]>
Commit | Line | Data |
---|---|---|
1c79356b | 1 | /* |
b0d623f7 | 2 | * Copyright (c) 2000-2008 Apple Inc. All rights reserved. |
5d5c5d0d | 3 | * |
2d21ac55 | 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
0a7de745 | 5 | * |
2d21ac55 A |
6 | * This file contains Original Code and/or Modifications of Original Code |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
0a7de745 | 14 | * |
2d21ac55 A |
15 | * Please obtain a copy of the License at |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
0a7de745 | 17 | * |
2d21ac55 A |
18 | * The Original Code and all software distributed under the License are |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
8f6c56a5 A |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
2d21ac55 A |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
0a7de745 | 25 | * |
2d21ac55 | 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
1c79356b A |
27 | */ |
28 | /* Copyright (c) 1995 NeXT Computer, Inc. All Rights Reserved */ | |
29 | /* | |
30 | * Copyright (c) 1982, 1986, 1989, 1993 | |
31 | * The Regents of the University of California. All rights reserved. | |
32 | * | |
33 | * Redistribution and use in source and binary forms, with or without | |
34 | * modification, are permitted provided that the following conditions | |
35 | * are met: | |
36 | * 1. Redistributions of source code must retain the above copyright | |
37 | * notice, this list of conditions and the following disclaimer. | |
38 | * 2. Redistributions in binary form must reproduce the above copyright | |
39 | * notice, this list of conditions and the following disclaimer in the | |
40 | * documentation and/or other materials provided with the distribution. | |
41 | * 3. All advertising materials mentioning features or use of this software | |
42 | * must display the following acknowledgement: | |
43 | * This product includes software developed by the University of | |
44 | * California, Berkeley and its contributors. | |
45 | * 4. Neither the name of the University nor the names of its contributors | |
46 | * may be used to endorse or promote products derived from this software | |
47 | * without specific prior written permission. | |
48 | * | |
49 | * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND | |
50 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
51 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |
52 | * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE | |
53 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | |
54 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | |
55 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | |
56 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | |
57 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | |
58 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | |
59 | * SUCH DAMAGE. | |
60 | * | |
61 | * @(#)kern_time.c 8.4 (Berkeley) 5/26/95 | |
62 | */ | |
2d21ac55 A |
63 | /* |
64 | * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce | |
65 | * support for mandatory and extensible security protections. This notice | |
66 | * is included in support of clause 2.2 (b) of the Apple Public License, | |
67 | * Version 2.0. | |
68 | */ | |
1c79356b A |
69 | |
70 | #include <sys/param.h> | |
71 | #include <sys/resourcevar.h> | |
72 | #include <sys/kernel.h> | |
73 | #include <sys/systm.h> | |
91447636 A |
74 | #include <sys/proc_internal.h> |
75 | #include <sys/kauth.h> | |
1c79356b | 76 | #include <sys/vnode.h> |
b0d623f7 | 77 | #include <sys/time.h> |
6d2010ae | 78 | #include <sys/priv.h> |
1c79356b | 79 | |
91447636 A |
80 | #include <sys/mount_internal.h> |
81 | #include <sys/sysproto.h> | |
82 | #include <sys/signalvar.h> | |
39236c6e | 83 | #include <sys/protosw.h> /* for net_uptime2timeval() */ |
1c79356b | 84 | |
1c79356b | 85 | #include <kern/clock.h> |
2d21ac55 | 86 | #include <kern/task.h> |
91447636 | 87 | #include <kern/thread_call.h> |
2d21ac55 A |
88 | #if CONFIG_MACF |
89 | #include <security/mac_framework.h> | |
90 | #endif | |
5ba3f43e A |
91 | #include <IOKit/IOBSD.h> |
92 | #include <sys/time.h> | |
0a7de745 | 93 | #include <kern/remote_time.h> |
1c79356b | 94 | |
0a7de745 | 95 | #define HZ 100 /* XXX */ |
1c79356b | 96 | |
