]>
Commit | Line | Data |
---|---|---|
1c79356b | 1 | /* |
55e303ae | 2 | * Copyright (c) 2000-2003 Apple Computer, Inc. All rights reserved. |
1c79356b A |
3 | * |
4 | * @APPLE_LICENSE_HEADER_START@ | |
5 | * | |
e5568f75 A |
6 | * The contents of this file constitute Original Code as defined in and |
7 | * are subject to the Apple Public Source License Version 1.1 (the | |
8 | * "License"). You may not use this file except in compliance with the | |
9 | * License. Please obtain a copy of the License at | |
10 | * http://www.apple.com/publicsource and read it before using this file. | |
11 | * | |
12 | * This Original Code and all software distributed under the License are | |
13 | * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
1c79356b A |
14 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
15 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
e5568f75 A |
16 | * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the |
17 | * License for the specific language governing rights and limitations | |
18 | * under the License. | |
1c79356b A |
19 | * |
20 | * @APPLE_LICENSE_HEADER_END@ | |
21 | */ | |
22 | /* | |
23 | * @OSF_COPYRIGHT@ | |
24 | */ | |
25 | /* | |
26 | * Mach Operating System | |
27 | * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University | |
28 | * All Rights Reserved. | |
29 | * | |
30 | * Permission to use, copy, modify and distribute this software and its | |
31 | * documentation is hereby granted, provided that both the copyright | |
32 | * notice and this permission notice appear in all copies of the | |
33 | * software, derivative works or modified versions, and any portions | |
34 | * thereof, and that both notices appear in supporting documentation. | |
35 | * | |
36 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" | |
37 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR | |
38 | * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. | |
39 | * | |
40 | * Carnegie Mellon requests users of this software to return to | |
41 | * | |
42 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU | |
43 | * School of Computer Science | |
44 | * Carnegie Mellon University | |
45 | * Pittsburgh PA 15213-3890 | |
46 | * | |
47 | * any improvements or extensions that they make and grant Carnegie Mellon | |
48 | * the rights to redistribute these changes. | |
49 | */ | |
50 | /* | |
51 | */ | |
52 | /* | |
53 | * File: vm/vm_object.c | |
54 | * Author: Avadis Tevanian, Jr., Michael Wayne Young | |
55 | * | |
56 | * Virtual memory object module. | |
57 | */ | |
58 | ||
59 | #ifdef MACH_BSD | |
60 | /* remove as part of compoenent support merge */ | |
61 | extern int vnode_pager_workaround; | |
62 | #endif | |
63 | ||
64 | #include <mach_pagemap.h> | |
65 | #include <task_swapper.h> | |
66 | ||
0b4e3aa0 | 67 | #include <mach/mach_types.h> |
1c79356b A |
68 | #include <mach/memory_object.h> |
69 | #include <mach/memory_object_default.h> | |
70 | #include <mach/memory_object_control_server.h> | |
71 | #include <mach/vm_param.h> | |
72 | #include <ipc/ipc_port.h> | |
1c79356b A |
73 | #include <kern/assert.h> |
74 | #include <kern/lock.h> | |
75 | #include <kern/queue.h> | |
76 | #include <kern/xpr.h> | |
77 | #include <kern/zalloc.h> | |
78 | #include <kern/host.h> | |
79 | #include <kern/host_statistics.h> | |
80 | #include <kern/processor.h> | |
81 | #include <vm/memory_object.h> | |
82 | #include <vm/vm_fault.h> | |
83 | #include <vm/vm_map.h> | |
84 | #include <vm/vm_object.h> | |
85 | #include <vm/vm_page.h> | |
86 | #include <vm/vm_pageout.h> | |
87 | #include <kern/misc_protos.h> | |
88 | ||
1c79356b A |
89 | /* |
90 | * Virtual memory objects maintain the actual data | |
91 | * associated with allocated virtual memory. A given | |
92 | * page of memory exists within exactly one object. | |
93 | * | |
94 | * An object is only deallocated when all "references" | |
0b4e3aa0 | 95 | * are given up. |
1c79356b A |
96 | * |
97 | * Associated with each object is a list of all resident | |
98 | * memory pages belonging to that object; this list is | |
99 | * maintained by the "vm_page" module, but locked by the object's | |
100 | * lock. | |
101 | * | |
0b4e3aa0 | 102 | * Each object also records the memory object reference |
1c79356b | 103 | * that is used by the kernel to request and write |
0b4e3aa0 | 104 | * back data (the memory object, field "pager"), etc... |
1c79356b A |
105 | * |
106 | * Virtual memory objects are allocated to provide | |
107 | * zero-filled memory (vm_allocate) or map a user-defined | |
108 | * memory object into a virtual address space (vm_map). | |
109 | * | |
110 | * Virtual memory objects that refer to a user-defined | |
111 | * memory object are called "permanent", because all changes | |
112 | * made in virtual memory are reflected back to the | |
113 | * memory manager, which may then store it permanently. | |
114 | * Other virtual memory objects are called "temporary", | |
115 | * meaning that changes need be written back only when | |
116 | * necessary to reclaim pages, and that storage associated | |
117 | * with the object can be discarded once it is no longer | |
118 | * mapped. | |
119 | * | |
120 | * A permanent memory object may be mapped into more | |
121 | * than one virtual address space. Moreover, two threads | |
122 | * may attempt to make the first mapping of a memory | |
123 | * object concurrently. Only one thread is allowed to | |
124 | * complete this mapping; all others wait for the | |
125 | * "pager_initialized" field is asserted, indicating | |
126 | * that the first thread has initialized all of the | |
127 | * necessary fields in the virtual memory object structure. | |
128 | * | |
129 | * The kernel relies on a *default memory manager* to | |
130 | * provide backing storage for the zero-filled virtual | |
0b4e3aa0 | 131 | * memory objects. The pager memory objects associated |
1c79356b | 132 | * with these temporary virtual memory objects are only |
0b4e3aa0 A |
133 | * requested from the default memory manager when it |
134 | * becomes necessary. Virtual memory objects | |
1c79356b A |
135 | * that depend on the default memory manager are called |
136 | * "internal". The "pager_created" field is provided to | |
137 | * indicate whether these ports have ever been allocated. | |
138 | * | |
139 | * The kernel may also create virtual memory objects to | |
140 | * hold changed pages after a copy-on-write operation. | |
141 | * In this case, the virtual memory object (and its | |
142 | * backing storage -- its memory object) only contain | |
143 | * those pages that have been changed. The "shadow" | |
144 | * field refers to the virtual memory object that contains | |
145 | * the remainder of the contents. The "shadow_offset" | |
146 | * field indicates where in the "shadow" these contents begin. | |
147 | * The "copy" field refers to a virtual memory object | |
148 | * to which changed pages must be copied before changing | |
149 | * this object, in order to implement another form | |
150 | * of copy-on-write optimization. | |
151 | * | |
152 | * The virtual memory object structure also records | |
153 | * the attributes associated with its memory object. | |
154 | * The "pager_ready", "can_persist" and "copy_strategy" | |
155 | * fields represent those attributes. The "cached_list" | |
156 | * field is used in the implementation of the persistence | |
157 | * attribute. | |
158 | * | |
159 | * ZZZ Continue this comment. | |
160 | */ | |
161 | ||
162 | /* Forward declarations for internal functions. */ | |
0b4e3aa0 | 163 | static void _vm_object_allocate( |
1c79356b A |
164 | vm_object_size_t size, |
165 | vm_object_t object); | |
166 | ||
0b4e3aa0 | 167 | static kern_return_t vm_object_terminate( |
1c79356b A |
168 | vm_object_t object); |
169 | ||
170 | extern void vm_object_remove( | |
171 | vm_object_t object); | |
172 | ||
0b4e3aa0 | 173 | static vm_object_t vm_object_cache_trim( |
1c79356b A |
174 | boolean_t called_from_vm_object_deallocate); |
175 | ||
0b4e3aa0 | 176 | static void vm_object_deactivate_all_pages( |
1c79356b A |
177 | vm_object_t object); |
178 | ||
0b4e3aa0 | 179 | static void vm_object_abort_activity( |
1c79356b A |
180 | vm_object_t object); |
181 | ||
0b4e3aa0 | 182 | static kern_return_t vm_object_copy_call( |
1c79356b A |
183 | vm_object_t src_object, |
184 | vm_object_offset_t src_offset, | |
185 | vm_object_size_t size, | |
186 | vm_object_t *_result_object); | |
187 | ||
0b4e3aa0 | 188 | static void vm_object_do_collapse( |
1c79356b A |
189 | vm_object_t object, |
190 | vm_object_t backing_object); | |
191 | ||
0b4e3aa0 | 192 | static void vm_object_do_bypass( |
1c79356b A |
193 | vm_object_t object, |
194 | vm_object_t backing_object); | |
195 | ||
0b4e3aa0 A |
196 | static void vm_object_release_pager( |
197 | memory_object_t pager); | |
1c79356b | 198 | |
0b4e3aa0 | 199 | static zone_t vm_object_zone; /* vm backing store zone */ |
1c79356b A |
200 | |
201 | /* | |
202 | * All wired-down kernel memory belongs to a single virtual | |
203 | * memory object (kernel_object) to avoid wasting data structures. | |
204 | */ | |
0b4e3aa0 A |
205 | static struct vm_object kernel_object_store; |
206 | __private_extern__ vm_object_t kernel_object = &kernel_object_store; | |
1c79356b A |
207 | |
208 | /* | |
209 | * The submap object is used as a placeholder for vm_map_submap | |
210 | * operations. The object is declared in vm_map.c because it | |
211 | * is exported by the vm_map module. The storage is declared | |
212 | * here because it must be initialized here. | |
213 | */ | |
0b4e3aa0 | 214 | static struct vm_object vm_submap_object_store; |
1c79356b A |
215 | |
216 | /* | |
217 | * Virtual memory objects are initialized from | |
218 | * a template (see vm_object_allocate). | |
219 | * | |
220 | * When adding a new field to the virtual memory | |
221 | * object structure, be sure to add initialization | |
0b4e3aa0 | 222 | * (see _vm_object_allocate()). |
1c79356b | 223 | */ |
0b4e3aa0 | 224 | static struct vm_object vm_object_template; |
1c79356b A |
225 | |
226 | /* | |
227 | * Virtual memory objects that are not referenced by | |
228 | * any address maps, but that are allowed to persist | |
229 | * (an attribute specified by the associated memory manager), | |
230 | * are kept in a queue (vm_object_cached_list). | |
231 | * | |
232 | * When an object from this queue is referenced again, | |
233 | * for example to make another address space mapping, | |
234 | * it must be removed from the queue. That is, the | |
235 | * queue contains *only* objects with zero references. | |
236 | * | |
237 | * The kernel may choose to terminate objects from this | |
238 | * queue in order to reclaim storage. The current policy | |
239 | * is to permit a fixed maximum number of unreferenced | |
240 | * objects (vm_object_cached_max). | |
241 | * | |
242 | * A spin lock (accessed by routines | |
243 | * vm_object_cache_{lock,lock_try,unlock}) governs the | |
244 | * object cache. It must be held when objects are | |
245 | * added to or removed from the cache (in vm_object_terminate). | |
246 | * The routines that acquire a reference to a virtual | |
247 | * memory object based on one of the memory object ports | |
248 | * must also lock the cache. | |
249 | * | |
250 | * Ideally, the object cache should be more isolated | |
251 | * from the reference mechanism, so that the lock need | |
252 | * not be held to make simple references. | |
253 | */ | |
0b4e3aa0 | 254 | static queue_head_t vm_object_cached_list; |
9bccf70c | 255 | static int vm_object_cached_count=0; |
0b4e3aa0 A |
256 | static int vm_object_cached_high; /* highest # cached objects */ |
257 | static int vm_object_cached_max = 512; /* may be patched*/ | |
1c79356b | 258 | |
0b4e3aa0 | 259 | static decl_mutex_data(,vm_object_cached_lock_data) |
1c79356b A |
260 | |
261 | #define vm_object_cache_lock() \ | |
262 | mutex_lock(&vm_object_cached_lock_data) | |
263 | #define vm_object_cache_lock_try() \ | |
264 | mutex_try(&vm_object_cached_lock_data) | |
265 | #define vm_object_cache_unlock() \ | |
266 | mutex_unlock(&vm_object_cached_lock_data) | |
267 | ||
268 | #define VM_OBJECT_HASH_COUNT 1024 | |
0b4e3aa0 A |
269 | static queue_head_t vm_object_hashtable[VM_OBJECT_HASH_COUNT]; |
270 | static struct zone *vm_object_hash_zone; | |
1c79356b A |
271 | |
272 | struct vm_object_hash_entry { | |
273 | queue_chain_t hash_link; /* hash chain link */ | |
0b4e3aa0 | 274 | memory_object_t pager; /* pager we represent */ |
1c79356b A |
275 | vm_object_t object; /* corresponding object */ |
276 | boolean_t waiting; /* someone waiting for | |
277 | * termination */ | |
278 | }; | |
279 | ||
280 | typedef struct vm_object_hash_entry *vm_object_hash_entry_t; | |
281 | #define VM_OBJECT_HASH_ENTRY_NULL ((vm_object_hash_entry_t) 0) | |
282 | ||
283 | #define VM_OBJECT_HASH_SHIFT 8 | |
284 | #define vm_object_hash(pager) \ | |
285 | ((((unsigned)pager) >> VM_OBJECT_HASH_SHIFT) % VM_OBJECT_HASH_COUNT) | |
286 | ||
287 | /* | |
288 | * vm_object_hash_lookup looks up a pager in the hashtable | |
289 | * and returns the corresponding entry, with optional removal. | |
290 | */ | |
291 | ||
0b4e3aa0 | 292 | static vm_object_hash_entry_t |
1c79356b | 293 | vm_object_hash_lookup( |
0b4e3aa0 | 294 | memory_object_t pager, |
1c79356b A |
295 | boolean_t remove_entry) |
296 | { | |
297 | register queue_t bucket; | |
298 | register vm_object_hash_entry_t entry; | |
299 | ||
300 | bucket = &vm_object_hashtable[vm_object_hash(pager)]; | |
301 | ||
302 | entry = (vm_object_hash_entry_t)queue_first(bucket); | |
303 | while (!queue_end(bucket, (queue_entry_t)entry)) { | |
304 | if (entry->pager == pager && !remove_entry) | |
305 | return(entry); | |
306 | else if (entry->pager == pager) { | |
307 | queue_remove(bucket, entry, | |
308 | vm_object_hash_entry_t, hash_link); | |
309 | return(entry); | |
310 | } | |
311 | ||
312 | entry = (vm_object_hash_entry_t)queue_next(&entry->hash_link); | |
313 | } | |
314 | ||
315 | return(VM_OBJECT_HASH_ENTRY_NULL); | |
316 | } | |
317 | ||
318 | /* | |
319 | * vm_object_hash_enter enters the specified | |
320 | * pager / cache object association in the hashtable. | |
321 | */ | |
322 | ||
0b4e3aa0 | 323 | static void |
1c79356b A |
324 | vm_object_hash_insert( |
325 | vm_object_hash_entry_t entry) | |
326 | { | |
327 | register queue_t bucket; | |
328 | ||
329 | bucket = &vm_object_hashtable[vm_object_hash(entry->pager)]; | |
330 | ||
331 | queue_enter(bucket, entry, vm_object_hash_entry_t, hash_link); | |
332 | } | |
333 | ||
0b4e3aa0 | 334 | static vm_object_hash_entry_t |
1c79356b | 335 | vm_object_hash_entry_alloc( |
0b4e3aa0 | 336 | memory_object_t pager) |
1c79356b A |
337 | { |
338 | vm_object_hash_entry_t entry; | |
339 | ||
340 | entry = (vm_object_hash_entry_t)zalloc(vm_object_hash_zone); | |
341 | entry->pager = pager; | |
342 | entry->object = VM_OBJECT_NULL; | |
343 | entry->waiting = FALSE; | |
344 | ||
345 | return(entry); | |
346 | } | |
347 | ||
348 | void | |
349 | vm_object_hash_entry_free( | |
350 | vm_object_hash_entry_t entry) | |
351 | { | |
352 | zfree(vm_object_hash_zone, (vm_offset_t)entry); | |
353 | } | |
354 | ||
355 | /* | |
356 | * vm_object_allocate: | |
357 | * | |
358 | * Returns a new object with the given size. | |
359 | */ | |
360 | ||
0b4e3aa0 | 361 | static void |
1c79356b A |
362 | _vm_object_allocate( |
363 | vm_object_size_t size, | |
364 | vm_object_t object) | |
365 | { | |
366 | XPR(XPR_VM_OBJECT, | |
367 | "vm_object_allocate, object 0x%X size 0x%X\n", | |
368 | (integer_t)object, size, 0,0,0); | |
369 | ||
370 | *object = vm_object_template; | |
371 | queue_init(&object->memq); | |
372 | queue_init(&object->msr_q); | |
373 | #ifdef UBC_DEBUG | |
374 | queue_init(&object->uplq); | |
375 | #endif /* UBC_DEBUG */ | |
376 | vm_object_lock_init(object); | |
377 | object->size = size; | |
378 | } | |
379 | ||
0b4e3aa0 | 380 | __private_extern__ vm_object_t |
1c79356b A |
381 | vm_object_allocate( |
382 | vm_object_size_t size) | |
383 | { | |
384 | register vm_object_t object; | |
1c79356b A |
385 | |
386 | object = (vm_object_t) zalloc(vm_object_zone); | |
387 | ||
0b4e3aa0 A |
388 | // dbgLog(object, size, 0, 2); /* (TEST/DEBUG) */ |
389 | ||
390 | if (object != VM_OBJECT_NULL) | |
391 | _vm_object_allocate(size, object); | |
1c79356b A |
392 | |
393 | return object; | |
394 | } | |
395 | ||
396 | /* | |
397 | * vm_object_bootstrap: | |
398 | * | |
399 | * Initialize the VM objects module. | |
400 | */ | |
0b4e3aa0 | 401 | __private_extern__ void |
1c79356b A |
402 | vm_object_bootstrap(void) |
403 | { | |
404 | register i; | |
405 | ||
406 | vm_object_zone = zinit((vm_size_t) sizeof(struct vm_object), | |
55e303ae A |
407 | round_page_32(512*1024), |
408 | round_page_32(12*1024), | |
1c79356b A |
409 | "vm objects"); |
410 | ||
411 | queue_init(&vm_object_cached_list); | |
412 | mutex_init(&vm_object_cached_lock_data, ETAP_VM_OBJ_CACHE); | |
413 | ||
414 | vm_object_hash_zone = | |
415 | zinit((vm_size_t) sizeof (struct vm_object_hash_entry), | |
55e303ae A |
416 | round_page_32(512*1024), |
417 | round_page_32(12*1024), | |
1c79356b A |
418 | "vm object hash entries"); |
419 | ||
420 | for (i = 0; i < VM_OBJECT_HASH_COUNT; i++) | |
421 | queue_init(&vm_object_hashtable[i]); | |
422 | ||
423 | /* | |
424 | * Fill in a template object, for quick initialization | |
425 | */ | |
426 | ||
427 | /* memq; Lock; init after allocation */ | |
428 | vm_object_template.size = 0; | |
429 | vm_object_template.frozen_size = 0; | |
430 | vm_object_template.ref_count = 1; | |
431 | #if TASK_SWAPPER | |
432 | vm_object_template.res_count = 1; | |
433 | #endif /* TASK_SWAPPER */ | |
434 | vm_object_template.resident_page_count = 0; | |
435 | vm_object_template.copy = VM_OBJECT_NULL; | |
436 | vm_object_template.shadow = VM_OBJECT_NULL; | |
437 | vm_object_template.shadow_offset = (vm_object_offset_t) 0; | |
55e303ae | 438 | vm_object_template.cow_hint = ~(vm_offset_t)0; |
1c79356b A |
439 | vm_object_template.true_share = FALSE; |
440 | ||
0b4e3aa0 | 441 | vm_object_template.pager = MEMORY_OBJECT_NULL; |
1c79356b A |
442 | vm_object_template.paging_offset = 0; |
443 | vm_object_template.pager_request = PAGER_REQUEST_NULL; | |
444 | /* msr_q; init after allocation */ | |
445 | ||
446 | vm_object_template.copy_strategy = MEMORY_OBJECT_COPY_SYMMETRIC; | |
447 | vm_object_template.absent_count = 0; | |
448 | vm_object_template.paging_in_progress = 0; | |
449 | ||
450 | /* Begin bitfields */ | |
451 | vm_object_template.all_wanted = 0; /* all bits FALSE */ | |
452 | vm_object_template.pager_created = FALSE; | |
453 | vm_object_template.pager_initialized = FALSE; | |
454 | vm_object_template.pager_ready = FALSE; | |
455 | vm_object_template.pager_trusted = FALSE; | |
456 | vm_object_template.can_persist = FALSE; | |
457 | vm_object_template.internal = TRUE; | |
458 | vm_object_template.temporary = TRUE; | |
459 | vm_object_template.private = FALSE; | |
460 | vm_object_template.pageout = FALSE; | |
461 | vm_object_template.alive = TRUE; | |
462 | vm_object_template.lock_in_progress = FALSE; | |
463 | vm_object_template.lock_restart = FALSE; | |
464 | vm_object_template.silent_overwrite = FALSE; | |
465 | vm_object_template.advisory_pageout = FALSE; | |
466 | vm_object_template.shadowed = FALSE; | |
467 | vm_object_template.terminating = FALSE; | |
468 | vm_object_template.shadow_severed = FALSE; | |
469 | vm_object_template.phys_contiguous = FALSE; | |
0b4e3aa0 | 470 | vm_object_template.nophyscache = FALSE; |
1c79356b A |
471 | /* End bitfields */ |
472 | ||
9bccf70c A |
473 | /* cache bitfields */ |
474 | vm_object_template.wimg_bits = VM_WIMG_DEFAULT; | |
475 | ||
1c79356b A |
476 | /* cached_list; init after allocation */ |
477 | vm_object_template.last_alloc = (vm_object_offset_t) 0; | |
478 | vm_object_template.cluster_size = 0; | |
479 | #if MACH_PAGEMAP | |
480 | vm_object_template.existence_map = VM_EXTERNAL_NULL; | |
481 | #endif /* MACH_PAGEMAP */ | |
482 | #if MACH_ASSERT | |
483 | vm_object_template.paging_object = VM_OBJECT_NULL; | |
484 | #endif /* MACH_ASSERT */ | |
485 | ||
486 | /* | |
487 | * Initialize the "kernel object" | |
488 | */ | |
489 | ||
490 | kernel_object = &kernel_object_store; | |
491 | ||
492 | /* | |
493 | * Note that in the following size specifications, we need to add 1 because | |
55e303ae | 494 | * VM_MAX_KERNEL_ADDRESS (vm_last_addr) is a maximum address, not a size. |
1c79356b | 495 | */ |
55e303ae A |
496 | |
497 | #ifdef ppc | |
498 | _vm_object_allocate((vm_last_addr - VM_MIN_KERNEL_ADDRESS) + 1, | |
499 | kernel_object); | |
500 | #else | |
1c79356b A |
501 | _vm_object_allocate((VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS) + 1, |
502 | kernel_object); | |
55e303ae A |
503 | #endif |
504 | kernel_object->copy_strategy = MEMORY_OBJECT_COPY_NONE; | |
