]> git.saurik.com Git - apple/xnu.git/blame - bsd/kern/uipc_socket2.c
xnu-201.19.tar.gz
[apple/xnu.git] / bsd / kern / uipc_socket2.c
CommitLineData
1c79356b
A
1/*
2 * Copyright (c) 2000 Apple Computer, Inc. All rights reserved.
3 *
4 * @APPLE_LICENSE_HEADER_START@
5 *
6 * The contents of this file constitute Original Code as defined in and
7 * are subject to the Apple Public Source License Version 1.1 (the
8 * "License"). You may not use this file except in compliance with the
9 * License. Please obtain a copy of the License at
10 * http://www.apple.com/publicsource and read it before using this file.
11 *
12 * This Original Code and all software distributed under the License are
13 * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER
14 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
15 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the
17 * License for the specific language governing rights and limitations
18 * under the License.
19 *
20 * @APPLE_LICENSE_HEADER_END@
21 */
22/* Copyright (c) 1998, 1999 Apple Computer, Inc. All Rights Reserved */
23/* Copyright (c) 1995 NeXT Computer, Inc. All Rights Reserved */
24/*
25 * Copyright (c) 1982, 1986, 1988, 1990, 1993
26 * The Regents of the University of California. All rights reserved.
27 *
28 * Redistribution and use in source and binary forms, with or without
29 * modification, are permitted provided that the following conditions
30 * are met:
31 * 1. Redistributions of source code must retain the above copyright
32 * notice, this list of conditions and the following disclaimer.
33 * 2. Redistributions in binary form must reproduce the above copyright
34 * notice, this list of conditions and the following disclaimer in the
35 * documentation and/or other materials provided with the distribution.
36 * 3. All advertising materials mentioning features or use of this software
37 * must display the following acknowledgement:
38 * This product includes software developed by the University of
39 * California, Berkeley and its contributors.
40 * 4. Neither the name of the University nor the names of its contributors
41 * may be used to endorse or promote products derived from this software
42 * without specific prior written permission.
43 *
44 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
45 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
46 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
47 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
48 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
49 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
50 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
51 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
52 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
53 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
54 * SUCH DAMAGE.
55 *
56 * @(#)uipc_socket2.c 8.1 (Berkeley) 6/10/93
57 */
58
59#include <sys/param.h>
60#include <sys/systm.h>
61#include <sys/domain.h>
62#include <sys/kernel.h>
63#include <sys/proc.h>
64#include <sys/malloc.h>
65#include <sys/mbuf.h>
66#include <sys/protosw.h>
67#include <sys/stat.h>
68#include <sys/socket.h>
69#include <sys/socketvar.h>
70#include <sys/signalvar.h>
71#include <sys/sysctl.h>
72#include <sys/ev.h>
73
fa4905b1
A
74#include <sys/kdebug.h>
75
76#define DBG_FNC_SBDROP NETDBG_CODE(DBG_NETSOCK, 4)
77#define DBG_FNC_SBAPPEND NETDBG_CODE(DBG_NETSOCK, 5)
78
79
1c79356b
A
80/*
81 * Primitive routines for operating on sockets and socket buffers
82 */
83
84u_long sb_max = SB_MAX; /* XXX should be static */
85
86static u_long sb_efficiency = 8; /* parameter for sbreserve() */
87
88char netcon[] = "netcon";
89
90/*
91 * Procedures to manipulate state flags of socket
92 * and do appropriate wakeups. Normal sequence from the
93 * active (originating) side is that soisconnecting() is
94 * called during processing of connect() call,
95 * resulting in an eventual call to soisconnected() if/when the
96 * connection is established. When the connection is torn down
e3027f41 97 * soisdisconnecting() is called during processing of disconnect() call,
1c79356b
A
98 * and soisdisconnected() is called when the connection to the peer
99 * is totally severed. The semantics of these routines are such that
100 * connectionless protocols can call soisconnected() and soisdisconnected()
101 * only, bypassing the in-progress calls when setting up a ``connection''
102 * takes no time.
103 *
104 * From the passive side, a socket is created with
e3027f41
A
105 * two queues of sockets: so_incomp for connections in progress
106 * and so_comp for connections already made and awaiting user acceptance.
107 * As a protocol is preparing incoming connections, it creates a socket
108 * structure queued on so_incomp by calling sonewconn(). When the connection
1c79356b 109 * is established, soisconnected() is called, and transfers the
e3027f41 110 * socket structure to so_comp, making it available to accept().
1c79356b 111 *
e3027f41
A
112 * If a socket is closed with sockets on either
113 * so_incomp or so_comp, these sockets are dropped.
114 *
1c79356b
A
115 * If higher level protocols are implemented in
116 * the kernel, the wakeups done here will sometimes
117 * cause software-interrupt process scheduling.
