]>
Commit | Line | Data |
---|---|---|
cb323159 A |
1 | /* |
2 | * Copyright (c) 2018 Apple Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * This file contains Original Code and/or Modifications of Original Code | |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
14 | * | |
15 | * Please obtain a copy of the License at | |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
25 | * | |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ | |
27 | */ | |
28 | ||
29 | #include <mach/mach_types.h> | |
30 | #include <mach/machine.h> | |
31 | #include <machine/machine_routines.h> | |
32 | #include <machine/sched_param.h> | |
33 | #include <machine/machine_cpu.h> | |
34 | #include <kern/kern_types.h> | |
35 | #include <kern/debug.h> | |
36 | #include <kern/machine.h> | |
37 | #include <kern/misc_protos.h> | |
38 | #include <kern/processor.h> | |
39 | #include <kern/queue.h> | |
40 | #include <kern/sched.h> | |
41 | #include <kern/sched_prim.h> | |
42 | #include <kern/task.h> | |
43 | #include <kern/thread.h> | |
44 | #include <kern/sched_clutch.h> | |
45 | #include <machine/atomic.h> | |
46 | #include <kern/sched_clutch.h> | |
47 | #include <sys/kdebug.h> | |
48 | ||
f427ee49 | 49 | #if CONFIG_SCHED_EDGE |
c6bf4f31 | 50 | #include <kern/sched_amp_common.h> |
f427ee49 | 51 | #endif /* CONFIG_SCHED_EDGE */ |
cb323159 A |
52 | |
53 | #if CONFIG_SCHED_CLUTCH | |
54 | ||
55 | /* Forward declarations of static routines */ | |
56 | ||
57 | /* Root level hierarchy management */ | |
58 | static void sched_clutch_root_init(sched_clutch_root_t, processor_set_t); | |
f427ee49 | 59 | static void sched_clutch_root_bucket_init(sched_clutch_root_bucket_t, sched_bucket_t, bool); |
cb323159 | 60 | static void sched_clutch_root_pri_update(sched_clutch_root_t); |
cb323159 A |
61 | static void sched_clutch_root_urgency_inc(sched_clutch_root_t, thread_t); |
62 | static void sched_clutch_root_urgency_dec(sched_clutch_root_t, thread_t); | |
63 | ||
f427ee49 A |
64 | __enum_decl(sched_clutch_highest_root_bucket_type_t, uint32_t, { |
65 | SCHED_CLUTCH_HIGHEST_ROOT_BUCKET_NONE = 0, | |
66 | SCHED_CLUTCH_HIGHEST_ROOT_BUCKET_UNBOUND_ONLY = 1, | |
67 | SCHED_CLUTCH_HIGHEST_ROOT_BUCKET_ALL = 2, | |
68 | }); | |
69 | ||
70 | static sched_clutch_root_bucket_t sched_clutch_root_highest_root_bucket(sched_clutch_root_t, uint64_t, sched_clutch_highest_root_bucket_type_t); | |
71 | ||
72 | #if CONFIG_SCHED_EDGE | |
73 | /* Support for foreign threads on AMP platforms */ | |
74 | static boolean_t sched_clutch_root_foreign_empty(sched_clutch_root_t); | |
75 | static thread_t sched_clutch_root_highest_foreign_thread_remove(sched_clutch_root_t); | |
76 | #endif /* CONFIG_SCHED_EDGE */ | |
77 | ||
cb323159 A |
78 | /* Root bucket level hierarchy management */ |
79 | static uint64_t sched_clutch_root_bucket_deadline_calculate(sched_clutch_root_bucket_t, uint64_t); | |
80 | static void sched_clutch_root_bucket_deadline_update(sched_clutch_root_bucket_t, sched_clutch_root_t, uint64_t); | |
cb323159 | 81 | |
ea3f0419 A |
82 | /* Options for clutch bucket ordering in the runq */ |
83 | __options_decl(sched_clutch_bucket_options_t, uint32_t, { | |
84 | SCHED_CLUTCH_BUCKET_OPTIONS_NONE = 0x0, | |
85 | /* Round robin clutch bucket on thread removal */ | |
86 | SCHED_CLUTCH_BUCKET_OPTIONS_SAMEPRI_RR = 0x1, | |
87 | /* Insert clutch bucket at head (for thread preemption) */ | |
88 | SCHED_CLUTCH_BUCKET_OPTIONS_HEADQ = 0x2, | |
89 | /* Insert clutch bucket at tail (default) */ | |
90 | SCHED_CLUTCH_BUCKET_OPTIONS_TAILQ = 0x4, | |
91 | }); | |
92 | ||
cb323159 | 93 | /* Clutch bucket level hierarchy management */ |
ea3f0419 A |
94 | static void sched_clutch_bucket_hierarchy_insert(sched_clutch_root_t, sched_clutch_bucket_t, sched_bucket_t, uint64_t, sched_clutch_bucket_options_t); |
95 | static void sched_clutch_bucket_hierarchy_remove(sched_clutch_root_t, sched_clutch_bucket_t, sched_bucket_t, uint64_t, sched_clutch_bucket_options_t); | |
96 | static boolean_t sched_clutch_bucket_runnable(sched_clutch_bucket_t, sched_clutch_root_t, uint64_t, sched_clutch_bucket_options_t); | |
97 | static boolean_t sched_clutch_bucket_update(sched_clutch_bucket_t, sched_clutch_root_t, uint64_t, sched_clutch_bucket_options_t); | |
98 | static void sched_clutch_bucket_empty(sched_clutch_bucket_t, sched_clutch_root_t, uint64_t, sched_clutch_bucket_options_t); | |
cb323159 | 99 | static uint8_t sched_clutch_bucket_pri_calculate(sched_clutch_bucket_t, uint64_t); |
f427ee49 A |
100 | |
101 | /* Clutch bucket group level properties management */ | |
102 | static void sched_clutch_bucket_group_cpu_usage_update(sched_clutch_bucket_group_t, uint64_t); | |
103 | static void sched_clutch_bucket_group_cpu_adjust(sched_clutch_bucket_group_t, uint8_t); | |
104 | static void sched_clutch_bucket_group_timeshare_update(sched_clutch_bucket_group_t, sched_clutch_bucket_t, uint64_t); | |
105 | static uint8_t sched_clutch_bucket_group_pending_ageout(sched_clutch_bucket_group_t, uint64_t); | |
106 | static uint32_t sched_clutch_bucket_group_run_count_inc(sched_clutch_bucket_group_t); | |
107 | static uint32_t sched_clutch_bucket_group_run_count_dec(sched_clutch_bucket_group_t); | |
108 | static uint8_t sched_clutch_bucket_group_interactivity_score_calculate(sched_clutch_bucket_group_t, uint64_t); | |
cb323159 A |
109 | |
110 | /* Clutch timeshare properties updates */ | |
111 | static uint32_t sched_clutch_run_bucket_incr(sched_clutch_t, sched_bucket_t); | |
112 | static uint32_t sched_clutch_run_bucket_decr(sched_clutch_t, sched_bucket_t); | |
f427ee49 | 113 | |
cb323159 A |
114 | /* Clutch membership management */ |
115 | static boolean_t sched_clutch_thread_insert(sched_clutch_root_t, thread_t, integer_t); | |
ea3f0419 | 116 | static void sched_clutch_thread_remove(sched_clutch_root_t, thread_t, uint64_t, sched_clutch_bucket_options_t); |
f427ee49 | 117 | static thread_t sched_clutch_thread_highest_remove(sched_clutch_root_t); |
cb323159 A |
118 | |
119 | /* Clutch properties updates */ | |
120 | static uint32_t sched_clutch_root_urgency(sched_clutch_root_t); | |
121 | static uint32_t sched_clutch_root_count_sum(sched_clutch_root_t); | |
122 | static int sched_clutch_root_priority(sched_clutch_root_t); | |
f427ee49 A |
123 | static sched_clutch_bucket_t sched_clutch_root_bucket_highest_clutch_bucket(sched_clutch_root_bucket_t); |
124 | static boolean_t sched_thread_sched_pri_promoted(thread_t); | |
cb323159 | 125 | |
f427ee49 | 126 | #if CONFIG_SCHED_EDGE |
c6bf4f31 | 127 | /* System based routines */ |
f427ee49 A |
128 | static bool sched_edge_pset_available(processor_set_t); |
129 | static uint32_t sched_edge_thread_bound_cluster_id(thread_t); | |
130 | #endif /* CONFIG_SCHED_EDGE */ | |
cb323159 A |
131 | |
132 | /* Helper debugging routines */ | |
133 | static inline void sched_clutch_hierarchy_locked_assert(sched_clutch_root_t); | |
134 | ||
f427ee49 | 135 | extern processor_set_t pset_array[MAX_PSETS]; |
cb323159 A |
136 | |
137 | /* | |
138 | * Special markers for buckets that have invalid WCELs/quantums etc. | |
139 | */ | |
140 | #define SCHED_CLUTCH_INVALID_TIME_32 ((uint32_t)~0) | |
141 | #define SCHED_CLUTCH_INVALID_TIME_64 ((uint64_t)~0) | |
142 | ||
143 | /* | |
144 | * Root level bucket WCELs | |
145 | * | |
146 | * The root level bucket selection algorithm is an Earliest Deadline | |
147 | * First (EDF) algorithm where the deadline for buckets are defined | |
148 | * by the worst-case-execution-latency and the make runnable timestamp | |
149 | * for the bucket. | |
150 | * | |
151 | */ | |
152 | static uint32_t sched_clutch_root_bucket_wcel_us[TH_BUCKET_SCHED_MAX] = { | |
153 | SCHED_CLUTCH_INVALID_TIME_32, /* FIXPRI */ | |
154 | 0, /* FG */ | |
155 | 37500, /* IN (37.5ms) */ | |
156 | 75000, /* DF (75ms) */ | |
157 | 150000, /* UT (150ms) */ | |
158 | 250000 /* BG (250ms) */ | |
159 | }; | |
160 | static uint64_t sched_clutch_root_bucket_wcel[TH_BUCKET_SCHED_MAX] = {0}; | |
161 | ||
162 | /* | |
163 | * Root level bucket warp | |
164 | * | |
165 | * Each root level bucket has a warp value associated with it as well. | |
166 | * The warp value allows the root bucket to effectively warp ahead of | |
167 | * lower priority buckets for a limited time even if it has a later | |
168 | * deadline. The warping behavior provides extra (but limited) | |
169 | * opportunity for high priority buckets to remain responsive. | |
170 | */ | |
171 | ||
172 | /* Special warp deadline value to indicate that the bucket has not used any warp yet */ | |
173 | #define SCHED_CLUTCH_ROOT_BUCKET_WARP_UNUSED (SCHED_CLUTCH_INVALID_TIME_64) | |
174 | ||
175 | /* Warp window durations for various tiers */ | |
176 | static uint32_t sched_clutch_root_bucket_warp_us[TH_BUCKET_SCHED_MAX] = { | |
177 | SCHED_CLUTCH_INVALID_TIME_32, /* FIXPRI */ | |
178 | 8000, /* FG (8ms)*/ | |
179 | 4000, /* IN (4ms) */ | |
180 | 2000, /* DF (2ms) */ | |
181 | 1000, /* UT (1ms) */ | |
182 | 0 /* BG (0ms) */ | |
183 | }; | |
184 | static uint64_t sched_clutch_root_bucket_warp[TH_BUCKET_SCHED_MAX] = {0}; | |
185 | ||
186 | /* | |
187 | * Thread level quantum | |
188 | * | |
189 | * The algorithm defines quantums for threads at various buckets. This | |
190 | * (combined with the root level bucket quantums) restricts how much | |
191 | * the lower priority levels can preempt the higher priority threads. | |
192 | */ | |
f427ee49 A |
193 | |
194 | #if XNU_TARGET_OS_OSX | |
195 | static uint32_t sched_clutch_thread_quantum_us[TH_BUCKET_SCHED_MAX] = { | |
196 | 10000, /* FIXPRI (10ms) */ | |
197 | 10000, /* FG (10ms) */ | |
198 | 10000, /* IN (10ms) */ | |
199 | 10000, /* DF (10ms) */ | |
200 | 4000, /* UT (4ms) */ | |
201 | 2000 /* BG (2ms) */ | |
202 | }; | |
203 | #else /* XNU_TARGET_OS_OSX */ | |
cb323159 A |
204 | static uint32_t sched_clutch_thread_quantum_us[TH_BUCKET_SCHED_MAX] = { |
205 | 10000, /* FIXPRI (10ms) */ | |
206 | 10000, /* FG (10ms) */ | |
207 | 8000, /* IN (8ms) */ | |
208 | 6000, /* DF (6ms) */ | |
209 | 4000, /* UT (4ms) */ | |
210 | 2000 /* BG (2ms) */ | |
211 | }; | |
f427ee49 | 212 | #endif /* XNU_TARGET_OS_OSX */ |
cb323159 | 213 | |
f427ee49 | 214 | static uint64_t sched_clutch_thread_quantum[TH_BUCKET_SCHED_MAX] = {0}; |
cb323159 A |
215 | |
216 | /* | |
217 | * sched_clutch_us_to_abstime() | |
218 | * | |
219 | * Initializer for converting all durations in usec to abstime | |
220 | */ | |
221 | static void | |
222 | sched_clutch_us_to_abstime(uint32_t *us_vals, uint64_t *abstime_vals) | |
223 | { | |
224 | for (int i = 0; i < TH_BUCKET_SCHED_MAX; i++) { | |
225 | if (us_vals[i] == SCHED_CLUTCH_INVALID_TIME_32) { | |
226 | abstime_vals[i] = SCHED_CLUTCH_INVALID_TIME_64; | |
227 | } else { | |
228 | clock_interval_to_absolutetime_interval(us_vals[i], | |
229 | NSEC_PER_USEC, &abstime_vals[i]); | |
230 | } | |
231 | } | |
232 | } | |
233 | ||
f427ee49 A |
234 | /* Clutch/Edge Scheduler Debugging support */ |
235 | #define SCHED_CLUTCH_DBG_THR_COUNT_PACK(a, b, c) ((uint64_t)c | ((uint64_t)b << 16) | ((uint64_t)a << 32)) | |
236 | ||
cb323159 A |
237 | #if DEVELOPMENT || DEBUG |
238 | ||
239 | /* | |
240 | * sched_clutch_hierarchy_locked_assert() | |
241 | * | |
242 | * Debugging helper routine. Asserts that the hierarchy is locked. The locking | |
243 | * for the hierarchy depends on where the hierarchy is hooked. The current | |
244 | * implementation hooks the hierarchy at the pset, so the hierarchy is locked | |
245 | * using the pset lock. | |
246 | */ | |
247 | static inline void | |
248 | sched_clutch_hierarchy_locked_assert( | |
249 | sched_clutch_root_t root_clutch) | |
250 | { | |
251 | pset_assert_locked(root_clutch->scr_pset); | |
252 | } | |
253 | ||
254 | #else /* DEVELOPMENT || DEBUG */ | |
255 | ||
256 | static inline void | |
257 | sched_clutch_hierarchy_locked_assert( | |
258 | __unused sched_clutch_root_t root_clutch) | |
259 | { | |
260 | } | |
261 | ||
262 | #endif /* DEVELOPMENT || DEBUG */ | |
263 | ||
264 | /* | |
265 | * sched_clutch_thr_count_inc() | |
266 | * | |
267 | * Increment thread count at a hierarchy level with overflow checks. | |
268 | */ | |
269 | static void | |
270 | sched_clutch_thr_count_inc( | |
271 | uint16_t *thr_count) | |
272 | { | |
273 | if (__improbable(os_inc_overflow(thr_count))) { | |
274 | panic("sched_clutch thread count overflowed!"); | |
275 | } | |
276 | } | |
277 | ||
278 | /* | |
279 | * sched_clutch_thr_count_dec() | |
280 | * | |
281 | * Decrement thread count at a hierarchy level with underflow checks. | |
282 | */ | |
283 | static void | |
284 | sched_clutch_thr_count_dec( | |
285 | uint16_t *thr_count) | |
286 | { | |
287 | if (__improbable(os_dec_overflow(thr_count))) { | |
288 | panic("sched_clutch thread count underflowed!"); | |
289 | } | |
290 | } | |
291 | ||
c6bf4f31 | 292 | /* |
f427ee49 A |
293 | * The clutch scheduler attempts to ageout the CPU usage of clutch bucket groups |
294 | * based on the amount of time they have been pending and the load at that | |
295 | * scheduling bucket level. Since the clutch bucket groups are global (i.e. span | |
296 | * multiple clusters, its important to keep the load also as a global counter. | |
c6bf4f31 | 297 | */ |
f427ee49 | 298 | static uint32_t _Atomic sched_clutch_global_bucket_load[TH_BUCKET_SCHED_MAX]; |
cb323159 A |
299 | |
300 | /* | |
301 | * sched_clutch_root_init() | |
302 | * | |
303 | * Routine to initialize the scheduler hierarchy root. | |
304 | */ | |
305 | static void | |
306 | sched_clutch_root_init( | |
307 | sched_clutch_root_t root_clutch, | |
308 | processor_set_t pset) | |
309 | { | |
310 | root_clutch->scr_thr_count = 0; | |
311 | root_clutch->scr_priority = NOPRI; | |
312 | root_clutch->scr_urgency = 0; | |
313 | root_clutch->scr_pset = pset; | |
f427ee49 A |
314 | #if CONFIG_SCHED_EDGE |
315 | root_clutch->scr_cluster_id = pset->pset_cluster_id; | |
316 | #else /* CONFIG_SCHED_EDGE */ | |
317 | root_clutch->scr_cluster_id = 0; | |
318 | #endif /* CONFIG_SCHED_EDGE */ | |
cb323159 A |
319 | |
320 | /* Initialize the queue which maintains all runnable clutch_buckets for timesharing purposes */ | |
321 | queue_init(&root_clutch->scr_clutch_buckets); | |
322 | ||
f427ee49 A |
323 | /* Initialize the priority queue which maintains all runnable foreign clutch buckets */ |
324 | priority_queue_init(&root_clutch->scr_foreign_buckets); | |
325 | bzero(&root_clutch->scr_cumulative_run_count, sizeof(root_clutch->scr_cumulative_run_count)); | |
326 | bitmap_zero(root_clutch->scr_bound_runnable_bitmap, TH_BUCKET_SCHED_MAX); | |
327 | bitmap_zero(root_clutch->scr_bound_warp_available, TH_BUCKET_SCHED_MAX); | |
328 | priority_queue_init(&root_clutch->scr_bound_root_buckets); | |
cb323159 A |
329 | |
330 | /* Initialize the bitmap and priority queue of runnable root buckets */ | |
f427ee49 A |
331 | priority_queue_init(&root_clutch->scr_unbound_root_buckets); |
332 | bitmap_zero(root_clutch->scr_unbound_runnable_bitmap, TH_BUCKET_SCHED_MAX); | |
333 | bitmap_zero(root_clutch->scr_unbound_warp_available, TH_BUCKET_SCHED_MAX); | |
cb323159 A |
334 | |
335 | /* Initialize all the root buckets */ | |
336 | for (uint32_t i = 0; i < TH_BUCKET_SCHED_MAX; i++) { | |
f427ee49 A |
337 | sched_clutch_root_bucket_init(&root_clutch->scr_unbound_buckets[i], i, false); |
338 | sched_clutch_root_bucket_init(&root_clutch->scr_bound_buckets[i], i, true); | |
cb323159 A |
339 | } |
340 | } | |
341 | ||
ea3f0419 A |
342 | /* |
343 | * Clutch Bucket Runqueues | |
344 | * | |
345 | * The clutch buckets are maintained in a runq at the root bucket level. The | |
346 | * runq organization allows clutch buckets to be ordered based on various | |
347 | * factors such as: | |
348 | * | |
349 | * - Clutch buckets are round robin'ed at the same priority level when a | |
350 | * thread is selected from a clutch bucket. This prevents a clutch bucket | |
351 | * from starving out other clutch buckets at the same priority. | |
352 | * | |
353 | * - Clutch buckets are inserted at the head when it becomes runnable due to | |
354 | * thread preemption. This allows threads that were preempted to maintain | |
355 | * their order in the queue. | |
356 | * | |
357 | */ | |
358 | ||
359 | /* | |
360 | * sched_clutch_bucket_runq_init() | |
361 | * | |
362 | * Initialize a clutch bucket runq. | |
363 | */ | |
364 | static void | |
365 | sched_clutch_bucket_runq_init( | |
366 | sched_clutch_bucket_runq_t clutch_buckets_rq) | |
367 | { | |
368 | clutch_buckets_rq->scbrq_highq = NOPRI; | |
369 | for (uint8_t i = 0; i < BITMAP_LEN(NRQS); i++) { | |
370 | clutch_buckets_rq->scbrq_bitmap[i] = 0; | |
371 | } | |
372 | clutch_buckets_rq->scbrq_count = 0; | |
373 | for (int i = 0; i < NRQS; i++) { | |
374 | circle_queue_init(&clutch_buckets_rq->scbrq_queues[i]); | |
375 | } | |
376 | } | |
377 | ||
378 | /* | |
379 | * sched_clutch_bucket_runq_empty() | |
380 | * | |
381 | * Returns if a clutch bucket runq is empty. | |
382 | */ | |
383 | static boolean_t | |
384 | sched_clutch_bucket_runq_empty( | |
385 | sched_clutch_bucket_runq_t clutch_buckets_rq) | |
386 | { | |
387 | return clutch_buckets_rq->scbrq_count == 0; | |
388 | } | |
389 | ||
390 | /* | |
391 | * sched_clutch_bucket_runq_peek() | |
392 | * | |
393 | * Returns the highest priority clutch bucket in the runq. | |
394 | */ | |
395 | static sched_clutch_bucket_t | |
396 | sched_clutch_bucket_runq_peek( | |
397 | sched_clutch_bucket_runq_t clutch_buckets_rq) | |
398 | { | |
399 | if (clutch_buckets_rq->scbrq_count > 0) { | |
400 | circle_queue_t queue = &clutch_buckets_rq->scbrq_queues[clutch_buckets_rq->scbrq_highq]; | |
401 | return cqe_queue_first(queue, struct sched_clutch_bucket, scb_runqlink); | |
402 | } else { | |
403 | return NULL; | |
404 | } | |
405 | } | |
406 | ||
407 | /* | |
408 | * sched_clutch_bucket_runq_enqueue() | |
409 | * | |
410 | * Enqueue a clutch bucket into the runq based on the options passed in. | |
411 | */ | |
412 | static void | |
413 | sched_clutch_bucket_runq_enqueue( | |
414 | sched_clutch_bucket_runq_t clutch_buckets_rq, | |
415 | sched_clutch_bucket_t clutch_bucket, | |
416 | sched_clutch_bucket_options_t options) | |
417 | { | |
418 | circle_queue_t queue = &clutch_buckets_rq->scbrq_queues[clutch_bucket->scb_priority]; | |
419 | if (circle_queue_empty(queue)) { | |
420 | circle_enqueue_tail(queue, &clutch_bucket->scb_runqlink); | |
421 | bitmap_set(clutch_buckets_rq->scbrq_bitmap, clutch_bucket->scb_priority); | |
422 | if (clutch_bucket->scb_priority > clutch_buckets_rq->scbrq_highq) { | |
423 | clutch_buckets_rq->scbrq_highq = clutch_bucket->scb_priority; | |
424 | } | |
425 | } else { | |
426 | if (options & SCHED_CLUTCH_BUCKET_OPTIONS_HEADQ) { | |
427 | circle_enqueue_head(queue, &clutch_bucket->scb_runqlink); | |
428 | } else { | |
429 | /* | |
430 | * Default behavior (handles SCHED_CLUTCH_BUCKET_OPTIONS_TAILQ & | |
431 | * SCHED_CLUTCH_BUCKET_OPTIONS_NONE) | |
432 | */ | |
433 | circle_enqueue_tail(queue, &clutch_bucket->scb_runqlink); | |
434 | } | |
435 | } | |
436 | clutch_buckets_rq->scbrq_count++; | |
437 | } | |
438 | ||
439 | /* | |
440 | * sched_clutch_bucket_runq_remove() | |
441 | * | |
442 | * Remove a clutch bucket from the runq. | |
443 | */ | |
444 | static void | |
445 | sched_clutch_bucket_runq_remove( | |
446 | sched_clutch_bucket_runq_t clutch_buckets_rq, | |
447 | sched_clutch_bucket_t clutch_bucket) | |
448 | { | |
449 | circle_queue_t queue = &clutch_buckets_rq->scbrq_queues[clutch_bucket->scb_priority]; | |
450 | circle_dequeue(queue, &clutch_bucket->scb_runqlink); | |
451 | assert(clutch_buckets_rq->scbrq_count > 0); | |
452 | clutch_buckets_rq->scbrq_count--; | |
453 | if (circle_queue_empty(queue)) { | |
454 | bitmap_clear(clutch_buckets_rq->scbrq_bitmap, clutch_bucket->scb_priority); | |
455 | clutch_buckets_rq->scbrq_highq = bitmap_first(clutch_buckets_rq->scbrq_bitmap, NRQS); | |
456 | } | |
457 | } | |
458 | ||
459 | static void | |
460 | sched_clutch_bucket_runq_rotate( | |
461 | sched_clutch_bucket_runq_t clutch_buckets_rq, | |
462 | sched_clutch_bucket_t clutch_bucket) | |
463 | { | |
464 | circle_queue_t queue = &clutch_buckets_rq->scbrq_queues[clutch_bucket->scb_priority]; | |
465 | assert(clutch_bucket == cqe_queue_first(queue, struct sched_clutch_bucket, scb_runqlink)); | |
466 | circle_queue_rotate_head_forward(queue); | |
467 | } | |
468 | ||
cb323159 A |
469 | /* |
470 | * sched_clutch_root_bucket_init() | |
471 | * | |
472 | * Routine to initialize root buckets. | |
473 | */ | |
474 | static void | |
475 | sched_clutch_root_bucket_init( | |
476 | sched_clutch_root_bucket_t root_bucket, | |
f427ee49 A |
477 | sched_bucket_t bucket, |
478 | bool bound_root_bucket) | |
cb323159 A |
479 | { |
480 | root_bucket->scrb_bucket = bucket; | |
f427ee49 A |
481 | if (bound_root_bucket) { |
482 | /* For bound root buckets, initialize the bound thread runq. */ | |
483 | root_bucket->scrb_bound = true; | |
484 | run_queue_init(&root_bucket->scrb_bound_thread_runq); | |
485 | } else { | |
486 | /* | |
487 | * The unbounded root buckets contain a runq of runnable clutch buckets | |
488 | * which then hold the runnable threads. | |
489 | */ | |
490 | root_bucket->scrb_bound = false; | |
491 | sched_clutch_bucket_runq_init(&root_bucket->scrb_clutch_buckets); | |
492 | } | |
cb323159 | 493 | priority_queue_entry_init(&root_bucket->scrb_pqlink); |
f427ee49 | 494 | root_bucket->scrb_pqlink.deadline = SCHED_CLUTCH_INVALID_TIME_64; |
cb323159 A |
495 | root_bucket->scrb_warped_deadline = 0; |
496 | root_bucket->scrb_warp_remaining = sched_clutch_root_bucket_warp[root_bucket->scrb_bucket]; | |
f427ee49 A |
497 | root_bucket->scrb_starvation_avoidance = false; |
498 | root_bucket->scrb_starvation_ts = 0; | |
cb323159 A |
499 | } |
500 | ||
501 | /* | |
cb323159 A |
502 | * Special case scheduling for Above UI bucket. |
503 | * | |
504 | * AboveUI threads are typically system critical threads that need low latency | |
505 | * which is why they are handled specially. | |
506 | * | |
507 | * Since the priority range for AboveUI and FG Timeshare buckets overlap, it is | |
f427ee49 A |
508 | * important to maintain some native priority order between those buckets. For unbounded |
509 | * root buckets, the policy is to compare the highest clutch buckets of both buckets; if the | |
cb323159 | 510 | * Above UI bucket is higher, schedule it immediately. Otherwise fall through to the |
f427ee49 A |
511 | * deadline based scheduling which should pickup the timeshare buckets. For the bound |
512 | * case, the policy simply compares the priority of the highest runnable threads in | |
513 | * the above UI and timeshare buckets. | |
cb323159 A |
514 | * |
515 | * The implementation allows extremely low latency CPU access for Above UI threads | |
516 | * while supporting the use case of high priority timeshare threads contending with | |
517 | * lower priority fixed priority threads. | |
518 | */ | |
f427ee49 A |
519 | |
520 | ||
521 | /* | |
522 | * sched_clutch_root_unbound_select_aboveui() | |
523 | * | |
524 | * Routine to determine if the above UI unbounded bucket should be selected for execution. | |
525 | */ | |
526 | static bool | |
527 | sched_clutch_root_unbound_select_aboveui( | |
cb323159 A |
528 | sched_clutch_root_t root_clutch) |
529 | { | |
f427ee49 A |
530 | if (bitmap_test(root_clutch->scr_unbound_runnable_bitmap, TH_BUCKET_FIXPRI)) { |
531 | sched_clutch_root_bucket_t root_bucket_aboveui = &root_clutch->scr_unbound_buckets[TH_BUCKET_FIXPRI]; | |
532 | sched_clutch_root_bucket_t root_bucket_sharefg = &root_clutch->scr_unbound_buckets[TH_BUCKET_SHARE_FG]; | |
533 | if (!bitmap_test(root_clutch->scr_unbound_runnable_bitmap, TH_BUCKET_SHARE_FG)) { | |
cb323159 A |
534 | /* If the timeshare FG bucket is not runnable, pick the aboveUI bucket for scheduling */ |
535 | return true; | |
536 | } | |
f427ee49 A |
537 | sched_clutch_bucket_t clutch_bucket_aboveui = sched_clutch_root_bucket_highest_clutch_bucket(root_bucket_aboveui); |
538 | sched_clutch_bucket_t clutch_bucket_sharefg = sched_clutch_root_bucket_highest_clutch_bucket(root_bucket_sharefg); | |
539 | if (clutch_bucket_aboveui->scb_priority >= clutch_bucket_sharefg->scb_priority) { | |
cb323159 A |
540 | return true; |
541 | } | |
542 | } | |
543 | return false; | |
544 | } | |
545 | ||
f427ee49 A |
546 | /* |
547 | * sched_clutch_root_bound_select_aboveui() | |
548 | * | |
549 | * Routine to determine if the above UI bounded bucket should be selected for execution. | |
550 | */ | |
551 | static bool | |
552 | sched_clutch_root_bound_select_aboveui( | |
553 | sched_clutch_root_t root_clutch) | |
554 | { | |
555 | sched_clutch_root_bucket_t root_bucket_aboveui = &root_clutch->scr_bound_buckets[TH_BUCKET_FIXPRI]; | |
556 | sched_clutch_root_bucket_t root_bucket_sharefg = &root_clutch->scr_bound_buckets[TH_BUCKET_SHARE_FG]; | |
557 | if (root_bucket_aboveui->scrb_bound_thread_runq.count == 0) { | |
558 | return false; | |
559 | } | |
560 | return root_bucket_aboveui->scrb_bound_thread_runq.highq >= root_bucket_sharefg->scrb_bound_thread_runq.highq; | |
561 | } | |
cb323159 A |
562 | |
563 | /* | |
564 | * sched_clutch_root_highest_root_bucket() | |
565 | * | |
566 | * Main routine to find the highest runnable root level bucket. | |
567 | * This routine is called from performance sensitive contexts; so it is | |
f427ee49 A |
568 | * crucial to keep this O(1). The options parameter determines if |
569 | * the selection logic should look at unbounded threads only (for | |
570 | * cross-cluster stealing operations) or both bounded and unbounded | |
571 | * threads (for selecting next thread for execution on current cluster). | |
cb323159 A |
572 | */ |
573 | static sched_clutch_root_bucket_t | |
574 | sched_clutch_root_highest_root_bucket( | |
575 | sched_clutch_root_t root_clutch, | |
f427ee49 A |
576 | uint64_t timestamp, |
577 | sched_clutch_highest_root_bucket_type_t type) | |
cb323159 A |
578 | { |
579 | sched_clutch_hierarchy_locked_assert(root_clutch); | |
f427ee49 A |
580 | int highest_runnable_bucket = -1; |
581 | if (type == SCHED_CLUTCH_HIGHEST_ROOT_BUCKET_UNBOUND_ONLY) { | |
582 | highest_runnable_bucket = bitmap_lsb_first(root_clutch->scr_unbound_runnable_bitmap, TH_BUCKET_SCHED_MAX); | |
583 | } else { | |
584 | int highest_unbound_runnable_bucket = bitmap_lsb_first(root_clutch->scr_unbound_runnable_bitmap, TH_BUCKET_SCHED_MAX); | |
585 | int highest_bound_runnable_bucket = bitmap_lsb_first(root_clutch->scr_bound_runnable_bitmap, TH_BUCKET_SCHED_MAX); | |
586 | highest_runnable_bucket = (highest_bound_runnable_bucket != -1) ? ((highest_unbound_runnable_bucket != -1) ? MIN(highest_bound_runnable_bucket, highest_unbound_runnable_bucket) : highest_bound_runnable_bucket) : highest_unbound_runnable_bucket; | |
587 | } | |
588 | ||
589 | if (highest_runnable_bucket == -1) { | |
cb323159 A |
590 | return NULL; |
591 | } | |
592 | ||
f427ee49 A |
593 | /* Above UI root bucket selection (see comment above for more details on this special case handling) */ |
594 | bool unbound_aboveui = sched_clutch_root_unbound_select_aboveui(root_clutch); | |
595 | if (type == SCHED_CLUTCH_HIGHEST_ROOT_BUCKET_UNBOUND_ONLY) { | |
596 | if (unbound_aboveui) { | |
597 | return &root_clutch->scr_unbound_buckets[TH_BUCKET_FIXPRI]; | |
598 | } | |
599 | /* Fall through to selecting a timeshare root bucket */ | |
600 | } else { | |
601 | bool bound_aboveui = sched_clutch_root_bound_select_aboveui(root_clutch); | |
602 | sched_clutch_root_bucket_t unbound_aboveui_root_bucket = &root_clutch->scr_unbound_buckets[TH_BUCKET_FIXPRI]; | |
603 | sched_clutch_root_bucket_t bound_aboveui_root_bucket = &root_clutch->scr_bound_buckets[TH_BUCKET_FIXPRI]; | |
604 | ||
605 | if (unbound_aboveui && bound_aboveui) { | |
606 | /* | |
607 | * In this scenario both the bounded and unbounded above UI buckets are runnable; choose based on the | |