9bccf70c | 97 | /* simple lock used to access timezone, tz structure */ |
91447636 A |
98 | lck_spin_t * tz_slock; |
99 | lck_grp_t * tz_slock_grp; | |
100 | lck_attr_t * tz_slock_attr; | |
0a7de745 | 101 | lck_grp_attr_t *tz_slock_grp_attr; |
91447636 | 102 | |
0a7de745 A |
103 | static void setthetime( |
104 | struct timeval *tv); | |
91447636 | 105 | |
39236c6e | 106 | void time_zone_slock_init(void); |
d9a64523 | 107 | static boolean_t timeval_fixusec(struct timeval *t1); |
91447636 | 108 | |
39037602 | 109 | /* |
1c79356b A |
110 | * Time of day and interval timer support. |
111 | * | |
112 | * These routines provide the kernel entry points to get and set | |
113 | * the time-of-day and per-process interval timers. Subroutines | |
114 | * here provide support for adding and subtracting timeval structures | |
115 | * and decrementing interval timers, optionally reloading the interval | |
116 | * timers when they expire. | |
117 | */ | |
1c79356b A |
118 | /* ARGSUSED */ |
119 | int | |
0c530ab8 | 120 | gettimeofday( |
0a7de745 A |
121 | struct proc *p, |
122 | struct gettimeofday_args *uap, | |
123 | __unused int32_t *retval) | |
1c79356b | 124 | { |
1c79356b | 125 | int error = 0; |
9bccf70c | 126 | struct timezone ltz; /* local copy */ |
39037602 A |
127 | clock_sec_t secs; |
128 | clock_usec_t usecs; | |
129 | uint64_t mach_time; | |
9bccf70c | 130 | |
39037602 A |
131 | if (uap->tp || uap->mach_absolute_time) { |
132 | clock_gettimeofday_and_absolute_time(&secs, &usecs, &mach_time); | |
133 | } | |
b0d623f7 | 134 | |
39037602 A |
135 | if (uap->tp) { |
136 | /* Casting secs through a uint32_t to match arm64 commpage */ | |
137 | if (IS_64BIT_PROCESS(p)) { | |
138 | struct user64_timeval user_atv = {}; | |
139 | user_atv.tv_sec = (uint32_t)secs; | |
140 | user_atv.tv_usec = usecs; | |
141 | error = copyout(&user_atv, uap->tp, sizeof(user_atv)); | |
142 | } else { | |
143 | struct user32_timeval user_atv = {}; | |
144 | user_atv.tv_sec = (uint32_t)secs; | |
145 | user_atv.tv_usec = usecs; | |
146 | error = copyout(&user_atv, uap->tp, sizeof(user_atv)); | |
147 | } | |
148 | if (error) { | |
149 | return error; | |
150 | } | |
b0d623f7 | 151 | } |
39037602 | 152 | |
9bccf70c | 153 | if (uap->tzp) { |
91447636 | 154 | lck_spin_lock(tz_slock); |
9bccf70c | 155 | ltz = tz; |
91447636 | 156 | lck_spin_unlock(tz_slock); |
0c530ab8 | 157 | |
39037602 | 158 | error = copyout((caddr_t)<z, CAST_USER_ADDR_T(uap->tzp), sizeof(tz)); |
9bccf70c | 159 | } |
1c79356b | 160 | |
39037602 A |
161 | if (error == 0 && uap->mach_absolute_time) { |
162 | error = copyout(&mach_time, uap->mach_absolute_time, sizeof(mach_time)); | |
163 | } | |
164 | ||
165 | return error; | |
1c79356b A |
166 | } |
167 | ||
91447636 A |
168 | /* |
169 | * XXX Y2038 bug because of setthetime() argument | |
170 | */ | |
1c79356b A |
171 | /* ARGSUSED */ |
172 | int | |
b0d623f7 | 173 | settimeofday(__unused struct proc *p, struct settimeofday_args *uap, __unused int32_t *retval) |
1c79356b A |
174 | { |
175 | struct timeval atv; | |
176 | struct timezone atz; | |
91447636 | 177 | int error; |
1c79356b | 178 | |
b0d623f7 A |
179 | bzero(&atv, sizeof(atv)); |
180 | ||
5ba3f43e A |
181 | /* Check that this task is entitled to set the time or it is root */ |
182 | if (!IOTaskHasEntitlement(current_task(), SETTIME_ENTITLEMENT)) { | |
2d21ac55 | 183 | #if CONFIG_MACF |
5ba3f43e | 184 | error = mac_system_check_settime(kauth_cred_get()); |
0a7de745 A |
185 | if (error) { |
186 | return error; | |
187 | } | |
2d21ac55 | 188 | #endif |
5ba3f43e | 189 | #ifndef CONFIG_EMBEDDED |
0a7de745 A |
190 | if ((error = suser(kauth_cred_get(), &p->p_acflag))) { |
191 | return error; | |
192 | } | |
5ba3f43e A |
193 | #endif |
194 | } | |
195 | ||
91447636 A |
196 | /* Verify all parameters before changing time */ |
197 | if (uap->tv) { | |
198 | if (IS_64BIT_PROCESS(p)) { | |
b0d623f7 A |
199 | struct user64_timeval user_atv; |
200 | error = copyin(uap->tv, &user_atv, sizeof(user_atv)); | |
91447636 A |
201 | atv.tv_sec = user_atv.tv_sec; |
202 | atv.tv_usec = user_atv.tv_usec; | |
203 | } else { | |
b0d623f7 A |
204 | struct user32_timeval user_atv; |
205 | error = copyin(uap->tv, &user_atv, sizeof(user_atv)); | |
