |
3259 | map_size = map_end - map_start; | |
3260 | offset_in_page = 0; | |
3261 | ||
3262 | if ((offset + map_size) > parent_entry->size) { | |
3263 | kr = KERN_INVALID_ARGUMENT; | |
3264 | goto make_mem_done; | |
3265 | } | |
3266 | } | |
3267 | ||
3268 | if (mask_protections) { | |
3269 | /* | |
3270 | * The caller asked us to use the "protections" as | |
3271 | * a mask, so restrict "protections" to what this | |
3272 | * mapping actually allows. | |
3273 | */ | |
3274 | protections &= parent_entry->protection; | |
3275 | } | |
3276 | if ((protections & parent_entry->protection) != protections) { | |
3277 | kr = KERN_PROTECTION_FAILURE; | |
3278 | goto make_mem_done; | |
3279 | } | |
3280 | ||
3281 | if (mach_memory_entry_allocate(&user_entry, &user_handle) | |
3282 | != KERN_SUCCESS) { | |
3283 | kr = KERN_FAILURE; | |
3284 | goto make_mem_done; | |
3285 | } | |
3286 | ||
3287 | user_entry->size = map_size; | |
3288 | user_entry->offset = parent_entry->offset + map_start; | |
3289 | user_entry->data_offset = offset_in_page; | |
3290 | user_entry->is_sub_map = parent_entry->is_sub_map; | |
3291 | user_entry->is_copy = parent_entry->is_copy; | |
3292 | user_entry->internal = parent_entry->internal; | |
3293 | user_entry->protection = protections; | |
3294 | ||
3295 | if (access != MAP_MEM_NOOP) { | |
3296 | SET_MAP_MEM(access, user_entry->protection); | |
3297 | } | |
3298 | ||
3299 | if (parent_entry->is_sub_map) { | |
3300 | user_entry->backing.map = parent_entry->backing.map; | |
3301 | vm_map_lock(user_entry->backing.map); | |
3302 | user_entry->backing.map->map_refcnt++; | |
3303 | vm_map_unlock(user_entry->backing.map); | |
3304 | } else { | |
3305 | object = parent_entry->backing.object; | |
3306 | assert(object != VM_OBJECT_NULL); | |
3307 | user_entry->backing.object = object; | |
3308 | /* we now point to this object, hold on */ | |
3309 | vm_object_lock(object); | |
3310 | vm_object_reference_locked(object); | |
3311 | #if VM_OBJECT_TRACKING_OP_TRUESHARE | |
3312 | if (!object->true_share && | |
3313 | vm_object_tracking_inited) { | |
3314 | void *bt[VM_OBJECT_TRACKING_BTDEPTH]; | |
3315 | int num = 0; | |
3316 | ||
3317 | num = OSBacktrace(bt, | |
3318 | VM_OBJECT_TRACKING_BTDEPTH); | |
3319 | btlog_add_entry(vm_object_tracking_btlog, | |
3320 | object, | |
3321 | VM_OBJECT_TRACKING_OP_TRUESHARE, | |
3322 | bt, | |
3323 | num); | |
3324 | } | |
3325 | #endif /* VM_OBJECT_TRACKING_OP_TRUESHARE */ | |
3326 | ||
3327 | object->true_share = TRUE; | |
3328 | if (object->copy_strategy == MEMORY_OBJECT_COPY_SYMMETRIC) { | |
3329 | object->copy_strategy = MEMORY_OBJECT_COPY_DELAY; | |
3330 | } | |
3331 | vm_object_unlock(object); | |
3332 | } | |
3333 | *size = CAST_DOWN(vm_size_t, (user_entry->size - | |
3334 | user_entry->data_offset)); | |
3335 | *object_handle = user_handle; | |
3336 | return KERN_SUCCESS; | |
3337 | } | |
3338 | ||
3339 | make_mem_done: | |
3340 | if (user_handle != IP_NULL) { | |
3341 | /* | |
3342 | * Releasing "user_handle" causes the kernel object | |
3343 | * associated with it ("user_entry" here) to also be | |
3344 | * released and freed. | |
3345 | */ | |
3346 | mach_memory_entry_port_release(user_handle); | |
3347 | } | |
3348 | return kr; | |
3349 | } | |
3350 | ||
3351 | kern_return_t | |
3352 | _mach_make_memory_entry( | |
3353 | vm_map_t target_map, | |
3354 | memory_object_size_t *size, | |
3355 | memory_object_offset_t offset, | |
3356 | vm_prot_t permission, | |
3357 | ipc_port_t *object_handle, | |
3358 | ipc_port_t parent_entry) | |
3359 | { | |
3360 | memory_object_size_t mo_size; | |
3361 | kern_return_t kr; | |
3362 | ||
3363 | mo_size = (memory_object_size_t)*size; | |
3364 | kr = mach_make_memory_entry_64(target_map, &mo_size, | |
3365 | (memory_object_offset_t)offset, permission, object_handle, | |
3366 | parent_entry); | |
3367 | *size = mo_size; | |
3368 | return kr; | |
3369 | } | |
3370 | ||
3371 | kern_return_t | |
3372 | mach_make_memory_entry( | |
3373 | vm_map_t target_map, | |
3374 | vm_size_t *size, | |
3375 | vm_offset_t offset, | |
3376 | vm_prot_t permission, | |
3377 | ipc_port_t *object_handle, | |
3378 | ipc_port_t parent_entry) | |
3379 | { | |
3380 | memory_object_size_t mo_size; | |
3381 | kern_return_t kr; | |
3382 | ||
3383 | mo_size = (memory_object_size_t)*size; | |
3384 | kr = mach_make_memory_entry_64(target_map, &mo_size, | |
3385 | (memory_object_offset_t)offset, permission, object_handle, | |
3386 | parent_entry); | |
3387 | *size = CAST_DOWN(vm_size_t, mo_size); | |
3388 | return kr; | |
3389 | } | |
3390 | ||
3391 | /* | |
3392 | * task_wire | |
3393 | * | |
3394 | * Set or clear the map's wiring_required flag. This flag, if set, | |
3395 | * will cause all future virtual memory allocation to allocate | |
