]>
Commit | Line | Data |
---|---|---|
1c79356b A |
1 | /* |
2 | * Copyright (c) 2000 Apple Computer, Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_LICENSE_HEADER_START@ | |
5 | * | |
ff6e181a A |
6 | * This file contains Original Code and/or Modifications of Original Code |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. Please obtain a copy of the License at | |
10 | * http://www.opensource.apple.com/apsl/ and read it before using this | |
11 | * file. | |
1c79356b | 12 | * |
ff6e181a A |
13 | * The Original Code and all software distributed under the License are |
14 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
1c79356b A |
15 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
16 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
ff6e181a A |
17 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
18 | * Please see the License for the specific language governing rights and | |
19 | * limitations under the License. | |
1c79356b A |
20 | * |
21 | * @APPLE_LICENSE_HEADER_END@ | |
22 | */ | |
9bccf70c A |
23 | /* $FreeBSD: src/sys/netinet/ip_encap.c,v 1.1.2.2 2001/07/03 11:01:46 ume Exp $ */ |
24 | /* $KAME: ip_encap.c,v 1.41 2001/03/15 08:35:08 itojun Exp $ */ | |
1c79356b A |
25 | |
26 | /* | |
27 | * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. | |
28 | * All rights reserved. | |
29 | * | |
30 | * Redistribution and use in source and binary forms, with or without | |
31 | * modification, are permitted provided that the following conditions | |
32 | * are met: | |
33 | * 1. Redistributions of source code must retain the above copyright | |
34 | * notice, this list of conditions and the following disclaimer. | |
35 | * 2. Redistributions in binary form must reproduce the above copyright | |
36 | * notice, this list of conditions and the following disclaimer in the | |
37 | * documentation and/or other materials provided with the distribution. | |
38 | * 3. Neither the name of the project nor the names of its contributors | |
39 | * may be used to endorse or promote products derived from this software | |
40 | * without specific prior written permission. | |
41 | * | |
42 | * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND | |
43 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
44 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |
45 | * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE | |
46 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | |
47 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | |
48 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | |
49 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | |
50 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | |
51 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | |
52 | * SUCH DAMAGE. | |
53 | */ | |
54 | /* | |
55 | * My grandfather said that there's a devil inside tunnelling technology... | |
56 | * | |
57 | * We have surprisingly many protocols that want packets with IP protocol | |
58 | * #4 or #41. Here's a list of protocols that want protocol #41: | |
59 | * RFC1933 configured tunnel | |
60 | * RFC1933 automatic tunnel | |
61 | * RFC2401 IPsec tunnel | |
62 | * RFC2473 IPv6 generic packet tunnelling | |
