]> git.saurik.com Git - apple/xnu.git/blame - bsd/dev/arm/dtrace_isa.c
xnu-7195.101.1.tar.gz
[apple/xnu.git] / bsd / dev / arm / dtrace_isa.c
CommitLineData
5ba3f43e 1/*
cb323159 2 * Copyright (c) 2005-2018 Apple Computer, Inc. All rights reserved.
5ba3f43e
A
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
0a7de745 5 *
5ba3f43e
A
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
0a7de745 14 *
5ba3f43e
A
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
0a7de745 17 *
5ba3f43e
A
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
0a7de745 25 *
5ba3f43e
A
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28
d9a64523 29#include <arm/caches_internal.h>
5ba3f43e
A
30#include <arm/proc_reg.h>
31
32#include <kern/thread.h>
33#include <mach/thread_status.h>
34
35#include <stdarg.h>
36#include <string.h>
37#include <sys/malloc.h>
38#include <sys/time.h>
39#include <sys/systm.h>
40#include <sys/proc.h>
41#include <sys/proc_internal.h>
42#include <sys/kauth.h>
43#include <sys/dtrace.h>
44#include <sys/dtrace_impl.h>
cb323159 45#include <machine/atomic.h>
5ba3f43e 46#include <kern/simple_lock.h>
0a7de745 47#include <kern/sched_prim.h> /* for thread_wakeup() */
5ba3f43e
A
48#include <kern/thread_call.h>
49#include <kern/task.h>
50#include <miscfs/devfs/devfs.h>
51#include <mach/vm_param.h>
52
53extern struct arm_saved_state *find_kern_regs(thread_t);
54
55extern dtrace_id_t dtrace_probeid_error; /* special ERROR probe */
56typedef arm_saved_state_t savearea_t;
57
5ba3f43e
A
58int dtrace_arm_condition_true(int condition, int cpsr);
59
60/*
61 * Atomicity and synchronization
62 */
63inline void
64dtrace_membar_producer(void)
65{
0a7de745 66 __asm__ volatile ("dmb ish" : : : "memory");
5ba3f43e
A
67}
68
69inline void
70dtrace_membar_consumer(void)
71{
0a7de745 72 __asm__ volatile ("dmb ish" : : : "memory");
5ba3f43e
A
73}
74
75/*
76 * Interrupt manipulation
77 * XXX dtrace_getipl() can be called from probe context.
78 */
79int
80dtrace_getipl(void)
81{
82 /*
83 * XXX Drat, get_interrupt_level is MACH_KERNEL_PRIVATE
84 * in osfmk/kern/cpu_data.h
85 */
86 /* return get_interrupt_level(); */
0a7de745 87 return ml_at_interrupt_context() ? 1 : 0;
5ba3f43e
A
88}
89
5ba3f43e
A
90/*
91 * MP coordination
92 */
93
c3c9b80d 94static LCK_MTX_DECLARE_ATTR(dt_xc_lock, &dtrace_lck_grp, &dtrace_lck_attr);
5ba3f43e
A
95static uint32_t dt_xc_sync;
96
97typedef struct xcArg {
98 processorid_t cpu;
99 dtrace_xcall_t f;
100 void *arg;
101} xcArg_t;
102
103static void
104xcRemote(void *foo)
105{
106 xcArg_t *pArg = (xcArg_t *) foo;
107
0a7de745
A
108 if (pArg->cpu == CPU->cpu_id || pArg->cpu == DTRACE_CPUALL) {
109 (pArg->f)(pArg->arg);
110 }
5ba3f43e 111
cb323159 112 if (os_atomic_dec(&dt_xc_sync, relaxed) == 0) {
5ba3f43e 113 thread_wakeup((event_t) &dt_xc_sync);
0a7de745 114 }
5ba3f43e 115}
5ba3f43e
A
116
117/*
118 * dtrace_xcall() is not called from probe context.