118 */
119
120void
121soisconnecting(so)
122 register struct socket *so;
123{
124
125 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
126 so->so_state |= SS_ISCONNECTING;
127}
128
129void
130soisconnected(so)
131 register struct socket *so;
132{ register struct kextcb *kp;
133 register struct socket *head = so->so_head;
134
135 kp = sotokextcb(so);
136 while (kp)
137 { if (kp->e_soif && kp->e_soif->sf_soisconnected)
138 { if ((*kp->e_soif->sf_soisconnected)(so, kp))
139 return;
140 }
141 kp = kp->e_next;
142 }
143
144 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
145 so->so_state |= SS_ISCONNECTED;
146 if (head && (so->so_state & SS_INCOMP)) {
147 postevent(head,0,EV_RCONN);
148 TAILQ_REMOVE(&head->so_incomp, so, so_list);
149 head->so_incqlen--;
150 so->so_state &= ~SS_INCOMP;
151 TAILQ_INSERT_TAIL(&head->so_comp, so, so_list);
152 so->so_state |= SS_COMP;
153 sorwakeup(head);
154 wakeup((caddr_t)&head->so_timeo);
155 } else {
156 postevent(so,0,EV_WCONN);
157 wakeup((caddr_t)&so->so_timeo);
158 sorwakeup(so);
159 sowwakeup(so);
160 }
161}
162
163void
164soisdisconnecting(so)
165 register struct socket *so;
166{ register struct kextcb *kp;
167
168 kp = sotokextcb(so);
169 while (kp)
170 { if (kp->e_soif && kp->e_soif->sf_soisdisconnecting)
171 { if ((*kp->e_soif->sf_soisdisconnecting)(so, kp))
172 return;
173 }
174 kp = kp->e_next;
175 }
176
177 so->so_state &= ~SS_ISCONNECTING;
178 so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
179 wakeup((caddr_t)&so->so_timeo);
180 sowwakeup(so);
181 sorwakeup(so);
182}
183
184void
185soisdisconnected(so)
186 register struct socket *so;
187{ register struct kextcb *kp;
188
189 kp = sotokextcb(so);
190 while (kp)
191 { if (kp->e_soif && kp->e_soif->sf_soisdisconnected)
192 { if ((*kp->e_soif->sf_soisdisconnected)(so, kp))
193 return;
194 }
195 kp = kp->e_next;
196 }
197
198 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
199 so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE);
200 wakeup((caddr_t)&so->so_timeo);
201 sowwakeup(so);
202 sorwakeup(so);
203}
204
205/*
206 * Return a random connection that hasn't been serviced yet and
207 * is eligible for discard. There is a one in qlen chance that
208 * we will return a null, saying that there are no dropable
209 * requests. In this case, the protocol specific code should drop
210 * the new request. This insures fairness.
211 *
212 * This may be used in conjunction with protocol specific queue
213 * congestion routines.
214 */
215struct socket *
216sodropablereq(head)
217 register struct socket *head;
218{
219 register struct socket *so;
220 unsigned int i, j, qlen;
221 static int rnd;
222 static struct timeval old_runtime;
223 static unsigned int cur_cnt, old_cnt;
224 struct timeval tv;
225
226 microtime(&tv);
227 if ((i = (tv.tv_sec - old_runtime.tv_sec)) != 0) {
228 old_runtime = tv;
229 old_cnt = cur_cnt / i;
230 cur_cnt = 0;
231 }
232
233 so = TAILQ_FIRST(&head->so_incomp);
234 if (!so)
235 return (so);
236
237 qlen = head->so_incqlen;
238 if (++cur_cnt > qlen || old_cnt > qlen) {
239 rnd = (314159 * rnd + 66329) & 0xffff;
240 j = ((qlen + 1) * rnd) >> 16;
241
242 while (j-- && so)
243 so = TAILQ_NEXT(so, so_list);
244 }
245
246 return (so);
247}
248
249/*
250 * When an attempt at a new connection is noted on a socket
251 * which accepts connections, sonewconn is called. If the
252 * connection is possible (subject to space constraints, etc.)
253 * then we allocate a new structure, propoerly linked into the
254 * data structure of the original socket, and return this.
255 * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED.
256 */
257struct socket *
258sonewconn(head, connstatus)
259 register struct socket *head;
260 int connstatus;
261{ int error = 0;
262 register struct socket *so;
263 register struct kextcb *kp;
264
265 if (head->so_qlen > 3 * head->so_qlimit / 2)
266 return ((struct socket *)0);
0b4e3aa0 267 so = soalloc(1, head->so_proto->pr_domain->dom_family, head->so_type);
1c79356b
A
268 if (so == NULL)
269 return ((struct socket *)0);
270
271 kp = sotokextcb(so);
272 while (kp)
273 { if (kp->e_soif && kp->e_soif->sf_sonewconn1)
274 { if ((*kp->e_soif->sf_sonewconn1)(so, connstatus, kp))
275 return;
276 }
277 kp = kp->e_next;
278 }
279
280 so->so_head = head;
281 so->so_type = head->so_type;
282 so->so_options = head->so_options &~ SO_ACCEPTCONN;
283 so->so_linger = head->so_linger;
284 so->so_state = head->so_state | SS_NOFDREF;
285 so->so_proto = head->so_proto;
286 so->so_timeo = head->so_timeo;
287 so->so_pgid = head->so_pgid;
288 so->so_uid = head->so_uid;
289 so->so_rcv.sb_flags |= SB_RECV; /* XXX */
fa4905b1 290
1c79356b
A
291 (void) soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat);
292
293 if (so->so_proto->pr_sfilter.tqh_first)
294 error = sfilter_init(so);
295 if (error == 0 && (*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) {
296 sfilter_term(so);
297 sodealloc(so);
298 return ((struct socket *)0);
299 }
300 so->so_proto->pr_domain->dom_refs++;
301
302 if (connstatus) {
303 TAILQ_INSERT_TAIL(&head->so_comp, so, so_list);
304 so->so_state |= SS_COMP;
305 } else {
306 TAILQ_INSERT_TAIL(&head->so_incomp, so, so_list);
307 so->so_state |= SS_INCOMP;
308 head->so_incqlen++;
309 }
310 head->so_qlen++;
311 if (connstatus) {
312 sorwakeup(head);
313 wakeup((caddr_t)&head->so_timeo);
314 so->so_state |= connstatus;
315 }
316 so->so_rcv.sb_so = so->so_snd.sb_so = so;
317 TAILQ_INIT(&so->so_evlist);
318 return (so);
319}
320
321/*
322 * Socantsendmore indicates that no more data will be sent on the
323 * socket; it would normally be applied to a socket when the user
324 * informs the system that no more data is to be sent, by the protocol
325 * code (in case PRU_SHUTDOWN). Socantrcvmore indicates that no more data
326 * will be received, and will normally be applied to the socket by a
327 * protocol when it detects that the peer will send no more data.
328 * Data queued for reading in the socket may yet be read.
