]>
Commit | Line | Data |
---|---|---|
cb323159 A |
1 | typedef struct _IODataQueueEntry { |
2 | uint32_t size; | |
3 | uint8_t data[0]; | |
4 | } IODataQueueEntry; | |
5 | ||
6 | #define DATA_QUEUE_ENTRY_HEADER_SIZE sizeof(IODataQueueEntry) | |
7 | ||
8 | typedef struct _IODataQueueMemory { | |
9 | volatile uint32_t head; | |
10 | volatile uint32_t tail; | |
11 | volatile uint8_t needServicedCallback; | |
12 | volatile uint8_t _resv[31]; | |
13 | IODataQueueEntry queue[0]; | |
14 | } IODataQueueMemory; | |
15 | ||
16 | struct IODataQueueDispatchSource_IVars { | |
17 | IODataQueueMemory * dataQueue; | |
18 | IODataQueueDispatchSource * source; | |
19 | // IODispatchQueue * queue; | |
20 | IOMemoryDescriptor * memory; | |
21 | OSAction * dataAvailableAction; | |
22 | OSAction * dataServicedAction; | |
23 | uint64_t options; | |
24 | uint32_t queueByteCount; | |
25 | ||
26 | #if !KERNEL | |
27 | bool enable; | |
28 | bool canceled; | |
29 | #endif | |
30 | }; | |
31 | ||
32 | bool | |
33 | IODataQueueDispatchSource::init() | |
34 | { | |
35 | if (!super::init()) { | |
36 | return false; | |
37 | } | |
38 | ||
39 | ivars = IONewZero(IODataQueueDispatchSource_IVars, 1); | |
40 | ivars->source = this; | |
41 | ||
42 | #if !KERNEL | |
43 | kern_return_t ret; | |
44 | ||
45 | ret = CopyMemory(&ivars->memory); | |
46 | assert(kIOReturnSuccess == ret); | |
47 | ||
48 | uint64_t address; | |
49 | uint64_t length; | |
50 | ||
51 | ret = ivars->memory->Map(0, 0, 0, 0, &address, &length); | |
52 | assert(kIOReturnSuccess == ret); | |
53 | ivars->dataQueue = (typeof(ivars->dataQueue))(uintptr_t) address; | |
54 | ivars->queueByteCount = length; | |
55 | #endif | |
56 | ||
57 | return true; | |
58 | } | |
59 | ||
60 | kern_return_t | |
61 | IMPL(IODataQueueDispatchSource, CheckForWork) | |
62 | { | |
63 | IOReturn ret = kIOReturnNotReady; | |
64 | ||
65 | return ret; | |
66 | } | |
67 | ||
68 | #if KERNEL | |
69 | ||
70 | kern_return_t | |
71 | IMPL(IODataQueueDispatchSource, Create) | |
72 | { | |
73 | IODataQueueDispatchSource * inst; | |
74 | IOBufferMemoryDescriptor * bmd; | |
75 | ||
76 | if (3 & queueByteCount) { | |
77 | return kIOReturnBadArgument; | |
78 | } | |
79 | inst = OSTypeAlloc(IODataQueueDispatchSource); | |
80 | if (!inst) { | |
81 | return kIOReturnNoMemory; | |
82 | } | |
83 | if (!inst->init()) { | |
84 | inst->release(); | |
85 | return kIOReturnError; | |
86 | } | |
87 | ||
88 | bmd = IOBufferMemoryDescriptor::withOptions( | |
89 | kIODirectionOutIn | kIOMemoryKernelUserShared, | |
90 | queueByteCount, page_size); | |
91 | if (!bmd) { | |
92 | inst->release(); | |
93 | return kIOReturnNoMemory; | |
94 | } | |
95 | inst->ivars->memory = bmd; | |
96 | inst->ivars->queueByteCount = queueByteCount; | |
97 | inst->ivars->options = 0; | |
98 | inst->ivars->dataQueue = (typeof(inst->ivars->dataQueue))bmd->getBytesNoCopy(); | |
99 | ||
100 | *source = inst; | |
101 | ||
102 | return kIOReturnSuccess; | |
103 | } | |
104 | ||
105 | kern_return_t | |
106 | IMPL(IODataQueueDispatchSource, CopyMemory) | |
107 | { | |
108 | kern_return_t ret; | |
109 | IOMemoryDescriptor * result; | |
110 | ||
111 | result = ivars->memory; | |
112 | if (result) { | |
113 | result->retain(); | |
114 | ret = kIOReturnSuccess; | |
115 | } else { | |
116 | ret = kIOReturnNotReady; | |