206 | atv.tv_sec = user_atv.tv_sec; | |
207 | atv.tv_usec = user_atv.tv_usec; | |
91447636 | 208 | } |
0a7de745 A |
209 | if (error) { |
210 | return error; | |
211 | } | |
212 | } | |
213 | if (uap->tzp && (error = copyin(uap->tzp, (caddr_t)&atz, sizeof(atz)))) { | |
214 | return error; | |
91447636 | 215 | } |
91447636 | 216 | if (uap->tv) { |
d9a64523 | 217 | /* only positive values of sec/usec are accepted */ |
0a7de745 A |
218 | if (atv.tv_sec < 0 || atv.tv_usec < 0) { |
219 | return EPERM; | |
220 | } | |
221 | if (!timeval_fixusec(&atv)) { | |
222 | return EPERM; | |
223 | } | |
1c79356b | 224 | setthetime(&atv); |
91447636 | 225 | } |
9bccf70c | 226 | if (uap->tzp) { |
91447636 | 227 | lck_spin_lock(tz_slock); |
1c79356b | 228 | tz = atz; |
91447636 | 229 | lck_spin_unlock(tz_slock); |
9bccf70c | 230 | } |
0a7de745 | 231 | return 0; |
1c79356b A |
232 | } |
233 | ||
91447636 A |
234 | static void |
235 | setthetime( | |
0a7de745 | 236 | struct timeval *tv) |
1c79356b | 237 | { |
55e303ae | 238 | clock_set_calendar_microtime(tv->tv_sec, tv->tv_usec); |
1c79356b A |
239 | } |
240 | ||
1c79356b | 241 | /* |
91447636 A |
242 | * Verify the calendar value. If negative, |
243 | * reset to zero (the epoch). | |
1c79356b A |
244 | */ |
245 | void | |
91447636 | 246 | inittodr( |
0a7de745 | 247 | __unused time_t base) |
1c79356b | 248 | { |
0a7de745 | 249 | struct timeval tv; |
55e303ae | 250 | |
1c79356b | 251 | /* |
0b4e3aa0 A |
252 | * Assertion: |
253 | * The calendar has already been | |
91447636 | 254 | * set up from the platform clock. |
0b4e3aa0 | 255 | * |
1c79356b A |
256 | * The value returned by microtime() |
257 | * is gotten from the calendar. | |
258 | */ | |
55e303ae | 259 | microtime(&tv); |
1c79356b | 260 | |
91447636 | 261 | if (tv.tv_sec < 0 || tv.tv_usec < 0) { |
0a7de745 A |
262 | printf("WARNING: preposterous time in Real Time Clock"); |
263 | tv.tv_sec = 0; /* the UNIX epoch */ | |
91447636 A |
264 | tv.tv_usec = 0; |
265 | setthetime(&tv); | |
1c79356b A |
266 | printf(" -- CHECK AND RESET THE DATE!\n"); |
267 | } | |
1c79356b A |
268 | } |
269 | ||
91447636 A |
270 | time_t |
271 | boottime_sec(void) | |
272 | { | |
0a7de745 A |
273 | clock_sec_t secs; |
274 | clock_nsec_t nanosecs; | |
9bccf70c | 275 | |
b0d623f7 | 276 | clock_get_boottime_nanotime(&secs, &nanosecs); |
0a7de745 | 277 | return secs; |
b0d623f7 | 278 | } |
9bccf70c | 279 | |
39037602 A |
280 | void |
281 | boottime_timeval(struct timeval *tv) | |
282 | { | |
0a7de745 A |
283 | clock_sec_t secs; |
284 | clock_usec_t microsecs; | |
39037602 A |
285 | |
286 | clock_get_boottime_microtime(&secs, µsecs); | |
287 | ||
288 | tv->tv_sec = secs; | |
289 | tv->tv_usec = microsecs; | |
290 | } | |
291 | ||
1c79356b A |
292 | /* |
293 | * Get value of an interval timer. The process virtual and | |
9bccf70c | 294 | * profiling virtual time timers are kept internally in the |
1c79356b A |
295 | * way they are specified externally: in time until they expire. |
296 | * | |
9bccf70c A |
297 | * The real time interval timer expiration time (p_rtime) |
298 | * is kept as an absolute time rather than as a delta, so that | |
299 | * it is easy to keep periodic real-time signals from drifting. | |
1c79356b | 300 | * |
2d21ac55 A |
301 | * The real time timer is processed by a callout routine. |
302 | * Since a callout may be delayed in real time due to | |
9bccf70c A |
303 | * other processing in the system, it is possible for the real |
304 | * time callout routine (realitexpire, given below), to be delayed | |
305 | * in real time past when it is supposed to occur. It does not | |
306 | * suffice, therefore, to reload the real time .it_value from the | |
307 | * real time .it_interval. Rather, we compute the next time in | |
308 | * absolute time when the timer should go off. | |
2d21ac55 A |
309 | * |
310 | * Returns: 0 Success | |
311 | * EINVAL Invalid argument | |
312 | * copyout:EFAULT Bad address | |
1c79356b | 313 | */ |
1c79356b A |
314 | /* ARGSUSED */ |
315 | int | |
b0d623f7 | 316 | getitimer(struct proc *p, struct getitimer_args *uap, __unused int32_t *retval) |
1c79356b A |
317 | { |
318 | struct itimerval aitv; | |
1c79356b | 319 | |
0a7de745 A |
320 | if (uap->which > ITIMER_PROF) { |