1c79356b A |
505 | |
506 | /* | |
507 | * Initialize the "submap object". Make it as large as the | |
508 | * kernel object so that no limit is imposed on submap sizes. | |
509 | */ | |
510 | ||
511 | vm_submap_object = &vm_submap_object_store; | |
55e303ae A |
512 | #ifdef ppc |
513 | _vm_object_allocate((vm_last_addr - VM_MIN_KERNEL_ADDRESS) + 1, | |
514 | vm_submap_object); | |
515 | #else | |
1c79356b A |
516 | _vm_object_allocate((VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS) + 1, |
517 | vm_submap_object); | |
55e303ae A |
518 | #endif |
519 | vm_submap_object->copy_strategy = MEMORY_OBJECT_COPY_NONE; | |
520 | ||
1c79356b A |
521 | /* |
522 | * Create an "extra" reference to this object so that we never | |
523 | * try to deallocate it; zfree doesn't like to be called with | |
524 | * non-zone memory. | |
525 | */ | |
526 | vm_object_reference(vm_submap_object); | |
527 | ||
528 | #if MACH_PAGEMAP | |
529 | vm_external_module_initialize(); | |
530 | #endif /* MACH_PAGEMAP */ | |
531 | } | |
532 | ||
0b4e3aa0 | 533 | __private_extern__ void |
1c79356b A |
534 | vm_object_init(void) |
535 | { | |
536 | /* | |
537 | * Finish initializing the kernel object. | |
538 | */ | |
539 | } | |
540 | ||
1c79356b A |
541 | /* remove the typedef below when emergency work-around is taken out */ |
542 | typedef struct vnode_pager { | |
0b4e3aa0 A |
543 | memory_object_t pager; |
544 | memory_object_t pager_handle; /* pager */ | |
545 | memory_object_control_t control_handle; /* memory object's control handle */ | |
546 | void *vnode_handle; /* vnode handle */ | |
1c79356b A |
547 | } *vnode_pager_t; |
548 | ||
549 | #define MIGHT_NOT_CACHE_SHADOWS 1 | |
550 | #if MIGHT_NOT_CACHE_SHADOWS | |
0b4e3aa0 | 551 | static int cache_shadows = TRUE; |
1c79356b A |
552 | #endif /* MIGHT_NOT_CACHE_SHADOWS */ |
553 | ||
554 | /* | |
555 | * vm_object_deallocate: | |
556 | * | |
557 | * Release a reference to the specified object, | |
558 | * gained either through a vm_object_allocate | |
559 | * or a vm_object_reference call. When all references | |
560 | * are gone, storage associated with this object | |
561 | * may be relinquished. | |
562 | * | |
563 | * No object may be locked. | |
564 | */ | |
0b4e3aa0 | 565 | __private_extern__ void |
1c79356b A |
566 | vm_object_deallocate( |
567 | register vm_object_t object) | |
568 | { | |
569 | boolean_t retry_cache_trim = FALSE; | |
570 | vm_object_t shadow; | |
571 | ||
572 | // if(object)dbgLog(object, object->ref_count, object->can_persist, 3); /* (TEST/DEBUG) */ | |
573 | // else dbgLog(object, 0, 0, 3); /* (TEST/DEBUG) */ | |
574 | ||
575 | ||
576 | while (object != VM_OBJECT_NULL) { | |
577 | ||
578 | /* | |
579 | * The cache holds a reference (uncounted) to | |
580 | * the object; we must lock it before removing | |
581 | * the object. | |
582 | */ | |
55e303ae A |
583 | for (;;) { |
584 | vm_object_cache_lock(); | |
1c79356b | 585 | |
55e303ae A |
586 | /* |
587 | * if we try to take a regular lock here | |
588 | * we risk deadlocking against someone | |
589 | * holding a lock on this object while | |
590 | * trying to vm_object_deallocate a different | |
591 | * object | |
592 | */ | |
593 | if (vm_object_lock_try(object)) | |
594 | break; | |
595 | vm_object_cache_unlock(); | |
596 | mutex_pause(); /* wait a bit */ | |
597 | } | |
0b4e3aa0 A |
598 | assert(object->ref_count > 0); |
599 | ||
600 | /* | |
601 | * If the object has a named reference, and only | |
602 | * that reference would remain, inform the pager | |
603 | * about the last "mapping" reference going away. | |
604 | */ | |
605 | if ((object->ref_count == 2) && (object->named)) { | |
606 | memory_object_t pager = object->pager; | |
607 | ||
608 | /* Notify the Pager that there are no */ | |
609 | /* more mappers for this object */ | |
610 | ||
611 | if (pager != MEMORY_OBJECT_NULL) { | |
612 | vm_object_unlock(object); | |
613 | vm_object_cache_unlock(); | |
614 | ||
615 | memory_object_unmap(pager); | |
616 | ||
55e303ae A |
617 | for (;;) { |
618 | vm_object_cache_lock(); | |
619 | ||
620 | /* | |
621 | * if we try to take a regular lock here | |
622 | * we risk deadlocking against someone | |
623 | * holding a lock on this object while | |
624 | * trying to vm_object_deallocate a different | |
625 | * object | |
626 | */ | |
627 | if (vm_object_lock_try(object)) | |
628 | break; | |
629 | vm_object_cache_unlock(); | |
630 | mutex_pause(); /* wait a bit */ | |
631 | } | |
0b4e3aa0 A |
632 | assert(object->ref_count > 0); |
633 | } | |
634 | } | |
1c79356b A |
635 | |
636 | /* | |
637 | * Lose the reference. If other references | |
638 | * remain, then we are done, unless we need | |
639 | * to retry a cache trim. | |
640 | * If it is the last reference, then keep it | |
641 | * until any pending initialization is completed. | |
642 | */ | |
643 | ||
0b4e3aa0 A |
644 | /* if the object is terminating, it cannot go into */ |
645 | /* the cache and we obviously should not call */ | |
646 | /* terminate again. */ | |
647 | ||
648 | if ((object->ref_count > 1) || object->terminating) { | |
1c79356b | 649 | object->ref_count--; |
1c79356b A |
650 | vm_object_res_deallocate(object); |
651 | vm_object_unlock(object); | |
652 | vm_object_cache_unlock(); | |
653 | if (retry_cache_trim && | |
654 | ((object = vm_object_cache_trim(TRUE)) != | |
655 | VM_OBJECT_NULL)) { | |
656 | continue; | |
657 | } | |
658 | return; | |
659 | } | |
660 | ||
661 | /* | |
662 | * We have to wait for initialization | |
663 | * before destroying or caching the object. | |
664 | */ | |
665 | ||
666 | if (object->pager_created && ! object->pager_initialized) { | |
667 | assert(! object->can_persist); | |
668 | vm_object_assert_wait(object, | |
669 | VM_OBJECT_EVENT_INITIALIZED, | |
670 | THREAD_UNINT); | |
671 | vm_object_unlock(object); | |
672 | vm_object_cache_unlock(); | |
9bccf70c | 673 | thread_block(THREAD_CONTINUE_NULL); |
1c79356b A |
674 | continue; |
675 | } | |
676 | ||
677 | /* | |
678 | * If this object can persist, then enter it in | |
679 | * the cache. Otherwise, terminate it. | |
680 | * | |
681 | * NOTE: Only permanent objects are cached, and | |
682 | * permanent objects cannot have shadows. This | |
683 | * affects the residence counting logic in a minor | |
684 | * way (can do it in-line, mostly). | |
685 | */ | |
686 | ||
0b4e3aa0 | 687 | if ((object->can_persist) && (object->alive)) { |
1c79356b A |
688 | /* |
689 | * Now it is safe to decrement reference count, | |
690 | * and to return if reference count is > 0. | |
691 | */ | |
692 | if (--object->ref_count > 0) { | |
693 | vm_object_res_deallocate(object); | |
694 | vm_object_unlock(object); | |
695 | vm_object_cache_unlock(); | |
696 | if (retry_cache_trim && | |
697 | ((object = vm_object_cache_trim(TRUE)) != | |
698 | VM_OBJECT_NULL)) { | |
699 | continue; | |
700 | } | |
701 | return; | |
702 | } | |
703 | ||
704 | #if MIGHT_NOT_CACHE_SHADOWS | |
705 | /* | |
706 | * Remove shadow now if we don't | |
707 | * want to cache shadows. | |
708 | */ | |
709 | if (! cache_shadows) { | |
710 | shadow = object->shadow; | |
711 | object->shadow = VM_OBJECT_NULL; | |
712 | } | |
713 | #endif /* MIGHT_NOT_CACHE_SHADOWS */ | |
714 | ||
715 | /* | |
716 | * Enter the object onto the queue of | |
717 | * cached objects, and deactivate | |
718 | * all of its pages. | |
719 | */ | |
720 | assert(object->shadow == VM_OBJECT_NULL); | |
721 | VM_OBJ_RES_DECR(object); | |
722 | XPR(XPR_VM_OBJECT, | |
723 | "vm_o_deallocate: adding %x to cache, queue = (%x, %x)\n", | |
724 | (integer_t)object, | |
725 | (integer_t)vm_object_cached_list.next, | |
726 | (integer_t)vm_object_cached_list.prev,0,0); | |
727 | ||
728 | vm_object_cached_count++; | |
729 | if (vm_object_cached_count > vm_object_cached_high) | |
730 | vm_object_cached_high = vm_object_cached_count; | |
731 | queue_enter(&vm_object_cached_list, object, | |
732 | vm_object_t, cached_list); | |
733 | vm_object_cache_unlock(); | |
0b4e3aa0 | 734 | vm_object_deactivate_all_pages(object); |
1c79356b A |
735 | vm_object_unlock(object); |
736 | ||
737 | #if MIGHT_NOT_CACHE_SHADOWS | |
738 | /* | |
739 | * If we have a shadow that we need | |
740 | * to deallocate, do so now, remembering | |
741 | * to trim the cache later. | |
742 | */ | |
743 | if (! cache_shadows && shadow != VM_OBJECT_NULL) { | |
744 | object = shadow; | |
745 | retry_cache_trim = TRUE; | |
746 | continue; | |
747 | } | |
748 | #endif /* MIGHT_NOT_CACHE_SHADOWS */ | |
749 | ||
750 | /* | |
751 | * Trim the cache. If the cache trim | |
752 | * returns with a shadow for us to deallocate, | |
753 | * then remember to retry the cache trim | |
754 | * when we are done deallocating the shadow. | |
755 | * Otherwise, we are done. | |
756 | */ | |
757 | ||
758 | object = vm_object_cache_trim(TRUE); | |
759 | if (object == VM_OBJECT_NULL) { | |
760 | return; | |
761 | } | |
762 | retry_cache_trim = TRUE; | |
763 | ||
764 | } else { | |
765 | /* | |
766 | * This object is not cachable; terminate it. | |
767 | */ | |
768 | XPR(XPR_VM_OBJECT, | |
769 | "vm_o_deallocate: !cacheable 0x%X res %d paging_ops %d thread 0x%lX ref %d\n", | |
770 | (integer_t)object, object->resident_page_count, | |
771 | object->paging_in_progress, | |
772 | (natural_t)current_thread(),object->ref_count); | |
773 | ||
774 | VM_OBJ_RES_DECR(object); /* XXX ? */ | |
775 | /* | |
776 | * Terminate this object. If it had a shadow, | |
777 | * then deallocate it; otherwise, if we need | |
778 | * to retry a cache trim, do so now; otherwise, | |
779 | * we are done. "pageout" objects have a shadow, | |
780 | * but maintain a "paging reference" rather than | |
781 | * a normal reference. | |
782 | */ | |
783 | shadow = object->pageout?VM_OBJECT_NULL:object->shadow; | |
784 | if(vm_object_terminate(object) != KERN_SUCCESS) { | |
785 | return; | |
786 | } | |
787 | if (shadow != VM_OBJECT_NULL) { | |
788 | object = shadow; | |
789 | continue; | |
790 | } | |
791 | if (retry_cache_trim && | |
792 | ((object = vm_object_cache_trim(TRUE)) != | |
793 | VM_OBJECT_NULL)) { | |
794 | continue; | |
795 | } | |
796 | return; | |
797 | } | |
798 | } | |
799 | assert(! retry_cache_trim); | |
800 | } | |
801 | ||
802 | /* | |
803 | * Check to see whether we really need to trim | |
804 | * down the cache. If so, remove an object from | |
805 | * the cache, terminate it, and repeat. | |
806 | * | |
807 | * Called with, and returns with, cache lock unlocked. | |
808 | */ | |
809 | vm_object_t | |
810 | vm_object_cache_trim( | |
811 | boolean_t called_from_vm_object_deallocate) | |
812 | { | |
813 | register vm_object_t object = VM_OBJECT_NULL; | |
814 | vm_object_t shadow; | |
815 | ||
816 | for (;;) { | |
817 | ||
818 | /* | |
819 | * If we no longer need to trim the cache, | |
820 | * then we are done. | |
821 | */ | |
822 | ||
823 | vm_object_cache_lock(); | |
824 | if (vm_object_cached_count <= vm_object_cached_max) { | |
825 | vm_object_cache_unlock(); | |
826 | return VM_OBJECT_NULL; | |
827 | } | |
828 | ||
829 | /* | |
830 | * We must trim down the cache, so remove | |
831 | * the first object in the cache. | |
832 | */ | |
833 | XPR(XPR_VM_OBJECT, | |
834 | "vm_object_cache_trim: removing from front of cache (%x, %x)\n", | |
835 | (integer_t)vm_object_cached_list.next, | |
836 | (integer_t)vm_object_cached_list.prev, 0, 0, 0); | |
837 | ||
838 | object = (vm_object_t) queue_first(&vm_object_cached_list); | |
9bccf70c A |
839 | if(object == (vm_object_t) &vm_object_cached_list) { |
840 | /* something's wrong with the calling parameter or */ | |
841 | /* the value of vm_object_cached_count, just fix */ | |
842 | /* and return */ | |
843 | if(vm_object_cached_max < 0) | |
844 | vm_object_cached_max = 0; | |
845 | vm_object_cached_count = 0; | |
846 | vm_object_cache_unlock(); | |
847 | return VM_OBJECT_NULL; | |
848 | } | |
1c79356b A |
849 | vm_object_lock(object); |
850 | queue_remove(&vm_object_cached_list, object, vm_object_t, | |
851 | cached_list); | |
852 | vm_object_cached_count--; | |
853 | ||
854 | /* | |
855 | * Since this object is in the cache, we know | |
856 | * that it is initialized and has no references. | |
857 | * Take a reference to avoid recursive deallocations. | |
858 | */ | |
859 | ||
860 | assert(object->pager_initialized); | |
861 | assert(object->ref_count == 0); | |
862 | object->ref_count++; | |
863 | ||
864 | /* | |
865 | * Terminate the object. | |
866 | * If the object had a shadow, we let vm_object_deallocate | |
867 | * deallocate it. "pageout" objects have a shadow, but | |
868 | * maintain a "paging reference" rather than a normal | |
869 | * reference. | |
870 | * (We are careful here to limit recursion.) | |
871 | */ | |
872 | shadow = object->pageout?VM_OBJECT_NULL:object->shadow; | |
873 | if(vm_object_terminate(object) != KERN_SUCCESS) | |
874 | continue; | |
875 | if (shadow != VM_OBJECT_NULL) { | |
876 | if (called_from_vm_object_deallocate) { | |
877 | return shadow; | |
878 | } else { | |
879 | vm_object_deallocate(shadow); | |
880 | } | |
881 | } | |
882 | } | |
883 | } | |
884 | ||
885 | boolean_t vm_object_terminate_remove_all = FALSE; | |
886 | ||
887 | /* | |
888 | * Routine: vm_object_terminate | |
889 | * Purpose: | |
890 | * Free all resources associated with a vm_object. | |
891 | * In/out conditions: | |
0b4e3aa0 | 892 | * Upon entry, the object must be locked, |
1c79356b A |
893 | * and the object must have exactly one reference. |
894 | * | |
895 | * The shadow object reference is left alone. | |
896 | * | |
897 | * The object must be unlocked if its found that pages | |
898 | * must be flushed to a backing object. If someone | |
899 | * manages to map the object while it is being flushed | |
900 | * the object is returned unlocked and unchanged. Otherwise, | |
901 | * upon exit, the cache will be unlocked, and the | |
902 | * object will cease to exist. | |
903 | */ | |
0b4e3aa0 | 904 | static kern_return_t |
1c79356b A |
905 | vm_object_terminate( |
906 | register vm_object_t object) | |
907 | { | |
0b4e3aa0 | 908 | memory_object_t pager; |
1c79356b A |
909 | register vm_page_t p; |
910 | vm_object_t shadow_object; | |
911 | ||
912 | XPR(XPR_VM_OBJECT, "vm_object_terminate, object 0x%X ref %d\n", | |
913 | (integer_t)object, object->ref_count, 0, 0, 0); | |
914 | ||
1c79356b A |
915 | if (!object->pageout && (!object->temporary || object->can_persist) |
916 | && (object->pager != NULL || object->shadow_severed)) { | |
0b4e3aa0 | 917 | vm_object_cache_unlock(); |
1c79356b A |
918 | while (!queue_empty(&object->memq)) { |
919 | /* | |
920 | * Clear pager_trusted bit so that the pages get yanked | |
921 | * out of the object instead of cleaned in place. This | |
922 | * prevents a deadlock in XMM and makes more sense anyway. | |
923 | */ | |
924 | object->pager_trusted = FALSE; | |
925 | ||
926 | p = (vm_page_t) queue_first(&object->memq); | |
927 | ||
928 | VM_PAGE_CHECK(p); | |
929 | ||
930 | if (p->busy || p->cleaning) { | |
931 | if(p->cleaning || p->absent) { | |
932 | vm_object_paging_wait(object, THREAD_UNINT); | |
933 | continue; | |
934 | } else { | |
935 | panic("vm_object_terminate.3 0x%x 0x%x", object, p); | |
936 | } | |
937 | } | |
938 | ||
939 | vm_page_lock_queues(); | |
55e303ae | 940 | p->busy = TRUE; |
1c79356b A |
941 | VM_PAGE_QUEUES_REMOVE(p); |
942 | vm_page_unlock_queues(); | |
943 | ||
944 | if (p->absent || p->private) { | |
945 | ||
946 | /* | |
947 | * For private pages, VM_PAGE_FREE just | |
948 | * leaves the page structure around for | |
949 | * its owner to clean up. For absent | |
950 | * pages, the structure is returned to | |
951 | * the appropriate pool. | |
952 | */ | |
953 | ||
954 | goto free_page; | |
955 | } | |
956 | ||
957 | if (p->fictitious) | |
958 | panic("vm_object_terminate.4 0x%x 0x%x", object, p); | |
959 | ||
960 | if (!p->dirty) | |
55e303ae | 961 | p->dirty = pmap_is_modified(p->phys_page); |
1c79356b | 962 | |
0b4e3aa0 | 963 | if ((p->dirty || p->precious) && !p->error && object->alive) { |
1c79356b | 964 | vm_pageout_cluster(p); /* flush page */ |
1c79356b A |
965 | vm_object_paging_wait(object, THREAD_UNINT); |
966 | XPR(XPR_VM_OBJECT, | |
967 | "vm_object_terminate restart, object 0x%X ref %d\n", | |
968 | (integer_t)object, object->ref_count, 0, 0, 0); | |
969 | } else { | |
970 | free_page: | |
971 | VM_PAGE_FREE(p); | |
972 | } | |
973 | } | |
0b4e3aa0 A |
974 | vm_object_unlock(object); |
975 | vm_object_cache_lock(); | |
976 | vm_object_lock(object); | |
1c79356b | 977 | } |
0b4e3aa0 A |
978 | |
979 | /* | |
980 | * Make sure the object isn't already being terminated | |
981 | */ | |
982 | if(object->terminating) { | |
983 | object->ref_count -= 1; | |
984 | assert(object->ref_count > 0); | |
985 | vm_object_cache_unlock(); | |
986 | vm_object_unlock(object); | |
987 | return KERN_FAILURE; | |
988 | } | |
989 | ||
990 | /* | |
991 | * Did somebody get a reference to the object while we were | |
992 | * cleaning it? | |
993 | */ | |
1c79356b A |
994 | if(object->ref_count != 1) { |
995 | object->ref_count -= 1; | |
0b4e3aa0 | 996 | assert(object->ref_count > 0); |
1c79356b | 997 | vm_object_res_deallocate(object); |
0b4e3aa0 | 998 | vm_object_cache_unlock(); |
1c79356b A |
999 | vm_object_unlock(object); |
1000 | return KERN_FAILURE; | |
1001 | } | |
1002 | ||
1c79356b A |
1003 | /* |
1004 | * Make sure no one can look us up now. | |
1005 | */ | |
1006 | ||
0b4e3aa0 A |
1007 | object->terminating = TRUE; |
1008 | object->alive = FALSE; | |
1009 | vm_object_remove(object); | |
1c79356b A |
1010 | |
1011 | /* | |
1012 | * Detach the object from its shadow if we are the shadow's | |
55e303ae A |
1013 | * copy. The reference we hold on the shadow must be dropped |
1014 | * by our caller. | |
1c79356b A |
1015 | */ |
1016 | if (((shadow_object = object->shadow) != VM_OBJECT_NULL) && | |
1017 | !(object->pageout)) { | |
1018 | vm_object_lock(shadow_object); | |
55e303ae A |
1019 | if (shadow_object->copy == object) |
1020 | shadow_object->copy = VM_OBJECT_NULL; | |
1c79356b A |
1021 | vm_object_unlock(shadow_object); |
1022 | } | |
1023 | ||
1024 | /* | |
1025 | * The pageout daemon might be playing with our pages. | |
1026 | * Now that the object is dead, it won't touch any more | |
1027 | * pages, but some pages might already be on their way out. | |
0b4e3aa0 A |
1028 | * Hence, we wait until the active paging activities have ceased |
1029 | * before we break the association with the pager itself. | |
1c79356b | 1030 | */ |
0b4e3aa0 A |
1031 | while (object->paging_in_progress != 0) { |
1032 | vm_object_cache_unlock(); | |
1033 | vm_object_wait(object, | |
1034 | VM_OBJECT_EVENT_PAGING_IN_PROGRESS, | |
1035 | THREAD_UNINT); | |
1036 | vm_object_cache_lock(); | |
1037 | vm_object_lock(object); | |
1038 | } | |
1039 | ||
1040 | pager = object->pager; | |
1041 | object->pager = MEMORY_OBJECT_NULL; | |
1042 | ||
1043 | if (pager != MEMORY_OBJECT_NULL) | |
1044 | memory_object_control_disable(object->pager_request); | |
1045 | vm_object_cache_unlock(); | |
1046 | ||
1c79356b A |
1047 | object->ref_count--; |
1048 | #if TASK_SWAPPER | |
1049 | assert(object->res_count == 0); | |
1050 | #endif /* TASK_SWAPPER */ | |
1051 | ||
1c79356b A |
1052 | assert (object->ref_count == 0); |
1053 | ||
1054 | /* | |
1055 | * Clean or free the pages, as appropriate. | |
1056 | * It is possible for us to find busy/absent pages, | |
1057 | * if some faults on this object were aborted. | |
1058 | */ | |
1059 | if (object->pageout) { | |
1060 | assert(shadow_object != VM_OBJECT_NULL); | |
1061 | assert(shadow_object == object->shadow); | |
1062 | ||
1063 | vm_pageout_object_terminate(object); | |
1064 | ||
0b4e3aa0 A |
1065 | } else if ((object->temporary && !object->can_persist) || |
1066 | (pager == MEMORY_OBJECT_NULL)) { | |
1c79356b A |
1067 | while (!queue_empty(&object->memq)) { |
1068 | p = (vm_page_t) queue_first(&object->memq); | |
1069 | ||
1070 | VM_PAGE_CHECK(p); | |
1071 | VM_PAGE_FREE(p); | |
1072 | } | |
1073 | } else if (!queue_empty(&object->memq)) { | |
1074 | panic("vm_object_terminate: queue just emptied isn't"); | |
1075 | } | |
1076 | ||
1077 | assert(object->paging_in_progress == 0); | |
1078 | assert(object->ref_count == 0); | |
1079 | ||
1c79356b | 1080 | /* |
0b4e3aa0 A |
1081 | * If the pager has not already been released by |
1082 | * vm_object_destroy, we need to terminate it and | |
1083 | * release our reference to it here. | |
1c79356b | 1084 | */ |
0b4e3aa0 A |
1085 | if (pager != MEMORY_OBJECT_NULL) { |
1086 | vm_object_unlock(object); | |
1087 | vm_object_release_pager(pager); | |
1088 | vm_object_lock(object); | |
1c79356b | 1089 | } |
0b4e3aa0 | 1090 | |
1c79356b | 1091 | /* kick off anyone waiting on terminating */ |
0b4e3aa0 | 1092 | object->terminating = FALSE; |
1c79356b A |
1093 | vm_object_paging_begin(object); |