608 | * highest runnable priority in both the buckets. | |
609 | * */ | |
610 | int bound_aboveui_pri = root_clutch->scr_bound_buckets[TH_BUCKET_FIXPRI].scrb_bound_thread_runq.highq; | |
611 | sched_clutch_bucket_t clutch_bucket = sched_clutch_root_bucket_highest_clutch_bucket(unbound_aboveui_root_bucket); | |
612 | int unbound_aboveui_pri = priority_queue_max_sched_pri(&clutch_bucket->scb_clutchpri_prioq); | |
613 | return (bound_aboveui_pri >= unbound_aboveui_pri) ? bound_aboveui_root_bucket : unbound_aboveui_root_bucket; | |
614 | } | |
615 | if (unbound_aboveui) { | |
616 | return unbound_aboveui_root_bucket; | |
617 | } | |
618 | if (bound_aboveui) { | |
619 | return bound_aboveui_root_bucket; | |
620 | } | |
621 | /* Fall through to selecting a timeshare root bucket */ | |
cb323159 A |
622 | } |
623 | ||
624 | /* | |
f427ee49 A |
625 | * Above UI bucket is not runnable or has a low priority runnable thread; use the |
626 | * earliest deadline model to schedule threads. The idea is that as the timeshare | |
627 | * buckets use CPU, they will drop their interactivity score/sched priority and | |
628 | * allow the low priority AboveUI buckets to be scheduled. | |
cb323159 A |
629 | */ |
630 | ||
631 | /* Find the earliest deadline bucket */ | |
f427ee49 | 632 | sched_clutch_root_bucket_t edf_bucket = NULL; |
cb323159 A |
633 | sched_clutch_root_bucket_t warp_bucket = NULL; |
634 | int warp_bucket_index = -1; | |
f427ee49 A |
635 | |
636 | evaluate_root_buckets: | |
637 | if (type == SCHED_CLUTCH_HIGHEST_ROOT_BUCKET_UNBOUND_ONLY) { | |
638 | edf_bucket = priority_queue_min(&root_clutch->scr_unbound_root_buckets, struct sched_clutch_root_bucket, scrb_pqlink); | |
639 | } else { | |
640 | sched_clutch_root_bucket_t unbound_bucket = priority_queue_min(&root_clutch->scr_unbound_root_buckets, struct sched_clutch_root_bucket, scrb_pqlink); | |
641 | sched_clutch_root_bucket_t bound_bucket = priority_queue_min(&root_clutch->scr_bound_root_buckets, struct sched_clutch_root_bucket, scrb_pqlink); | |
642 | if (bound_bucket && unbound_bucket) { | |
643 | /* If bound and unbound root buckets are runnable, select the one with the earlier deadline */ | |
644 | edf_bucket = (bound_bucket->scrb_pqlink.deadline <= unbound_bucket->scrb_pqlink.deadline) ? bound_bucket : unbound_bucket; | |
645 | } else { | |
646 | edf_bucket = (bound_bucket) ? bound_bucket : unbound_bucket; | |
647 | } | |
648 | } | |
649 | /* | |
650 | * Check if any of the buckets have warp available. The implementation only allows root buckets to warp ahead of | |
651 | * buckets of the same type (i.e. bound/unbound). The reason for doing that is because warping is a concept that | |
652 | * makes sense between root buckets of the same type since its effectively a scheduling advantage over a lower | |
653 | * QoS root bucket. | |
654 | */ | |
655 | bitmap_t *warp_available_bitmap = (edf_bucket->scrb_bound) ? (root_clutch->scr_bound_warp_available) : (root_clutch->scr_unbound_warp_available); | |
656 | warp_bucket_index = bitmap_lsb_first(warp_available_bitmap, TH_BUCKET_SCHED_MAX); | |
cb323159 A |
657 | |
658 | if ((warp_bucket_index == -1) || (warp_bucket_index >= edf_bucket->scrb_bucket)) { | |
f427ee49 A |
659 | /* No higher buckets have warp left; best choice is the EDF based bucket */ |
660 | if (edf_bucket->scrb_starvation_avoidance) { | |
661 | /* | |
662 | * Indicates that the earliest deadline bucket is in starvation avoidance mode. Check to see if the | |
663 | * starvation avoidance window is still open and return this bucket if it is. | |
664 | * | |
665 | * The starvation avoidance window is calculated based on the quantum of threads at that bucket and | |
666 | * the number of CPUs in the cluster. The idea is to basically provide one quantum worth of starvation | |
667 | * avoidance across all CPUs. | |
668 | */ | |
669 | uint64_t starvation_window = sched_clutch_thread_quantum[edf_bucket->scrb_bucket] / root_clutch->scr_pset->online_processor_count; | |
670 | if (timestamp < (edf_bucket->scrb_starvation_ts + starvation_window)) { | |
671 | return edf_bucket; | |
672 | } else { | |
673 | /* Starvation avoidance window is over; update deadline and re-evaluate EDF */ | |
674 | edf_bucket->scrb_starvation_avoidance = false; | |
675 | edf_bucket->scrb_starvation_ts = 0; | |
676 | sched_clutch_root_bucket_deadline_update(edf_bucket, root_clutch, timestamp); | |
677 | } | |
678 | goto evaluate_root_buckets; | |
679 | } | |
680 | ||
681 | /* Looks like the EDF bucket is not in starvation avoidance mode; check if it should be */ | |
682 | if (highest_runnable_bucket < edf_bucket->scrb_bucket) { | |
683 | /* Since a higher bucket is runnable, it indicates that the EDF bucket should be in starvation avoidance */ | |
684 | edf_bucket->scrb_starvation_avoidance = true; | |
685 | edf_bucket->scrb_starvation_ts = timestamp; | |
686 | } else { | |
687 | /* EDF bucket is being selected in the natural order; update deadline and reset warp */ | |
688 | sched_clutch_root_bucket_deadline_update(edf_bucket, root_clutch, timestamp); | |
689 | edf_bucket->scrb_warp_remaining = sched_clutch_root_bucket_warp[edf_bucket->scrb_bucket]; | |
690 | edf_bucket->scrb_warped_deadline = SCHED_CLUTCH_ROOT_BUCKET_WARP_UNUSED; | |
691 | if (edf_bucket->scrb_bound) { | |
692 | bitmap_set(root_clutch->scr_bound_warp_available, edf_bucket->scrb_bucket); | |
693 | } else { | |
694 | bitmap_set(root_clutch->scr_unbound_warp_available, edf_bucket->scrb_bucket); | |
695 | } | |
696 | } | |
cb323159 A |
697 | return edf_bucket; |
698 | } | |
699 | ||
700 | /* | |
701 | * Looks like there is a root bucket which is higher in the natural priority | |
702 | * order than edf_bucket and might have some warp remaining. | |
703 | */ | |
f427ee49 | 704 | warp_bucket = (edf_bucket->scrb_bound) ? &root_clutch->scr_bound_buckets[warp_bucket_index] : &root_clutch->scr_unbound_buckets[warp_bucket_index]; |
cb323159 A |
705 | if (warp_bucket->scrb_warped_deadline == SCHED_CLUTCH_ROOT_BUCKET_WARP_UNUSED) { |
706 | /* Root bucket has not used any of its warp; set a deadline to expire its warp and return it */ | |
707 | warp_bucket->scrb_warped_deadline = timestamp + warp_bucket->scrb_warp_remaining; | |
708 | sched_clutch_root_bucket_deadline_update(warp_bucket, root_clutch, timestamp); | |
709 | return warp_bucket; | |
710 | } | |
711 | if (warp_bucket->scrb_warped_deadline > timestamp) { | |
712 | /* Root bucket already has a warp window open with some warp remaining */ | |
713 | sched_clutch_root_bucket_deadline_update(warp_bucket, root_clutch, timestamp); | |
714 | return warp_bucket; | |
715 | } | |
716 | ||
717 | /* For this bucket, warp window was opened sometime in the past but has now | |
718 | * expired. Mark the bucket as not avilable for warp anymore and re-run the | |
719 | * warp bucket selection logic. | |
720 | */ | |
721 | warp_bucket->scrb_warp_remaining = 0; | |
f427ee49 A |
722 | if (warp_bucket->scrb_bound) { |
723 | bitmap_clear(root_clutch->scr_bound_warp_available, warp_bucket->scrb_bucket); | |
724 | } else { | |
725 | bitmap_clear(root_clutch->scr_unbound_warp_available, warp_bucket->scrb_bucket); | |
726 | } | |
727 | goto evaluate_root_buckets; | |
cb323159 A |
728 | } |
729 | ||
730 | /* | |
731 | * sched_clutch_root_bucket_deadline_calculate() | |
732 | * | |
733 | * Calculate the deadline for the bucket based on its WCEL | |
734 | */ | |
735 | static uint64_t | |
736 | sched_clutch_root_bucket_deadline_calculate( | |
737 | sched_clutch_root_bucket_t root_bucket, | |
738 | uint64_t timestamp) | |
739 | { | |
740 | /* For fixpri AboveUI bucket always return it as the earliest deadline */ | |
741 | if (root_bucket->scrb_bucket < TH_BUCKET_SHARE_FG) { | |
742 | return 0; | |
743 | } | |
744 | ||
745 | /* For all timeshare buckets set the deadline as current time + worst-case-execution-latency */ | |
746 | return timestamp + sched_clutch_root_bucket_wcel[root_bucket->scrb_bucket]; | |
747 | } | |
748 | ||
749 | /* | |
750 | * sched_clutch_root_bucket_deadline_update() | |
751 | * | |
752 | * Routine to update the deadline of the root bucket when it is selected. | |
753 | * Updating the deadline also moves the root_bucket in the EDF priority | |
754 | * queue. | |
755 | */ | |
756 | static void | |
757 | sched_clutch_root_bucket_deadline_update( | |
758 | sched_clutch_root_bucket_t root_bucket, | |
759 | sched_clutch_root_t root_clutch, | |
760 | uint64_t timestamp) | |
761 | { | |
762 | if (root_bucket->scrb_bucket == TH_BUCKET_FIXPRI) { | |
763 | /* The algorithm never uses the deadlines for scheduling TH_BUCKET_FIXPRI bucket */ | |
764 | return; | |
765 | } | |
f427ee49 A |
766 | |
767 | uint64_t old_deadline = root_bucket->scrb_pqlink.deadline; | |
cb323159 | 768 | uint64_t new_deadline = sched_clutch_root_bucket_deadline_calculate(root_bucket, timestamp); |
f427ee49 A |
769 | if (__improbable(old_deadline > new_deadline)) { |
770 | panic("old_deadline (%llu) > new_deadline (%llu); root_bucket (%d); timestamp (%llu)", old_deadline, new_deadline, root_bucket->scrb_bucket, timestamp); | |
771 | } | |
cb323159 | 772 | if (old_deadline != new_deadline) { |
f427ee49 A |
773 | root_bucket->scrb_pqlink.deadline = new_deadline; |
774 | struct priority_queue_deadline_min *prioq = (root_bucket->scrb_bound) ? &root_clutch->scr_bound_root_buckets : &root_clutch->scr_unbound_root_buckets; | |
775 | priority_queue_entry_increased(prioq, &root_bucket->scrb_pqlink); | |
cb323159 A |
776 | } |
777 | } | |
778 | ||
779 | /* | |
780 | * sched_clutch_root_bucket_runnable() | |
781 | * | |
782 | * Routine to insert a newly runnable root bucket into the hierarchy. | |
783 | * Also updates the deadline and warp parameters as necessary. | |
784 | */ | |
785 | static void | |
786 | sched_clutch_root_bucket_runnable( | |
787 | sched_clutch_root_bucket_t root_bucket, | |
788 | sched_clutch_root_t root_clutch, | |
789 | uint64_t timestamp) | |
790 | { | |
791 | /* Mark the root bucket as runnable */ | |
f427ee49 A |
792 | bitmap_t *runnable_bitmap = (root_bucket->scrb_bound) ? root_clutch->scr_bound_runnable_bitmap : root_clutch->scr_unbound_runnable_bitmap; |
793 | bitmap_set(runnable_bitmap, root_bucket->scrb_bucket); | |
cb323159 A |
794 | |
795 | if (root_bucket->scrb_bucket == TH_BUCKET_FIXPRI) { | |
796 | /* Since the TH_BUCKET_FIXPRI bucket is not scheduled based on deadline, nothing more needed here */ | |
797 | return; | |
798 | } | |
799 | ||
f427ee49 A |
800 | if (root_bucket->scrb_starvation_avoidance == false) { |
801 | /* | |
802 | * Only update the deadline if the bucket was not in starvation avoidance mode. If the bucket was in | |
803 | * starvation avoidance and its window has expired, the highest root bucket selection logic will notice | |
804 | * that and fix it up. | |
805 | */ | |
806 | root_bucket->scrb_pqlink.deadline = sched_clutch_root_bucket_deadline_calculate(root_bucket, timestamp); | |
807 | } | |
808 | struct priority_queue_deadline_min *prioq = (root_bucket->scrb_bound) ? &root_clutch->scr_bound_root_buckets : &root_clutch->scr_unbound_root_buckets; | |
809 | priority_queue_insert(prioq, &root_bucket->scrb_pqlink); | |
cb323159 A |
810 | if (root_bucket->scrb_warp_remaining) { |
811 | /* Since the bucket has some warp remaining and its now runnable, mark it as available for warp */ | |
f427ee49 A |
812 | bitmap_t *warp_bitmap = (root_bucket->scrb_bound) ? root_clutch->scr_bound_warp_available : root_clutch->scr_unbound_warp_available; |
813 | bitmap_set(warp_bitmap, root_bucket->scrb_bucket); | |
cb323159 A |
814 | } |
815 | } | |
816 | ||
817 | /* | |
818 | * sched_clutch_root_bucket_empty() | |
819 | * | |
820 | * Routine to remove an empty root bucket from the hierarchy. | |
821 | * Also updates the deadline and warp parameters as necessary. | |
822 | */ | |
823 | static void | |
824 | sched_clutch_root_bucket_empty( | |
825 | sched_clutch_root_bucket_t root_bucket, | |
826 | sched_clutch_root_t root_clutch, | |
827 | uint64_t timestamp) | |
828 | { | |
f427ee49 A |
829 | bitmap_t *runnable_bitmap = (root_bucket->scrb_bound) ? root_clutch->scr_bound_runnable_bitmap : root_clutch->scr_unbound_runnable_bitmap; |
830 | bitmap_clear(runnable_bitmap, root_bucket->scrb_bucket); | |
cb323159 A |
831 | |
832 | if (root_bucket->scrb_bucket == TH_BUCKET_FIXPRI) { | |
833 | /* Since the TH_BUCKET_FIXPRI bucket is not scheduled based on deadline, nothing more needed here */ | |
834 | return; | |
835 | } | |
836 | ||
f427ee49 A |
837 | struct priority_queue_deadline_min *prioq = (root_bucket->scrb_bound) ? &root_clutch->scr_bound_root_buckets : &root_clutch->scr_unbound_root_buckets; |
838 | priority_queue_remove(prioq, &root_bucket->scrb_pqlink); | |
839 | ||
840 | bitmap_t *warp_bitmap = (root_bucket->scrb_bound) ? root_clutch->scr_bound_warp_available : root_clutch->scr_unbound_warp_available; | |
841 | bitmap_clear(warp_bitmap, root_bucket->scrb_bucket); | |
cb323159 | 842 | |
cb323159 A |
843 | if (root_bucket->scrb_warped_deadline > timestamp) { |
844 | /* | |
845 | * For root buckets that were using the warp, check if the warp | |
846 | * deadline is in the future. If yes, remove the wall time the | |
847 | * warp was active and update the warp remaining. This allows | |
848 | * the root bucket to use the remaining warp the next time it | |
849 | * becomes runnable. | |
850 | */ | |
851 | root_bucket->scrb_warp_remaining = root_bucket->scrb_warped_deadline - timestamp; | |
852 | } else if (root_bucket->scrb_warped_deadline != SCHED_CLUTCH_ROOT_BUCKET_WARP_UNUSED) { | |
853 | /* | |
854 | * If the root bucket's warped deadline is in the past, it has used up | |
855 | * all the warp it was assigned. Empty out its warp remaining. | |
856 | */ | |
857 | root_bucket->scrb_warp_remaining = 0; | |
858 | } | |
859 | } | |
860 | ||
f427ee49 A |
861 | static int |
862 | sched_clutch_global_bucket_load_get( | |
863 | sched_bucket_t bucket) | |
864 | { | |
865 | return (int)os_atomic_load(&sched_clutch_global_bucket_load[bucket], relaxed); | |
866 | } | |
867 | ||
cb323159 A |
868 | /* |
869 | * sched_clutch_root_pri_update() | |
870 | * | |
871 | * The root level priority is used for thread selection and preemption | |
872 | * logic. | |
f427ee49 A |
873 | * |
874 | * The logic uses the same decision as thread selection for deciding between the | |
875 | * above UI and timeshare buckets. If one of the timesharing buckets have to be | |
876 | * used for priority calculation, the logic is slightly different from thread | |
877 | * selection, because thread selection considers deadlines, warps etc. to | |
878 | * decide the most optimal bucket at a given timestamp. Since the priority | |
879 | * value is used for preemption decisions only, it needs to be based on the | |
880 | * highest runnable thread available in the timeshare domain. This logic can | |
881 | * be made more sophisticated if there are cases of unnecessary preemption | |
882 | * being seen in workloads. | |
cb323159 A |
883 | */ |
884 | static void | |
885 | sched_clutch_root_pri_update( | |
886 | sched_clutch_root_t root_clutch) | |
887 | { | |
888 | sched_clutch_hierarchy_locked_assert(root_clutch); | |
f427ee49 A |
889 | int16_t root_bound_pri = NOPRI; |
890 | int16_t root_unbound_pri = NOPRI; | |
891 | ||
892 | if (bitmap_lsb_first(root_clutch->scr_bound_runnable_bitmap, TH_BUCKET_SCHED_MAX) == -1) { | |
893 | goto root_pri_update_unbound; | |
cb323159 | 894 | } |
f427ee49 A |
895 | sched_clutch_root_bucket_t root_bucket_bound = NULL; |
896 | if (sched_clutch_root_bound_select_aboveui(root_clutch)) { | |
897 | root_bucket_bound = &root_clutch->scr_bound_buckets[TH_BUCKET_FIXPRI]; | |
cb323159 | 898 | } else { |
f427ee49 A |
899 | int root_bucket_index = bitmap_lsb_next(root_clutch->scr_bound_runnable_bitmap, TH_BUCKET_SCHED_MAX, TH_BUCKET_FIXPRI); |
900 | assert(root_bucket_index != -1); | |
901 | root_bucket_bound = &root_clutch->scr_bound_buckets[root_bucket_index]; | |
902 | } | |
903 | root_bound_pri = root_bucket_bound->scrb_bound_thread_runq.highq; | |
904 | ||
905 | root_pri_update_unbound: | |
906 | if (bitmap_lsb_first(root_clutch->scr_unbound_runnable_bitmap, TH_BUCKET_SCHED_MAX) == -1) { | |
907 | goto root_pri_update_complete; | |
908 | } | |
909 | sched_clutch_root_bucket_t root_bucket_unbound = NULL; | |
910 | if (sched_clutch_root_unbound_select_aboveui(root_clutch)) { | |
911 | root_bucket_unbound = &root_clutch->scr_unbound_buckets[TH_BUCKET_FIXPRI]; | |
912 | } else { | |
913 | int root_bucket_index = bitmap_lsb_next(root_clutch->scr_unbound_runnable_bitmap, TH_BUCKET_SCHED_MAX, TH_BUCKET_FIXPRI); | |
cb323159 | 914 | assert(root_bucket_index != -1); |
f427ee49 | 915 | root_bucket_unbound = &root_clutch->scr_unbound_buckets[root_bucket_index]; |
cb323159 A |
916 | } |
917 | /* For the selected root bucket, find the highest priority clutch bucket */ | |
f427ee49 A |
918 | sched_clutch_bucket_t clutch_bucket = sched_clutch_root_bucket_highest_clutch_bucket(root_bucket_unbound); |
919 | root_unbound_pri = priority_queue_max_sched_pri(&clutch_bucket->scb_clutchpri_prioq); | |
920 | ||
921 | root_pri_update_complete: | |
922 | root_clutch->scr_priority = MAX(root_bound_pri, root_unbound_pri); | |
cb323159 A |
923 | } |
924 | ||
925 | /* | |
926 | * sched_clutch_root_urgency_inc() | |
927 | * | |
928 | * Routine to increment the urgency at the root level based on the thread | |
929 | * priority that is being inserted into the hierarchy. The root urgency | |
930 | * counter is updated based on the urgency of threads in any of the | |
931 | * clutch buckets which are part of the hierarchy. | |
932 | * | |
933 | * Always called with the pset lock held. | |
934 | */ | |
935 | static void | |
936 | sched_clutch_root_urgency_inc( | |
937 | sched_clutch_root_t root_clutch, | |
938 | thread_t thread) | |
939 | { | |
940 | if (SCHED(priority_is_urgent)(thread->sched_pri)) { | |
941 | root_clutch->scr_urgency++; | |
942 | } | |
943 | } | |
944 | ||
945 | /* | |
946 | * sched_clutch_root_urgency_dec() | |
947 | * | |
948 | * Routine to decrement the urgency at the root level based on the thread | |
949 | * priority that is being removed from the hierarchy. The root urgency | |
950 | * counter is updated based on the urgency of threads in any of the | |
951 | * clutch buckets which are part of the hierarchy. | |
952 | * | |
953 | * Always called with the pset lock held. | |
954 | */ | |
955 | static void | |
956 | sched_clutch_root_urgency_dec( | |
957 | sched_clutch_root_t root_clutch, | |
958 | thread_t thread) | |
959 | { | |
960 | if (SCHED(priority_is_urgent)(thread->sched_pri)) { | |
961 | root_clutch->scr_urgency--; | |
962 | } | |
963 | } | |
964 | ||
965 | /* | |
966 | * Clutch bucket level scheduling | |
967 | * | |
968 | * The second level of scheduling is the clutch bucket level scheduling | |
969 | * which tries to schedule thread groups within root_buckets. Each | |
f427ee49 | 970 | * clutch represents a thread group and a clutch_bucket_group represents |
cb323159 | 971 | * threads at a particular sched_bucket within that thread group. The |
f427ee49 A |
972 | * clutch_bucket_group contains a clutch_bucket per cluster on the system |
973 | * where it holds the runnable threads destined for execution on that | |
974 | * cluster. | |
975 | * | |
976 | * The goal of this level of scheduling is to allow interactive thread | |
cb323159 A |
977 | * groups low latency access to the CPU. It also provides slight |
978 | * scheduling preference for App and unrestricted thread groups. | |
979 | * | |
980 | * The clutch bucket scheduling algorithm measures an interactivity | |
f427ee49 | 981 | * score for all clutch bucket groups. The interactivity score is based |
cb323159 | 982 | * on the ratio of the CPU used and the voluntary blocking of threads |
f427ee49 | 983 | * within the clutch bucket group. The algorithm is very close to the ULE |
cb323159 A |
984 | * scheduler on FreeBSD in terms of calculations. The interactivity |
985 | * score provides an interactivity boost in the range of | |
986 | * [0:SCHED_CLUTCH_BUCKET_INTERACTIVE_PRI * 2] which allows interactive | |
987 | * thread groups to win over CPU spinners. | |
f427ee49 A |
988 | * |
989 | * The interactivity score of the clutch bucket group is combined with the | |
990 | * highest base/promoted priority of threads in the clutch bucket to form | |
991 | * the overall priority of the clutch bucket. | |
cb323159 A |
992 | */ |
993 | ||
994 | /* Priority boost range for interactivity */ | |
f427ee49 A |
995 | #define SCHED_CLUTCH_BUCKET_GROUP_INTERACTIVE_PRI_DEFAULT (8) |
996 | uint8_t sched_clutch_bucket_group_interactive_pri = SCHED_CLUTCH_BUCKET_GROUP_INTERACTIVE_PRI_DEFAULT; | |
cb323159 A |
997 | |
998 | /* window to scale the cpu usage and blocked values (currently 500ms). Its the threshold of used+blocked */ | |
f427ee49 A |
999 | uint64_t sched_clutch_bucket_group_adjust_threshold = 0; |
1000 | #define SCHED_CLUTCH_BUCKET_GROUP_ADJUST_THRESHOLD_USECS (500000) | |
cb323159 A |
1001 | |
1002 | /* The ratio to scale the cpu/blocked time per window */ | |
f427ee49 | 1003 | #define SCHED_CLUTCH_BUCKET_GROUP_ADJUST_RATIO (10) |
cb323159 A |
1004 | |
1005 | /* | |
1006 | * In order to allow App thread groups some preference over daemon thread | |
f427ee49 | 1007 | * groups, the App clutch_buckets get a priority boost. The boost value should |
cb323159 | 1008 | * be chosen such that badly behaved apps are still penalized over well |
f427ee49 | 1009 | * behaved interactive daemons. |
cb323159 | 1010 | */ |
f427ee49 A |
1011 | static uint8_t sched_clutch_bucket_group_pri_boost[SCHED_CLUTCH_TG_PRI_MAX] = { |
1012 | [SCHED_CLUTCH_TG_PRI_LOW] = 0, | |
1013 | [SCHED_CLUTCH_TG_PRI_MED] = 2, | |
1014 | [SCHED_CLUTCH_TG_PRI_HIGH] = 4, | |
1015 | }; | |
cb323159 A |
1016 | |
1017 | /* Initial value for voluntary blocking time for the clutch_bucket */ | |
f427ee49 A |
1018 | #define SCHED_CLUTCH_BUCKET_GROUP_BLOCKED_TS_INVALID (uint64_t)(~0) |
1019 | ||
1020 | /* Value indicating the clutch bucket is not pending execution */ | |
1021 | #define SCHED_CLUTCH_BUCKET_GROUP_PENDING_INVALID ((uint64_t)(~0)) | |
1022 | ||
1023 | /* | |
1024 | * Thread group CPU starvation avoidance | |
1025 | * | |
1026 | * In heavily CPU contended scenarios, it is possible that some thread groups | |
1027 | * which have a low interactivity score do not get CPU time at all. In order to | |
1028 | * resolve that, the scheduler tries to ageout the CPU usage of the clutch | |
1029 | * bucket group when it has been pending execution for a certain time as defined | |
1030 | * by the sched_clutch_bucket_group_pending_delta_us values below. | |
1031 | * | |
1032 | * The values chosen here are very close to the WCEL values for each sched bucket. | |
1033 | * These values are multiplied by the load average of the relevant root bucket to | |
1034 | * provide an estimate of the actual clutch bucket load. | |
1035 | */ | |
1036 | static uint32_t sched_clutch_bucket_group_pending_delta_us[TH_BUCKET_SCHED_MAX] = { | |
1037 | SCHED_CLUTCH_INVALID_TIME_32, /* FIXPRI */ | |
1038 | 10000, /* FG */ | |
1039 | 37500, /* IN */ | |
1040 | 75000, /* DF */ | |
1041 | 150000, /* UT */ | |
1042 | 250000, /* BG */ | |
1043 | }; | |
1044 | static uint64_t sched_clutch_bucket_group_pending_delta[TH_BUCKET_SCHED_MAX] = {0}; | |
cb323159 A |
1045 | |
1046 | /* | |
1047 | * sched_clutch_bucket_init() | |
1048 | * | |
1049 | * Initializer for clutch buckets. | |
1050 | */ | |
1051 | static void | |
1052 | sched_clutch_bucket_init( | |
1053 | sched_clutch_bucket_t clutch_bucket, | |
f427ee49 | 1054 | sched_clutch_bucket_group_t clutch_bucket_group, |
cb323159 A |
1055 | sched_bucket_t bucket) |
1056 | { | |
1057 | bzero(clutch_bucket, sizeof(struct sched_clutch_bucket)); | |
1058 | ||
1059 | clutch_bucket->scb_bucket = bucket; | |
1060 | /* scb_priority will be recalculated when a thread is inserted in the clutch bucket */ | |
1061 | clutch_bucket->scb_priority = 0; | |
f427ee49 A |
1062 | #if CONFIG_SCHED_EDGE |
1063 | clutch_bucket->scb_foreign = false; | |
1064 | priority_queue_entry_init(&clutch_bucket->scb_foreignlink); | |
1065 | #endif /* CONFIG_SCHED_EDGE */ | |
1066 | clutch_bucket->scb_group = clutch_bucket_group; | |
1067 | clutch_bucket->scb_root = NULL; | |
1068 | priority_queue_init(&clutch_bucket->scb_clutchpri_prioq); | |
1069 | priority_queue_init(&clutch_bucket->scb_thread_runq); | |
1070 | queue_init(&clutch_bucket->scb_thread_timeshare_queue); | |
1071 | } | |
1072 | ||
1073 | /* | |
1074 | * sched_clutch_bucket_group_init() | |
1075 | * | |
1076 | * Initializer for clutch bucket groups. | |
1077 | */ | |
1078 | static void | |
1079 | sched_clutch_bucket_group_init( | |
1080 | sched_clutch_bucket_group_t clutch_bucket_group, | |
1081 | sched_clutch_t clutch, | |
1082 | sched_bucket_t bucket) | |
1083 | { | |
1084 | bzero(clutch_bucket_group, sizeof(struct sched_clutch_bucket_group)); | |
1085 | clutch_bucket_group->scbg_bucket = bucket; | |
1086 | clutch_bucket_group->scbg_clutch = clutch; | |
1087 | for (int i = 0; i < MAX_PSETS; i++) { | |
1088 | sched_clutch_bucket_init(&clutch_bucket_group->scbg_clutch_buckets[i], clutch_bucket_group, bucket); | |
1089 | } | |
1090 | os_atomic_store(&clutch_bucket_group->scbg_timeshare_tick, 0, relaxed); | |
1091 | os_atomic_store(&clutch_bucket_group->scbg_pri_shift, INT8_MAX, relaxed); | |
1092 | os_atomic_store(&clutch_bucket_group->scbg_preferred_cluster, pset0.pset_cluster_id, relaxed); | |
cb323159 A |
1093 | /* |
1094 | * All thread groups should be initialized to be interactive; this allows the newly launched | |
1095 | * thread groups to fairly compete with already running thread groups. | |
1096 | */ | |
f427ee49 A |
1097 | clutch_bucket_group->scbg_interactivity_data.scct_count = (sched_clutch_bucket_group_interactive_pri * 2); |
1098 | clutch_bucket_group->scbg_interactivity_data.scct_timestamp = 0; | |
1099 | os_atomic_store(&clutch_bucket_group->scbg_cpu_data.cpu_data.scbcd_cpu_blocked, (clutch_cpu_data_t)sched_clutch_bucket_group_adjust_threshold, relaxed); | |
1100 | #if !__LP64__ | |
1101 | lck_spin_init(&clutch_bucket_group->scbg_stats_lock, &pset_lck_grp, NULL); | |
1102 | #endif /* !__LP64__ */ | |
1103 | clutch_bucket_group->scbg_blocked_data.scct_timestamp = SCHED_CLUTCH_BUCKET_GROUP_BLOCKED_TS_INVALID; | |
1104 | clutch_bucket_group->scbg_pending_data.scct_timestamp = SCHED_CLUTCH_BUCKET_GROUP_PENDING_INVALID; | |
cb323159 A |
1105 | } |
1106 | ||
1107 | /* | |
1108 | * sched_clutch_init_with_thread_group() | |
1109 | * | |
1110 | * Initialize the sched_clutch when the thread group is being created | |
1111 | */ | |
1112 | void | |
1113 | sched_clutch_init_with_thread_group( | |
1114 | sched_clutch_t clutch, | |
1115 | struct thread_group *tg) | |
1116 | { | |
1117 | os_atomic_store(&clutch->sc_thr_count, 0, relaxed); | |
1118 | ||
1119 | /* Initialize all the clutch buckets */ | |
1120 | for (uint32_t i = 0; i < TH_BUCKET_SCHED_MAX; i++) { | |
f427ee49 | 1121 | sched_clutch_bucket_group_init(&(clutch->sc_clutch_groups[i]), clutch, i); |
cb323159 A |
1122 | } |
1123 | ||
1124 | /* Grouping specific fields */ | |
1125 | clutch->sc_tg = tg; | |
1126 | os_atomic_store(&clutch->sc_tg_priority, 0, relaxed); | |
1127 | } | |
1128 | ||
1129 | /* | |
1130 | * sched_clutch_destroy() | |
1131 | * | |
1132 | * Destructor for clutch; called from thread group release code. | |
1133 | */ | |
1134 | void | |
1135 | sched_clutch_destroy( | |
1136 | __unused sched_clutch_t clutch) | |
1137 | { | |
1138 | assert(os_atomic_load(&clutch->sc_thr_count, relaxed) == 0); | |
1139 | } | |
1140 | ||
f427ee49 | 1141 | #if CONFIG_SCHED_EDGE |
c6bf4f31 A |
1142 | |
1143 | /* | |
f427ee49 A |
1144 | * The current edge scheduler still relies on globals for E & P clusters. It uses these |