321 | return EINVAL; | |
322 | } | |
2d21ac55 | 323 | |
b0d623f7 A |
324 | bzero(&aitv, sizeof(aitv)); |
325 | ||
2d21ac55 A |
326 | proc_spinlock(p); |
327 | switch (uap->which) { | |
2d21ac55 | 328 | case ITIMER_REAL: |
1c79356b | 329 | /* |
9bccf70c A |
330 | * If time for real time timer has passed return 0, |
331 | * else return difference between current time and | |
332 | * time for the timer to go off. | |
1c79356b A |
333 | */ |
334 | aitv = p->p_realtimer; | |
9bccf70c | 335 | if (timerisset(&p->p_rtime)) { |
0a7de745 | 336 | struct timeval now; |
9bccf70c A |
337 | |
338 | microuptime(&now); | |
0a7de745 | 339 | if (timercmp(&p->p_rtime, &now, <)) { |
1c79356b | 340 | timerclear(&aitv.it_value); |
0a7de745 | 341 | } else { |
9bccf70c A |
342 | aitv.it_value = p->p_rtime; |
343 | timevalsub(&aitv.it_value, &now); | |
344 | } | |
0a7de745 | 345 | } else { |
9bccf70c | 346 | timerclear(&aitv.it_value); |
0a7de745 | 347 | } |
2d21ac55 A |
348 | break; |
349 | ||
350 | case ITIMER_VIRTUAL: | |
351 | aitv = p->p_vtimer_user; | |
352 | break; | |
353 | ||
354 | case ITIMER_PROF: | |
355 | aitv = p->p_vtimer_prof; | |
356 | break; | |
9bccf70c | 357 | } |
2d21ac55 A |
358 | |
359 | proc_spinunlock(p); | |
9bccf70c | 360 | |
91447636 | 361 | if (IS_64BIT_PROCESS(p)) { |
b0d623f7 | 362 | struct user64_itimerval user_itv; |
0a7de745 | 363 | bzero(&user_itv, sizeof(user_itv)); |
91447636 A |
364 | user_itv.it_interval.tv_sec = aitv.it_interval.tv_sec; |
365 | user_itv.it_interval.tv_usec = aitv.it_interval.tv_usec; | |
366 | user_itv.it_value.tv_sec = aitv.it_value.tv_sec; | |
367 | user_itv.it_value.tv_usec = aitv.it_value.tv_usec; | |
0a7de745 | 368 | return copyout((caddr_t)&user_itv, uap->itv, sizeof(user_itv)); |
91447636 | 369 | } else { |
b0d623f7 | 370 | struct user32_itimerval user_itv; |
0a7de745 | 371 | bzero(&user_itv, sizeof(user_itv)); |
b0d623f7 A |
372 | user_itv.it_interval.tv_sec = aitv.it_interval.tv_sec; |
373 | user_itv.it_interval.tv_usec = aitv.it_interval.tv_usec; | |
374 | user_itv.it_value.tv_sec = aitv.it_value.tv_sec; | |
375 | user_itv.it_value.tv_usec = aitv.it_value.tv_usec; | |
0a7de745 | 376 | return copyout((caddr_t)&user_itv, uap->itv, sizeof(user_itv)); |
91447636 | 377 | } |
1c79356b A |
378 | } |
379 | ||
2d21ac55 A |
380 | /* |
381 | * Returns: 0 Success | |
382 | * EINVAL Invalid argument | |
383 | * copyin:EFAULT Bad address | |
384 | * getitimer:EINVAL Invalid argument | |
385 | * getitimer:EFAULT Bad address | |
386 | */ | |
1c79356b A |
387 | /* ARGSUSED */ |
388 | int | |
b0d623f7 | 389 | setitimer(struct proc *p, struct setitimer_args *uap, int32_t *retval) |
1c79356b A |
390 | { |
391 | struct itimerval aitv; | |
91447636 | 392 | user_addr_t itvp; |
9bccf70c | 393 | int error; |
1c79356b | 394 | |
b0d623f7 A |
395 | bzero(&aitv, sizeof(aitv)); |
396 | ||
0a7de745 A |
397 | if (uap->which > ITIMER_PROF) { |
398 | return EINVAL; | |
399 | } | |
91447636 A |
400 | if ((itvp = uap->itv)) { |
401 | if (IS_64BIT_PROCESS(p)) { | |
b0d623f7 | 402 | struct user64_itimerval user_itv; |
0a7de745 A |
403 | if ((error = copyin(itvp, (caddr_t)&user_itv, sizeof(user_itv)))) { |
404 | return error; | |
405 | } | |
91447636 A |
406 | aitv.it_interval.tv_sec = user_itv.it_interval.tv_sec; |
407 | aitv.it_interval.tv_usec = user_itv.it_interval.tv_usec; | |
408 | aitv.it_value.tv_sec = user_itv.it_value.tv_sec; | |
409 | aitv.it_value.tv_usec = user_itv.it_value.tv_usec; | |
0a7de745 | 410 | } else { |
b0d623f7 | 411 | struct user32_itimerval user_itv; |
0a7de745 A |
412 | if ((error = copyin(itvp, (caddr_t)&user_itv, sizeof(user_itv)))) { |
413 | return error; | |
414 | } | |
b0d623f7 A |
415 | aitv.it_interval.tv_sec = user_itv.it_interval.tv_sec; |
416 | aitv.it_interval.tv_usec = user_itv.it_interval.tv_usec; | |
417 | aitv.it_value.tv_sec = user_itv.it_value.tv_sec; | |
418 | aitv.it_value.tv_usec = user_itv.it_value.tv_usec; | |
91447636 A |
419 | } |
420 | } | |
0a7de745 A |
421 | if ((uap->itv = uap->oitv) && (error = getitimer(p, (struct getitimer_args *)uap, retval))) { |
422 | return error; | |
423 | } | |
424 | if (itvp == 0) { | |
425 | return 0; | |
426 | } | |
427 | if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval)) { | |
