]>
Commit | Line | Data |
---|---|---|
39037602 A |
1 | /* |
2 | * Copyright (c) 2011 Apple Computer, Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * This file contains Original Code and/or Modifications of Original Code | |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
14 | * | |
15 | * Please obtain a copy of the License at | |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
25 | * | |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ | |
27 | */ | |
28 | ||
29 | /* Manage timers */ | |
30 | ||
31 | #include <mach/mach_types.h> | |
32 | #include <kern/cpu_data.h> /* current_thread() */ | |
33 | #include <kern/kalloc.h> | |
5ba3f43e | 34 | #include <stdatomic.h> |
39037602 A |
35 | #include <sys/errno.h> |
36 | #include <sys/vm.h> | |
37 | #include <sys/ktrace.h> | |
38 | ||
39 | #include <machine/machine_routines.h> | |
40 | #if defined(__x86_64__) | |
41 | #include <i386/mp.h> | |
42 | #endif /* defined(__x86_64__) */ | |
43 | ||
44 | #include <kperf/kperf.h> | |
45 | #include <kperf/buffer.h> | |
46 | #include <kperf/context.h> | |
47 | #include <kperf/action.h> | |
48 | #include <kperf/kperf_timer.h> | |
49 | #include <kperf/kperf_arch.h> | |
50 | #include <kperf/pet.h> | |
51 | #include <kperf/sample.h> | |
52 | ||
53 | /* the list of timers */ | |
54 | struct kperf_timer *kperf_timerv = NULL; | |
55 | unsigned int kperf_timerc = 0; | |
56 | ||
57 | static unsigned int pet_timer_id = 999; | |
58 | ||
59 | /* maximum number of timers we can construct */ | |
60 | #define TIMER_MAX (16) | |
61 | ||
39037602 A |
62 | static uint64_t min_period_abstime; |
63 | static uint64_t min_period_bg_abstime; | |
64 | static uint64_t min_period_pet_abstime; | |
65 | static uint64_t min_period_pet_bg_abstime; | |
66 | ||
67 | static uint64_t | |
68 | kperf_timer_min_period_abstime(void) | |
69 | { | |
70 | if (ktrace_background_active()) { | |
71 | return min_period_bg_abstime; | |
72 | } else { | |
73 | return min_period_abstime; | |
74 | } | |
75 | } | |
76 | ||
77 | static uint64_t | |
78 | kperf_timer_min_pet_period_abstime(void) | |
79 | { | |
80 | if (ktrace_background_active()) { | |
81 | return min_period_pet_bg_abstime; | |
82 | } else { | |
83 | return min_period_pet_abstime; | |
84 | } | |
85 | } | |
86 | ||
87 | static void | |
88 | kperf_timer_schedule(struct kperf_timer *timer, uint64_t now) | |
89 | { | |
90 | BUF_INFO(PERF_TM_SCHED, timer->period); | |
91 | ||
92 | /* if we re-programmed the timer to zero, just drop it */ | |
93 | if (timer->period == 0) { | |
94 | return; | |
95 | } | |
96 | ||
97 | /* calculate deadline */ | |
98 | uint64_t deadline = now + timer->period; | |
99 | ||
100 | /* re-schedule the timer, making sure we don't apply slop */ | |
101 | timer_call_enter(&timer->tcall, deadline, TIMER_CALL_SYS_CRITICAL); | |
102 | } | |
103 | ||
5ba3f43e A |
104 | static void |
105 | kperf_sample_cpu(struct kperf_timer *timer, bool system_sample, | |
106 | bool only_system) | |
39037602 | 107 | { |
39037602 A |
108 | assert(timer != NULL); |
109 | ||
110 | /* Always cut a tracepoint to show a sample event occurred */ | |
111 | BUF_DATA(PERF_TM_HNDLR | DBG_FUNC_START, 0); | |
112 | ||