1145 | * globals for the following operations: | |
1146 | * - Sysctl support for configuring edges | |
1147 | * - Edge scheduler initialization | |
c6bf4f31 | 1148 | * |
f427ee49 A |
1149 | * These should be removed for multi-cluster platforms once a clear policy for the above |
1150 | * operations is defined. | |
1151 | * <Edge Multi-cluster Support Needed> | |
c6bf4f31 | 1152 | */ |
f427ee49 A |
1153 | static uint32_t ecore_cluster_id = 0; |
1154 | static uint32_t pcore_cluster_id = 1; | |
1155 | ||
1156 | /* | |
1157 | * Edge Scheduler Preferred Cluster Mechanism | |
1158 | * | |
1159 | * In order to have better control over various QoS buckets within a thread group, the Edge | |
1160 | * scheduler allows CLPC to specify a preferred cluster for each QoS level in a TG. These | |
1161 | * preferences are stored at the sched_clutch_bucket_group level since that represents all | |
1162 | * threads at a particular QoS level within a sched_clutch. For any lookup of preferred | |
1163 | * cluster, the logic always goes back to the preference stored at the clutch_bucket_group. | |
1164 | */ | |
1165 | ||
1166 | static uint32_t | |
1167 | sched_edge_clutch_bucket_group_preferred_cluster(sched_clutch_bucket_group_t clutch_bucket_group) | |
1168 | { | |
1169 | return os_atomic_load(&clutch_bucket_group->scbg_preferred_cluster, relaxed); | |
1170 | } | |
1171 | ||
1172 | static uint32_t | |
1173 | sched_clutch_bucket_preferred_cluster(sched_clutch_bucket_t clutch_bucket) | |
1174 | { | |
1175 | return sched_edge_clutch_bucket_group_preferred_cluster(clutch_bucket->scb_group); | |
1176 | } | |
1177 | ||
1178 | uint32_t | |
1179 | sched_edge_thread_preferred_cluster(thread_t thread) | |
1180 | { | |
1181 | if (SCHED_CLUTCH_THREAD_CLUSTER_BOUND(thread)) { | |
1182 | /* For threads bound to a specific cluster, return the bound cluster id */ | |
1183 | return sched_edge_thread_bound_cluster_id(thread); | |
1184 | } | |
1185 | ||
1186 | sched_clutch_t clutch = sched_clutch_for_thread(thread); | |
1187 | sched_clutch_bucket_group_t clutch_bucket_group = &clutch->sc_clutch_groups[thread->th_sched_bucket]; | |
1188 | return sched_edge_clutch_bucket_group_preferred_cluster(clutch_bucket_group); | |
1189 | } | |
1190 | ||
1191 | /* | |
1192 | * Edge Scheduler Foreign Bucket Support | |
1193 | * | |
1194 | * In the Edge Scheduler, each cluster maintains a priority queue of clutch buckets containing | |
1195 | * threads that are not native to the cluster. A clutch bucket is considered native if its | |
1196 | * preferred cluster has the same type as the cluster its enqueued in. The foreign clutch | |
1197 | * bucket priority queue is used for rebalance operations to get threads back to their native | |
1198 | * cluster quickly. | |
1199 | * | |
1200 | * It is possible to make this policy even more aggressive by considering all clusters that | |
1201 | * are not the preferred cluster as the foreign cluster, but that would mean a lot of thread | |
1202 | * migrations which might have performance implications. | |
1203 | */ | |
1204 | ||
1205 | static void | |
1206 | sched_clutch_bucket_mark_native(sched_clutch_bucket_t clutch_bucket, sched_clutch_root_t root_clutch) | |
1207 | { | |
1208 | if (clutch_bucket->scb_foreign) { | |
1209 | clutch_bucket->scb_foreign = false; | |
1210 | priority_queue_remove(&root_clutch->scr_foreign_buckets, &clutch_bucket->scb_foreignlink); | |
1211 | } | |
1212 | } | |
1213 | ||
1214 | static void | |
1215 | sched_clutch_bucket_mark_foreign(sched_clutch_bucket_t clutch_bucket, sched_clutch_root_t root_clutch) | |
1216 | { | |
1217 | if (!clutch_bucket->scb_foreign) { | |
1218 | clutch_bucket->scb_foreign = true; | |
1219 | priority_queue_entry_set_sched_pri(&root_clutch->scr_foreign_buckets, &clutch_bucket->scb_foreignlink, clutch_bucket->scb_priority, 0); | |
1220 | priority_queue_insert(&root_clutch->scr_foreign_buckets, &clutch_bucket->scb_foreignlink); | |
1221 | } | |
1222 | } | |
1223 | ||
1224 | /* | |
1225 | * Edge Scheduler Cumulative Load Average | |
1226 | * | |
1227 | * The Edge scheduler maintains a per-QoS/scheduling bucket load average for | |
1228 | * making thread migration decisions. The per-bucket load is maintained as a | |
1229 | * cumulative count since higher scheduling buckets impact load on lower buckets | |
1230 | * for thread migration decisions. | |
1231 | * | |
1232 | */ | |
1233 | ||
1234 | static void | |
1235 | sched_edge_cluster_cumulative_count_incr(sched_clutch_root_t root_clutch, sched_bucket_t bucket) | |
1236 | { | |
1237 | switch (bucket) { | |
1238 | case TH_BUCKET_FIXPRI: os_atomic_inc(&root_clutch->scr_cumulative_run_count[TH_BUCKET_FIXPRI], relaxed); OS_FALLTHROUGH; | |
1239 | case TH_BUCKET_SHARE_FG: os_atomic_inc(&root_clutch->scr_cumulative_run_count[TH_BUCKET_SHARE_FG], relaxed); OS_FALLTHROUGH; | |
1240 | case TH_BUCKET_SHARE_IN: os_atomic_inc(&root_clutch->scr_cumulative_run_count[TH_BUCKET_SHARE_IN], relaxed); OS_FALLTHROUGH; | |
1241 | case TH_BUCKET_SHARE_DF: os_atomic_inc(&root_clutch->scr_cumulative_run_count[TH_BUCKET_SHARE_DF], relaxed); OS_FALLTHROUGH; | |
1242 | case TH_BUCKET_SHARE_UT: os_atomic_inc(&root_clutch->scr_cumulative_run_count[TH_BUCKET_SHARE_UT], relaxed); OS_FALLTHROUGH; | |
1243 | case TH_BUCKET_SHARE_BG: os_atomic_inc(&root_clutch->scr_cumulative_run_count[TH_BUCKET_SHARE_BG], relaxed); break; | |
1244 | default: | |
1245 | panic("Unexpected sched_bucket passed to sched_edge_cluster_cumulative_count_incr()"); | |
1246 | } | |
1247 | } | |
1248 | ||
1249 | static void | |
1250 | sched_edge_cluster_cumulative_count_decr(sched_clutch_root_t root_clutch, sched_bucket_t bucket) | |
1251 | { | |
1252 | switch (bucket) { | |
1253 | case TH_BUCKET_FIXPRI: os_atomic_dec(&root_clutch->scr_cumulative_run_count[TH_BUCKET_FIXPRI], relaxed); OS_FALLTHROUGH; | |
1254 | case TH_BUCKET_SHARE_FG: os_atomic_dec(&root_clutch->scr_cumulative_run_count[TH_BUCKET_SHARE_FG], relaxed); OS_FALLTHROUGH; | |
1255 | case TH_BUCKET_SHARE_IN: os_atomic_dec(&root_clutch->scr_cumulative_run_count[TH_BUCKET_SHARE_IN], relaxed); OS_FALLTHROUGH; | |
1256 | case TH_BUCKET_SHARE_DF: os_atomic_dec(&root_clutch->scr_cumulative_run_count[TH_BUCKET_SHARE_DF], relaxed); OS_FALLTHROUGH; | |
1257 | case TH_BUCKET_SHARE_UT: os_atomic_dec(&root_clutch->scr_cumulative_run_count[TH_BUCKET_SHARE_UT], relaxed); OS_FALLTHROUGH; | |
1258 | case TH_BUCKET_SHARE_BG: os_atomic_dec(&root_clutch->scr_cumulative_run_count[TH_BUCKET_SHARE_BG], relaxed); break; | |
1259 | default: | |
1260 | panic("Unexpected sched_bucket passed to sched_edge_cluster_cumulative_count_decr()"); | |
c6bf4f31 | 1261 | } |
c6bf4f31 A |
1262 | } |
1263 | ||
f427ee49 A |
1264 | uint16_t |
1265 | sched_edge_cluster_cumulative_count(sched_clutch_root_t root_clutch, sched_bucket_t bucket) | |
1266 | { | |
1267 | return os_atomic_load(&root_clutch->scr_cumulative_run_count[bucket], relaxed); | |
1268 | } | |
1269 | ||
1270 | #endif /* CONFIG_SCHED_EDGE */ | |
cb323159 A |
1271 | |
1272 | /* | |
1273 | * sched_clutch_bucket_hierarchy_insert() | |
1274 | * | |
1275 | * Routine to insert a newly runnable clutch_bucket into the root hierarchy. | |
1276 | */ | |
1277 | static void | |
1278 | sched_clutch_bucket_hierarchy_insert( | |
1279 | sched_clutch_root_t root_clutch, | |
1280 | sched_clutch_bucket_t clutch_bucket, | |
1281 | sched_bucket_t bucket, | |
ea3f0419 A |
1282 | uint64_t timestamp, |
1283 | sched_clutch_bucket_options_t options) | |
cb323159 A |
1284 | { |
1285 | sched_clutch_hierarchy_locked_assert(root_clutch); | |
1286 | if (bucket > TH_BUCKET_FIXPRI) { | |
1287 | /* Enqueue the timeshare clutch buckets into the global runnable clutch_bucket list; used for sched tick operations */ | |
1288 | enqueue_tail(&root_clutch->scr_clutch_buckets, &clutch_bucket->scb_listlink); | |
1289 | } | |
f427ee49 | 1290 | #if CONFIG_SCHED_EDGE |
c6bf4f31 | 1291 | /* Check if the bucket is a foreign clutch bucket and add it to the foreign buckets list */ |
f427ee49 A |
1292 | uint32_t preferred_cluster = sched_clutch_bucket_preferred_cluster(clutch_bucket); |
1293 | if (pset_type_for_id(preferred_cluster) != pset_type_for_id(root_clutch->scr_cluster_id)) { | |
1294 | sched_clutch_bucket_mark_foreign(clutch_bucket, root_clutch); | |
c6bf4f31 | 1295 | } |
f427ee49 A |
1296 | #endif /* CONFIG_SCHED_EDGE */ |
1297 | sched_clutch_root_bucket_t root_bucket = &root_clutch->scr_unbound_buckets[bucket]; | |
cb323159 A |
1298 | |
1299 | /* If this is the first clutch bucket in the root bucket, insert the root bucket into the root priority queue */ | |
ea3f0419 | 1300 | if (sched_clutch_bucket_runq_empty(&root_bucket->scrb_clutch_buckets)) { |
cb323159 A |
1301 | sched_clutch_root_bucket_runnable(root_bucket, root_clutch, timestamp); |
1302 | } | |
1303 | ||
ea3f0419 A |
1304 | /* Insert the clutch bucket into the root bucket run queue with order based on options */ |
1305 | sched_clutch_bucket_runq_enqueue(&root_bucket->scrb_clutch_buckets, clutch_bucket, options); | |
cb323159 | 1306 | os_atomic_store(&clutch_bucket->scb_root, root_clutch, relaxed); |
f427ee49 | 1307 | os_atomic_inc(&sched_clutch_global_bucket_load[bucket], relaxed); |
cb323159 A |
1308 | } |
1309 | ||
1310 | /* | |
1311 | * sched_clutch_bucket_hierarchy_remove() | |
1312 | * | |
1313 | * Rotuine to remove a empty clutch bucket from the root hierarchy. | |
1314 | */ | |
1315 | static void | |
1316 | sched_clutch_bucket_hierarchy_remove( | |
1317 | sched_clutch_root_t root_clutch, | |
1318 | sched_clutch_bucket_t clutch_bucket, | |
1319 | sched_bucket_t bucket, | |
ea3f0419 A |
1320 | uint64_t timestamp, |
1321 | __unused sched_clutch_bucket_options_t options) | |
cb323159 A |
1322 | { |
1323 | sched_clutch_hierarchy_locked_assert(root_clutch); | |
1324 | if (bucket > TH_BUCKET_FIXPRI) { | |
1325 | /* Remove the timeshare clutch bucket from the globally runnable clutch_bucket list */ | |
1326 | remqueue(&clutch_bucket->scb_listlink); | |
1327 | } | |
f427ee49 A |
1328 | #if CONFIG_SCHED_EDGE |
1329 | sched_clutch_bucket_mark_native(clutch_bucket, root_clutch); | |
1330 | #endif /* CONFIG_SCHED_EDGE */ | |
cb323159 | 1331 | |
f427ee49 | 1332 | sched_clutch_root_bucket_t root_bucket = &root_clutch->scr_unbound_buckets[bucket]; |
cb323159 A |
1333 | |
1334 | /* Remove the clutch bucket from the root bucket priority queue */ | |
ea3f0419 | 1335 | sched_clutch_bucket_runq_remove(&root_bucket->scrb_clutch_buckets, clutch_bucket); |
cb323159 | 1336 | os_atomic_store(&clutch_bucket->scb_root, NULL, relaxed); |
cb323159 A |
1337 | |
1338 | /* If the root bucket priority queue is now empty, remove it from the root priority queue */ | |
ea3f0419 | 1339 | if (sched_clutch_bucket_runq_empty(&root_bucket->scrb_clutch_buckets)) { |
cb323159 A |
1340 | sched_clutch_root_bucket_empty(root_bucket, root_clutch, timestamp); |
1341 | } | |
f427ee49 | 1342 | os_atomic_dec(&sched_clutch_global_bucket_load[bucket], relaxed); |
cb323159 A |
1343 | } |
1344 | ||
1345 | /* | |
1346 | * sched_clutch_bucket_base_pri() | |
1347 | * | |
1348 | * Calculates the "base" priority of the clutch bucket. The base | |
1349 | * priority of the clutch bucket is the sum of the max of highest | |
1350 | * base_pri and highest sched_pri in the clutch bucket and any | |
1351 | * grouping specific (App/Daemon...) boosts applicable to the | |
1352 | * clutch_bucket. | |
1353 | */ | |
1354 | static uint8_t | |
1355 | sched_clutch_bucket_base_pri( | |
1356 | sched_clutch_bucket_t clutch_bucket) | |
1357 | { | |
1358 | uint8_t clutch_boost = 0; | |
f427ee49 | 1359 | assert(priority_queue_empty(&clutch_bucket->scb_thread_runq) == false); |
cb323159 | 1360 | |
f427ee49 | 1361 | sched_clutch_t clutch = clutch_bucket->scb_group->scbg_clutch; |
cb323159 A |
1362 | |
1363 | /* | |
1364 | * Since the clutch bucket can contain threads that are members of the group due | |
1365 | * to the sched_pri being promoted or due to their base pri, the base priority of | |
1366 | * the entire clutch bucket should be based on the highest thread (promoted or base) | |
1367 | * in the clutch bucket. | |
1368 | */ | |
f427ee49 A |
1369 | uint8_t max_pri = 0; |
1370 | if (!priority_queue_empty(&clutch_bucket->scb_clutchpri_prioq)) { | |
1371 | max_pri = priority_queue_max_sched_pri(&clutch_bucket->scb_clutchpri_prioq); | |
cb323159 | 1372 | } |
f427ee49 A |
1373 | |
1374 | sched_clutch_tg_priority_t tg_pri = os_atomic_load(&clutch->sc_tg_priority, relaxed); | |
1375 | clutch_boost = sched_clutch_bucket_group_pri_boost[tg_pri]; | |
cb323159 A |
1376 | return max_pri + clutch_boost; |
1377 | } | |
1378 | ||
1379 | /* | |
f427ee49 | 1380 | * sched_clutch_interactivity_from_cpu_data() |
cb323159 | 1381 | * |
f427ee49 | 1382 | * Routine to calculate the interactivity score of a clutch bucket group from its CPU usage |
cb323159 A |
1383 | */ |
1384 | static uint8_t | |
f427ee49 | 1385 | sched_clutch_interactivity_from_cpu_data(sched_clutch_bucket_group_t clutch_bucket_group) |
cb323159 | 1386 | { |
cb323159 | 1387 | sched_clutch_bucket_cpu_data_t scb_cpu_data; |
f427ee49 | 1388 | scb_cpu_data.scbcd_cpu_data_packed = os_atomic_load_wide(&clutch_bucket_group->scbg_cpu_data.scbcd_cpu_data_packed, relaxed); |
cb323159 A |
1389 | clutch_cpu_data_t cpu_used = scb_cpu_data.cpu_data.scbcd_cpu_used; |
1390 | clutch_cpu_data_t cpu_blocked = scb_cpu_data.cpu_data.scbcd_cpu_blocked; | |
f427ee49 | 1391 | uint8_t interactive_score = 0; |
cb323159 | 1392 | |
cb323159 | 1393 | if ((cpu_blocked == 0) && (cpu_used == 0)) { |
f427ee49 | 1394 | return (uint8_t)clutch_bucket_group->scbg_interactivity_data.scct_count; |
cb323159 | 1395 | } |
cb323159 A |
1396 | /* |
1397 | * For all timeshare buckets, calculate the interactivity score of the bucket | |
1398 | * and add it to the base priority | |
1399 | */ | |
cb323159 A |
1400 | if (cpu_blocked > cpu_used) { |
1401 | /* Interactive clutch_bucket case */ | |
f427ee49 A |
1402 | interactive_score = sched_clutch_bucket_group_interactive_pri + |
1403 | ((sched_clutch_bucket_group_interactive_pri * (cpu_blocked - cpu_used)) / cpu_blocked); | |
cb323159 A |
1404 | } else { |
1405 | /* Non-interactive clutch_bucket case */ | |
f427ee49 | 1406 | interactive_score = ((sched_clutch_bucket_group_interactive_pri * cpu_blocked) / cpu_used); |
cb323159 | 1407 | } |
cb323159 A |
1408 | return interactive_score; |
1409 | } | |
1410 | ||
1411 | /* | |
1412 | * sched_clutch_bucket_pri_calculate() | |
1413 | * | |
1414 | * The priority calculation algorithm for the clutch_bucket is a slight | |
1415 | * modification on the ULE interactivity score. It uses the base priority | |
1416 | * of the clutch bucket and applies an interactivity score boost to the | |
1417 | * highly responsive clutch buckets. | |
1418 | */ | |
cb323159 A |
1419 | static uint8_t |
1420 | sched_clutch_bucket_pri_calculate( | |
1421 | sched_clutch_bucket_t clutch_bucket, | |
1422 | uint64_t timestamp) | |
1423 | { | |
1424 | /* For empty clutch buckets, return priority 0 */ | |
1425 | if (clutch_bucket->scb_thr_count == 0) { | |
1426 | return 0; | |
1427 | } | |
1428 | ||
1429 | uint8_t base_pri = sched_clutch_bucket_base_pri(clutch_bucket); | |
f427ee49 | 1430 | uint8_t interactive_score = sched_clutch_bucket_group_interactivity_score_calculate(clutch_bucket->scb_group, timestamp); |
cb323159 A |
1431 | |
1432 | assert(((uint64_t)base_pri + interactive_score) <= UINT8_MAX); | |
1433 | uint8_t pri = base_pri + interactive_score; | |
1434 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, MACHDBG_CODE(DBG_MACH_SCHED_CLUTCH, MACH_SCHED_CLUTCH_TG_BUCKET_PRI) | DBG_FUNC_NONE, | |
f427ee49 | 1435 | thread_group_get_id(clutch_bucket->scb_group->scbg_clutch->sc_tg), clutch_bucket->scb_bucket, pri, interactive_score, 0); |
cb323159 A |
1436 | return pri; |
1437 | } | |
1438 | ||
1439 | /* | |
1440 | * sched_clutch_root_bucket_highest_clutch_bucket() | |
1441 | * | |
1442 | * Routine to find the highest priority clutch bucket | |
1443 | * within the root bucket. | |
1444 | */ | |
1445 | static sched_clutch_bucket_t | |
1446 | sched_clutch_root_bucket_highest_clutch_bucket( | |
1447 | sched_clutch_root_bucket_t root_bucket) | |
1448 | { | |
ea3f0419 | 1449 | if (sched_clutch_bucket_runq_empty(&root_bucket->scrb_clutch_buckets)) { |
cb323159 A |
1450 | return NULL; |
1451 | } | |
ea3f0419 | 1452 | return sched_clutch_bucket_runq_peek(&root_bucket->scrb_clutch_buckets); |
cb323159 A |
1453 | } |
1454 | ||
1455 | /* | |
1456 | * sched_clutch_bucket_runnable() | |
1457 | * | |
1458 | * Perform all operations needed when a new clutch bucket becomes runnable. | |
1459 | * It involves inserting the clutch_bucket into the hierarchy and updating the | |
1460 | * root priority appropriately. | |
1461 | */ | |
1462 | static boolean_t | |
1463 | sched_clutch_bucket_runnable( | |
1464 | sched_clutch_bucket_t clutch_bucket, | |
1465 | sched_clutch_root_t root_clutch, | |
ea3f0419 A |
1466 | uint64_t timestamp, |
1467 | sched_clutch_bucket_options_t options) | |
cb323159 A |
1468 | { |
1469 | sched_clutch_hierarchy_locked_assert(root_clutch); | |
f427ee49 | 1470 | /* Since the clutch bucket became newly runnable, update its pending timestamp */ |
cb323159 | 1471 | clutch_bucket->scb_priority = sched_clutch_bucket_pri_calculate(clutch_bucket, timestamp); |
ea3f0419 | 1472 | sched_clutch_bucket_hierarchy_insert(root_clutch, clutch_bucket, clutch_bucket->scb_bucket, timestamp, options); |
f427ee49 | 1473 | |
cb323159 | 1474 | /* Update the timesharing properties of this clutch_bucket; also done every sched_tick */ |
f427ee49 | 1475 | sched_clutch_bucket_group_timeshare_update(clutch_bucket->scb_group, clutch_bucket, timestamp); |
cb323159 A |
1476 | int16_t root_old_pri = root_clutch->scr_priority; |
1477 | sched_clutch_root_pri_update(root_clutch); | |
1478 | return root_clutch->scr_priority > root_old_pri; | |
1479 | } | |
1480 | ||
1481 | /* | |
1482 | * sched_clutch_bucket_update() | |
1483 | * | |
ea3f0419 A |
1484 | * Update the clutch_bucket's position in the hierarchy. This routine is |
1485 | * called when a new thread is inserted or removed from a runnable clutch | |
1486 | * bucket. The options specify some properties about the clutch bucket | |
1487 | * insertion order into the clutch bucket runq. | |
cb323159 A |
1488 | */ |
1489 | static boolean_t | |
1490 | sched_clutch_bucket_update( | |
1491 | sched_clutch_bucket_t clutch_bucket, | |
1492 | sched_clutch_root_t root_clutch, | |
ea3f0419 A |
1493 | uint64_t timestamp, |
1494 | sched_clutch_bucket_options_t options) | |
cb323159 A |
1495 | { |
1496 | sched_clutch_hierarchy_locked_assert(root_clutch); | |
1497 | uint64_t new_pri = sched_clutch_bucket_pri_calculate(clutch_bucket, timestamp); | |
f427ee49 | 1498 | sched_clutch_bucket_runq_t bucket_runq = &root_clutch->scr_unbound_buckets[clutch_bucket->scb_bucket].scrb_clutch_buckets; |
cb323159 | 1499 | if (new_pri == clutch_bucket->scb_priority) { |
ea3f0419 A |
1500 | /* |
1501 | * If SCHED_CLUTCH_BUCKET_OPTIONS_SAMEPRI_RR is specified, move the clutch bucket | |
1502 | * to the end of the runq. Typically used when a thread is selected for execution | |
1503 | * from a clutch bucket. | |
1504 | */ | |
1505 | if (options & SCHED_CLUTCH_BUCKET_OPTIONS_SAMEPRI_RR) { | |
1506 | sched_clutch_bucket_runq_rotate(bucket_runq, clutch_bucket); | |
1507 | } | |
cb323159 A |
1508 | return false; |
1509 | } | |
ea3f0419 | 1510 | sched_clutch_bucket_runq_remove(bucket_runq, clutch_bucket); |
f427ee49 A |
1511 | #if CONFIG_SCHED_EDGE |
1512 | if (clutch_bucket->scb_foreign) { | |
1513 | priority_queue_remove(&root_clutch->scr_foreign_buckets, &clutch_bucket->scb_foreignlink); | |
1514 | } | |
1515 | #endif /* CONFIG_SCHED_EDGE */ | |
ea3f0419 | 1516 | clutch_bucket->scb_priority = new_pri; |
f427ee49 A |
1517 | #if CONFIG_SCHED_EDGE |
1518 | if (clutch_bucket->scb_foreign) { | |
1519 | priority_queue_entry_set_sched_pri(&root_clutch->scr_foreign_buckets, &clutch_bucket->scb_foreignlink, clutch_bucket->scb_priority, 0); | |
1520 | priority_queue_insert(&root_clutch->scr_foreign_buckets, &clutch_bucket->scb_foreignlink); | |
1521 | } | |
1522 | #endif /* CONFIG_SCHED_EDGE */ | |
ea3f0419 | 1523 | sched_clutch_bucket_runq_enqueue(bucket_runq, clutch_bucket, options); |
cb323159 A |
1524 | |
1525 | int16_t root_old_pri = root_clutch->scr_priority; | |
1526 | sched_clutch_root_pri_update(root_clutch); | |
1527 | return root_clutch->scr_priority > root_old_pri; | |
1528 | } | |
1529 | ||
1530 | /* | |
1531 | * sched_clutch_bucket_empty() | |
1532 | * | |
1533 | * Perform all the operations needed when a clutch_bucket is no longer runnable. | |
1534 | * It involves removing the clutch bucket from the hierarchy and updaing the root | |
1535 | * priority appropriately. | |
1536 | */ | |
1537 | static void | |
1538 | sched_clutch_bucket_empty( | |
1539 | sched_clutch_bucket_t clutch_bucket, | |
1540 | sched_clutch_root_t root_clutch, | |
ea3f0419 A |
1541 | uint64_t timestamp, |
1542 | sched_clutch_bucket_options_t options) | |
cb323159 A |
1543 | { |
1544 | sched_clutch_hierarchy_locked_assert(root_clutch); | |
ea3f0419 | 1545 | sched_clutch_bucket_hierarchy_remove(root_clutch, clutch_bucket, clutch_bucket->scb_bucket, timestamp, options); |
cb323159 A |
1546 | clutch_bucket->scb_priority = sched_clutch_bucket_pri_calculate(clutch_bucket, timestamp); |
1547 | sched_clutch_root_pri_update(root_clutch); | |
1548 | } | |
1549 | ||
1550 | /* | |
1551 | * sched_clutch_cpu_usage_update() | |
1552 | * | |
1553 | * Routine to update CPU usage of the thread in the hierarchy. | |
1554 | */ | |
1555 | void | |
1556 | sched_clutch_cpu_usage_update( | |
1557 | thread_t thread, | |
1558 | uint64_t delta) | |
1559 | { | |
f427ee49 | 1560 | if (!SCHED_CLUTCH_THREAD_ELIGIBLE(thread) || SCHED_CLUTCH_THREAD_CLUSTER_BOUND(thread)) { |
cb323159 A |
1561 | return; |
1562 | } | |
f427ee49 | 1563 | |
cb323159 | 1564 | sched_clutch_t clutch = sched_clutch_for_thread(thread); |
f427ee49 A |
1565 | sched_clutch_bucket_group_t clutch_bucket_group = &(clutch->sc_clutch_groups[thread->th_sched_bucket]); |
1566 | sched_clutch_bucket_group_cpu_usage_update(clutch_bucket_group, delta); | |
cb323159 A |
1567 | } |
1568 | ||
1569 | /* | |
f427ee49 | 1570 | * sched_clutch_bucket_group_cpu_usage_update() |
cb323159 A |
1571 | * |
1572 | * Routine to update the CPU usage of the clutch_bucket. | |
1573 | */ | |
1574 | static void | |
f427ee49 A |
1575 | sched_clutch_bucket_group_cpu_usage_update( |
1576 | sched_clutch_bucket_group_t clutch_bucket_group, | |
cb323159 A |
1577 | uint64_t delta) |
1578 | { | |
f427ee49 | 1579 | if (clutch_bucket_group->scbg_bucket == TH_BUCKET_FIXPRI) { |
cb323159 A |
1580 | /* Since Above UI bucket has maximum interactivity score always, nothing to do here */ |
1581 | return; | |
1582 | } | |
f427ee49 A |
1583 | delta = MIN(delta, sched_clutch_bucket_group_adjust_threshold); |
1584 | os_atomic_add(&(clutch_bucket_group->scbg_cpu_data.cpu_data.scbcd_cpu_used), (clutch_cpu_data_t)delta, relaxed); | |
cb323159 A |
1585 | } |
1586 | ||
1587 | /* | |
f427ee49 | 1588 | * sched_clutch_bucket_group_cpu_pending_adjust() |
cb323159 | 1589 | * |
f427ee49 A |
1590 | * Routine to calculate the adjusted CPU usage value based on the pending intervals. The calculation is done |
1591 | * such that one "pending interval" provides one point improvement in interactivity score. | |
cb323159 | 1592 | */ |
f427ee49 A |
1593 | static inline uint64_t |
1594 | sched_clutch_bucket_group_cpu_pending_adjust( | |
1595 | uint64_t cpu_used, | |
1596 | uint64_t cpu_blocked, | |
1597 | uint8_t pending_intervals) | |
cb323159 | 1598 | { |
f427ee49 A |
1599 | uint64_t cpu_used_adjusted = 0; |
1600 | if (cpu_blocked < cpu_used) { | |
1601 | cpu_used_adjusted = (sched_clutch_bucket_group_interactive_pri * cpu_blocked * cpu_used); | |
1602 | cpu_used_adjusted = cpu_used_adjusted / ((sched_clutch_bucket_group_interactive_pri * cpu_blocked) + (cpu_used * pending_intervals)); | |
1603 | } else { | |
1604 | uint64_t adjust_factor = (cpu_blocked * pending_intervals) / sched_clutch_bucket_group_interactive_pri; | |
1605 | cpu_used_adjusted = (adjust_factor > cpu_used) ? 0 : (cpu_used - adjust_factor); | |
cb323159 | 1606 | } |
f427ee49 | 1607 | return cpu_used_adjusted; |
cb323159 A |
1608 | } |
1609 | ||
1610 | /* | |
f427ee49 | 1611 | * sched_clutch_bucket_group_cpu_adjust() |
cb323159 A |
1612 | * |
1613 | * Routine to scale the cpu usage and blocked time once the sum gets bigger | |
f427ee49 | 1614 | * than sched_clutch_bucket_group_adjust_threshold. Allows the values to remain |
cb323159 A |
1615 | * manageable and maintain the same ratio while allowing clutch buckets to |
1616 | * adjust behavior and reflect in the interactivity score in a reasonable | |
f427ee49 A |
1617 | * amount of time. Also adjusts the CPU usage based on pending_intervals |
1618 | * which allows ageout of CPU to avoid starvation in highly contended scenarios. | |
cb323159 A |
1619 | */ |
1620 | static void | |
f427ee49 A |
1621 | sched_clutch_bucket_group_cpu_adjust( |
1622 | sched_clutch_bucket_group_t clutch_bucket_group, | |
1623 | uint8_t pending_intervals) | |
cb323159 A |
1624 | { |
1625 | sched_clutch_bucket_cpu_data_t old_cpu_data = {}; | |
1626 | sched_clutch_bucket_cpu_data_t new_cpu_data = {}; | |
f427ee49 | 1627 | os_atomic_rmw_loop(&clutch_bucket_group->scbg_cpu_data.scbcd_cpu_data_packed, old_cpu_data.scbcd_cpu_data_packed, new_cpu_data.scbcd_cpu_data_packed, relaxed, { |
cb323159 A |
1628 | clutch_cpu_data_t cpu_used = old_cpu_data.cpu_data.scbcd_cpu_used; |
1629 | clutch_cpu_data_t cpu_blocked = old_cpu_data.cpu_data.scbcd_cpu_blocked; | |
cb323159 | 1630 | |
f427ee49 A |
1631 | if ((pending_intervals == 0) && (cpu_used + cpu_blocked) < sched_clutch_bucket_group_adjust_threshold) { |
1632 | /* No changes to the CPU used and blocked values */ | |
1633 | os_atomic_rmw_loop_give_up(); | |
1634 | } | |
1635 | if ((cpu_used + cpu_blocked) >= sched_clutch_bucket_group_adjust_threshold) { | |
1636 | /* Only keep the recent CPU history to better indicate how this TG has been behaving */ | |
1637 | cpu_used = cpu_used / SCHED_CLUTCH_BUCKET_GROUP_ADJUST_RATIO; | |
1638 | cpu_blocked = cpu_blocked / SCHED_CLUTCH_BUCKET_GROUP_ADJUST_RATIO; | |
1639 | } | |
1640 | /* Use the shift passed in to ageout the CPU usage */ | |
1641 | cpu_used = (clutch_cpu_data_t)sched_clutch_bucket_group_cpu_pending_adjust(cpu_used, cpu_blocked, pending_intervals); | |
1642 | new_cpu_data.cpu_data.scbcd_cpu_used = cpu_used; | |
1643 | new_cpu_data.cpu_data.scbcd_cpu_blocked = cpu_blocked; | |
1644 | }); | |
cb323159 A |
1645 | } |
1646 | ||
1647 | /* | |
1648 | * Thread level scheduling algorithm | |
1649 | * | |
1650 | * The thread level scheduling algorithm uses the mach timeshare | |
1651 | * decay based algorithm to achieve sharing between threads within the | |
1652 | * same clutch bucket. The load/priority shifts etc. are all maintained | |
1653 | * at the clutch bucket level and used for decay calculation of the | |
1654 | * threads. The load sampling is still driven off the scheduler tick | |
1655 | * for runnable clutch buckets (it does not use the new higher frequency | |
1656 | * EWMA based load calculation). The idea is that the contention and load | |
1657 | * within clutch_buckets should be limited enough to not see heavy decay | |
1658 | * and timeshare effectively. | |
1659 | */ | |
1660 | ||
1661 | /* | |
1662 | * sched_clutch_thread_run_bucket_incr() / sched_clutch_run_bucket_incr() | |
1663 | * | |
1664 | * Increment the run count for the clutch bucket associated with the | |
1665 | * thread. | |
1666 | */ | |
1667 | uint32_t | |
1668 | sched_clutch_thread_run_bucket_incr( | |
1669 | thread_t thread, | |
1670 | sched_bucket_t bucket) | |