428 | return EINVAL; | |
429 | } | |
2d21ac55 A |
430 | |
431 | switch (uap->which) { | |
2d21ac55 A |
432 | case ITIMER_REAL: |
433 | proc_spinlock(p); | |
1c79356b | 434 | if (timerisset(&aitv.it_value)) { |
9bccf70c A |
435 | microuptime(&p->p_rtime); |
436 | timevaladd(&p->p_rtime, &aitv.it_value); | |
2d21ac55 | 437 | p->p_realtimer = aitv; |
39236c6e | 438 | if (!thread_call_enter_delayed_with_leeway(p->p_rcall, NULL, |
0a7de745 | 439 | tvtoabstime(&p->p_rtime), 0, THREAD_CALL_DELAY_USER_NORMAL)) { |
2d21ac55 | 440 | p->p_ractive++; |
0a7de745 A |
441 | } |
442 | } else { | |
2d21ac55 A |
443 | timerclear(&p->p_rtime); |
444 | p->p_realtimer = aitv; | |
0a7de745 | 445 | if (thread_call_cancel(p->p_rcall)) { |
2d21ac55 | 446 | p->p_ractive--; |
0a7de745 | 447 | } |
1c79356b | 448 | } |
2d21ac55 A |
449 | proc_spinunlock(p); |
450 | ||
451 | break; | |
452 | ||
453 | ||
454 | case ITIMER_VIRTUAL: | |
0a7de745 | 455 | if (timerisset(&aitv.it_value)) { |
2d21ac55 | 456 | task_vtimer_set(p->task, TASK_VTIMER_USER); |
0a7de745 | 457 | } else { |
2d21ac55 | 458 | task_vtimer_clear(p->task, TASK_VTIMER_USER); |
0a7de745 | 459 | } |
2d21ac55 A |
460 | |
461 | proc_spinlock(p); | |
462 | p->p_vtimer_user = aitv; | |
463 | proc_spinunlock(p); | |
464 | break; | |
465 | ||
466 | case ITIMER_PROF: | |
0a7de745 | 467 | if (timerisset(&aitv.it_value)) { |
2d21ac55 | 468 | task_vtimer_set(p->task, TASK_VTIMER_PROF); |
0a7de745 | 469 | } else { |
2d21ac55 | 470 | task_vtimer_clear(p->task, TASK_VTIMER_PROF); |
0a7de745 | 471 | } |
9bccf70c | 472 | |
2d21ac55 A |
473 | proc_spinlock(p); |
474 | p->p_vtimer_prof = aitv; | |
475 | proc_spinunlock(p); | |
476 | break; | |
9bccf70c | 477 | } |
9bccf70c | 478 | |
0a7de745 | 479 | return 0; |
1c79356b A |
480 | } |
481 | ||
482 | /* | |
483 | * Real interval timer expired: | |
484 | * send process whose timer expired an alarm signal. | |
485 | * If time is not set up to reload, then just return. | |
486 | * Else compute next time timer should go off which is > current time. | |
487 | * This is where delay in processing this timeout causes multiple | |
488 | * SIGALRM calls to be compressed into one. | |
489 | */ | |
490 | void | |
9bccf70c | 491 | realitexpire( |
39037602 | 492 | struct proc *p) |
1c79356b | 493 | { |
2d21ac55 | 494 | struct proc *r; |
39037602 | 495 | struct timeval t; |
2d21ac55 A |
496 | |
497 | r = proc_find(p->p_pid); | |
498 | ||
499 | proc_spinlock(p); | |
500 | ||
39037602 A |
501 | assert(p->p_ractive > 0); |
502 | ||
2d21ac55 | 503 | if (--p->p_ractive > 0 || r != p) { |
39037602 A |
504 | /* |
505 | * bail, because either proc is exiting | |
506 | * or there's another active thread call | |
507 | */ | |
2d21ac55 A |
508 | proc_spinunlock(p); |
509 | ||
0a7de745 | 510 | if (r != NULL) { |
2d21ac55 | 511 | proc_rele(r); |
0a7de745 | 512 | } |
1c79356b A |
513 | return; |
514 | } | |
39037602 | 515 | |
9bccf70c | 516 | if (!timerisset(&p->p_realtimer.it_interval)) { |
39037602 A |
517 | /* |
518 | * p_realtimer was cleared while this call was pending, | |
519 | * send one last SIGALRM, but don't re-arm | |
520 | */ | |
9bccf70c | 521 | timerclear(&p->p_rtime); |
2d21ac55 | 522 | proc_spinunlock(p); |
9bccf70c | 523 | |
2d21ac55 A |
524 | psignal(p, SIGALRM); |
525 | proc_rele(p); | |
1c79356b | 526 | return; |
1c79356b | 527 | } |
9bccf70c | 528 | |
39037602 A |
529 | proc_spinunlock(p); |
530 | ||
531 | /* | |
532 | * Send the signal before re-arming the next thread call, | |
533 | * so in case psignal blocks, we won't create yet another thread call. | |
534 | */ | |
535 | ||
536 | psignal(p, SIGALRM); | |
537 | ||
538 | proc_spinlock(p); | |
539 | ||
540 | /* Should we still re-arm the next thread call? */ | |
541 | if (!timerisset(&p->p_realtimer.it_interval)) { | |
542 | timerclear(&p->p_rtime); | |
543 | proc_spinunlock(p); | |
544 | ||
545 | proc_rele(p); | |
546 | return; | |
547 | } | |
548 | ||
2d21ac55 | 549 | microuptime(&t); |
9bccf70c | 550 | timevaladd(&p->p_rtime, &p->p_realtimer.it_interval); |
39037602 | 551 | |
2d21ac55 A |
552 | if (timercmp(&p->p_rtime, &t, <=)) { |
553 | if ((p->p_rtime.tv_sec + 2) >= t.tv_sec) { | |
9bccf70c A |
554 | for (;;) { |