3396 | * user wired memory. Unwiring pages wired down as a result of | |
3397 | * this routine is done with the vm_wire interface. | |
3398 | */ | |
3399 | kern_return_t | |
3400 | task_wire( | |
3401 | vm_map_t map, | |
3402 | boolean_t must_wire) | |
3403 | { | |
3404 | if (map == VM_MAP_NULL) { | |
3405 | return KERN_INVALID_ARGUMENT; | |
3406 | } | |
3407 | ||
3408 | vm_map_lock(map); | |
3409 | map->wiring_required = (must_wire == TRUE); | |
3410 | vm_map_unlock(map); | |
3411 | ||
3412 | return KERN_SUCCESS; | |
3413 | } | |
3414 | ||
3415 | kern_return_t | |
3416 | vm_map_exec_lockdown( | |
3417 | vm_map_t map) | |
3418 | { | |
3419 | if (map == VM_MAP_NULL) { | |
3420 | return KERN_INVALID_ARGUMENT; | |
3421 | } | |
3422 | ||
3423 | vm_map_lock(map); | |
3424 | map->map_disallow_new_exec = TRUE; | |
3425 | vm_map_unlock(map); | |
3426 | ||
3427 | return KERN_SUCCESS; | |
3428 | } | |
3429 | ||
3430 | #if VM_NAMED_ENTRY_LIST | |
3431 | queue_head_t vm_named_entry_list; | |
3432 | int vm_named_entry_count = 0; | |
3433 | lck_mtx_t vm_named_entry_list_lock_data; | |
3434 | lck_mtx_ext_t vm_named_entry_list_lock_data_ext; | |
3435 | #endif /* VM_NAMED_ENTRY_LIST */ | |
3436 | ||
3437 | void vm_named_entry_init(void); | |
3438 | void | |
3439 | vm_named_entry_init(void) | |
3440 | { | |
3441 | #if VM_NAMED_ENTRY_LIST | |
3442 | queue_init(&vm_named_entry_list); | |
3443 | vm_named_entry_count = 0; | |
3444 | lck_mtx_init_ext(&vm_named_entry_list_lock_data, | |
3445 | &vm_named_entry_list_lock_data_ext, | |
3446 | &vm_object_lck_grp, | |
3447 | &vm_object_lck_attr); | |
3448 | #endif /* VM_NAMED_ENTRY_LIST */ | |
3449 | } | |
3450 | ||
3451 | __private_extern__ kern_return_t | |
3452 | mach_memory_entry_allocate( | |
3453 | vm_named_entry_t *user_entry_p, | |
3454 | ipc_port_t *user_handle_p) | |
3455 | { | |
3456 | vm_named_entry_t user_entry; | |
3457 | ipc_port_t user_handle; | |
3458 | ipc_port_t previous; | |
3459 | ||
3460 | user_entry = (vm_named_entry_t) kalloc(sizeof *user_entry); | |
3461 | if (user_entry == NULL) { | |
3462 | return KERN_FAILURE; | |
3463 | } | |
3464 | bzero(user_entry, sizeof(*user_entry)); | |
3465 | ||
3466 | named_entry_lock_init(user_entry); | |
3467 | ||
3468 | user_handle = ipc_port_alloc_kernel(); | |
3469 | if (user_handle == IP_NULL) { | |
3470 | kfree(user_entry, sizeof *user_entry); | |
3471 | return KERN_FAILURE; | |
3472 | } | |
3473 | ip_lock(user_handle); | |
3474 | ||
3475 | /* make a sonce right */ | |
3476 | user_handle->ip_sorights++; | |
3477 | ip_reference(user_handle); | |
3478 | ||
3479 | /* make a send right */ | |
3480 | user_handle->ip_mscount++; | |
3481 | user_handle->ip_srights++; | |
3482 | ip_reference(user_handle); | |
3483 | ||
3484 | ipc_port_nsrequest(user_handle, 1, user_handle, &previous); | |
3485 | /* nsrequest unlocks user_handle */ | |
3486 | ||
3487 | user_entry->backing.object = NULL; | |
3488 | user_entry->is_sub_map = FALSE; | |
3489 | user_entry->is_copy = FALSE; | |
3490 | user_entry->internal = FALSE; | |
3491 | user_entry->size = 0; | |
3492 | user_entry->offset = 0; | |
3493 | user_entry->data_offset = 0; | |
3494 | user_entry->protection = VM_PROT_NONE; | |
3495 | user_entry->ref_count = 1; | |
3496 | ||
3497 | ipc_kobject_set(user_handle, (ipc_kobject_t) user_entry, | |
3498 | IKOT_NAMED_ENTRY); | |
3499 | ||
3500 | *user_entry_p = user_entry; | |
3501 | *user_handle_p = user_handle; | |
3502 | ||
3503 | #if VM_NAMED_ENTRY_LIST | |
3504 | /* keep a loose (no reference) pointer to the Mach port, for debugging only */ | |
3505 | user_entry->named_entry_port = user_handle; | |
3506 | /* backtrace at allocation time, for debugging only */ | |
3507 | OSBacktrace(&user_entry->named_entry_bt[0], | |
3508 | NAMED_ENTRY_BT_DEPTH); | |
3509 | ||
3510 | /* add this new named entry to the global list */ | |
3511 | lck_mtx_lock_spin(&vm_named_entry_list_lock_data); | |
3512 | queue_enter(&vm_named_entry_list, user_entry, | |
3513 | vm_named_entry_t, named_entry_list); | |
3514 | vm_named_entry_count++; | |
3515 | lck_mtx_unlock(&vm_named_entry_list_lock_data); | |
3516 | #endif /* VM_NAMED_ENTRY_LIST */ | |
3517 | ||
3518 | return KERN_SUCCESS; | |
3519 | } | |
3520 | ||
3521 | /* | |
3522 | * mach_memory_object_memory_entry_64 | |
3523 | * | |
3524 | * Create a named entry backed by the provided pager. | |
3525 | * | |
3526 | */ | |
3527 | kern_return_t | |
3528 | mach_memory_object_memory_entry_64( | |
3529 | host_t host, | |
3530 | boolean_t internal, | |
3531 | vm_object_offset_t size, | |
3532 | vm_prot_t permission, | |
3533 | memory_object_t pager, | |
3534 | ipc_port_t *entry_handle) | |
3535 | { | |
3536 | unsigned int access; | |
3537 | vm_named_entry_t user_entry; | |
3538 | ipc_port_t user_handle; | |
3539 | vm_object_t object; | |