329 */
330
331void
332socantsendmore(so)
333 struct socket *so;
334{ register struct kextcb *kp;
335
336 kp = sotokextcb(so);
337 while (kp)
338 { if (kp->e_soif && kp->e_soif->sf_socantsendmore)
339 { if ((*kp->e_soif->sf_socantsendmore)(so, kp))
340 return;
341 }
342 kp = kp->e_next;
343 }
344
345
346 so->so_state |= SS_CANTSENDMORE;
347 sowwakeup(so);
348}
349
350void
351socantrcvmore(so)
352 struct socket *so;
353{ register struct kextcb *kp;
354
355 kp = sotokextcb(so);
356 while (kp)
357 { if (kp->e_soif && kp->e_soif->sf_socantrcvmore)
358 { if ((*kp->e_soif->sf_socantrcvmore)(so, kp))
359 return;
360 }
361 kp = kp->e_next;
362 }
363
364
365 so->so_state |= SS_CANTRCVMORE;
366 sorwakeup(so);
367}
368
369/*
370 * Wait for data to arrive at/drain from a socket buffer.
371 */
372int
373sbwait(sb)
374 struct sockbuf *sb;
375{
376
377 sb->sb_flags |= SB_WAIT;
378 return (tsleep((caddr_t)&sb->sb_cc,
379 (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, "sbwait",
380 sb->sb_timeo));
381}
382
383/*
384 * Lock a sockbuf already known to be locked;
385 * return any error returned from sleep (EINTR).
386 */
387int
388sb_lock(sb)
389 register struct sockbuf *sb;
390{
391 int error;
392
393 while (sb->sb_flags & SB_LOCK) {
394 sb->sb_flags |= SB_WANT;
395 error = tsleep((caddr_t)&sb->sb_flags,
396 (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK|PCATCH,
397 "sblock", 0);
398 if (error)
399 return (error);
400 }
401 sb->sb_flags |= SB_LOCK;
402 return (0);
403}
404
405/*
406 * Wakeup processes waiting on a socket buffer.
407 * Do asynchronous notification via SIGIO
408 * if the socket has the SS_ASYNC flag set.
409 */
410void
411sowakeup(so, sb)
412 register struct socket *so;
413 register struct sockbuf *sb;
414{
415 struct proc *p = current_proc();
416
417
1c79356b 418
0b4e3aa0
A
419
420 sb->sb_flags &= ~SB_SEL;
1c79356b 421 selwakeup(&sb->sb_sel);
1c79356b
A
422
423 if (sb->sb_flags & SB_WAIT) {
424 sb->sb_flags &= ~SB_WAIT;
425 wakeup((caddr_t)&sb->sb_cc);
426 }
427 if (so->so_state & SS_ASYNC) {
428 if (so->so_pgid < 0)
429 gsignal(-so->so_pgid, SIGIO);
430 else if (so->so_pgid > 0 && (p = pfind(so->so_pgid)) != 0)
431 psignal(p, SIGIO);
432 }
433
434 if (sb->sb_flags & SB_UPCALL)
435 (*so->so_upcall)(so, so->so_upcallarg, M_DONTWAIT);
436}
437
438/*
439 * Socket buffer (struct sockbuf) utility routines.
440 *
441 * Each socket contains two socket buffers: one for sending data and
442 * one for receiving data. Each buffer contains a queue of mbufs,
443 * information about the number of mbufs and amount of data in the
444 * queue, and other fields allowing select() statements and notification
445 * on data availability to be implemented.
446 *
447 * Data stored in a socket buffer is maintained as a list of records.
448 * Each record is a list of mbufs chained together with the m_next
449 * field. Records are chained together with the m_nextpkt field. The upper
450 * level routine soreceive() expects the following conventions to be
451 * observed when placing information in the receive buffer:
452 *
453 * 1. If the protocol requires each message be preceded by the sender's
454 * name, then a record containing that name must be present before
455 * any associated data (mbuf's must be of type MT_SONAME).
456 * 2. If the protocol supports the exchange of ``access rights'' (really
457 * just additional data associated with the message), and there are
458 * ``rights'' to be received, then a record containing this data
459 * should be present (mbuf's must be of type MT_RIGHTS).
460 * 3. If a name or rights record exists, then it must be followed by
461 * a data record, perhaps of zero length.
462 *
463 * Before using a new socket structure it is first necessary to reserve
464 * buffer space to the socket, by calling sbreserve(). This should commit
465 * some of the available buffer space in the system buffer pool for the
466 * socket (currently, it does nothing but enforce limits). The space
467 * should be released by calling sbrelease() when the socket is destroyed.
468 */
469
470int
471soreserve(so, sndcc, rcvcc)
472 register struct socket *so;
473 u_long sndcc, rcvcc;
474{
475 register struct kextcb *kp;
476
477 kp = sotokextcb(so);
478 while (kp)
479 { if (kp->e_soif && kp->e_soif->sf_soreserve)
480 { if ((*kp->e_soif->sf_soreserve)(so, sndcc, rcvcc, kp))
481 return;
482 }
483 kp = kp->e_next;
484 }
485
486 if (sbreserve(&so->so_snd, sndcc) == 0)
487 goto bad;
488 if (sbreserve(&so->so_rcv, rcvcc) == 0)
489 goto bad2;
490 if (so->so_rcv.sb_lowat == 0)
491 so->so_rcv.sb_lowat = 1;
492 if (so->so_snd.sb_lowat == 0)
493 so->so_snd.sb_lowat = MCLBYTES;
494 if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
495 so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
496 return (0);
497bad2:
0b4e3aa0 498 selthreadclear(&so->so_snd.sb_sel);
1c79356b
A
499 sbrelease(&so->so_snd);
500bad:
501 return (ENOBUFS);
502}
503
504/*
505 * Allot mbufs to a sockbuf.
506 * Attempt to scale mbmax so that mbcnt doesn't become limiting
507 * if buffering efficiency is near the normal case.
508 */
509int
510sbreserve(sb, cc)
511 struct sockbuf *sb;
512 u_long cc;
513{
514 if ((u_quad_t)cc > (u_quad_t)sb_max * MCLBYTES / (MSIZE + MCLBYTES))
515 return (0);
516 sb->sb_hiwat = cc;
517 sb->sb_mbmax = min(cc * sb_efficiency, sb_max);
518 if (sb->sb_lowat > sb->sb_hiwat)
519 sb->sb_lowat = sb->sb_hiwat;
520 return (1);
521}
522
523/*
524 * Free mbufs held by a socket, and reserved mbuf space.