1094 | vm_object_paging_end(object); | |
1095 | vm_object_unlock(object); | |
1096 | ||
1097 | #if MACH_PAGEMAP | |
1098 | vm_external_destroy(object->existence_map, object->size); | |
1099 | #endif /* MACH_PAGEMAP */ | |
1100 | ||
1101 | /* | |
1102 | * Free the space for the object. | |
1103 | */ | |
1c79356b A |
1104 | zfree(vm_object_zone, (vm_offset_t) object); |
1105 | return KERN_SUCCESS; | |
1106 | } | |
1107 | ||
1108 | /* | |
1109 | * Routine: vm_object_pager_wakeup | |
1110 | * Purpose: Wake up anyone waiting for termination of a pager. | |
1111 | */ | |
1112 | ||
0b4e3aa0 | 1113 | static void |
1c79356b | 1114 | vm_object_pager_wakeup( |
0b4e3aa0 | 1115 | memory_object_t pager) |
1c79356b A |
1116 | { |
1117 | vm_object_hash_entry_t entry; | |
1118 | boolean_t waiting = FALSE; | |
1119 | ||
1120 | /* | |
1121 | * If anyone was waiting for the memory_object_terminate | |
1122 | * to be queued, wake them up now. | |
1123 | */ | |
1124 | vm_object_cache_lock(); | |
1125 | entry = vm_object_hash_lookup(pager, TRUE); | |
1126 | if (entry != VM_OBJECT_HASH_ENTRY_NULL) | |
1127 | waiting = entry->waiting; | |
1128 | vm_object_cache_unlock(); | |
1129 | if (entry != VM_OBJECT_HASH_ENTRY_NULL) { | |
1130 | if (waiting) | |
1131 | thread_wakeup((event_t) pager); | |
1132 | vm_object_hash_entry_free(entry); | |
1133 | } | |
1134 | } | |
1135 | ||
1136 | /* | |
0b4e3aa0 A |
1137 | * Routine: vm_object_release_pager |
1138 | * Purpose: Terminate the pager and, upon completion, | |
1139 | * release our last reference to it. | |
1140 | * just like memory_object_terminate, except | |
1141 | * that we wake up anyone blocked in vm_object_enter | |
1142 | * waiting for termination message to be queued | |
1143 | * before calling memory_object_init. | |
1c79356b | 1144 | */ |
0b4e3aa0 A |
1145 | static void |
1146 | vm_object_release_pager( | |
1147 | memory_object_t pager) | |
1c79356b | 1148 | { |
1c79356b | 1149 | |
0b4e3aa0 A |
1150 | /* |
1151 | * Terminate the pager. | |
1152 | */ | |
1c79356b | 1153 | |
0b4e3aa0 | 1154 | (void) memory_object_terminate(pager); |
1c79356b | 1155 | |
0b4e3aa0 A |
1156 | /* |
1157 | * Wakeup anyone waiting for this terminate | |
1158 | */ | |
1159 | vm_object_pager_wakeup(pager); | |
1c79356b | 1160 | |
0b4e3aa0 A |
1161 | /* |
1162 | * Release reference to pager. | |
1163 | */ | |
1164 | memory_object_deallocate(pager); | |
1165 | } | |
1c79356b A |
1166 | |
1167 | /* | |
1168 | * Routine: vm_object_abort_activity [internal use only] | |
1169 | * Purpose: | |
1170 | * Abort paging requests pending on this object. | |
1171 | * In/out conditions: | |
1172 | * The object is locked on entry and exit. | |
1173 | */ | |
0b4e3aa0 | 1174 | static void |
1c79356b A |
1175 | vm_object_abort_activity( |
1176 | vm_object_t object) | |
1177 | { | |
1178 | register | |
1179 | vm_page_t p; | |
1180 | vm_page_t next; | |
1181 | ||
1182 | XPR(XPR_VM_OBJECT, "vm_object_abort_activity, object 0x%X\n", | |
1183 | (integer_t)object, 0, 0, 0, 0); | |
1184 | ||
1185 | /* | |
1186 | * Abort all activity that would be waiting | |
1187 | * for a result on this memory object. | |
1188 | * | |
1189 | * We could also choose to destroy all pages | |
1190 | * that we have in memory for this object, but | |
1191 | * we don't. | |
1192 | */ | |
1193 | ||
1194 | p = (vm_page_t) queue_first(&object->memq); | |
1195 | while (!queue_end(&object->memq, (queue_entry_t) p)) { | |
1196 | next = (vm_page_t) queue_next(&p->listq); | |
1197 | ||
1198 | /* | |
1199 | * If it's being paged in, destroy it. | |
1200 | * If an unlock has been requested, start it again. | |
1201 | */ | |
1202 | ||
1203 | if (p->busy && p->absent) { | |
1204 | VM_PAGE_FREE(p); | |
1205 | } | |
1206 | else { | |
1207 | if (p->unlock_request != VM_PROT_NONE) | |
1208 | p->unlock_request = VM_PROT_NONE; | |
1209 | PAGE_WAKEUP(p); | |
1210 | } | |
1211 | ||
1212 | p = next; | |
1213 | } | |
1214 | ||
1215 | /* | |
1216 | * Wake up threads waiting for the memory object to | |
1217 | * become ready. | |
1218 | */ | |
1219 | ||
1220 | object->pager_ready = TRUE; | |
1221 | vm_object_wakeup(object, VM_OBJECT_EVENT_PAGER_READY); | |
1222 | } | |
1223 | ||
1224 | /* | |
0b4e3aa0 | 1225 | * Routine: vm_object_destroy |
1c79356b | 1226 | * Purpose: |
0b4e3aa0 | 1227 | * Shut down a VM object, despite the |
1c79356b A |
1228 | * presence of address map (or other) references |
1229 | * to the vm_object. | |
1230 | */ | |
1231 | kern_return_t | |
0b4e3aa0 A |
1232 | vm_object_destroy( |
1233 | vm_object_t object, | |
1c79356b A |
1234 | kern_return_t reason) |
1235 | { | |
0b4e3aa0 | 1236 | memory_object_t old_pager; |
1c79356b A |
1237 | |
1238 | if (object == VM_OBJECT_NULL) | |
1239 | return(KERN_SUCCESS); | |
1240 | ||
1241 | /* | |
0b4e3aa0 | 1242 | * Remove the pager association immediately. |
1c79356b A |
1243 | * |
1244 | * This will prevent the memory manager from further | |
1245 | * meddling. [If it wanted to flush data or make | |
1246 | * other changes, it should have done so before performing | |
1247 | * the destroy call.] | |
1248 | */ | |
1249 | ||
1250 | vm_object_cache_lock(); | |
1251 | vm_object_lock(object); | |
1c79356b A |
1252 | object->can_persist = FALSE; |
1253 | object->named = FALSE; | |
0b4e3aa0 | 1254 | object->alive = FALSE; |
1c79356b A |
1255 | |
1256 | /* | |
0b4e3aa0 | 1257 | * Rip out the pager from the vm_object now... |
1c79356b A |
1258 | */ |
1259 | ||
0b4e3aa0 A |
1260 | vm_object_remove(object); |
1261 | old_pager = object->pager; | |
1262 | object->pager = MEMORY_OBJECT_NULL; | |
1263 | if (old_pager != MEMORY_OBJECT_NULL) | |
1264 | memory_object_control_disable(object->pager_request); | |
1265 | vm_object_cache_unlock(); | |
1c79356b A |
1266 | |
1267 | /* | |
0b4e3aa0 A |
1268 | * Wait for the existing paging activity (that got |
1269 | * through before we nulled out the pager) to subside. | |
1c79356b A |
1270 | */ |
1271 | ||
1272 | vm_object_paging_wait(object, THREAD_UNINT); | |
1273 | vm_object_unlock(object); | |
1274 | ||
1275 | /* | |
0b4e3aa0 | 1276 | * Terminate the object now. |
1c79356b | 1277 | */ |
0b4e3aa0 A |
1278 | if (old_pager != MEMORY_OBJECT_NULL) { |
1279 | vm_object_release_pager(old_pager); | |
1280 | ||
1281 | /* | |
1282 | * JMM - Release the caller's reference. This assumes the | |
1283 | * caller had a reference to release, which is a big (but | |
1284 | * currently valid) assumption if this is driven from the | |
1285 | * vnode pager (it is holding a named reference when making | |
1286 | * this call).. | |
1287 | */ | |
1288 | vm_object_deallocate(object); | |
1c79356b | 1289 | |
1c79356b | 1290 | } |
1c79356b A |
1291 | return(KERN_SUCCESS); |
1292 | } | |
1293 | ||
1294 | /* | |
1295 | * vm_object_deactivate_pages | |
1296 | * | |
1297 | * Deactivate all pages in the specified object. (Keep its pages | |
1298 | * in memory even though it is no longer referenced.) | |
1299 | * | |
1300 | * The object must be locked. | |
1301 | */ | |
0b4e3aa0 A |
1302 | static void |
1303 | vm_object_deactivate_all_pages( | |
1c79356b A |
1304 | register vm_object_t object) |
1305 | { | |
1306 | register vm_page_t p; | |
1307 | ||
1308 | queue_iterate(&object->memq, p, vm_page_t, listq) { | |
1309 | vm_page_lock_queues(); | |
1310 | if (!p->busy) | |
1311 | vm_page_deactivate(p); | |
1312 | vm_page_unlock_queues(); | |
1313 | } | |
1314 | } | |
1315 | ||
0b4e3aa0 A |
1316 | __private_extern__ void |
1317 | vm_object_deactivate_pages( | |
1318 | vm_object_t object, | |
1319 | vm_object_offset_t offset, | |
1320 | vm_object_size_t size, | |
1321 | boolean_t kill_page) | |
1322 | { | |
1323 | vm_object_t orig_object; | |
1324 | int pages_moved = 0; | |
1325 | int pages_found = 0; | |
1326 | ||
1327 | /* | |
1328 | * entered with object lock held, acquire a paging reference to | |
1329 | * prevent the memory_object and control ports from | |
1330 | * being destroyed. | |
1331 | */ | |
1332 | orig_object = object; | |
1333 | ||
1334 | for (;;) { | |
1335 | register vm_page_t m; | |
1336 | vm_object_offset_t toffset; | |
1337 | vm_object_size_t tsize; | |
1338 | ||
1339 | vm_object_paging_begin(object); | |
1340 | vm_page_lock_queues(); | |
1341 | ||
1342 | for (tsize = size, toffset = offset; tsize; tsize -= PAGE_SIZE, toffset += PAGE_SIZE) { | |
1343 | ||
1344 | if ((m = vm_page_lookup(object, toffset)) != VM_PAGE_NULL) { | |
1345 | ||
1346 | pages_found++; | |
1347 | ||
1348 | if ((m->wire_count == 0) && (!m->private) && (!m->gobbled) && (!m->busy)) { | |
1349 | ||
1350 | m->reference = FALSE; | |
55e303ae | 1351 | pmap_clear_reference(m->phys_page); |
0b4e3aa0 A |
1352 | |
1353 | if ((kill_page) && (object->internal)) { | |
1354 | m->precious = FALSE; | |
1355 | m->dirty = FALSE; | |
55e303ae | 1356 | pmap_clear_modify(m->phys_page); |
0b4e3aa0 A |
1357 | vm_external_state_clr(object->existence_map, offset); |
1358 | } | |
1359 | VM_PAGE_QUEUES_REMOVE(m); | |
1360 | ||
9bccf70c A |
1361 | if(m->zero_fill) { |
1362 | queue_enter_first( | |
1363 | &vm_page_queue_zf, | |
1364 | m, vm_page_t, pageq); | |
1365 | } else { | |
1366 | queue_enter_first( | |
1367 | &vm_page_queue_inactive, | |
1368 | m, vm_page_t, pageq); | |
1369 | } | |
0b4e3aa0 A |
1370 | |
1371 | m->inactive = TRUE; | |
1372 | if (!m->fictitious) | |
1373 | vm_page_inactive_count++; | |
1374 | ||
1375 | pages_moved++; | |
1376 | } | |
1377 | } | |
1378 | } | |
1379 | vm_page_unlock_queues(); | |
1380 | vm_object_paging_end(object); | |
1381 | ||
1382 | if (object->shadow) { | |
1383 | vm_object_t tmp_object; | |
1384 | ||
1385 | kill_page = 0; | |
1386 | ||
1387 | offset += object->shadow_offset; | |
1388 | ||
1389 | tmp_object = object->shadow; | |
1390 | vm_object_lock(tmp_object); | |
1391 | ||
1392 | if (object != orig_object) | |
1393 | vm_object_unlock(object); | |
1394 | object = tmp_object; | |
1395 | } else | |
1396 | break; | |
1397 | } | |
1398 | if (object != orig_object) | |
1399 | vm_object_unlock(object); | |
1400 | } | |
1c79356b A |
1401 | |
1402 | /* | |
1403 | * Routine: vm_object_pmap_protect | |
1404 | * | |
1405 | * Purpose: | |
1406 | * Reduces the permission for all physical | |
1407 | * pages in the specified object range. | |
1408 | * | |
1409 | * If removing write permission only, it is | |
1410 | * sufficient to protect only the pages in | |
1411 | * the top-level object; only those pages may | |
1412 | * have write permission. | |
1413 | * | |
1414 | * If removing all access, we must follow the | |
1415 | * shadow chain from the top-level object to | |
1416 | * remove access to all pages in shadowed objects. | |
1417 | * | |
1418 | * The object must *not* be locked. The object must | |
1419 | * be temporary/internal. | |
1420 | * | |
1421 | * If pmap is not NULL, this routine assumes that | |
1422 | * the only mappings for the pages are in that | |
1423 | * pmap. | |
1424 | */ | |
1425 | ||
0b4e3aa0 | 1426 | __private_extern__ void |
1c79356b A |
1427 | vm_object_pmap_protect( |
1428 | register vm_object_t object, | |
1429 | register vm_object_offset_t offset, | |
1430 | vm_size_t size, | |
1431 | pmap_t pmap, | |
1432 | vm_offset_t pmap_start, | |
1433 | vm_prot_t prot) | |
1434 | { | |
1435 | if (object == VM_OBJECT_NULL) | |
1436 | return; | |
9bccf70c A |
1437 | size = round_page_64(size); |
1438 | offset = trunc_page_64(offset); | |
1c79356b A |
1439 | |
1440 | vm_object_lock(object); | |
1441 | ||
55e303ae | 1442 | assert(object->internal); |
de355530 | 1443 | |
1c79356b | 1444 | while (TRUE) { |
55e303ae | 1445 | if (object->resident_page_count > atop_32(size) / 2 && |
1c79356b A |
1446 | pmap != PMAP_NULL) { |
1447 | vm_object_unlock(object); | |
1448 | pmap_protect(pmap, pmap_start, pmap_start + size, prot); | |
1449 | return; | |
1450 | } | |
1451 | ||
9bccf70c A |
1452 | /* if we are doing large ranges with respect to resident */ |
1453 | /* page count then we should interate over pages otherwise */ | |
1454 | /* inverse page look-up will be faster */ | |
55e303ae | 1455 | if ((object->resident_page_count / 4) < atop_32(size)) { |
9bccf70c A |
1456 | vm_page_t p; |
1457 | vm_object_offset_t end; | |
1c79356b A |
1458 | |
1459 | end = offset + size; | |
1460 | ||
1461 | if (pmap != PMAP_NULL) { | |
1462 | queue_iterate(&object->memq, p, vm_page_t, listq) { | |
1463 | if (!p->fictitious && | |
1464 | (offset <= p->offset) && (p->offset < end)) { | |
1465 | ||
1466 | vm_offset_t start = pmap_start + | |
1467 | (vm_offset_t)(p->offset - offset); | |
1468 | ||
1469 | pmap_protect(pmap, start, start + PAGE_SIZE, prot); | |
1470 | } | |
1471 | } | |
1472 | } else { | |
1473 | queue_iterate(&object->memq, p, vm_page_t, listq) { | |
1474 | if (!p->fictitious && | |
1475 | (offset <= p->offset) && (p->offset < end)) { | |
1476 | ||
55e303ae | 1477 | pmap_page_protect(p->phys_page, |
1c79356b A |
1478 | prot & ~p->page_lock); |
1479 | } | |
1480 | } | |
1481 | } | |
9bccf70c A |
1482 | } else { |
1483 | vm_page_t p; | |
1484 | vm_object_offset_t end; | |
1485 | vm_object_offset_t target_off; | |
1486 | ||
1487 | end = offset + size; | |
1488 | ||
1489 | if (pmap != PMAP_NULL) { | |
1490 | for(target_off = offset; | |
1491 | target_off < end; target_off += PAGE_SIZE) { | |
1492 | if(p = vm_page_lookup(object, target_off)) { | |
1493 | vm_offset_t start = pmap_start + | |
1494 | (vm_offset_t)(p->offset - offset); | |
1495 | pmap_protect(pmap, start, | |
1496 | start + PAGE_SIZE, prot); | |
1497 | } | |
1498 | } | |
1499 | } else { | |
1500 | for(target_off = offset; | |
1501 | target_off < end; target_off += PAGE_SIZE) { | |
1502 | if(p = vm_page_lookup(object, target_off)) { | |
55e303ae | 1503 | pmap_page_protect(p->phys_page, |
9bccf70c A |
1504 | prot & ~p->page_lock); |
1505 | } | |
1506 | } | |
1507 | } | |
1508 | } | |
1c79356b A |
1509 | |
1510 | if (prot == VM_PROT_NONE) { | |
1511 | /* | |
1512 | * Must follow shadow chain to remove access | |
1513 | * to pages in shadowed objects. | |
1514 | */ | |
1515 | register vm_object_t next_object; | |
1516 | ||
1517 | next_object = object->shadow; | |
1518 | if (next_object != VM_OBJECT_NULL) { | |
1519 | offset += object->shadow_offset; | |
1520 | vm_object_lock(next_object); | |
1521 | vm_object_unlock(object); | |
1522 | object = next_object; | |
1523 | } | |
1524 | else { | |
1525 | /* | |
1526 | * End of chain - we are done. | |
1527 | */ | |
1528 | break; | |
1529 | } | |
1530 | } | |
1531 | else { | |
1532 | /* | |
1533 | * Pages in shadowed objects may never have | |
1534 | * write permission - we may stop here. | |
1535 | */ | |
1536 | break; | |
1537 | } | |
1538 | } | |
1539 | ||
1540 | vm_object_unlock(object); | |
1541 | } | |
1542 | ||
1543 | /* | |
1544 | * Routine: vm_object_copy_slowly | |
1545 | * | |
1546 | * Description: | |
1547 | * Copy the specified range of the source | |
1548 | * virtual memory object without using | |
1549 | * protection-based optimizations (such | |
1550 | * as copy-on-write). The pages in the | |
1551 | * region are actually copied. | |
1552 | * | |
1553 | * In/out conditions: | |
1554 | * The caller must hold a reference and a lock | |
1555 | * for the source virtual memory object. The source | |
1556 | * object will be returned *unlocked*. | |
1557 | * | |
1558 | * Results: | |
1559 | * If the copy is completed successfully, KERN_SUCCESS is | |
1560 | * returned. If the caller asserted the interruptible | |
1561 | * argument, and an interruption occurred while waiting | |
1562 | * for a user-generated event, MACH_SEND_INTERRUPTED is | |
1563 | * returned. Other values may be returned to indicate | |
1564 | * hard errors during the copy operation. | |
1565 | * | |
1566 | * A new virtual memory object is returned in a | |
1567 | * parameter (_result_object). The contents of this | |
1568 | * new object, starting at a zero offset, are a copy | |
1569 | * of the source memory region. In the event of | |
1570 | * an error, this parameter will contain the value | |
1571 | * VM_OBJECT_NULL. | |
1572 | */ | |
0b4e3aa0 | 1573 | __private_extern__ kern_return_t |
1c79356b A |
1574 | vm_object_copy_slowly( |
1575 | register vm_object_t src_object, | |
1576 | vm_object_offset_t src_offset, | |
1577 | vm_object_size_t size, | |
1578 | boolean_t interruptible, | |
1579 | vm_object_t *_result_object) /* OUT */ | |
1580 | { | |
1581 | vm_object_t new_object; | |
1582 | vm_object_offset_t new_offset; | |
1583 | ||
1584 | vm_object_offset_t src_lo_offset = src_offset; | |
1585 | vm_object_offset_t src_hi_offset = src_offset + size; | |
1586 | ||
1587 | XPR(XPR_VM_OBJECT, "v_o_c_slowly obj 0x%x off 0x%x size 0x%x\n", | |
1588 | src_object, src_offset, size, 0, 0); | |
1589 | ||
1590 | if (size == 0) { | |
1591 | vm_object_unlock(src_object); | |
1592 | *_result_object = VM_OBJECT_NULL; | |
1593 | return(KERN_INVALID_ARGUMENT); | |
1594 | } | |
1595 | ||
1596 | /* | |
1597 | * Prevent destruction of the source object while we copy. | |
1598 | */ | |
1599 | ||
1600 | assert(src_object->ref_count > 0); | |
1601 | src_object->ref_count++; | |
1602 | VM_OBJ_RES_INCR(src_object); | |
1603 | vm_object_unlock(src_object); | |
1604 | ||
1605 | /* | |
1606 | * Create a new object to hold the copied pages. | |
1607 | * A few notes: | |
1608 | * We fill the new object starting at offset 0, | |
1609 | * regardless of the input offset. | |
1610 | * We don't bother to lock the new object within | |
1611 | * this routine, since we have the only reference. | |
1612 | */ | |
1613 | ||
1614 | new_object = vm_object_allocate(size); | |
1615 | new_offset = 0; | |
1616 | ||
1617 | assert(size == trunc_page_64(size)); /* Will the loop terminate? */ | |
1618 | ||
1619 | for ( ; | |
1620 | size != 0 ; | |
1621 | src_offset += PAGE_SIZE_64, | |
1622 | new_offset += PAGE_SIZE_64, size -= PAGE_SIZE_64 | |
1623 | ) { | |
1624 | vm_page_t new_page; | |
1625 | vm_fault_return_t result; | |
1626 | ||
1627 | while ((new_page = vm_page_alloc(new_object, new_offset)) | |
1628 | == VM_PAGE_NULL) { | |
1629 | if (!vm_page_wait(interruptible)) { | |
1630 | vm_object_deallocate(new_object); | |
1631 | *_result_object = VM_OBJECT_NULL; | |
1632 | return(MACH_SEND_INTERRUPTED); | |
1633 | } | |
1634 | } | |
1635 | ||
1636 | do { | |
1637 | vm_prot_t prot = VM_PROT_READ; | |
1638 | vm_page_t _result_page; | |
1639 | vm_page_t top_page; | |
1640 | register | |
1641 | vm_page_t result_page; | |
1642 | kern_return_t error_code; | |
1643 | ||
1644 | vm_object_lock(src_object); | |
1645 | vm_object_paging_begin(src_object); | |
1646 | ||
1647 | XPR(XPR_VM_FAULT,"vm_object_copy_slowly -> vm_fault_page",0,0,0,0,0); | |
1648 | result = vm_fault_page(src_object, src_offset, | |
1649 | VM_PROT_READ, FALSE, interruptible, | |
1650 | src_lo_offset, src_hi_offset, | |
1651 | VM_BEHAVIOR_SEQUENTIAL, | |
1652 | &prot, &_result_page, &top_page, | |
1653 | (int *)0, | |
0b4e3aa0 | 1654 | &error_code, FALSE, FALSE, NULL, 0); |
1c79356b A |
1655 | |
1656 | switch(result) { | |
1657 | case VM_FAULT_SUCCESS: | |
1658 | result_page = _result_page; | |
1659 | ||
1660 | /* | |
1661 | * We don't need to hold the object | |
1662 | * lock -- the busy page will be enough. | |
1663 | * [We don't care about picking up any | |
1664 | * new modifications.] | |
1665 | * | |
1666 | * Copy the page to the new object. | |
1667 | * | |
1668 | * POLICY DECISION: | |
1669 | * If result_page is clean, | |
1670 | * we could steal it instead | |
1671 | * of copying. | |
1672 | */ | |
1673 | ||
1674 | vm_object_unlock(result_page->object); | |
1675 | vm_page_copy(result_page, new_page); | |
1676 | ||
1677 | /* | |
1678 | * Let go of both pages (make them | |
1679 | * not busy, perform wakeup, activate). | |
1680 | */ | |
1681 | ||
1682 | new_page->busy = FALSE; | |
1683 | new_page->dirty = TRUE; | |
1684 | vm_object_lock(result_page->object); | |
1685 | PAGE_WAKEUP_DONE(result_page); | |
1686 | ||
1687 | vm_page_lock_queues(); | |
1688 | if (!result_page->active && | |
1689 | !result_page->inactive) | |
1690 | vm_page_activate(result_page); | |
1691 | vm_page_activate(new_page); | |
1692 | vm_page_unlock_queues(); | |
1693 | ||
1694 | /* | |
1695 | * Release paging references and | |
1696 | * top-level placeholder page, if any. | |
1697 | */ | |
1698 | ||
1699 | vm_fault_cleanup(result_page->object, | |
1700 | top_page); | |
1701 | ||
1702 | break; | |
1703 | ||
1704 | case VM_FAULT_RETRY: | |
1705 | break; | |
1706 | ||
1707 | case VM_FAULT_FICTITIOUS_SHORTAGE: | |
1708 | vm_page_more_fictitious(); | |
1709 | break; | |
1710 | ||
1711 | case VM_FAULT_MEMORY_SHORTAGE: | |
1712 | if (vm_page_wait(interruptible)) | |
1713 | break; | |
1714 | /* fall thru */ | |
1715 | ||
1716 | case VM_FAULT_INTERRUPTED: | |
1717 | vm_page_free(new_page); | |
1718 | vm_object_deallocate(new_object); | |
1719 | vm_object_deallocate(src_object); | |
1720 | *_result_object = VM_OBJECT_NULL; | |