3540 | ||
3541 | if (host == HOST_NULL) { | |
3542 | return KERN_INVALID_HOST; | |
3543 | } | |
3544 | ||
3545 | if (pager == MEMORY_OBJECT_NULL && internal) { | |
3546 | object = vm_object_allocate(size); | |
3547 | if (object->copy_strategy == MEMORY_OBJECT_COPY_SYMMETRIC) { | |
3548 | object->copy_strategy = MEMORY_OBJECT_COPY_DELAY; | |
3549 | } | |
3550 | } else { | |
3551 | object = memory_object_to_vm_object(pager); | |
3552 | if (object != VM_OBJECT_NULL) { | |
3553 | vm_object_reference(object); | |
3554 | } | |
3555 | } | |
3556 | if (object == VM_OBJECT_NULL) { | |
3557 | return KERN_INVALID_ARGUMENT; | |
3558 | } | |
3559 | ||
3560 | if (mach_memory_entry_allocate(&user_entry, &user_handle) | |
3561 | != KERN_SUCCESS) { | |
3562 | vm_object_deallocate(object); | |
3563 | return KERN_FAILURE; | |
3564 | } | |
3565 | ||
3566 | user_entry->size = size; | |
3567 | user_entry->offset = 0; | |
3568 | user_entry->protection = permission & VM_PROT_ALL; | |
3569 | access = GET_MAP_MEM(permission); | |
3570 | SET_MAP_MEM(access, user_entry->protection); | |
3571 | user_entry->is_sub_map = FALSE; | |
3572 | assert(user_entry->ref_count == 1); | |
3573 | ||
3574 | user_entry->backing.object = object; | |
3575 | user_entry->internal = object->internal; | |
3576 | assert(object->internal == internal); | |
3577 | ||
3578 | *entry_handle = user_handle; | |
3579 | return KERN_SUCCESS; | |
3580 | } | |
3581 | ||
3582 | kern_return_t | |
3583 | mach_memory_object_memory_entry( | |
3584 | host_t host, | |
3585 | boolean_t internal, | |
3586 | vm_size_t size, | |
3587 | vm_prot_t permission, | |
3588 | memory_object_t pager, | |
3589 | ipc_port_t *entry_handle) | |
3590 | { | |
3591 | return mach_memory_object_memory_entry_64( host, internal, | |
3592 | (vm_object_offset_t)size, permission, pager, entry_handle); | |
3593 | } | |
3594 | ||
3595 | ||
3596 | kern_return_t | |
3597 | mach_memory_entry_purgable_control( | |
3598 | ipc_port_t entry_port, | |
3599 | vm_purgable_t control, | |
3600 | int *state) | |
3601 | { | |
3602 | if (control == VM_PURGABLE_SET_STATE_FROM_KERNEL) { | |
3603 | /* not allowed from user-space */ | |
3604 | return KERN_INVALID_ARGUMENT; | |
3605 | } | |
3606 | ||
3607 | return memory_entry_purgeable_control_internal(entry_port, control, state); | |
3608 | } | |
3609 | ||
3610 | kern_return_t | |
3611 | memory_entry_purgeable_control_internal( | |
3612 | ipc_port_t entry_port, | |
3613 | vm_purgable_t control, | |
3614 | int *state) | |
3615 | { | |
3616 | kern_return_t kr; | |
3617 | vm_named_entry_t mem_entry; | |
3618 | vm_object_t object; | |
3619 | ||
3620 | if (!IP_VALID(entry_port) || | |
3621 | ip_kotype(entry_port) != IKOT_NAMED_ENTRY) { | |
3622 | return KERN_INVALID_ARGUMENT; | |
3623 | } | |
3624 | if (control != VM_PURGABLE_SET_STATE && | |
3625 | control != VM_PURGABLE_GET_STATE && | |
3626 | control != VM_PURGABLE_SET_STATE_FROM_KERNEL) { | |
3627 | return KERN_INVALID_ARGUMENT; | |
3628 | } | |
3629 | ||
3630 | if ((control == VM_PURGABLE_SET_STATE || | |
3631 | control == VM_PURGABLE_SET_STATE_FROM_KERNEL) && | |
3632 | (((*state & ~(VM_PURGABLE_ALL_MASKS)) != 0) || | |
3633 | ((*state & VM_PURGABLE_STATE_MASK) > VM_PURGABLE_STATE_MASK))) { | |
3634 | return KERN_INVALID_ARGUMENT; | |
3635 | } | |
3636 | ||
3637 | mem_entry = (vm_named_entry_t) entry_port->ip_kobject; | |
3638 | ||
3639 | named_entry_lock(mem_entry); | |
3640 | ||
3641 | if (mem_entry->is_sub_map || | |
3642 | mem_entry->is_copy) { | |
3643 | named_entry_unlock(mem_entry); | |
3644 | return KERN_INVALID_ARGUMENT; | |
3645 | } | |
3646 | ||
3647 | object = mem_entry->backing.object; | |
3648 | if (object == VM_OBJECT_NULL) { | |
3649 | named_entry_unlock(mem_entry); | |
3650 | return KERN_INVALID_ARGUMENT; | |
3651 | } | |
3652 | ||
3653 | vm_object_lock(object); | |
3654 | ||
3655 | /* check that named entry covers entire object ? */ | |
3656 | if (mem_entry->offset != 0 || object->vo_size != mem_entry->size) { | |
3657 | vm_object_unlock(object); | |
3658 | named_entry_unlock(mem_entry); | |
3659 | return KERN_INVALID_ARGUMENT; | |
3660 | } | |
3661 | ||
3662 | named_entry_unlock(mem_entry); | |
3663 | ||
3664 | kr = vm_object_purgable_control(object, control, state); | |
3665 | ||
3666 | vm_object_unlock(object); | |
3667 | ||
3668 | return kr; | |
3669 | } | |
3670 | ||
3671 | kern_return_t | |
3672 | mach_memory_entry_access_tracking( | |
3673 | ipc_port_t entry_port, | |
3674 | int *access_tracking, | |
3675 | uint32_t *access_tracking_reads, | |
3676 | uint32_t *access_tracking_writes) | |
3677 | { | |
3678 | return memory_entry_access_tracking_internal(entry_port, | |
3679 | access_tracking, | |
3680 | access_tracking_reads, | |
3681 | access_tracking_writes); | |
3682 | } | |
3683 | ||