117 | } | |
118 | *memory = result; | |
119 | ||
120 | return ret; | |
121 | } | |
122 | ||
123 | kern_return_t | |
124 | IMPL(IODataQueueDispatchSource, CopyDataAvailableHandler) | |
125 | { | |
126 | kern_return_t ret; | |
127 | OSAction * result; | |
128 | ||
129 | result = ivars->dataAvailableAction; | |
130 | if (result) { | |
131 | result->retain(); | |
132 | ret = kIOReturnSuccess; | |
133 | } else { | |
134 | ret = kIOReturnNotReady; | |
135 | } | |
136 | *action = result; | |
137 | ||
138 | return ret; | |
139 | } | |
140 | ||
141 | kern_return_t | |
142 | IMPL(IODataQueueDispatchSource, CopyDataServicedHandler) | |
143 | { | |
144 | kern_return_t ret; | |
145 | OSAction * result; | |
146 | ||
147 | result = ivars->dataServicedAction; | |
148 | if (result) { | |
149 | result->retain(); | |
150 | ret = kIOReturnSuccess; | |
151 | } else { | |
152 | ret = kIOReturnNotReady; | |
153 | } | |
154 | *action = result; | |
155 | return ret; | |
156 | } | |
157 | ||
158 | kern_return_t | |
159 | IMPL(IODataQueueDispatchSource, SetDataAvailableHandler) | |
160 | { | |
161 | IOReturn ret; | |
162 | OSAction * oldAction; | |
163 | ||
164 | oldAction = ivars->dataAvailableAction; | |
165 | if (oldAction && OSCompareAndSwapPtr(oldAction, NULL, &ivars->dataAvailableAction)) { | |
166 | oldAction->release(); | |
167 | } | |
168 | if (action) { | |
169 | action->retain(); | |
170 | ivars->dataAvailableAction = action; | |
171 | if (IsDataAvailable()) { | |
172 | DataAvailable(ivars->dataAvailableAction); | |
173 | } | |
174 | } | |
175 | ret = kIOReturnSuccess; | |
176 | ||
177 | return ret; | |
178 | } | |
179 | ||
180 | kern_return_t | |
181 | IMPL(IODataQueueDispatchSource, SetDataServicedHandler) | |
182 | { | |
183 | IOReturn ret; | |
184 | OSAction * oldAction; | |
185 | ||
186 | oldAction = ivars->dataServicedAction; | |
187 | if (oldAction && OSCompareAndSwapPtr(oldAction, NULL, &ivars->dataServicedAction)) { | |
188 | oldAction->release(); | |
189 | } | |
190 | if (action) { | |
191 | action->retain(); | |
192 | ivars->dataServicedAction = action; | |
193 | } | |
194 | ret = kIOReturnSuccess; | |
195 | ||
196 | return ret; | |
197 | } | |
198 | ||
199 | #endif /* KERNEL */ | |
200 | ||
201 | void | |
202 | IODataQueueDispatchSource::SendDataAvailable(void) | |
203 | { | |
204 | IOReturn ret; | |
205 | ||
206 | if (!ivars->dataAvailableAction) { | |
207 | ret = CopyDataAvailableHandler(&ivars->dataAvailableAction); | |
208 | if (kIOReturnSuccess != ret) { | |
209 | ivars->dataAvailableAction = NULL; | |
210 | } | |
211 | } | |
212 | if (ivars->dataAvailableAction) { | |
213 | DataAvailable(ivars->dataAvailableAction); | |
214 | } | |
215 | } | |
216 | ||
217 | void | |
218 | IODataQueueDispatchSource::SendDataServiced(void) | |
219 | { | |
220 | IOReturn ret; | |
221 | ||
222 | if (!ivars->dataServicedAction) { | |
223 | ret = CopyDataServicedHandler(&ivars->dataServicedAction); | |
224 | if (kIOReturnSuccess != ret) { | |
225 | ivars->dataServicedAction = NULL; | |
226 | } | |
227 | } | |
228 | if (ivars->dataServicedAction) { | |
229 | ivars->dataQueue->needServicedCallback = false; | |
230 | DataServiced(ivars->dataServicedAction); | |
231 | } | |
232 | } | |
233 | ||
234 | kern_return_t | |
235 | IMPL(IODataQueueDispatchSource, SetEnableWithCompletion) | |