555 | timevaladd(&p->p_rtime, &p->p_realtimer.it_interval); | |
0a7de745 | 556 | if (timercmp(&p->p_rtime, &t, >)) { |
9bccf70c | 557 | break; |
0a7de745 | 558 | } |
9bccf70c | 559 | } |
39037602 | 560 | } else { |
9bccf70c | 561 | p->p_rtime = p->p_realtimer.it_interval; |
2d21ac55 | 562 | timevaladd(&p->p_rtime, &t); |
1c79356b | 563 | } |
1c79356b | 564 | } |
9bccf70c | 565 | |
39037602 A |
566 | assert(p->p_rcall != NULL); |
567 | ||
568 | if (!thread_call_enter_delayed_with_leeway(p->p_rcall, NULL, tvtoabstime(&p->p_rtime), 0, | |
0a7de745 | 569 | THREAD_CALL_DELAY_USER_NORMAL)) { |
2d21ac55 | 570 | p->p_ractive++; |
39037602 A |
571 | } |
572 | ||
2d21ac55 | 573 | proc_spinunlock(p); |
55e303ae | 574 | |
2d21ac55 | 575 | proc_rele(p); |
1c79356b A |
576 | } |
577 | ||
39037602 A |
578 | /* |
579 | * Called once in proc_exit to clean up after an armed or pending realitexpire | |
580 | * | |
581 | * This will only be called after the proc refcount is drained, | |
582 | * so realitexpire cannot be currently holding a proc ref. | |
583 | * i.e. it will/has gotten PROC_NULL from proc_find. | |
584 | */ | |
585 | void | |
586 | proc_free_realitimer(proc_t p) | |
587 | { | |
588 | proc_spinlock(p); | |
589 | ||
590 | assert(p->p_rcall != NULL); | |
591 | assert(p->p_refcount == 0); | |
592 | ||
593 | timerclear(&p->p_realtimer.it_interval); | |
594 | ||
595 | if (thread_call_cancel(p->p_rcall)) { | |
596 | assert(p->p_ractive > 0); | |
597 | p->p_ractive--; | |
598 | } | |
599 | ||
600 | while (p->p_ractive > 0) { | |
601 | proc_spinunlock(p); | |
602 | ||
603 | delay(1); | |
604 | ||
605 | proc_spinlock(p); | |
606 | } | |
607 | ||
608 | thread_call_t call = p->p_rcall; | |
609 | p->p_rcall = NULL; | |
610 | ||
611 | proc_spinunlock(p); | |
612 | ||
613 | thread_call_free(call); | |
614 | } | |
615 | ||
1c79356b A |
616 | /* |
617 | * Check that a proposed value to load into the .it_value or | |
2d21ac55 | 618 | * .it_interval part of an interval timer is acceptable. |
1c79356b A |
619 | */ |
620 | int | |
2d21ac55 A |
621 | itimerfix( |
622 | struct timeval *tv) | |
1c79356b | 623 | { |
1c79356b | 624 | if (tv->tv_sec < 0 || tv->tv_sec > 100000000 || |
0a7de745 A |
625 | tv->tv_usec < 0 || tv->tv_usec >= 1000000) { |
626 | return EINVAL; | |
627 | } | |
628 | return 0; | |
1c79356b A |
629 | } |
630 | ||
4bd07ac2 A |
631 | int |
632 | timespec_is_valid(const struct timespec *ts) | |
633 | { | |
634 | /* The INT32_MAX limit ensures the timespec is safe for clock_*() functions | |
635 | * which accept 32-bit ints. */ | |
636 | if (ts->tv_sec < 0 || ts->tv_sec > INT32_MAX || | |
0a7de745 | 637 | ts->tv_nsec < 0 || (unsigned long long)ts->tv_nsec > NSEC_PER_SEC) { |
4bd07ac2 A |
638 | return 0; |
639 | } | |
640 | return 1; | |
641 | } | |
642 | ||
1c79356b A |
643 | /* |
644 | * Decrement an interval timer by a specified number | |
645 | * of microseconds, which must be less than a second, | |
646 | * i.e. < 1000000. If the timer expires, then reload | |
647 | * it. In this case, carry over (usec - old value) to | |
2d21ac55 | 648 | * reduce the value reloaded into the timer so that |
1c79356b A |
649 | * the timer does not drift. This routine assumes |
650 | * that it is called in a context where the timers | |
651 | * on which it is operating cannot change in value. | |
652 | */ | |
653 | int | |
2d21ac55 | 654 | itimerdecr(proc_t p, |
0a7de745 | 655 | struct itimerval *itp, int usec) |
1c79356b | 656 | { |
2d21ac55 | 657 | proc_spinlock(p); |
0a7de745 | 658 | |
1c79356b A |
659 | if (itp->it_value.tv_usec < usec) { |
660 | if (itp->it_value.tv_sec == 0) { | |
661 | /* expired, and already in next interval */ | |
662 | usec -= itp->it_value.tv_usec; | |
663 | goto expire; | |
664 | } | |
665 | itp->it_value.tv_usec += 1000000; | |
666 | itp->it_value.tv_sec--; | |
667 | } | |
668 | itp->it_value.tv_usec -= usec; | |
669 | usec = 0; | |
2d21ac55 A |
670 | if (timerisset(&itp->it_value)) { |
671 | proc_spinunlock(p); | |
0a7de745 | 672 | return 1; |
2d21ac55 | 673 | } |
1c79356b A |
674 | /* expired, exactly at end of interval */ |
675 | expire: | |
676 | if (timerisset(&itp->it_interval)) { | |
677 | itp->it_value = itp->it_interval; | |