3684 | kern_return_t | |
3685 | memory_entry_access_tracking_internal( | |
3686 | ipc_port_t entry_port, | |
3687 | int *access_tracking, | |
3688 | uint32_t *access_tracking_reads, | |
3689 | uint32_t *access_tracking_writes) | |
3690 | { | |
3691 | vm_named_entry_t mem_entry; | |
3692 | vm_object_t object; | |
3693 | kern_return_t kr; | |
3694 | ||
3695 | if (!IP_VALID(entry_port) || | |
3696 | ip_kotype(entry_port) != IKOT_NAMED_ENTRY) { | |
3697 | return KERN_INVALID_ARGUMENT; | |
3698 | } | |
3699 | ||
3700 | mem_entry = (vm_named_entry_t) entry_port->ip_kobject; | |
3701 | ||
3702 | named_entry_lock(mem_entry); | |
3703 | ||
3704 | if (mem_entry->is_sub_map || | |
3705 | mem_entry->is_copy) { | |
3706 | named_entry_unlock(mem_entry); | |
3707 | return KERN_INVALID_ARGUMENT; | |
3708 | } | |
3709 | ||
3710 | object = mem_entry->backing.object; | |
3711 | if (object == VM_OBJECT_NULL) { | |
3712 | named_entry_unlock(mem_entry); | |
3713 | return KERN_INVALID_ARGUMENT; | |
3714 | } | |
3715 | ||
3716 | #if VM_OBJECT_ACCESS_TRACKING | |
3717 | vm_object_access_tracking(object, | |
3718 | access_tracking, | |
3719 | access_tracking_reads, | |
3720 | access_tracking_writes); | |
3721 | kr = KERN_SUCCESS; | |
3722 | #else /* VM_OBJECT_ACCESS_TRACKING */ | |
3723 | (void) access_tracking; | |
3724 | (void) access_tracking_reads; | |
3725 | (void) access_tracking_writes; | |
3726 | kr = KERN_NOT_SUPPORTED; | |
3727 | #endif /* VM_OBJECT_ACCESS_TRACKING */ | |
3728 | ||
3729 | named_entry_unlock(mem_entry); | |
3730 | ||
3731 | return kr; | |
3732 | } | |
3733 | ||
3734 | kern_return_t | |
3735 | mach_memory_entry_get_page_counts( | |
3736 | ipc_port_t entry_port, | |
3737 | unsigned int *resident_page_count, | |
3738 | unsigned int *dirty_page_count) | |
3739 | { | |
3740 | kern_return_t kr; | |
3741 | vm_named_entry_t mem_entry; | |
3742 | vm_object_t object; | |
3743 | vm_object_offset_t offset; | |
3744 | vm_object_size_t size; | |
3745 | ||
3746 | if (!IP_VALID(entry_port) || | |
3747 | ip_kotype(entry_port) != IKOT_NAMED_ENTRY) { | |
3748 | return KERN_INVALID_ARGUMENT; | |
3749 | } | |
3750 | ||
3751 | mem_entry = (vm_named_entry_t) entry_port->ip_kobject; | |
3752 | ||
3753 | named_entry_lock(mem_entry); | |
3754 | ||
3755 | if (mem_entry->is_sub_map || | |
3756 | mem_entry->is_copy) { | |
3757 | named_entry_unlock(mem_entry); | |
3758 | return KERN_INVALID_ARGUMENT; | |
3759 | } | |
3760 | ||
3761 | object = mem_entry->backing.object; | |
3762 | if (object == VM_OBJECT_NULL) { | |
3763 | named_entry_unlock(mem_entry); | |
3764 | return KERN_INVALID_ARGUMENT; | |
3765 | } | |
3766 | ||
3767 | vm_object_lock(object); | |
3768 | ||
3769 | offset = mem_entry->offset; | |
3770 | size = mem_entry->size; | |
3771 | ||
3772 | named_entry_unlock(mem_entry); | |
3773 | ||
3774 | kr = vm_object_get_page_counts(object, offset, size, resident_page_count, dirty_page_count); | |
3775 | ||
3776 | vm_object_unlock(object); | |
3777 | ||
3778 | return kr; | |
3779 | } | |
3780 | ||
3781 | /* | |
3782 | * mach_memory_entry_port_release: | |
3783 | * | |
3784 | * Release a send right on a named entry port. This is the correct | |
3785 | * way to destroy a named entry. When the last right on the port is | |
3786 | * released, ipc_kobject_destroy() will call mach_destroy_memory_entry(). | |
3787 | */ | |
3788 | void | |
3789 | mach_memory_entry_port_release( | |
3790 | ipc_port_t port) | |
3791 | { | |
3792 | assert(ip_kotype(port) == IKOT_NAMED_ENTRY); | |
3793 | ipc_port_release_send(port); | |
3794 | } | |
3795 | ||
3796 | /* | |
3797 | * mach_destroy_memory_entry: | |
3798 | * | |
3799 | * Drops a reference on a memory entry and destroys the memory entry if | |
3800 | * there are no more references on it. | |
3801 | * NOTE: This routine should not be called to destroy a memory entry from the | |
3802 | * kernel, as it will not release the Mach port associated with the memory | |
3803 | * entry. The proper way to destroy a memory entry in the kernel is to | |
3804 | * call mach_memort_entry_port_release() to release the kernel's send-right on | |
3805 | * the memory entry's port. When the last send right is released, the memory | |
3806 | * entry will be destroyed via ipc_kobject_destroy(). | |
3807 | */ | |
3808 | void | |
3809 | mach_destroy_memory_entry( | |
3810 | ipc_port_t port) | |
3811 | { | |
3812 | vm_named_entry_t named_entry; | |
3813 | #if MACH_ASSERT | |
3814 | assert(ip_kotype(port) == IKOT_NAMED_ENTRY); | |
3815 | #endif /* MACH_ASSERT */ | |
3816 | named_entry = (vm_named_entry_t)port->ip_kobject; | |
3817 | ||
3818 | named_entry_lock(named_entry); | |
3819 | named_entry->ref_count -= 1; | |
3820 | ||
3821 | if (named_entry->ref_count == 0) { | |
3822 | if (named_entry->is_sub_map) { | |