236 | { | |
237 | IOReturn ret; | |
238 | ||
239 | #if !KERNEL | |
240 | ivars->enable = enable; | |
241 | #endif | |
242 | ||
243 | ret = kIOReturnSuccess; | |
244 | return ret; | |
245 | } | |
246 | ||
247 | void | |
248 | IODataQueueDispatchSource::free() | |
249 | { | |
250 | OSSafeReleaseNULL(ivars->memory); | |
251 | OSSafeReleaseNULL(ivars->dataAvailableAction); | |
252 | OSSafeReleaseNULL(ivars->dataServicedAction); | |
253 | IOSafeDeleteNULL(ivars, IODataQueueDispatchSource_IVars, 1); | |
254 | super::free(); | |
255 | } | |
256 | ||
257 | kern_return_t | |
258 | IMPL(IODataQueueDispatchSource, Cancel) | |
259 | { | |
260 | return kIOReturnSuccess; | |
261 | } | |
262 | ||
263 | bool | |
264 | IODataQueueDispatchSource::IsDataAvailable(void) | |
265 | { | |
266 | IODataQueueMemory *dataQueue = ivars->dataQueue; | |
267 | ||
268 | return dataQueue && (dataQueue->head != dataQueue->tail); | |
269 | } | |
270 | ||
271 | kern_return_t | |
272 | IODataQueueDispatchSource::Peek(IODataQueueClientDequeueEntryBlock callback) | |
273 | { | |
274 | IODataQueueEntry * entry = NULL; | |
275 | IODataQueueMemory * dataQueue; | |
276 | uint32_t callerDataSize; | |
277 | uint32_t dataSize; | |
278 | uint32_t headOffset; | |
279 | uint32_t tailOffset; | |
280 | ||
281 | dataQueue = ivars->dataQueue; | |
282 | if (!dataQueue) { | |
283 | return kIOReturnNoMemory; | |
284 | } | |
285 | ||
286 | // Read head and tail with acquire barrier | |
287 | headOffset = __c11_atomic_load((_Atomic uint32_t *)&dataQueue->head, __ATOMIC_RELAXED); | |
288 | tailOffset = __c11_atomic_load((_Atomic uint32_t *)&dataQueue->tail, __ATOMIC_ACQUIRE); | |
289 | ||
290 | if (headOffset != tailOffset) { | |
291 | IODataQueueEntry * head = NULL; | |
292 | uint32_t headSize = 0; | |
293 | uint32_t queueSize = ivars->queueByteCount; | |
294 | ||
295 | if (headOffset > queueSize) { | |
296 | return kIOReturnError; | |
297 | } | |
298 | ||
299 | head = (IODataQueueEntry *)((uintptr_t)dataQueue->queue + headOffset); | |
300 | callerDataSize = head->size; | |
301 | if (os_add_overflow(3, callerDataSize, &headSize)) { | |
302 | return kIOReturnError; | |
303 | } | |
304 | headSize &= ~3U; | |
305 | ||
306 | // Check if there's enough room before the end of the queue for a header. | |
307 | // If there is room, check if there's enough room to hold the header and | |
308 | // the data. | |
309 | ||
310 | if ((headOffset > UINT32_MAX - DATA_QUEUE_ENTRY_HEADER_SIZE) || | |
311 | (headOffset + DATA_QUEUE_ENTRY_HEADER_SIZE > queueSize) || | |
312 | (headOffset + DATA_QUEUE_ENTRY_HEADER_SIZE > UINT32_MAX - headSize) || | |
313 | (headOffset + headSize + DATA_QUEUE_ENTRY_HEADER_SIZE > queueSize)) { | |
314 | // No room for the header or the data, wrap to the beginning of the queue. | |
315 | // Note: wrapping even with the UINT32_MAX checks, as we have to support | |
316 | // queueSize of UINT32_MAX | |
317 | entry = dataQueue->queue; | |
318 | callerDataSize = entry->size; | |
319 | dataSize = entry->size; | |
320 | if (os_add_overflow(3, callerDataSize, &dataSize)) { | |
321 | return kIOReturnError; | |
322 | } | |
323 | dataSize &= ~3U; | |
324 | ||
325 | if ((dataSize > UINT32_MAX - DATA_QUEUE_ENTRY_HEADER_SIZE) || | |
326 | (dataSize + DATA_QUEUE_ENTRY_HEADER_SIZE > queueSize)) { | |