63 | * RFC2529 6over4 tunnel | |
64 | * mobile-ip6 (uses RFC2473) | |
65 | * 6to4 tunnel | |
66 | * Here's a list of protocol that want protocol #4: | |
9bccf70c A |
67 | * RFC1853 IPv4-in-IPv4 tunnelling |
68 | * RFC2003 IPv4 encapsulation within IPv4 | |
1c79356b A |
69 | * RFC2344 reverse tunnelling for mobile-ip4 |
70 | * RFC2401 IPsec tunnel | |
71 | * Well, what can I say. They impose different en/decapsulation mechanism | |
72 | * from each other, so they need separate protocol handler. The only one | |
73 | * we can easily determine by protocol # is IPsec, which always has | |
74 | * AH/ESP/IPComp header right after outer IP header. | |
75 | * | |
76 | * So, clearly good old protosw does not work for protocol #4 and #41. | |
77 | * The code will let you match protocol via src/dst address pair. | |
78 | */ | |
9bccf70c | 79 | /* XXX is M_NETADDR correct? */ |
1c79356b A |
80 | |
81 | #include <sys/param.h> | |
82 | #include <sys/systm.h> | |
83 | #include <sys/socket.h> | |
84 | #include <sys/sockio.h> | |
85 | #include <sys/mbuf.h> | |
86 | #include <sys/errno.h> | |
87 | #include <sys/protosw.h> | |
9bccf70c | 88 | #include <sys/queue.h> |
1c79356b A |
89 | |
90 | #include <net/if.h> | |
91 | #include <net/route.h> | |
92 | ||
93 | #include <netinet/in.h> | |
94 | #include <netinet/in_systm.h> | |
95 | #include <netinet/ip.h> | |
96 | #include <netinet/ip_var.h> | |
97 | #include <netinet/ip_encap.h> | |
98 | #if MROUTING | |
99 | #include <netinet/ip_mroute.h> | |
100 | #endif /* MROUTING */ | |
1c79356b A |
101 | |
102 | #if INET6 | |
103 | #include <netinet/ip6.h> | |
104 | #include <netinet6/ip6_var.h> | |
105 | #include <netinet6/ip6protosw.h> | |
106 | #endif | |
107 | ||
108 | ||
109 | #include <net/net_osdep.h> | |
110 | ||
9bccf70c | 111 | #ifndef __APPLE__ |
1c79356b A |
112 | #include <sys/kernel.h> |
113 | #include <sys/malloc.h> | |
114 | MALLOC_DEFINE(M_NETADDR, "Export Host", "Export host address structure"); | |
115 | #endif | |
116 | ||
91447636 A |
117 | static void encap_add(struct encaptab *); |
118 | static int mask_match(const struct encaptab *, const struct sockaddr *, | |
119 | const struct sockaddr *); | |
120 | static void encap_fillarg(struct mbuf *, const struct encaptab *); | |
1c79356b | 121 | |
9bccf70c | 122 | #ifndef LIST_HEAD_INITIALIZER |
1c79356b A |
123 | /* rely upon BSS initialization */ |
124 | LIST_HEAD(, encaptab) encaptab; | |
9bccf70c A |
125 | #else |
126 | LIST_HEAD(, encaptab) encaptab = LIST_HEAD_INITIALIZER(&encaptab); | |
127 | #endif | |
1c79356b A |
128 | |
129 | void | |
130 | encap_init() | |
131 | { | |
9bccf70c A |
132 | static int initialized = 0; |
133 | ||
134 | if (initialized) | |
135 | return; | |
136 | initialized++; | |
1c79356b A |
137 | #if 0 |
138 | /* | |
139 | * we cannot use LIST_INIT() here, since drivers may want to call | |
9bccf70c | 140 | * encap_attach(), on driver attach. encap_init() will be called |
1c79356b A |
141 | * on AF_INET{,6} initialization, which happens after driver |
142 | * initialization - using LIST_INIT() here can nuke encap_attach() | |
143 | * from drivers. | |
144 | */ | |
145 | LIST_INIT(&encaptab); | |
146 | #endif | |
147 | } | |