3823 | vm_map_deallocate(named_entry->backing.map); | |
3824 | } else if (named_entry->is_copy) { | |
3825 | vm_map_copy_discard(named_entry->backing.copy); | |
3826 | } else { | |
3827 | /* release the VM object we've been pointing to */ | |
3828 | vm_object_deallocate(named_entry->backing.object); | |
3829 | } | |
3830 | ||
3831 | named_entry_unlock(named_entry); | |
3832 | named_entry_lock_destroy(named_entry); | |
3833 | ||
3834 | #if VM_NAMED_ENTRY_LIST | |
3835 | lck_mtx_lock_spin(&vm_named_entry_list_lock_data); | |
3836 | queue_remove(&vm_named_entry_list, named_entry, | |
3837 | vm_named_entry_t, named_entry_list); | |
3838 | assert(vm_named_entry_count > 0); | |
3839 | vm_named_entry_count--; | |
3840 | lck_mtx_unlock(&vm_named_entry_list_lock_data); | |
3841 | #endif /* VM_NAMED_ENTRY_LIST */ | |
3842 | ||
3843 | kfree(port->ip_kobject, | |
3844 | sizeof(struct vm_named_entry)); | |
3845 | } else { | |
3846 | named_entry_unlock(named_entry); | |
3847 | } | |
3848 | } | |
3849 | ||
3850 | /* Allow manipulation of individual page state. This is actually part of */ | |
3851 | /* the UPL regimen but takes place on the memory entry rather than on a UPL */ | |
3852 | ||
3853 | kern_return_t | |
3854 | mach_memory_entry_page_op( | |
3855 | ipc_port_t entry_port, | |
3856 | vm_object_offset_t offset, | |
3857 | int ops, | |
3858 | ppnum_t *phys_entry, | |
3859 | int *flags) | |
3860 | { | |
3861 | vm_named_entry_t mem_entry; | |
3862 | vm_object_t object; | |
3863 | kern_return_t kr; | |
3864 | ||
3865 | if (!IP_VALID(entry_port) || | |
3866 | ip_kotype(entry_port) != IKOT_NAMED_ENTRY) { | |
3867 | return KERN_INVALID_ARGUMENT; | |
3868 | } | |
3869 | ||
3870 | mem_entry = (vm_named_entry_t) entry_port->ip_kobject; | |
3871 | ||
3872 | named_entry_lock(mem_entry); | |
3873 | ||
3874 | if (mem_entry->is_sub_map || | |
3875 | mem_entry->is_copy) { | |
3876 | named_entry_unlock(mem_entry); | |
3877 | return KERN_INVALID_ARGUMENT; | |
3878 | } | |
3879 | ||
3880 | object = mem_entry->backing.object; | |
3881 | if (object == VM_OBJECT_NULL) { | |
3882 | named_entry_unlock(mem_entry); | |
3883 | return KERN_INVALID_ARGUMENT; | |
3884 | } | |
3885 | ||
3886 | vm_object_reference(object); | |
3887 | named_entry_unlock(mem_entry); | |
3888 | ||
3889 | kr = vm_object_page_op(object, offset, ops, phys_entry, flags); | |
3890 | ||
3891 | vm_object_deallocate(object); | |
3892 | ||
3893 | return kr; | |
3894 | } | |
3895 | ||
3896 | /* | |
3897 | * mach_memory_entry_range_op offers performance enhancement over | |
3898 | * mach_memory_entry_page_op for page_op functions which do not require page | |
3899 | * level state to be returned from the call. Page_op was created to provide | |
3900 | * a low-cost alternative to page manipulation via UPLs when only a single | |
3901 | * page was involved. The range_op call establishes the ability in the _op | |
3902 | * family of functions to work on multiple pages where the lack of page level | |
3903 | * state handling allows the caller to avoid the overhead of the upl structures. | |
3904 | */ | |
3905 | ||
3906 | kern_return_t | |
3907 | mach_memory_entry_range_op( | |
3908 | ipc_port_t entry_port, | |
3909 | vm_object_offset_t offset_beg, | |
3910 | vm_object_offset_t offset_end, | |
3911 | int ops, | |
3912 | int *range) | |
3913 | { | |
3914 | vm_named_entry_t mem_entry; | |
3915 | vm_object_t object; | |
3916 | kern_return_t kr; | |
3917 | ||
3918 | if (!IP_VALID(entry_port) || | |
3919 | ip_kotype(entry_port) != IKOT_NAMED_ENTRY) { | |
3920 | return KERN_INVALID_ARGUMENT; | |
3921 | } | |
3922 | ||
3923 | mem_entry = (vm_named_entry_t) entry_port->ip_kobject; | |
3924 | ||
3925 | named_entry_lock(mem_entry); | |
3926 | ||
3927 | if (mem_entry->is_sub_map || | |
3928 | mem_entry->is_copy) { | |
3929 | named_entry_unlock(mem_entry); | |
3930 | return KERN_INVALID_ARGUMENT; | |
3931 | } | |
3932 | ||
3933 | object = mem_entry->backing.object; | |
3934 | if (object == VM_OBJECT_NULL) { | |
3935 | named_entry_unlock(mem_entry); | |
3936 | return KERN_INVALID_ARGUMENT; | |
3937 | } | |
3938 | ||
3939 | vm_object_reference(object); | |
3940 | named_entry_unlock(mem_entry); | |
3941 | ||
3942 | kr = vm_object_range_op(object, | |
3943 | offset_beg, | |
3944 | offset_end, | |
3945 | ops, | |
3946 | (uint32_t *) range); | |
3947 | ||
3948 | vm_object_deallocate(object); | |
3949 | ||
3950 | return kr; | |
3951 | } | |
3952 | ||
3953 | /* ******* Temporary Internal calls to UPL for BSD ***** */ | |
3954 | ||
3955 | extern int kernel_upl_map( | |
3956 | vm_map_t map, | |
3957 | upl_t upl, | |
3958 | vm_offset_t *dst_addr); | |
3959 | ||
3960 | extern int kernel_upl_unmap( | |
3961 | vm_map_t map, | |
3962 | upl_t upl); | |
3963 | ||
3964 | extern int kernel_upl_commit( | |