113 | int ncpu = cpu_number(); | |
114 | ||
115 | struct kperf_sample *intbuf = kperf_intr_sample_buffer(); | |
a39ff7e2 A |
116 | #if DEVELOPMENT || DEBUG |
117 | intbuf->sample_time = mach_absolute_time(); | |
118 | #endif /* DEVELOPMENT || DEBUG */ | |
39037602 A |
119 | |
120 | /* On a timer, we can see the "real" current thread */ | |
d9a64523 A |
121 | thread_t thread = current_thread(); |
122 | task_t task = get_threadtask(thread); | |
a39ff7e2 | 123 | struct kperf_context ctx = { |
d9a64523 A |
124 | .cur_thread = thread, |
125 | .cur_task = task, | |
126 | .cur_pid = task_pid(task), | |
a39ff7e2 A |
127 | .trigger_type = TRIGGER_TYPE_TIMER, |
128 | .trigger_id = (unsigned int)(timer - kperf_timerv), | |
129 | }; | |
39037602 | 130 | |
39037602 | 131 | if (ctx.trigger_id == pet_timer_id && ncpu < machine_info.logical_cpu_max) { |
5ba3f43e | 132 | kperf_tid_on_cpus[ncpu] = thread_tid(ctx.cur_thread); |
39037602 A |
133 | } |
134 | ||
135 | /* make sure sampling is on */ | |
136 | unsigned int status = kperf_sampling_status(); | |
137 | if (status == KPERF_SAMPLING_OFF) { | |
138 | BUF_INFO(PERF_TM_HNDLR | DBG_FUNC_END, SAMPLE_OFF); | |
139 | return; | |
140 | } else if (status == KPERF_SAMPLING_SHUTDOWN) { | |
141 | BUF_INFO(PERF_TM_HNDLR | DBG_FUNC_END, SAMPLE_SHUTDOWN); | |
142 | return; | |
143 | } | |
144 | ||
145 | /* call the action -- kernel-only from interrupt, pend user */ | |
5ba3f43e A |
146 | int r = kperf_sample(intbuf, &ctx, timer->actionid, |
147 | SAMPLE_FLAG_PEND_USER | (system_sample ? SAMPLE_FLAG_SYSTEM : 0) | | |
148 | (only_system ? SAMPLE_FLAG_ONLY_SYSTEM : 0)); | |
39037602 A |
149 | |
150 | /* end tracepoint is informational */ | |
151 | BUF_INFO(PERF_TM_HNDLR | DBG_FUNC_END, r); | |
152 | ||
5ba3f43e A |
153 | (void)atomic_fetch_and_explicit(&timer->pending_cpus, |
154 | ~(UINT64_C(1) << ncpu), memory_order_relaxed); | |
155 | } | |
156 | ||
157 | void | |
158 | kperf_ipi_handler(void *param) | |
159 | { | |
160 | kperf_sample_cpu((struct kperf_timer *)param, false, false); | |
39037602 A |
161 | } |
162 | ||
163 | static void | |
164 | kperf_timer_handler(void *param0, __unused void *param1) | |
165 | { | |
166 | struct kperf_timer *timer = param0; | |
167 | unsigned int ntimer = (unsigned int)(timer - kperf_timerv); | |
168 | unsigned int ncpus = machine_info.logical_cpu_max; | |
5ba3f43e A |
169 | bool system_only_self = true; |
170 | ||
171 | if (timer->actionid == 0) { | |
172 | return; | |
173 | } | |
39037602 A |
174 | |
175 | timer->active = 1; | |
a39ff7e2 A |
176 | #if DEVELOPMENT || DEBUG |
177 | timer->fire_time = mach_absolute_time(); | |
178 | #endif /* DEVELOPMENT || DEBUG */ | |
39037602 A |
179 | |
180 | /* along the lines of do not ipi if we are all shutting down */ | |
181 | if (kperf_sampling_status() == KPERF_SAMPLING_SHUTDOWN) { | |
182 | goto deactivate; | |
183 | } | |
184 | ||
185 | BUF_DATA(PERF_TM_FIRE, ntimer, ntimer == pet_timer_id, timer->period, | |
186 | timer->actionid); | |
187 | ||
188 | if (ntimer == pet_timer_id) { | |
189 | kperf_pet_fire_before(); | |
190 | ||
191 | /* clean-up the thread-on-CPUs cache */ | |
5ba3f43e | 192 | bzero(kperf_tid_on_cpus, ncpus * sizeof(*kperf_tid_on_cpus)); |