327 | return kIOReturnError; | |
328 | } | |
329 | ||
330 | callback(&entry->data, callerDataSize); | |
331 | return kIOReturnSuccess; | |
332 | } else { | |
333 | callback(&head->data, callerDataSize); | |
334 | return kIOReturnSuccess; | |
335 | } | |
336 | } | |
337 | ||
338 | return kIOReturnUnderrun; | |
339 | } | |
340 | ||
341 | kern_return_t | |
342 | IODataQueueDispatchSource::Dequeue(IODataQueueClientDequeueEntryBlock callback) | |
343 | { | |
344 | kern_return_t ret; | |
345 | bool sendDataServiced; | |
346 | ||
347 | sendDataServiced = false; | |
348 | ret = DequeueWithCoalesce(&sendDataServiced, callback); | |
349 | if (sendDataServiced) { | |
350 | SendDataServiced(); | |
351 | } | |
352 | return ret; | |
353 | } | |
354 | ||
355 | kern_return_t | |
356 | IODataQueueDispatchSource::DequeueWithCoalesce(bool * sendDataServiced, | |
357 | IODataQueueClientDequeueEntryBlock callback) | |
358 | { | |
359 | IOReturn retVal = kIOReturnSuccess; | |
360 | IODataQueueEntry * entry = NULL; | |
361 | IODataQueueMemory * dataQueue; | |
362 | uint32_t callerDataSize; | |
363 | uint32_t dataSize = 0; | |
364 | uint32_t headOffset = 0; | |
365 | uint32_t tailOffset = 0; | |
366 | uint32_t newHeadOffset = 0; | |
367 | ||
368 | dataQueue = ivars->dataQueue; | |
369 | if (!dataQueue) { | |
370 | return kIOReturnNoMemory; | |
371 | } | |
372 | ||
373 | // Read head and tail with acquire barrier | |
374 | headOffset = __c11_atomic_load((_Atomic uint32_t *)&dataQueue->head, __ATOMIC_RELAXED); | |
375 | tailOffset = __c11_atomic_load((_Atomic uint32_t *)&dataQueue->tail, __ATOMIC_ACQUIRE); | |
376 | ||
377 | if (headOffset != tailOffset) { | |
378 | IODataQueueEntry * head = NULL; | |
379 | uint32_t headSize = 0; | |
380 | uint32_t queueSize = ivars->queueByteCount; | |
381 | ||
382 | if (headOffset > queueSize) { | |
383 | return kIOReturnError; | |
384 | } | |
385 | ||
386 | head = (IODataQueueEntry *)((uintptr_t)dataQueue->queue + headOffset); | |
387 | callerDataSize = head->size; | |
388 | if (os_add_overflow(3, callerDataSize, &headSize)) { | |
389 | return kIOReturnError; | |
390 | } | |
391 | headSize &= ~3U; | |
392 | ||
393 | // we wrapped around to beginning, so read from there | |
394 | // either there was not even room for the header | |
395 | if ((headOffset > UINT32_MAX - DATA_QUEUE_ENTRY_HEADER_SIZE) || | |
396 | (headOffset + DATA_QUEUE_ENTRY_HEADER_SIZE > queueSize) || | |
397 | // or there was room for the header, but not for the data | |
398 | (headOffset + DATA_QUEUE_ENTRY_HEADER_SIZE > UINT32_MAX - headSize) || | |
399 | (headOffset + headSize + DATA_QUEUE_ENTRY_HEADER_SIZE > queueSize)) { | |
400 | // Note: we have to wrap to the beginning even with the UINT32_MAX checks | |
401 | // because we have to support a queueSize of UINT32_MAX. | |
402 | entry = dataQueue->queue; | |
403 | callerDataSize = entry->size; | |
404 | ||
405 | if (os_add_overflow(callerDataSize, 3, &dataSize)) { | |
406 | return kIOReturnError; | |
407 | } | |
408 | dataSize &= ~3U; | |
409 | if ((dataSize > UINT32_MAX - DATA_QUEUE_ENTRY_HEADER_SIZE) || | |
410 | (dataSize + DATA_QUEUE_ENTRY_HEADER_SIZE > queueSize)) { | |
411 | return kIOReturnError; | |
412 | } | |
413 | newHeadOffset = dataSize + DATA_QUEUE_ENTRY_HEADER_SIZE; | |
414 | // else it is at the end | |