148 | ||
9bccf70c | 149 | #if INET |
1c79356b | 150 | void |
9bccf70c | 151 | encap4_input(m, off) |
1c79356b A |
152 | struct mbuf *m; |
153 | int off; | |
1c79356b | 154 | { |
9bccf70c | 155 | int proto; |
1c79356b A |
156 | struct ip *ip; |
157 | struct sockaddr_in s, d; | |
9bccf70c A |
158 | const struct protosw *psw; |
159 | struct encaptab *ep, *match; | |
160 | int prio, matchprio; | |
161 | ||
162 | #ifndef __APPLE__ | |
163 | va_start(ap, m); | |
164 | off = va_arg(ap, int); | |
165 | proto = va_arg(ap, int); | |
166 | va_end(ap); | |
167 | #endif | |
1c79356b A |
168 | |
169 | ip = mtod(m, struct ip *); | |
9bccf70c | 170 | #ifdef __APPLE__ |
1c79356b A |
171 | proto = ip->ip_p; |
172 | #endif | |
173 | ||
174 | bzero(&s, sizeof(s)); | |
175 | s.sin_family = AF_INET; | |
176 | s.sin_len = sizeof(struct sockaddr_in); | |
177 | s.sin_addr = ip->ip_src; | |
178 | bzero(&d, sizeof(d)); | |
179 | d.sin_family = AF_INET; | |
180 | d.sin_len = sizeof(struct sockaddr_in); | |
181 | d.sin_addr = ip->ip_dst; | |
182 | ||
9bccf70c A |
183 | match = NULL; |
184 | matchprio = 0; | |
1c79356b | 185 | for (ep = LIST_FIRST(&encaptab); ep; ep = LIST_NEXT(ep, chain)) { |
9bccf70c A |
186 | if (ep->af != AF_INET) |
187 | continue; | |
1c79356b A |
188 | if (ep->proto >= 0 && ep->proto != proto) |
189 | continue; | |
9bccf70c A |
190 | if (ep->func) |
191 | prio = (*ep->func)(m, off, proto, ep->arg); | |
192 | else { | |
1c79356b A |
193 | /* |
194 | * it's inbound traffic, we need to match in reverse | |
195 | * order | |
196 | */ | |
9bccf70c A |
197 | prio = mask_match(ep, (struct sockaddr *)&d, |
198 | (struct sockaddr *)&s); | |
1c79356b A |
199 | } |
200 | ||
9bccf70c A |
201 | /* |
202 | * We prioritize the matches by using bit length of the | |
203 | * matches. mask_match() and user-supplied matching function | |
204 | * should return the bit length of the matches (for example, | |
205 | * if both src/dst are matched for IPv4, 64 should be returned). | |
206 | * 0 or negative return value means "it did not match". | |
207 | * | |
208 | * The question is, since we have two "mask" portion, we | |
209 | * cannot really define total order between entries. | |
210 | * For example, which of these should be preferred? | |
211 | * mask_match() returns 48 (32 + 16) for both of them. | |
212 | * src=3ffe::/16, dst=3ffe:501::/32 | |
213 | * src=3ffe:501::/32, dst=3ffe::/16 | |
214 | * | |
215 | * We need to loop through all the possible candidates | |
216 | * to get the best match - the search takes O(n) for | |
217 | * n attachments (i.e. interfaces). | |
218 | */ | |
219 | if (prio <= 0) | |
220 | continue; | |
221 | if (prio > matchprio) { | |
222 | matchprio = prio; | |
223 | match = ep; | |
224 | } | |
225 | } | |
226 | ||
227 | if (match) { | |
228 | /* found a match, "match" has the best one */ | |
229 | psw = (const struct protosw *)match->psw; | |
230 | if (psw && psw->pr_input) { | |
231 | encap_fillarg(m, match); | |
232 | (*psw->pr_input)(m, off); | |
1c79356b A |
233 | } else |
234 | m_freem(m); | |
235 | return; | |
236 | } | |
237 | ||
238 | /* for backward compatibility */ | |
9bccf70c A |
239 | # if MROUTING |
240 | # define COMPATFUNC ipip_input | |