525 */
0b4e3aa0 526 /* WARNING needs to do selthreadclear() before calling this */
1c79356b
A
527void
528sbrelease(sb)
529 struct sockbuf *sb;
530{
531
532 sbflush(sb);
533 sb->sb_hiwat = sb->sb_mbmax = 0;
0b4e3aa0
A
534#if 0
535 /* this is getting called with bzeroed sb in sorflush */
1c79356b
A
536 {
537 int oldpri = splimp();
538 selthreadclear(&sb->sb_sel);
539 splx(oldpri);
540 }
0b4e3aa0 541#endif
1c79356b
A
542}
543
544/*
545 * Routines to add and remove
546 * data from an mbuf queue.
547 *
548 * The routines sbappend() or sbappendrecord() are normally called to
549 * append new mbufs to a socket buffer, after checking that adequate
550 * space is available, comparing the function sbspace() with the amount
551 * of data to be added. sbappendrecord() differs from sbappend() in
552 * that data supplied is treated as the beginning of a new record.
553 * To place a sender's address, optional access rights, and data in a
554 * socket receive buffer, sbappendaddr() should be used. To place
555 * access rights and data in a socket receive buffer, sbappendrights()
556 * should be used. In either case, the new data begins a new record.
557 * Note that unlike sbappend() and sbappendrecord(), these routines check
558 * for the caller that there will be enough space to store the data.
559 * Each fails if there is not enough space, or if it cannot find mbufs
560 * to store additional information in.
561 *
562 * Reliable protocols may use the socket send buffer to hold data
563 * awaiting acknowledgement. Data is normally copied from a socket
564 * send buffer in a protocol with m_copy for output to a peer,
565 * and then removing the data from the socket buffer with sbdrop()
566 * or sbdroprecord() when the data is acknowledged by the peer.
567 */
568
569/*
570 * Append mbuf chain m to the last record in the
571 * socket buffer sb. The additional space associated
572 * the mbuf chain is recorded in sb. Empty mbufs are
573 * discarded and mbufs are compacted where possible.
574 */
575void
576sbappend(sb, m)
577 struct sockbuf *sb;
578 struct mbuf *m;
579{ register struct kextcb *kp;
580 register struct mbuf *n;
581
fa4905b1
A
582
583 KERNEL_DEBUG((DBG_FNC_SBAPPEND | DBG_FUNC_START), sb, m->m_len, 0, 0, 0);
584
1c79356b
A
585 if (m == 0)
586 return;
587 kp = sotokextcb(sbtoso(sb));
588 while (kp)
589 { if (kp->e_sout && kp->e_sout->su_sbappend)
590 { if ((*kp->e_sout->su_sbappend)(sb, m, kp))
591 return;
592 }
593 kp = kp->e_next;
594 }
595
596 if (n = sb->sb_mb) {
597 while (n->m_nextpkt)
598 n = n->m_nextpkt;
599 do {
600 if (n->m_flags & M_EOR) {
601 sbappendrecord(sb, m); /* XXXXXX!!!! */
602 return;
603 }
604 } while (n->m_next && (n = n->m_next));
605 }
606 sbcompress(sb, m, n);
fa4905b1
A
607
608 KERNEL_DEBUG((DBG_FNC_SBAPPEND | DBG_FUNC_END), sb, sb->sb_cc, 0, 0, 0);
1c79356b
A
609}
610
611#ifdef SOCKBUF_DEBUG
612void
613sbcheck(sb)
614 register struct sockbuf *sb;
615{
616 register struct mbuf *m;
617 register struct mbuf *n = 0;
618 register u_long len = 0, mbcnt = 0;
619
620 for (m = sb->sb_mb; m; m = n) {
621 n = m->m_nextpkt;
622 for (; m; m = m->m_next) {
623 len += m->m_len;
624 mbcnt += MSIZE;
625 if (m->m_flags & M_EXT) /*XXX*/ /* pretty sure this is bogus */
626 mbcnt += m->m_ext.ext_size;
627 if (m->m_nextpkt)
628 panic("sbcheck nextpkt");
629 }
630 if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
631 printf("cc %ld != %ld || mbcnt %ld != %ld\n", len, sb->sb_cc,
632 mbcnt, sb->sb_mbcnt);
633 panic("sbcheck");
634 }
635}
636#endif
637
638/*
639 * As above, except the mbuf chain
640 * begins a new record.
641 */
642void
643sbappendrecord(sb, m0)
644 register struct sockbuf *sb;
645 register struct mbuf *m0;
646{
647 register struct mbuf *m;
648 register struct kextcb *kp;
649
650 if (m0 == 0)
651 return;
652
653 kp = sotokextcb(sbtoso(sb));
654 while (kp)
655 { if (kp->e_sout && kp->e_sout->su_sbappendrecord)
656 { if ((*kp->e_sout->su_sbappendrecord)(sb, m0, kp))
657 return;
658 }
659 kp = kp->e_next;
660 }
661
662 m = sb->sb_mb;
663 if (m)
664 while (m->m_nextpkt)
665 m = m->m_nextpkt;
666 /*
667 * Put the first mbuf on the queue.
668 * Note this permits zero length records.
669 */
670 sballoc(sb, m0);
671 if (m)
672 m->m_nextpkt = m0;
673 else
674 sb->sb_mb = m0;
675 m = m0->m_next;
676 m0->m_next = 0;
677 if (m && (m0->m_flags & M_EOR)) {
678 m0->m_flags &= ~M_EOR;
679 m->m_flags |= M_EOR;
680 }
681 sbcompress(sb, m, m0);
682}
683
684/*
685 * As above except that OOB data
686 * is inserted at the beginning of the sockbuf,
687 * but after any other OOB data.