2d21ac55 | 678 | if (itp->it_value.tv_sec > 0) { |
0a7de745 A |
679 | itp->it_value.tv_usec -= usec; |
680 | if (itp->it_value.tv_usec < 0) { | |
681 | itp->it_value.tv_usec += 1000000; | |
682 | itp->it_value.tv_sec--; | |
2d21ac55 | 683 | } |
1c79356b | 684 | } |
0a7de745 A |
685 | } else { |
686 | itp->it_value.tv_usec = 0; /* sec is already 0 */ | |
687 | } | |
2d21ac55 | 688 | proc_spinunlock(p); |
0a7de745 | 689 | return 0; |
1c79356b A |
690 | } |
691 | ||
692 | /* | |
693 | * Add and subtract routines for timevals. | |
694 | * N.B.: subtract routine doesn't deal with | |
695 | * results which are before the beginning, | |
696 | * it just gets very confused in this case. | |
697 | * Caveat emptor. | |
698 | */ | |
699 | void | |
9bccf70c A |
700 | timevaladd( |
701 | struct timeval *t1, | |
702 | struct timeval *t2) | |
1c79356b | 703 | { |
1c79356b A |
704 | t1->tv_sec += t2->tv_sec; |
705 | t1->tv_usec += t2->tv_usec; | |
706 | timevalfix(t1); | |
707 | } | |
708 | void | |
9bccf70c A |
709 | timevalsub( |
710 | struct timeval *t1, | |
711 | struct timeval *t2) | |
1c79356b | 712 | { |
1c79356b A |
713 | t1->tv_sec -= t2->tv_sec; |
714 | t1->tv_usec -= t2->tv_usec; | |
715 | timevalfix(t1); | |
716 | } | |
717 | void | |
9bccf70c A |
718 | timevalfix( |
719 | struct timeval *t1) | |
1c79356b | 720 | { |
1c79356b A |
721 | if (t1->tv_usec < 0) { |
722 | t1->tv_sec--; | |
723 | t1->tv_usec += 1000000; | |
724 | } | |
725 | if (t1->tv_usec >= 1000000) { | |
726 | t1->tv_sec++; | |
727 | t1->tv_usec -= 1000000; | |
728 | } | |
729 | } | |
730 | ||
d9a64523 A |
731 | static boolean_t |
732 | timeval_fixusec( | |
733 | struct timeval *t1) | |
734 | { | |
735 | assert(t1->tv_usec >= 0); | |
736 | assert(t1->tv_sec >= 0); | |
737 | ||
738 | if (t1->tv_usec >= 1000000) { | |
0a7de745 | 739 | if (os_add_overflow(t1->tv_sec, t1->tv_usec / 1000000, &t1->tv_sec)) { |
d9a64523 | 740 | return FALSE; |
0a7de745 | 741 | } |
d9a64523 A |
742 | t1->tv_usec = t1->tv_usec % 1000000; |
743 | } | |
744 | ||
745 | return TRUE; | |
746 | } | |
747 | ||
1c79356b A |
748 | /* |
749 | * Return the best possible estimate of the time in the timeval | |
750 | * to which tvp points. | |
751 | */ | |
752 | void | |
9bccf70c | 753 | microtime( |
0a7de745 | 754 | struct timeval *tvp) |
1c79356b | 755 | { |
0a7de745 A |
756 | clock_sec_t tv_sec; |
757 | clock_usec_t tv_usec; | |
b0d623f7 A |
758 | |
759 | clock_get_calendar_microtime(&tv_sec, &tv_usec); | |
760 | ||
761 | tvp->tv_sec = tv_sec; | |
762 | tvp->tv_usec = tv_usec; | |
1c79356b | 763 | } |
9bccf70c | 764 | |
39236c6e A |
765 | void |
766 | microtime_with_abstime( | |
0a7de745 | 767 | struct timeval *tvp, uint64_t *abstime) |
39236c6e | 768 | { |
0a7de745 A |
769 | clock_sec_t tv_sec; |
770 | clock_usec_t tv_usec; | |
39236c6e A |
771 | |
772 | clock_get_calendar_absolute_and_microtime(&tv_sec, &tv_usec, abstime); | |
773 | ||
774 | tvp->tv_sec = tv_sec; | |
775 | tvp->tv_usec = tv_usec; | |
776 | } | |
777 | ||
9bccf70c A |
778 | void |
779 | microuptime( | |
0a7de745 | 780 | struct timeval *tvp) |
9bccf70c | 781 | { |
0a7de745 A |
782 | clock_sec_t tv_sec; |
783 | clock_usec_t tv_usec; | |
b0d623f7 A |
784 | |
785 | clock_get_system_microtime(&tv_sec, &tv_usec); | |
786 | ||
787 | tvp->tv_sec = tv_sec; | |
788 | tvp->tv_usec = tv_usec; | |
9bccf70c A |
789 | } |
790 | ||
791 | /* | |
792 | * Ditto for timespec. | |
793 | */ | |
794 | void | |
795 | nanotime( | |
796 | struct timespec *tsp) | |
797 | { | |
0a7de745 A |
798 | clock_sec_t tv_sec; |
799 | clock_nsec_t tv_nsec; | |
b0d623f7 A |
800 | |
801 | clock_get_calendar_nanotime(&tv_sec, &tv_nsec); | |
802 | ||
803 | tsp->tv_sec = tv_sec; | |
804 | tsp->tv_nsec = tv_nsec; | |
9bccf70c A |
805 | } |
806 | ||
807 | void | |
808 | nanouptime( | |
809 | struct timespec *tsp) | |
810 | { | |
0a7de745 A |
811 | clock_sec_t tv_sec; |
812 | clock_nsec_t tv_nsec; | |
b0d623f7 A |
813 | |
814 | clock_get_system_nanotime(&tv_sec, &tv_nsec); | |
815 | ||
816 | tsp->tv_sec = tv_sec; | |
817 | tsp->tv_nsec = tv_nsec; | |
9bccf70c A |
818 | } |
819 | ||
820 | uint64_t | |
821 | tvtoabstime( | |
0a7de745 | 822 | struct timeval *tvp) |
9bccf70c | 823 | { |
0a7de745 | 824 | uint64_t result, usresult; |