39037602 A |
193 | } |
194 | ||
5ba3f43e A |
195 | /* |
196 | * IPI other cores only if the action has non-system samplers. | |
197 | */ | |
d9a64523 | 198 | if (kperf_action_has_non_system(timer->actionid)) { |
5ba3f43e A |
199 | /* |
200 | * If the core that's handling the timer is not scheduling | |
201 | * threads, only run system samplers. | |
202 | */ | |
203 | system_only_self = kperf_mp_broadcast_other_running(timer); | |
204 | } | |
205 | kperf_sample_cpu(timer, true, system_only_self); | |
39037602 A |
206 | |
207 | /* release the pet thread? */ | |
208 | if (ntimer == pet_timer_id) { | |
209 | /* PET mode is responsible for rearming the timer */ | |
210 | kperf_pet_fire_after(); | |
211 | } else { | |
212 | /* | |
213 | * FIXME: Get the current time from elsewhere. The next | |
214 | * timer's period now includes the time taken to reach this | |
215 | * point. This causes a bias towards longer sampling periods | |
216 | * than requested. | |
217 | */ | |
218 | kperf_timer_schedule(timer, mach_absolute_time()); | |
219 | } | |
220 | ||
221 | deactivate: | |
222 | timer->active = 0; | |
223 | } | |
224 | ||
225 | /* program the timer from the PET thread */ | |
226 | void | |
227 | kperf_timer_pet_rearm(uint64_t elapsed_ticks) | |
228 | { | |
229 | struct kperf_timer *timer = NULL; | |
230 | uint64_t period = 0; | |
231 | uint64_t deadline; | |
232 | ||
233 | /* | |
234 | * If the pet_timer_id is invalid, it has been disabled, so this should | |
235 | * do nothing. | |
236 | */ | |
237 | if (pet_timer_id >= kperf_timerc) { | |
238 | return; | |
239 | } | |
240 | ||
241 | unsigned int status = kperf_sampling_status(); | |
242 | /* do not reprogram the timer if it has been shutdown or sampling is off */ | |
243 | if (status == KPERF_SAMPLING_OFF) { | |
244 | BUF_INFO(PERF_PET_END, SAMPLE_OFF); | |
245 | return; | |
246 | } else if (status == KPERF_SAMPLING_SHUTDOWN) { | |
247 | BUF_INFO(PERF_PET_END, SAMPLE_SHUTDOWN); | |
248 | return; | |
249 | } | |
250 | ||
251 | timer = &(kperf_timerv[pet_timer_id]); | |
252 | ||
253 | /* if we re-programmed the timer to zero, just drop it */ | |
254 | if (!timer->period) { | |
255 | return; | |
256 | } | |
257 | ||
258 | /* subtract the time the pet sample took being careful not to underflow */ | |
259 | if (timer->period > elapsed_ticks) { | |
260 | period = timer->period - elapsed_ticks; | |
261 | } | |
262 | ||
263 | /* make sure we don't set the next PET sample to happen too soon */ | |
264 | if (period < min_period_pet_abstime) { | |
265 | period = min_period_pet_abstime; | |
266 | } | |
267 | ||
268 | /* we probably took so long in the PET thread, it makes sense to take | |
269 | * the time again. | |
270 | */ | |
271 | deadline = mach_absolute_time() + period; | |
272 | ||
273 | BUF_INFO(PERF_PET_SCHED, timer->period, period, elapsed_ticks, deadline); | |
274 | ||
275 | /* re-schedule the timer, making sure we don't apply slop */ | |
5ba3f43e | 276 | timer_call_enter(&timer->tcall, deadline, TIMER_CALL_SYS_CRITICAL); |
39037602 A |
277 | |
278 | return; | |
279 | } | |
280 | ||
281 | /* turn on all the timers */ | |
282 | void | |