688 */
689void
690sbinsertoob(sb, m0)
691 register struct sockbuf *sb;
692 register struct mbuf *m0;
693{
694 register struct mbuf *m;
695 register struct mbuf **mp;
696 register struct kextcb *kp;
697
698 if (m0 == 0)
699 return;
700
701 kp = sotokextcb(sbtoso(sb));
702 while (kp)
703 { if (kp->e_sout && kp->e_sout->su_sbinsertoob)
704 { if ((*kp->e_sout->su_sbinsertoob)(sb, m0, kp))
705 return;
706 }
707 kp = kp->e_next;
708 }
709
710 for (mp = &sb->sb_mb; *mp ; mp = &((*mp)->m_nextpkt)) {
711 m = *mp;
712 again:
713 switch (m->m_type) {
714
715 case MT_OOBDATA:
716 continue; /* WANT next train */
717
718 case MT_CONTROL:
719 m = m->m_next;
720 if (m)
721 goto again; /* inspect THIS train further */
722 }
723 break;
724 }
725 /*
726 * Put the first mbuf on the queue.
727 * Note this permits zero length records.
728 */
729 sballoc(sb, m0);
730 m0->m_nextpkt = *mp;
731 *mp = m0;
732 m = m0->m_next;
733 m0->m_next = 0;
734 if (m && (m0->m_flags & M_EOR)) {
735 m0->m_flags &= ~M_EOR;
736 m->m_flags |= M_EOR;
737 }
738 sbcompress(sb, m, m0);
739}
740
741/*
742 * Append address and data, and optionally, control (ancillary) data
743 * to the receive queue of a socket. If present,
744 * m0 must include a packet header with total length.
745 * Returns 0 if no space in sockbuf or insufficient mbufs.
746 */
747int
748sbappendaddr(sb, asa, m0, control)
749 register struct sockbuf *sb;
750 struct sockaddr *asa;
751 struct mbuf *m0, *control;
752{
753 register struct mbuf *m, *n;
754 int space = asa->sa_len;
755 register struct kextcb *kp;
756
757 if (m0 && (m0->m_flags & M_PKTHDR) == 0)
758 panic("sbappendaddr");
759
760 kp = sotokextcb(sbtoso(sb));
761 while (kp)
762 { if (kp->e_sout && kp->e_sout->su_sbappendaddr)
763 { if ((*kp->e_sout->su_sbappendaddr)(sb, asa, m0, control, kp))
764 return 0;
765 }
766 kp = kp->e_next;
767 }
768
769 if (m0)
770 space += m0->m_pkthdr.len;
771 for (n = control; n; n = n->m_next) {
772 space += n->m_len;
773 if (n->m_next == 0) /* keep pointer to last control buf */
774 break;
775 }
776 if (space > sbspace(sb))
777 return (0);
778 if (asa->sa_len > MLEN)
779 return (0);
780 MGET(m, M_DONTWAIT, MT_SONAME);
781 if (m == 0)
782 return (0);
783 m->m_len = asa->sa_len;
784 bcopy((caddr_t)asa, mtod(m, caddr_t), asa->sa_len);
785 if (n)
786 n->m_next = m0; /* concatenate data to control */
787 else
788 control = m0;
789 m->m_next = control;
790 for (n = m; n; n = n->m_next)
791 sballoc(sb, n);
792 n = sb->sb_mb;
793 if (n) {
794 while (n->m_nextpkt)
795 n = n->m_nextpkt;
796 n->m_nextpkt = m;
797 } else
798 sb->sb_mb = m;
799 postevent(0,sb,EV_RWBYTES);
800 return (1);
801}
802
803int
804sbappendcontrol(sb, m0, control)
805 struct sockbuf *sb;
806 struct mbuf *control, *m0;
807{
808 register struct mbuf *m, *n;
809 int space = 0;
810 register struct kextcb *kp;
811
812 if (control == 0)
813 panic("sbappendcontrol");
814
815 kp = sotokextcb(sbtoso(sb));
816 while (kp)
817 { if (kp->e_sout && kp->e_sout->su_sbappendcontrol)
818 { if ((*kp->e_sout->su_sbappendcontrol)(sb, m0, control, kp))
819 return 0;
820 }
821 kp = kp->e_next;
822 }
823
824 for (m = control; ; m = m->m_next) {
825 space += m->m_len;
826 if (m->m_next == 0)
827 break;
828 }
829 n = m; /* save pointer to last control buffer */
830 for (m = m0; m; m = m->m_next)
831 space += m->m_len;
832 if (space > sbspace(sb))
833 return (0);
834 n->m_next = m0; /* concatenate data to control */
835 for (m = control; m; m = m->m_next)
836 sballoc(sb, m);
837 n = sb->sb_mb;
838 if (n) {
839 while (n->m_nextpkt)
840 n = n->m_nextpkt;
841 n->m_nextpkt = control;
842 } else
843 sb->sb_mb = control;
844 postevent(0,sb,EV_RWBYTES);
845 return (1);
846}
847
848/*
849 * Compress mbuf chain m into the socket
850 * buffer sb following mbuf n. If n
851 * is null, the buffer is presumed empty.
852 */
853void
854sbcompress(sb, m, n)
855 register struct sockbuf *sb;
856 register struct mbuf *m, *n;
857{
858 register int eor = 0;
859 register struct mbuf *o;
860
861 while (m) {
862 eor |= m->m_flags & M_EOR;
863 if (m->m_len == 0 &&
864 (eor == 0 ||
865 (((o = m->m_next) || (o = n)) &&
866 o->m_type == m->m_type))) {
867 m = m_free(m);
868 continue;
869 }
870 if (n && (n->m_flags & (M_EXT | M_EOR)) == 0 &&
871 (n->m_data + n->m_len + m->m_len) < &n->m_dat[MLEN] &&
872 n->m_type == m->m_type) {
873 bcopy(mtod(m, caddr_t), mtod(n, caddr_t) + n->m_len,
874 (unsigned)m->m_len);
875 n->m_len += m->m_len;
876 sb->sb_cc += m->m_len;
877 m = m_free(m);
878 continue;
879 }
880 if (n)
881 n->m_next = m;
882 else
883 sb->sb_mb = m;
884 sballoc(sb, m);
885 n = m;
886 m->m_flags &= ~M_EOR;
887 m = m->m_next;
888 n->m_next = 0;
889 }
890 if (eor) {
891 if (n)
892 n->m_flags |= eor;
893 else
894 printf("semi-panic: sbcompress\n");
895 }
896 postevent(0,sb, EV_RWBYTES);
897}
898
899/*
900 * Free all mbufs in a sockbuf.