3965 | upl_t upl, | |
3966 | upl_page_info_t *pl, | |
3967 | mach_msg_type_number_t count); | |
3968 | ||
3969 | extern int kernel_upl_commit_range( | |
3970 | upl_t upl, | |
3971 | upl_offset_t offset, | |
3972 | upl_size_t size, | |
3973 | int flags, | |
3974 | upl_page_info_array_t pl, | |
3975 | mach_msg_type_number_t count); | |
3976 | ||
3977 | extern int kernel_upl_abort( | |
3978 | upl_t upl, | |
3979 | int abort_type); | |
3980 | ||
3981 | extern int kernel_upl_abort_range( | |
3982 | upl_t upl, | |
3983 | upl_offset_t offset, | |
3984 | upl_size_t size, | |
3985 | int abort_flags); | |
3986 | ||
3987 | ||
3988 | kern_return_t | |
3989 | kernel_upl_map( | |
3990 | vm_map_t map, | |
3991 | upl_t upl, | |
3992 | vm_offset_t *dst_addr) | |
3993 | { | |
3994 | return vm_upl_map(map, upl, dst_addr); | |
3995 | } | |
3996 | ||
3997 | ||
3998 | kern_return_t | |
3999 | kernel_upl_unmap( | |
4000 | vm_map_t map, | |
4001 | upl_t upl) | |
4002 | { | |
4003 | return vm_upl_unmap(map, upl); | |
4004 | } | |
4005 | ||
4006 | kern_return_t | |
4007 | kernel_upl_commit( | |
4008 | upl_t upl, | |
4009 | upl_page_info_t *pl, | |
4010 | mach_msg_type_number_t count) | |
4011 | { | |
4012 | kern_return_t kr; | |
4013 | ||
4014 | kr = upl_commit(upl, pl, count); | |
4015 | upl_deallocate(upl); | |
4016 | return kr; | |
4017 | } | |
4018 | ||
4019 | ||
4020 | kern_return_t | |
4021 | kernel_upl_commit_range( | |
4022 | upl_t upl, | |
4023 | upl_offset_t offset, | |
4024 | upl_size_t size, | |
4025 | int flags, | |
4026 | upl_page_info_array_t pl, | |
4027 | mach_msg_type_number_t count) | |
4028 | { | |
4029 | boolean_t finished = FALSE; | |
4030 | kern_return_t kr; | |
4031 | ||
4032 | if (flags & UPL_COMMIT_FREE_ON_EMPTY) { | |
4033 | flags |= UPL_COMMIT_NOTIFY_EMPTY; | |
4034 | } | |
4035 | ||
4036 | if (flags & UPL_COMMIT_KERNEL_ONLY_FLAGS) { | |
4037 | return KERN_INVALID_ARGUMENT; | |
4038 | } | |
4039 | ||
4040 | kr = upl_commit_range(upl, offset, size, flags, pl, count, &finished); | |
4041 | ||
4042 | if ((flags & UPL_COMMIT_NOTIFY_EMPTY) && finished) { | |
4043 | upl_deallocate(upl); | |
4044 | } | |
4045 | ||
4046 | return kr; | |
4047 | } | |
4048 | ||
4049 | kern_return_t | |
4050 | kernel_upl_abort_range( | |
4051 | upl_t upl, | |
4052 | upl_offset_t offset, | |
4053 | upl_size_t size, | |
4054 | int abort_flags) | |
4055 | { | |
4056 | kern_return_t kr; | |
4057 | boolean_t finished = FALSE; | |
4058 | ||
4059 | if (abort_flags & UPL_COMMIT_FREE_ON_EMPTY) { | |
4060 | abort_flags |= UPL_COMMIT_NOTIFY_EMPTY; | |
4061 | } | |
4062 | ||
4063 | kr = upl_abort_range(upl, offset, size, abort_flags, &finished); | |
4064 | ||
4065 | if ((abort_flags & UPL_COMMIT_FREE_ON_EMPTY) && finished) { | |
4066 | upl_deallocate(upl); | |
4067 | } | |
4068 | ||
4069 | return kr; | |
4070 | } | |
4071 | ||
4072 | kern_return_t | |
4073 | kernel_upl_abort( | |
4074 | upl_t upl, | |
4075 | int abort_type) | |
4076 | { | |
4077 | kern_return_t kr; | |
4078 | ||
4079 | kr = upl_abort(upl, abort_type); | |
4080 | upl_deallocate(upl); | |
4081 | return kr; | |
4082 | } | |
4083 | ||
4084 | /* | |
4085 | * Now a kernel-private interface (for BootCache | |
4086 | * use only). Need a cleaner way to create an | |
4087 | * empty vm_map() and return a handle to it. | |
4088 | */ | |
4089 | ||
4090 | kern_return_t | |
4091 | vm_region_object_create( | |
4092 | __unused vm_map_t target_map, | |
4093 | vm_size_t size, | |
4094 | ipc_port_t *object_handle) | |
4095 | { | |
4096 | vm_named_entry_t user_entry; | |
4097 | ipc_port_t user_handle; | |
4098 | ||
4099 | vm_map_t new_map; | |
4100 | ||
4101 | if (mach_memory_entry_allocate(&user_entry, &user_handle) | |
4102 | != KERN_SUCCESS) { | |
4103 | return KERN_FAILURE; | |
4104 | } | |
4105 | ||
4106 | /* Create a named object based on a submap of specified size */ | |
4107 | ||
4108 | new_map = vm_map_create(PMAP_NULL, VM_MAP_MIN_ADDRESS, | |
4109 | vm_map_round_page(size, | |
4110 | VM_MAP_PAGE_MASK(target_map)), | |
4111 | TRUE); | |
4112 | vm_map_set_page_shift(new_map, VM_MAP_PAGE_SHIFT(target_map)); | |
4113 | ||
4114 | user_entry->backing.map = new_map; | |
4115 | user_entry->internal = TRUE; | |
4116 | user_entry->is_sub_map = TRUE; | |
4117 | user_entry->offset = 0; | |
4118 | user_entry->protection = VM_PROT_ALL; | |
4119 | user_entry->size = size; | |
4120 | assert(user_entry->ref_count == 1); | |
4121 | ||
4122 | *object_handle = user_handle; | |
4123 | return KERN_SUCCESS; | |
4124 | } | |
4125 | ||
4126 | ppnum_t vm_map_get_phys_page( /* forward */ | |
4127 | vm_map_t map, | |
4128 | vm_offset_t offset); | |
4129 | ||
4130 | ppnum_t | |
4131 | vm_map_get_phys_page( | |
4132 | vm_map_t map, | |
4133 | vm_offset_t addr) | |
4134 | { | |
4135 | vm_object_offset_t offset; | |