1671 | { | |
1672 | if (!SCHED_CLUTCH_THREAD_ELIGIBLE(thread)) { | |
1673 | return 0; | |
1674 | } | |
1675 | sched_clutch_t clutch = sched_clutch_for_thread(thread); | |
1676 | return sched_clutch_run_bucket_incr(clutch, bucket); | |
1677 | } | |
1678 | ||
1679 | static uint32_t | |
1680 | sched_clutch_run_bucket_incr( | |
1681 | sched_clutch_t clutch, | |
1682 | sched_bucket_t bucket) | |
1683 | { | |
1684 | assert(bucket != TH_BUCKET_RUN); | |
f427ee49 A |
1685 | sched_clutch_bucket_group_t clutch_bucket_group = &(clutch->sc_clutch_groups[bucket]); |
1686 | return sched_clutch_bucket_group_run_count_inc(clutch_bucket_group); | |
cb323159 A |
1687 | } |
1688 | ||
1689 | /* | |
1690 | * sched_clutch_thread_run_bucket_decr() / sched_clutch_run_bucket_decr() | |
1691 | * | |
1692 | * Decrement the run count for the clutch bucket associated with the | |
1693 | * thread. | |
1694 | */ | |
1695 | uint32_t | |
1696 | sched_clutch_thread_run_bucket_decr( | |
1697 | thread_t thread, | |
1698 | sched_bucket_t bucket) | |
1699 | { | |
1700 | if (!SCHED_CLUTCH_THREAD_ELIGIBLE(thread)) { | |
1701 | return 0; | |
1702 | } | |
1703 | sched_clutch_t clutch = sched_clutch_for_thread(thread); | |
1704 | return sched_clutch_run_bucket_decr(clutch, bucket); | |
1705 | } | |
1706 | ||
1707 | static uint32_t | |
1708 | sched_clutch_run_bucket_decr( | |
1709 | sched_clutch_t clutch, | |
1710 | sched_bucket_t bucket) | |
1711 | { | |
1712 | assert(bucket != TH_BUCKET_RUN); | |
f427ee49 A |
1713 | sched_clutch_bucket_group_t clutch_bucket_group = &(clutch->sc_clutch_groups[bucket]); |
1714 | return sched_clutch_bucket_group_run_count_dec(clutch_bucket_group); | |
cb323159 A |
1715 | } |
1716 | ||
1717 | /* | |
f427ee49 | 1718 | * sched_clutch_bucket_group_timeshare_update() |
cb323159 | 1719 | * |
f427ee49 A |
1720 | * Routine to update the load and priority shift for the clutch_bucket_group |
1721 | * every sched_tick. For multi-cluster platforms, each QoS level will have multiple | |
1722 | * clutch buckets with runnable threads in them. So it is important to maintain | |
1723 | * the timesharing information at the clutch_bucket_group level instead of | |
1724 | * individual clutch buckets (because the algorithm is trying to timeshare all | |
1725 | * threads at the same QoS irrespective of which hierarchy they are enqueued in). | |
1726 | * | |
1727 | * The routine is called from the sched tick handling code to make sure this value | |
1728 | * is updated at least once every sched tick. For clutch bucket groups which have | |
1729 | * not been runnable for very long, the clutch_bucket_group maintains a "last | |
1730 | * updated schedtick" parameter. As threads become runnable in the clutch bucket group, | |
1731 | * if this value is outdated, the load and shifts are updated. | |
cb323159 A |
1732 | * |
1733 | * Possible optimization: | |
1734 | * - The current algorithm samples the load every sched tick (125ms). | |
1735 | * This is prone to spikes in runnable counts; if that turns out to be | |
1736 | * a problem, a simple solution would be to do the EWMA trick to sample | |
1737 | * load at every load_tick (30ms) and use the averaged value for the pri | |
1738 | * shift calculation. | |
1739 | */ | |
1740 | static void | |
f427ee49 A |
1741 | sched_clutch_bucket_group_timeshare_update( |
1742 | sched_clutch_bucket_group_t clutch_bucket_group, | |
1743 | sched_clutch_bucket_t clutch_bucket, | |
1744 | uint64_t ctime) | |
cb323159 | 1745 | { |
f427ee49 A |
1746 | if (clutch_bucket_group->scbg_bucket < TH_BUCKET_SHARE_FG) { |
1747 | /* No timesharing needed for fixed priority Above UI threads */ | |
cb323159 A |
1748 | return; |
1749 | } | |
1750 | ||
1751 | /* | |
f427ee49 A |
1752 | * Update the timeshare parameters for the clutch bucket group |
1753 | * if they havent been updated in this tick. | |
cb323159 | 1754 | */ |
f427ee49 | 1755 | uint32_t sched_ts = os_atomic_load(&clutch_bucket_group->scbg_timeshare_tick, relaxed); |
cb323159 | 1756 | uint32_t current_sched_ts = sched_tick; |
f427ee49 A |
1757 | if (sched_ts < current_sched_ts) { |
1758 | os_atomic_store(&clutch_bucket_group->scbg_timeshare_tick, current_sched_ts, relaxed); | |
1759 | /* NCPU wide workloads should not experience decay */ | |
1760 | uint64_t bucket_group_run_count = os_atomic_load_wide(&clutch_bucket_group->scbg_blocked_data.scct_count, relaxed) - 1; | |
1761 | uint32_t bucket_group_load = (uint32_t)(bucket_group_run_count / processor_avail_count); | |
1762 | bucket_group_load = MIN(bucket_group_load, NRQS - 1); | |
1763 | uint32_t pri_shift = sched_fixed_shift - sched_load_shifts[bucket_group_load]; | |
1764 | /* Ensure that the pri_shift value is reasonable */ | |
1765 | pri_shift = (pri_shift > SCHED_PRI_SHIFT_MAX) ? INT8_MAX : pri_shift; | |
1766 | os_atomic_store(&clutch_bucket_group->scbg_pri_shift, pri_shift, relaxed); | |
cb323159 | 1767 | } |
f427ee49 A |
1768 | |
1769 | /* | |
1770 | * Update the clutch bucket priority; this allows clutch buckets that have been pending | |
1771 | * for a long time to get an updated interactivity score. | |
1772 | */ | |
1773 | sched_clutch_bucket_update(clutch_bucket, clutch_bucket->scb_root, ctime, SCHED_CLUTCH_BUCKET_OPTIONS_NONE); | |
cb323159 A |
1774 | } |
1775 | ||
1776 | /* | |
1777 | * sched_clutch_thread_clutch_update() | |
1778 | * | |
1779 | * Routine called when the thread changes its thread group. The current | |
1780 | * implementation relies on the fact that the thread group is changed only | |
1781 | * from the context of the thread itself. Due to this fact, the thread | |
1782 | * group change causes only counter updates in the old & new clutch | |
1783 | * buckets and no hierarchy changes. The routine also attributes the CPU | |
1784 | * used so far to the old clutch. | |
1785 | */ | |
1786 | void | |
1787 | sched_clutch_thread_clutch_update( | |
1788 | thread_t thread, | |
1789 | sched_clutch_t old_clutch, | |
1790 | sched_clutch_t new_clutch) | |
1791 | { | |
1792 | uint32_t cpu_delta; | |
1793 | assert(current_thread() == thread); | |
1794 | ||
1795 | if (old_clutch) { | |
1796 | sched_clutch_run_bucket_decr(old_clutch, thread->th_sched_bucket); | |
1797 | /* | |
1798 | * Calculate the CPU used by this thread in the old bucket and | |
1799 | * add it to the old clutch bucket. This uses the same CPU usage | |
1800 | * logic as update_priority etc. | |
1801 | */ | |
1802 | thread_timer_delta(thread, cpu_delta); | |
1803 | if (thread->pri_shift < INT8_MAX) { | |
1804 | thread->sched_usage += cpu_delta; | |
1805 | } | |
1806 | thread->cpu_delta += cpu_delta; | |
f427ee49 A |
1807 | if (!SCHED_CLUTCH_THREAD_CLUSTER_BOUND(thread)) { |
1808 | sched_clutch_bucket_group_t clutch_bucket_group = &(old_clutch->sc_clutch_groups[thread->th_sched_bucket]); | |
1809 | sched_clutch_bucket_group_cpu_usage_update(clutch_bucket_group, cpu_delta); | |
1810 | } | |
cb323159 A |
1811 | } |
1812 | ||
1813 | if (new_clutch) { | |
1814 | sched_clutch_run_bucket_incr(new_clutch, thread->th_sched_bucket); | |
1815 | } | |
1816 | } | |
1817 | ||
1818 | /* Thread Insertion/Removal/Selection routines */ | |
1819 | ||
f427ee49 A |
1820 | #if CONFIG_SCHED_EDGE |
1821 | ||
1822 | /* | |
1823 | * Edge Scheduler Bound Thread Support | |
1824 | * | |
1825 | * The edge scheduler allows threads to be bound to specific clusters. The scheduler | |
1826 | * maintains a separate runq on the clutch root to hold these bound threads. These | |
1827 | * bound threads count towards the root priority and thread count, but are ignored | |
1828 | * for thread migration/steal decisions. Bound threads that are enqueued in the | |
1829 | * separate runq have the th_bound_cluster_enqueued flag set to allow easy | |
1830 | * removal. | |
1831 | * | |
1832 | * Bound Threads Timesharing | |
1833 | * The bound threads share the timesharing properties of the clutch bucket group they are | |
1834 | * part of. They contribute to the load and use priority shifts/decay values from the | |
1835 | * clutch bucket group. | |
1836 | */ | |
1837 | ||
1838 | static boolean_t | |
1839 | sched_edge_bound_thread_insert( | |
1840 | sched_clutch_root_t root_clutch, | |
1841 | thread_t thread, | |
1842 | integer_t options) | |
1843 | { | |
1844 | /* Update the clutch runnable count and priority */ | |
1845 | sched_clutch_thr_count_inc(&root_clutch->scr_thr_count); | |
1846 | sched_clutch_root_bucket_t root_bucket = &root_clutch->scr_bound_buckets[thread->th_sched_bucket]; | |
1847 | if (root_bucket->scrb_bound_thread_runq.count == 0) { | |
1848 | sched_clutch_root_bucket_runnable(root_bucket, root_clutch, mach_absolute_time()); | |
1849 | } | |
1850 | ||
1851 | assert((thread->th_bound_cluster_enqueued) == false); | |
1852 | run_queue_enqueue(&root_bucket->scrb_bound_thread_runq, thread, options); | |
1853 | thread->th_bound_cluster_enqueued = true; | |
1854 | ||
1855 | int16_t root_old_pri = root_clutch->scr_priority; | |
1856 | sched_clutch_root_pri_update(root_clutch); | |
1857 | return root_clutch->scr_priority > root_old_pri; | |
1858 | } | |
1859 | ||
1860 | static void | |
1861 | sched_edge_bound_thread_remove( | |
1862 | sched_clutch_root_t root_clutch, | |
1863 | thread_t thread) | |
1864 | { | |
1865 | sched_clutch_root_bucket_t root_bucket = &root_clutch->scr_bound_buckets[thread->th_sched_bucket]; | |
1866 | assert((thread->th_bound_cluster_enqueued) == true); | |
1867 | run_queue_remove(&root_bucket->scrb_bound_thread_runq, thread); | |
1868 | thread->th_bound_cluster_enqueued = false; | |
1869 | ||
1870 | /* Update the clutch runnable count and priority */ | |
1871 | sched_clutch_thr_count_dec(&root_clutch->scr_thr_count); | |
1872 | if (root_bucket->scrb_bound_thread_runq.count == 0) { | |
1873 | sched_clutch_root_bucket_empty(root_bucket, root_clutch, mach_absolute_time()); | |
1874 | } | |
1875 | sched_clutch_root_pri_update(root_clutch); | |
1876 | } | |
1877 | ||
1878 | #endif /* CONFIG_SCHED_EDGE */ | |
1879 | ||
1880 | /* | |
1881 | * sched_clutch_thread_bound_lookup() | |
1882 | * | |
1883 | * Routine to lookup the highest priority runnable thread in a bounded root bucket. | |
1884 | */ | |
1885 | static thread_t | |
1886 | sched_clutch_thread_bound_lookup( | |
1887 | __unused sched_clutch_root_t root_clutch, | |
1888 | sched_clutch_root_bucket_t root_bucket) | |
1889 | { | |
1890 | return run_queue_peek(&root_bucket->scrb_bound_thread_runq); | |
1891 | } | |
1892 | ||
1893 | /* | |
1894 | * Clutch Bucket Group Thread Counts and Pending time calculation | |
1895 | * | |
1896 | * The pending time on the clutch_bucket_group allows the scheduler to track if it | |
1897 | * needs to ageout the CPU usage because the clutch_bucket_group has been pending for | |
1898 | * a very long time. The pending time is set to the timestamp as soon as a thread becomes | |
1899 | * runnable. When a thread is picked up for execution from this clutch_bucket_group, the | |
1900 | * pending time is advanced to the time of thread selection. | |
1901 | * | |
1902 | * Since threads for a clutch bucket group can be added or removed from multiple CPUs | |
1903 | * simulataneously, it is important that the updates to thread counts and pending timestamps | |
1904 | * happen atomically. The implementation relies on the following aspects to make that work | |
1905 | * as expected: | |
1906 | * - The clutch scheduler would be deployed on single cluster platforms where the pset lock | |
1907 | * is held when threads are added/removed and pending timestamps are updated | |
1908 | * - The edge scheduler would have support for double wide 128 bit atomics which allow the | |
1909 | * thread count and pending timestamp to be updated atomically. | |
1910 | * | |
1911 | * Clutch bucket group interactivity timestamp and score updates also rely on the properties | |
1912 | * above to atomically update the interactivity score for a clutch bucket group. | |
1913 | */ | |
1914 | ||
1915 | #if CONFIG_SCHED_EDGE | |
1916 | ||
1917 | static void | |
1918 | sched_clutch_bucket_group_thr_count_inc( | |
1919 | sched_clutch_bucket_group_t clutch_bucket_group, | |
1920 | uint64_t timestamp) | |
1921 | { | |
1922 | sched_clutch_counter_time_t old_pending_data; | |
1923 | sched_clutch_counter_time_t new_pending_data; | |
1924 | os_atomic_rmw_loop(&clutch_bucket_group->scbg_pending_data.scct_packed, old_pending_data.scct_packed, new_pending_data.scct_packed, relaxed, { | |
1925 | new_pending_data.scct_count = old_pending_data.scct_count + 1; | |
1926 | new_pending_data.scct_timestamp = old_pending_data.scct_timestamp; | |
1927 | if (old_pending_data.scct_count == 0) { | |
1928 | new_pending_data.scct_timestamp = timestamp; | |
1929 | } | |
1930 | }); | |
1931 | } | |
1932 | ||
1933 | static void | |
1934 | sched_clutch_bucket_group_thr_count_dec( | |
1935 | sched_clutch_bucket_group_t clutch_bucket_group, | |
1936 | uint64_t timestamp) | |
1937 | { | |
1938 | sched_clutch_counter_time_t old_pending_data; | |
1939 | sched_clutch_counter_time_t new_pending_data; | |
1940 | os_atomic_rmw_loop(&clutch_bucket_group->scbg_pending_data.scct_packed, old_pending_data.scct_packed, new_pending_data.scct_packed, relaxed, { | |
1941 | new_pending_data.scct_count = old_pending_data.scct_count - 1; | |
1942 | if (new_pending_data.scct_count == 0) { | |
1943 | new_pending_data.scct_timestamp = SCHED_CLUTCH_BUCKET_GROUP_PENDING_INVALID; | |
1944 | } else { | |
1945 | new_pending_data.scct_timestamp = timestamp; | |
1946 | } | |
1947 | }); | |
1948 | } | |
1949 | ||
1950 | static uint8_t | |
1951 | sched_clutch_bucket_group_pending_ageout( | |
1952 | sched_clutch_bucket_group_t clutch_bucket_group, | |
1953 | uint64_t timestamp) | |
1954 | { | |
1955 | int bucket_load = sched_clutch_global_bucket_load_get(clutch_bucket_group->scbg_bucket); | |
1956 | sched_clutch_counter_time_t old_pending_data; | |
1957 | sched_clutch_counter_time_t new_pending_data; | |
1958 | uint8_t cpu_usage_shift = 0; | |
1959 | ||
1960 | os_atomic_rmw_loop(&clutch_bucket_group->scbg_pending_data.scct_packed, old_pending_data.scct_packed, new_pending_data.scct_packed, relaxed, { | |
1961 | cpu_usage_shift = 0; | |
1962 | uint64_t old_pending_ts = old_pending_data.scct_timestamp; | |
1963 | bool old_update = (old_pending_ts >= timestamp); | |
1964 | bool no_pending_time = (old_pending_ts == SCHED_CLUTCH_BUCKET_GROUP_PENDING_INVALID); | |
1965 | bool no_bucket_load = (bucket_load == 0); | |
1966 | if (old_update || no_pending_time || no_bucket_load) { | |
1967 | os_atomic_rmw_loop_give_up(); | |
1968 | } | |
1969 | ||
1970 | /* Calculate the time the clutch bucket group has been pending */ | |
1971 | uint64_t pending_delta = timestamp - old_pending_ts; | |
1972 | uint64_t interactivity_delta = sched_clutch_bucket_group_pending_delta[clutch_bucket_group->scbg_bucket] * bucket_load; | |
1973 | if (pending_delta < interactivity_delta) { | |
1974 | os_atomic_rmw_loop_give_up(); | |
1975 | } | |
1976 | cpu_usage_shift = (pending_delta / interactivity_delta); | |
1977 | new_pending_data.scct_timestamp = old_pending_ts + (cpu_usage_shift * interactivity_delta); | |
1978 | new_pending_data.scct_count = old_pending_data.scct_count; | |
1979 | }); | |
1980 | return cpu_usage_shift; | |
1981 | } | |
1982 | ||
1983 | static uint8_t | |
1984 | sched_clutch_bucket_group_interactivity_score_calculate( | |
1985 | sched_clutch_bucket_group_t clutch_bucket_group, | |
1986 | uint64_t timestamp) | |
1987 | { | |
1988 | if (clutch_bucket_group->scbg_bucket == TH_BUCKET_FIXPRI) { | |
1989 | /* | |
1990 | * Since the root bucket selection algorithm for Above UI looks at clutch bucket | |
1991 | * priorities, make sure all AboveUI buckets are marked interactive. | |
1992 | */ | |
1993 | assert(clutch_bucket_group->scbg_interactivity_data.scct_count == (2 * sched_clutch_bucket_group_interactive_pri)); | |
1994 | return (uint8_t)clutch_bucket_group->scbg_interactivity_data.scct_count; | |
1995 | } | |
1996 | /* Check if the clutch bucket group CPU usage needs to be aged out due to pending time */ | |
1997 | uint8_t pending_intervals = sched_clutch_bucket_group_pending_ageout(clutch_bucket_group, timestamp); | |
1998 | /* Adjust CPU stats based on the calculated shift and to make sure only recent behavior is used */ | |
1999 | sched_clutch_bucket_group_cpu_adjust(clutch_bucket_group, pending_intervals); | |
2000 | uint8_t interactivity_score = sched_clutch_interactivity_from_cpu_data(clutch_bucket_group); | |
2001 | sched_clutch_counter_time_t old_interactivity_data; | |
2002 | sched_clutch_counter_time_t new_interactivity_data; | |
2003 | ||
2004 | bool score_updated = os_atomic_rmw_loop(&clutch_bucket_group->scbg_interactivity_data.scct_packed, old_interactivity_data.scct_packed, new_interactivity_data.scct_packed, relaxed, { | |
2005 | if (old_interactivity_data.scct_timestamp >= timestamp) { | |
2006 | os_atomic_rmw_loop_give_up(); | |
2007 | } | |
2008 | new_interactivity_data.scct_timestamp = timestamp; | |
2009 | if (old_interactivity_data.scct_timestamp != 0) { | |
2010 | new_interactivity_data.scct_count = interactivity_score; | |
2011 | } | |
2012 | }); | |
2013 | if (score_updated) { | |
2014 | return (uint8_t)new_interactivity_data.scct_count; | |
2015 | } else { | |
2016 | return (uint8_t)old_interactivity_data.scct_count; | |
2017 | } | |
2018 | } | |
2019 | ||
2020 | #else /* CONFIG_SCHED_EDGE */ | |
2021 | ||
2022 | /* | |
2023 | * For the clutch scheduler, atomicity is ensured by making sure all operations | |
2024 | * are happening under the pset lock of the only cluster present on the platform. | |
2025 | */ | |
2026 | static void | |
2027 | sched_clutch_bucket_group_thr_count_inc( | |
2028 | sched_clutch_bucket_group_t clutch_bucket_group, | |
2029 | uint64_t timestamp) | |
2030 | { | |
2031 | sched_clutch_hierarchy_locked_assert(&pset0.pset_clutch_root); | |
2032 | if (clutch_bucket_group->scbg_pending_data.scct_count == 0) { | |
2033 | clutch_bucket_group->scbg_pending_data.scct_timestamp = timestamp; | |
2034 | } | |
2035 | clutch_bucket_group->scbg_pending_data.scct_count++; | |
2036 | } | |
2037 | ||
2038 | static void | |
2039 | sched_clutch_bucket_group_thr_count_dec( | |
2040 | sched_clutch_bucket_group_t clutch_bucket_group, | |
2041 | uint64_t timestamp) | |
2042 | { | |
2043 | sched_clutch_hierarchy_locked_assert(&pset0.pset_clutch_root); | |
2044 | clutch_bucket_group->scbg_pending_data.scct_count--; | |
2045 | if (clutch_bucket_group->scbg_pending_data.scct_count == 0) { | |
2046 | clutch_bucket_group->scbg_pending_data.scct_timestamp = SCHED_CLUTCH_BUCKET_GROUP_PENDING_INVALID; | |
2047 | } else { | |
2048 | clutch_bucket_group->scbg_pending_data.scct_timestamp = timestamp; | |
2049 | } | |
2050 | } | |
2051 | ||
2052 | static uint8_t | |
2053 | sched_clutch_bucket_group_pending_ageout( | |
2054 | sched_clutch_bucket_group_t clutch_bucket_group, | |
2055 | uint64_t timestamp) | |
2056 | { | |
2057 | sched_clutch_hierarchy_locked_assert(&pset0.pset_clutch_root); | |
2058 | int bucket_load = sched_clutch_global_bucket_load_get(clutch_bucket_group->scbg_bucket); | |
2059 | uint64_t old_pending_ts = clutch_bucket_group->scbg_pending_data.scct_timestamp; | |
2060 | bool old_update = (old_pending_ts >= timestamp); | |
2061 | bool no_pending_time = (old_pending_ts == SCHED_CLUTCH_BUCKET_GROUP_PENDING_INVALID); | |
2062 | bool no_bucket_load = (bucket_load == 0); | |
2063 | if (old_update || no_pending_time || no_bucket_load) { | |
2064 | return 0; | |
2065 | } | |
2066 | uint64_t pending_delta = timestamp - old_pending_ts; | |
2067 | uint64_t interactivity_delta = sched_clutch_bucket_group_pending_delta[clutch_bucket_group->scbg_bucket] * bucket_load; | |
2068 | if (pending_delta < interactivity_delta) { | |
2069 | return 0; | |
2070 | } | |
2071 | uint8_t cpu_usage_shift = (pending_delta / interactivity_delta); | |
2072 | clutch_bucket_group->scbg_pending_data.scct_timestamp = old_pending_ts + (cpu_usage_shift * interactivity_delta); | |
2073 | return cpu_usage_shift; | |
2074 | } | |
2075 | ||
2076 | static uint8_t | |
2077 | sched_clutch_bucket_group_interactivity_score_calculate( | |
2078 | sched_clutch_bucket_group_t clutch_bucket_group, | |
2079 | uint64_t timestamp) | |
2080 | { | |
2081 | sched_clutch_hierarchy_locked_assert(&pset0.pset_clutch_root); | |
2082 | if (clutch_bucket_group->scbg_bucket == TH_BUCKET_FIXPRI) { | |
2083 | /* | |
2084 | * Since the root bucket selection algorithm for Above UI looks at clutch bucket | |
2085 | * priorities, make sure all AboveUI buckets are marked interactive. | |
2086 | */ | |
2087 | assert(clutch_bucket_group->scbg_interactivity_data.scct_count == (2 * sched_clutch_bucket_group_interactive_pri)); | |
2088 | return (uint8_t)clutch_bucket_group->scbg_interactivity_data.scct_count; | |
2089 | } | |
2090 | /* Check if the clutch bucket group CPU usage needs to be aged out due to pending time */ | |
2091 | uint8_t pending_intervals = sched_clutch_bucket_group_pending_ageout(clutch_bucket_group, timestamp); | |
2092 | /* Adjust CPU stats based on the calculated shift and to make sure only recent behavior is used */ | |
2093 | sched_clutch_bucket_group_cpu_adjust(clutch_bucket_group, pending_intervals); | |
2094 | uint8_t interactivity_score = sched_clutch_interactivity_from_cpu_data(clutch_bucket_group); | |
2095 | if (timestamp > clutch_bucket_group->scbg_interactivity_data.scct_timestamp) { | |
2096 | clutch_bucket_group->scbg_interactivity_data.scct_count = interactivity_score; | |
2097 | clutch_bucket_group->scbg_interactivity_data.scct_timestamp = timestamp; | |
2098 | return interactivity_score; | |
2099 | } else { | |
2100 | return (uint8_t)clutch_bucket_group->scbg_interactivity_data.scct_count; | |
2101 | } | |
2102 | } | |
2103 | ||
2104 | #endif /* CONFIG_SCHED_EDGE */ | |
2105 | ||
2106 | /* | |
2107 | * Clutch Bucket Group Run Count and Blocked Time Accounting | |
2108 | * | |
2109 | * The clutch bucket group maintains the number of runnable/running threads in the group. | |
2110 | * Since the blocked time of the clutch bucket group is based on this count, it is | |
2111 | * important to make sure the blocking timestamp and the run count are updated atomically. | |
2112 | * | |
2113 | * Since the run count increments happen without any pset locks held, the scheduler makes | |
2114 | * these updates atomic in the following way: | |
2115 | * - On 64-bit platforms, it uses double wide atomics to update the count & timestamp | |
2116 | * - On 32-bit platforms, it uses a lock to synchronize the count & timestamp update | |
2117 | */ | |
2118 | ||
2119 | #if !__LP64__ | |
2120 | ||
2121 | static uint32_t | |
2122 | sched_clutch_bucket_group_run_count_inc( | |
2123 | sched_clutch_bucket_group_t clutch_bucket_group) | |
2124 | { | |
2125 | uint64_t blocked_time = 0; | |
2126 | uint64_t updated_run_count = 0; | |
2127 | ||
2128 | lck_spin_lock(&clutch_bucket_group->scbg_stats_lock); | |
2129 | if ((clutch_bucket_group->scbg_blocked_data.scct_timestamp != SCHED_CLUTCH_BUCKET_GROUP_BLOCKED_TS_INVALID) && | |
2130 | (clutch_bucket_group->scbg_blocked_data.scct_count == 0)) { | |
2131 | /* Run count is transitioning from 0 to 1; calculate blocked time and add it to CPU data */ | |
2132 | blocked_time = mach_absolute_time() - clutch_bucket_group->scbg_blocked_data.scct_timestamp; | |
2133 | clutch_bucket_group->scbg_blocked_data.scct_timestamp = SCHED_CLUTCH_BUCKET_GROUP_BLOCKED_TS_INVALID; | |
2134 | } | |
2135 | clutch_bucket_group->scbg_blocked_data.scct_count = clutch_bucket_group->scbg_blocked_data.scct_count + 1; | |
2136 | updated_run_count = clutch_bucket_group->scbg_blocked_data.scct_count; | |
2137 | lck_spin_unlock(&clutch_bucket_group->scbg_stats_lock); | |
2138 | ||
2139 | blocked_time = MIN(blocked_time, sched_clutch_bucket_group_adjust_threshold); | |
2140 | os_atomic_add(&(clutch_bucket_group->scbg_cpu_data.cpu_data.scbcd_cpu_blocked), (clutch_cpu_data_t)blocked_time, relaxed); | |
2141 | return (uint32_t)updated_run_count; | |
2142 | } | |
2143 | ||
2144 | static uint32_t | |
2145 | sched_clutch_bucket_group_run_count_dec( | |
2146 | sched_clutch_bucket_group_t clutch_bucket_group) | |
2147 | { | |
2148 | uint64_t updated_run_count = 0; | |
2149 | ||
2150 | lck_spin_lock(&clutch_bucket_group->scbg_stats_lock); | |
2151 | clutch_bucket_group->scbg_blocked_data.scct_count = clutch_bucket_group->scbg_blocked_data.scct_count - 1; | |
2152 | if (clutch_bucket_group->scbg_blocked_data.scct_count == 0) { | |
2153 | /* Run count is transitioning from 1 to 0; start the blocked timer */ | |
2154 | clutch_bucket_group->scbg_blocked_data.scct_timestamp = mach_absolute_time(); | |
2155 | } | |
2156 | updated_run_count = clutch_bucket_group->scbg_blocked_data.scct_count; | |
2157 | lck_spin_unlock(&clutch_bucket_group->scbg_stats_lock); | |
2158 | return (uint32_t)updated_run_count; | |
2159 | } | |
2160 | ||
2161 | #else /* !__LP64__ */ | |
2162 | ||
2163 | static uint32_t | |
2164 | sched_clutch_bucket_group_run_count_inc( | |
2165 | sched_clutch_bucket_group_t clutch_bucket_group) | |
2166 | { | |
2167 | sched_clutch_counter_time_t old_blocked_data; | |
2168 | sched_clutch_counter_time_t new_blocked_data; | |
2169 | ||
2170 | bool update_blocked_time = false; | |
2171 | os_atomic_rmw_loop(&clutch_bucket_group->scbg_blocked_data.scct_packed, old_blocked_data.scct_packed, new_blocked_data.scct_packed, relaxed, { | |
2172 | new_blocked_data.scct_count = old_blocked_data.scct_count + 1; | |
2173 | new_blocked_data.scct_timestamp = old_blocked_data.scct_timestamp; | |
2174 | update_blocked_time = false; | |
2175 | if (old_blocked_data.scct_count == 0) { | |
2176 | new_blocked_data.scct_timestamp = SCHED_CLUTCH_BUCKET_GROUP_BLOCKED_TS_INVALID; | |
2177 | update_blocked_time = true; | |
2178 | } | |
2179 | }); | |
2180 | if (update_blocked_time && (old_blocked_data.scct_timestamp != SCHED_CLUTCH_BUCKET_GROUP_BLOCKED_TS_INVALID)) { | |
2181 | uint64_t ctime = mach_absolute_time(); | |
2182 | if (ctime > old_blocked_data.scct_timestamp) { | |
2183 | uint64_t blocked_time = ctime - old_blocked_data.scct_timestamp; | |
2184 | blocked_time = MIN(blocked_time, sched_clutch_bucket_group_adjust_threshold); | |
2185 | os_atomic_add(&(clutch_bucket_group->scbg_cpu_data.cpu_data.scbcd_cpu_blocked), (clutch_cpu_data_t)blocked_time, relaxed); | |
2186 | } | |
2187 | } | |
2188 | return (uint32_t)new_blocked_data.scct_count; | |
2189 | } | |
2190 | ||
2191 | static uint32_t | |
2192 | sched_clutch_bucket_group_run_count_dec( | |
2193 | sched_clutch_bucket_group_t clutch_bucket_group) | |
2194 | { | |
2195 | sched_clutch_counter_time_t old_blocked_data; | |
2196 | sched_clutch_counter_time_t new_blocked_data; | |
2197 | ||
2198 | uint64_t ctime = mach_absolute_time(); | |
2199 | os_atomic_rmw_loop(&clutch_bucket_group->scbg_blocked_data.scct_packed, old_blocked_data.scct_packed, new_blocked_data.scct_packed, relaxed, { | |
2200 | new_blocked_data.scct_count = old_blocked_data.scct_count - 1; | |
2201 | new_blocked_data.scct_timestamp = old_blocked_data.scct_timestamp; | |
2202 | if (new_blocked_data.scct_count == 0) { | |
2203 | new_blocked_data.scct_timestamp = ctime; | |
2204 | } | |
2205 | }); | |
2206 | return (uint32_t)new_blocked_data.scct_count; | |
2207 | } | |
2208 | ||
2209 | #endif /* !__LP64__ */ | |
2210 | ||
cb323159 A |
2211 | /* |
2212 | * sched_clutch_thread_insert() | |
2213 | * | |
2214 | * Routine to insert a thread into the sched clutch hierarchy. | |
2215 | * Update the counts at all levels of the hierarchy and insert the nodes | |
2216 | * as they become runnable. Always called with the pset lock held. | |
2217 | */ | |
2218 | static boolean_t | |
2219 | sched_clutch_thread_insert( | |
2220 | sched_clutch_root_t root_clutch, | |
2221 | thread_t thread, | |
2222 | integer_t options) | |
2223 | { | |