901 * Check that all resources are reclaimed.
902 */
903void
904sbflush(sb)
905 register struct sockbuf *sb;
906{
907 register struct kextcb *kp;
908
909 kp = sotokextcb(sbtoso(sb));
910 while (kp)
911 { if (kp->e_sout && kp->e_sout->su_sbflush)
912 { if ((*kp->e_sout->su_sbflush)(sb, kp))
913 return;
914 }
915 kp = kp->e_next;
916 }
917
918 if (sb->sb_flags & SB_LOCK)
919 panic("sbflush: locked");
920 while (sb->sb_mbcnt && sb->sb_cc)
921 sbdrop(sb, (int)sb->sb_cc);
922 if (sb->sb_cc || sb->sb_mb || sb->sb_mbcnt)
923 panic("sbflush: cc %ld || mb %p || mbcnt %ld", sb->sb_cc, (void *)sb->sb_mb, sb->sb_mbcnt);
924 postevent(0, sb, EV_RWBYTES);
925}
926
927/*
928 * Drop data from (the front of) a sockbuf.
929 */
930void
931sbdrop(sb, len)
932 register struct sockbuf *sb;
933 register int len;
934{
fa4905b1
A
935 register struct mbuf *m, *free_list, *ml;
936 struct mbuf *next, *last;
1c79356b
A
937 register struct kextcb *kp;
938
fa4905b1
A
939 KERNEL_DEBUG((DBG_FNC_SBDROP | DBG_FUNC_START), sb, len, 0, 0, 0);
940
1c79356b
A
941 kp = sotokextcb(sbtoso(sb));
942 while (kp)
943 { if (kp->e_sout && kp->e_sout->su_sbdrop)
944 { if ((*kp->e_sout->su_sbdrop)(sb, len, kp))
945 return;
946 }
947 kp = kp->e_next;
948 }
1c79356b 949 next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
fa4905b1
A
950 free_list = last = m;
951 ml = (struct mbuf *)0;
952
1c79356b
A
953 while (len > 0) {
954 if (m == 0) {
955 if (next == 0)
956 panic("sbdrop");
fa4905b1 957 m = last = next;
1c79356b
A
958 next = m->m_nextpkt;
959 continue;
960 }
961 if (m->m_len > len) {
962 m->m_len -= len;
963 m->m_data += len;
964 sb->sb_cc -= len;
965 break;
966 }
967 len -= m->m_len;
968 sbfree(sb, m);
fa4905b1
A
969
970 ml = m;
971 m = m->m_next;
1c79356b
A
972 }
973 while (m && m->m_len == 0) {
974 sbfree(sb, m);
fa4905b1
A
975
976 ml = m;
977 m = m->m_next;
978 }
979 if (ml) {
980 ml->m_next = (struct mbuf *)0;
981 last->m_nextpkt = (struct mbuf *)0;
982 m_freem_list(free_list);
1c79356b
A
983 }
984 if (m) {
985 sb->sb_mb = m;
986 m->m_nextpkt = next;
987 } else
988 sb->sb_mb = next;
fa4905b1 989
1c79356b 990 postevent(0, sb, EV_RWBYTES);
fa4905b1
A
991
992 KERNEL_DEBUG((DBG_FNC_SBDROP | DBG_FUNC_END), sb, 0, 0, 0, 0);
1c79356b
A
993}
994
995/*
996 * Drop a record off the front of a sockbuf
997 * and move the next record to the front.
998 */
999void
1000sbdroprecord(sb)
1001 register struct sockbuf *sb;
1002{
1003 register struct mbuf *m, *mn;
1004 register struct kextcb *kp;
1005
1006 kp = sotokextcb(sbtoso(sb));
1007 while (kp)
1008 { if (kp->e_sout && kp->e_sout->su_sbdroprecord)
1009 { if ((*kp->e_sout->su_sbdroprecord)(sb, kp))
1010 return;
1011 }
1012 kp = kp->e_next;
1013 }
1014
1015 m = sb->sb_mb;
1016 if (m) {
1017 sb->sb_mb = m->m_nextpkt;
1018 do {
1019 sbfree(sb, m);
1020 MFREE(m, mn);
1021 } while (m = mn);
1022 }
1023 postevent(0, sb, EV_RWBYTES);
1024}
1025
1026/*
1027 * Create a "control" mbuf containing the specified data
1028 * with the specified type for presentation on a socket buffer.
1029 */
1030struct mbuf *
1031sbcreatecontrol(p, size, type, level)
1032 caddr_t p;
1033 register int size;
1034 int type, level;
1035{
1036 register struct cmsghdr *cp;
1037 struct mbuf *m;
1038
1039 if ((m = m_get(M_DONTWAIT, MT_CONTROL)) == NULL)
1040 return ((struct mbuf *) NULL);
1041 cp = mtod(m, struct cmsghdr *);
1042 /* XXX check size? */
1043 (void)memcpy(CMSG_DATA(cp), p, size);
1044 size += sizeof(*cp);
1045 m->m_len = size;
1046 cp->cmsg_len = size;
1047 cp->cmsg_level = level;
1048 cp->cmsg_type = type;
1049 return (m);
1050}
1051
1052/*
1053 * Some routines that return EOPNOTSUPP for entry points that are not
1054 * supported by a protocol. Fill in as needed.