9bccf70c A |
825 | |
826 | clock_interval_to_absolutetime_interval( | |
0a7de745 | 827 | tvp->tv_sec, NSEC_PER_SEC, &result); |
9bccf70c | 828 | clock_interval_to_absolutetime_interval( |
0a7de745 | 829 | tvp->tv_usec, NSEC_PER_USEC, &usresult); |
9bccf70c | 830 | |
0a7de745 | 831 | return result + usresult; |
9bccf70c | 832 | } |
39236c6e | 833 | |
4bd07ac2 A |
834 | uint64_t |
835 | tstoabstime(struct timespec *ts) | |
836 | { | |
837 | uint64_t abstime_s, abstime_ns; | |
838 | clock_interval_to_absolutetime_interval(ts->tv_sec, NSEC_PER_SEC, &abstime_s); | |
839 | clock_interval_to_absolutetime_interval(ts->tv_nsec, 1, &abstime_ns); | |
840 | return abstime_s + abstime_ns; | |
841 | } | |
842 | ||
39236c6e A |
843 | #if NETWORKING |
844 | /* | |
845 | * ratecheck(): simple time-based rate-limit checking. | |
846 | */ | |
847 | int | |
848 | ratecheck(struct timeval *lasttime, const struct timeval *mininterval) | |
849 | { | |
850 | struct timeval tv, delta; | |
851 | int rv = 0; | |
852 | ||
853 | net_uptime2timeval(&tv); | |
854 | delta = tv; | |
855 | timevalsub(&delta, lasttime); | |
856 | ||
857 | /* | |
858 | * check for 0,0 is so that the message will be seen at least once, | |
859 | * even if interval is huge. | |
860 | */ | |
861 | if (timevalcmp(&delta, mininterval, >=) || | |
862 | (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) { | |
863 | *lasttime = tv; | |
864 | rv = 1; | |
865 | } | |
866 | ||
0a7de745 | 867 | return rv; |
39236c6e A |
868 | } |
869 | ||
870 | /* | |
871 | * ppsratecheck(): packets (or events) per second limitation. | |
872 | */ | |
873 | int | |
874 | ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps) | |
875 | { | |
876 | struct timeval tv, delta; | |
877 | int rv; | |
878 | ||
879 | net_uptime2timeval(&tv); | |
880 | ||
881 | timersub(&tv, lasttime, &delta); | |
882 | ||
883 | /* | |
884 | * Check for 0,0 so that the message will be seen at least once. | |
885 | * If more than one second has passed since the last update of | |
886 | * lasttime, reset the counter. | |
887 | * | |
888 | * we do increment *curpps even in *curpps < maxpps case, as some may | |
889 | * try to use *curpps for stat purposes as well. | |
890 | */ | |
891 | if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) || | |
892 | delta.tv_sec >= 1) { | |
893 | *lasttime = tv; | |
894 | *curpps = 0; | |
895 | rv = 1; | |
0a7de745 | 896 | } else if (maxpps < 0) { |
39236c6e | 897 | rv = 1; |
0a7de745 | 898 | } else if (*curpps < maxpps) { |
39236c6e | 899 | rv = 1; |
0a7de745 | 900 | } else { |
39236c6e | 901 | rv = 0; |
0a7de745 | 902 | } |
39236c6e A |
903 | |
904 | #if 1 /* DIAGNOSTIC? */ | |
905 | /* be careful about wrap-around */ | |
0a7de745 | 906 | if (*curpps + 1 > 0) { |
39236c6e | 907 | *curpps = *curpps + 1; |
0a7de745 | 908 | } |
39236c6e A |
909 | #else |
910 | /* | |
911 | * assume that there's not too many calls to this function. | |
912 | * not sure if the assumption holds, as it depends on *caller's* | |
913 | * behavior, not the behavior of this function. | |
914 | * IMHO it is wrong to make assumption on the caller's behavior, | |
915 | * so the above #if is #if 1, not #ifdef DIAGNOSTIC. | |
916 | */ | |
917 | *curpps = *curpps + 1; | |
918 | #endif | |
919 | ||
0a7de745 | 920 | return rv; |
39236c6e A |
921 | } |
922 | #endif /* NETWORKING */ | |
923 | ||
9bccf70c A |
924 | void |
925 | time_zone_slock_init(void) | |
926 | { | |
91447636 A |
927 | /* allocate lock group attribute and group */ |
928 | tz_slock_grp_attr = lck_grp_attr_alloc_init(); | |
9bccf70c | 929 | |
91447636 | 930 | tz_slock_grp = lck_grp_alloc_init("tzlock", tz_slock_grp_attr); |
9bccf70c | 931 | |
91447636 A |
932 | /* Allocate lock attribute */ |
933 | tz_slock_attr = lck_attr_alloc_init(); | |
9bccf70c | 934 | |
91447636 A |
935 | /* Allocate the spin lock */ |
936 | tz_slock = lck_spin_alloc_init(tz_slock_grp, tz_slock_attr); | |
9bccf70c | 937 | } |
d26ffc64 | 938 | |
0a7de745 A |
939 | int |
940 | __mach_bridge_remote_time(__unused struct proc *p, struct __mach_bridge_remote_time_args *mbrt_args, uint64_t *retval) | |
941 | { | |
942 | *retval = mach_bridge_remote_time(mbrt_args->local_timestamp); | |
943 | return 0; | |
944 | } |