1721 | return(MACH_SEND_INTERRUPTED); | |
1722 | ||
1723 | case VM_FAULT_MEMORY_ERROR: | |
1724 | /* | |
1725 | * A policy choice: | |
1726 | * (a) ignore pages that we can't | |
1727 | * copy | |
1728 | * (b) return the null object if | |
1729 | * any page fails [chosen] | |
1730 | */ | |
1731 | ||
1732 | vm_page_lock_queues(); | |
1733 | vm_page_free(new_page); | |
1734 | vm_page_unlock_queues(); | |
1735 | vm_object_deallocate(new_object); | |
1736 | vm_object_deallocate(src_object); | |
1737 | *_result_object = VM_OBJECT_NULL; | |
1738 | return(error_code ? error_code: | |
1739 | KERN_MEMORY_ERROR); | |
1740 | } | |
1741 | } while (result != VM_FAULT_SUCCESS); | |
1742 | } | |
1743 | ||
1744 | /* | |
1745 | * Lose the extra reference, and return our object. | |
1746 | */ | |
1747 | ||
1748 | vm_object_deallocate(src_object); | |
1749 | *_result_object = new_object; | |
1750 | return(KERN_SUCCESS); | |
1751 | } | |
1752 | ||
1753 | /* | |
1754 | * Routine: vm_object_copy_quickly | |
1755 | * | |
1756 | * Purpose: | |
1757 | * Copy the specified range of the source virtual | |
1758 | * memory object, if it can be done without waiting | |
1759 | * for user-generated events. | |
1760 | * | |
1761 | * Results: | |
1762 | * If the copy is successful, the copy is returned in | |
1763 | * the arguments; otherwise, the arguments are not | |
1764 | * affected. | |
1765 | * | |
1766 | * In/out conditions: | |
1767 | * The object should be unlocked on entry and exit. | |
1768 | */ | |
1769 | ||
1770 | /*ARGSUSED*/ | |
0b4e3aa0 | 1771 | __private_extern__ boolean_t |
1c79356b A |
1772 | vm_object_copy_quickly( |
1773 | vm_object_t *_object, /* INOUT */ | |
1774 | vm_object_offset_t offset, /* IN */ | |
1775 | vm_object_size_t size, /* IN */ | |
1776 | boolean_t *_src_needs_copy, /* OUT */ | |
1777 | boolean_t *_dst_needs_copy) /* OUT */ | |
1778 | { | |
1779 | vm_object_t object = *_object; | |
1780 | memory_object_copy_strategy_t copy_strategy; | |
1781 | ||
1782 | XPR(XPR_VM_OBJECT, "v_o_c_quickly obj 0x%x off 0x%x size 0x%x\n", | |
1783 | *_object, offset, size, 0, 0); | |
1784 | if (object == VM_OBJECT_NULL) { | |
1785 | *_src_needs_copy = FALSE; | |
1786 | *_dst_needs_copy = FALSE; | |
1787 | return(TRUE); | |
1788 | } | |
1789 | ||
1790 | vm_object_lock(object); | |
1791 | ||
1792 | copy_strategy = object->copy_strategy; | |
1793 | ||
1794 | switch (copy_strategy) { | |
1795 | case MEMORY_OBJECT_COPY_SYMMETRIC: | |
1796 | ||
1797 | /* | |
1798 | * Symmetric copy strategy. | |
1799 | * Make another reference to the object. | |
1800 | * Leave object/offset unchanged. | |
1801 | */ | |
1802 | ||
1803 | assert(object->ref_count > 0); | |
1804 | object->ref_count++; | |
1805 | vm_object_res_reference(object); | |
1806 | object->shadowed = TRUE; | |
1807 | vm_object_unlock(object); | |
1808 | ||
1809 | /* | |
1810 | * Both source and destination must make | |
1811 | * shadows, and the source must be made | |
1812 | * read-only if not already. | |
1813 | */ | |
1814 | ||
1815 | *_src_needs_copy = TRUE; | |
1816 | *_dst_needs_copy = TRUE; | |
1817 | ||
1818 | break; | |
1819 | ||
1820 | case MEMORY_OBJECT_COPY_DELAY: | |
1821 | vm_object_unlock(object); | |
1822 | return(FALSE); | |
1823 | ||
1824 | default: | |
1825 | vm_object_unlock(object); | |
1826 | return(FALSE); | |
1827 | } | |
1828 | return(TRUE); | |
1829 | } | |
1830 | ||
0b4e3aa0 A |
1831 | static int copy_call_count = 0; |
1832 | static int copy_call_sleep_count = 0; | |
1833 | static int copy_call_restart_count = 0; | |
1c79356b A |
1834 | |
1835 | /* | |
1836 | * Routine: vm_object_copy_call [internal] | |
1837 | * | |
1838 | * Description: | |
1839 | * Copy the source object (src_object), using the | |
1840 | * user-managed copy algorithm. | |
1841 | * | |
1842 | * In/out conditions: | |
1843 | * The source object must be locked on entry. It | |
1844 | * will be *unlocked* on exit. | |
1845 | * | |
1846 | * Results: | |
1847 | * If the copy is successful, KERN_SUCCESS is returned. | |
1848 | * A new object that represents the copied virtual | |
1849 | * memory is returned in a parameter (*_result_object). | |
1850 | * If the return value indicates an error, this parameter | |
1851 | * is not valid. | |
1852 | */ | |
0b4e3aa0 | 1853 | static kern_return_t |
1c79356b A |
1854 | vm_object_copy_call( |
1855 | vm_object_t src_object, | |
1856 | vm_object_offset_t src_offset, | |
1857 | vm_object_size_t size, | |
1858 | vm_object_t *_result_object) /* OUT */ | |
1859 | { | |
1860 | kern_return_t kr; | |
1861 | vm_object_t copy; | |
1862 | boolean_t check_ready = FALSE; | |
1863 | ||
1864 | /* | |
1865 | * If a copy is already in progress, wait and retry. | |
1866 | * | |
1867 | * XXX | |
1868 | * Consider making this call interruptable, as Mike | |
1869 | * intended it to be. | |
1870 | * | |
1871 | * XXXO | |
1872 | * Need a counter or version or something to allow | |
1873 | * us to use the copy that the currently requesting | |
1874 | * thread is obtaining -- is it worth adding to the | |
1875 | * vm object structure? Depends how common this case it. | |
1876 | */ | |
1877 | copy_call_count++; | |
1878 | while (vm_object_wanted(src_object, VM_OBJECT_EVENT_COPY_CALL)) { | |
9bccf70c | 1879 | vm_object_sleep(src_object, VM_OBJECT_EVENT_COPY_CALL, |
1c79356b | 1880 | THREAD_UNINT); |
1c79356b A |
1881 | copy_call_restart_count++; |
1882 | } | |
1883 | ||
1884 | /* | |
1885 | * Indicate (for the benefit of memory_object_create_copy) | |
1886 | * that we want a copy for src_object. (Note that we cannot | |
1887 | * do a real assert_wait before calling memory_object_copy, | |
1888 | * so we simply set the flag.) | |
1889 | */ | |
1890 | ||
1891 | vm_object_set_wanted(src_object, VM_OBJECT_EVENT_COPY_CALL); | |
1892 | vm_object_unlock(src_object); | |
1893 | ||
1894 | /* | |
1895 | * Ask the memory manager to give us a memory object | |
1896 | * which represents a copy of the src object. | |
1897 | * The memory manager may give us a memory object | |
1898 | * which we already have, or it may give us a | |
1899 | * new memory object. This memory object will arrive | |
1900 | * via memory_object_create_copy. | |
1901 | */ | |
1902 | ||
1903 | kr = KERN_FAILURE; /* XXX need to change memory_object.defs */ | |
1904 | if (kr != KERN_SUCCESS) { | |
1905 | return kr; | |
1906 | } | |
1907 | ||
1908 | /* | |
1909 | * Wait for the copy to arrive. | |
1910 | */ | |
1911 | vm_object_lock(src_object); | |
1912 | while (vm_object_wanted(src_object, VM_OBJECT_EVENT_COPY_CALL)) { | |
9bccf70c | 1913 | vm_object_sleep(src_object, VM_OBJECT_EVENT_COPY_CALL, |
1c79356b | 1914 | THREAD_UNINT); |
1c79356b A |
1915 | copy_call_sleep_count++; |
1916 | } | |
1917 | Retry: | |
1918 | assert(src_object->copy != VM_OBJECT_NULL); | |
1919 | copy = src_object->copy; | |
1920 | if (!vm_object_lock_try(copy)) { | |
1921 | vm_object_unlock(src_object); | |
1922 | mutex_pause(); /* wait a bit */ | |
1923 | vm_object_lock(src_object); | |
1924 | goto Retry; | |
1925 | } | |
1926 | if (copy->size < src_offset+size) | |
1927 | copy->size = src_offset+size; | |
1928 | ||
1929 | if (!copy->pager_ready) | |
1930 | check_ready = TRUE; | |
1931 | ||
1932 | /* | |
1933 | * Return the copy. | |
1934 | */ | |
1935 | *_result_object = copy; | |
1936 | vm_object_unlock(copy); | |
1937 | vm_object_unlock(src_object); | |
1938 | ||
1939 | /* Wait for the copy to be ready. */ | |
1940 | if (check_ready == TRUE) { | |
1941 | vm_object_lock(copy); | |
1942 | while (!copy->pager_ready) { | |
9bccf70c | 1943 | vm_object_sleep(copy, VM_OBJECT_EVENT_PAGER_READY, THREAD_UNINT); |
1c79356b A |
1944 | } |
1945 | vm_object_unlock(copy); | |
1946 | } | |
1947 | ||
1948 | return KERN_SUCCESS; | |
1949 | } | |
1950 | ||
0b4e3aa0 A |
1951 | static int copy_delayed_lock_collisions = 0; |
1952 | static int copy_delayed_max_collisions = 0; | |
1953 | static int copy_delayed_lock_contention = 0; | |
1954 | static int copy_delayed_protect_iterate = 0; | |
1955 | static int copy_delayed_protect_lookup = 0; | |
1956 | static int copy_delayed_protect_lookup_wait = 0; | |
1c79356b A |
1957 | |
1958 | /* | |
1959 | * Routine: vm_object_copy_delayed [internal] | |
1960 | * | |
1961 | * Description: | |
1962 | * Copy the specified virtual memory object, using | |
1963 | * the asymmetric copy-on-write algorithm. | |
1964 | * | |
1965 | * In/out conditions: | |
55e303ae A |
1966 | * The src_object must be locked on entry. It will be unlocked |
1967 | * on exit - so the caller must also hold a reference to it. | |
1c79356b A |
1968 | * |
1969 | * This routine will not block waiting for user-generated | |
1970 | * events. It is not interruptible. | |
1971 | */ | |
0b4e3aa0 | 1972 | __private_extern__ vm_object_t |
1c79356b A |
1973 | vm_object_copy_delayed( |
1974 | vm_object_t src_object, | |
1975 | vm_object_offset_t src_offset, | |
1976 | vm_object_size_t size) | |
1977 | { | |
1978 | vm_object_t new_copy = VM_OBJECT_NULL; | |
1979 | vm_object_t old_copy; | |
1980 | vm_page_t p; | |
55e303ae | 1981 | vm_object_size_t copy_size = src_offset + size; |
1c79356b A |
1982 | |
1983 | int collisions = 0; | |
1984 | /* | |
1985 | * The user-level memory manager wants to see all of the changes | |
1986 | * to this object, but it has promised not to make any changes on | |
1987 | * its own. | |
1988 | * | |
1989 | * Perform an asymmetric copy-on-write, as follows: | |
1990 | * Create a new object, called a "copy object" to hold | |
1991 | * pages modified by the new mapping (i.e., the copy, | |
1992 | * not the original mapping). | |
1993 | * Record the original object as the backing object for | |
1994 | * the copy object. If the original mapping does not | |
1995 | * change a page, it may be used read-only by the copy. | |
1996 | * Record the copy object in the original object. | |
1997 | * When the original mapping causes a page to be modified, | |
1998 | * it must be copied to a new page that is "pushed" to | |
1999 | * the copy object. | |
2000 | * Mark the new mapping (the copy object) copy-on-write. | |
2001 | * This makes the copy object itself read-only, allowing | |
2002 | * it to be reused if the original mapping makes no | |
2003 | * changes, and simplifying the synchronization required | |
2004 | * in the "push" operation described above. | |
2005 | * | |
2006 | * The copy-on-write is said to be assymetric because the original | |
2007 | * object is *not* marked copy-on-write. A copied page is pushed | |
2008 | * to the copy object, regardless which party attempted to modify | |
2009 | * the page. | |
2010 | * | |
2011 | * Repeated asymmetric copy operations may be done. If the | |
2012 | * original object has not been changed since the last copy, its | |
2013 | * copy object can be reused. Otherwise, a new copy object can be | |
2014 | * inserted between the original object and its previous copy | |
2015 | * object. Since any copy object is read-only, this cannot affect | |
2016 | * affect the contents of the previous copy object. | |
2017 | * | |
2018 | * Note that a copy object is higher in the object tree than the | |
2019 | * original object; therefore, use of the copy object recorded in | |
2020 | * the original object must be done carefully, to avoid deadlock. | |
2021 | */ | |
2022 | ||
2023 | Retry: | |
1c79356b | 2024 | |
55e303ae A |
2025 | /* |
2026 | * Wait for paging in progress. | |
2027 | */ | |
2028 | if (!src_object->true_share) | |
2029 | vm_object_paging_wait(src_object, THREAD_UNINT); | |
2030 | ||
1c79356b A |
2031 | /* |
2032 | * See whether we can reuse the result of a previous | |
2033 | * copy operation. | |
2034 | */ | |
2035 | ||
2036 | old_copy = src_object->copy; | |
2037 | if (old_copy != VM_OBJECT_NULL) { | |
2038 | /* | |
2039 | * Try to get the locks (out of order) | |
2040 | */ | |
2041 | if (!vm_object_lock_try(old_copy)) { | |
2042 | vm_object_unlock(src_object); | |
2043 | mutex_pause(); | |
2044 | ||
2045 | /* Heisenberg Rules */ | |
2046 | copy_delayed_lock_collisions++; | |
2047 | if (collisions++ == 0) | |
2048 | copy_delayed_lock_contention++; | |
2049 | ||
2050 | if (collisions > copy_delayed_max_collisions) | |
2051 | copy_delayed_max_collisions = collisions; | |
2052 | ||
55e303ae | 2053 | vm_object_lock(src_object); |
1c79356b A |
2054 | goto Retry; |
2055 | } | |
2056 | ||
2057 | /* | |
2058 | * Determine whether the old copy object has | |
2059 | * been modified. | |
2060 | */ | |
2061 | ||
2062 | if (old_copy->resident_page_count == 0 && | |
2063 | !old_copy->pager_created) { | |
2064 | /* | |
2065 | * It has not been modified. | |
2066 | * | |
2067 | * Return another reference to | |
55e303ae A |
2068 | * the existing copy-object if |
2069 | * we can safely grow it (if | |
2070 | * needed). | |
de355530 | 2071 | */ |
1c79356b A |
2072 | |
2073 | if (new_copy != VM_OBJECT_NULL) { | |
2074 | vm_object_unlock(new_copy); | |
2075 | vm_object_deallocate(new_copy); | |
2076 | } | |
2077 | ||
55e303ae A |
2078 | if (old_copy->size < copy_size) { |
2079 | /* | |
2080 | * We can't perform a delayed copy if any of the | |
2081 | * pages in the extended range are wired (because | |
2082 | * we can't safely take write permission away from | |
2083 | * wired pages). If the pages aren't wired, then | |
2084 | * go ahead and protect them. | |
2085 | */ | |
2086 | copy_delayed_protect_iterate++; | |
2087 | queue_iterate(&src_object->memq, p, vm_page_t, listq) { | |
2088 | if (!p->fictitious && | |
2089 | p->offset >= old_copy->size && | |
2090 | p->offset < copy_size) { | |
2091 | if (p->wire_count > 0) { | |
2092 | vm_object_unlock(old_copy); | |
2093 | vm_object_unlock(src_object); | |
2094 | return VM_OBJECT_NULL; | |
2095 | } else { | |
2096 | pmap_page_protect(p->phys_page, | |
2097 | (VM_PROT_ALL & ~VM_PROT_WRITE & | |
2098 | ~p->page_lock)); | |
2099 | } | |
2100 | } | |
2101 | } | |
2102 | old_copy->size = copy_size; | |
2103 | } | |
2104 | ||
2105 | vm_object_reference_locked(old_copy); | |
d7e50217 A |
2106 | vm_object_unlock(old_copy); |
2107 | vm_object_unlock(src_object); | |
55e303ae | 2108 | return(old_copy); |
d7e50217 | 2109 | } |
de355530 A |
2110 | |
2111 | /* | |
2112 | * Adjust the size argument so that the newly-created | |
2113 | * copy object will be large enough to back either the | |
55e303ae | 2114 | * old copy object or the new mapping. |
de355530 | 2115 | */ |
55e303ae A |
2116 | if (old_copy->size > copy_size) |
2117 | copy_size = old_copy->size; | |
2118 | ||
2119 | if (new_copy == VM_OBJECT_NULL) { | |
2120 | vm_object_unlock(old_copy); | |
2121 | vm_object_unlock(src_object); | |
2122 | new_copy = vm_object_allocate(copy_size); | |
2123 | vm_object_lock(src_object); | |
2124 | vm_object_lock(new_copy); | |
2125 | goto Retry; | |
2126 | } | |
2127 | new_copy->size = copy_size; | |
1c79356b A |
2128 | |
2129 | /* | |
2130 | * The copy-object is always made large enough to | |
2131 | * completely shadow the original object, since | |
2132 | * it may have several users who want to shadow | |
2133 | * the original object at different points. | |
2134 | */ | |
2135 | ||
2136 | assert((old_copy->shadow == src_object) && | |
2137 | (old_copy->shadow_offset == (vm_object_offset_t) 0)); | |
2138 | ||
55e303ae A |
2139 | } else if (new_copy == VM_OBJECT_NULL) { |
2140 | vm_object_unlock(src_object); | |
2141 | new_copy = vm_object_allocate(copy_size); | |
2142 | vm_object_lock(src_object); | |
2143 | vm_object_lock(new_copy); | |
2144 | goto Retry; | |
2145 | } | |
2146 | ||
2147 | /* | |
2148 | * We now have the src object locked, and the new copy object | |
2149 | * allocated and locked (and potentially the old copy locked). | |
2150 | * Before we go any further, make sure we can still perform | |
2151 | * a delayed copy, as the situation may have changed. | |
2152 | * | |
2153 | * Specifically, we can't perform a delayed copy if any of the | |
2154 | * pages in the range are wired (because we can't safely take | |
2155 | * write permission away from wired pages). If the pages aren't | |
2156 | * wired, then go ahead and protect them. | |
2157 | */ | |
2158 | copy_delayed_protect_iterate++; | |
2159 | queue_iterate(&src_object->memq, p, vm_page_t, listq) { | |
2160 | if (!p->fictitious && p->offset < copy_size) { | |
2161 | if (p->wire_count > 0) { | |
2162 | if (old_copy) | |
2163 | vm_object_unlock(old_copy); | |
2164 | vm_object_unlock(src_object); | |
2165 | vm_object_unlock(new_copy); | |
2166 | vm_object_deallocate(new_copy); | |
2167 | return VM_OBJECT_NULL; | |
2168 | } else { | |
2169 | pmap_page_protect(p->phys_page, | |
2170 | (VM_PROT_ALL & ~VM_PROT_WRITE & | |
2171 | ~p->page_lock)); | |
2172 | } | |
2173 | } | |
2174 | } | |
2175 | ||
2176 | if (old_copy != VM_OBJECT_NULL) { | |
1c79356b A |
2177 | /* |
2178 | * Make the old copy-object shadow the new one. | |
2179 | * It will receive no more pages from the original | |
2180 | * object. | |
2181 | */ | |
2182 | ||
2183 | src_object->ref_count--; /* remove ref. from old_copy */ | |
2184 | assert(src_object->ref_count > 0); | |
2185 | old_copy->shadow = new_copy; | |
2186 | assert(new_copy->ref_count > 0); | |
2187 | new_copy->ref_count++; /* for old_copy->shadow ref. */ | |
2188 | ||
2189 | #if TASK_SWAPPER | |
2190 | if (old_copy->res_count) { | |
2191 | VM_OBJ_RES_INCR(new_copy); | |
2192 | VM_OBJ_RES_DECR(src_object); | |
2193 | } | |
2194 | #endif | |
2195 | ||
2196 | vm_object_unlock(old_copy); /* done with old_copy */ | |
1c79356b A |
2197 | } |
2198 | ||
2199 | /* | |
2200 | * Point the new copy at the existing object. | |
2201 | */ | |
1c79356b A |
2202 | new_copy->shadow = src_object; |
2203 | new_copy->shadow_offset = 0; | |
2204 | new_copy->shadowed = TRUE; /* caller must set needs_copy */ | |
2205 | assert(src_object->ref_count > 0); | |
2206 | src_object->ref_count++; | |
2207 | VM_OBJ_RES_INCR(src_object); | |
2208 | src_object->copy = new_copy; | |
55e303ae | 2209 | vm_object_unlock(src_object); |
1c79356b A |
2210 | vm_object_unlock(new_copy); |
2211 | ||
1c79356b A |
2212 | XPR(XPR_VM_OBJECT, |
2213 | "vm_object_copy_delayed: used copy object %X for source %X\n", | |
2214 | (integer_t)new_copy, (integer_t)src_object, 0, 0, 0); | |
2215 | ||
2216 | return(new_copy); | |
2217 | } | |
2218 | ||
2219 | /* | |
2220 | * Routine: vm_object_copy_strategically | |
2221 | * | |
2222 | * Purpose: | |
2223 | * Perform a copy according to the source object's | |
2224 | * declared strategy. This operation may block, | |
2225 | * and may be interrupted. | |
2226 | */ | |
0b4e3aa0 | 2227 | __private_extern__ kern_return_t |
1c79356b A |
2228 | vm_object_copy_strategically( |
2229 | register vm_object_t src_object, | |
2230 | vm_object_offset_t src_offset, | |
2231 | vm_object_size_t size, | |
2232 | vm_object_t *dst_object, /* OUT */ | |
2233 | vm_object_offset_t *dst_offset, /* OUT */ | |
2234 | boolean_t *dst_needs_copy) /* OUT */ | |
2235 | { | |
2236 | boolean_t result; | |
2237 | boolean_t interruptible = THREAD_ABORTSAFE; /* XXX */ | |
2238 | memory_object_copy_strategy_t copy_strategy; | |
2239 | ||
2240 | assert(src_object != VM_OBJECT_NULL); | |
2241 | ||
2242 | vm_object_lock(src_object); | |
2243 | ||
2244 | /* | |
2245 | * The copy strategy is only valid if the memory manager | |
2246 | * is "ready". Internal objects are always ready. | |
2247 | */ | |
2248 | ||
2249 | while (!src_object->internal && !src_object->pager_ready) { | |
9bccf70c | 2250 | wait_result_t wait_result; |
1c79356b | 2251 | |
9bccf70c A |
2252 | wait_result = vm_object_sleep( src_object, |
2253 | VM_OBJECT_EVENT_PAGER_READY, | |
2254 | interruptible); | |
2255 | if (wait_result != THREAD_AWAKENED) { | |
2256 | vm_object_unlock(src_object); | |
1c79356b A |
2257 | *dst_object = VM_OBJECT_NULL; |
2258 | *dst_offset = 0; | |
2259 | *dst_needs_copy = FALSE; | |
2260 | return(MACH_SEND_INTERRUPTED); | |
2261 | } | |
1c79356b A |
2262 | } |
2263 | ||
2264 | copy_strategy = src_object->copy_strategy; | |
2265 | ||
2266 | /* | |
2267 | * Use the appropriate copy strategy. | |
2268 | */ | |
2269 | ||
2270 | switch (copy_strategy) { | |
55e303ae A |
2271 | case MEMORY_OBJECT_COPY_DELAY: |
2272 | *dst_object = vm_object_copy_delayed(src_object, | |
2273 | src_offset, size); | |
2274 | if (*dst_object != VM_OBJECT_NULL) { | |
2275 | *dst_offset = src_offset; | |
2276 | *dst_needs_copy = TRUE; | |
2277 | result = KERN_SUCCESS; | |
2278 | break; | |
2279 | } | |
2280 | vm_object_lock(src_object); | |
2281 | /* fall thru when delayed copy not allowed */ | |
2282 | ||
1c79356b A |
2283 | case MEMORY_OBJECT_COPY_NONE: |
2284 | result = vm_object_copy_slowly(src_object, src_offset, size, | |
2285 | interruptible, dst_object); | |
2286 | if (result == KERN_SUCCESS) { | |
2287 | *dst_offset = 0; | |
2288 | *dst_needs_copy = FALSE; | |
2289 | } | |
2290 | break; | |
2291 | ||