1055 */
1056int
1057pru_abort_notsupp(struct socket *so)
1058{
1059 return EOPNOTSUPP;
1060}
1061
1062
1063int
1064pru_accept_notsupp(struct socket *so, struct sockaddr **nam)
1065{
1066 return EOPNOTSUPP;
1067}
1068
1069int
1070pru_attach_notsupp(struct socket *so, int proto, struct proc *p)
1071{
1072 return EOPNOTSUPP;
1073}
1074
1075int
1076pru_bind_notsupp(struct socket *so, struct sockaddr *nam, struct proc *p)
1077{
1078 return EOPNOTSUPP;
1079}
1080
1081int
1082pru_connect_notsupp(struct socket *so, struct sockaddr *nam, struct proc *p)
1083{
1084 return EOPNOTSUPP;
1085}
1086
1087int
1088pru_connect2_notsupp(struct socket *so1, struct socket *so2)
1089{
1090 return EOPNOTSUPP;
1091}
1092
1093int
1094pru_control_notsupp(struct socket *so, u_long cmd, caddr_t data,
1095 struct ifnet *ifp, struct proc *p)
1096{
1097 return EOPNOTSUPP;
1098}
1099
1100int
1101pru_detach_notsupp(struct socket *so)
1102{
1103 return EOPNOTSUPP;
1104}
1105
1106int
1107pru_disconnect_notsupp(struct socket *so)
1108{
1109 return EOPNOTSUPP;
1110}
1111
1112int
1113pru_listen_notsupp(struct socket *so, struct proc *p)
1114{
1115 return EOPNOTSUPP;
1116}
1117
1118int
1119pru_peeraddr_notsupp(struct socket *so, struct sockaddr **nam)
1120{
1121 return EOPNOTSUPP;
1122}
1123
1124int
1125pru_rcvd_notsupp(struct socket *so, int flags)
1126{
1127 return EOPNOTSUPP;
1128}
1129
1130int
1131pru_rcvoob_notsupp(struct socket *so, struct mbuf *m, int flags)
1132{
1133 return EOPNOTSUPP;
1134}
1135
1136int
1137pru_send_notsupp(struct socket *so, int flags, struct mbuf *m,
1138 struct sockaddr *addr, struct mbuf *control,
1139 struct proc *p)
1140
1141{
1142 return EOPNOTSUPP;
1143}
1144
1145
1146/*
1147 * This isn't really a ``null'' operation, but it's the default one
1148 * and doesn't do anything destructive.
1149 */
1150int
1151pru_sense_null(struct socket *so, struct stat *sb)
1152{
1153 sb->st_blksize = so->so_snd.sb_hiwat;
1154 return 0;
1155}
1156
1157
1158int pru_sosend_notsupp(struct socket *so, struct sockaddr *addr,
1159 struct uio *uio, struct mbuf *top,
1160 struct mbuf *control, int flags)
1161
1162{
1163 return EOPNOTSUPP;
1164}
1165
1166int pru_soreceive_notsupp(struct socket *so,
1167 struct sockaddr **paddr,
1168 struct uio *uio, struct mbuf **mp0,
1169 struct mbuf **controlp, int *flagsp)
1170{
1171 return EOPNOTSUPP;
1172}
1173
1174int
1175
1176pru_shutdown_notsupp(struct socket *so)
1177{
1178 return EOPNOTSUPP;
1179}
1180
1181int
1182pru_sockaddr_notsupp(struct socket *so, struct sockaddr **nam)
1183{
1184 return EOPNOTSUPP;
1185}
1186
1187int pru_sosend(struct socket *so, struct sockaddr *addr,
1188 struct uio *uio, struct mbuf *top,
1189 struct mbuf *control, int flags)
1190{
1191 return EOPNOTSUPP;
1192}
1193
1194int pru_soreceive(struct socket *so,
1195 struct sockaddr **paddr,
1196 struct uio *uio, struct mbuf **mp0,
1197 struct mbuf **controlp, int *flagsp)
1198{
1199 return EOPNOTSUPP;
1200}
1201
1202
1203int pru_sopoll_notsupp(struct socket *so, int events,
1204 struct ucred *cred)
1205{
1206 return EOPNOTSUPP;
1207}
1208
1209
1210
0b4e3aa0
A
1211/*
1212 * Do we need to notify the other side when I/O is possible?
1213 */
1214
1215int
1216sb_notify(struct sockbuf *sb)
1217{
1218 return ((sb->sb_flags & (SB_WAIT|SB_SEL|SB_ASYNC|SB_UPCALL)) != 0);
1219}
1220
1221/*
1222 * How much space is there in a socket buffer (so->so_snd or so->so_rcv)?
1223 * This is problematical if the fields are unsigned, as the space might
1224 * still be negative (cc > hiwat or mbcnt > mbmax). Should detect
1225 * overflow and return 0. Should use "lmin" but it doesn't exist now.
1226 */
1227long
1228sbspace(struct sockbuf *sb)
1229{
1230 return ((long) imin((int)(sb->sb_hiwat - sb->sb_cc),
1231 (int)(sb->sb_mbmax - sb->sb_mbcnt)));
1232}
1233
1234/* do we have to send all at once on a socket? */
1235int
1236sosendallatonce(struct socket *so)
1237{
1238 return (so->so_proto->pr_flags & PR_ATOMIC);
1239}
1240
1241/* can we read something from so? */
1242int
1243soreadable(struct socket *so)
1244{
1245 return (so->so_rcv.sb_cc >= so->so_rcv.sb_lowat ||
1246 (so->so_state & SS_CANTRCVMORE) ||
1247 so->so_comp.tqh_first || so->so_error);
1248}
1249
1250/* can we write something to so? */
1251
1252int
1253sowriteable(struct socket *so)
1254{
1255 return ((sbspace(&(so)->so_snd) >= (so)->so_snd.sb_lowat &&
1256 ((so->so_state&SS_ISCONNECTED) ||
1257 (so->so_proto->pr_flags&PR_CONNREQUIRED)==0)) ||
1258 (so->so_state & SS_CANTSENDMORE) ||
1259 so->so_error);
1260}
1261
1262/* adjust counters in sb reflecting allocation of m */
1263
1264void
1265sballoc(struct sockbuf *sb, struct mbuf *m)
1266{
1267 sb->sb_cc += m->m_len;
1268 sb->sb_mbcnt += MSIZE;
1269 if (m->m_flags & M_EXT)
1270 sb->sb_mbcnt += m->m_ext.ext_size;
1271}
1272
1273/* adjust counters in sb reflecting freeing of m */
1274void
1275sbfree(struct sockbuf *sb, struct mbuf *m)
1276{
1277 sb->sb_cc -= m->m_len;
1278 sb->sb_mbcnt -= MSIZE;
1279 if (m->m_flags & M_EXT)
1280 sb->sb_mbcnt -= m->m_ext.ext_size;
1281}
1282
1283/*
1284 * Set lock on sockbuf sb; sleep if lock is already held.