119 */
120void
121dtrace_xcall(processorid_t cpu, dtrace_xcall_t f, void *arg)
122{
5ba3f43e
A
123 /* Only one dtrace_xcall in flight allowed */
124 lck_mtx_lock(&dt_xc_lock);
125
126 xcArg_t xcArg;
127
128 xcArg.cpu = cpu;
129 xcArg.f = f;
130 xcArg.arg = arg;
131
132 cpu_broadcast_xcall(&dt_xc_sync, TRUE, xcRemote, (void*) &xcArg);
133
134 lck_mtx_unlock(&dt_xc_lock);
135 return;
5ba3f43e
A
136}
137
5ba3f43e
A
138/*
139 * Runtime and ABI
140 */
141uint64_t
142dtrace_getreg(struct regs * savearea, uint_t reg)
143{
144 struct arm_saved_state *regs = (struct arm_saved_state *) savearea;
d9a64523
A
145 if (regs == NULL) {
146 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
0a7de745 147 return 0;
d9a64523 148 }
5ba3f43e
A
149 /* beyond register limit? */
150 if (reg > ARM_SAVED_STATE32_COUNT - 1) {
151 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
0a7de745 152 return 0;
5ba3f43e 153 }
d9a64523 154
5ba3f43e
A
155 return (uint64_t) ((unsigned int *) (&(regs->r)))[reg];
156}
157
f427ee49
A
158uint64_t
159dtrace_getvmreg(uint_t ndx)
160{
161#pragma unused(ndx)
162 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
163 return 0;
164}
165
5ba3f43e
A
166#define RETURN_OFFSET 4
167
168static int
169dtrace_getustack_common(uint64_t * pcstack, int pcstack_limit, user_addr_t pc,
0a7de745 170 user_addr_t sp)
5ba3f43e 171{
f427ee49 172 volatile uint16_t *flags = (volatile uint16_t *) &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
5ba3f43e 173 int ret = 0;
0a7de745 174
5ba3f43e
A
175 ASSERT(pcstack == NULL || pcstack_limit > 0);
176
177 while (pc != 0) {
178 ret++;
179 if (pcstack != NULL) {
180 *pcstack++ = (uint64_t) pc;
181 pcstack_limit--;
0a7de745 182 if (pcstack_limit <= 0) {
5ba3f43e 183 break;
0a7de745 184 }
5ba3f43e
A
185 }
186
0a7de745 187 if (sp == 0) {
5ba3f43e 188 break;
0a7de745 189 }
5ba3f43e
A
190
191 pc = dtrace_fuword32((sp + RETURN_OFFSET));
192 sp = dtrace_fuword32(sp);
f427ee49
A
193
194 /* Truncate ustack if the iterator causes fault. */
195 if (*flags & CPU_DTRACE_FAULT) {
196 *flags &= ~CPU_DTRACE_FAULT;
197 break;
198 }
5ba3f43e
A
199 }
200
0a7de745 201 return ret;
5ba3f43e
A
202}
203
204void
205dtrace_getupcstack(uint64_t * pcstack, int pcstack_limit)
206{
207 thread_t thread = current_thread();
208 savearea_t *regs;
209 user_addr_t pc, sp;
0a7de745 210 volatile uint16_t *flags = (volatile uint16_t *) &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
5ba3f43e
A
211 int n;
212
0a7de745 213 if (*flags & CPU_DTRACE_FAULT) {
5ba3f43e 214 return;
0a7de745 215 }
5ba3f43e 216
0a7de745 217 if (pcstack_limit <= 0) {
5ba3f43e 218 return;
0a7de745 219 }
5ba3f43e
A
220
221 /*
222 * If there's no user context we still need to zero the stack.