283 | kperf_timer_go(void) | |
284 | { | |
285 | /* get the PET thread going */ | |
286 | if (pet_timer_id < kperf_timerc) { | |
287 | kperf_pet_config(kperf_timerv[pet_timer_id].actionid); | |
288 | } | |
289 | ||
290 | uint64_t now = mach_absolute_time(); | |
291 | ||
292 | for (unsigned int i = 0; i < kperf_timerc; i++) { | |
293 | if (kperf_timerv[i].period == 0) { | |
294 | continue; | |
295 | } | |
296 | ||
297 | kperf_timer_schedule(&(kperf_timerv[i]), now); | |
298 | } | |
299 | } | |
300 | ||
301 | void | |
302 | kperf_timer_stop(void) | |
303 | { | |
304 | for (unsigned int i = 0; i < kperf_timerc; i++) { | |
305 | if (kperf_timerv[i].period == 0) { | |
306 | continue; | |
307 | } | |
308 | ||
309 | /* wait for the timer to stop */ | |
310 | while (kperf_timerv[i].active); | |
311 | ||
5ba3f43e | 312 | timer_call_cancel(&kperf_timerv[i].tcall); |
39037602 A |
313 | } |
314 | ||
315 | /* wait for PET to stop, too */ | |
316 | kperf_pet_config(0); | |
317 | } | |
318 | ||
319 | unsigned int | |
320 | kperf_timer_get_petid(void) | |
321 | { | |
322 | return pet_timer_id; | |
323 | } | |
324 | ||
325 | int | |
326 | kperf_timer_set_petid(unsigned int timerid) | |
327 | { | |
328 | if (timerid < kperf_timerc) { | |
329 | uint64_t min_period; | |
330 | ||
331 | min_period = kperf_timer_min_pet_period_abstime(); | |
332 | if (kperf_timerv[timerid].period < min_period) { | |
333 | kperf_timerv[timerid].period = min_period; | |
334 | } | |
335 | kperf_pet_config(kperf_timerv[timerid].actionid); | |
336 | } else { | |
337 | /* clear the PET trigger if it's a bogus ID */ | |
338 | kperf_pet_config(0); | |
339 | } | |
340 | ||
341 | pet_timer_id = timerid; | |
342 | ||
343 | return 0; | |
344 | } | |
345 | ||
346 | int | |
347 | kperf_timer_get_period(unsigned int timerid, uint64_t *period_abstime) | |
348 | { | |
349 | if (timerid >= kperf_timerc) { | |
350 | return EINVAL; | |
351 | } | |
352 | ||
353 | *period_abstime = kperf_timerv[timerid].period; | |
354 | return 0; | |
355 | } | |
356 | ||
357 | int | |
358 | kperf_timer_set_period(unsigned int timerid, uint64_t period_abstime) | |
359 | { | |
360 | uint64_t min_period; | |
361 | ||
362 | if (timerid >= kperf_timerc) { | |
363 | return EINVAL; | |
364 | } | |
365 | ||
366 | if (pet_timer_id == timerid) { | |
367 | min_period = kperf_timer_min_pet_period_abstime(); | |
368 | } else { | |
369 | min_period = kperf_timer_min_period_abstime(); | |
370 | } | |
371 | ||
372 | if (period_abstime > 0 && period_abstime < min_period) { | |
373 | period_abstime = min_period; | |
374 | } | |
375 | ||
376 | kperf_timerv[timerid].period = period_abstime; | |
377 | ||
378 | /* FIXME: re-program running timers? */ | |
379 | ||
380 | return 0; | |
381 | } | |
382 | ||
383 | int | |
384 | kperf_timer_get_action(unsigned int timerid, uint32_t *action) | |
385 | { | |
386 | if (timerid >= kperf_timerc) { | |
387 | return EINVAL; | |
388 | } | |
389 | ||
390 | *action = kperf_timerv[timerid].actionid; | |
391 | return 0; | |
392 | } | |
393 | ||
394 | int | |
395 | kperf_timer_set_action(unsigned int timerid, uint32_t action) | |
396 | { | |
397 | if (timerid >= kperf_timerc) { | |
398 | return EINVAL; | |