1285 * Unless SB_NOINTR is set on sockbuf, sleep is interruptible.
1286 * Returns error without lock if sleep is interrupted.
1287 */
1288int
1289sblock(struct sockbuf *sb, int wf)
1290{
1291 return(sb->sb_flags & SB_LOCK ?
1292 ((wf == M_WAIT) ? sb_lock(sb) : EWOULDBLOCK) :
1293 (sb->sb_flags |= SB_LOCK), 0);
1294}
1295
1296/* release lock on sockbuf sb */
1297void
1298sbunlock(struct sockbuf *sb)
1299{
1300 sb->sb_flags &= ~SB_LOCK;
1301 if (sb->sb_flags & SB_WANT) {
1302 sb->sb_flags &= ~SB_WANT;
1303 wakeup((caddr_t)&(sb)->sb_flags);
1304 }
1305}
1306
1307void
1308sorwakeup(struct socket * so)
1309{
1310 if (sb_notify(&so->so_rcv))
1311 sowakeup(so, &so->so_rcv);
1312}
1313
1314void
1315sowwakeup(struct socket * so)
1316{
1317 if (sb_notify(&so->so_snd))
1318 sowakeup(so, &so->so_snd);
1319}
1320
1c79356b
A
1321/*
1322 * Make a copy of a sockaddr in a malloced buffer of type M_SONAME.
1323 */
1324struct sockaddr *
1325dup_sockaddr(sa, canwait)
1326 struct sockaddr *sa;
1327 int canwait;
1328{
1329 struct sockaddr *sa2;
1330
1331 MALLOC(sa2, struct sockaddr *, sa->sa_len, M_SONAME,
1332 canwait ? M_WAITOK : M_NOWAIT);
1333 if (sa2)
1334 bcopy(sa, sa2, sa->sa_len);
1335 return sa2;
1336}
1337
1338/*
1339 * Create an external-format (``xsocket'') structure using the information
1340 * in the kernel-format socket structure pointed to by so. This is done
1341 * to reduce the spew of irrelevant information over this interface,
1342 * to isolate user code from changes in the kernel structure, and
1343 * potentially to provide information-hiding if we decide that
1344 * some of this information should be hidden from users.
1345 */
1346void
1347sotoxsocket(struct socket *so, struct xsocket *xso)
1348{
1349 xso->xso_len = sizeof *xso;
1350 xso->xso_so = so;
1351 xso->so_type = so->so_type;
1352 xso->so_options = so->so_options;
1353 xso->so_linger = so->so_linger;
1354 xso->so_state = so->so_state;
1355 xso->so_pcb = so->so_pcb;
1356 xso->xso_protocol = so->so_proto->pr_protocol;
1357 xso->xso_family = so->so_proto->pr_domain->dom_family;
1358 xso->so_qlen = so->so_qlen;
1359 xso->so_incqlen = so->so_incqlen;
1360 xso->so_qlimit = so->so_qlimit;
1361 xso->so_timeo = so->so_timeo;
1362 xso->so_error = so->so_error;
1363 xso->so_pgid = so->so_pgid;
1364 xso->so_oobmark = so->so_oobmark;
1365 sbtoxsockbuf(&so->so_snd, &xso->so_snd);
1366 sbtoxsockbuf(&so->so_rcv, &xso->so_rcv);
1367 xso->so_uid = so->so_uid;
1368}
1369
1370/*
1371 * This does the same for sockbufs. Note that the xsockbuf structure,
1372 * since it is always embedded in a socket, does not include a self
1373 * pointer nor a length. We make this entry point public in case
1374 * some other mechanism needs it.
1375 */
1376void
1377sbtoxsockbuf(struct sockbuf *sb, struct xsockbuf *xsb)
1378{
1379 xsb->sb_cc = sb->sb_cc;
1380 xsb->sb_hiwat = sb->sb_hiwat;
1381 xsb->sb_mbcnt = sb->sb_mbcnt;
1382 xsb->sb_mbmax = sb->sb_mbmax;
1383 xsb->sb_lowat = sb->sb_lowat;
1384 xsb->sb_flags = sb->sb_flags;
1385 xsb->sb_timeo = sb->sb_timeo;
1386}
1387
1388/*
1389 * Here is the definition of some of the basic objects in the kern.ipc
1390 * branch of the MIB.
1391 */
1392
1393
1394SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW, 0, "IPC");
1395
1396/* This takes the place of kern.maxsockbuf, which moved to kern.ipc. */
1397static int dummy;
1398SYSCTL_INT(_kern, KERN_DUMMY, dummy, CTLFLAG_RW, &dummy, 0, "");
1399
1400SYSCTL_INT(_kern_ipc, KIPC_MAXSOCKBUF, maxsockbuf, CTLFLAG_RW, &sb_max, 0, "");
1401SYSCTL_INT(_kern_ipc, OID_AUTO, maxsockets, CTLFLAG_RD, &maxsockets, 0, "");
1402SYSCTL_INT(_kern_ipc, KIPC_SOCKBUF_WASTE, sockbuf_waste_factor, CTLFLAG_RW,
1403 &sb_efficiency, 0, "");
1404SYSCTL_INT(_kern_ipc, KIPC_NMBCLUSTERS, nmbclusters, CTLFLAG_RD, &nmbclusters, 0, "");
1405