223 */
0a7de745 224 if (thread == NULL) {
5ba3f43e 225 goto zero;
0a7de745 226 }
5ba3f43e
A
227
228 regs = (savearea_t *) find_user_regs(thread);
0a7de745 229 if (regs == NULL) {
5ba3f43e 230 goto zero;
0a7de745 231 }
5ba3f43e
A
232
233 *pcstack++ = (uint64_t)dtrace_proc_selfpid();
234 pcstack_limit--;
235
0a7de745 236 if (pcstack_limit <= 0) {
5ba3f43e 237 return;
0a7de745 238 }
5ba3f43e
A
239
240 pc = regs->pc;
241 sp = regs->sp;
242
243 if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_ENTRY)) {
244 *pcstack++ = (uint64_t) pc;
245 pcstack_limit--;
0a7de745 246 if (pcstack_limit <= 0) {
5ba3f43e 247 return;
0a7de745 248 }
5ba3f43e
A
249
250 pc = regs->lr;
251 }
252
253 n = dtrace_getustack_common(pcstack, pcstack_limit, pc, regs->r[7]);
254
255 ASSERT(n >= 0);
256 ASSERT(n <= pcstack_limit);
257
258 pcstack += n;
259 pcstack_limit -= n;
260
261zero:
0a7de745 262 while (pcstack_limit-- > 0) {
5ba3f43e 263 *pcstack++ = 0ULL;
0a7de745 264 }
5ba3f43e
A
265}
266
267int
268dtrace_getustackdepth(void)
269{
270 thread_t thread = current_thread();
271 savearea_t *regs;
272 user_addr_t pc, sp;
273 int n = 0;
274
0a7de745 275 if (thread == NULL) {
5ba3f43e 276 return 0;
0a7de745 277 }
5ba3f43e 278
0a7de745
A
279 if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT)) {
280 return -1;
281 }
5ba3f43e
A
282
283 regs = (savearea_t *) find_user_regs(thread);
0a7de745 284 if (regs == NULL) {
5ba3f43e 285 return 0;
0a7de745 286 }
5ba3f43e
A
287
288 pc = regs->pc;
289 sp = regs->sp;
290
291 if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_ENTRY)) {
292 n++;
293 pc = regs->lr;
294 }
295
0a7de745 296 /*
5ba3f43e
A
297 * Note that unlike ppc, the arm code does not use
298 * CPU_DTRACE_USTACK_FP. This is because arm always
299 * traces from the sp, even in syscall/profile/fbt
300 * providers.
301 */
302
303 n += dtrace_getustack_common(NULL, 0, pc, regs->r[7]);
304
0a7de745 305 return n;
5ba3f43e
A
306}
307
308void
309dtrace_getufpstack(uint64_t * pcstack, uint64_t * fpstack, int pcstack_limit)
310{
311 /* XXX ARMTODO 64vs32 */
312 thread_t thread = current_thread();
313 savearea_t *regs;
314 user_addr_t pc, sp;
0a7de745
A
315
316 volatile uint16_t *flags = (volatile uint16_t *) &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
5ba3f43e
A
317
318#if 0
319 uintptr_t oldcontext;
320 size_t s1, s2;
321#endif
322
0a7de745 323 if (*flags & CPU_DTRACE_FAULT) {
5ba3f43e 324 return;
0a7de745 325 }
5ba3f43e 326
0a7de745 327 if (pcstack_limit <= 0) {
5ba3f43e 328 return;
0a7de745 329 }
5ba3f43e 330
0a7de745 331 /*
5ba3f43e
A
332 * If there's no user context we still need to zero the stack.