399 | } | |
400 | ||
401 | kperf_timerv[timerid].actionid = action; | |
402 | return 0; | |
403 | } | |
404 | ||
405 | unsigned int | |
406 | kperf_timer_get_count(void) | |
407 | { | |
408 | return kperf_timerc; | |
409 | } | |
410 | ||
411 | void | |
412 | kperf_timer_reset(void) | |
413 | { | |
414 | kperf_timer_set_petid(999); | |
415 | kperf_set_pet_idle_rate(KPERF_PET_DEFAULT_IDLE_RATE); | |
416 | kperf_set_lightweight_pet(0); | |
417 | for (unsigned int i = 0; i < kperf_timerc; i++) { | |
418 | kperf_timerv[i].period = 0; | |
419 | kperf_timerv[i].actionid = 0; | |
39037602 | 420 | kperf_timerv[i].pending_cpus = 0; |
39037602 A |
421 | } |
422 | } | |
423 | ||
424 | extern int | |
425 | kperf_timer_set_count(unsigned int count) | |
426 | { | |
427 | struct kperf_timer *new_timerv = NULL, *old_timerv = NULL; | |
428 | unsigned int old_count; | |
429 | ||
430 | if (min_period_abstime == 0) { | |
5ba3f43e A |
431 | nanoseconds_to_absolutetime(KP_MIN_PERIOD_NS, &min_period_abstime); |
432 | nanoseconds_to_absolutetime(KP_MIN_PERIOD_BG_NS, &min_period_bg_abstime); | |
433 | nanoseconds_to_absolutetime(KP_MIN_PERIOD_PET_NS, &min_period_pet_abstime); | |
434 | nanoseconds_to_absolutetime(KP_MIN_PERIOD_PET_BG_NS, | |
39037602 A |
435 | &min_period_pet_bg_abstime); |
436 | assert(min_period_abstime > 0); | |
437 | } | |
438 | ||
439 | if (count == kperf_timerc) { | |
440 | return 0; | |
441 | } | |
442 | if (count > TIMER_MAX) { | |
443 | return EINVAL; | |
444 | } | |
445 | ||
446 | /* TODO: allow shrinking? */ | |
447 | if (count < kperf_timerc) { | |
448 | return EINVAL; | |
449 | } | |
450 | ||
451 | /* | |
452 | * Make sure kperf is initialized when creating the array for the first | |
453 | * time. | |
454 | */ | |
455 | if (kperf_timerc == 0) { | |
456 | int r; | |
457 | ||
458 | /* main kperf */ | |
459 | if ((r = kperf_init())) { | |
460 | return r; | |
461 | } | |
462 | } | |
463 | ||
464 | /* | |
465 | * Shut down any running timers since we will be messing with the timer | |
466 | * call structures. | |
467 | */ | |
468 | kperf_timer_stop(); | |
469 | ||
470 | /* create a new array */ | |
471 | new_timerv = kalloc_tag(count * sizeof(struct kperf_timer), | |
472 | VM_KERN_MEMORY_DIAG); | |
473 | if (new_timerv == NULL) { | |
474 | return ENOMEM; | |
475 | } | |
476 | old_timerv = kperf_timerv; | |
477 | old_count = kperf_timerc; | |
478 | ||
479 | if (old_timerv != NULL) { | |
480 | bcopy(kperf_timerv, new_timerv, | |
481 | kperf_timerc * sizeof(struct kperf_timer)); | |
482 | } | |
483 | ||
484 | /* zero the new entries */ | |
485 | bzero(&(new_timerv[kperf_timerc]), | |
486 | (count - old_count) * sizeof(struct kperf_timer)); | |
487 | ||
488 | /* (re-)setup the timer call info for all entries */ | |
489 | for (unsigned int i = 0; i < count; i++) { | |
5ba3f43e | 490 | timer_call_setup(&new_timerv[i].tcall, kperf_timer_handler, &new_timerv[i]); |
39037602 A |
491 | } |
492 | ||
493 | kperf_timerv = new_timerv; | |
494 | kperf_timerc = count; | |
495 | ||
496 | if (old_timerv != NULL) { | |
497 | kfree(old_timerv, old_count * sizeof(struct kperf_timer)); | |
498 | } | |
499 | ||
500 | return 0; | |
501 | } |