2224 | boolean_t result = FALSE; | |
2225 | ||
2226 | sched_clutch_hierarchy_locked_assert(root_clutch); | |
f427ee49 A |
2227 | #if CONFIG_SCHED_EDGE |
2228 | sched_edge_cluster_cumulative_count_incr(root_clutch, thread->th_sched_bucket); | |
2229 | /* | |
2230 | * Check if the thread is bound and is being enqueued in its desired bound cluster. | |
2231 | * One scenario where a bound thread might not be getting enqueued in the bound cluster | |
2232 | * hierarchy would be if the thread is "soft" bound and the bound cluster is | |
2233 | * de-recommended. In that case, the thread should be treated as an unbound | |
2234 | * thread. | |
2235 | */ | |
2236 | if (SCHED_CLUTCH_THREAD_CLUSTER_BOUND(thread) && (sched_edge_thread_bound_cluster_id(thread) == root_clutch->scr_cluster_id)) { | |
2237 | return sched_edge_bound_thread_insert(root_clutch, thread, options); | |
2238 | } | |
2239 | #endif /* CONFIG_SCHED_EDGE */ | |
cb323159 A |
2240 | sched_clutch_t clutch = sched_clutch_for_thread(thread); |
2241 | assert(thread->thread_group == clutch->sc_tg); | |
2242 | ||
2243 | uint64_t current_timestamp = mach_absolute_time(); | |
f427ee49 A |
2244 | sched_clutch_bucket_group_t clutch_bucket_group = &(clutch->sc_clutch_groups[thread->th_sched_bucket]); |
2245 | sched_clutch_bucket_t clutch_bucket = &(clutch_bucket_group->scbg_clutch_buckets[root_clutch->scr_cluster_id]); | |
cb323159 A |
2246 | assert((clutch_bucket->scb_root == NULL) || (clutch_bucket->scb_root == root_clutch)); |
2247 | ||
f427ee49 A |
2248 | /* |
2249 | * Thread linkage in clutch_bucket | |
2250 | * | |
2251 | * A thread has a few linkages within the clutch bucket: | |
2252 | * - A stable priority queue linkage which is the main runqueue (based on sched_pri) for the clutch bucket | |
2253 | * - A regular priority queue linkage which is based on thread's base/promoted pri (used for clutch bucket priority calculation) | |
2254 | * - A queue linkage used for timesharing operations of threads at the scheduler tick | |
2255 | */ | |
2256 | ||
2257 | /* Insert thread into the clutch_bucket stable priority runqueue using sched_pri */ | |
2258 | thread->th_clutch_runq_link.stamp = current_timestamp; | |
2259 | priority_queue_entry_set_sched_pri(&clutch_bucket->scb_thread_runq, &thread->th_clutch_runq_link, thread->sched_pri, | |
2260 | (options & SCHED_TAILQ) ? PRIORITY_QUEUE_ENTRY_NONE : PRIORITY_QUEUE_ENTRY_PREEMPTED); | |
2261 | priority_queue_insert(&clutch_bucket->scb_thread_runq, &thread->th_clutch_runq_link); | |
2262 | ||
2263 | /* Insert thread into clutch_bucket priority queue based on the promoted or base priority */ | |
2264 | priority_queue_entry_set_sched_pri(&clutch_bucket->scb_clutchpri_prioq, &thread->th_clutch_pri_link, | |
2265 | sched_thread_sched_pri_promoted(thread) ? thread->sched_pri : thread->base_pri, false); | |
2266 | priority_queue_insert(&clutch_bucket->scb_clutchpri_prioq, &thread->th_clutch_pri_link); | |
2267 | ||
2268 | /* Insert thread into timesharing queue of the clutch bucket */ | |
2269 | enqueue_tail(&clutch_bucket->scb_thread_timeshare_queue, &thread->th_clutch_timeshare_link); | |
2270 | ||
cb323159 A |
2271 | /* Increment the urgency counter for the root if necessary */ |
2272 | sched_clutch_root_urgency_inc(root_clutch, thread); | |
2273 | ||
cb323159 | 2274 | os_atomic_inc(&clutch->sc_thr_count, relaxed); |
f427ee49 | 2275 | sched_clutch_bucket_group_thr_count_inc(clutch_bucket->scb_group, current_timestamp); |
cb323159 | 2276 | |
ea3f0419 A |
2277 | /* Enqueue the clutch into the hierarchy (if needed) and update properties; pick the insertion order based on thread options */ |
2278 | sched_clutch_bucket_options_t scb_options = (options & SCHED_HEADQ) ? SCHED_CLUTCH_BUCKET_OPTIONS_HEADQ : SCHED_CLUTCH_BUCKET_OPTIONS_TAILQ; | |
cb323159 A |
2279 | if (clutch_bucket->scb_thr_count == 0) { |
2280 | sched_clutch_thr_count_inc(&clutch_bucket->scb_thr_count); | |
2281 | sched_clutch_thr_count_inc(&root_clutch->scr_thr_count); | |
ea3f0419 | 2282 | result = sched_clutch_bucket_runnable(clutch_bucket, root_clutch, current_timestamp, scb_options); |
cb323159 A |
2283 | } else { |
2284 | sched_clutch_thr_count_inc(&clutch_bucket->scb_thr_count); | |
2285 | sched_clutch_thr_count_inc(&root_clutch->scr_thr_count); | |
ea3f0419 | 2286 | result = sched_clutch_bucket_update(clutch_bucket, root_clutch, current_timestamp, scb_options); |
cb323159 | 2287 | } |
f427ee49 A |
2288 | |
2289 | KDBG(MACHDBG_CODE(DBG_MACH_SCHED_CLUTCH, MACH_SCHED_CLUTCH_THR_COUNT) | DBG_FUNC_NONE, | |
2290 | root_clutch->scr_cluster_id, thread_group_get_id(clutch_bucket->scb_group->scbg_clutch->sc_tg), clutch_bucket->scb_bucket, | |
2291 | SCHED_CLUTCH_DBG_THR_COUNT_PACK(root_clutch->scr_thr_count, os_atomic_load(&clutch->sc_thr_count, relaxed), clutch_bucket->scb_thr_count)); | |
cb323159 A |
2292 | return result; |
2293 | } | |
2294 | ||
2295 | /* | |
2296 | * sched_clutch_thread_remove() | |
2297 | * | |
2298 | * Routine to remove a thread from the sched clutch hierarchy. | |
2299 | * Update the counts at all levels of the hierarchy and remove the nodes | |
2300 | * as they become empty. Always called with the pset lock held. | |
2301 | */ | |
2302 | static void | |
2303 | sched_clutch_thread_remove( | |
2304 | sched_clutch_root_t root_clutch, | |
2305 | thread_t thread, | |
ea3f0419 A |
2306 | uint64_t current_timestamp, |
2307 | sched_clutch_bucket_options_t options) | |
cb323159 A |
2308 | { |
2309 | sched_clutch_hierarchy_locked_assert(root_clutch); | |
f427ee49 A |
2310 | #if CONFIG_SCHED_EDGE |
2311 | sched_edge_cluster_cumulative_count_decr(root_clutch, thread->th_sched_bucket); | |
2312 | if (thread->th_bound_cluster_enqueued) { | |
2313 | sched_edge_bound_thread_remove(root_clutch, thread); | |
2314 | return; | |
2315 | } | |
2316 | #endif /* CONFIG_SCHED_EDGE */ | |
cb323159 A |
2317 | sched_clutch_t clutch = sched_clutch_for_thread(thread); |
2318 | assert(thread->thread_group == clutch->sc_tg); | |
2319 | assert(thread->runq != PROCESSOR_NULL); | |
2320 | ||
f427ee49 A |
2321 | sched_clutch_bucket_group_t clutch_bucket_group = &(clutch->sc_clutch_groups[thread->th_sched_bucket]); |
2322 | sched_clutch_bucket_t clutch_bucket = &(clutch_bucket_group->scbg_clutch_buckets[root_clutch->scr_cluster_id]); | |
cb323159 A |
2323 | assert(clutch_bucket->scb_root == root_clutch); |
2324 | ||
2325 | /* Decrement the urgency counter for the root if necessary */ | |
2326 | sched_clutch_root_urgency_dec(root_clutch, thread); | |
2327 | /* Remove thread from the clutch_bucket */ | |
f427ee49 A |
2328 | priority_queue_remove(&clutch_bucket->scb_thread_runq, &thread->th_clutch_runq_link); |
2329 | remqueue(&thread->th_clutch_timeshare_link); | |
2330 | thread->runq = PROCESSOR_NULL; | |
cb323159 | 2331 | |
f427ee49 | 2332 | priority_queue_remove(&clutch_bucket->scb_clutchpri_prioq, &thread->th_clutch_pri_link); |
cb323159 A |
2333 | |
2334 | /* Update counts at various levels of the hierarchy */ | |
2335 | os_atomic_dec(&clutch->sc_thr_count, relaxed); | |
f427ee49 | 2336 | sched_clutch_bucket_group_thr_count_dec(clutch_bucket->scb_group, current_timestamp); |
cb323159 A |
2337 | sched_clutch_thr_count_dec(&root_clutch->scr_thr_count); |
2338 | sched_clutch_thr_count_dec(&clutch_bucket->scb_thr_count); | |
2339 | ||
2340 | /* Remove the clutch from hierarchy (if needed) and update properties */ | |
2341 | if (clutch_bucket->scb_thr_count == 0) { | |
ea3f0419 | 2342 | sched_clutch_bucket_empty(clutch_bucket, root_clutch, current_timestamp, options); |
cb323159 | 2343 | } else { |
ea3f0419 | 2344 | sched_clutch_bucket_update(clutch_bucket, root_clutch, current_timestamp, options); |
cb323159 | 2345 | } |
f427ee49 A |
2346 | KDBG(MACHDBG_CODE(DBG_MACH_SCHED_CLUTCH, MACH_SCHED_CLUTCH_THR_COUNT) | DBG_FUNC_NONE, |
2347 | root_clutch->scr_cluster_id, thread_group_get_id(clutch_bucket->scb_group->scbg_clutch->sc_tg), clutch_bucket->scb_bucket, | |
2348 | SCHED_CLUTCH_DBG_THR_COUNT_PACK(root_clutch->scr_thr_count, os_atomic_load(&clutch->sc_thr_count, relaxed), clutch_bucket->scb_thr_count)); | |
2349 | } | |
2350 | ||
2351 | /* | |
2352 | * sched_clutch_thread_unbound_lookup() | |
2353 | * | |
2354 | * Routine to find the highest unbound thread in the root clutch. | |
2355 | * Helps find threads easily for steal/migrate scenarios in the | |
2356 | * Edge scheduler. | |
2357 | */ | |
2358 | static thread_t | |
2359 | sched_clutch_thread_unbound_lookup( | |
2360 | sched_clutch_root_t root_clutch, | |
2361 | sched_clutch_root_bucket_t root_bucket) | |
2362 | { | |
2363 | sched_clutch_hierarchy_locked_assert(root_clutch); | |
2364 | ||
2365 | /* Find the highest priority clutch bucket in this root bucket */ | |
2366 | sched_clutch_bucket_t clutch_bucket = sched_clutch_root_bucket_highest_clutch_bucket(root_bucket); | |
2367 | assert(clutch_bucket != NULL); | |
2368 | ||
2369 | /* Find the highest priority runnable thread in this clutch bucket */ | |
2370 | thread_t thread = priority_queue_max(&clutch_bucket->scb_thread_runq, struct thread, th_clutch_runq_link); | |
2371 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, MACHDBG_CODE(DBG_MACH_SCHED_CLUTCH, MACH_SCHED_CLUTCH_THREAD_SELECT) | DBG_FUNC_NONE, | |
2372 | thread_tid(thread), thread_group_get_id(clutch_bucket->scb_group->scbg_clutch->sc_tg), clutch_bucket->scb_bucket, 0, 0); | |
2373 | return thread; | |
cb323159 A |
2374 | } |
2375 | ||
2376 | /* | |
f427ee49 | 2377 | * sched_clutch_thread_highest_remove() |
cb323159 A |
2378 | * |
2379 | * Routine to find and remove the highest priority thread | |
2380 | * from the sched clutch hierarchy. The algorithm looks at the | |
2381 | * hierarchy for the most eligible runnable thread and calls | |
2382 | * sched_clutch_thread_remove(). Always called with the | |
2383 | * pset lock held. | |
2384 | */ | |
2385 | static thread_t | |
f427ee49 | 2386 | sched_clutch_thread_highest_remove( |
cb323159 A |
2387 | sched_clutch_root_t root_clutch) |
2388 | { | |
2389 | sched_clutch_hierarchy_locked_assert(root_clutch); | |
2390 | uint64_t current_timestamp = mach_absolute_time(); | |
2391 | ||
f427ee49 | 2392 | sched_clutch_root_bucket_t root_bucket = sched_clutch_root_highest_root_bucket(root_clutch, current_timestamp, SCHED_CLUTCH_HIGHEST_ROOT_BUCKET_ALL); |
cb323159 A |
2393 | if (root_bucket == NULL) { |
2394 | return THREAD_NULL; | |
2395 | } | |
cb323159 | 2396 | |
f427ee49 A |
2397 | thread_t highest_thread = THREAD_NULL; |
2398 | if (root_bucket->scrb_bound) { | |
2399 | highest_thread = sched_clutch_thread_bound_lookup(root_clutch, root_bucket); | |
2400 | } else { | |
2401 | highest_thread = sched_clutch_thread_unbound_lookup(root_clutch, root_bucket); | |
2402 | } | |
2403 | sched_clutch_thread_remove(root_clutch, highest_thread, current_timestamp, SCHED_CLUTCH_BUCKET_OPTIONS_SAMEPRI_RR); | |
2404 | return highest_thread; | |
cb323159 A |
2405 | } |
2406 | ||
cb323159 A |
2407 | /* High level global accessor routines */ |
2408 | ||
2409 | /* | |
2410 | * sched_clutch_root_urgency() | |
2411 | * | |
2412 | * Routine to get the urgency of the highest runnable | |
2413 | * thread in the hierarchy. | |
2414 | */ | |
2415 | static uint32_t | |
2416 | sched_clutch_root_urgency( | |
2417 | sched_clutch_root_t root_clutch) | |
2418 | { | |
2419 | return root_clutch->scr_urgency; | |
2420 | } | |
2421 | ||
2422 | /* | |
2423 | * sched_clutch_root_count_sum() | |
2424 | * | |
2425 | * The count_sum mechanism is used for scheduler runq | |
2426 | * statistics calculation. Its only useful for debugging | |
2427 | * purposes; since it takes a mach_absolute_time() on | |
2428 | * other scheduler implementations, its better to avoid | |
2429 | * populating this until absolutely necessary. | |
2430 | */ | |
2431 | static uint32_t | |
2432 | sched_clutch_root_count_sum( | |
2433 | __unused sched_clutch_root_t root_clutch) | |
2434 | { | |
2435 | return 0; | |
2436 | } | |
2437 | ||
2438 | /* | |
2439 | * sched_clutch_root_priority() | |
2440 | * | |
2441 | * Routine to get the priority of the highest runnable | |
2442 | * thread in the hierarchy. | |
2443 | */ | |
2444 | static int | |
2445 | sched_clutch_root_priority( | |
2446 | sched_clutch_root_t root_clutch) | |
2447 | { | |
2448 | return root_clutch->scr_priority; | |
2449 | } | |
2450 | ||
2451 | /* | |
2452 | * sched_clutch_root_count() | |
2453 | * | |
2454 | * Returns total number of runnable threads in the hierarchy. | |
2455 | */ | |
2456 | uint32_t | |
2457 | sched_clutch_root_count( | |
2458 | sched_clutch_root_t root_clutch) | |
2459 | { | |
2460 | return root_clutch->scr_thr_count; | |
2461 | } | |
2462 | ||
f427ee49 A |
2463 | #if CONFIG_SCHED_EDGE |
2464 | ||
2465 | /* | |
2466 | * sched_clutch_root_foreign_empty() | |
2467 | * | |
2468 | * Routine to check if the foreign clutch bucket priority list is empty for a cluster. | |
2469 | */ | |
2470 | static boolean_t | |
2471 | sched_clutch_root_foreign_empty( | |
2472 | sched_clutch_root_t root_clutch) | |
2473 | { | |
2474 | return priority_queue_empty(&root_clutch->scr_foreign_buckets); | |
2475 | } | |
2476 | ||
2477 | /* | |
2478 | * sched_clutch_root_highest_foreign_thread_remove() | |
2479 | * | |
2480 | * Routine to return the thread in the highest priority clutch bucket in a cluster. | |
2481 | * Must be called with the pset for the cluster locked. | |
2482 | */ | |
2483 | static thread_t | |
2484 | sched_clutch_root_highest_foreign_thread_remove( | |
2485 | sched_clutch_root_t root_clutch) | |
2486 | { | |
2487 | thread_t thread = THREAD_NULL; | |
2488 | if (priority_queue_empty(&root_clutch->scr_foreign_buckets)) { | |
2489 | return thread; | |
2490 | } | |
2491 | sched_clutch_bucket_t clutch_bucket = priority_queue_max(&root_clutch->scr_foreign_buckets, struct sched_clutch_bucket, scb_foreignlink); | |
2492 | thread = priority_queue_max(&clutch_bucket->scb_thread_runq, struct thread, th_clutch_runq_link); | |
2493 | sched_clutch_thread_remove(root_clutch, thread, mach_absolute_time(), 0); | |
2494 | return thread; | |
2495 | } | |
2496 | ||
2497 | #endif /* CONFIG_SCHED_EDGE */ | |
2498 | ||
cb323159 A |
2499 | /* |
2500 | * sched_clutch_thread_pri_shift() | |
2501 | * | |
2502 | * Routine to get the priority shift value for a thread. | |
2503 | * Since the timesharing is done at the clutch_bucket level, | |
2504 | * this routine gets the clutch_bucket and retrieves the | |
2505 | * values from there. | |
2506 | */ | |
2507 | uint32_t | |
2508 | sched_clutch_thread_pri_shift( | |
2509 | thread_t thread, | |
2510 | sched_bucket_t bucket) | |
2511 | { | |
2512 | if (!SCHED_CLUTCH_THREAD_ELIGIBLE(thread)) { | |
f427ee49 | 2513 | return INT8_MAX; |
cb323159 A |
2514 | } |
2515 | assert(bucket != TH_BUCKET_RUN); | |
2516 | sched_clutch_t clutch = sched_clutch_for_thread(thread); | |
f427ee49 A |
2517 | sched_clutch_bucket_group_t clutch_bucket_group = &(clutch->sc_clutch_groups[bucket]); |
2518 | return os_atomic_load(&clutch_bucket_group->scbg_pri_shift, relaxed); | |
cb323159 A |
2519 | } |
2520 | ||
2521 | #pragma mark -- Clutch Scheduler Algorithm | |
2522 | ||
2523 | static void | |
2524 | sched_clutch_init(void); | |
2525 | ||
cb323159 A |
2526 | static thread_t |
2527 | sched_clutch_steal_thread(processor_set_t pset); | |
2528 | ||
2529 | static void | |
2530 | sched_clutch_thread_update_scan(sched_update_scan_context_t scan_context); | |
2531 | ||
2532 | static boolean_t | |
2533 | sched_clutch_processor_enqueue(processor_t processor, thread_t thread, | |
2534 | sched_options_t options); | |
2535 | ||
2536 | static boolean_t | |
2537 | sched_clutch_processor_queue_remove(processor_t processor, thread_t thread); | |
2538 | ||
2539 | static ast_t | |
2540 | sched_clutch_processor_csw_check(processor_t processor); | |
2541 | ||
2542 | static boolean_t | |
2543 | sched_clutch_processor_queue_has_priority(processor_t processor, int priority, boolean_t gte); | |
2544 | ||
2545 | static int | |
2546 | sched_clutch_runq_count(processor_t processor); | |
2547 | ||
2548 | static boolean_t | |
2549 | sched_clutch_processor_queue_empty(processor_t processor); | |
2550 | ||
2551 | static uint64_t | |
2552 | sched_clutch_runq_stats_count_sum(processor_t processor); | |
2553 | ||
2554 | static int | |
2555 | sched_clutch_processor_bound_count(processor_t processor); | |
2556 | ||
2557 | static void | |
2558 | sched_clutch_pset_init(processor_set_t pset); | |
2559 | ||
2560 | static void | |
2561 | sched_clutch_processor_init(processor_t processor); | |
2562 | ||
2563 | static thread_t | |
2564 | sched_clutch_choose_thread(processor_t processor, int priority, ast_t reason); | |
2565 | ||
2566 | static void | |
2567 | sched_clutch_processor_queue_shutdown(processor_t processor); | |
2568 | ||
2569 | static sched_mode_t | |
2570 | sched_clutch_initial_thread_sched_mode(task_t parent_task); | |
2571 | ||
2572 | static uint32_t | |
2573 | sched_clutch_initial_quantum_size(thread_t thread); | |
2574 | ||
2575 | static bool | |
2576 | sched_clutch_thread_avoid_processor(processor_t processor, thread_t thread); | |
2577 | ||
2578 | static uint32_t | |
2579 | sched_clutch_run_incr(thread_t thread); | |
2580 | ||
2581 | static uint32_t | |
2582 | sched_clutch_run_decr(thread_t thread); | |
2583 | ||
2584 | static void | |
2585 | sched_clutch_update_thread_bucket(thread_t thread); | |
2586 | ||
2587 | const struct sched_dispatch_table sched_clutch_dispatch = { | |
2588 | .sched_name = "clutch", | |
2589 | .init = sched_clutch_init, | |
f427ee49 | 2590 | .timebase_init = sched_timeshare_timebase_init, |
cb323159 A |
2591 | .processor_init = sched_clutch_processor_init, |
2592 | .pset_init = sched_clutch_pset_init, | |
2593 | .maintenance_continuation = sched_timeshare_maintenance_continue, | |
2594 | .choose_thread = sched_clutch_choose_thread, | |
2595 | .steal_thread_enabled = sched_steal_thread_enabled, | |
2596 | .steal_thread = sched_clutch_steal_thread, | |
2597 | .compute_timeshare_priority = sched_compute_timeshare_priority, | |
f427ee49 | 2598 | .choose_node = sched_choose_node, |
cb323159 A |
2599 | .choose_processor = choose_processor, |
2600 | .processor_enqueue = sched_clutch_processor_enqueue, | |
2601 | .processor_queue_shutdown = sched_clutch_processor_queue_shutdown, | |
2602 | .processor_queue_remove = sched_clutch_processor_queue_remove, | |
2603 | .processor_queue_empty = sched_clutch_processor_queue_empty, | |
2604 | .priority_is_urgent = priority_is_urgent, | |
2605 | .processor_csw_check = sched_clutch_processor_csw_check, | |
2606 | .processor_queue_has_priority = sched_clutch_processor_queue_has_priority, | |
2607 | .initial_quantum_size = sched_clutch_initial_quantum_size, | |
2608 | .initial_thread_sched_mode = sched_clutch_initial_thread_sched_mode, | |
2609 | .can_update_priority = can_update_priority, | |
2610 | .update_priority = update_priority, | |
2611 | .lightweight_update_priority = lightweight_update_priority, | |
2612 | .quantum_expire = sched_default_quantum_expire, | |
2613 | .processor_runq_count = sched_clutch_runq_count, | |
2614 | .processor_runq_stats_count_sum = sched_clutch_runq_stats_count_sum, | |
2615 | .processor_bound_count = sched_clutch_processor_bound_count, | |
2616 | .thread_update_scan = sched_clutch_thread_update_scan, | |
2617 | .multiple_psets_enabled = TRUE, | |
2618 | .sched_groups_enabled = FALSE, | |
2619 | .avoid_processor_enabled = TRUE, | |
2620 | .thread_avoid_processor = sched_clutch_thread_avoid_processor, | |
2621 | .processor_balance = sched_SMT_balance, | |
2622 | ||
f427ee49 A |
2623 | .rt_runq = sched_rtlocal_runq, |
2624 | .rt_init = sched_rtlocal_init, | |
2625 | .rt_queue_shutdown = sched_rtlocal_queue_shutdown, | |
2626 | .rt_runq_scan = sched_rtlocal_runq_scan, | |
2627 | .rt_runq_count_sum = sched_rtlocal_runq_count_sum, | |
cb323159 A |
2628 | |
2629 | .qos_max_parallelism = sched_qos_max_parallelism, | |
2630 | .check_spill = sched_check_spill, | |
2631 | .ipi_policy = sched_ipi_policy, | |
2632 | .thread_should_yield = sched_thread_should_yield, | |
2633 | .run_count_incr = sched_clutch_run_incr, | |
2634 | .run_count_decr = sched_clutch_run_decr, | |
2635 | .update_thread_bucket = sched_clutch_update_thread_bucket, | |
2636 | .pset_made_schedulable = sched_pset_made_schedulable, | |
2637 | }; | |
2638 | ||
2639 | __attribute__((always_inline)) | |
2640 | static inline run_queue_t | |
2641 | sched_clutch_bound_runq(processor_t processor) | |
2642 | { | |
2643 | return &processor->runq; | |
2644 | } | |
2645 | ||
2646 | __attribute__((always_inline)) | |
2647 | static inline sched_clutch_root_t | |
2648 | sched_clutch_processor_root_clutch(processor_t processor) | |
2649 | { | |
2650 | return &processor->processor_set->pset_clutch_root; | |
2651 | } | |
2652 | ||
2653 | __attribute__((always_inline)) | |
2654 | static inline run_queue_t | |
2655 | sched_clutch_thread_bound_runq(processor_t processor, __assert_only thread_t thread) | |
2656 | { | |
2657 | assert(thread->bound_processor == processor); | |
2658 | return sched_clutch_bound_runq(processor); | |
2659 | } | |
2660 | ||
2661 | static uint32_t | |
2662 | sched_clutch_initial_quantum_size(thread_t thread) | |
2663 | { | |
2664 | if (thread == THREAD_NULL) { | |
2665 | return std_quantum; | |
2666 | } | |
2667 | assert(sched_clutch_thread_quantum[thread->th_sched_bucket] <= UINT32_MAX); | |
2668 | return (uint32_t)sched_clutch_thread_quantum[thread->th_sched_bucket]; | |
2669 | } | |
2670 | ||
2671 | static sched_mode_t | |
2672 | sched_clutch_initial_thread_sched_mode(task_t parent_task) | |
2673 | { | |
2674 | if (parent_task == kernel_task) { | |
2675 | return TH_MODE_FIXED; | |
2676 | } else { | |
2677 | return TH_MODE_TIMESHARE; | |
2678 | } | |
2679 | } | |
2680 | ||
2681 | static void | |
2682 | sched_clutch_processor_init(processor_t processor) | |
2683 | { | |
2684 | run_queue_init(&processor->runq); | |
2685 | } | |
2686 | ||
2687 | static void | |
2688 | sched_clutch_pset_init(processor_set_t pset) | |
2689 | { | |
2690 | sched_clutch_root_init(&pset->pset_clutch_root, pset); | |
2691 | } | |
2692 | ||
f427ee49 A |
2693 | static void |
2694 | sched_clutch_tunables_init(void) | |
2695 | { | |
2696 | sched_clutch_us_to_abstime(sched_clutch_root_bucket_wcel_us, sched_clutch_root_bucket_wcel); | |
2697 | sched_clutch_us_to_abstime(sched_clutch_root_bucket_warp_us, sched_clutch_root_bucket_warp); | |
2698 | sched_clutch_us_to_abstime(sched_clutch_thread_quantum_us, sched_clutch_thread_quantum); | |
2699 | clock_interval_to_absolutetime_interval(SCHED_CLUTCH_BUCKET_GROUP_ADJUST_THRESHOLD_USECS, | |
2700 | NSEC_PER_USEC, &sched_clutch_bucket_group_adjust_threshold); | |
2701 | assert(sched_clutch_bucket_group_adjust_threshold <= CLUTCH_CPU_DATA_MAX); | |
2702 | sched_clutch_us_to_abstime(sched_clutch_bucket_group_pending_delta_us, sched_clutch_bucket_group_pending_delta); | |
2703 | } | |
2704 | ||
cb323159 A |
2705 | static void |
2706 | sched_clutch_init(void) | |
2707 | { | |
f427ee49 A |
2708 | if (!PE_parse_boot_argn("sched_clutch_bucket_group_interactive_pri", &sched_clutch_bucket_group_interactive_pri, sizeof(sched_clutch_bucket_group_interactive_pri))) { |
2709 | sched_clutch_bucket_group_interactive_pri = SCHED_CLUTCH_BUCKET_GROUP_INTERACTIVE_PRI_DEFAULT; | |
cb323159 A |
2710 | } |
2711 | sched_timeshare_init(); | |
f427ee49 | 2712 | sched_clutch_tunables_init(); |
cb323159 A |
2713 | } |
2714 | ||
2715 | static thread_t | |
2716 | sched_clutch_choose_thread( | |
2717 | processor_t processor, | |
2718 | int priority, | |
2719 | __unused ast_t reason) | |
2720 | { | |
2721 | int clutch_pri = sched_clutch_root_priority(sched_clutch_processor_root_clutch(processor)); | |
2722 | uint32_t clutch_count = sched_clutch_root_count(sched_clutch_processor_root_clutch(processor)); | |
2723 | run_queue_t bound_runq = sched_clutch_bound_runq(processor); | |
2724 | boolean_t choose_from_boundq = false; | |
2725 | ||
2726 | if (bound_runq->highq < priority && | |
2727 | clutch_pri < priority) { | |
2728 | return THREAD_NULL; | |
2729 | } | |
2730 | ||
2731 | if (bound_runq->count && clutch_count) { | |
2732 | if (bound_runq->highq >= clutch_pri) { | |
2733 | choose_from_boundq = true; | |
2734 | } | |
2735 | } else if (bound_runq->count) { | |
2736 | choose_from_boundq = true; | |
2737 | } else if (clutch_count) { | |
2738 | choose_from_boundq = false; | |
2739 | } else { | |
2740 | return THREAD_NULL; | |
2741 | } | |
2742 | ||
2743 | thread_t thread = THREAD_NULL; | |
2744 | if (choose_from_boundq == false) { | |
2745 | sched_clutch_root_t pset_clutch_root = sched_clutch_processor_root_clutch(processor); | |
f427ee49 | 2746 | thread = sched_clutch_thread_highest_remove(pset_clutch_root); |
cb323159 A |
2747 | } else { |
2748 | thread = run_queue_dequeue(bound_runq, SCHED_HEADQ); | |
2749 | } | |
2750 | return thread; | |
2751 | } | |
2752 | ||
2753 | static boolean_t | |
2754 | sched_clutch_processor_enqueue( | |
2755 | processor_t processor, | |
2756 | thread_t thread, | |
2757 | sched_options_t options) | |
2758 | { | |
2759 | boolean_t result; | |
2760 | ||
2761 | thread->runq = processor; | |
2762 | if (SCHED_CLUTCH_THREAD_ELIGIBLE(thread)) { | |
2763 | sched_clutch_root_t pset_clutch_root = sched_clutch_processor_root_clutch(processor); | |
2764 | result = sched_clutch_thread_insert(pset_clutch_root, thread, options); | |
2765 | } else { | |
2766 | run_queue_t rq = sched_clutch_thread_bound_runq(processor, thread); | |
2767 | result = run_queue_enqueue(rq, thread, options); | |
2768 | } | |
2769 | return result; | |
2770 | } | |
2771 | ||
2772 | static boolean_t | |
2773 | sched_clutch_processor_queue_empty(processor_t processor) | |
2774 | { | |
2775 | return sched_clutch_root_count(sched_clutch_processor_root_clutch(processor)) == 0 && | |
2776 | sched_clutch_bound_runq(processor)->count == 0; | |
2777 | } | |
2778 | ||
2779 | static ast_t | |
2780 | sched_clutch_processor_csw_check(processor_t processor) | |
2781 | { | |
2782 | boolean_t has_higher; | |
2783 | int pri; | |
2784 | ||
2785 | if (sched_clutch_thread_avoid_processor(processor, current_thread())) { | |
2786 | return AST_PREEMPT | AST_URGENT; | |
2787 | } | |
2788 | ||
2789 | run_queue_t bound_runq = sched_clutch_bound_runq(processor); | |
2790 | int clutch_pri = sched_clutch_root_priority(sched_clutch_processor_root_clutch(processor)); | |
2791 | ||
2792 | assert(processor->active_thread != NULL); | |
2793 | ||
2794 | pri = MAX(clutch_pri, bound_runq->highq); | |
2795 | ||
2796 | if (processor->first_timeslice) { | |
2797 | has_higher = (pri > processor->current_pri); | |
2798 | } else { | |
2799 | has_higher = (pri >= processor->current_pri); | |
2800 | } | |
2801 | ||
2802 | if (has_higher) { | |
2803 | if (sched_clutch_root_urgency(sched_clutch_processor_root_clutch(processor)) > 0) { | |
2804 | return AST_PREEMPT | AST_URGENT; | |
2805 | } | |
2806 | ||
2807 | if (bound_runq->urgency > 0) { | |
2808 | return AST_PREEMPT | AST_URGENT; | |
2809 | } | |
2810 | ||
2811 | return AST_PREEMPT; | |
2812 | } | |
2813 | ||
2814 | return AST_NONE; | |
2815 | } | |
2816 | ||
2817 | static boolean_t | |
2818 | sched_clutch_processor_queue_has_priority(processor_t processor, | |
2819 | int priority, | |
2820 | boolean_t gte) | |
2821 | { | |
2822 | run_queue_t bound_runq = sched_clutch_bound_runq(processor); | |
2823 | ||
2824 | int qpri = MAX(sched_clutch_root_priority(sched_clutch_processor_root_clutch(processor)), bound_runq->highq); | |
2825 | ||
2826 | if (gte) { | |
2827 | return qpri >= priority; | |
2828 | } else { | |
2829 | return qpri > priority; | |
2830 | } | |
2831 | } | |
2832 | ||
2833 | static int | |
2834 | sched_clutch_runq_count(processor_t processor) | |
2835 | { | |
2836 | return (int)sched_clutch_root_count(sched_clutch_processor_root_clutch(processor)) + sched_clutch_bound_runq(processor)->count; | |