333 */
0a7de745 334 if (thread == NULL) {
5ba3f43e 335 goto zero;
0a7de745 336 }
5ba3f43e
A
337
338 regs = (savearea_t *) find_user_regs(thread);
0a7de745 339 if (regs == NULL) {
5ba3f43e 340 goto zero;
0a7de745
A
341 }
342
5ba3f43e
A
343 *pcstack++ = (uint64_t)dtrace_proc_selfpid();
344 pcstack_limit--;
345
0a7de745 346 if (pcstack_limit <= 0) {
5ba3f43e 347 return;
0a7de745
A
348 }
349
5ba3f43e
A
350 pc = regs->pc;
351 sp = regs->sp;
352
0a7de745 353#if 0 /* XXX signal stack crawl */
5ba3f43e
A
354 oldcontext = lwp->lwp_oldcontext;
355
356 if (p->p_model == DATAMODEL_NATIVE) {
357 s1 = sizeof(struct frame) + 2 * sizeof(long);
358 s2 = s1 + sizeof(siginfo_t);
359 } else {
360 s1 = sizeof(struct frame32) + 3 * sizeof(int);
361 s2 = s1 + sizeof(siginfo32_t);
362 }
363#endif
364
365 if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_ENTRY)) {
366 *pcstack++ = (uint64_t) pc;
367 *fpstack++ = 0;
368 pcstack_limit--;
0a7de745 369 if (pcstack_limit <= 0) {
5ba3f43e 370 return;
0a7de745 371 }
5ba3f43e
A
372
373 pc = dtrace_fuword32(sp);
374 }
375 while (pc != 0 && sp != 0) {
376 *pcstack++ = (uint64_t) pc;
377 *fpstack++ = sp;
378 pcstack_limit--;
0a7de745 379 if (pcstack_limit <= 0) {
5ba3f43e 380 break;
0a7de745 381 }
5ba3f43e 382
0a7de745 383#if 0 /* XXX signal stack crawl */
5ba3f43e
A
384 if (oldcontext == sp + s1 || oldcontext == sp + s2) {
385 if (p->p_model == DATAMODEL_NATIVE) {
386 ucontext_t *ucp = (ucontext_t *) oldcontext;
387 greg_t *gregs = ucp->uc_mcontext.gregs;
388
389 sp = dtrace_fulword(&gregs[REG_FP]);
390 pc = dtrace_fulword(&gregs[REG_PC]);
391
392 oldcontext = dtrace_fulword(&ucp->uc_link);
393 } else {
394 ucontext_t *ucp = (ucontext_t *) oldcontext;
395 greg_t *gregs = ucp->uc_mcontext.gregs;
396
397 sp = dtrace_fuword32(&gregs[EBP]);
398 pc = dtrace_fuword32(&gregs[EIP]);
399
400 oldcontext = dtrace_fuword32(&ucp->uc_link);
401 }
402 } else
403#endif
404 {
405 pc = dtrace_fuword32((sp + RETURN_OFFSET));
406 sp = dtrace_fuword32(sp);
407 }
408
f427ee49 409 /* Truncate ustack if the iterator causes fault. */
5ba3f43e
A
410 if (*flags & CPU_DTRACE_FAULT) {
411 *flags &= ~CPU_DTRACE_FAULT;
412 break;
413 }
5ba3f43e
A
414 }
415
416zero:
0a7de745 417 while (pcstack_limit-- > 0) {
5ba3f43e 418 *pcstack++ = 0ULL;
0a7de745 419 }
5ba3f43e
A
420}
421
422void
423dtrace_getpcstack(pc_t * pcstack, int pcstack_limit, int aframes,
0a7de745 424 uint32_t * intrpc)
5ba3f43e
A
425{
426 struct frame *fp = (struct frame *) __builtin_frame_address(0);
427 struct frame *nextfp, *minfp, *stacktop;
428 int depth = 0;
429 int on_intr;
430 int last = 0;
431 uintptr_t pc;
432 uintptr_t caller = CPU->cpu_dtrace_caller;
433
0a7de745 434 if ((on_intr = CPU_ON_INTR(CPU)) != 0) {
5ba3f43e 435 stacktop = (struct frame *) dtrace_get_cpu_int_stack_top();
0a7de745 436 } else {
5ba3f43e 437 stacktop = (struct frame *) (dtrace_get_kernel_stack(current_thread()) + kernel_stack_size);
0a7de745 438 }
5ba3f43e
A
439
440 minfp = fp;
441
442 aframes++;
443
0a7de745 444 if (intrpc != NULL && depth < pcstack_limit) {
5ba3f43e 445 pcstack[depth++] = (pc_t) intrpc;
0a7de745 446 }
5ba3f43e
A
447
448 while (depth < pcstack_limit) {
449 nextfp = *(struct frame **) fp;
450 pc = *(uintptr_t *) (((uint32_t) fp) + RETURN_OFFSET);
451
452 if (nextfp <= minfp || nextfp >= stacktop) {
453 if (on_intr) {
454 /*
455 * Hop from interrupt stack to thread stack.