241 | # endif /*MROUTING*/ | |
242 | ||
243 | #if COMPATFUNC | |
1c79356b | 244 | if (proto == IPPROTO_IPV4) { |
9bccf70c | 245 | COMPATFUNC(m, off); |
1c79356b | 246 | return; |
1c79356b | 247 | } |
9bccf70c | 248 | #endif |
1c79356b A |
249 | |
250 | /* last resort: inject to raw socket */ | |
251 | rip_input(m, off); | |
252 | } | |
9bccf70c | 253 | #endif |
1c79356b A |
254 | |
255 | #if INET6 | |
256 | int | |
9bccf70c | 257 | encap6_input(mp, offp) |
1c79356b A |
258 | struct mbuf **mp; |
259 | int *offp; | |
1c79356b A |
260 | { |
261 | struct mbuf *m = *mp; | |
262 | struct ip6_hdr *ip6; | |
263 | struct sockaddr_in6 s, d; | |
9bccf70c A |
264 | const struct ip6protosw *psw; |
265 | struct encaptab *ep, *match; | |
266 | int prio, matchprio; | |
267 | int proto; | |
1c79356b A |
268 | |
269 | ip6 = mtod(m, struct ip6_hdr *); | |
9bccf70c | 270 | proto = ip6->ip6_nxt; |
1c79356b A |
271 | |
272 | bzero(&s, sizeof(s)); | |
273 | s.sin6_family = AF_INET6; | |
274 | s.sin6_len = sizeof(struct sockaddr_in6); | |
275 | s.sin6_addr = ip6->ip6_src; | |
276 | bzero(&d, sizeof(d)); | |
277 | d.sin6_family = AF_INET6; | |
278 | d.sin6_len = sizeof(struct sockaddr_in6); | |
279 | d.sin6_addr = ip6->ip6_dst; | |
280 | ||
9bccf70c A |
281 | match = NULL; |
282 | matchprio = 0; | |
1c79356b | 283 | for (ep = LIST_FIRST(&encaptab); ep; ep = LIST_NEXT(ep, chain)) { |
9bccf70c A |
284 | if (ep->af != AF_INET6) |
285 | continue; | |
1c79356b A |
286 | if (ep->proto >= 0 && ep->proto != proto) |
287 | continue; | |
9bccf70c A |
288 | if (ep->func) |
289 | prio = (*ep->func)(m, *offp, proto, ep->arg); | |
290 | else { | |
1c79356b A |
291 | /* |
292 | * it's inbound traffic, we need to match in reverse | |
293 | * order | |
294 | */ | |
9bccf70c A |
295 | prio = mask_match(ep, (struct sockaddr *)&d, |
296 | (struct sockaddr *)&s); | |
297 | } | |
298 | ||
299 | /* see encap4_input() for issues here */ | |
300 | if (prio <= 0) | |
301 | continue; | |
302 | if (prio > matchprio) { | |
303 | matchprio = prio; | |
304 | match = ep; | |
1c79356b | 305 | } |
9bccf70c | 306 | } |
1c79356b | 307 | |
9bccf70c | 308 | if (match) { |
1c79356b | 309 | /* found a match */ |
9bccf70c | 310 | psw = (const struct ip6protosw *)match->psw; |
1c79356b | 311 | if (psw && psw->pr_input) { |
9bccf70c A |
312 | encap_fillarg(m, match); |
313 | return (*psw->pr_input)(mp, offp); | |
1c79356b A |
314 | } else { |
315 | m_freem(m); | |
316 | return IPPROTO_DONE; | |
317 | } | |
318 | } | |
319 | ||
320 | /* last resort: inject to raw socket */ | |
9bccf70c | 321 | return rip6_input(mp, offp); |
1c79356b A |
322 | } |
323 | #endif | |
324 | ||
9bccf70c A |
325 | static void |
326 | encap_add(ep) | |
327 | struct encaptab *ep; | |
328 | { | |
329 | ||
330 | LIST_INSERT_HEAD(&encaptab, ep, chain); | |
331 | } | |
332 | ||
1c79356b A |
333 | /* |
334 | * sp (src ptr) is always my side, and dp (dst ptr) is always remote side. | |
335 | * length of mask (sm and dm) is assumed to be same as sp/dp. | |
336 | * Return value will be necessary as input (cookie) for encap_detach(). | |
337 | */ | |
338 | const struct encaptab * | |
339 | encap_attach(af, proto, sp, sm, dp, dm, psw, arg) | |