2837 | } | |
2838 | ||
2839 | static uint64_t | |
2840 | sched_clutch_runq_stats_count_sum(processor_t processor) | |
2841 | { | |
2842 | uint64_t bound_sum = sched_clutch_bound_runq(processor)->runq_stats.count_sum; | |
2843 | ||
2844 | if (processor->cpu_id == processor->processor_set->cpu_set_low) { | |
2845 | return bound_sum + sched_clutch_root_count_sum(sched_clutch_processor_root_clutch(processor)); | |
2846 | } else { | |
2847 | return bound_sum; | |
2848 | } | |
2849 | } | |
2850 | static int | |
2851 | sched_clutch_processor_bound_count(processor_t processor) | |
2852 | { | |
2853 | return sched_clutch_bound_runq(processor)->count; | |
2854 | } | |
2855 | ||
2856 | static void | |
2857 | sched_clutch_processor_queue_shutdown(processor_t processor) | |
2858 | { | |
2859 | processor_set_t pset = processor->processor_set; | |
2860 | sched_clutch_root_t pset_clutch_root = sched_clutch_processor_root_clutch(processor); | |
2861 | thread_t thread; | |
2862 | queue_head_t tqueue; | |
2863 | ||
2864 | /* We only need to migrate threads if this is the last active processor in the pset */ | |
2865 | if (pset->online_processor_count > 0) { | |
2866 | pset_unlock(pset); | |
2867 | return; | |
2868 | } | |
2869 | ||
2870 | queue_init(&tqueue); | |
2871 | while (sched_clutch_root_count(pset_clutch_root) > 0) { | |
f427ee49 | 2872 | thread = sched_clutch_thread_highest_remove(pset_clutch_root); |
cb323159 A |
2873 | enqueue_tail(&tqueue, &thread->runq_links); |
2874 | } | |
2875 | ||
2876 | pset_unlock(pset); | |
2877 | ||
2878 | qe_foreach_element_safe(thread, &tqueue, runq_links) { | |
2879 | remqueue(&thread->runq_links); | |
cb323159 | 2880 | thread_lock(thread); |
cb323159 | 2881 | thread_setrun(thread, SCHED_TAILQ); |
cb323159 A |
2882 | thread_unlock(thread); |
2883 | } | |
2884 | } | |
2885 | ||
2886 | static boolean_t | |
2887 | sched_clutch_processor_queue_remove( | |
2888 | processor_t processor, | |
2889 | thread_t thread) | |
2890 | { | |
2891 | run_queue_t rq; | |
2892 | processor_set_t pset = processor->processor_set; | |
2893 | ||
2894 | pset_lock(pset); | |
2895 | ||
2896 | if (processor == thread->runq) { | |
2897 | /* | |
2898 | * Thread is on a run queue and we have a lock on | |
2899 | * that run queue. | |
2900 | */ | |
2901 | if (SCHED_CLUTCH_THREAD_ELIGIBLE(thread)) { | |
2902 | sched_clutch_root_t pset_clutch_root = sched_clutch_processor_root_clutch(processor); | |
ea3f0419 | 2903 | sched_clutch_thread_remove(pset_clutch_root, thread, mach_absolute_time(), SCHED_CLUTCH_BUCKET_OPTIONS_NONE); |
cb323159 A |
2904 | } else { |
2905 | rq = sched_clutch_thread_bound_runq(processor, thread); | |
2906 | run_queue_remove(rq, thread); | |
2907 | } | |
2908 | } else { | |
2909 | /* | |
2910 | * The thread left the run queue before we could | |
2911 | * lock the run queue. | |
2912 | */ | |
2913 | assert(thread->runq == PROCESSOR_NULL); | |
2914 | processor = PROCESSOR_NULL; | |
2915 | } | |
2916 | ||
2917 | pset_unlock(pset); | |
2918 | ||
2919 | return processor != PROCESSOR_NULL; | |
2920 | } | |
2921 | ||
2922 | static thread_t | |
f427ee49 | 2923 | sched_clutch_steal_thread(__unused processor_set_t pset) |
cb323159 | 2924 | { |
f427ee49 | 2925 | /* Thread stealing is not enabled for single cluster clutch scheduler platforms */ |
cb323159 A |
2926 | return THREAD_NULL; |
2927 | } | |
2928 | ||
2929 | static void | |
2930 | sched_clutch_thread_update_scan(sched_update_scan_context_t scan_context) | |
2931 | { | |
2932 | boolean_t restart_needed = FALSE; | |
2933 | processor_t processor = processor_list; | |
2934 | processor_set_t pset; | |
2935 | thread_t thread; | |
2936 | spl_t s; | |
2937 | ||
2938 | /* | |
2939 | * We update the threads associated with each processor (bound and idle threads) | |
2940 | * and then update the threads in each pset runqueue. | |
2941 | */ | |
2942 | ||
2943 | do { | |
2944 | do { | |
2945 | pset = processor->processor_set; | |
2946 | ||
2947 | s = splsched(); | |
2948 | pset_lock(pset); | |
2949 | ||
2950 | restart_needed = runq_scan(sched_clutch_bound_runq(processor), scan_context); | |
2951 | ||
2952 | pset_unlock(pset); | |
2953 | splx(s); | |
2954 | ||
2955 | if (restart_needed) { | |
2956 | break; | |
2957 | } | |
2958 | ||
2959 | thread = processor->idle_thread; | |
2960 | if (thread != THREAD_NULL && thread->sched_stamp != sched_tick) { | |
2961 | if (thread_update_add_thread(thread) == FALSE) { | |
2962 | restart_needed = TRUE; | |
2963 | break; | |
2964 | } | |
2965 | } | |
2966 | } while ((processor = processor->processor_list) != NULL); | |
2967 | ||
2968 | /* Ok, we now have a collection of candidates -- fix them. */ | |
2969 | thread_update_process_threads(); | |
2970 | } while (restart_needed); | |
2971 | ||
f427ee49 A |
2972 | pset_node_t node = &pset_node0; |
2973 | pset = node->psets; | |
cb323159 A |
2974 | |
2975 | do { | |
2976 | do { | |
f427ee49 A |
2977 | restart_needed = FALSE; |
2978 | while (pset != NULL) { | |
2979 | s = splsched(); | |
2980 | pset_lock(pset); | |
2981 | ||
2982 | if (sched_clutch_root_count(&pset->pset_clutch_root) > 0) { | |
2983 | for (sched_bucket_t bucket = TH_BUCKET_SHARE_FG; bucket < TH_BUCKET_SCHED_MAX; bucket++) { | |
2984 | restart_needed = runq_scan(&pset->pset_clutch_root.scr_bound_buckets[bucket].scrb_bound_thread_runq, scan_context); | |
2985 | if (restart_needed) { | |
2986 | break; | |
2987 | } | |
cb323159 | 2988 | } |
f427ee49 A |
2989 | queue_t clutch_bucket_list = &pset->pset_clutch_root.scr_clutch_buckets; |
2990 | sched_clutch_bucket_t clutch_bucket; | |
2991 | qe_foreach_element(clutch_bucket, clutch_bucket_list, scb_listlink) { | |
2992 | sched_clutch_bucket_group_timeshare_update(clutch_bucket->scb_group, clutch_bucket, scan_context->sched_tick_last_abstime); | |
2993 | restart_needed = sched_clutch_timeshare_scan(&clutch_bucket->scb_thread_timeshare_queue, clutch_bucket->scb_thr_count, scan_context); | |
2994 | } | |
2995 | } | |
2996 | ||
2997 | pset_unlock(pset); | |
2998 | splx(s); | |
2999 | ||
3000 | if (restart_needed) { | |
3001 | break; | |
cb323159 | 3002 | } |
f427ee49 | 3003 | pset = pset->pset_list; |
cb323159 A |
3004 | } |
3005 | ||
cb323159 A |
3006 | if (restart_needed) { |
3007 | break; | |
3008 | } | |
f427ee49 | 3009 | } while (((node = node->node_list) != NULL) && ((pset = node->psets) != NULL)); |
cb323159 A |
3010 | |
3011 | /* Ok, we now have a collection of candidates -- fix them. */ | |
3012 | thread_update_process_threads(); | |
3013 | } while (restart_needed); | |
3014 | } | |
3015 | ||
3016 | extern int sched_allow_rt_smt; | |
3017 | ||
3018 | /* Return true if this thread should not continue running on this processor */ | |
3019 | static bool | |
3020 | sched_clutch_thread_avoid_processor(processor_t processor, thread_t thread) | |
3021 | { | |
3022 | if (processor->processor_primary != processor) { | |
3023 | /* | |
3024 | * This is a secondary SMT processor. If the primary is running | |
3025 | * a realtime thread, only allow realtime threads on the secondary. | |
3026 | */ | |
3027 | if ((processor->processor_primary->current_pri >= BASEPRI_RTQUEUES) && ((thread->sched_pri < BASEPRI_RTQUEUES) || !sched_allow_rt_smt)) { | |
3028 | return true; | |
3029 | } | |
3030 | } | |
3031 | ||
3032 | return false; | |
3033 | } | |
3034 | ||
3035 | /* | |
3036 | * For the clutch scheduler, the run counts are maintained in the clutch | |
3037 | * buckets (i.e thread group scheduling structure). | |
3038 | */ | |
3039 | static uint32_t | |
3040 | sched_clutch_run_incr(thread_t thread) | |
3041 | { | |
3042 | assert((thread->state & (TH_RUN | TH_IDLE)) == TH_RUN); | |
3043 | uint32_t new_count = os_atomic_inc(&sched_run_buckets[TH_BUCKET_RUN], relaxed); | |
3044 | sched_clutch_thread_run_bucket_incr(thread, thread->th_sched_bucket); | |
3045 | return new_count; | |
3046 | } | |
3047 | ||
3048 | static uint32_t | |
3049 | sched_clutch_run_decr(thread_t thread) | |
3050 | { | |
3051 | assert((thread->state & (TH_RUN | TH_IDLE)) != TH_RUN); | |
3052 | uint32_t new_count = os_atomic_dec(&sched_run_buckets[TH_BUCKET_RUN], relaxed); | |
3053 | sched_clutch_thread_run_bucket_decr(thread, thread->th_sched_bucket); | |
3054 | return new_count; | |
3055 | } | |
3056 | ||
3057 | static sched_bucket_t | |
3058 | sched_convert_pri_to_bucket(uint8_t priority) | |
3059 | { | |
3060 | sched_bucket_t bucket = TH_BUCKET_RUN; | |
3061 | ||
3062 | if (priority > BASEPRI_USER_INITIATED) { | |
3063 | bucket = TH_BUCKET_SHARE_FG; | |
3064 | } else if (priority > BASEPRI_DEFAULT) { | |
3065 | bucket = TH_BUCKET_SHARE_IN; | |
3066 | } else if (priority > BASEPRI_UTILITY) { | |
3067 | bucket = TH_BUCKET_SHARE_DF; | |
3068 | } else if (priority > MAXPRI_THROTTLE) { | |
3069 | bucket = TH_BUCKET_SHARE_UT; | |
3070 | } else { | |
3071 | bucket = TH_BUCKET_SHARE_BG; | |
3072 | } | |
3073 | return bucket; | |
3074 | } | |
3075 | ||
3076 | /* | |
3077 | * For threads that have changed sched_pri without changing the | |
3078 | * base_pri for any reason other than decay, use the sched_pri | |
3079 | * as the bucketizing priority instead of base_pri. All such | |
3080 | * changes are typically due to kernel locking primitives boosts | |
3081 | * or demotions. | |
3082 | */ | |
3083 | static boolean_t | |
3084 | sched_thread_sched_pri_promoted(thread_t thread) | |
3085 | { | |
3086 | return (thread->sched_flags & TH_SFLAG_PROMOTED) || | |
3087 | (thread->sched_flags & TH_SFLAG_PROMOTE_REASON_MASK) || | |
3088 | (thread->sched_flags & TH_SFLAG_DEMOTED_MASK) || | |
3089 | (thread->sched_flags & TH_SFLAG_DEPRESSED_MASK) || | |
3090 | (thread->kern_promotion_schedpri != 0); | |
3091 | } | |
3092 | ||
3093 | /* | |
3094 | * Routine to update the scheduling bucket for the thread. | |
3095 | * | |
3096 | * In the clutch scheduler implementation, the thread's bucket | |
3097 | * is based on sched_pri if it was promoted due to a kernel | |
3098 | * primitive; otherwise its based on the thread base_pri. This | |
3099 | * enhancement allows promoted threads to reach a higher priority | |
3100 | * bucket and potentially get selected sooner for scheduling. | |
3101 | * | |
3102 | * Also, the clutch scheduler does not honor fixed priority below | |
3103 | * FG priority. It simply puts those threads in the corresponding | |
3104 | * timeshare bucket. The reason for to do that is because it is | |
3105 | * extremely hard to define the scheduling properties of such threads | |
3106 | * and they typically lead to performance issues. | |
3107 | */ | |
3108 | ||
3109 | void | |
3110 | sched_clutch_update_thread_bucket(thread_t thread) | |
3111 | { | |
3112 | sched_bucket_t old_bucket = thread->th_sched_bucket; | |
3113 | sched_bucket_t new_bucket = TH_BUCKET_RUN; | |
3114 | assert(thread->runq == PROCESSOR_NULL); | |
cb323159 A |
3115 | int pri = (sched_thread_sched_pri_promoted(thread)) ? thread->sched_pri : thread->base_pri; |
3116 | ||
3117 | switch (thread->sched_mode) { | |
3118 | case TH_MODE_FIXED: | |
3119 | if (pri >= BASEPRI_FOREGROUND) { | |
3120 | new_bucket = TH_BUCKET_FIXPRI; | |
3121 | } else { | |
3122 | new_bucket = sched_convert_pri_to_bucket(pri); | |
3123 | } | |
3124 | break; | |
3125 | ||
3126 | case TH_MODE_REALTIME: | |
3127 | new_bucket = TH_BUCKET_FIXPRI; | |
3128 | break; | |
3129 | ||
3130 | case TH_MODE_TIMESHARE: | |
3131 | new_bucket = sched_convert_pri_to_bucket(pri); | |
3132 | break; | |
3133 | ||
3134 | default: | |
3135 | panic("unexpected mode: %d", thread->sched_mode); | |
3136 | break; | |
3137 | } | |
3138 | ||
3139 | if (old_bucket == new_bucket) { | |
3140 | return; | |
3141 | } | |
3142 | ||
3143 | thread->th_sched_bucket = new_bucket; | |
3144 | thread->pri_shift = sched_clutch_thread_pri_shift(thread, new_bucket); | |
cb323159 A |
3145 | /* |
3146 | * Since this is called after the thread has been removed from the runq, | |
3147 | * only the run counts need to be updated. The re-insert into the runq | |
3148 | * would put the thread into the correct new bucket's runq. | |
3149 | */ | |
3150 | if ((thread->state & (TH_RUN | TH_IDLE)) == TH_RUN) { | |
3151 | sched_clutch_thread_run_bucket_decr(thread, old_bucket); | |
3152 | sched_clutch_thread_run_bucket_incr(thread, new_bucket); | |
3153 | } | |
3154 | } | |
3155 | ||
f427ee49 | 3156 | #if CONFIG_SCHED_EDGE |
c6bf4f31 A |
3157 | |
3158 | /* Implementation of the AMP version of the clutch scheduler */ | |
3159 | ||
f427ee49 A |
3160 | static void |
3161 | sched_edge_init(void); | |
3162 | ||
c6bf4f31 | 3163 | static thread_t |
f427ee49 | 3164 | sched_edge_processor_idle(processor_set_t pset); |
c6bf4f31 A |
3165 | |
3166 | static ast_t | |
f427ee49 | 3167 | sched_edge_processor_csw_check(processor_t processor); |
c6bf4f31 A |
3168 | |
3169 | static boolean_t | |
f427ee49 | 3170 | sched_edge_processor_queue_has_priority(processor_t processor, int priority, boolean_t gte); |
c6bf4f31 A |
3171 | |
3172 | static boolean_t | |
f427ee49 | 3173 | sched_edge_processor_queue_empty(processor_t processor); |
c6bf4f31 A |
3174 | |
3175 | static thread_t | |
f427ee49 | 3176 | sched_edge_choose_thread(processor_t processor, int priority, ast_t reason); |
c6bf4f31 A |
3177 | |
3178 | static void | |
f427ee49 | 3179 | sched_edge_processor_queue_shutdown(processor_t processor); |
c6bf4f31 A |
3180 | |
3181 | static processor_t | |
f427ee49 | 3182 | sched_edge_choose_processor(processor_set_t pset, processor_t processor, thread_t thread); |
c6bf4f31 A |
3183 | |
3184 | static bool | |
f427ee49 | 3185 | sched_edge_thread_avoid_processor(processor_t processor, thread_t thread); |
c6bf4f31 | 3186 | |
f427ee49 A |
3187 | static void |
3188 | sched_edge_balance(processor_t cprocessor, processor_set_t cpset); | |
c6bf4f31 A |
3189 | |
3190 | static void | |
f427ee49 A |
3191 | sched_edge_check_spill(processor_set_t pset, thread_t thread); |
3192 | ||
3193 | static bool | |
3194 | sched_edge_thread_should_yield(processor_t processor, thread_t thread); | |
c6bf4f31 A |
3195 | |
3196 | static void | |
f427ee49 A |
3197 | sched_edge_pset_made_schedulable(processor_t processor, processor_set_t dst_pset, boolean_t drop_lock); |
3198 | ||
3199 | static bool | |
3200 | sched_edge_steal_thread_enabled(processor_set_t pset); | |
3201 | ||
3202 | static sched_ipi_type_t | |
3203 | sched_edge_ipi_policy(processor_t dst, thread_t thread, boolean_t dst_idle, sched_ipi_event_t event); | |
3204 | ||
3205 | static uint32_t | |
3206 | sched_edge_qos_max_parallelism(int qos, uint64_t options); | |
c6bf4f31 | 3207 | |
f427ee49 A |
3208 | const struct sched_dispatch_table sched_edge_dispatch = { |
3209 | .sched_name = "edge", | |
3210 | .init = sched_edge_init, | |
3211 | .timebase_init = sched_timeshare_timebase_init, | |
c6bf4f31 A |
3212 | .processor_init = sched_clutch_processor_init, |
3213 | .pset_init = sched_clutch_pset_init, | |
3214 | .maintenance_continuation = sched_timeshare_maintenance_continue, | |
f427ee49 A |
3215 | .choose_thread = sched_edge_choose_thread, |
3216 | .steal_thread_enabled = sched_edge_steal_thread_enabled, | |
3217 | .steal_thread = sched_edge_processor_idle, | |
c6bf4f31 | 3218 | .compute_timeshare_priority = sched_compute_timeshare_priority, |
f427ee49 A |
3219 | .choose_node = sched_choose_node, |
3220 | .choose_processor = sched_edge_choose_processor, | |
c6bf4f31 | 3221 | .processor_enqueue = sched_clutch_processor_enqueue, |
f427ee49 | 3222 | .processor_queue_shutdown = sched_edge_processor_queue_shutdown, |
c6bf4f31 | 3223 | .processor_queue_remove = sched_clutch_processor_queue_remove, |
f427ee49 | 3224 | .processor_queue_empty = sched_edge_processor_queue_empty, |
c6bf4f31 | 3225 | .priority_is_urgent = priority_is_urgent, |
f427ee49 A |
3226 | .processor_csw_check = sched_edge_processor_csw_check, |
3227 | .processor_queue_has_priority = sched_edge_processor_queue_has_priority, | |
c6bf4f31 A |
3228 | .initial_quantum_size = sched_clutch_initial_quantum_size, |
3229 | .initial_thread_sched_mode = sched_clutch_initial_thread_sched_mode, | |
3230 | .can_update_priority = can_update_priority, | |
3231 | .update_priority = update_priority, | |
3232 | .lightweight_update_priority = lightweight_update_priority, | |
3233 | .quantum_expire = sched_default_quantum_expire, | |
3234 | .processor_runq_count = sched_clutch_runq_count, | |
3235 | .processor_runq_stats_count_sum = sched_clutch_runq_stats_count_sum, | |
3236 | .processor_bound_count = sched_clutch_processor_bound_count, | |
3237 | .thread_update_scan = sched_clutch_thread_update_scan, | |
3238 | .multiple_psets_enabled = TRUE, | |
3239 | .sched_groups_enabled = FALSE, | |
3240 | .avoid_processor_enabled = TRUE, | |
f427ee49 A |
3241 | .thread_avoid_processor = sched_edge_thread_avoid_processor, |
3242 | .processor_balance = sched_edge_balance, | |
c6bf4f31 A |
3243 | |
3244 | .rt_runq = sched_amp_rt_runq, | |
3245 | .rt_init = sched_amp_rt_init, | |
3246 | .rt_queue_shutdown = sched_amp_rt_queue_shutdown, | |
3247 | .rt_runq_scan = sched_amp_rt_runq_scan, | |
3248 | .rt_runq_count_sum = sched_amp_rt_runq_count_sum, | |
3249 | ||
f427ee49 A |
3250 | .qos_max_parallelism = sched_edge_qos_max_parallelism, |
3251 | .check_spill = sched_edge_check_spill, | |
3252 | .ipi_policy = sched_edge_ipi_policy, | |
3253 | .thread_should_yield = sched_edge_thread_should_yield, | |
c6bf4f31 A |
3254 | .run_count_incr = sched_clutch_run_incr, |
3255 | .run_count_decr = sched_clutch_run_decr, | |
3256 | .update_thread_bucket = sched_clutch_update_thread_bucket, | |
f427ee49 A |
3257 | .pset_made_schedulable = sched_edge_pset_made_schedulable, |
3258 | .thread_group_recommendation_change = NULL, | |
c6bf4f31 A |
3259 | }; |
3260 | ||
f427ee49 A |
3261 | static struct processor_set pset1; |
3262 | static struct pset_node pset_node1; | |
3263 | static bitmap_t sched_edge_available_pset_bitmask[BITMAP_LEN(MAX_PSETS)]; | |
3264 | ||
3265 | /* | |
3266 | * sched_edge_pset_available() | |
3267 | * | |
3268 | * Routine to determine if a pset is available for scheduling. | |
3269 | */ | |
3270 | static bool | |
3271 | sched_edge_pset_available(processor_set_t pset) | |
3272 | { | |
3273 | return bitmap_test(sched_edge_available_pset_bitmask, pset->pset_cluster_id); | |
3274 | } | |
3275 | ||
3276 | /* | |
3277 | * sched_edge_thread_bound_cluster_id() | |
3278 | * | |
3279 | * Routine to determine which cluster a particular thread is bound to. Uses | |
3280 | * the sched_flags on the thread to map back to a specific cluster id. | |
3281 | * | |
3282 | * <Edge Multi-cluster Support Needed> | |
3283 | */ | |
3284 | static uint32_t | |
3285 | sched_edge_thread_bound_cluster_id(thread_t thread) | |
3286 | { | |
3287 | assert(SCHED_CLUTCH_THREAD_CLUSTER_BOUND(thread)); | |
3288 | if (thread->sched_flags & TH_SFLAG_ECORE_ONLY) { | |
3289 | return (pset_array[0]->pset_type == CLUSTER_TYPE_E) ? 0 : 1; | |
3290 | } else { | |
3291 | return (pset_array[0]->pset_type == CLUSTER_TYPE_P) ? 0 : 1; | |
3292 | } | |
3293 | } | |
3294 | ||
3295 | /* Forward declaration for some thread migration routines */ | |
3296 | static boolean_t sched_edge_foreign_runnable_thread_available(processor_set_t pset); | |
3297 | static boolean_t sched_edge_foreign_running_thread_available(processor_set_t pset); | |
3298 | static processor_set_t sched_edge_steal_candidate(processor_set_t pset); | |
3299 | static processor_set_t sched_edge_migrate_candidate(processor_set_t preferred_pset, thread_t thread, processor_set_t locked_pset, bool switch_pset_locks); | |
3300 | ||
3301 | /* | |
3302 | * sched_edge_config_set() | |
3303 | * | |
3304 | * Support to update an edge configuration. Typically used by CLPC to affect thread migration | |
3305 | * policies in the scheduler. | |
3306 | */ | |
3307 | static void | |
3308 | sched_edge_config_set(uint32_t src_cluster, uint32_t dst_cluster, sched_clutch_edge edge_config) | |
3309 | { | |
3310 | sched_clutch_edge *edge = &pset_array[src_cluster]->sched_edges[dst_cluster]; | |
3311 | edge->sce_edge_packed = edge_config.sce_edge_packed; | |
3312 | } | |
3313 | ||
3314 | /* | |
3315 | * sched_edge_config_get() | |
3316 | * | |
3317 | * Support to get an edge configuration. Typically used by CLPC to query edge configs to decide | |
3318 | * if it needs to update edges. | |
3319 | */ | |
3320 | static sched_clutch_edge | |
3321 | sched_edge_config_get(uint32_t src_cluster, uint32_t dst_cluster) | |
3322 | { | |
3323 | return pset_array[src_cluster]->sched_edges[dst_cluster]; | |
3324 | } | |
3325 | ||
3326 | #if DEVELOPMENT || DEBUG | |
3327 | ||
3328 | /* | |
3329 | * Helper Routines for edge scheduler sysctl configuration | |
3330 | * | |
3331 | * The current support is limited to dual cluster AMP platforms. | |
3332 | * <Edge Multi-cluster Support Needed> | |
3333 | */ | |
3334 | ||
3335 | kern_return_t | |
3336 | sched_edge_sysctl_configure_e_to_p(uint64_t edge_config) | |
3337 | { | |
3338 | pset_array[ecore_cluster_id]->sched_edges[pcore_cluster_id].sce_edge_packed = edge_config; | |
3339 | return KERN_SUCCESS; | |
3340 | } | |
3341 | ||
3342 | kern_return_t | |
3343 | sched_edge_sysctl_configure_p_to_e(uint64_t edge_config) | |
3344 | { | |
3345 | pset_array[pcore_cluster_id]->sched_edges[ecore_cluster_id].sce_edge_packed = edge_config; | |
3346 | return KERN_SUCCESS; | |
3347 | } | |
3348 | ||
3349 | sched_clutch_edge | |
3350 | sched_edge_e_to_p(void) | |
3351 | { | |
3352 | return sched_edge_config_get(ecore_cluster_id, pcore_cluster_id); | |
3353 | } | |
3354 | ||
3355 | sched_clutch_edge | |
3356 | sched_edge_p_to_e(void) | |
3357 | { | |
3358 | return sched_edge_config_get(pcore_cluster_id, ecore_cluster_id); | |
3359 | } | |
3360 | ||
3361 | #endif /* DEVELOPMENT || DEBUG */ | |
3362 | ||
3363 | /* | |
3364 | * sched_edge_matrix_set() | |
3365 | * | |
3366 | * Routine to update various edges in the cluster edge matrix. The edge_changes_bitmap | |
3367 | * indicates which edges need to be updated. Both the edge_matrix & edge_changes_bitmap | |
3368 | * are MAX_PSETS * MAX_PSETS matrices flattened into a single dimensional array. | |
3369 | */ | |
3370 | void | |
3371 | sched_edge_matrix_set(sched_clutch_edge *edge_matrix, bool *edge_changes_bitmap, __unused uint64_t flags, uint64_t matrix_order) | |
3372 | { | |
3373 | uint32_t edge_index = 0; | |
3374 | for (uint32_t src_cluster = 0; src_cluster < matrix_order; src_cluster++) { | |
3375 | for (uint32_t dst_cluster = 0; dst_cluster < matrix_order; dst_cluster++) { | |
3376 | if (edge_changes_bitmap[edge_index]) { | |
3377 | sched_edge_config_set(src_cluster, dst_cluster, edge_matrix[edge_index]); | |
3378 | } | |
3379 | edge_index++; | |
3380 | } | |
3381 | } | |
3382 | } | |
3383 | ||
3384 | /* | |
3385 | * sched_edge_matrix_get() | |
3386 | * | |
3387 | * Routine to retrieve various edges in the cluster edge matrix. The edge_request_bitmap | |
3388 | * indicates which edges need to be retrieved. Both the edge_matrix & edge_request_bitmap | |
3389 | * are MAX_PSETS * MAX_PSETS matrices flattened into a single dimensional array. | |
3390 | */ | |
3391 | void | |
3392 | sched_edge_matrix_get(sched_clutch_edge *edge_matrix, bool *edge_request_bitmap, __unused uint64_t flags, uint64_t matrix_order) | |
3393 | { | |
3394 | uint32_t edge_index = 0; | |
3395 | for (uint32_t src_cluster = 0; src_cluster < matrix_order; src_cluster++) { | |
3396 | for (uint32_t dst_cluster = 0; dst_cluster < matrix_order; dst_cluster++) { | |
3397 | if (edge_request_bitmap[edge_index]) { | |
3398 | edge_matrix[edge_index] = sched_edge_config_get(src_cluster, dst_cluster); | |
3399 | } | |
3400 | edge_index++; | |
3401 | } | |
3402 | } | |
3403 | } | |
3404 | ||
3405 | /* | |
3406 | * sched_edge_init() | |
3407 | * | |
3408 | * Routine to initialize the data structures for the Edge scheduler. The current implementation | |
3409 | * relies on this being enabled for a dual cluster AMP system. Once a better design for MAX_PSETS, | |
3410 | * edge config etc. is defined, it should be made more generic to handle the multi-cluster | |
3411 | * platorms. | |
3412 | * <Edge Multi-cluster Support Needed> | |
3413 | */ | |
3414 | static void | |
3415 | sched_edge_init(void) | |
3416 | { | |
3417 | processor_set_t ecore_set = &pset0; | |
3418 | processor_set_t pcore_set = &pset1; | |
3419 | ||
3420 | if (ml_get_boot_cluster() == CLUSTER_TYPE_P) { | |
3421 | /* If the device boots on a P-cluster, fixup the IDs etc. */ | |
3422 | pcore_set = &pset0; | |
3423 | ecore_set = &pset1; | |
3424 | bitmap_set(sched_edge_available_pset_bitmask, pcore_cluster_id); | |
3425 | } else { | |
3426 | bitmap_set(sched_edge_available_pset_bitmask, ecore_cluster_id); | |
3427 | } | |
3428 | ||
3429 | ecore_set->pset_cluster_type = PSET_AMP_E; | |
3430 | ecore_set->pset_cluster_id = ecore_cluster_id; | |
3431 | ||
3432 | pcore_set->pset_cluster_type = PSET_AMP_P; | |
3433 | pcore_set->pset_cluster_id = pcore_cluster_id; | |
3434 | ||
3435 | pset_init(&pset1, &pset_node1); | |
3436 | pset_node1.psets = &pset1; | |
3437 | pset_node0.node_list = &pset_node1; | |
3438 | ||
3439 | pset_array[ecore_cluster_id] = ecore_set; | |
3440 | pset_array[ecore_cluster_id]->pset_type = CLUSTER_TYPE_E; | |
3441 | bitmap_set(pset_array[ecore_cluster_id]->foreign_psets, pcore_cluster_id); | |
3442 | ||
3443 | sched_edge_config_set(ecore_cluster_id, ecore_cluster_id, (sched_clutch_edge){.sce_migration_weight = 0, .sce_migration_allowed = 0, .sce_steal_allowed = 0}); | |
3444 | sched_edge_config_set(ecore_cluster_id, pcore_cluster_id, (sched_clutch_edge){.sce_migration_weight = 0, .sce_migration_allowed = 0, .sce_steal_allowed = 0}); | |
3445 | ||
3446 | pset_array[pcore_cluster_id] = pcore_set; | |
3447 | pset_array[pcore_cluster_id]->pset_type = CLUSTER_TYPE_P; | |
3448 | bitmap_set(pset_array[pcore_cluster_id]->foreign_psets, ecore_cluster_id); | |
3449 | ||
3450 | sched_edge_config_set(pcore_cluster_id, pcore_cluster_id, (sched_clutch_edge){.sce_migration_weight = 0, .sce_migration_allowed = 0, .sce_steal_allowed = 0}); | |
3451 | sched_edge_config_set(pcore_cluster_id, ecore_cluster_id, (sched_clutch_edge){.sce_migration_weight = 64, .sce_migration_allowed = 1, .sce_steal_allowed = 1}); | |
3452 | ||
3453 | sched_timeshare_init(); | |
3454 | sched_clutch_tunables_init(); | |
3455 | } | |
c6bf4f31 A |
3456 | |
3457 | static thread_t | |
f427ee49 | 3458 | sched_edge_choose_thread( |
c6bf4f31 A |
3459 | processor_t processor, |
3460 | int priority, | |
3461 | __unused ast_t reason) | |
3462 | { | |
c6bf4f31 A |
3463 | int clutch_pri = sched_clutch_root_priority(sched_clutch_processor_root_clutch(processor)); |
3464 | run_queue_t bound_runq = sched_clutch_bound_runq(processor); | |
3465 | boolean_t choose_from_boundq = false; | |
3466 | ||
3467 | if ((bound_runq->highq < priority) && | |
f427ee49 | 3468 | (clutch_pri < priority)) { |
c6bf4f31 A |
3469 | return THREAD_NULL; |
3470 | } | |
3471 | ||
3472 | if (bound_runq->highq >= clutch_pri) { | |
3473 | choose_from_boundq = true; | |
3474 | } | |
3475 | ||
3476 | thread_t thread = THREAD_NULL; | |
3477 | if (choose_from_boundq == false) { | |
3478 | sched_clutch_root_t pset_clutch_root = sched_clutch_processor_root_clutch(processor); | |
f427ee49 | 3479 | thread = sched_clutch_thread_highest_remove(pset_clutch_root); |
c6bf4f31 A |
3480 | } else { |
3481 | thread = run_queue_dequeue(bound_runq, SCHED_HEADQ); | |
3482 | } | |
3483 | return thread; | |
3484 | } | |
3485 | ||
3486 | static boolean_t | |
f427ee49 | 3487 | sched_edge_processor_queue_empty(processor_t processor) |
c6bf4f31 | 3488 | { |
c6bf4f31 | 3489 | return (sched_clutch_root_count(sched_clutch_processor_root_clutch(processor)) == 0) && |
f427ee49 A |
3490 | (sched_clutch_bound_runq(processor)->count == 0); |
3491 | } | |
3492 | ||
3493 | static void | |