415 | } else { | |
416 | entry = head; | |
417 | ||
418 | if ((headSize > UINT32_MAX - DATA_QUEUE_ENTRY_HEADER_SIZE) || | |
419 | (headSize + DATA_QUEUE_ENTRY_HEADER_SIZE > UINT32_MAX - headOffset) || | |
420 | (headSize + DATA_QUEUE_ENTRY_HEADER_SIZE + headOffset > queueSize)) { | |
421 | return kIOReturnError; | |
422 | } | |
423 | newHeadOffset = headOffset + headSize + DATA_QUEUE_ENTRY_HEADER_SIZE; | |
424 | } | |
425 | } else { | |
426 | // empty queue | |
427 | if (dataQueue->needServicedCallback) { | |
428 | *sendDataServiced = true; | |
429 | } | |
430 | return kIOReturnUnderrun; | |
431 | } | |
432 | ||
433 | callback(&entry->data, callerDataSize); | |
434 | if (dataQueue->needServicedCallback) { | |
435 | *sendDataServiced = true; | |
436 | } | |
437 | ||
438 | __c11_atomic_store((_Atomic uint32_t *)&dataQueue->head, newHeadOffset, __ATOMIC_RELEASE); | |
439 | ||
440 | if (newHeadOffset == tailOffset) { | |
441 | // | |
442 | // If we are making the queue empty, then we need to make sure | |
443 | // that either the enqueuer notices, or we notice the enqueue | |
444 | // that raced with our making of the queue empty. | |
445 | // | |
446 | __c11_atomic_thread_fence(__ATOMIC_SEQ_CST); | |
447 | } | |
448 | ||
449 | return retVal; | |
450 | } | |
451 | ||
452 | kern_return_t | |
453 | IODataQueueDispatchSource::Enqueue(uint32_t callerDataSize, | |
454 | IODataQueueClientEnqueueEntryBlock callback) | |
455 | { | |
456 | kern_return_t ret; | |
457 | bool sendDataAvailable; | |
458 | ||
459 | sendDataAvailable = false; | |
460 | ret = EnqueueWithCoalesce(callerDataSize, &sendDataAvailable, callback); | |
461 | if (sendDataAvailable) { | |
462 | SendDataAvailable(); | |
463 | } | |
464 | return ret; | |
465 | } | |
466 | ||
467 | kern_return_t | |
468 | IODataQueueDispatchSource::EnqueueWithCoalesce(uint32_t callerDataSize, | |
469 | bool * sendDataAvailable, | |
470 | IODataQueueClientEnqueueEntryBlock callback) | |
471 | { | |
472 | IODataQueueMemory * dataQueue; | |
473 | IODataQueueEntry * entry; | |
474 | uint32_t head; | |
475 | uint32_t tail; | |
476 | uint32_t newTail; | |
477 | uint32_t dataSize; | |
478 | uint32_t queueSize; | |
479 | uint32_t entrySize; | |
480 | IOReturn retVal = kIOReturnSuccess; | |
481 | ||
482 | dataQueue = ivars->dataQueue; | |
483 | if (!dataQueue) { | |
484 | return kIOReturnNoMemory; | |
485 | } | |
486 | queueSize = ivars->queueByteCount; | |
487 | ||
488 | // Force a single read of head and tail | |
489 | tail = __c11_atomic_load((_Atomic uint32_t *)&dataQueue->tail, __ATOMIC_RELAXED); | |
490 | head = __c11_atomic_load((_Atomic uint32_t *)&dataQueue->head, __ATOMIC_ACQUIRE); | |
491 | ||
492 | if (os_add_overflow(callerDataSize, 3, &dataSize)) { | |
493 | return kIOReturnOverrun; | |
494 | } | |
495 | dataSize &= ~3U; | |
496 | ||
497 | // Check for overflow of entrySize | |
498 | if (os_add_overflow(DATA_QUEUE_ENTRY_HEADER_SIZE, dataSize, &entrySize)) { | |
499 | return kIOReturnOverrun; | |
500 | } | |
501 | ||
502 | // Check for underflow of (getQueueSize() - tail) | |
503 | if (queueSize < tail || queueSize < head) { | |
504 | return kIOReturnUnderrun; | |
505 | } | |
506 | ||
507 | newTail = tail; | |
508 | if (tail >= head) { | |
509 | // Is there enough room at the end for the entry? | |