4136 | vm_object_t object; | |
4137 | vm_map_offset_t map_offset; | |
4138 | vm_map_entry_t entry; | |
4139 | ppnum_t phys_page = 0; | |
4140 | ||
4141 | map_offset = vm_map_trunc_page(addr, PAGE_MASK); | |
4142 | ||
4143 | vm_map_lock(map); | |
4144 | while (vm_map_lookup_entry(map, map_offset, &entry)) { | |
4145 | if (VME_OBJECT(entry) == VM_OBJECT_NULL) { | |
4146 | vm_map_unlock(map); | |
4147 | return (ppnum_t) 0; | |
4148 | } | |
4149 | if (entry->is_sub_map) { | |
4150 | vm_map_t old_map; | |
4151 | vm_map_lock(VME_SUBMAP(entry)); | |
4152 | old_map = map; | |
4153 | map = VME_SUBMAP(entry); | |
4154 | map_offset = (VME_OFFSET(entry) + | |
4155 | (map_offset - entry->vme_start)); | |
4156 | vm_map_unlock(old_map); | |
4157 | continue; | |
4158 | } | |
4159 | if (VME_OBJECT(entry)->phys_contiguous) { | |
4160 | /* These are not standard pageable memory mappings */ | |
4161 | /* If they are not present in the object they will */ | |
4162 | /* have to be picked up from the pager through the */ | |
4163 | /* fault mechanism. */ | |
4164 | if (VME_OBJECT(entry)->vo_shadow_offset == 0) { | |
4165 | /* need to call vm_fault */ | |
4166 | vm_map_unlock(map); | |
4167 | vm_fault(map, map_offset, VM_PROT_NONE, | |
4168 | FALSE /* change_wiring */, VM_KERN_MEMORY_NONE, | |
4169 | THREAD_UNINT, NULL, 0); | |
4170 | vm_map_lock(map); | |
4171 | continue; | |
4172 | } | |
4173 | offset = (VME_OFFSET(entry) + | |
4174 | (map_offset - entry->vme_start)); | |
4175 | phys_page = (ppnum_t) | |
4176 | ((VME_OBJECT(entry)->vo_shadow_offset | |
4177 | + offset) >> PAGE_SHIFT); | |
4178 | break; | |
4179 | } | |
4180 | offset = (VME_OFFSET(entry) + (map_offset - entry->vme_start)); | |
4181 | object = VME_OBJECT(entry); | |
4182 | vm_object_lock(object); | |
4183 | while (TRUE) { | |
4184 | vm_page_t dst_page = vm_page_lookup(object, offset); | |
4185 | if (dst_page == VM_PAGE_NULL) { | |
4186 | if (object->shadow) { | |
4187 | vm_object_t old_object; | |
4188 | vm_object_lock(object->shadow); | |
4189 | old_object = object; | |
4190 | offset = offset + object->vo_shadow_offset; | |
4191 | object = object->shadow; | |
4192 | vm_object_unlock(old_object); | |
4193 | } else { | |
4194 | vm_object_unlock(object); | |
4195 | break; | |
4196 | } | |
4197 | } else { | |
4198 | phys_page = (ppnum_t)(VM_PAGE_GET_PHYS_PAGE(dst_page)); | |
4199 | vm_object_unlock(object); | |
4200 | break; | |
4201 | } | |
4202 | } | |
4203 | break; | |
4204 | } | |
4205 | ||
4206 | vm_map_unlock(map); | |
4207 | return phys_page; | |
4208 | } | |
4209 | ||
4210 | #if 0 | |
4211 | kern_return_t kernel_object_iopl_request( /* forward */ | |
4212 | vm_named_entry_t named_entry, | |
4213 | memory_object_offset_t offset, | |
4214 | upl_size_t *upl_size, | |
4215 | upl_t *upl_ptr, | |
4216 | upl_page_info_array_t user_page_list, | |
4217 | unsigned int *page_list_count, | |
4218 | int *flags); | |
4219 | ||
4220 | kern_return_t | |
4221 | kernel_object_iopl_request( | |
4222 | vm_named_entry_t named_entry, | |
4223 | memory_object_offset_t offset, | |
4224 | upl_size_t *upl_size, | |
4225 | upl_t *upl_ptr, | |
4226 | upl_page_info_array_t user_page_list, | |
4227 | unsigned int *page_list_count, | |
4228 | int *flags) | |
4229 | { | |
4230 | vm_object_t object; | |
4231 | kern_return_t ret; | |
4232 | ||
4233 | int caller_flags; | |
4234 | ||
4235 | caller_flags = *flags; | |
4236 | ||
4237 | if (caller_flags & ~UPL_VALID_FLAGS) { | |
4238 | /* | |
4239 | * For forward compatibility's sake, | |
4240 | * reject any unknown flag. | |
4241 | */ | |
4242 | return KERN_INVALID_VALUE; | |
4243 | } | |
4244 | ||
4245 | /* a few checks to make sure user is obeying rules */ | |
4246 | if (*upl_size == 0) { | |
4247 | if (offset >= named_entry->size) { | |
4248 | return KERN_INVALID_RIGHT; | |
4249 | } | |
4250 | *upl_size = (upl_size_t) (named_entry->size - offset); | |
4251 | if (*upl_size != named_entry->size - offset) { | |
4252 | return KERN_INVALID_ARGUMENT; | |
4253 | } | |
4254 | } | |
4255 | if (caller_flags & UPL_COPYOUT_FROM) { | |
4256 | if ((named_entry->protection & VM_PROT_READ) | |
4257 | != VM_PROT_READ) { | |
4258 | return KERN_INVALID_RIGHT; | |
4259 | } | |
4260 | } else { | |
4261 | if ((named_entry->protection & | |
4262 | (VM_PROT_READ | VM_PROT_WRITE)) | |
4263 | != (VM_PROT_READ | VM_PROT_WRITE)) { | |
4264 | return KERN_INVALID_RIGHT; | |
4265 | } | |
4266 | } | |
4267 | if (named_entry->size < (offset + *upl_size)) { | |
4268 | return KERN_INVALID_ARGUMENT; | |
4269 | } | |
4270 | ||
4271 | /* the callers parameter offset is defined to be the */ | |
4272 | /* offset from beginning of named entry offset in object */ | |
4273 | offset = offset + named_entry->offset; | |
4274 | ||
4275 | if (named_entry->is_sub_map || | |