2292 | case MEMORY_OBJECT_COPY_CALL: | |
2293 | result = vm_object_copy_call(src_object, src_offset, size, | |
2294 | dst_object); | |
2295 | if (result == KERN_SUCCESS) { | |
2296 | *dst_offset = src_offset; | |
2297 | *dst_needs_copy = TRUE; | |
2298 | } | |
2299 | break; | |
2300 | ||
1c79356b A |
2301 | case MEMORY_OBJECT_COPY_SYMMETRIC: |
2302 | XPR(XPR_VM_OBJECT, "v_o_c_strategically obj 0x%x off 0x%x size 0x%x\n",(natural_t)src_object, src_offset, size, 0, 0); | |
2303 | vm_object_unlock(src_object); | |
2304 | result = KERN_MEMORY_RESTART_COPY; | |
2305 | break; | |
2306 | ||
2307 | default: | |
2308 | panic("copy_strategically: bad strategy"); | |
2309 | result = KERN_INVALID_ARGUMENT; | |
2310 | } | |
2311 | return(result); | |
2312 | } | |
2313 | ||
2314 | /* | |
2315 | * vm_object_shadow: | |
2316 | * | |
2317 | * Create a new object which is backed by the | |
2318 | * specified existing object range. The source | |
2319 | * object reference is deallocated. | |
2320 | * | |
2321 | * The new object and offset into that object | |
2322 | * are returned in the source parameters. | |
2323 | */ | |
2324 | boolean_t vm_object_shadow_check = FALSE; | |
2325 | ||
0b4e3aa0 | 2326 | __private_extern__ boolean_t |
1c79356b A |
2327 | vm_object_shadow( |
2328 | vm_object_t *object, /* IN/OUT */ | |
2329 | vm_object_offset_t *offset, /* IN/OUT */ | |
2330 | vm_object_size_t length) | |
2331 | { | |
2332 | register vm_object_t source; | |
2333 | register vm_object_t result; | |
2334 | ||
2335 | source = *object; | |
2336 | assert(source->copy_strategy == MEMORY_OBJECT_COPY_SYMMETRIC); | |
2337 | ||
2338 | /* | |
2339 | * Determine if we really need a shadow. | |
2340 | */ | |
2341 | ||
2342 | if (vm_object_shadow_check && source->ref_count == 1 && | |
2343 | (source->shadow == VM_OBJECT_NULL || | |
2344 | source->shadow->copy == VM_OBJECT_NULL)) | |
2345 | { | |
2346 | source->shadowed = FALSE; | |
2347 | return FALSE; | |
2348 | } | |
2349 | ||
2350 | /* | |
2351 | * Allocate a new object with the given length | |
2352 | */ | |
2353 | ||
2354 | if ((result = vm_object_allocate(length)) == VM_OBJECT_NULL) | |
2355 | panic("vm_object_shadow: no object for shadowing"); | |
2356 | ||
2357 | /* | |
2358 | * The new object shadows the source object, adding | |
2359 | * a reference to it. Our caller changes his reference | |
2360 | * to point to the new object, removing a reference to | |
2361 | * the source object. Net result: no change of reference | |
2362 | * count. | |
2363 | */ | |
2364 | result->shadow = source; | |
2365 | ||
2366 | /* | |
2367 | * Store the offset into the source object, | |
2368 | * and fix up the offset into the new object. | |
2369 | */ | |
2370 | ||
2371 | result->shadow_offset = *offset; | |
2372 | ||
2373 | /* | |
2374 | * Return the new things | |
2375 | */ | |
2376 | ||
2377 | *offset = 0; | |
2378 | *object = result; | |
2379 | return TRUE; | |
2380 | } | |
2381 | ||
2382 | /* | |
2383 | * The relationship between vm_object structures and | |
0b4e3aa0 | 2384 | * the memory_object requires careful synchronization. |
1c79356b | 2385 | * |
0b4e3aa0 A |
2386 | * All associations are created by memory_object_create_named |
2387 | * for external pagers and vm_object_pager_create for internal | |
2388 | * objects as follows: | |
2389 | * | |
2390 | * pager: the memory_object itself, supplied by | |
1c79356b A |
2391 | * the user requesting a mapping (or the kernel, |
2392 | * when initializing internal objects); the | |
2393 | * kernel simulates holding send rights by keeping | |
2394 | * a port reference; | |
0b4e3aa0 | 2395 | * |
1c79356b A |
2396 | * pager_request: |
2397 | * the memory object control port, | |
2398 | * created by the kernel; the kernel holds | |
2399 | * receive (and ownership) rights to this | |
2400 | * port, but no other references. | |
1c79356b A |
2401 | * |
2402 | * When initialization is complete, the "initialized" field | |
2403 | * is asserted. Other mappings using a particular memory object, | |
2404 | * and any references to the vm_object gained through the | |
2405 | * port association must wait for this initialization to occur. | |
2406 | * | |
2407 | * In order to allow the memory manager to set attributes before | |
2408 | * requests (notably virtual copy operations, but also data or | |
2409 | * unlock requests) are made, a "ready" attribute is made available. | |
2410 | * Only the memory manager may affect the value of this attribute. | |
2411 | * Its value does not affect critical kernel functions, such as | |
2412 | * internal object initialization or destruction. [Furthermore, | |
2413 | * memory objects created by the kernel are assumed to be ready | |
2414 | * immediately; the default memory manager need not explicitly | |
2415 | * set the "ready" attribute.] | |
2416 | * | |
2417 | * [Both the "initialized" and "ready" attribute wait conditions | |
2418 | * use the "pager" field as the wait event.] | |
2419 | * | |
2420 | * The port associations can be broken down by any of the | |
2421 | * following routines: | |
2422 | * vm_object_terminate: | |
2423 | * No references to the vm_object remain, and | |
2424 | * the object cannot (or will not) be cached. | |
2425 | * This is the normal case, and is done even | |
2426 | * though one of the other cases has already been | |
2427 | * done. | |
1c79356b A |
2428 | * memory_object_destroy: |
2429 | * The memory manager has requested that the | |
0b4e3aa0 A |
2430 | * kernel relinquish references to the memory |
2431 | * object. [The memory manager may not want to | |
2432 | * destroy the memory object, but may wish to | |
2433 | * refuse or tear down existing memory mappings.] | |
2434 | * | |
1c79356b A |
2435 | * Each routine that breaks an association must break all of |
2436 | * them at once. At some later time, that routine must clear | |
0b4e3aa0 | 2437 | * the pager field and release the memory object references. |
1c79356b A |
2438 | * [Furthermore, each routine must cope with the simultaneous |
2439 | * or previous operations of the others.] | |
2440 | * | |
2441 | * In addition to the lock on the object, the vm_object_cache_lock | |
0b4e3aa0 A |
2442 | * governs the associations. References gained through the |
2443 | * association require use of the cache lock. | |
1c79356b | 2444 | * |
0b4e3aa0 | 2445 | * Because the pager field may be cleared spontaneously, it |
1c79356b A |
2446 | * cannot be used to determine whether a memory object has |
2447 | * ever been associated with a particular vm_object. [This | |
2448 | * knowledge is important to the shadow object mechanism.] | |
2449 | * For this reason, an additional "created" attribute is | |
2450 | * provided. | |
2451 | * | |
0b4e3aa0 A |
2452 | * During various paging operations, the pager reference found in the |
2453 | * vm_object must be valid. To prevent this from being released, | |
1c79356b A |
2454 | * (other than being removed, i.e., made null), routines may use |
2455 | * the vm_object_paging_begin/end routines [actually, macros]. | |
2456 | * The implementation uses the "paging_in_progress" and "wanted" fields. | |
0b4e3aa0 | 2457 | * [Operations that alter the validity of the pager values include the |
1c79356b A |
2458 | * termination routines and vm_object_collapse.] |
2459 | */ | |
2460 | ||
0b4e3aa0 A |
2461 | #if 0 |
2462 | /* | |
2463 | * Routine: vm_object_pager_dead | |
2464 | * | |
2465 | * Purpose: | |
2466 | * A port is being destroy, and the IPC kobject code | |
2467 | * can't tell if it represents a pager port or not. | |
2468 | * So this function is called each time it sees a port | |
2469 | * die. | |
2470 | * THIS IS HORRIBLY INEFFICIENT. We should only call | |
2471 | * this routine if we had requested a notification on | |
2472 | * the port. | |
2473 | */ | |
1c79356b | 2474 | |
0b4e3aa0 A |
2475 | __private_extern__ void |
2476 | vm_object_pager_dead( | |
1c79356b A |
2477 | ipc_port_t pager) |
2478 | { | |
2479 | vm_object_t object; | |
2480 | vm_object_hash_entry_t entry; | |
1c79356b A |
2481 | |
2482 | /* | |
2483 | * Perform essentially the same operations as in vm_object_lookup, | |
2484 | * except that this time we look up based on the memory_object | |
2485 | * port, not the control port. | |
2486 | */ | |
2487 | vm_object_cache_lock(); | |
2488 | entry = vm_object_hash_lookup(pager, FALSE); | |
2489 | if (entry == VM_OBJECT_HASH_ENTRY_NULL || | |
2490 | entry->object == VM_OBJECT_NULL) { | |
2491 | vm_object_cache_unlock(); | |
2492 | return; | |
2493 | } | |
2494 | ||
2495 | object = entry->object; | |
2496 | entry->object = VM_OBJECT_NULL; | |
2497 | ||
2498 | vm_object_lock(object); | |
2499 | if (object->ref_count == 0) { | |
2500 | XPR(XPR_VM_OBJECT_CACHE, | |
2501 | "vm_object_destroy: removing %x from cache, head (%x, %x)\n", | |
2502 | (integer_t)object, | |
2503 | (integer_t)vm_object_cached_list.next, | |
2504 | (integer_t)vm_object_cached_list.prev, 0,0); | |
2505 | ||
2506 | queue_remove(&vm_object_cached_list, object, | |
2507 | vm_object_t, cached_list); | |
2508 | vm_object_cached_count--; | |
2509 | } | |
2510 | object->ref_count++; | |
2511 | vm_object_res_reference(object); | |
2512 | ||
2513 | object->can_persist = FALSE; | |
2514 | ||
2515 | assert(object->pager == pager); | |
2516 | ||
2517 | /* | |
0b4e3aa0 | 2518 | * Remove the pager association. |
1c79356b A |
2519 | * |
2520 | * Note that the memory_object itself is dead, so | |
2521 | * we don't bother with it. | |
2522 | */ | |
2523 | ||
0b4e3aa0 | 2524 | object->pager = MEMORY_OBJECT_NULL; |
1c79356b A |
2525 | |
2526 | vm_object_unlock(object); | |
2527 | vm_object_cache_unlock(); | |
2528 | ||
2529 | vm_object_pager_wakeup(pager); | |
2530 | ||
2531 | /* | |
0b4e3aa0 | 2532 | * Release the pager reference. Note that there's no |
1c79356b | 2533 | * point in trying the memory_object_terminate call |
0b4e3aa0 A |
2534 | * because the memory_object itself is dead. Also |
2535 | * release the memory_object_control reference, since | |
2536 | * the pager didn't do that either. | |
1c79356b A |
2537 | */ |
2538 | ||
0b4e3aa0 A |
2539 | memory_object_deallocate(pager); |
2540 | memory_object_control_deallocate(object->pager_request); | |
2541 | ||
1c79356b A |
2542 | |
2543 | /* | |
2544 | * Restart pending page requests | |
2545 | */ | |
2546 | vm_object_lock(object); | |
1c79356b | 2547 | vm_object_abort_activity(object); |
1c79356b A |
2548 | vm_object_unlock(object); |
2549 | ||
2550 | /* | |
2551 | * Lose the object reference. | |
2552 | */ | |
2553 | ||
2554 | vm_object_deallocate(object); | |
2555 | } | |
0b4e3aa0 | 2556 | #endif |
1c79356b A |
2557 | |
2558 | /* | |
2559 | * Routine: vm_object_enter | |
2560 | * Purpose: | |
2561 | * Find a VM object corresponding to the given | |
2562 | * pager; if no such object exists, create one, | |
2563 | * and initialize the pager. | |
2564 | */ | |
2565 | vm_object_t | |
2566 | vm_object_enter( | |
0b4e3aa0 | 2567 | memory_object_t pager, |
1c79356b A |
2568 | vm_object_size_t size, |
2569 | boolean_t internal, | |
2570 | boolean_t init, | |
0b4e3aa0 | 2571 | boolean_t named) |
1c79356b A |
2572 | { |
2573 | register vm_object_t object; | |
2574 | vm_object_t new_object; | |
2575 | boolean_t must_init; | |
1c79356b | 2576 | vm_object_hash_entry_t entry, new_entry; |
1c79356b | 2577 | |
0b4e3aa0 | 2578 | if (pager == MEMORY_OBJECT_NULL) |
1c79356b A |
2579 | return(vm_object_allocate(size)); |
2580 | ||
2581 | new_object = VM_OBJECT_NULL; | |
2582 | new_entry = VM_OBJECT_HASH_ENTRY_NULL; | |
2583 | must_init = init; | |
2584 | ||
2585 | /* | |
2586 | * Look for an object associated with this port. | |
2587 | */ | |
2588 | ||
1c79356b | 2589 | vm_object_cache_lock(); |
55e303ae | 2590 | do { |
1c79356b A |
2591 | entry = vm_object_hash_lookup(pager, FALSE); |
2592 | ||
55e303ae A |
2593 | if (entry == VM_OBJECT_HASH_ENTRY_NULL) { |
2594 | if (new_object == VM_OBJECT_NULL) { | |
2595 | /* | |
2596 | * We must unlock to create a new object; | |
2597 | * if we do so, we must try the lookup again. | |
2598 | */ | |
2599 | vm_object_cache_unlock(); | |
2600 | assert(new_entry == VM_OBJECT_HASH_ENTRY_NULL); | |
2601 | new_entry = vm_object_hash_entry_alloc(pager); | |
2602 | new_object = vm_object_allocate(size); | |
2603 | vm_object_cache_lock(); | |
2604 | } else { | |
2605 | /* | |
2606 | * Lookup failed twice, and we have something | |
2607 | * to insert; set the object. | |
2608 | */ | |
2609 | vm_object_hash_insert(new_entry); | |
2610 | entry = new_entry; | |
2611 | entry->object = new_object; | |
2612 | new_entry = VM_OBJECT_HASH_ENTRY_NULL; | |
2613 | new_object = VM_OBJECT_NULL; | |
2614 | must_init = TRUE; | |
2615 | } | |
2616 | } else if (entry->object == VM_OBJECT_NULL) { | |
2617 | /* | |
2618 | * If a previous object is being terminated, | |
2619 | * we must wait for the termination message | |
2620 | * to be queued (and lookup the entry again). | |
2621 | */ | |
1c79356b | 2622 | entry->waiting = TRUE; |
55e303ae | 2623 | entry = VM_OBJECT_HASH_ENTRY_NULL; |
1c79356b A |
2624 | assert_wait((event_t) pager, THREAD_UNINT); |
2625 | vm_object_cache_unlock(); | |
2626 | thread_block((void (*)(void))0); | |
1c79356b | 2627 | vm_object_cache_lock(); |
1c79356b | 2628 | } |
55e303ae | 2629 | } while (entry == VM_OBJECT_HASH_ENTRY_NULL); |
1c79356b A |
2630 | |
2631 | object = entry->object; | |
2632 | assert(object != VM_OBJECT_NULL); | |
2633 | ||
2634 | if (!must_init) { | |
2635 | vm_object_lock(object); | |
1c79356b | 2636 | assert(!internal || object->internal); |
0b4e3aa0 A |
2637 | if (named) { |
2638 | assert(!object->named); | |
1c79356b | 2639 | object->named = TRUE; |
0b4e3aa0 | 2640 | } |
1c79356b A |
2641 | if (object->ref_count == 0) { |
2642 | XPR(XPR_VM_OBJECT_CACHE, | |
2643 | "vm_object_enter: removing %x from cache, head (%x, %x)\n", | |
2644 | (integer_t)object, | |
2645 | (integer_t)vm_object_cached_list.next, | |
2646 | (integer_t)vm_object_cached_list.prev, 0,0); | |
2647 | queue_remove(&vm_object_cached_list, object, | |
2648 | vm_object_t, cached_list); | |
2649 | vm_object_cached_count--; | |
2650 | } | |
2651 | object->ref_count++; | |
2652 | vm_object_res_reference(object); | |
2653 | vm_object_unlock(object); | |
2654 | ||
2655 | VM_STAT(hits++); | |
2656 | } | |
2657 | assert(object->ref_count > 0); | |
2658 | ||
2659 | VM_STAT(lookups++); | |
2660 | ||
2661 | vm_object_cache_unlock(); | |
2662 | ||
2663 | XPR(XPR_VM_OBJECT, | |
2664 | "vm_o_enter: pager 0x%x obj 0x%x must_init %d\n", | |
2665 | (integer_t)pager, (integer_t)object, must_init, 0, 0); | |
2666 | ||
2667 | /* | |
2668 | * If we raced to create a vm_object but lost, let's | |
2669 | * throw away ours. | |
2670 | */ | |
2671 | ||
2672 | if (new_object != VM_OBJECT_NULL) | |
2673 | vm_object_deallocate(new_object); | |
2674 | ||
2675 | if (new_entry != VM_OBJECT_HASH_ENTRY_NULL) | |
2676 | vm_object_hash_entry_free(new_entry); | |
2677 | ||
2678 | if (must_init) { | |
0b4e3aa0 | 2679 | pager_request_t pager_request; |
1c79356b A |
2680 | |
2681 | /* | |
2682 | * Allocate request port. | |
2683 | */ | |
2684 | ||
0b4e3aa0 A |
2685 | pager_request = memory_object_control_allocate(object); |
2686 | assert (pager_request != PAGER_REQUEST_NULL); | |
1c79356b A |
2687 | |
2688 | vm_object_lock(object); | |
2689 | ||
2690 | /* | |
0b4e3aa0 | 2691 | * Copy the reference we were given. |
1c79356b A |
2692 | */ |
2693 | ||
0b4e3aa0 | 2694 | memory_object_reference(pager); |
1c79356b A |
2695 | object->pager_created = TRUE; |
2696 | object->pager = pager; | |
2697 | object->internal = internal; | |
2698 | object->pager_trusted = internal; | |
2699 | if (!internal) { | |
2700 | /* copy strategy invalid until set by memory manager */ | |
2701 | object->copy_strategy = MEMORY_OBJECT_COPY_INVALID; | |
2702 | } | |
2703 | object->pager_request = pager_request; | |
2704 | object->pager_ready = FALSE; | |
2705 | ||
1c79356b A |
2706 | vm_object_unlock(object); |
2707 | ||
2708 | /* | |
2709 | * Let the pager know we're using it. | |
2710 | */ | |
2711 | ||
0b4e3aa0 A |
2712 | (void) memory_object_init(pager, |
2713 | object->pager_request, | |
2714 | PAGE_SIZE); | |
1c79356b A |
2715 | |
2716 | vm_object_lock(object); | |
0b4e3aa0 A |
2717 | if (named) |
2718 | object->named = TRUE; | |
1c79356b A |
2719 | if (internal) { |
2720 | object->pager_ready = TRUE; | |
2721 | vm_object_wakeup(object, VM_OBJECT_EVENT_PAGER_READY); | |
2722 | } | |
2723 | ||
2724 | object->pager_initialized = TRUE; | |
2725 | vm_object_wakeup(object, VM_OBJECT_EVENT_INITIALIZED); | |
2726 | } else { | |
2727 | vm_object_lock(object); | |
2728 | } | |
2729 | ||
2730 | /* | |
2731 | * [At this point, the object must be locked] | |
2732 | */ | |
2733 | ||
2734 | /* | |
2735 | * Wait for the work above to be done by the first | |
2736 | * thread to map this object. | |
2737 | */ | |
2738 | ||
2739 | while (!object->pager_initialized) { | |
9bccf70c | 2740 | vm_object_sleep(object, |
1c79356b A |
2741 | VM_OBJECT_EVENT_INITIALIZED, |
2742 | THREAD_UNINT); | |
1c79356b A |
2743 | } |
2744 | vm_object_unlock(object); | |
2745 | ||
2746 | XPR(XPR_VM_OBJECT, | |
2747 | "vm_object_enter: vm_object %x, memory_object %x, internal %d\n", | |
2748 | (integer_t)object, (integer_t)object->pager, internal, 0,0); | |
2749 | return(object); | |
2750 | } | |
2751 | ||
2752 | /* | |
2753 | * Routine: vm_object_pager_create | |
2754 | * Purpose: | |
2755 | * Create a memory object for an internal object. | |
2756 | * In/out conditions: | |
2757 | * The object is locked on entry and exit; | |
2758 | * it may be unlocked within this call. | |
2759 | * Limitations: | |
2760 | * Only one thread may be performing a | |
2761 | * vm_object_pager_create on an object at | |
2762 | * a time. Presumably, only the pageout | |
2763 | * daemon will be using this routine. | |
2764 | */ | |
2765 | ||
2766 | void | |
2767 | vm_object_pager_create( | |
2768 | register vm_object_t object) | |
2769 | { | |
0b4e3aa0 | 2770 | memory_object_t pager; |
1c79356b A |
2771 | vm_object_hash_entry_t entry; |
2772 | #if MACH_PAGEMAP | |
2773 | vm_object_size_t size; | |
2774 | vm_external_map_t map; | |
2775 | #endif /* MACH_PAGEMAP */ | |
2776 | ||
2777 | XPR(XPR_VM_OBJECT, "vm_object_pager_create, object 0x%X\n", | |
2778 | (integer_t)object, 0,0,0,0); | |
2779 | ||
2780 | if (memory_manager_default_check() != KERN_SUCCESS) | |
2781 | return; | |
2782 | ||
2783 | /* | |
2784 | * Prevent collapse or termination by holding a paging reference | |
2785 | */ | |
2786 | ||
2787 | vm_object_paging_begin(object); | |
2788 | if (object->pager_created) { | |
2789 | /* | |
2790 | * Someone else got to it first... | |
2791 | * wait for them to finish initializing the ports | |
2792 | */ | |
2793 | while (!object->pager_initialized) { | |
9bccf70c A |
2794 | vm_object_sleep(object, |
2795 | VM_OBJECT_EVENT_INITIALIZED, | |
2796 | THREAD_UNINT); | |
1c79356b A |
2797 | } |
2798 | vm_object_paging_end(object); | |
2799 | return; | |
2800 | } | |
2801 | ||
2802 | /* | |
2803 | * Indicate that a memory object has been assigned | |
2804 | * before dropping the lock, to prevent a race. | |
2805 | */ | |
2806 | ||
2807 | object->pager_created = TRUE; | |
2808 | object->paging_offset = 0; | |
2809 | ||
2810 | #if MACH_PAGEMAP | |
2811 | size = object->size; | |
2812 | #endif /* MACH_PAGEMAP */ | |
2813 | vm_object_unlock(object); | |
2814 | ||
2815 | #if MACH_PAGEMAP | |
2816 | map = vm_external_create(size); | |
2817 | vm_object_lock(object); | |
2818 | assert(object->size == size); | |
2819 | object->existence_map = map; | |
2820 | vm_object_unlock(object); | |
2821 | #endif /* MACH_PAGEMAP */ | |
2822 | ||
2823 | /* | |
0b4e3aa0 | 2824 | * Create the [internal] pager, and associate it with this object. |
1c79356b | 2825 | * |
0b4e3aa0 | 2826 | * We make the association here so that vm_object_enter() |
1c79356b A |
2827 | * can look up the object to complete initializing it. No |
2828 | * user will ever map this object. | |
2829 | */ | |
2830 | { | |
0b4e3aa0 | 2831 | memory_object_default_t dmm; |
1c79356b A |
2832 | vm_size_t cluster_size; |
2833 | ||
0b4e3aa0 A |
2834 | /* acquire a reference for the default memory manager */ |
2835 | dmm = memory_manager_default_reference(&cluster_size); | |
1c79356b A |
2836 | assert(cluster_size >= PAGE_SIZE); |
2837 | ||
2838 | object->cluster_size = cluster_size; /* XXX ??? */ | |
2839 | assert(object->temporary); | |
2840 | ||
0b4e3aa0 A |
2841 | /* create our new memory object */ |
2842 | (void) memory_object_create(dmm, object->size, &pager); | |
2843 | ||
2844 | memory_object_default_deallocate(dmm); | |
1c79356b A |
2845 | } |
2846 | ||
2847 | entry = vm_object_hash_entry_alloc(pager); | |
2848 | ||
2849 | vm_object_cache_lock(); | |
2850 | vm_object_hash_insert(entry); | |
2851 | ||
2852 | entry->object = object; | |