510 | if ((entrySize <= (UINT32_MAX - tail)) && | |
511 | ((tail + entrySize) <= queueSize)) { | |
512 | entry = (IODataQueueEntry *)((uintptr_t)dataQueue->queue + tail); | |
513 | ||
514 | callback(&entry->data, callerDataSize); | |
515 | ||
516 | entry->size = callerDataSize; | |
517 | ||
518 | // The tail can be out of bound when the size of the new entry | |
519 | // exactly matches the available space at the end of the queue. | |
520 | // The tail can range from 0 to queueSize inclusive. | |
521 | ||
522 | newTail = tail + entrySize; | |
523 | } else if (head > entrySize) { // Is there enough room at the beginning? | |
524 | entry = (IODataQueueEntry *)((uintptr_t)dataQueue->queue); | |
525 | ||
526 | callback(&entry->data, callerDataSize); | |
527 | ||
528 | // Wrap around to the beginning, but do not allow the tail to catch | |
529 | // up to the head. | |
530 | ||
531 | entry->size = callerDataSize; | |
532 | ||
533 | // We need to make sure that there is enough room to set the size before | |
534 | // doing this. The user client checks for this and will look for the size | |
535 | // at the beginning if there isn't room for it at the end. | |
536 | ||
537 | if ((queueSize - tail) >= DATA_QUEUE_ENTRY_HEADER_SIZE) { | |
538 | ((IODataQueueEntry *)((uintptr_t)dataQueue->queue + tail))->size = dataSize; | |
539 | } | |
540 | ||
541 | newTail = entrySize; | |
542 | } else { | |
543 | retVal = kIOReturnOverrun; // queue is full | |
544 | } | |
545 | } else { | |
546 | // Do not allow the tail to catch up to the head when the queue is full. | |
547 | // That's why the comparison uses a '>' rather than '>='. | |
548 | ||
549 | if ((head - tail) > entrySize) { | |
550 | entry = (IODataQueueEntry *)((uintptr_t)dataQueue->queue + tail); | |
551 | ||
552 | callback(&entry->data, callerDataSize); | |
553 | ||
554 | entry->size = callerDataSize; | |
555 | ||
556 | newTail = tail + entrySize; | |
557 | } else { | |
558 | retVal = kIOReturnOverrun; // queue is full | |
559 | } | |
560 | } | |
561 | ||
562 | // Send notification (via mach message) that data is available. | |
563 | ||
564 | if (retVal == kIOReturnSuccess) { | |
565 | // Publish the data we just enqueued | |
566 | __c11_atomic_store((_Atomic uint32_t *)&dataQueue->tail, newTail, __ATOMIC_RELEASE); | |
567 | ||
568 | if (tail != head) { | |
569 | // | |
570 | // The memory barrier below pairs with the one in dequeue | |
571 | // so that either our store to the tail cannot be missed by | |
572 | // the next dequeue attempt, or we will observe the dequeuer | |
573 | // making the queue empty. | |
574 | // | |
575 | // Of course, if we already think the queue is empty, | |
576 | // there's no point paying this extra cost. | |
577 | // | |
578 | __c11_atomic_thread_fence(__ATOMIC_SEQ_CST); | |
579 | head = __c11_atomic_load((_Atomic uint32_t *)&dataQueue->head, __ATOMIC_RELAXED); | |
580 | } | |
581 | ||
582 | if (tail == head) { | |
583 | // Send notification that data is now available. | |
584 | *sendDataAvailable = true; | |
585 | retVal = kIOReturnSuccess; | |
586 | } | |
587 | } else if (retVal == kIOReturnOverrun) { | |
588 | // ask to be notified of Dequeue() | |
589 | dataQueue->needServicedCallback = true; | |
590 | *sendDataAvailable = true; | |
591 | } | |
592 | ||
593 | return retVal; | |
594 | } |