340 | int af; | |
341 | int proto; | |
342 | const struct sockaddr *sp, *sm; | |
343 | const struct sockaddr *dp, *dm; | |
344 | const struct protosw *psw; | |
345 | void *arg; | |
346 | { | |
347 | struct encaptab *ep; | |
348 | int error; | |
349 | int s; | |
350 | ||
1c79356b | 351 | s = splnet(); |
1c79356b A |
352 | /* sanity check on args */ |
353 | if (sp->sa_len > sizeof(ep->src) || dp->sa_len > sizeof(ep->dst)) { | |
354 | error = EINVAL; | |
355 | goto fail; | |
356 | } | |
357 | if (sp->sa_len != dp->sa_len) { | |
358 | error = EINVAL; | |
359 | goto fail; | |
360 | } | |
361 | if (af != sp->sa_family || af != dp->sa_family) { | |
362 | error = EINVAL; | |
363 | goto fail; | |
364 | } | |
365 | ||
366 | /* check if anyone have already attached with exactly same config */ | |
367 | for (ep = LIST_FIRST(&encaptab); ep; ep = LIST_NEXT(ep, chain)) { | |
368 | if (ep->af != af) | |
369 | continue; | |
370 | if (ep->proto != proto) | |
371 | continue; | |
372 | if (ep->src.ss_len != sp->sa_len || | |
373 | bcmp(&ep->src, sp, sp->sa_len) != 0 || | |
374 | bcmp(&ep->srcmask, sm, sp->sa_len) != 0) | |
375 | continue; | |
376 | if (ep->dst.ss_len != dp->sa_len || | |
377 | bcmp(&ep->dst, dp, dp->sa_len) != 0 || | |
378 | bcmp(&ep->dstmask, dm, dp->sa_len) != 0) | |
379 | continue; | |
380 | ||
381 | error = EEXIST; | |
382 | goto fail; | |
383 | } | |
384 | ||
9bccf70c | 385 | ep = _MALLOC(sizeof(*ep), M_NETADDR, M_WAITOK); /*XXX*/ |
1c79356b A |
386 | if (ep == NULL) { |
387 | error = ENOBUFS; | |
388 | goto fail; | |
389 | } | |
390 | bzero(ep, sizeof(*ep)); | |
391 | ||
392 | ep->af = af; | |
393 | ep->proto = proto; | |
394 | bcopy(sp, &ep->src, sp->sa_len); | |
395 | bcopy(sm, &ep->srcmask, sp->sa_len); | |
396 | bcopy(dp, &ep->dst, dp->sa_len); | |
397 | bcopy(dm, &ep->dstmask, dp->sa_len); | |
398 | ep->psw = psw; | |
399 | ep->arg = arg; | |
400 | ||
9bccf70c A |
401 | encap_add(ep); |
402 | ||
1c79356b A |
403 | error = 0; |
404 | splx(s); | |
405 | return ep; | |
406 | ||
407 | fail: | |
408 | splx(s); | |
409 | return NULL; | |
410 | } | |
411 | ||
412 | const struct encaptab * | |
413 | encap_attach_func(af, proto, func, psw, arg) | |
414 | int af; | |
415 | int proto; | |
91447636 | 416 | int (*func)(const struct mbuf *, int, int, void *); |
1c79356b A |
417 | const struct protosw *psw; |
418 | void *arg; | |
419 | { | |
420 | struct encaptab *ep; | |
421 | int error; | |
422 | int s; | |
423 | ||
1c79356b | 424 | s = splnet(); |
1c79356b A |
425 | /* sanity check on args */ |
426 | if (!func) { | |
427 | error = EINVAL; | |
428 | goto fail; | |
429 | } | |
430 | ||
9bccf70c | 431 | ep = _MALLOC(sizeof(*ep), M_NETADDR, M_WAITOK); /*XXX*/ |
1c79356b A |
432 | if (ep == NULL) { |
433 | error = ENOBUFS; | |
434 | goto fail; | |
435 | } | |
436 | bzero(ep, sizeof(*ep)); | |
437 | ||
438 | ep->af = af; | |
439 | ep->proto = proto; | |
440 | ep->func = func; | |
441 | ep->psw = psw; | |
442 | ep->arg = arg; | |
443 | ||
9bccf70c A |
444 | encap_add(ep); |
445 | ||
1c79356b A |
446 | error = 0; |
447 | splx(s); | |
448 | return ep; | |
449 | ||
450 | fail: | |
451 | splx(s); | |
452 | return NULL; | |
453 | } | |
454 | ||