2853 | vm_object_cache_unlock(); | |
2854 | ||
2855 | /* | |
0b4e3aa0 | 2856 | * A reference was returned by |
1c79356b A |
2857 | * memory_object_create(), and it is |
2858 | * copied by vm_object_enter(). | |
2859 | */ | |
2860 | ||
2861 | if (vm_object_enter(pager, object->size, TRUE, TRUE, FALSE) != object) | |
2862 | panic("vm_object_pager_create: mismatch"); | |
2863 | ||
2864 | /* | |
0b4e3aa0 | 2865 | * Drop the reference we were passed. |
1c79356b | 2866 | */ |
0b4e3aa0 | 2867 | memory_object_deallocate(pager); |
1c79356b A |
2868 | |
2869 | vm_object_lock(object); | |
2870 | ||
2871 | /* | |
2872 | * Release the paging reference | |
2873 | */ | |
2874 | vm_object_paging_end(object); | |
2875 | } | |
2876 | ||
2877 | /* | |
2878 | * Routine: vm_object_remove | |
2879 | * Purpose: | |
2880 | * Eliminate the pager/object association | |
2881 | * for this pager. | |
2882 | * Conditions: | |
2883 | * The object cache must be locked. | |
2884 | */ | |
0b4e3aa0 | 2885 | __private_extern__ void |
1c79356b A |
2886 | vm_object_remove( |
2887 | vm_object_t object) | |
2888 | { | |
0b4e3aa0 A |
2889 | memory_object_t pager; |
2890 | pager_request_t pager_request; | |
1c79356b | 2891 | |
0b4e3aa0 | 2892 | if ((pager = object->pager) != MEMORY_OBJECT_NULL) { |
1c79356b A |
2893 | vm_object_hash_entry_t entry; |
2894 | ||
0b4e3aa0 | 2895 | entry = vm_object_hash_lookup(pager, FALSE); |
1c79356b A |
2896 | if (entry != VM_OBJECT_HASH_ENTRY_NULL) |
2897 | entry->object = VM_OBJECT_NULL; | |
2898 | } | |
2899 | ||
1c79356b A |
2900 | } |
2901 | ||
2902 | /* | |
2903 | * Global variables for vm_object_collapse(): | |
2904 | * | |
2905 | * Counts for normal collapses and bypasses. | |
2906 | * Debugging variables, to watch or disable collapse. | |
2907 | */ | |
0b4e3aa0 A |
2908 | static long object_collapses = 0; |
2909 | static long object_bypasses = 0; | |
1c79356b | 2910 | |
0b4e3aa0 A |
2911 | static boolean_t vm_object_collapse_allowed = TRUE; |
2912 | static boolean_t vm_object_bypass_allowed = TRUE; | |
2913 | ||
2914 | static int vm_external_discarded; | |
2915 | static int vm_external_collapsed; | |
1c79356b | 2916 | |
1c79356b | 2917 | /* |
0b4e3aa0 A |
2918 | * Routine: vm_object_do_collapse |
2919 | * Purpose: | |
2920 | * Collapse an object with the object backing it. | |
2921 | * Pages in the backing object are moved into the | |
2922 | * parent, and the backing object is deallocated. | |
2923 | * Conditions: | |
2924 | * Both objects and the cache are locked; the page | |
2925 | * queues are unlocked. | |
1c79356b A |
2926 | * |
2927 | */ | |
0b4e3aa0 | 2928 | static void |
1c79356b A |
2929 | vm_object_do_collapse( |
2930 | vm_object_t object, | |
2931 | vm_object_t backing_object) | |
2932 | { | |
2933 | vm_page_t p, pp; | |
2934 | vm_object_offset_t new_offset, backing_offset; | |
2935 | vm_object_size_t size; | |
2936 | ||
2937 | backing_offset = object->shadow_offset; | |
2938 | size = object->size; | |
2939 | ||
1c79356b A |
2940 | /* |
2941 | * Move all in-memory pages from backing_object | |
2942 | * to the parent. Pages that have been paged out | |
2943 | * will be overwritten by any of the parent's | |
2944 | * pages that shadow them. | |
2945 | */ | |
2946 | ||
2947 | while (!queue_empty(&backing_object->memq)) { | |
2948 | ||
2949 | p = (vm_page_t) queue_first(&backing_object->memq); | |
2950 | ||
2951 | new_offset = (p->offset - backing_offset); | |
2952 | ||
2953 | assert(!p->busy || p->absent); | |
2954 | ||
2955 | /* | |
2956 | * If the parent has a page here, or if | |
2957 | * this page falls outside the parent, | |
2958 | * dispose of it. | |
2959 | * | |
2960 | * Otherwise, move it as planned. | |
2961 | */ | |
2962 | ||
2963 | if (p->offset < backing_offset || new_offset >= size) { | |
2964 | VM_PAGE_FREE(p); | |
2965 | } else { | |
2966 | pp = vm_page_lookup(object, new_offset); | |
2967 | if (pp == VM_PAGE_NULL) { | |
2968 | ||
2969 | /* | |
2970 | * Parent now has no page. | |
2971 | * Move the backing object's page up. | |
2972 | */ | |
2973 | ||
2974 | vm_page_rename(p, object, new_offset); | |
2975 | #if MACH_PAGEMAP | |
2976 | } else if (pp->absent) { | |
2977 | ||
2978 | /* | |
2979 | * Parent has an absent page... | |
2980 | * it's not being paged in, so | |
2981 | * it must really be missing from | |
2982 | * the parent. | |
2983 | * | |
2984 | * Throw out the absent page... | |
2985 | * any faults looking for that | |
2986 | * page will restart with the new | |
2987 | * one. | |
2988 | */ | |
2989 | ||
2990 | VM_PAGE_FREE(pp); | |
2991 | vm_page_rename(p, object, new_offset); | |
2992 | #endif /* MACH_PAGEMAP */ | |
2993 | } else { | |
2994 | assert(! pp->absent); | |
2995 | ||
2996 | /* | |
2997 | * Parent object has a real page. | |
2998 | * Throw away the backing object's | |
2999 | * page. | |
3000 | */ | |
3001 | VM_PAGE_FREE(p); | |
3002 | } | |
3003 | } | |
3004 | } | |
3005 | ||
55e303ae A |
3006 | #if !MACH_PAGEMAP |
3007 | assert(!object->pager_created && object->pager == MEMORY_OBJECT_NULL | |
3008 | || (!backing_object->pager_created | |
3009 | && backing_object->pager == MEMORY_OBJECT_NULL)); | |
3010 | #else | |
3011 | assert(!object->pager_created && object->pager == MEMORY_OBJECT_NULL); | |
3012 | #endif /* !MACH_PAGEMAP */ | |
1c79356b | 3013 | |
0b4e3aa0 | 3014 | if (backing_object->pager != MEMORY_OBJECT_NULL) { |
1c79356b A |
3015 | vm_object_hash_entry_t entry; |
3016 | ||
3017 | /* | |
3018 | * Move the pager from backing_object to object. | |
3019 | * | |
3020 | * XXX We're only using part of the paging space | |
3021 | * for keeps now... we ought to discard the | |
3022 | * unused portion. | |
3023 | */ | |
3024 | ||
55e303ae | 3025 | assert(!object->paging_in_progress); |
1c79356b A |
3026 | object->pager = backing_object->pager; |
3027 | entry = vm_object_hash_lookup(object->pager, FALSE); | |
3028 | assert(entry != VM_OBJECT_HASH_ENTRY_NULL); | |
3029 | entry->object = object; | |
3030 | object->pager_created = backing_object->pager_created; | |
3031 | object->pager_request = backing_object->pager_request; | |
3032 | object->pager_ready = backing_object->pager_ready; | |
3033 | object->pager_initialized = backing_object->pager_initialized; | |
3034 | object->cluster_size = backing_object->cluster_size; | |
3035 | object->paging_offset = | |
3036 | backing_object->paging_offset + backing_offset; | |
0b4e3aa0 A |
3037 | if (object->pager_request != PAGER_REQUEST_NULL) { |
3038 | memory_object_control_collapse(object->pager_request, | |
3039 | object); | |
1c79356b A |
3040 | } |
3041 | } | |
3042 | ||
3043 | vm_object_cache_unlock(); | |
3044 | ||
1c79356b A |
3045 | #if MACH_PAGEMAP |
3046 | /* | |
3047 | * If the shadow offset is 0, the use the existence map from | |
3048 | * the backing object if there is one. If the shadow offset is | |
3049 | * not zero, toss it. | |
3050 | * | |
3051 | * XXX - If the shadow offset is not 0 then a bit copy is needed | |
3052 | * if the map is to be salvaged. For now, we just just toss the | |
3053 | * old map, giving the collapsed object no map. This means that | |
3054 | * the pager is invoked for zero fill pages. If analysis shows | |
3055 | * that this happens frequently and is a performance hit, then | |
3056 | * this code should be fixed to salvage the map. | |
3057 | */ | |
3058 | assert(object->existence_map == VM_EXTERNAL_NULL); | |
3059 | if (backing_offset || (size != backing_object->size)) { | |
3060 | vm_external_discarded++; | |
3061 | vm_external_destroy(backing_object->existence_map, | |
3062 | backing_object->size); | |
3063 | } | |
3064 | else { | |
3065 | vm_external_collapsed++; | |
3066 | object->existence_map = backing_object->existence_map; | |
3067 | } | |
3068 | backing_object->existence_map = VM_EXTERNAL_NULL; | |
3069 | #endif /* MACH_PAGEMAP */ | |
3070 | ||
3071 | /* | |
3072 | * Object now shadows whatever backing_object did. | |
3073 | * Note that the reference to backing_object->shadow | |
3074 | * moves from within backing_object to within object. | |
3075 | */ | |
3076 | ||
3077 | object->shadow = backing_object->shadow; | |
3078 | object->shadow_offset += backing_object->shadow_offset; | |
3079 | assert((object->shadow == VM_OBJECT_NULL) || | |
55e303ae | 3080 | (object->shadow->copy != backing_object)); |
1c79356b A |
3081 | |
3082 | /* | |
3083 | * Discard backing_object. | |
3084 | * | |
3085 | * Since the backing object has no pages, no | |
3086 | * pager left, and no object references within it, | |
3087 | * all that is necessary is to dispose of it. | |
3088 | */ | |
3089 | ||
3090 | assert((backing_object->ref_count == 1) && | |
3091 | (backing_object->resident_page_count == 0) && | |
3092 | (backing_object->paging_in_progress == 0)); | |
3093 | ||
1c79356b A |
3094 | backing_object->alive = FALSE; |
3095 | vm_object_unlock(backing_object); | |
3096 | ||
3097 | XPR(XPR_VM_OBJECT, "vm_object_collapse, collapsed 0x%X\n", | |
3098 | (integer_t)backing_object, 0,0,0,0); | |
3099 | ||
3100 | zfree(vm_object_zone, (vm_offset_t) backing_object); | |
3101 | ||
3102 | object_collapses++; | |
3103 | } | |
3104 | ||
0b4e3aa0 | 3105 | static void |
1c79356b A |
3106 | vm_object_do_bypass( |
3107 | vm_object_t object, | |
3108 | vm_object_t backing_object) | |
3109 | { | |
3110 | /* | |
3111 | * Make the parent shadow the next object | |
3112 | * in the chain. | |
3113 | */ | |
3114 | ||
3115 | #if TASK_SWAPPER | |
3116 | /* | |
3117 | * Do object reference in-line to | |
3118 | * conditionally increment shadow's | |
3119 | * residence count. If object is not | |
3120 | * resident, leave residence count | |
3121 | * on shadow alone. | |
3122 | */ | |
3123 | if (backing_object->shadow != VM_OBJECT_NULL) { | |
3124 | vm_object_lock(backing_object->shadow); | |
3125 | backing_object->shadow->ref_count++; | |
3126 | if (object->res_count != 0) | |
3127 | vm_object_res_reference(backing_object->shadow); | |
3128 | vm_object_unlock(backing_object->shadow); | |
3129 | } | |
3130 | #else /* TASK_SWAPPER */ | |
3131 | vm_object_reference(backing_object->shadow); | |
3132 | #endif /* TASK_SWAPPER */ | |
3133 | ||
3134 | object->shadow = backing_object->shadow; | |
3135 | object->shadow_offset += backing_object->shadow_offset; | |
3136 | ||
3137 | /* | |
3138 | * Backing object might have had a copy pointer | |
3139 | * to us. If it did, clear it. | |
3140 | */ | |
3141 | if (backing_object->copy == object) { | |
3142 | backing_object->copy = VM_OBJECT_NULL; | |
3143 | } | |
3144 | ||
3145 | /* | |
3146 | * Drop the reference count on backing_object. | |
3147 | #if TASK_SWAPPER | |
3148 | * Since its ref_count was at least 2, it | |
3149 | * will not vanish; so we don't need to call | |
3150 | * vm_object_deallocate. | |
3151 | * [FBDP: that doesn't seem to be true any more] | |
3152 | * | |
3153 | * The res_count on the backing object is | |
3154 | * conditionally decremented. It's possible | |
3155 | * (via vm_pageout_scan) to get here with | |
3156 | * a "swapped" object, which has a 0 res_count, | |
3157 | * in which case, the backing object res_count | |
3158 | * is already down by one. | |
3159 | #else | |
3160 | * Don't call vm_object_deallocate unless | |
3161 | * ref_count drops to zero. | |
3162 | * | |
3163 | * The ref_count can drop to zero here if the | |
3164 | * backing object could be bypassed but not | |
3165 | * collapsed, such as when the backing object | |
3166 | * is temporary and cachable. | |
3167 | #endif | |
3168 | */ | |
3169 | if (backing_object->ref_count > 1) { | |
3170 | backing_object->ref_count--; | |
3171 | #if TASK_SWAPPER | |
3172 | if (object->res_count != 0) | |
3173 | vm_object_res_deallocate(backing_object); | |
3174 | assert(backing_object->ref_count > 0); | |
3175 | #endif /* TASK_SWAPPER */ | |
3176 | vm_object_unlock(backing_object); | |
3177 | } else { | |
3178 | ||
3179 | /* | |
3180 | * Drop locks so that we can deallocate | |
3181 | * the backing object. | |
3182 | */ | |
3183 | ||
3184 | #if TASK_SWAPPER | |
3185 | if (object->res_count == 0) { | |
3186 | /* XXX get a reference for the deallocate below */ | |
3187 | vm_object_res_reference(backing_object); | |
3188 | } | |
3189 | #endif /* TASK_SWAPPER */ | |
3190 | vm_object_unlock(object); | |
3191 | vm_object_unlock(backing_object); | |
3192 | vm_object_deallocate(backing_object); | |
3193 | ||
3194 | /* | |
3195 | * Relock object. We don't have to reverify | |
3196 | * its state since vm_object_collapse will | |
3197 | * do that for us as it starts at the | |
3198 | * top of its loop. | |
3199 | */ | |
3200 | ||
3201 | vm_object_lock(object); | |
3202 | } | |
3203 | ||
3204 | object_bypasses++; | |
3205 | } | |
0b4e3aa0 | 3206 | |
1c79356b A |
3207 | |
3208 | /* | |
3209 | * vm_object_collapse: | |
3210 | * | |
3211 | * Perform an object collapse or an object bypass if appropriate. | |
3212 | * The real work of collapsing and bypassing is performed in | |
3213 | * the routines vm_object_do_collapse and vm_object_do_bypass. | |
3214 | * | |
3215 | * Requires that the object be locked and the page queues be unlocked. | |
3216 | * | |
3217 | */ | |
0b4e3aa0 | 3218 | __private_extern__ void |
1c79356b | 3219 | vm_object_collapse( |
55e303ae A |
3220 | register vm_object_t object, |
3221 | register vm_object_offset_t hint_offset) | |
1c79356b A |
3222 | { |
3223 | register vm_object_t backing_object; | |
55e303ae A |
3224 | register unsigned int rcount; |
3225 | register unsigned int size; | |
0b4e3aa0 | 3226 | |
1c79356b A |
3227 | if (! vm_object_collapse_allowed && ! vm_object_bypass_allowed) { |
3228 | return; | |
3229 | } | |
3230 | ||
3231 | XPR(XPR_VM_OBJECT, "vm_object_collapse, obj 0x%X\n", | |
3232 | (integer_t)object, 0,0,0,0); | |
3233 | ||
3234 | while (TRUE) { | |
3235 | /* | |
3236 | * Verify that the conditions are right for either | |
3237 | * collapse or bypass: | |
3238 | * | |
3239 | * The object exists and no pages in it are currently | |
3240 | * being paged out, and | |
3241 | */ | |
3242 | if (object == VM_OBJECT_NULL || | |
3243 | object->paging_in_progress != 0 || | |
3244 | object->absent_count != 0) | |
3245 | return; | |
3246 | ||
3247 | /* | |
3248 | * There is a backing object, and | |
3249 | */ | |
3250 | ||
3251 | if ((backing_object = object->shadow) == VM_OBJECT_NULL) | |
3252 | return; | |
3253 | ||
3254 | vm_object_lock(backing_object); | |
3255 | ||
3256 | /* | |
3257 | * ... | |
3258 | * The backing object is not read_only, | |
3259 | * and no pages in the backing object are | |
3260 | * currently being paged out. | |
3261 | * The backing object is internal. | |
3262 | * | |
3263 | */ | |
3264 | ||
3265 | if (!backing_object->internal || | |
3266 | backing_object->paging_in_progress != 0) { | |
3267 | vm_object_unlock(backing_object); | |
3268 | return; | |
3269 | } | |
3270 | ||
3271 | /* | |
3272 | * The backing object can't be a copy-object: | |
3273 | * the shadow_offset for the copy-object must stay | |
3274 | * as 0. Furthermore (for the 'we have all the | |
3275 | * pages' case), if we bypass backing_object and | |
3276 | * just shadow the next object in the chain, old | |
3277 | * pages from that object would then have to be copied | |
3278 | * BOTH into the (former) backing_object and into the | |
3279 | * parent object. | |
3280 | */ | |
3281 | if (backing_object->shadow != VM_OBJECT_NULL && | |
55e303ae | 3282 | backing_object->shadow->copy == backing_object) { |
1c79356b A |
3283 | vm_object_unlock(backing_object); |
3284 | return; | |
3285 | } | |
3286 | ||
3287 | /* | |
3288 | * We can now try to either collapse the backing | |
3289 | * object (if the parent is the only reference to | |
3290 | * it) or (perhaps) remove the parent's reference | |
3291 | * to it. | |
1c79356b | 3292 | * |
0b4e3aa0 A |
3293 | * If there is exactly one reference to the backing |
3294 | * object, we may be able to collapse it into the | |
3295 | * parent. | |
1c79356b | 3296 | * |
55e303ae A |
3297 | * If MACH_PAGEMAP is defined: |
3298 | * The parent must not have a pager created for it, | |
3299 | * since collapsing a backing_object dumps new pages | |
3300 | * into the parent that its pager doesn't know about | |
3301 | * (and the collapse code can't merge the existence | |
3302 | * maps). | |
3303 | * Otherwise: | |
3304 | * As long as one of the objects is still not known | |
3305 | * to the pager, we can collapse them. | |
1c79356b | 3306 | */ |
1c79356b | 3307 | if (backing_object->ref_count == 1 && |
55e303ae A |
3308 | (!object->pager_created |
3309 | #if !MACH_PAGEMAP | |
3310 | || !backing_object->pager_created | |
3311 | #endif /*!MACH_PAGEMAP */ | |
3312 | ) && vm_object_collapse_allowed) { | |
1c79356b A |
3313 | |
3314 | XPR(XPR_VM_OBJECT, | |
3315 | "vm_object_collapse: %x to %x, pager %x, pager_request %x\n", | |
3316 | (integer_t)backing_object, (integer_t)object, | |
3317 | (integer_t)backing_object->pager, | |
3318 | (integer_t)backing_object->pager_request, 0); | |
3319 | ||
3320 | /* | |
3321 | * We need the cache lock for collapsing, | |
3322 | * but we must not deadlock. | |
3323 | */ | |
3324 | ||
3325 | if (! vm_object_cache_lock_try()) { | |
3326 | vm_object_unlock(backing_object); | |
3327 | return; | |
3328 | } | |
3329 | ||
3330 | /* | |
3331 | * Collapse the object with its backing | |
3332 | * object, and try again with the object's | |
3333 | * new backing object. | |
3334 | */ | |
3335 | ||
3336 | vm_object_do_collapse(object, backing_object); | |
3337 | continue; | |
3338 | } | |
3339 | ||
3340 | ||
3341 | /* | |
3342 | * Collapsing the backing object was not possible | |
3343 | * or permitted, so let's try bypassing it. | |
3344 | */ | |
3345 | ||
3346 | if (! vm_object_bypass_allowed) { | |
3347 | vm_object_unlock(backing_object); | |
3348 | return; | |
3349 | } | |
3350 | ||
0b4e3aa0 | 3351 | |
1c79356b | 3352 | /* |
55e303ae A |
3353 | * If the object doesn't have all its pages present, |
3354 | * we have to make sure no pages in the backing object | |
3355 | * "show through" before bypassing it. | |
1c79356b | 3356 | */ |
55e303ae A |
3357 | size = atop(object->size); |
3358 | rcount = object->resident_page_count; | |
3359 | if (rcount != size) { | |
3360 | vm_object_size_t size; | |
3361 | vm_object_offset_t offset; | |
3362 | vm_object_offset_t backing_offset; | |
3363 | unsigned int backing_rcount; | |
3364 | unsigned int lookups = 0; | |
3365 | ||
3366 | /* | |
3367 | * If the backing object has a pager but no pagemap, | |
3368 | * then we cannot bypass it, because we don't know | |
3369 | * what pages it has. | |
3370 | */ | |
3371 | if (backing_object->pager_created | |
1c79356b | 3372 | #if MACH_PAGEMAP |
55e303ae | 3373 | && (backing_object->existence_map == VM_EXTERNAL_NULL) |
1c79356b | 3374 | #endif /* MACH_PAGEMAP */ |
55e303ae A |
3375 | ) { |
3376 | vm_object_unlock(backing_object); | |
3377 | return; | |
3378 | } | |
1c79356b | 3379 | |
55e303ae A |
3380 | /* |
3381 | * If the object has a pager but no pagemap, | |
3382 | * then we cannot bypass it, because we don't know | |
3383 | * what pages it has. | |
3384 | */ | |
3385 | if (object->pager_created | |
0b4e3aa0 | 3386 | #if MACH_PAGEMAP |
55e303ae | 3387 | && (object->existence_map == VM_EXTERNAL_NULL) |
0b4e3aa0 | 3388 | #endif /* MACH_PAGEMAP */ |
55e303ae A |
3389 | ) { |
3390 | vm_object_unlock(backing_object); | |
3391 | return; | |
3392 | } | |
0b4e3aa0 | 3393 | |
55e303ae A |
3394 | /* |
3395 | * If all of the pages in the backing object are | |
3396 | * shadowed by the parent object, the parent | |
3397 | * object no longer has to shadow the backing | |
3398 | * object; it can shadow the next one in the | |
3399 | * chain. | |
3400 | * | |
3401 | * If the backing object has existence info, | |
3402 | * we must check examine its existence info | |
3403 | * as well. | |
3404 | * | |
3405 | */ | |
1c79356b | 3406 | |
55e303ae A |
3407 | backing_offset = object->shadow_offset; |
3408 | backing_rcount = backing_object->resident_page_count; | |
1c79356b | 3409 | |
55e303ae A |
3410 | #define EXISTS_IN_OBJECT(obj, off, rc) \ |
3411 | (vm_external_state_get((obj)->existence_map, \ | |
3412 | (vm_offset_t)(off)) == VM_EXTERNAL_STATE_EXISTS || \ | |
3413 | ((rc) && ++lookups && vm_page_lookup((obj), (off)) != VM_PAGE_NULL && (rc)--)) | |
3414 | ||
3415 | /* | |
3416 | * Check the hint location first | |
3417 | * (since it is often the quickest way out of here). | |
3418 | */ | |
3419 | if (object->cow_hint != ~(vm_offset_t)0) | |
3420 | hint_offset = (vm_object_offset_t)object->cow_hint; | |
3421 | else | |
3422 | hint_offset = (hint_offset > 8 * PAGE_SIZE_64) ? | |
3423 | (hint_offset - 8 * PAGE_SIZE_64) : 0; | |
3424 | ||
3425 | if (EXISTS_IN_OBJECT(backing_object, hint_offset + | |
3426 | backing_offset, backing_rcount) && | |
3427 | !EXISTS_IN_OBJECT(object, hint_offset, rcount)) { | |
3428 | /* dependency right at the hint */ | |