4276 | named_entry->is_copy) { | |
4277 | return KERN_INVALID_ARGUMENT; | |
4278 | } | |
4279 | ||
4280 | named_entry_lock(named_entry); | |
4281 | ||
4282 | /* This is the case where we are going to operate */ | |
4283 | /* on an already known object. If the object is */ | |
4284 | /* not ready it is internal. An external */ | |
4285 | /* object cannot be mapped until it is ready */ | |
4286 | /* we can therefore avoid the ready check */ | |
4287 | /* in this case. */ | |
4288 | object = named_entry->backing.object; | |
4289 | vm_object_reference(object); | |
4290 | named_entry_unlock(named_entry); | |
4291 | ||
4292 | if (!object->private) { | |
4293 | if (*upl_size > MAX_UPL_TRANSFER_BYTES) { | |
4294 | *upl_size = MAX_UPL_TRANSFER_BYTES; | |
4295 | } | |
4296 | if (object->phys_contiguous) { | |
4297 | *flags = UPL_PHYS_CONTIG; | |
4298 | } else { | |
4299 | *flags = 0; | |
4300 | } | |
4301 | } else { | |
4302 | *flags = UPL_DEV_MEMORY | UPL_PHYS_CONTIG; | |
4303 | } | |
4304 | ||
4305 | ret = vm_object_iopl_request(object, | |
4306 | offset, | |
4307 | *upl_size, | |
4308 | upl_ptr, | |
4309 | user_page_list, | |
4310 | page_list_count, | |
4311 | (upl_control_flags_t)(unsigned int)caller_flags); | |
4312 | vm_object_deallocate(object); | |
4313 | return ret; | |
4314 | } | |
4315 | #endif | |
4316 | ||
4317 | /* | |
4318 | * These symbols are looked up at runtime by vmware, VirtualBox, | |
4319 | * despite not being exported in the symbol sets. | |
4320 | */ | |
4321 | ||
4322 | #if defined(__x86_64__) | |
4323 | ||
4324 | kern_return_t | |
4325 | mach_vm_map( | |
4326 | vm_map_t target_map, | |
4327 | mach_vm_offset_t *address, | |
4328 | mach_vm_size_t initial_size, | |
4329 | mach_vm_offset_t mask, | |
4330 | int flags, | |
4331 | ipc_port_t port, | |
4332 | vm_object_offset_t offset, | |
4333 | boolean_t copy, | |
4334 | vm_prot_t cur_protection, | |
4335 | vm_prot_t max_protection, | |
4336 | vm_inherit_t inheritance); | |
4337 | ||
4338 | kern_return_t | |
4339 | mach_vm_remap( | |
4340 | vm_map_t target_map, | |
4341 | mach_vm_offset_t *address, | |
4342 | mach_vm_size_t size, | |
4343 | mach_vm_offset_t mask, | |
4344 | int flags, | |
4345 | vm_map_t src_map, | |
4346 | mach_vm_offset_t memory_address, | |
4347 | boolean_t copy, | |
4348 | vm_prot_t *cur_protection, | |
4349 | vm_prot_t *max_protection, | |
4350 | vm_inherit_t inheritance); | |
4351 | ||
4352 | kern_return_t | |
4353 | mach_vm_map( | |
4354 | vm_map_t target_map, | |
4355 | mach_vm_offset_t *address, | |
4356 | mach_vm_size_t initial_size, | |
4357 | mach_vm_offset_t mask, | |
4358 | int flags, | |
4359 | ipc_port_t port, | |
4360 | vm_object_offset_t offset, | |
4361 | boolean_t copy, | |
4362 | vm_prot_t cur_protection, | |
4363 | vm_prot_t max_protection, | |
4364 | vm_inherit_t inheritance) | |
4365 | { | |
4366 | return mach_vm_map_external(target_map, address, initial_size, mask, flags, port, | |
4367 | offset, copy, cur_protection, max_protection, inheritance); | |
4368 | } | |
4369 | ||
4370 | kern_return_t | |
4371 | mach_vm_remap( | |
4372 | vm_map_t target_map, | |
4373 | mach_vm_offset_t *address, | |
4374 | mach_vm_size_t size, | |
4375 | mach_vm_offset_t mask, | |
4376 | int flags, | |
4377 | vm_map_t src_map, | |
4378 | mach_vm_offset_t memory_address, | |
4379 | boolean_t copy, | |
4380 | vm_prot_t *cur_protection, | |
4381 | vm_prot_t *max_protection, | |
4382 | vm_inherit_t inheritance) | |
4383 | { | |
4384 | return mach_vm_remap_external(target_map, address, size, mask, flags, src_map, memory_address, | |
4385 | copy, cur_protection, max_protection, inheritance); | |
4386 | } | |
4387 | ||
4388 | kern_return_t | |
4389 | vm_map( | |
4390 | vm_map_t target_map, | |
4391 | vm_offset_t *address, | |
4392 | vm_size_t size, | |
4393 | vm_offset_t mask, | |
4394 | int flags, | |
4395 | ipc_port_t port, | |
4396 | vm_offset_t offset, | |
4397 | boolean_t copy, | |
4398 | vm_prot_t cur_protection, | |
4399 | vm_prot_t max_protection, | |
4400 | vm_inherit_t inheritance); | |
4401 | ||
4402 | kern_return_t | |
4403 | vm_map( | |
4404 | vm_map_t target_map, | |
4405 | vm_offset_t *address, | |
4406 | vm_size_t size, | |
4407 | vm_offset_t mask, | |
4408 | int flags, | |
4409 | ipc_port_t port, | |
4410 | vm_offset_t offset, | |
4411 | boolean_t copy, | |
4412 | vm_prot_t cur_protection, | |
4413 | vm_prot_t max_protection, | |
4414 | vm_inherit_t inheritance) | |
4415 | { | |
4416 | vm_tag_t tag; | |
4417 | ||
4418 | VM_GET_FLAGS_ALIAS(flags, tag); | |
4419 | return vm_map_kernel(target_map, address, size, mask, | |
4420 | flags, VM_MAP_KERNEL_FLAGS_NONE, tag, | |
4421 | port, offset, copy, | |
4422 | cur_protection, max_protection, inheritance); | |
4423 | } | |
4424 | ||
4425 | #endif /* __x86_64__ */ |