3494 | sched_edge_check_spill(__unused processor_set_t pset, __unused thread_t thread) | |
3495 | { | |
3496 | assert(thread->bound_processor == PROCESSOR_NULL); | |
c6bf4f31 A |
3497 | } |
3498 | ||
f427ee49 A |
3499 | __options_decl(sched_edge_thread_yield_reason_t, uint32_t, { |
3500 | SCHED_EDGE_YIELD_RUNQ_NONEMPTY = 0x0, | |
3501 | SCHED_EDGE_YIELD_FOREIGN_RUNNABLE = 0x1, | |
3502 | SCHED_EDGE_YIELD_FOREIGN_RUNNING = 0x2, | |
3503 | SCHED_EDGE_YIELD_STEAL_POSSIBLE = 0x3, | |
3504 | SCHED_EDGE_YIELD_DISALLOW = 0x4, | |
3505 | }); | |
3506 | ||
c6bf4f31 | 3507 | static bool |
f427ee49 | 3508 | sched_edge_thread_should_yield(processor_t processor, __unused thread_t thread) |
c6bf4f31 | 3509 | { |
f427ee49 A |
3510 | if (!sched_edge_processor_queue_empty(processor) || (rt_runq_count(processor->processor_set) > 0)) { |
3511 | KDBG(MACHDBG_CODE(DBG_MACH_SCHED_CLUTCH, MACH_SCHED_EDGE_SHOULD_YIELD) | DBG_FUNC_NONE, | |
3512 | thread_tid(thread), processor->processor_set->pset_cluster_id, 0, SCHED_EDGE_YIELD_RUNQ_NONEMPTY); | |
c6bf4f31 A |
3513 | return true; |
3514 | } | |
3515 | ||
f427ee49 A |
3516 | /* |
3517 | * The yield logic should follow the same logic that steal_thread () does. The | |
3518 | * thread_should_yield() is effectively trying to quickly check that if the | |
3519 | * current thread gave up CPU, is there any other thread that would execute | |
3520 | * on this CPU. So it needs to provide the same answer as the steal_thread()/ | |
3521 | * processor Idle logic. | |
3522 | */ | |
3523 | if (sched_edge_foreign_runnable_thread_available(processor->processor_set)) { | |
3524 | KDBG(MACHDBG_CODE(DBG_MACH_SCHED_CLUTCH, MACH_SCHED_EDGE_SHOULD_YIELD) | DBG_FUNC_NONE, | |
3525 | thread_tid(thread), processor->processor_set->pset_cluster_id, 0, SCHED_EDGE_YIELD_FOREIGN_RUNNABLE); | |
3526 | return true; | |
3527 | } | |
3528 | if (sched_edge_foreign_running_thread_available(processor->processor_set)) { | |
3529 | KDBG(MACHDBG_CODE(DBG_MACH_SCHED_CLUTCH, MACH_SCHED_EDGE_SHOULD_YIELD) | DBG_FUNC_NONE, | |
3530 | thread_tid(thread), processor->processor_set->pset_cluster_id, 0, SCHED_EDGE_YIELD_FOREIGN_RUNNING); | |
3531 | return true; | |
3532 | } | |
3533 | ||
3534 | processor_set_t steal_candidate = sched_edge_steal_candidate(processor->processor_set); | |
3535 | if (steal_candidate != NULL) { | |
3536 | KDBG(MACHDBG_CODE(DBG_MACH_SCHED_CLUTCH, MACH_SCHED_EDGE_SHOULD_YIELD) | DBG_FUNC_NONE, | |
3537 | thread_tid(thread), processor->processor_set->pset_cluster_id, 0, SCHED_EDGE_YIELD_STEAL_POSSIBLE); | |
3538 | return true; | |
c6bf4f31 A |
3539 | } |
3540 | ||
f427ee49 A |
3541 | KDBG(MACHDBG_CODE(DBG_MACH_SCHED_CLUTCH, MACH_SCHED_EDGE_SHOULD_YIELD) | DBG_FUNC_NONE, thread_tid(thread), processor->processor_set->pset_cluster_id, |
3542 | 0, SCHED_EDGE_YIELD_DISALLOW); | |
c6bf4f31 A |
3543 | return false; |
3544 | } | |
3545 | ||
3546 | static ast_t | |
f427ee49 | 3547 | sched_edge_processor_csw_check(processor_t processor) |
c6bf4f31 A |
3548 | { |
3549 | boolean_t has_higher; | |
3550 | int pri; | |
3551 | ||
3552 | int clutch_pri = sched_clutch_root_priority(sched_clutch_processor_root_clutch(processor)); | |
3553 | run_queue_t bound_runq = sched_clutch_bound_runq(processor); | |
3554 | ||
3555 | assert(processor->active_thread != NULL); | |
3556 | ||
c6bf4f31 | 3557 | pri = MAX(clutch_pri, bound_runq->highq); |
c6bf4f31 A |
3558 | |
3559 | if (processor->first_timeslice) { | |
3560 | has_higher = (pri > processor->current_pri); | |
3561 | } else { | |
3562 | has_higher = (pri >= processor->current_pri); | |
3563 | } | |
3564 | ||
3565 | if (has_higher) { | |
3566 | if (sched_clutch_root_urgency(sched_clutch_processor_root_clutch(processor)) > 0) { | |
3567 | return AST_PREEMPT | AST_URGENT; | |
3568 | } | |
3569 | ||
3570 | if (bound_runq->urgency > 0) { | |
3571 | return AST_PREEMPT | AST_URGENT; | |
3572 | } | |
3573 | ||
c6bf4f31 A |
3574 | return AST_PREEMPT; |
3575 | } | |
3576 | ||
3577 | return AST_NONE; | |
3578 | } | |
3579 | ||
3580 | static boolean_t | |
f427ee49 | 3581 | sched_edge_processor_queue_has_priority(processor_t processor, |
c6bf4f31 A |
3582 | int priority, |
3583 | boolean_t gte) | |
3584 | { | |
c6bf4f31 A |
3585 | run_queue_t bound_runq = sched_clutch_bound_runq(processor); |
3586 | ||
3587 | int qpri = MAX(sched_clutch_root_priority(sched_clutch_processor_root_clutch(processor)), bound_runq->highq); | |
c6bf4f31 A |
3588 | if (gte) { |
3589 | return qpri >= priority; | |
3590 | } else { | |
3591 | return qpri > priority; | |
3592 | } | |
3593 | } | |
3594 | ||
c6bf4f31 | 3595 | static void |
f427ee49 | 3596 | sched_edge_processor_queue_shutdown(processor_t processor) |
c6bf4f31 A |
3597 | { |
3598 | processor_set_t pset = processor->processor_set; | |
3599 | sched_clutch_root_t pset_clutch_root = sched_clutch_processor_root_clutch(processor); | |
3600 | thread_t thread; | |
3601 | queue_head_t tqueue; | |
3602 | ||
3603 | /* We only need to migrate threads if this is the last active or last recommended processor in the pset */ | |
3604 | if ((pset->online_processor_count > 0) && pset_is_recommended(pset)) { | |
3605 | pset_unlock(pset); | |
3606 | return; | |
3607 | } | |
3608 | ||
f427ee49 A |
3609 | bitmap_clear(sched_edge_available_pset_bitmask, pset->pset_cluster_id); |
3610 | ||
c6bf4f31 A |
3611 | queue_init(&tqueue); |
3612 | while (sched_clutch_root_count(pset_clutch_root) > 0) { | |
f427ee49 | 3613 | thread = sched_clutch_thread_highest_remove(pset_clutch_root); |
c6bf4f31 A |
3614 | enqueue_tail(&tqueue, &thread->runq_links); |
3615 | } | |
3616 | pset_unlock(pset); | |
3617 | ||
3618 | qe_foreach_element_safe(thread, &tqueue, runq_links) { | |
3619 | remqueue(&thread->runq_links); | |
3620 | thread_lock(thread); | |
3621 | thread_setrun(thread, SCHED_TAILQ); | |
3622 | thread_unlock(thread); | |
3623 | } | |
3624 | } | |
3625 | ||
f427ee49 A |
3626 | /* |
3627 | * sched_edge_cluster_load_metric() | |
3628 | * | |
3629 | * The load metric for a cluster is a measure of the average scheduling latency | |
3630 | * experienced by threads on that cluster. It is a product of the average number | |
3631 | * of threads in the runqueue and the average execution time for threads. The metric | |
3632 | * has special values in the following cases: | |
3633 | * - UINT32_MAX: If the cluster is not available for scheduling, its load is set to | |
3634 | * the maximum value to disallow any threads to migrate to this cluster. | |
3635 | * - 0: If there are idle CPUs in the cluster or an empty runqueue; this allows threads | |
3636 | * to be spread across the platform quickly for ncpu wide workloads. | |
3637 | */ | |
3638 | static uint32_t | |
3639 | sched_edge_cluster_load_metric(processor_set_t pset, sched_bucket_t sched_bucket) | |
c6bf4f31 | 3640 | { |
f427ee49 A |
3641 | if (sched_edge_pset_available(pset) == false) { |
3642 | return UINT32_MAX; | |
c6bf4f31 | 3643 | } |
f427ee49 A |
3644 | return (uint32_t)sched_get_pset_load_average(pset, sched_bucket); |
3645 | } | |
c6bf4f31 | 3646 | |
f427ee49 A |
3647 | /* |
3648 | * | |
3649 | * Edge Scheduler Steal/Rebalance logic | |
3650 | * | |
3651 | * = Generic scheduler logic = | |
3652 | * | |
3653 | * The SCHED(steal_thread) scheduler callout is invoked when the processor does not | |
3654 | * find any thread for execution in its runqueue. The aim of the steal operation | |
3655 | * is to find other threads running/runnable in other clusters which should be | |
3656 | * executed here. | |
3657 | * | |
3658 | * If the steal callout does not return a thread, the thread_select() logic calls | |
3659 | * SCHED(processor_balance) callout which is supposed to IPI other CPUs to rebalance | |
3660 | * threads and idle out the current CPU. | |
3661 | * | |
3662 | * = SCHED(steal_thread) for Edge Scheduler = | |
3663 | * | |
3664 | * The edge scheduler hooks into sched_edge_processor_idle() for steal_thread. This | |
3665 | * routine tries to do the following operations in order: | |
3666 | * (1) Find foreign runnnable threads in non-native cluster | |
3667 | * runqueues (sched_edge_foreign_runnable_thread_remove()) | |
3668 | * (2) Check if foreign threads are running on the non-native | |
3669 | * clusters (sched_edge_foreign_running_thread_available()) | |
3670 | * - If yes, return THREAD_NULL for the steal callout and | |
3671 | * perform rebalancing as part of SCHED(processor_balance) i.e. sched_edge_balance() | |
3672 | * (3) Steal a thread from another cluster based on edge | |
3673 | * weights (sched_edge_steal_thread()) | |
3674 | * | |
3675 | * = SCHED(processor_balance) for Edge Scheduler = | |
3676 | * | |
3677 | * If steal_thread did not return a thread for the processor, use | |
3678 | * sched_edge_balance() to rebalance foreign running threads and idle out this CPU. | |
3679 | * | |
3680 | * = Clutch Bucket Preferred Cluster Overrides = | |
3681 | * | |
3682 | * Since these operations (just like thread migrations on enqueue) | |
3683 | * move threads across clusters, they need support for handling clutch | |
3684 | * bucket group level preferred cluster recommendations. | |
3685 | * For (1), a clutch bucket will be in the foreign runnable queue based | |
3686 | * on the clutch bucket group preferred cluster. | |
3687 | * For (2), the running thread will set the bit on the processor based | |
3688 | * on its preferred cluster type. | |
3689 | * For (3), the edge configuration would prevent threads from being stolen | |
3690 | * in the wrong direction. | |
3691 | * | |
3692 | * = SCHED(thread_should_yield) = | |
3693 | * The thread_should_yield() logic needs to have the same logic as sched_edge_processor_idle() | |
3694 | * since that is expecting the same answer as if thread_select() was called on a core | |
3695 | * with an empty runqueue. | |
3696 | */ | |
c6bf4f31 | 3697 | |
f427ee49 A |
3698 | static bool |
3699 | sched_edge_steal_thread_enabled(__unused processor_set_t pset) | |
3700 | { | |
3701 | /* | |
3702 | * For edge scheduler, the gating for steal is being done by sched_edge_steal_candidate() | |
3703 | */ | |
3704 | return true; | |
3705 | } | |
c6bf4f31 | 3706 | |
f427ee49 A |
3707 | static processor_set_t |
3708 | sched_edge_steal_candidate(processor_set_t pset) | |
3709 | { | |
3710 | /* | |
3711 | * Edge Scheduler Optimization | |
3712 | * | |
3713 | * Investigate a better policy for stealing. The current implementation looks | |
3714 | * at all the incoming weights for the pset that just became idle and sees which | |
3715 | * clusters have loads > edge weights. It is effectively trying to simulate a | |
3716 | * overload migration as if a thread had become runnable on the candidate cluster. | |
3717 | * | |
3718 | * The logic today bails as soon as it finds a cluster where the cluster load is | |
3719 | * greater than the edge weight. This helps the check to be quick which is useful | |
3720 | * for sched_edge_thread_should_yield() which uses this. Maybe it should have a | |
3721 | * more advanced version for the actual steal operation which looks for the | |
3722 | * maximum delta etc. | |
3723 | */ | |
3724 | processor_set_t target_pset = NULL; | |
3725 | uint32_t dst_cluster_id = pset->pset_cluster_id; | |
c6bf4f31 | 3726 | |
f427ee49 A |
3727 | for (int cluster_id = 0; cluster_id < MAX_PSETS; cluster_id++) { |
3728 | processor_set_t candidate_pset = pset_array[cluster_id]; | |
c6bf4f31 | 3729 | |
f427ee49 A |
3730 | if (candidate_pset == pset) { |
3731 | continue; | |
3732 | } | |
c6bf4f31 | 3733 | |
f427ee49 A |
3734 | sched_clutch_edge *incoming_edge = &pset_array[cluster_id]->sched_edges[dst_cluster_id]; |
3735 | if (incoming_edge->sce_steal_allowed == false) { | |
3736 | continue; | |
3737 | } | |
c6bf4f31 | 3738 | |
f427ee49 A |
3739 | uint32_t incoming_weight = incoming_edge->sce_migration_weight; |
3740 | int highest_runnable_bucket = bitmap_lsb_first(candidate_pset->pset_clutch_root.scr_unbound_runnable_bitmap, TH_BUCKET_SCHED_MAX); | |
3741 | if (highest_runnable_bucket == -1) { | |
3742 | /* Candidate cluster runq is empty */ | |
3743 | continue; | |
3744 | } | |
3745 | /* Use the load metrics for highest runnable bucket since that would be stolen next */ | |
3746 | uint32_t candidate_load = sched_edge_cluster_load_metric(candidate_pset, (sched_bucket_t)highest_runnable_bucket); | |
3747 | if (candidate_load > incoming_weight) { | |
3748 | /* Only steal from the candidate if its load is higher than the incoming edge and it has runnable threads */ | |
3749 | target_pset = candidate_pset; | |
3750 | break; | |
c6bf4f31 A |
3751 | } |
3752 | } | |
3753 | ||
f427ee49 | 3754 | return target_pset; |
c6bf4f31 A |
3755 | } |
3756 | ||
f427ee49 A |
3757 | static boolean_t |
3758 | sched_edge_foreign_runnable_thread_available(processor_set_t pset) | |
c6bf4f31 | 3759 | { |
f427ee49 A |
3760 | /* Find all the clusters that are foreign for this cluster */ |
3761 | bitmap_t *foreign_pset_bitmap = pset->foreign_psets; | |
3762 | for (int cluster = bitmap_first(foreign_pset_bitmap, MAX_PSETS); cluster >= 0; cluster = bitmap_next(foreign_pset_bitmap, cluster)) { | |
3763 | /* | |
3764 | * For each cluster, see if there are any runnable foreign threads. | |
3765 | * This check is currently being done without the pset lock to make it cheap for | |
3766 | * the common case. | |
3767 | */ | |
3768 | processor_set_t target_pset = pset_array[cluster]; | |
3769 | if (sched_edge_pset_available(target_pset) == false) { | |
3770 | continue; | |
c6bf4f31 | 3771 | } |
f427ee49 A |
3772 | |
3773 | if (!sched_clutch_root_foreign_empty(&target_pset->pset_clutch_root)) { | |
c6bf4f31 A |
3774 | return true; |
3775 | } | |
3776 | } | |
c6bf4f31 A |
3777 | return false; |
3778 | } | |
3779 | ||
f427ee49 A |
3780 | static thread_t |
3781 | sched_edge_foreign_runnable_thread_remove(processor_set_t pset, uint64_t ctime) | |
c6bf4f31 | 3782 | { |
f427ee49 | 3783 | thread_t thread = THREAD_NULL; |
c6bf4f31 | 3784 | |
f427ee49 A |
3785 | /* Find all the clusters that are foreign for this cluster */ |
3786 | bitmap_t *foreign_pset_bitmap = pset->foreign_psets; | |
3787 | for (int cluster = bitmap_first(foreign_pset_bitmap, MAX_PSETS); cluster >= 0; cluster = bitmap_next(foreign_pset_bitmap, cluster)) { | |
3788 | /* | |
3789 | * For each cluster, see if there are any runnable foreign threads. | |
3790 | * This check is currently being done without the pset lock to make it cheap for | |
3791 | * the common case. | |
3792 | */ | |
3793 | processor_set_t target_pset = pset_array[cluster]; | |
3794 | if (sched_edge_pset_available(target_pset) == false) { | |
3795 | continue; | |
3796 | } | |
c6bf4f31 | 3797 | |
f427ee49 A |
3798 | if (sched_clutch_root_foreign_empty(&target_pset->pset_clutch_root)) { |
3799 | continue; | |
3800 | } | |
3801 | /* | |
3802 | * Looks like there are runnable foreign threads in the hierarchy; lock the pset | |
3803 | * and get the highest priority thread. | |
3804 | */ | |
3805 | pset_lock(target_pset); | |
3806 | if (sched_edge_pset_available(target_pset)) { | |
3807 | thread = sched_clutch_root_highest_foreign_thread_remove(&target_pset->pset_clutch_root); | |
3808 | sched_update_pset_load_average(target_pset, ctime); | |
3809 | } | |
3810 | pset_unlock(target_pset); | |
3811 | ||
3812 | /* | |
3813 | * Edge Scheduler Optimization | |
3814 | * | |
3815 | * The current implementation immediately returns as soon as it finds a foreign | |
3816 | * runnable thread. This could be enhanced to look at highest priority threads | |
3817 | * from all foreign clusters and pick the highest amongst them. That would need | |
3818 | * some form of global state across psets to make that kind of a check cheap. | |
3819 | */ | |
3820 | if (thread != THREAD_NULL) { | |
3821 | KDBG(MACHDBG_CODE(DBG_MACH_SCHED_CLUTCH, MACH_SCHED_EDGE_REBAL_RUNNABLE) | DBG_FUNC_NONE, thread_tid(thread), pset->pset_cluster_id, target_pset->pset_cluster_id, 0); | |
3822 | break; | |
3823 | } | |
3824 | /* Looks like the thread escaped after the check but before the pset lock was taken; continue the search */ | |
c6bf4f31 A |
3825 | } |
3826 | ||
f427ee49 A |
3827 | return thread; |
3828 | } | |
3829 | ||
3830 | static boolean_t | |
3831 | sched_edge_foreign_running_thread_available(processor_set_t pset) | |
3832 | { | |
3833 | bitmap_t *foreign_pset_bitmap = pset->foreign_psets; | |
3834 | for (int cluster = bitmap_first(foreign_pset_bitmap, MAX_PSETS); cluster >= 0; cluster = bitmap_next(foreign_pset_bitmap, cluster)) { | |
3835 | /* Skip the pset if its not schedulable */ | |
3836 | processor_set_t target_pset = pset_array[cluster]; | |
3837 | if (sched_edge_pset_available(target_pset) == false) { | |
3838 | continue; | |
3839 | } | |
3840 | ||
3841 | uint64_t running_foreign_bitmap = target_pset->cpu_state_map[PROCESSOR_RUNNING] & target_pset->cpu_running_foreign; | |
3842 | if (lsb_first(running_foreign_bitmap) != -1) { | |
3843 | /* Found a non-native CPU running a foreign thread; rebalance is needed */ | |
3844 | return true; | |
3845 | } | |
c6bf4f31 | 3846 | } |
f427ee49 A |
3847 | return false; |
3848 | } | |
c6bf4f31 | 3849 | |
f427ee49 A |
3850 | static thread_t |
3851 | sched_edge_steal_thread(processor_set_t pset) | |
3852 | { | |
3853 | thread_t thread = THREAD_NULL; | |
3854 | processor_set_t steal_from_pset = sched_edge_steal_candidate(pset); | |
3855 | if (steal_from_pset) { | |
c6bf4f31 | 3856 | /* |
f427ee49 A |
3857 | * sched_edge_steal_candidate() has found a pset which is ideal to steal from. |
3858 | * Lock the pset and select the highest thread in that runqueue. | |
c6bf4f31 | 3859 | */ |
f427ee49 A |
3860 | pset_lock(steal_from_pset); |
3861 | if (bitmap_first(steal_from_pset->pset_clutch_root.scr_unbound_runnable_bitmap, TH_BUCKET_SCHED_MAX) != -1) { | |
3862 | uint64_t current_timestamp = mach_absolute_time(); | |
3863 | sched_clutch_root_bucket_t root_bucket = sched_clutch_root_highest_root_bucket(&steal_from_pset->pset_clutch_root, current_timestamp, SCHED_CLUTCH_HIGHEST_ROOT_BUCKET_UNBOUND_ONLY); | |
3864 | thread = sched_clutch_thread_unbound_lookup(&steal_from_pset->pset_clutch_root, root_bucket); | |
3865 | sched_clutch_thread_remove(&steal_from_pset->pset_clutch_root, thread, current_timestamp, SCHED_CLUTCH_BUCKET_OPTIONS_SAMEPRI_RR); | |
3866 | KDBG(MACHDBG_CODE(DBG_MACH_SCHED_CLUTCH, MACH_SCHED_EDGE_STEAL) | DBG_FUNC_NONE, thread_tid(thread), pset->pset_cluster_id, steal_from_pset->pset_cluster_id, 0); | |
3867 | sched_update_pset_load_average(steal_from_pset, current_timestamp); | |
c6bf4f31 | 3868 | } |
f427ee49 A |
3869 | /* |
3870 | * Edge Scheduler Optimization | |
3871 | * Maybe this needs to circle around if the steal candidate did not have any threads by | |
3872 | * by the time the pset lock was taken. | |
3873 | */ | |
3874 | pset_unlock(steal_from_pset); | |
c6bf4f31 | 3875 | } |
f427ee49 A |
3876 | return thread; |
3877 | } | |
3878 | ||
3879 | /* | |
3880 | * sched_edge_processor_idle() | |
3881 | * | |
3882 | * The routine is the implementation for steal_thread() for the Edge scheduler. | |
3883 | */ | |
3884 | static thread_t | |
3885 | sched_edge_processor_idle(processor_set_t pset) | |
3886 | { | |
3887 | thread_t thread = THREAD_NULL; | |
3888 | ||
3889 | uint64_t ctime = mach_absolute_time(); | |
3890 | ||
3891 | /* Each of the operations acquire the lock for the pset they target */ | |
3892 | pset_unlock(pset); | |
3893 | ||
3894 | /* Find highest priority runnable thread on all non-native clusters */ | |
3895 | thread = sched_edge_foreign_runnable_thread_remove(pset, ctime); | |
3896 | if (thread != THREAD_NULL) { | |
3897 | return thread; | |
3898 | } | |
3899 | ||
3900 | /* Find foreign running threads to rebalance; the actual rebalance is done in sched_edge_balance() */ | |
3901 | boolean_t rebalance_needed = sched_edge_foreign_running_thread_available(pset); | |
3902 | if (rebalance_needed) { | |
3903 | return THREAD_NULL; | |
3904 | } | |
3905 | ||
3906 | /* No foreign threads found; find a thread to steal from a pset based on weights/loads etc. */ | |
3907 | thread = sched_edge_steal_thread(pset); | |
3908 | return thread; | |
3909 | } | |
3910 | ||
3911 | /* Return true if this thread should not continue running on this processor */ | |
3912 | static bool | |
3913 | sched_edge_thread_avoid_processor(processor_t processor, thread_t thread) | |
3914 | { | |
3915 | processor_set_t preferred_pset = pset_array[sched_edge_thread_preferred_cluster(thread)]; | |
3916 | /* | |
3917 | * For long running parallel workloads, it is important to rebalance threads across | |
3918 | * E/P clusters so that they make equal forward progress. This is achieved through | |
3919 | * threads expiring their quantum on the non-preferred cluster type and explicitly | |
3920 | * rebalancing to the preferred cluster runqueue. | |
3921 | * | |
3922 | * <Edge Multi-Cluster Support Needed> | |
3923 | * For multi-cluster platforms, it mignt be useful to move the thread incase its | |
3924 | * preferred pset is idle now. | |
3925 | */ | |
3926 | if (processor->processor_set->pset_type != preferred_pset->pset_type) { | |
3927 | return true; | |
3928 | } | |
3929 | /* If thread already running on preferred cluster, do not avoid */ | |
3930 | if (processor->processor_set == preferred_pset) { | |
3931 | return false; | |
3932 | } | |
3933 | /* | |
3934 | * The thread is running on a processor that is of the same type as the | |
3935 | * preferred pset, but is not the actual preferred pset. In that case | |
3936 | * look at edge weights to see if this thread should continue execution | |
3937 | * here or go back to its preferred cluster. | |
3938 | * | |
3939 | * <Edge Multi-Cluster Support Needed> | |
3940 | * This logic needs to ensure that the current thread is not counted against | |
3941 | * the load average for the current pset otherwise it would always end up avoiding | |
3942 | * the current cluster. | |
3943 | */ | |
3944 | processor_set_t chosen_pset = sched_edge_migrate_candidate(preferred_pset, thread, processor->processor_set, false); | |
3945 | return chosen_pset != processor->processor_set; | |
3946 | } | |
3947 | ||
3948 | static void | |
3949 | sched_edge_balance(__unused processor_t cprocessor, processor_set_t cpset) | |
3950 | { | |
3951 | assert(cprocessor == current_processor()); | |
3952 | pset_unlock(cpset); | |
3953 | ||
3954 | uint64_t ast_processor_map = 0; | |
3955 | sched_ipi_type_t ipi_type[MAX_CPUS] = {SCHED_IPI_NONE}; | |
3956 | ||
3957 | bitmap_t *foreign_pset_bitmap = cpset->foreign_psets; | |
3958 | for (int cluster = bitmap_first(foreign_pset_bitmap, MAX_PSETS); cluster >= 0; cluster = bitmap_next(foreign_pset_bitmap, cluster)) { | |
3959 | /* Skip the pset if its not schedulable */ | |
3960 | processor_set_t target_pset = pset_array[cluster]; | |
3961 | if (sched_edge_pset_available(target_pset) == false) { | |
3962 | continue; | |
3963 | } | |
3964 | ||
3965 | pset_lock(target_pset); | |
3966 | uint64_t cpu_running_foreign_map = (target_pset->cpu_running_foreign & target_pset->cpu_state_map[PROCESSOR_RUNNING]); | |
3967 | for (int cpuid = lsb_first(cpu_running_foreign_map); cpuid >= 0; cpuid = lsb_next(cpu_running_foreign_map, cpuid)) { | |
3968 | processor_t target_cpu = processor_array[cpuid]; | |
3969 | ipi_type[target_cpu->cpu_id] = sched_ipi_action(target_cpu, NULL, false, SCHED_IPI_EVENT_REBALANCE); | |
3970 | if (ipi_type[cpuid] != SCHED_IPI_NONE) { | |
3971 | bit_set(ast_processor_map, cpuid); | |
3972 | } | |
3973 | } | |
3974 | pset_unlock(target_pset); | |
3975 | } | |
3976 | ||
3977 | for (int cpuid = lsb_first(ast_processor_map); cpuid >= 0; cpuid = lsb_next(ast_processor_map, cpuid)) { | |
3978 | processor_t ast_processor = processor_array[cpuid]; | |
3979 | sched_ipi_perform(ast_processor, ipi_type[cpuid]); | |
3980 | KDBG(MACHDBG_CODE(DBG_MACH_SCHED_CLUTCH, MACH_SCHED_EDGE_REBAL_RUNNING) | DBG_FUNC_NONE, 0, cprocessor->cpu_id, cpuid, 0); | |
3981 | } | |
3982 | } | |
3983 | ||
3984 | /* | |
3985 | * sched_edge_migrate_edges_evaluate() | |
3986 | * | |
3987 | * Routine to find the candidate for thread migration based on edge weights. | |
3988 | * | |
3989 | * Returns the most ideal cluster for execution of this thread based on outgoing edges of the preferred pset. Can | |
3990 | * return preferred_pset if its the most ideal destination for this thread. | |
3991 | */ | |
3992 | static processor_set_t | |
3993 | sched_edge_migrate_edges_evaluate(processor_set_t preferred_pset, uint32_t preferred_cluster_load, thread_t thread) | |
3994 | { | |
3995 | processor_set_t selected_pset = preferred_pset; | |
3996 | uint32_t preferred_cluster_id = preferred_pset->pset_cluster_id; | |
3997 | cluster_type_t preferred_cluster_type = pset_type_for_id(preferred_cluster_id); | |
3998 | ||
3999 | /* Look at edge deltas with other clusters to find the ideal migration candidate */ | |
4000 | sched_clutch_edge *edge = preferred_pset->sched_edges; | |
4001 | uint32_t max_edge_delta = 0; | |
4002 | ||
4003 | /* | |
4004 | * Edge Scheduler Optimization | |
4005 | * | |
4006 | * For really large cluster count systems, it might make sense to optimize the | |
4007 | * clusters iterated by using bitmaps and skipping over clusters that are not | |
4008 | * available for scheduling or have migration disabled from this cluster. | |
4009 | */ | |
4010 | for (uint32_t cluster_id = 0; cluster_id < MAX_PSETS; cluster_id++) { | |
4011 | processor_set_t dst_pset = pset_array[cluster_id]; | |
4012 | if (cluster_id == preferred_cluster_id) { | |
4013 | continue; | |
4014 | } | |
4015 | ||
4016 | if (edge[cluster_id].sce_migration_allowed == false) { | |
4017 | continue; | |
4018 | } | |
4019 | ||
4020 | uint32_t dst_load = sched_edge_cluster_load_metric(dst_pset, thread->th_sched_bucket); | |
4021 | if (dst_load > preferred_cluster_load) { | |
4022 | continue; | |
4023 | } | |
4024 | ||
4025 | /* | |
4026 | * Fast path for idle dst cluster | |
4027 | * | |
4028 | * For extremely parallel workloads, it is important to load up | |
4029 | * all clusters as quickly as possible. This short-circuit allows | |
4030 | * that. | |
4031 | * <Edge Multi-cluster Support Needed> | |
4032 | * | |
4033 | * For multi-cluster platforms, the loop should start with the homogeneous | |
4034 | * clusters first. | |
4035 | */ | |
4036 | if (dst_load == 0) { | |
4037 | selected_pset = dst_pset; | |
4038 | break; | |
4039 | } | |
4040 | ||
4041 | uint32_t edge_delta = preferred_cluster_load - dst_load; | |
4042 | if (edge_delta < edge[cluster_id].sce_migration_weight) { | |
4043 | continue; | |
4044 | } | |
4045 | ||
4046 | if (edge_delta < max_edge_delta) { | |
4047 | continue; | |
4048 | } | |
4049 | ||
4050 | if (edge_delta == max_edge_delta) { | |
4051 | /* If the edge delta is the same as the max delta, make sure a homogeneous cluster is picked */ | |
4052 | boolean_t selected_homogeneous = (pset_type_for_id(selected_pset->pset_cluster_id) == preferred_cluster_type); | |
4053 | boolean_t candidate_homogeneous = (pset_type_for_id(dst_pset->pset_cluster_id) == preferred_cluster_type); | |
4054 | if (selected_homogeneous || !candidate_homogeneous) { | |
4055 | continue; | |
4056 | } | |
4057 | } | |
4058 | /* dst_pset seems to be the best candidate for migration */ | |
4059 | max_edge_delta = edge_delta; | |
4060 | selected_pset = dst_pset; | |
4061 | } | |
4062 | return selected_pset; | |
c6bf4f31 A |
4063 | } |
4064 | ||
4065 | /* | |
f427ee49 | 4066 | * sched_edge_candidate_alternative() |
c6bf4f31 | 4067 | * |
f427ee49 A |
4068 | * Routine to find an alternative cluster from candidate_cluster_bitmap since the |
4069 | * selected_pset is not available for execution. The logic tries to prefer homogeneous | |
4070 | * clusters over heterogeneous clusters since this is typically used in thread | |
4071 | * placement decisions. | |
c6bf4f31 | 4072 | */ |