3429 | object->cow_hint = (vm_offset_t)hint_offset; | |
0b4e3aa0 A |
3430 | vm_object_unlock(backing_object); |
3431 | return; | |
0b4e3aa0 | 3432 | } |
55e303ae A |
3433 | |
3434 | /* | |
3435 | * If the object's window onto the backing_object | |
3436 | * is large compared to the number of resident | |
3437 | * pages in the backing object, it makes sense to | |
3438 | * walk the backing_object's resident pages first. | |
3439 | * | |
3440 | * NOTE: Pages may be in both the existence map and | |
3441 | * resident. So, we can't permanently decrement | |
3442 | * the rcount here because the second loop may | |
3443 | * find the same pages in the backing object' | |
3444 | * existence map that we found here and we would | |
3445 | * double-decrement the rcount. We also may or | |
3446 | * may not have found the | |
3447 | */ | |
3448 | if (backing_rcount && size > | |
3449 | ((backing_object->existence_map) ? | |
3450 | backing_rcount : (backing_rcount >> 1))) { | |
3451 | unsigned int rc = rcount; | |
3452 | vm_page_t p; | |
3453 | ||
3454 | backing_rcount = backing_object->resident_page_count; | |
3455 | p = (vm_page_t)queue_first(&backing_object->memq); | |
3456 | do { | |
3457 | /* Until we get more than one lookup lock */ | |
3458 | if (lookups > 256) { | |
3459 | lookups = 0; | |
3460 | delay(1); | |
3461 | } | |
3462 | ||
3463 | offset = (p->offset - backing_offset); | |
3464 | if (offset < object->size && | |
3465 | offset != hint_offset && | |
3466 | !EXISTS_IN_OBJECT(object, offset, rc)) { | |
3467 | /* found a dependency */ | |
3468 | object->cow_hint = (vm_offset_t)offset; | |
3469 | vm_object_unlock(backing_object); | |
3470 | return; | |
3471 | } | |
3472 | p = queue_next(p); | |
3473 | ||
3474 | } while (--backing_rcount); | |
0b4e3aa0 | 3475 | } |
55e303ae A |
3476 | |
3477 | /* | |
3478 | * Walk through the offsets looking for pages in the | |
3479 | * backing object that show through to the object. | |
3480 | */ | |
3481 | if (backing_rcount || backing_object->existence_map) { | |
3482 | offset = hint_offset; | |
3483 | ||
3484 | while((offset = | |
3485 | (offset + PAGE_SIZE_64 < object->size) ? | |
3486 | (offset + PAGE_SIZE_64) : 0) != hint_offset) { | |
3487 | ||
3488 | /* Until we get more than one lookup lock */ | |
3489 | if (lookups > 256) { | |
3490 | lookups = 0; | |
3491 | delay(1); | |
3492 | } | |
3493 | ||
3494 | if (EXISTS_IN_OBJECT(backing_object, offset + | |
3495 | backing_offset, backing_rcount) && | |
3496 | !EXISTS_IN_OBJECT(object, offset, rcount)) { | |
3497 | /* found a dependency */ | |
3498 | object->cow_hint = (vm_offset_t)offset; | |
3499 | vm_object_unlock(backing_object); | |
3500 | return; | |
3501 | } | |
3502 | } | |
0b4e3aa0 A |
3503 | } |
3504 | } | |
1c79356b | 3505 | |
55e303ae A |
3506 | /* reset the offset hint for any objects deeper in the chain */ |
3507 | object->cow_hint = (vm_offset_t)0; | |
1c79356b A |
3508 | |
3509 | /* | |
3510 | * All interesting pages in the backing object | |
3511 | * already live in the parent or its pager. | |
3512 | * Thus we can bypass the backing object. | |
3513 | */ | |
3514 | ||
3515 | vm_object_do_bypass(object, backing_object); | |
3516 | ||
3517 | /* | |
3518 | * Try again with this object's new backing object. | |
3519 | */ | |
3520 | ||
3521 | continue; | |
3522 | } | |
3523 | } | |
3524 | ||
3525 | /* | |
3526 | * Routine: vm_object_page_remove: [internal] | |
3527 | * Purpose: | |
3528 | * Removes all physical pages in the specified | |
3529 | * object range from the object's list of pages. | |
3530 | * | |
3531 | * In/out conditions: | |
3532 | * The object must be locked. | |
3533 | * The object must not have paging_in_progress, usually | |
3534 | * guaranteed by not having a pager. | |
3535 | */ | |
3536 | unsigned int vm_object_page_remove_lookup = 0; | |
3537 | unsigned int vm_object_page_remove_iterate = 0; | |
3538 | ||
0b4e3aa0 | 3539 | __private_extern__ void |
1c79356b A |
3540 | vm_object_page_remove( |
3541 | register vm_object_t object, | |
3542 | register vm_object_offset_t start, | |
3543 | register vm_object_offset_t end) | |
3544 | { | |
3545 | register vm_page_t p, next; | |
3546 | ||
3547 | /* | |
3548 | * One and two page removals are most popular. | |
3549 | * The factor of 16 here is somewhat arbitrary. | |
3550 | * It balances vm_object_lookup vs iteration. | |
3551 | */ | |
3552 | ||
55e303ae | 3553 | if (atop_64(end - start) < (unsigned)object->resident_page_count/16) { |
1c79356b A |
3554 | vm_object_page_remove_lookup++; |
3555 | ||
3556 | for (; start < end; start += PAGE_SIZE_64) { | |
3557 | p = vm_page_lookup(object, start); | |
3558 | if (p != VM_PAGE_NULL) { | |
3559 | assert(!p->cleaning && !p->pageout); | |
3560 | if (!p->fictitious) | |
55e303ae | 3561 | pmap_page_protect(p->phys_page, |
1c79356b A |
3562 | VM_PROT_NONE); |
3563 | VM_PAGE_FREE(p); | |
3564 | } | |
3565 | } | |
3566 | } else { | |
3567 | vm_object_page_remove_iterate++; | |
3568 | ||
3569 | p = (vm_page_t) queue_first(&object->memq); | |
3570 | while (!queue_end(&object->memq, (queue_entry_t) p)) { | |
3571 | next = (vm_page_t) queue_next(&p->listq); | |
3572 | if ((start <= p->offset) && (p->offset < end)) { | |
3573 | assert(!p->cleaning && !p->pageout); | |
3574 | if (!p->fictitious) | |
55e303ae | 3575 | pmap_page_protect(p->phys_page, |
1c79356b A |
3576 | VM_PROT_NONE); |
3577 | VM_PAGE_FREE(p); | |
3578 | } | |
3579 | p = next; | |
3580 | } | |
3581 | } | |
3582 | } | |
3583 | ||
0b4e3aa0 | 3584 | |
1c79356b A |
3585 | /* |
3586 | * Routine: vm_object_coalesce | |
3587 | * Function: Coalesces two objects backing up adjoining | |
3588 | * regions of memory into a single object. | |
3589 | * | |
3590 | * returns TRUE if objects were combined. | |
3591 | * | |
3592 | * NOTE: Only works at the moment if the second object is NULL - | |
3593 | * if it's not, which object do we lock first? | |
3594 | * | |
3595 | * Parameters: | |
3596 | * prev_object First object to coalesce | |
3597 | * prev_offset Offset into prev_object | |
3598 | * next_object Second object into coalesce | |
3599 | * next_offset Offset into next_object | |
3600 | * | |
3601 | * prev_size Size of reference to prev_object | |
3602 | * next_size Size of reference to next_object | |
3603 | * | |
3604 | * Conditions: | |
3605 | * The object(s) must *not* be locked. The map must be locked | |
3606 | * to preserve the reference to the object(s). | |
3607 | */ | |
0b4e3aa0 | 3608 | static int vm_object_coalesce_count = 0; |
1c79356b | 3609 | |
0b4e3aa0 | 3610 | __private_extern__ boolean_t |
1c79356b A |
3611 | vm_object_coalesce( |
3612 | register vm_object_t prev_object, | |
3613 | vm_object_t next_object, | |
3614 | vm_object_offset_t prev_offset, | |
3615 | vm_object_offset_t next_offset, | |
3616 | vm_object_size_t prev_size, | |
3617 | vm_object_size_t next_size) | |
3618 | { | |
3619 | vm_object_size_t newsize; | |
3620 | ||
3621 | #ifdef lint | |
3622 | next_offset++; | |
3623 | #endif /* lint */ | |
3624 | ||
3625 | if (next_object != VM_OBJECT_NULL) { | |
3626 | return(FALSE); | |
3627 | } | |
3628 | ||
3629 | if (prev_object == VM_OBJECT_NULL) { | |
3630 | return(TRUE); | |
3631 | } | |
3632 | ||
3633 | XPR(XPR_VM_OBJECT, | |
3634 | "vm_object_coalesce: 0x%X prev_off 0x%X prev_size 0x%X next_size 0x%X\n", | |
3635 | (integer_t)prev_object, prev_offset, prev_size, next_size, 0); | |
3636 | ||
3637 | vm_object_lock(prev_object); | |
3638 | ||
3639 | /* | |
3640 | * Try to collapse the object first | |
3641 | */ | |
55e303ae | 3642 | vm_object_collapse(prev_object, prev_offset); |
1c79356b A |
3643 | |
3644 | /* | |
3645 | * Can't coalesce if pages not mapped to | |
3646 | * prev_entry may be in use any way: | |
3647 | * . more than one reference | |
3648 | * . paged out | |
3649 | * . shadows another object | |
3650 | * . has a copy elsewhere | |
3651 | * . paging references (pages might be in page-list) | |
3652 | */ | |
3653 | ||
3654 | if ((prev_object->ref_count > 1) || | |
3655 | prev_object->pager_created || | |
3656 | (prev_object->shadow != VM_OBJECT_NULL) || | |
3657 | (prev_object->copy != VM_OBJECT_NULL) || | |
3658 | (prev_object->true_share != FALSE) || | |
3659 | (prev_object->paging_in_progress != 0)) { | |
3660 | vm_object_unlock(prev_object); | |
3661 | return(FALSE); | |
3662 | } | |
3663 | ||
3664 | vm_object_coalesce_count++; | |
3665 | ||
3666 | /* | |
3667 | * Remove any pages that may still be in the object from | |
3668 | * a previous deallocation. | |
3669 | */ | |
3670 | vm_object_page_remove(prev_object, | |
3671 | prev_offset + prev_size, | |
3672 | prev_offset + prev_size + next_size); | |
3673 | ||
3674 | /* | |
3675 | * Extend the object if necessary. | |
3676 | */ | |
3677 | newsize = prev_offset + prev_size + next_size; | |
3678 | if (newsize > prev_object->size) { | |
3679 | #if MACH_PAGEMAP | |
3680 | /* | |
3681 | * We cannot extend an object that has existence info, | |
3682 | * since the existence info might then fail to cover | |
3683 | * the entire object. | |
3684 | * | |
3685 | * This assertion must be true because the object | |
3686 | * has no pager, and we only create existence info | |
3687 | * for objects with pagers. | |
3688 | */ | |
3689 | assert(prev_object->existence_map == VM_EXTERNAL_NULL); | |
3690 | #endif /* MACH_PAGEMAP */ | |
3691 | prev_object->size = newsize; | |
3692 | } | |
3693 | ||
3694 | vm_object_unlock(prev_object); | |
3695 | return(TRUE); | |
3696 | } | |
3697 | ||
3698 | /* | |
3699 | * Attach a set of physical pages to an object, so that they can | |
3700 | * be mapped by mapping the object. Typically used to map IO memory. | |
3701 | * | |
3702 | * The mapping function and its private data are used to obtain the | |
3703 | * physical addresses for each page to be mapped. | |
3704 | */ | |
3705 | void | |
3706 | vm_object_page_map( | |
3707 | vm_object_t object, | |
3708 | vm_object_offset_t offset, | |
3709 | vm_object_size_t size, | |
3710 | vm_object_offset_t (*map_fn)(void *map_fn_data, | |
3711 | vm_object_offset_t offset), | |
3712 | void *map_fn_data) /* private to map_fn */ | |
3713 | { | |
3714 | int num_pages; | |
3715 | int i; | |
3716 | vm_page_t m; | |
3717 | vm_page_t old_page; | |
3718 | vm_object_offset_t addr; | |
3719 | ||
55e303ae | 3720 | num_pages = atop_64(size); |
1c79356b A |
3721 | |
3722 | for (i = 0; i < num_pages; i++, offset += PAGE_SIZE_64) { | |
3723 | ||
3724 | addr = (*map_fn)(map_fn_data, offset); | |
3725 | ||
3726 | while ((m = vm_page_grab_fictitious()) == VM_PAGE_NULL) | |
3727 | vm_page_more_fictitious(); | |
3728 | ||
3729 | vm_object_lock(object); | |
3730 | if ((old_page = vm_page_lookup(object, offset)) | |
3731 | != VM_PAGE_NULL) | |
3732 | { | |
3733 | vm_page_lock_queues(); | |
3734 | vm_page_free(old_page); | |
3735 | vm_page_unlock_queues(); | |
3736 | } | |
3737 | ||
3738 | vm_page_init(m, addr); | |
0b4e3aa0 A |
3739 | /* private normally requires lock_queues but since we */ |
3740 | /* are initializing the page, its not necessary here */ | |
1c79356b A |
3741 | m->private = TRUE; /* don`t free page */ |
3742 | m->wire_count = 1; | |
3743 | vm_page_insert(m, object, offset); | |
3744 | ||
3745 | PAGE_WAKEUP_DONE(m); | |
3746 | vm_object_unlock(object); | |
3747 | } | |
3748 | } | |
3749 | ||
3750 | #include <mach_kdb.h> | |
3751 | ||
3752 | #if MACH_KDB | |
3753 | #include <ddb/db_output.h> | |
3754 | #include <vm/vm_print.h> | |
3755 | ||
3756 | #define printf kdbprintf | |
3757 | ||
3758 | extern boolean_t vm_object_cached( | |
3759 | vm_object_t object); | |
3760 | ||
3761 | extern void print_bitstring( | |
3762 | char byte); | |
3763 | ||
3764 | boolean_t vm_object_print_pages = FALSE; | |
3765 | ||
3766 | void | |
3767 | print_bitstring( | |
3768 | char byte) | |
3769 | { | |
3770 | printf("%c%c%c%c%c%c%c%c", | |
3771 | ((byte & (1 << 0)) ? '1' : '0'), | |
3772 | ((byte & (1 << 1)) ? '1' : '0'), | |
3773 | ((byte & (1 << 2)) ? '1' : '0'), | |
3774 | ((byte & (1 << 3)) ? '1' : '0'), | |
3775 | ((byte & (1 << 4)) ? '1' : '0'), | |
3776 | ((byte & (1 << 5)) ? '1' : '0'), | |
3777 | ((byte & (1 << 6)) ? '1' : '0'), | |
3778 | ((byte & (1 << 7)) ? '1' : '0')); | |
3779 | } | |
3780 | ||
3781 | boolean_t | |
3782 | vm_object_cached( | |
3783 | register vm_object_t object) | |
3784 | { | |
3785 | register vm_object_t o; | |
3786 | ||
3787 | queue_iterate(&vm_object_cached_list, o, vm_object_t, cached_list) { | |
3788 | if (object == o) { | |
3789 | return TRUE; | |
3790 | } | |
3791 | } | |
3792 | return FALSE; | |
3793 | } | |
3794 | ||
3795 | #if MACH_PAGEMAP | |
3796 | /* | |
3797 | * vm_external_print: [ debug ] | |
3798 | */ | |
3799 | void | |
3800 | vm_external_print( | |
3801 | vm_external_map_t map, | |
3802 | vm_size_t size) | |
3803 | { | |
3804 | if (map == VM_EXTERNAL_NULL) { | |
3805 | printf("0 "); | |
3806 | } else { | |
3807 | vm_size_t existence_size = stob(size); | |
3808 | printf("{ size=%d, map=[", existence_size); | |
3809 | if (existence_size > 0) { | |
3810 | print_bitstring(map[0]); | |
3811 | } | |
3812 | if (existence_size > 1) { | |
3813 | print_bitstring(map[1]); | |
3814 | } | |
3815 | if (existence_size > 2) { | |
3816 | printf("..."); | |
3817 | print_bitstring(map[existence_size-1]); | |
3818 | } | |
3819 | printf("] }\n"); | |
3820 | } | |
3821 | return; | |
3822 | } | |
3823 | #endif /* MACH_PAGEMAP */ | |
3824 | ||
3825 | int | |
3826 | vm_follow_object( | |
3827 | vm_object_t object) | |
3828 | { | |
3829 | extern db_indent; | |
3830 | ||
0b4e3aa0 A |
3831 | int count = 0; |
3832 | int orig_db_indent = db_indent; | |
1c79356b | 3833 | |
0b4e3aa0 A |
3834 | while (TRUE) { |
3835 | if (object == VM_OBJECT_NULL) { | |
3836 | db_indent = orig_db_indent; | |
3837 | return count; | |
3838 | } | |
1c79356b | 3839 | |
0b4e3aa0 | 3840 | count += 1; |
1c79356b | 3841 | |
0b4e3aa0 A |
3842 | iprintf("object 0x%x", object); |
3843 | printf(", shadow=0x%x", object->shadow); | |
3844 | printf(", copy=0x%x", object->copy); | |
3845 | printf(", pager=0x%x", object->pager); | |
3846 | printf(", ref=%d\n", object->ref_count); | |
3847 | ||
3848 | db_indent += 2; | |
3849 | object = object->shadow; | |
3850 | } | |
1c79356b | 3851 | |
1c79356b A |
3852 | } |
3853 | ||
3854 | /* | |
3855 | * vm_object_print: [ debug ] | |
3856 | */ | |
3857 | void | |
3858 | vm_object_print( | |
3859 | vm_object_t object, | |
3860 | boolean_t have_addr, | |
3861 | int arg_count, | |
3862 | char *modif) | |
3863 | { | |
3864 | register vm_page_t p; | |
3865 | extern db_indent; | |
3866 | char *s; | |
3867 | ||
3868 | register int count; | |
3869 | ||
3870 | if (object == VM_OBJECT_NULL) | |
3871 | return; | |
3872 | ||
3873 | iprintf("object 0x%x\n", object); | |
3874 | ||
3875 | db_indent += 2; | |
3876 | ||
3877 | iprintf("size=0x%x", object->size); | |
3878 | printf(", cluster=0x%x", object->cluster_size); | |
3879 | printf(", frozen=0x%x", object->frozen_size); | |
3880 | printf(", ref_count=%d\n", object->ref_count); | |
3881 | iprintf(""); | |
3882 | #if TASK_SWAPPER | |
3883 | printf("res_count=%d, ", object->res_count); | |
3884 | #endif /* TASK_SWAPPER */ | |
3885 | printf("resident_page_count=%d\n", object->resident_page_count); | |
3886 | ||
3887 | iprintf("shadow=0x%x", object->shadow); | |
3888 | if (object->shadow) { | |
3889 | register int i = 0; | |
3890 | vm_object_t shadow = object; | |
3891 | while(shadow = shadow->shadow) | |
3892 | i++; | |
3893 | printf(" (depth %d)", i); | |
3894 | } | |
3895 | printf(", copy=0x%x", object->copy); | |
3896 | printf(", shadow_offset=0x%x", object->shadow_offset); | |
3897 | printf(", last_alloc=0x%x\n", object->last_alloc); | |
3898 | ||
3899 | iprintf("pager=0x%x", object->pager); | |
3900 | printf(", paging_offset=0x%x", object->paging_offset); | |
3901 | printf(", pager_request=0x%x\n", object->pager_request); | |
3902 | ||
3903 | iprintf("copy_strategy=%d[", object->copy_strategy); | |
3904 | switch (object->copy_strategy) { | |
3905 | case MEMORY_OBJECT_COPY_NONE: | |
3906 | printf("copy_none"); | |
3907 | break; | |
3908 | ||
3909 | case MEMORY_OBJECT_COPY_CALL: | |
3910 | printf("copy_call"); | |
3911 | break; | |
3912 | ||
3913 | case MEMORY_OBJECT_COPY_DELAY: | |
3914 | printf("copy_delay"); | |
3915 | break; | |
3916 | ||
3917 | case MEMORY_OBJECT_COPY_SYMMETRIC: | |
3918 | printf("copy_symmetric"); | |
3919 | break; | |
3920 | ||
3921 | case MEMORY_OBJECT_COPY_INVALID: | |
3922 | printf("copy_invalid"); | |
3923 | break; | |
3924 | ||
3925 | default: | |
3926 | printf("?"); | |
3927 | } | |
3928 | printf("]"); | |
3929 | printf(", absent_count=%d\n", object->absent_count); | |
3930 | ||
3931 | iprintf("all_wanted=0x%x<", object->all_wanted); | |
3932 | s = ""; | |
3933 | if (vm_object_wanted(object, VM_OBJECT_EVENT_INITIALIZED)) { | |
3934 | printf("%sinit", s); | |
3935 | s = ","; | |
3936 | } | |
3937 | if (vm_object_wanted(object, VM_OBJECT_EVENT_PAGER_READY)) { | |
3938 | printf("%sready", s); | |
3939 | s = ","; | |
3940 | } | |
3941 | if (vm_object_wanted(object, VM_OBJECT_EVENT_PAGING_IN_PROGRESS)) { | |
3942 | printf("%spaging", s); | |
3943 | s = ","; | |
3944 | } | |
3945 | if (vm_object_wanted(object, VM_OBJECT_EVENT_ABSENT_COUNT)) { | |
3946 | printf("%sabsent", s); | |
3947 | s = ","; | |
3948 | } | |
3949 | if (vm_object_wanted(object, VM_OBJECT_EVENT_LOCK_IN_PROGRESS)) { | |
3950 | printf("%slock", s); | |
3951 | s = ","; | |
3952 | } | |
3953 | if (vm_object_wanted(object, VM_OBJECT_EVENT_UNCACHING)) { | |
3954 | printf("%suncaching", s); | |
3955 | s = ","; | |
3956 | } | |
3957 | if (vm_object_wanted(object, VM_OBJECT_EVENT_COPY_CALL)) { | |
3958 | printf("%scopy_call", s); | |
3959 | s = ","; | |
3960 | } | |
3961 | if (vm_object_wanted(object, VM_OBJECT_EVENT_CACHING)) { | |
3962 | printf("%scaching", s); | |
3963 | s = ","; | |
3964 | } | |
3965 | printf(">"); | |
3966 | printf(", paging_in_progress=%d\n", object->paging_in_progress); | |
3967 | ||
3968 | iprintf("%screated, %sinit, %sready, %spersist, %strusted, %spageout, %s, %s\n", | |
3969 | (object->pager_created ? "" : "!"), | |
3970 | (object->pager_initialized ? "" : "!"), | |
3971 | (object->pager_ready ? "" : "!"), | |
3972 | (object->can_persist ? "" : "!"), | |
3973 | (object->pager_trusted ? "" : "!"), | |
3974 | (object->pageout ? "" : "!"), | |
3975 | (object->internal ? "internal" : "external"), | |
3976 | (object->temporary ? "temporary" : "permanent")); | |
3977 | iprintf("%salive, %slock_in_progress, %slock_restart, %sshadowed, %scached, %sprivate\n", | |
3978 | (object->alive ? "" : "!"), | |
3979 | (object->lock_in_progress ? "" : "!"), | |
3980 | (object->lock_restart ? "" : "!"), | |
3981 | (object->shadowed ? "" : "!"), | |
3982 | (vm_object_cached(object) ? "" : "!"), | |
3983 | (object->private ? "" : "!")); | |
3984 | iprintf("%sadvisory_pageout, %ssilent_overwrite\n", | |
3985 | (object->advisory_pageout ? "" : "!"), | |
3986 | (object->silent_overwrite ? "" : "!")); | |
3987 | ||
3988 | #if MACH_PAGEMAP | |
3989 | iprintf("existence_map="); | |
3990 | vm_external_print(object->existence_map, object->size); | |
3991 | #endif /* MACH_PAGEMAP */ | |
3992 | #if MACH_ASSERT | |
3993 | iprintf("paging_object=0x%x\n", object->paging_object); | |
3994 | #endif /* MACH_ASSERT */ | |
3995 | ||
3996 | if (vm_object_print_pages) { | |
3997 | count = 0; | |
3998 | p = (vm_page_t) queue_first(&object->memq); | |
3999 | while (!queue_end(&object->memq, (queue_entry_t) p)) { | |
4000 | if (count == 0) { | |
4001 | iprintf("memory:="); | |
4002 | } else if (count == 2) { | |
4003 | printf("\n"); | |
4004 | iprintf(" ..."); | |
4005 | count = 0; | |
4006 | } else { | |
4007 | printf(","); | |
4008 | } | |
4009 | count++; | |
4010 | ||
4011 | printf("(off=0x%X,page=0x%X)", p->offset, (integer_t) p); | |
4012 | p = (vm_page_t) queue_next(&p->listq); | |
4013 | } | |
4014 | if (count != 0) { | |
4015 | printf("\n"); | |
4016 | } | |
4017 | } | |
4018 | db_indent -= 2; | |
4019 | } | |
4020 | ||
4021 | ||
4022 | /* | |
4023 | * vm_object_find [ debug ] | |
4024 | * | |
4025 | * Find all tasks which reference the given vm_object. | |
4026 | */ | |
4027 | ||
4028 | boolean_t vm_object_find(vm_object_t object); | |
4029 | boolean_t vm_object_print_verbose = FALSE; | |
4030 | ||
4031 | boolean_t | |
4032 | vm_object_find( | |
4033 | vm_object_t object) | |
4034 | { | |
4035 | task_t task; | |
4036 | vm_map_t map; | |
4037 | vm_map_entry_t entry; | |
4038 | processor_set_t pset = &default_pset; | |
4039 | boolean_t found = FALSE; | |
4040 | ||
4041 | queue_iterate(&pset->tasks, task, task_t, pset_tasks) { | |
4042 | map = task->map; | |
4043 | for (entry = vm_map_first_entry(map); | |
4044 | entry && entry != vm_map_to_entry(map); | |
4045 | entry = entry->vme_next) { | |
4046 | ||
4047 | vm_object_t obj; | |
4048 | ||