456 */
457 arm_saved_state_t *arm_kern_regs = (arm_saved_state_t *) find_kern_regs(current_thread());
458 if (arm_kern_regs) {
459 nextfp = (struct frame *)arm_kern_regs->r[7];
460
461 vm_offset_t kstack_base = dtrace_get_kernel_stack(current_thread());
462
463 minfp = (struct frame *)kstack_base;
464 stacktop = (struct frame *)(kstack_base + kernel_stack_size);
465
466 on_intr = 0;
467
468 if (nextfp <= minfp || nextfp >= stacktop) {
469 last = 1;
470 }
471 } else {
472 /*
473 * If this thread was on the interrupt stack, but did not
474 * take an interrupt (i.e, the idle thread), there is no
475 * explicit saved state for us to use.
476 */
477 last = 1;
478 }
479 } else {
480 /*
481 * This is the last frame we can process; indicate
482 * that we should return after processing this frame.
483 */
484 last = 1;
485 }
486 }
487 if (aframes > 0) {
488 if (--aframes == 0 && caller != (uintptr_t)NULL) {
489 /*
490 * We've just run out of artificial frames,
491 * and we have a valid caller -- fill it in
492 * now.
493 */
494 ASSERT(depth < pcstack_limit);
495 pcstack[depth++] = (pc_t) caller;
496 caller = (uintptr_t)NULL;
497 }
498 } else {
0a7de745 499 if (depth < pcstack_limit) {
5ba3f43e 500 pcstack[depth++] = (pc_t) pc;
0a7de745 501 }
5ba3f43e
A
502 }
503
504 if (last) {
0a7de745 505 while (depth < pcstack_limit) {
5ba3f43e 506 pcstack[depth++] = (pc_t) NULL;
0a7de745 507 }
5ba3f43e
A
508 return;
509 }
510 fp = nextfp;
511 minfp = fp;
512 }
513}
514
515int
516dtrace_instr_size(uint32_t instr, int thumb_mode)
517{
518 if (thumb_mode) {
519 uint16_t instr16 = *(uint16_t*) &instr;
0a7de745 520 if (((instr16 >> 11) & 0x1F) > 0x1C) {
5ba3f43e 521 return 4;
0a7de745 522 } else {
5ba3f43e 523 return 2;
0a7de745 524 }
5ba3f43e
A
525 } else {
526 return 4;
527 }
528}
529
530uint64_t
531dtrace_getarg(int arg, int aframes, dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
532{
533#pragma unused(arg, aframes, mstate, vstate)
534#if 0
535 /* XXX ARMTODO */
0a7de745 536 uint64_t val;
5ba3f43e
A
537 uintptr_t *fp = (uintptr_t *)__builtin_frame_address(0);
538 uintptr_t *stack;
539 uintptr_t pc;
540 int i;
541
542 for (i = 1; i <= aframes; i++) {
543 fp = fp[0];
544 pc = fp[1];
545
546 if (dtrace_invop_callsite_pre != NULL
0a7de745
A
547 && pc > (uintptr_t)dtrace_invop_callsite_pre
548 && pc <= (uintptr_t)dtrace_invop_callsite_post) {
549 /*
550 * If we pass through the invalid op handler, we will
551 * use the pointer that it passed to the stack as the
552 * second argument to dtrace_invop() as the pointer to
553 * the frame we're hunting for.