f427ee49 A |
4073 | _Static_assert(MAX_PSETS <= 64, "Unable to fit maximum number of psets in uint64_t bitmask"); |
4074 | static processor_set_t | |
4075 | sched_edge_candidate_alternative(processor_set_t selected_pset, uint64_t candidate_cluster_bitmap) | |
4076 | { | |
4077 | /* | |
4078 | * It looks like the most ideal pset is not available for scheduling currently. | |
4079 | * Try to find a homogeneous cluster that is still available. | |
4080 | */ | |
4081 | bitmap_t *foreign_clusters = selected_pset->foreign_psets; | |
4082 | uint64_t available_native_clusters = ~(foreign_clusters[0]) & candidate_cluster_bitmap; | |
4083 | int available_cluster_id = lsb_first(available_native_clusters); | |
4084 | if (available_cluster_id == -1) { | |
4085 | /* Looks like none of the homogeneous clusters are available; pick the first available cluster */ | |
4086 | available_cluster_id = bit_first(candidate_cluster_bitmap); | |
4087 | } | |
4088 | assert(available_cluster_id != -1); | |
4089 | return pset_array[available_cluster_id]; | |
4090 | } | |
c6bf4f31 A |
4091 | |
4092 | /* | |
f427ee49 | 4093 | * sched_edge_switch_pset_lock() |
c6bf4f31 | 4094 | * |
f427ee49 A |
4095 | * Helper routine for sched_edge_migrate_candidate() which switches pset locks (if needed) based on |
4096 | * switch_pset_locks. | |
4097 | * Returns the newly locked pset after the switch. | |
c6bf4f31 A |
4098 | */ |
4099 | static processor_set_t | |
f427ee49 | 4100 | sched_edge_switch_pset_lock(processor_set_t selected_pset, processor_set_t locked_pset, bool switch_pset_locks) |
c6bf4f31 | 4101 | { |
f427ee49 A |
4102 | if (!switch_pset_locks) { |
4103 | return locked_pset; | |
c6bf4f31 | 4104 | } |
f427ee49 A |
4105 | if (selected_pset != locked_pset) { |
4106 | pset_unlock(locked_pset); | |
4107 | pset_lock(selected_pset); | |
4108 | return selected_pset; | |
4109 | } else { | |
4110 | return locked_pset; | |
4111 | } | |
4112 | } | |
c6bf4f31 | 4113 | |
f427ee49 A |
4114 | /* |
4115 | * sched_edge_migrate_candidate() | |
4116 | * | |
4117 | * Routine to find an appropriate cluster for scheduling a thread. The routine looks at the properties of | |
4118 | * the thread and the preferred cluster to determine the best available pset for scheduling. | |
4119 | * | |
4120 | * The switch_pset_locks parameter defines whether the routine should switch pset locks to provide an | |
4121 | * accurate scheduling decision. This mode is typically used when choosing a pset for scheduling a thread since the | |
4122 | * decision has to be synchronized with another CPU changing the recommendation of clusters available | |
4123 | * on the system. If this parameter is set to false, this routine returns the best effort indication of | |
4124 | * the cluster the thread should be scheduled on. It is typically used in fast path contexts (such as | |
4125 | * SCHED(thread_avoid_processor) to determine if there is a possibility of scheduling this thread on a | |
4126 | * more appropriate cluster. | |
4127 | * | |
4128 | * Routine returns the most ideal cluster for scheduling. If switch_pset_locks is set, it ensures that the | |
4129 | * resultant pset lock is held. | |
4130 | */ | |
4131 | static processor_set_t | |
4132 | sched_edge_migrate_candidate(processor_set_t preferred_pset, thread_t thread, processor_set_t locked_pset, bool switch_pset_locks) | |
4133 | { | |
4134 | __kdebug_only uint32_t preferred_cluster_id = preferred_pset->pset_cluster_id; | |
4135 | processor_set_t selected_pset = preferred_pset; | |
4136 | ||
4137 | if (SCHED_CLUTCH_THREAD_CLUSTER_BOUND(thread)) { | |
4138 | /* For bound threads always recommend the cluster its bound to */ | |
4139 | selected_pset = pset_array[sched_edge_thread_bound_cluster_id(thread)]; | |
4140 | locked_pset = sched_edge_switch_pset_lock(selected_pset, locked_pset, switch_pset_locks); | |
4141 | if (sched_edge_pset_available(selected_pset) || (SCHED_CLUTCH_THREAD_CLUSTER_BOUND_SOFT(thread) == false)) { | |
4142 | /* | |
4143 | * If the bound cluster is not available, check if the thread is soft bound. For soft bound threads, | |
4144 | * fall through to the regular cluster selection logic which handles unavailable clusters | |
4145 | * appropriately. If the thread is hard bound, then return the bound cluster always. | |
4146 | */ | |
4147 | return selected_pset; | |
4148 | } | |
4149 | } | |
4150 | ||
4151 | uint64_t candidate_cluster_bitmap = mask(MAX_PSETS); | |
4152 | if (thread->sched_pri >= BASEPRI_RTQUEUES) { | |
4153 | /* For realtime threads, try and schedule them on the preferred pset always */ | |
4154 | goto migrate_candidate_available_check; | |
4155 | } | |
4156 | ||
4157 | /* | |
4158 | * If a thread is being rebalanced for achieving equal progress of parallel workloads, | |
4159 | * it needs to end up on the preferred runqueue. | |
4160 | */ | |
4161 | uint32_t preferred_cluster_load = sched_edge_cluster_load_metric(preferred_pset, thread->th_sched_bucket); | |
4162 | boolean_t amp_rebalance = (thread->reason & (AST_REBALANCE | AST_QUANTUM)) == (AST_REBALANCE | AST_QUANTUM); | |
4163 | if ((preferred_cluster_load == 0) || amp_rebalance) { | |
4164 | goto migrate_candidate_available_check; | |
4165 | } | |
4166 | ||
4167 | /* Look at edge weights to decide the most ideal migration candidate for this thread */ | |
4168 | selected_pset = sched_edge_migrate_edges_evaluate(preferred_pset, preferred_cluster_load, thread); | |
4169 | ||
4170 | migrate_candidate_available_check: | |
4171 | locked_pset = sched_edge_switch_pset_lock(selected_pset, locked_pset, switch_pset_locks); | |
4172 | if (sched_edge_pset_available(selected_pset) == true) { | |
4173 | if (selected_pset != preferred_pset) { | |
4174 | KDBG(MACHDBG_CODE(DBG_MACH_SCHED_CLUTCH, MACH_SCHED_EDGE_CLUSTER_OVERLOAD) | DBG_FUNC_NONE, thread_tid(thread), preferred_cluster_id, selected_pset->pset_cluster_id, preferred_cluster_load); | |
4175 | } | |
4176 | return selected_pset; | |
4177 | } | |
4178 | /* Looks like selected_pset is not available for scheduling; remove it from candidate_cluster_bitmap */ | |
4179 | bitmap_clear(&candidate_cluster_bitmap, selected_pset->pset_cluster_id); | |
4180 | if (__improbable(bitmap_first(&candidate_cluster_bitmap, MAX_PSETS) == -1)) { | |
4181 | /* | |
4182 | * None of the clusters are available for scheduling; this situation should be rare but if it happens, | |
4183 | * simply return the boot cluster. | |
4184 | */ | |
4185 | selected_pset = &pset0; | |
4186 | locked_pset = sched_edge_switch_pset_lock(selected_pset, locked_pset, switch_pset_locks); | |
4187 | if (selected_pset != preferred_pset) { | |
4188 | KDBG(MACHDBG_CODE(DBG_MACH_SCHED_CLUTCH, MACH_SCHED_EDGE_CLUSTER_OVERLOAD) | DBG_FUNC_NONE, thread_tid(thread), preferred_cluster_id, selected_pset->pset_cluster_id, preferred_cluster_load); | |
4189 | } | |
4190 | return selected_pset; | |
c6bf4f31 | 4191 | } |
f427ee49 A |
4192 | /* Try and find an alternative for the selected pset */ |
4193 | selected_pset = sched_edge_candidate_alternative(selected_pset, candidate_cluster_bitmap); | |
4194 | goto migrate_candidate_available_check; | |
4195 | } | |
4196 | ||
4197 | static processor_t | |
4198 | sched_edge_choose_processor(processor_set_t pset, processor_t processor, thread_t thread) | |
4199 | { | |
4200 | /* Bound threads don't call this function */ | |
4201 | assert(thread->bound_processor == PROCESSOR_NULL); | |
4202 | processor_t chosen_processor = PROCESSOR_NULL; | |
c6bf4f31 A |
4203 | |
4204 | /* | |
f427ee49 A |
4205 | * sched_edge_preferred_pset() returns the preferred pset for a given thread. |
4206 | * It should take the passed in "pset" as a hint which represents the recency metric for | |
4207 | * pset selection logic. | |
c6bf4f31 | 4208 | */ |
f427ee49 A |
4209 | processor_set_t preferred_pset = pset_array[sched_edge_thread_preferred_cluster(thread)]; |
4210 | processor_set_t chosen_pset = preferred_pset; | |
4211 | /* | |
4212 | * If the preferred pset is overloaded, find a pset which is the best candidate to migrate | |
4213 | * threads to. sched_edge_migrate_candidate() returns the preferred pset | |
4214 | * if it has capacity; otherwise finds the best candidate pset to migrate this thread to. | |
4215 | * | |
4216 | * <Edge Multi-cluster Support Needed> | |
4217 | * It might be useful to build a recency metric for the thread for multiple clusters and | |
4218 | * factor that into the migration decisions. | |
4219 | */ | |
4220 | chosen_pset = sched_edge_migrate_candidate(preferred_pset, thread, pset, true); | |
4221 | chosen_processor = choose_processor(chosen_pset, processor, thread); | |
4222 | assert(chosen_processor->processor_set == chosen_pset); | |
4223 | return chosen_processor; | |
c6bf4f31 A |
4224 | } |
4225 | ||
f427ee49 A |
4226 | /* |
4227 | * sched_edge_clutch_bucket_threads_drain() | |
4228 | * | |
4229 | * Drains all the runnable threads which are not restricted to the root_clutch (due to clutch | |
4230 | * bucket overrides etc.) into a local thread queue. | |
4231 | */ | |
c6bf4f31 | 4232 | static void |
f427ee49 | 4233 | sched_edge_clutch_bucket_threads_drain(sched_clutch_bucket_t clutch_bucket, sched_clutch_root_t root_clutch, queue_t clutch_threads) |
c6bf4f31 | 4234 | { |
f427ee49 | 4235 | thread_t thread = THREAD_NULL; |
c6bf4f31 | 4236 | uint64_t current_timestamp = mach_approximate_time(); |
f427ee49 | 4237 | qe_foreach_element_safe(thread, &clutch_bucket->scb_thread_timeshare_queue, th_clutch_timeshare_link) { |
ea3f0419 | 4238 | sched_clutch_thread_remove(root_clutch, thread, current_timestamp, SCHED_CLUTCH_BUCKET_OPTIONS_NONE); |
c6bf4f31 | 4239 | enqueue_tail(clutch_threads, &thread->runq_links); |
c6bf4f31 | 4240 | } |
f427ee49 | 4241 | } |
c6bf4f31 | 4242 | |
f427ee49 A |
4243 | /* |
4244 | * sched_edge_run_drained_threads() | |
4245 | * | |
4246 | * Makes all drained threads in a local queue runnable. | |
4247 | */ | |
4248 | static void | |
4249 | sched_edge_run_drained_threads(queue_t clutch_threads) | |
4250 | { | |
4251 | thread_t thread; | |
4252 | /* Now setrun all the threads in the local queue */ | |
4253 | qe_foreach_element_safe(thread, clutch_threads, runq_links) { | |
4254 | remqueue(&thread->runq_links); | |
4255 | thread_lock(thread); | |
4256 | thread_setrun(thread, SCHED_TAILQ); | |
4257 | thread_unlock(thread); | |
4258 | } | |
4259 | } | |
4260 | ||
4261 | /* | |
4262 | * sched_edge_update_preferred_cluster() | |
4263 | * | |
4264 | * Routine to update the preferred cluster for QoS buckets within a thread group. | |
4265 | * The buckets to be updated are specifed as a bitmap (clutch_bucket_modify_bitmap). | |
4266 | */ | |
4267 | static void | |
4268 | sched_edge_update_preferred_cluster( | |
4269 | sched_clutch_t sched_clutch, | |
4270 | bitmap_t *clutch_bucket_modify_bitmap, | |
4271 | uint32_t *tg_bucket_preferred_cluster) | |
4272 | { | |
4273 | for (int bucket = bitmap_first(clutch_bucket_modify_bitmap, TH_BUCKET_SCHED_MAX); bucket >= 0; bucket = bitmap_next(clutch_bucket_modify_bitmap, bucket)) { | |
4274 | os_atomic_store(&sched_clutch->sc_clutch_groups[bucket].scbg_preferred_cluster, tg_bucket_preferred_cluster[bucket], relaxed); | |
4275 | } | |
c6bf4f31 A |
4276 | } |
4277 | ||
4278 | /* | |
f427ee49 | 4279 | * sched_edge_migrate_thread_group_runnable_threads() |
c6bf4f31 | 4280 | * |
f427ee49 | 4281 | * Routine to implement the migration of threads on a cluster when the thread group |
c6bf4f31 A |
4282 | * recommendation is updated. The migration works using a 2-phase |
4283 | * algorithm. | |
4284 | * | |
f427ee49 A |
4285 | * Phase 1: With the pset lock held, check the recommendation of the clutch buckets. |
4286 | * For each clutch bucket, if it needs to be migrated immediately, drain the threads | |
4287 | * into a local thread queue. Otherwise mark the clutch bucket as native/foreign as | |
4288 | * appropriate. | |
4289 | * | |
4290 | * Phase 2: After unlocking the pset, drain all the threads from the local thread | |
4291 | * queue and mark them runnable which should land them in the right hierarchy. | |
4292 | * | |
4293 | * The routine assumes that the preferences for the clutch buckets/clutch bucket | |
4294 | * groups have already been updated by the caller. | |
c6bf4f31 | 4295 | * |
f427ee49 A |
4296 | * - Called with the pset locked and interrupts disabled. |
4297 | * - Returns with the pset unlocked. | |
c6bf4f31 A |
4298 | */ |
4299 | static void | |
f427ee49 A |
4300 | sched_edge_migrate_thread_group_runnable_threads( |
4301 | sched_clutch_t sched_clutch, | |
4302 | sched_clutch_root_t root_clutch, | |
4303 | bitmap_t *clutch_bucket_modify_bitmap, | |
4304 | __unused uint32_t *tg_bucket_preferred_cluster, | |
4305 | bool migrate_immediately) | |
c6bf4f31 | 4306 | { |
f427ee49 | 4307 | /* Queue to hold threads that have been drained from clutch buckets to be migrated */ |
c6bf4f31 A |
4308 | queue_head_t clutch_threads; |
4309 | queue_init(&clutch_threads); | |
4310 | ||
f427ee49 A |
4311 | for (int bucket = bitmap_first(clutch_bucket_modify_bitmap, TH_BUCKET_SCHED_MAX); bucket >= 0; bucket = bitmap_next(clutch_bucket_modify_bitmap, bucket)) { |
4312 | /* Get the clutch bucket for this cluster and sched bucket */ | |
4313 | sched_clutch_bucket_group_t clutch_bucket_group = &(sched_clutch->sc_clutch_groups[bucket]); | |
4314 | sched_clutch_bucket_t clutch_bucket = &(clutch_bucket_group->scbg_clutch_buckets[root_clutch->scr_cluster_id]); | |
c6bf4f31 | 4315 | sched_clutch_root_t scb_root = os_atomic_load(&clutch_bucket->scb_root, relaxed); |
f427ee49 | 4316 | if (scb_root == NULL) { |
c6bf4f31 | 4317 | /* Clutch bucket not runnable or already in the right hierarchy; nothing to do here */ |
f427ee49 | 4318 | assert(clutch_bucket->scb_thr_count == 0); |
c6bf4f31 A |
4319 | continue; |
4320 | } | |
f427ee49 A |
4321 | assert(scb_root == root_clutch); |
4322 | uint32_t clutch_bucket_preferred_cluster = sched_clutch_bucket_preferred_cluster(clutch_bucket); | |
4323 | ||
4324 | if (migrate_immediately) { | |
4325 | /* | |
4326 | * For transitions where threads need to be migrated immediately, drain the threads into a | |
4327 | * local queue unless we are looking at the clutch buckets for the newly recommended | |
4328 | * cluster. | |
4329 | */ | |
4330 | if (root_clutch->scr_cluster_id != clutch_bucket_preferred_cluster) { | |
4331 | sched_edge_clutch_bucket_threads_drain(clutch_bucket, scb_root, &clutch_threads); | |
4332 | } else { | |
4333 | sched_clutch_bucket_mark_native(clutch_bucket, root_clutch); | |
4334 | } | |
4335 | } else { | |
4336 | /* Check if this cluster is the same type as the newly recommended cluster */ | |
4337 | boolean_t homogeneous_cluster = (pset_type_for_id(root_clutch->scr_cluster_id) == pset_type_for_id(clutch_bucket_preferred_cluster)); | |
4338 | /* | |
4339 | * If threads do not have to be migrated immediately, just change the native/foreign | |
4340 | * flag on the clutch bucket. | |
4341 | */ | |
4342 | if (homogeneous_cluster) { | |
4343 | sched_clutch_bucket_mark_native(clutch_bucket, root_clutch); | |
4344 | } else { | |
4345 | sched_clutch_bucket_mark_foreign(clutch_bucket, root_clutch); | |
4346 | } | |
4347 | } | |
4348 | } | |
4349 | ||
4350 | pset_unlock(root_clutch->scr_pset); | |
4351 | sched_edge_run_drained_threads(&clutch_threads); | |
4352 | } | |
4353 | ||
4354 | /* | |
4355 | * sched_edge_migrate_thread_group_running_threads() | |
4356 | * | |
4357 | * Routine to find all running threads of a thread group on a specific cluster | |
4358 | * and IPI them if they need to be moved immediately. | |
4359 | */ | |
4360 | static void | |
4361 | sched_edge_migrate_thread_group_running_threads( | |
4362 | sched_clutch_t sched_clutch, | |
4363 | sched_clutch_root_t root_clutch, | |
4364 | __unused bitmap_t *clutch_bucket_modify_bitmap, | |
4365 | uint32_t *tg_bucket_preferred_cluster, | |
4366 | bool migrate_immediately) | |
4367 | { | |
4368 | if (migrate_immediately == false) { | |
4369 | /* If CLPC has recommended not to move threads immediately, nothing to do here */ | |
4370 | return; | |
c6bf4f31 A |
4371 | } |
4372 | ||
4373 | /* | |
f427ee49 A |
4374 | * Edge Scheduler Optimization |
4375 | * | |
4376 | * When the system has a large number of clusters and cores, it might be useful to | |
4377 | * narrow down the iteration by using a thread running bitmap per clutch. | |
c6bf4f31 | 4378 | */ |
f427ee49 A |
4379 | uint64_t ast_processor_map = 0; |
4380 | sched_ipi_type_t ipi_type[MAX_CPUS] = {SCHED_IPI_NONE}; | |
c6bf4f31 | 4381 | |
f427ee49 A |
4382 | uint64_t running_map = root_clutch->scr_pset->cpu_state_map[PROCESSOR_RUNNING]; |
4383 | /* | |
4384 | * Iterate all CPUs and look for the ones running threads from this thread group and are | |
4385 | * not restricted to the specific cluster (due to overrides etc.) | |
4386 | */ | |
4387 | for (int cpuid = lsb_first(running_map); cpuid >= 0; cpuid = lsb_next(running_map, cpuid)) { | |
4388 | processor_t src_processor = processor_array[cpuid]; | |
4389 | boolean_t expected_tg = (src_processor->current_thread_group == sched_clutch->sc_tg); | |
4390 | sched_bucket_t processor_sched_bucket = src_processor->processor_set->cpu_running_buckets[cpuid]; | |
4391 | boolean_t non_preferred_cluster = tg_bucket_preferred_cluster[processor_sched_bucket] != root_clutch->scr_cluster_id; | |
4392 | ||
4393 | if (expected_tg && non_preferred_cluster) { | |
4394 | ipi_type[cpuid] = sched_ipi_action(src_processor, NULL, false, SCHED_IPI_EVENT_REBALANCE); | |
4395 | if (ipi_type[cpuid] != SCHED_IPI_NONE) { | |
4396 | bit_set(ast_processor_map, cpuid); | |
4397 | } else if (src_processor == current_processor()) { | |
4398 | ast_on(AST_PREEMPT); | |
4399 | bit_set(root_clutch->scr_pset->pending_AST_PREEMPT_cpu_mask, cpuid); | |
4400 | } | |
4401 | } | |
c6bf4f31 A |
4402 | } |
4403 | ||
f427ee49 A |
4404 | /* Perform all the IPIs */ |
4405 | if (bit_first(ast_processor_map) != -1) { | |
4406 | for (int cpuid = lsb_first(ast_processor_map); cpuid >= 0; cpuid = lsb_next(ast_processor_map, cpuid)) { | |
4407 | processor_t ast_processor = processor_array[cpuid]; | |
4408 | sched_ipi_perform(ast_processor, ipi_type[cpuid]); | |
4409 | } | |
4410 | KDBG(MACHDBG_CODE(DBG_MACH_SCHED, MACH_AMP_RECOMMENDATION_CHANGE) | DBG_FUNC_NONE, thread_group_get_id(sched_clutch->sc_tg), ast_processor_map, 0, 0); | |
4411 | } | |
c6bf4f31 A |
4412 | } |
4413 | ||
f427ee49 A |
4414 | /* |
4415 | * sched_edge_tg_preferred_cluster_change() | |
4416 | * | |
4417 | * Routine to handle changes to a thread group's recommendation. In the Edge Scheduler, the preferred cluster | |
4418 | * is specified on a per-QoS basis within a thread group. The routine updates the preferences and performs | |
4419 | * thread migrations based on the policy specified by CLPC. | |
4420 | * tg_bucket_preferred_cluster is an array of size TH_BUCKET_SCHED_MAX which specifies the new preferred cluster | |
4421 | * for each QoS within the thread group. | |
4422 | */ | |
4423 | void | |
4424 | sched_edge_tg_preferred_cluster_change(struct thread_group *tg, uint32_t *tg_bucket_preferred_cluster, sched_perfcontrol_preferred_cluster_options_t options) | |
c6bf4f31 | 4425 | { |
f427ee49 | 4426 | sched_clutch_t clutch = sched_clutch_for_thread_group(tg); |
c6bf4f31 | 4427 | /* |
f427ee49 A |
4428 | * In order to optimize the processing, create a bitmap which represents all QoS buckets |
4429 | * for which the preferred cluster has changed. | |
c6bf4f31 | 4430 | */ |
f427ee49 A |
4431 | bitmap_t clutch_bucket_modify_bitmap[BITMAP_LEN(TH_BUCKET_SCHED_MAX)] = {0}; |
4432 | for (sched_bucket_t bucket = TH_BUCKET_FIXPRI; bucket < TH_BUCKET_SCHED_MAX; bucket++) { | |
4433 | uint32_t old_preferred_cluster = sched_edge_clutch_bucket_group_preferred_cluster(&clutch->sc_clutch_groups[bucket]); | |
4434 | uint32_t new_preferred_cluster = tg_bucket_preferred_cluster[bucket]; | |
4435 | if (old_preferred_cluster != new_preferred_cluster) { | |
4436 | bitmap_set(clutch_bucket_modify_bitmap, bucket); | |
4437 | } | |
4438 | } | |
4439 | if (bitmap_lsb_first(clutch_bucket_modify_bitmap, TH_BUCKET_SCHED_MAX) == -1) { | |
4440 | /* No changes in any clutch buckets; nothing to do here */ | |
c6bf4f31 A |
4441 | return; |
4442 | } | |
4443 | ||
f427ee49 A |
4444 | for (uint32_t cluster_id = 0; cluster_id < MAX_PSETS; cluster_id++) { |
4445 | processor_set_t pset = pset_array[cluster_id]; | |
4446 | spl_t s = splsched(); | |
4447 | pset_lock(pset); | |
4448 | /* | |
4449 | * The first operation is to update the preferred cluster for all QoS buckets within the | |
4450 | * thread group so that any future threads becoming runnable would see the new preferred | |
4451 | * cluster value. | |
4452 | */ | |
4453 | sched_edge_update_preferred_cluster(clutch, clutch_bucket_modify_bitmap, tg_bucket_preferred_cluster); | |
4454 | /* | |
4455 | * Currently iterates all clusters looking for running threads for a TG to be migrated. Can be optimized | |
4456 | * by keeping a per-clutch bitmap of clusters running threads for a particular TG. | |
4457 | * | |
4458 | * <Edge Multi-cluster Support Needed> | |
4459 | */ | |
4460 | /* Migrate all running threads of the TG on this cluster based on options specified by CLPC */ | |
4461 | sched_edge_migrate_thread_group_running_threads(clutch, &pset->pset_clutch_root, clutch_bucket_modify_bitmap, | |
4462 | tg_bucket_preferred_cluster, (options & SCHED_PERFCONTROL_PREFERRED_CLUSTER_MIGRATE_RUNNING)); | |
4463 | /* Migrate all runnable threads of the TG in this cluster's hierarchy based on options specified by CLPC */ | |
4464 | sched_edge_migrate_thread_group_runnable_threads(clutch, &pset->pset_clutch_root, clutch_bucket_modify_bitmap, | |
4465 | tg_bucket_preferred_cluster, (options & SCHED_PERFCONTROL_PREFERRED_CLUSTER_MIGRATE_RUNNABLE)); | |
4466 | /* sched_edge_migrate_thread_group_runnable_threads() returns with pset unlocked */ | |
4467 | splx(s); | |
4468 | } | |
c6bf4f31 A |
4469 | } |
4470 | ||
4471 | /* | |
f427ee49 | 4472 | * sched_edge_pset_made_schedulable() |
c6bf4f31 A |
4473 | * |
4474 | * Routine to migrate all the clutch buckets which are not in their recommended | |
f427ee49 A |
4475 | * pset hierarchy now that a new pset has become runnable. Its possible that this |
4476 | * routine is called when the pset is already marked schedulable. | |
c6bf4f31 | 4477 | * |
f427ee49 | 4478 | * Invoked with the pset lock held and interrupts disabled. |
c6bf4f31 A |
4479 | */ |
4480 | static void | |
f427ee49 | 4481 | sched_edge_pset_made_schedulable(__unused processor_t processor, processor_set_t dst_pset, boolean_t drop_lock) |
c6bf4f31 | 4482 | { |
f427ee49 A |
4483 | if (bitmap_test(sched_edge_available_pset_bitmask, dst_pset->pset_cluster_id)) { |
4484 | /* Nothing to do here since pset is already marked schedulable */ | |
c6bf4f31 A |
4485 | if (drop_lock) { |
4486 | pset_unlock(dst_pset); | |
4487 | } | |
4488 | return; | |
4489 | } | |
c6bf4f31 | 4490 | |
f427ee49 | 4491 | bitmap_set(sched_edge_available_pset_bitmask, dst_pset->pset_cluster_id); |
c6bf4f31 | 4492 | |
f427ee49 A |
4493 | thread_t thread = sched_edge_processor_idle(dst_pset); |
4494 | if (thread != THREAD_NULL) { | |
c6bf4f31 A |
4495 | thread_lock(thread); |
4496 | thread_setrun(thread, SCHED_TAILQ); | |
4497 | thread_unlock(thread); | |
4498 | } | |
4499 | ||
c6bf4f31 A |
4500 | if (!drop_lock) { |
4501 | pset_lock(dst_pset); | |
4502 | } | |
4503 | } | |
4504 | ||
f427ee49 A |
4505 | extern int sched_amp_spill_deferred_ipi; |
4506 | extern int sched_amp_pcores_preempt_immediate_ipi; | |
4507 | ||
4508 | int sched_edge_migrate_ipi_immediate = 1; | |
4509 | ||
4510 | sched_ipi_type_t | |
4511 | sched_edge_ipi_policy(processor_t dst, thread_t thread, boolean_t dst_idle, sched_ipi_event_t event) | |
4512 | { | |
4513 | processor_set_t pset = dst->processor_set; | |
4514 | assert(bit_test(pset->pending_AST_URGENT_cpu_mask, dst->cpu_id) == false); | |
4515 | assert(dst != current_processor()); | |
4516 | ||
4517 | boolean_t deferred_ipi_supported = false; | |
4518 | #if defined(CONFIG_SCHED_DEFERRED_AST) | |
4519 | deferred_ipi_supported = true; | |
4520 | #endif /* CONFIG_SCHED_DEFERRED_AST */ | |
4521 | ||
4522 | switch (event) { | |
4523 | case SCHED_IPI_EVENT_SPILL: | |
4524 | /* For Spill event, use deferred IPIs if sched_amp_spill_deferred_ipi set */ | |
4525 | if (deferred_ipi_supported && sched_amp_spill_deferred_ipi) { | |
4526 | return sched_ipi_deferred_policy(pset, dst, event); | |
4527 | } | |
4528 | break; | |
4529 | case SCHED_IPI_EVENT_PREEMPT: | |
4530 | /* For preemption, the default policy is to use deferred IPIs | |
4531 | * for Non-RT P-core preemption. Override that behavior if | |
4532 | * sched_amp_pcores_preempt_immediate_ipi is set | |
4533 | */ | |
4534 | if (thread && thread->sched_pri < BASEPRI_RTQUEUES) { | |
4535 | if (sched_edge_migrate_ipi_immediate) { | |
4536 | /* | |
4537 | * For workloads that are going wide, it might be useful use Immediate IPI to | |
4538 | * wakeup the idle CPU if the scheduler estimates that the preferred pset will | |
4539 | * be busy for the deferred IPI timeout. The Edge Scheduler uses the avg execution | |
4540 | * latency on the preferred pset as an estimate of busyness. | |
4541 | * | |
4542 | * <Edge Multi-cluster Support Needed> | |
4543 | */ | |
4544 | processor_set_t preferred_pset = pset_array[sched_edge_thread_preferred_cluster(thread)]; | |
4545 | if ((preferred_pset->pset_execution_time[thread->th_sched_bucket].pset_avg_thread_execution_time * NSEC_PER_USEC) >= ml_cpu_signal_deferred_get_timer()) { | |
4546 | return dst_idle ? SCHED_IPI_IDLE : SCHED_IPI_IMMEDIATE; | |
4547 | } | |
4548 | } | |
4549 | if (sched_amp_pcores_preempt_immediate_ipi && (pset_type_for_id(pset->pset_cluster_id) == CLUSTER_TYPE_P)) { | |
4550 | return dst_idle ? SCHED_IPI_IDLE : SCHED_IPI_IMMEDIATE; | |
4551 | } | |
4552 | } | |
4553 | break; | |
4554 | default: | |
4555 | break; | |
4556 | } | |
4557 | /* Default back to the global policy for all other scenarios */ | |
4558 | return sched_ipi_policy(dst, thread, dst_idle, event); | |
4559 | } | |
4560 | ||
4561 | /* | |
4562 | * sched_edge_qos_max_parallelism() | |
4563 | */ | |
4564 | uint32_t | |
4565 | sched_edge_qos_max_parallelism(int qos, uint64_t options) | |
4566 | { | |
4567 | uint32_t ecount = 0; | |
4568 | uint32_t pcount = 0; | |
4569 | ||
4570 | for (int cluster_id = 0; cluster_id < MAX_PSETS; cluster_id++) { | |
4571 | processor_set_t pset = pset_array[cluster_id]; | |
4572 | if (pset_type_for_id(cluster_id) == CLUSTER_TYPE_P) { | |
4573 | pcount += pset->cpu_set_count; | |
4574 | } else { | |
4575 | ecount += pset->cpu_set_count; | |
4576 | } | |
4577 | } | |
4578 | ||
4579 | if (options & QOS_PARALLELISM_REALTIME) { | |
4580 | /* For realtime threads on AMP, we would want them | |
4581 | * to limit the width to just the P-cores since we | |
4582 | * do not spill/rebalance for RT threads. | |
4583 | */ | |
4584 | return pcount; | |
4585 | } | |
4586 | ||
4587 | /* | |
4588 | * The Edge scheduler supports per-QoS recommendations for thread groups. | |
4589 | * This enables lower QoS buckets (such as UT) to be scheduled on all | |
4590 | * CPUs on the system. | |
4591 | * | |
4592 | * The only restriction is for BG/Maintenance QoS classes for which the | |
4593 | * performance controller would never recommend execution on the P-cores. | |
4594 | * If that policy changes in the future, this value should be changed. | |
4595 | */ | |
4596 | switch (qos) { | |
4597 | case THREAD_QOS_BACKGROUND: | |
4598 | case THREAD_QOS_MAINTENANCE: | |
4599 | return ecount; | |
4600 | default: | |
4601 | return ecount + pcount; | |
4602 | } | |
4603 | } | |
4604 | ||
4605 | ||
4606 | ||
4607 | #endif /* CONFIG_SCHED_EDGE */ | |
cb323159 A |
4608 | |
4609 | #endif /* CONFIG_SCHED_CLUTCH */ |