455 | int | |
456 | encap_detach(cookie) | |
457 | const struct encaptab *cookie; | |
458 | { | |
459 | const struct encaptab *ep = cookie; | |
460 | struct encaptab *p; | |
461 | ||
462 | for (p = LIST_FIRST(&encaptab); p; p = LIST_NEXT(p, chain)) { | |
463 | if (p == ep) { | |
464 | LIST_REMOVE(p, chain); | |
465 | _FREE(p, M_NETADDR); /*XXX*/ | |
466 | return 0; | |
467 | } | |
468 | } | |
469 | ||
470 | return EINVAL; | |
471 | } | |
472 | ||
473 | static int | |
474 | mask_match(ep, sp, dp) | |
475 | const struct encaptab *ep; | |
476 | const struct sockaddr *sp; | |
477 | const struct sockaddr *dp; | |
478 | { | |
479 | struct sockaddr_storage s; | |
480 | struct sockaddr_storage d; | |
481 | int i; | |
9bccf70c A |
482 | const u_int8_t *p, *q; |
483 | u_int8_t *r; | |
484 | int matchlen; | |
1c79356b A |
485 | |
486 | if (sp->sa_len > sizeof(s) || dp->sa_len > sizeof(d)) | |
487 | return 0; | |
488 | if (sp->sa_family != ep->af || dp->sa_family != ep->af) | |
489 | return 0; | |
490 | if (sp->sa_len != ep->src.ss_len || dp->sa_len != ep->dst.ss_len) | |
491 | return 0; | |
492 | ||
9bccf70c A |
493 | matchlen = 0; |
494 | ||
495 | p = (const u_int8_t *)sp; | |
496 | q = (const u_int8_t *)&ep->srcmask; | |
1c79356b | 497 | r = (u_int8_t *)&s; |
9bccf70c | 498 | for (i = 0 ; i < sp->sa_len; i++) { |
1c79356b | 499 | r[i] = p[i] & q[i]; |
9bccf70c A |
500 | /* XXX estimate */ |
501 | matchlen += (q[i] ? 8 : 0); | |
502 | } | |
1c79356b | 503 | |
9bccf70c A |
504 | p = (const u_int8_t *)dp; |
505 | q = (const u_int8_t *)&ep->dstmask; | |
1c79356b | 506 | r = (u_int8_t *)&d; |
9bccf70c | 507 | for (i = 0 ; i < dp->sa_len; i++) { |
1c79356b | 508 | r[i] = p[i] & q[i]; |
9bccf70c A |
509 | /* XXX rough estimate */ |
510 | matchlen += (q[i] ? 8 : 0); | |
511 | } | |
1c79356b A |
512 | |
513 | /* need to overwrite len/family portion as we don't compare them */ | |
514 | s.ss_len = sp->sa_len; | |
515 | s.ss_family = sp->sa_family; | |
516 | d.ss_len = dp->sa_len; | |
517 | d.ss_family = dp->sa_family; | |
518 | ||
519 | if (bcmp(&s, &ep->src, ep->src.ss_len) == 0 && | |
520 | bcmp(&d, &ep->dst, ep->dst.ss_len) == 0) { | |
9bccf70c | 521 | return matchlen; |
1c79356b A |
522 | } else |
523 | return 0; | |
524 | } | |
525 | ||
526 | static void | |
527 | encap_fillarg(m, ep) | |
528 | struct mbuf *m; | |
529 | const struct encaptab *ep; | |
530 | { | |
531 | #if 0 | |
532 | m->m_pkthdr.aux = ep->arg; | |
533 | #else | |
534 | struct mbuf *n; | |
535 | ||
536 | n = m_aux_add(m, AF_INET, IPPROTO_IPV4); | |
537 | if (n) { | |
538 | *mtod(n, void **) = ep->arg; | |
539 | n->m_len = sizeof(void *); | |
540 | } | |
541 | #endif | |
542 | } | |
543 | ||
544 | void * | |
545 | encap_getarg(m) | |
546 | struct mbuf *m; | |
547 | { | |
548 | void *p; | |
549 | #if 0 | |
550 | p = m->m_pkthdr.aux; | |
551 | m->m_pkthdr.aux = NULL; | |
552 | return p; | |
553 | #else | |
554 | struct mbuf *n; | |
555 | ||
556 | p = NULL; | |
557 | n = m_aux_find(m, AF_INET, IPPROTO_IPV4); | |
558 | if (n) { | |
559 | if (n->m_len == sizeof(void *)) | |
560 | p = *mtod(n, void **); | |
561 | m_aux_delete(m, n); | |
562 | } | |
563 | return p; | |
564 | #endif | |
565 | } |