554 */
555
556 stack = (uintptr_t *)&fp[1]; /* Find marshalled arguments */
557 fp = (struct frame *)stack[1]; /* Grab *second* argument */
558 stack = (uintptr_t *)&fp[1]; /* Find marshalled arguments */
559 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
560 val = (uint64_t)(stack[arg]);
561 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
562 return val;
563 }
5ba3f43e
A
564 }
565
566 /*
567 * Arrive here when provider has called dtrace_probe directly.
568 */
569 stack = (uintptr_t *)&fp[1]; /* Find marshalled arguments */
570 stack++; /* Advance past probeID */
571
572 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
573 val = *(((uint64_t *)stack) + arg); /* dtrace_probe arguments arg0 .. arg4 are 64bits wide */
574 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
0a7de745 575 return val;
5ba3f43e
A
576#endif
577 return 0xfeedfacedeafbeadLL;
578}
579
580void
581dtrace_probe_error(dtrace_state_t *state, dtrace_epid_t epid, int which,
0a7de745 582 int fltoffs, int fault, uint64_t illval)
5ba3f43e
A
583{
584 /* XXX ARMTODO */
585 /*
586 * For the case of the error probe firing lets
587 * stash away "illval" here, and special-case retrieving it in DIF_VARIABLE_ARG.
588 */
589 state->dts_arg_error_illval = illval;
590 dtrace_probe( dtrace_probeid_error, (uint64_t)(uintptr_t)state, epid, which, fltoffs, fault );
591}
592
593void
594dtrace_toxic_ranges(void (*func)(uintptr_t base, uintptr_t limit))
595{
596 /* XXX ARMTODO check copied from ppc/x86*/
0a7de745 597 /*
5ba3f43e
A
598 * "base" is the smallest toxic address in the range, "limit" is the first
599 * VALID address greater than "base".
0a7de745 600 */
5ba3f43e 601 func(0x0, VM_MIN_KERNEL_ADDRESS);
0a7de745
A
602 if (VM_MAX_KERNEL_ADDRESS < ~(uintptr_t)0) {
603 func(VM_MAX_KERNEL_ADDRESS + 1, ~(uintptr_t)0);
604 }
5ba3f43e
A
605}
606
607int
608dtrace_arm_condition_true(int cond, int cpsr)
609{
610 int taken = 0;
611 int zf = (cpsr & PSR_ZF) ? 1 : 0,
612 nf = (cpsr & PSR_NF) ? 1 : 0,
613 cf = (cpsr & PSR_CF) ? 1 : 0,
614 vf = (cpsr & PSR_VF) ? 1 : 0;
615
0a7de745
A
616 switch (cond) {
617 case 0: taken = zf; break;
618 case 1: taken = !zf; break;
619 case 2: taken = cf; break;
620 case 3: taken = !cf; break;
621 case 4: taken = nf; break;
622 case 5: taken = !nf; break;
623 case 6: taken = vf; break;
624 case 7: taken = !vf; break;
625 case 8: taken = (cf && !zf); break;
626 case 9: taken = (!cf || zf); break;
627 case 10: taken = (nf == vf); break;
628 case 11: taken = (nf != vf); break;
629 case 12: taken = (!zf && (nf == vf)); break;
630 case 13: taken = (zf || (nf != vf)); break;
631 case 14: taken = 1; break;
632 case 15: taken = 1; break; /* always "true" for ARM, unpredictable for THUMB. */
5ba3f43e
A
633 }
634
635 return taken;
636}
d9a64523 637
0a7de745
A
638void
639dtrace_flush_caches(void)
d9a64523
A
640{
641 /* TODO There were some problems with flushing just the cache line that had been modified.
642 * For now, we'll flush the entire cache, until we figure out how to flush just the patched block.
643 */
644 FlushPoU_Dcache();
645 InvalidatePoU_Icache();
646}