4049 | /* | |
4050 | * For the time being skip submaps, | |
4051 | * only the kernel can have submaps, | |
4052 | * and unless we are interested in | |
4053 | * kernel objects, we can simply skip | |
4054 | * submaps. See sb/dejan/nmk18b7/src/mach_kernel/vm | |
4055 | * for a full solution. | |
4056 | */ | |
4057 | if (entry->is_sub_map) | |
4058 | continue; | |
4059 | if (entry) | |
4060 | obj = entry->object.vm_object; | |
4061 | else | |
4062 | continue; | |
4063 | ||
4064 | while (obj != VM_OBJECT_NULL) { | |
4065 | if (obj == object) { | |
4066 | if (!found) { | |
4067 | printf("TASK\t\tMAP\t\tENTRY\n"); | |
4068 | found = TRUE; | |
4069 | } | |
4070 | printf("0x%x\t0x%x\t0x%x\n", | |
4071 | task, map, entry); | |
4072 | } | |
4073 | obj = obj->shadow; | |
4074 | } | |
4075 | } | |
4076 | } | |
4077 | ||
4078 | return(found); | |
4079 | } | |
4080 | ||
4081 | #endif /* MACH_KDB */ | |
4082 | ||
0b4e3aa0 A |
4083 | kern_return_t |
4084 | vm_object_populate_with_private( | |
55e303ae | 4085 | vm_object_t object, |
0b4e3aa0 | 4086 | vm_object_offset_t offset, |
55e303ae A |
4087 | ppnum_t phys_page, |
4088 | vm_size_t size) | |
0b4e3aa0 | 4089 | { |
55e303ae | 4090 | ppnum_t base_page; |
0b4e3aa0 A |
4091 | vm_object_offset_t base_offset; |
4092 | ||
4093 | ||
4094 | if(!object->private) | |
4095 | return KERN_FAILURE; | |
4096 | ||
55e303ae | 4097 | base_page = phys_page; |
0b4e3aa0 A |
4098 | |
4099 | vm_object_lock(object); | |
4100 | if(!object->phys_contiguous) { | |
4101 | vm_page_t m; | |
55e303ae | 4102 | if((base_offset = trunc_page_64(offset)) != offset) { |
0b4e3aa0 A |
4103 | vm_object_unlock(object); |
4104 | return KERN_FAILURE; | |
4105 | } | |
4106 | base_offset += object->paging_offset; | |
4107 | while(size) { | |
4108 | m = vm_page_lookup(object, base_offset); | |
4109 | if(m != VM_PAGE_NULL) { | |
4110 | if(m->fictitious) { | |
4111 | vm_page_lock_queues(); | |
4112 | m->fictitious = FALSE; | |
4113 | m->private = TRUE; | |
55e303ae | 4114 | m->phys_page = base_page; |
0b4e3aa0 A |
4115 | if(!m->busy) { |
4116 | m->busy = TRUE; | |
4117 | } | |
4118 | if(!m->absent) { | |
4119 | m->absent = TRUE; | |
4120 | object->absent_count++; | |
4121 | } | |
4122 | m->list_req_pending = TRUE; | |
4123 | vm_page_unlock_queues(); | |
55e303ae | 4124 | } else if (m->phys_page != base_page) { |
0b4e3aa0 | 4125 | /* pmap call to clear old mapping */ |
55e303ae | 4126 | pmap_page_protect(m->phys_page, |
0b4e3aa0 | 4127 | VM_PROT_NONE); |
55e303ae | 4128 | m->phys_page = base_page; |
0b4e3aa0 A |
4129 | } |
4130 | } else { | |
4131 | while ((m = vm_page_grab_fictitious()) | |
4132 | == VM_PAGE_NULL) | |
4133 | vm_page_more_fictitious(); | |
4134 | vm_page_lock_queues(); | |
4135 | m->fictitious = FALSE; | |
4136 | m->private = TRUE; | |
55e303ae | 4137 | m->phys_page = base_page; |
0b4e3aa0 A |
4138 | m->list_req_pending = TRUE; |
4139 | m->absent = TRUE; | |
4140 | m->unusual = TRUE; | |
4141 | object->absent_count++; | |
4142 | vm_page_unlock_queues(); | |
4143 | vm_page_insert(m, object, base_offset); | |
4144 | } | |
55e303ae | 4145 | base_page++; /* Go to the next physical page */ |
0b4e3aa0 A |
4146 | base_offset += PAGE_SIZE; |
4147 | size -= PAGE_SIZE; | |
4148 | } | |
4149 | } else { | |
4150 | /* NOTE: we should check the original settings here */ | |
4151 | /* if we have a size > zero a pmap call should be made */ | |
4152 | /* to disable the range */ | |
4153 | ||
4154 | /* pmap_? */ | |
4155 | ||
4156 | /* shadows on contiguous memory are not allowed */ | |
4157 | /* we therefore can use the offset field */ | |
55e303ae | 4158 | object->shadow_offset = (vm_object_offset_t)(phys_page << 12); |
0b4e3aa0 A |
4159 | object->size = size; |
4160 | } | |
4161 | vm_object_unlock(object); | |
4162 | return KERN_SUCCESS; | |
4163 | } | |
4164 | ||
1c79356b A |
4165 | /* |
4166 | * memory_object_free_from_cache: | |
4167 | * | |
4168 | * Walk the vm_object cache list, removing and freeing vm_objects | |
4169 | * which are backed by the pager identified by the caller, (pager_id). | |
4170 | * Remove up to "count" objects, if there are that may available | |
4171 | * in the cache. | |
0b4e3aa0 | 4172 | * |
1c79356b A |
4173 | * Walk the list at most once, return the number of vm_objects |
4174 | * actually freed. | |
1c79356b A |
4175 | */ |
4176 | ||
0b4e3aa0 | 4177 | __private_extern__ kern_return_t |
1c79356b A |
4178 | memory_object_free_from_cache( |
4179 | host_t host, | |
0b4e3aa0 | 4180 | int *pager_id, |
1c79356b A |
4181 | int *count) |
4182 | { | |
4183 | ||
4184 | int object_released = 0; | |
4185 | int i; | |
4186 | ||
4187 | register vm_object_t object = VM_OBJECT_NULL; | |
4188 | vm_object_t shadow; | |
4189 | ||
4190 | /* | |
4191 | if(host == HOST_NULL) | |
4192 | return(KERN_INVALID_ARGUMENT); | |
4193 | */ | |
4194 | ||
4195 | try_again: | |
4196 | vm_object_cache_lock(); | |
4197 | ||
4198 | queue_iterate(&vm_object_cached_list, object, | |
4199 | vm_object_t, cached_list) { | |
0b4e3aa0 | 4200 | if (object->pager && (pager_id == object->pager->pager)) { |
1c79356b A |
4201 | vm_object_lock(object); |
4202 | queue_remove(&vm_object_cached_list, object, | |
4203 | vm_object_t, cached_list); | |
4204 | vm_object_cached_count--; | |
4205 | ||
4206 | /* | |
4207 | * Since this object is in the cache, we know | |
0b4e3aa0 A |
4208 | * that it is initialized and has only a pager's |
4209 | * (implicit) reference. Take a reference to avoid | |
4210 | * recursive deallocations. | |
1c79356b A |
4211 | */ |
4212 | ||
4213 | assert(object->pager_initialized); | |
4214 | assert(object->ref_count == 0); | |
4215 | object->ref_count++; | |
4216 | ||
4217 | /* | |
4218 | * Terminate the object. | |
4219 | * If the object had a shadow, we let | |
4220 | * vm_object_deallocate deallocate it. | |
4221 | * "pageout" objects have a shadow, but | |
4222 | * maintain a "paging reference" rather | |
4223 | * than a normal reference. | |
4224 | * (We are careful here to limit recursion.) | |
4225 | */ | |
4226 | shadow = object->pageout?VM_OBJECT_NULL:object->shadow; | |
4227 | if ((vm_object_terminate(object) == KERN_SUCCESS) | |
4228 | && (shadow != VM_OBJECT_NULL)) { | |
4229 | vm_object_deallocate(shadow); | |
4230 | } | |
4231 | ||
4232 | if(object_released++ == *count) | |
4233 | return KERN_SUCCESS; | |
4234 | goto try_again; | |
4235 | } | |
4236 | } | |
4237 | vm_object_cache_unlock(); | |
4238 | *count = object_released; | |
4239 | return KERN_SUCCESS; | |
4240 | } | |
4241 | ||
0b4e3aa0 | 4242 | |
1c79356b A |
4243 | |
4244 | kern_return_t | |
0b4e3aa0 A |
4245 | memory_object_create_named( |
4246 | memory_object_t pager, | |
4247 | memory_object_offset_t size, | |
4248 | memory_object_control_t *control) | |
1c79356b | 4249 | { |
0b4e3aa0 A |
4250 | vm_object_t object; |
4251 | vm_object_hash_entry_t entry; | |
1c79356b | 4252 | |
0b4e3aa0 A |
4253 | *control = MEMORY_OBJECT_CONTROL_NULL; |
4254 | if (pager == MEMORY_OBJECT_NULL) | |
4255 | return KERN_INVALID_ARGUMENT; | |
1c79356b | 4256 | |
0b4e3aa0 A |
4257 | vm_object_cache_lock(); |
4258 | entry = vm_object_hash_lookup(pager, FALSE); | |
4259 | if ((entry != VM_OBJECT_HASH_ENTRY_NULL) && | |
4260 | (entry->object != VM_OBJECT_NULL)) { | |
4261 | if (entry->object->named == TRUE) | |
4262 | panic("memory_object_create_named: caller already holds the right"); } | |
1c79356b | 4263 | |
0b4e3aa0 A |
4264 | vm_object_cache_unlock(); |
4265 | if ((object = vm_object_enter(pager, size, FALSE, FALSE, TRUE)) | |
4266 | == VM_OBJECT_NULL) { | |
4267 | return(KERN_INVALID_OBJECT); | |
4268 | } | |
4269 | ||
4270 | /* wait for object (if any) to be ready */ | |
4271 | if (object != VM_OBJECT_NULL) { | |
4272 | vm_object_lock(object); | |
4273 | object->named = TRUE; | |
4274 | while (!object->pager_ready) { | |
9bccf70c A |
4275 | vm_object_sleep(object, |
4276 | VM_OBJECT_EVENT_PAGER_READY, | |
4277 | THREAD_UNINT); | |
0b4e3aa0 A |
4278 | } |
4279 | *control = object->pager_request; | |
4280 | vm_object_unlock(object); | |
4281 | } | |
4282 | return (KERN_SUCCESS); | |
4283 | } | |
1c79356b | 4284 | |
1c79356b | 4285 | |
0b4e3aa0 A |
4286 | /* |
4287 | * Routine: memory_object_recover_named [user interface] | |
4288 | * Purpose: | |
4289 | * Attempt to recover a named reference for a VM object. | |
4290 | * VM will verify that the object has not already started | |
4291 | * down the termination path, and if it has, will optionally | |
4292 | * wait for that to finish. | |
4293 | * Returns: | |
4294 | * KERN_SUCCESS - we recovered a named reference on the object | |
4295 | * KERN_FAILURE - we could not recover a reference (object dead) | |
4296 | * KERN_INVALID_ARGUMENT - bad memory object control | |
4297 | */ | |
4298 | kern_return_t | |
4299 | memory_object_recover_named( | |
4300 | memory_object_control_t control, | |
4301 | boolean_t wait_on_terminating) | |
4302 | { | |
4303 | vm_object_t object; | |
1c79356b | 4304 | |
0b4e3aa0 A |
4305 | vm_object_cache_lock(); |
4306 | object = memory_object_control_to_vm_object(control); | |
4307 | if (object == VM_OBJECT_NULL) { | |
4308 | vm_object_cache_unlock(); | |
4309 | return (KERN_INVALID_ARGUMENT); | |
4310 | } | |
1c79356b | 4311 | |
0b4e3aa0 A |
4312 | restart: |
4313 | vm_object_lock(object); | |
1c79356b | 4314 | |
0b4e3aa0 A |
4315 | if (object->terminating && wait_on_terminating) { |
4316 | vm_object_cache_unlock(); | |
4317 | vm_object_wait(object, | |
4318 | VM_OBJECT_EVENT_PAGING_IN_PROGRESS, | |
4319 | THREAD_UNINT); | |
4320 | vm_object_cache_lock(); | |
4321 | goto restart; | |
4322 | } | |
4323 | ||
4324 | if (!object->alive) { | |
4325 | vm_object_cache_unlock(); | |
4326 | vm_object_unlock(object); | |
4327 | return KERN_FAILURE; | |
1c79356b A |
4328 | } |
4329 | ||
0b4e3aa0 A |
4330 | if (object->named == TRUE) { |
4331 | vm_object_cache_unlock(); | |
4332 | vm_object_unlock(object); | |
4333 | return KERN_SUCCESS; | |
4334 | } | |
1c79356b | 4335 | |
0b4e3aa0 A |
4336 | if((object->ref_count == 0) && (!object->terminating)){ |
4337 | queue_remove(&vm_object_cached_list, object, | |
4338 | vm_object_t, cached_list); | |
4339 | vm_object_cached_count--; | |
4340 | XPR(XPR_VM_OBJECT_CACHE, | |
4341 | "memory_object_recover_named: removing %X, head (%X, %X)\n", | |
4342 | (integer_t)object, | |
4343 | (integer_t)vm_object_cached_list.next, | |
4344 | (integer_t)vm_object_cached_list.prev, 0,0); | |
4345 | } | |
4346 | ||
4347 | vm_object_cache_unlock(); | |
4348 | ||
4349 | object->named = TRUE; | |
4350 | object->ref_count++; | |
4351 | vm_object_res_reference(object); | |
4352 | while (!object->pager_ready) { | |
9bccf70c A |
4353 | vm_object_sleep(object, |
4354 | VM_OBJECT_EVENT_PAGER_READY, | |
4355 | THREAD_UNINT); | |
0b4e3aa0 A |
4356 | } |
4357 | vm_object_unlock(object); | |
4358 | return (KERN_SUCCESS); | |
1c79356b A |
4359 | } |
4360 | ||
0b4e3aa0 A |
4361 | |
4362 | /* | |
4363 | * vm_object_release_name: | |
4364 | * | |
4365 | * Enforces name semantic on memory_object reference count decrement | |
4366 | * This routine should not be called unless the caller holds a name | |
4367 | * reference gained through the memory_object_create_named. | |
4368 | * | |
4369 | * If the TERMINATE_IDLE flag is set, the call will return if the | |
4370 | * reference count is not 1. i.e. idle with the only remaining reference | |
4371 | * being the name. | |
4372 | * If the decision is made to proceed the name field flag is set to | |
4373 | * false and the reference count is decremented. If the RESPECT_CACHE | |
4374 | * flag is set and the reference count has gone to zero, the | |
4375 | * memory_object is checked to see if it is cacheable otherwise when | |
4376 | * the reference count is zero, it is simply terminated. | |
4377 | */ | |
4378 | ||
4379 | __private_extern__ kern_return_t | |
4380 | vm_object_release_name( | |
4381 | vm_object_t object, | |
4382 | int flags) | |
1c79356b | 4383 | { |
0b4e3aa0 A |
4384 | vm_object_t shadow; |
4385 | boolean_t original_object = TRUE; | |
1c79356b | 4386 | |
0b4e3aa0 | 4387 | while (object != VM_OBJECT_NULL) { |
1c79356b | 4388 | |
0b4e3aa0 A |
4389 | /* |
4390 | * The cache holds a reference (uncounted) to | |
4391 | * the object. We must locke it before removing | |
4392 | * the object. | |
4393 | * | |
4394 | */ | |
4395 | ||
1c79356b | 4396 | vm_object_cache_lock(); |
0b4e3aa0 A |
4397 | vm_object_lock(object); |
4398 | assert(object->alive); | |
4399 | if(original_object) | |
4400 | assert(object->named); | |
4401 | assert(object->ref_count > 0); | |
4402 | ||
4403 | /* | |
4404 | * We have to wait for initialization before | |
4405 | * destroying or caching the object. | |
4406 | */ | |
4407 | ||
4408 | if (object->pager_created && !object->pager_initialized) { | |
4409 | assert(!object->can_persist); | |
4410 | vm_object_assert_wait(object, | |
4411 | VM_OBJECT_EVENT_INITIALIZED, | |
4412 | THREAD_UNINT); | |
4413 | vm_object_unlock(object); | |
4414 | vm_object_cache_unlock(); | |
9bccf70c | 4415 | thread_block(THREAD_CONTINUE_NULL); |
0b4e3aa0 | 4416 | continue; |
1c79356b A |
4417 | } |
4418 | ||
0b4e3aa0 A |
4419 | if (((object->ref_count > 1) |
4420 | && (flags & MEMORY_OBJECT_TERMINATE_IDLE)) | |
4421 | || (object->terminating)) { | |
4422 | vm_object_unlock(object); | |
4423 | vm_object_cache_unlock(); | |
4424 | return KERN_FAILURE; | |
4425 | } else { | |
4426 | if (flags & MEMORY_OBJECT_RELEASE_NO_OP) { | |
4427 | vm_object_unlock(object); | |
4428 | vm_object_cache_unlock(); | |
4429 | return KERN_SUCCESS; | |
1c79356b | 4430 | } |
0b4e3aa0 A |
4431 | } |
4432 | ||
4433 | if ((flags & MEMORY_OBJECT_RESPECT_CACHE) && | |
4434 | (object->ref_count == 1)) { | |
4435 | if(original_object) | |
4436 | object->named = FALSE; | |
1c79356b | 4437 | vm_object_unlock(object); |
0b4e3aa0 A |
4438 | vm_object_cache_unlock(); |
4439 | /* let vm_object_deallocate push this thing into */ | |
4440 | /* the cache, if that it is where it is bound */ | |
4441 | vm_object_deallocate(object); | |
4442 | return KERN_SUCCESS; | |
4443 | } | |
4444 | VM_OBJ_RES_DECR(object); | |
4445 | shadow = object->pageout?VM_OBJECT_NULL:object->shadow; | |
4446 | if(object->ref_count == 1) { | |
4447 | if(vm_object_terminate(object) != KERN_SUCCESS) { | |
4448 | if(original_object) { | |
4449 | return KERN_FAILURE; | |
4450 | } else { | |
4451 | return KERN_SUCCESS; | |
4452 | } | |
4453 | } | |
4454 | if (shadow != VM_OBJECT_NULL) { | |
4455 | original_object = FALSE; | |
4456 | object = shadow; | |
4457 | continue; | |
4458 | } | |
4459 | return KERN_SUCCESS; | |
4460 | } else { | |
4461 | object->ref_count--; | |
4462 | assert(object->ref_count > 0); | |
4463 | if(original_object) | |
4464 | object->named = FALSE; | |
4465 | vm_object_unlock(object); | |
4466 | vm_object_cache_unlock(); | |
4467 | return KERN_SUCCESS; | |
1c79356b | 4468 | } |
1c79356b A |
4469 | } |
4470 | } | |
4471 | ||
0b4e3aa0 A |
4472 | |
4473 | __private_extern__ kern_return_t | |
4474 | vm_object_lock_request( | |
4475 | vm_object_t object, | |
4476 | vm_object_offset_t offset, | |
4477 | vm_object_size_t size, | |
4478 | memory_object_return_t should_return, | |
4479 | int flags, | |
4480 | vm_prot_t prot) | |
1c79356b | 4481 | { |
0b4e3aa0 A |
4482 | vm_object_offset_t original_offset = offset; |
4483 | boolean_t should_flush=flags & MEMORY_OBJECT_DATA_FLUSH; | |
1c79356b | 4484 | |
0b4e3aa0 A |
4485 | XPR(XPR_MEMORY_OBJECT, |
4486 | "vm_o_lock_request, obj 0x%X off 0x%X size 0x%X flags %X prot %X\n", | |
4487 | (integer_t)object, offset, size, | |
4488 | (((should_return&1)<<1)|should_flush), prot); | |
1c79356b | 4489 | |
0b4e3aa0 A |
4490 | /* |
4491 | * Check for bogus arguments. | |
4492 | */ | |
4493 | if (object == VM_OBJECT_NULL) | |
4494 | return (KERN_INVALID_ARGUMENT); | |
1c79356b | 4495 | |
0b4e3aa0 A |
4496 | if ((prot & ~VM_PROT_ALL) != 0 && prot != VM_PROT_NO_CHANGE) |
4497 | return (KERN_INVALID_ARGUMENT); | |
1c79356b | 4498 | |
55e303ae | 4499 | size = round_page_64(size); |
0b4e3aa0 A |
4500 | |
4501 | /* | |
4502 | * Lock the object, and acquire a paging reference to | |
4503 | * prevent the memory_object reference from being released. | |
4504 | */ | |
4505 | vm_object_lock(object); | |
4506 | vm_object_paging_begin(object); | |
0b4e3aa0 A |
4507 | |
4508 | (void)vm_object_update(object, | |
4509 | offset, size, should_return, flags, prot); | |
4510 | ||
4511 | vm_object_paging_end(object); | |
4512 | vm_object_unlock(object); | |
4513 | ||
4514 | return (KERN_SUCCESS); | |
4515 | } | |
4516 | ||
4517 | ||
4518 | ||
4519 | #if TASK_SWAPPER | |
4520 | /* | |
4521 | * vm_object_res_deallocate | |
4522 | * | |
4523 | * (recursively) decrement residence counts on vm objects and their shadows. | |
4524 | * Called from vm_object_deallocate and when swapping out an object. | |
4525 | * | |
4526 | * The object is locked, and remains locked throughout the function, | |
4527 | * even as we iterate down the shadow chain. Locks on intermediate objects | |
4528 | * will be dropped, but not the original object. | |
4529 | * | |
4530 | * NOTE: this function used to use recursion, rather than iteration. | |
4531 | */ | |
4532 | ||
4533 | __private_extern__ void | |
4534 | vm_object_res_deallocate( | |
4535 | vm_object_t object) | |
4536 | { | |
4537 | vm_object_t orig_object = object; | |
4538 | /* | |
4539 | * Object is locked so it can be called directly | |
4540 | * from vm_object_deallocate. Original object is never | |
4541 | * unlocked. | |
4542 | */ | |
4543 | assert(object->res_count > 0); | |
4544 | while (--object->res_count == 0) { | |
4545 | assert(object->ref_count >= object->res_count); | |
4546 | vm_object_deactivate_all_pages(object); | |
4547 | /* iterate on shadow, if present */ | |
4548 | if (object->shadow != VM_OBJECT_NULL) { | |
4549 | vm_object_t tmp_object = object->shadow; | |
4550 | vm_object_lock(tmp_object); | |
4551 | if (object != orig_object) | |
4552 | vm_object_unlock(object); | |
4553 | object = tmp_object; | |
4554 | assert(object->res_count > 0); | |
4555 | } else | |
4556 | break; | |
4557 | } | |
4558 | if (object != orig_object) | |
1c79356b | 4559 | vm_object_unlock(object); |
0b4e3aa0 A |
4560 | } |
4561 | ||
4562 | /* | |
4563 | * vm_object_res_reference | |
4564 | * | |
4565 | * Internal function to increment residence count on a vm object | |
4566 | * and its shadows. It is called only from vm_object_reference, and | |
4567 | * when swapping in a vm object, via vm_map_swap. | |
4568 | * | |
4569 | * The object is locked, and remains locked throughout the function, | |
4570 | * even as we iterate down the shadow chain. Locks on intermediate objects | |
4571 | * will be dropped, but not the original object. | |
4572 | * | |
4573 | * NOTE: this function used to use recursion, rather than iteration. | |
4574 | */ | |
4575 | ||
4576 | __private_extern__ void | |
4577 | vm_object_res_reference( | |
4578 | vm_object_t object) | |
4579 | { | |
4580 | vm_object_t orig_object = object; | |
4581 | /* | |
4582 | * Object is locked, so this can be called directly | |
4583 | * from vm_object_reference. This lock is never released. | |
4584 | */ | |
4585 | while ((++object->res_count == 1) && | |
4586 | (object->shadow != VM_OBJECT_NULL)) { | |
4587 | vm_object_t tmp_object = object->shadow; | |
4588 | ||
4589 | assert(object->ref_count >= object->res_count); | |
4590 | vm_object_lock(tmp_object); | |
4591 | if (object != orig_object) | |
4592 | vm_object_unlock(object); | |
4593 | object = tmp_object; | |
1c79356b | 4594 | } |
0b4e3aa0 A |
4595 | if (object != orig_object) |
4596 | vm_object_unlock(object); | |
4597 | assert(orig_object->ref_count >= orig_object->res_count); | |
1c79356b | 4598 | } |
0b4e3aa0 A |
4599 | #endif /* TASK_SWAPPER */ |
4600 | ||
4601 | /* | |
4602 | * vm_object_reference: | |
4603 | * | |
4604 | * Gets another reference to the given object. | |
4605 | */ | |
4606 | #ifdef vm_object_reference | |
4607 | #undef vm_object_reference | |
4608 | #endif | |
4609 | __private_extern__ void | |
4610 | vm_object_reference( | |
4611 | register vm_object_t object) | |
4612 | { | |
4613 | if (object == VM_OBJECT_NULL) | |
4614 | return; | |
4615 | ||
4616 | vm_object_lock(object); | |
4617 | assert(object->ref_count > 0); | |
4618 | vm_object_reference_locked(object); | |
4619 | vm_object_unlock(object); | |
4620 | } | |
4621 | ||
1c79356b A |
4622 | #ifdef MACH_BSD |
4623 | /* | |
4624 | * Scale the vm_object_cache | |
4625 | * This is required to make sure that the vm_object_cache is big | |
4626 | * enough to effectively cache the mapped file. | |
4627 | * This is really important with UBC as all the regular file vnodes | |
4628 | * have memory object associated with them. Havving this cache too | |
4629 | * small results in rapid reclaim of vnodes and hurts performance a LOT! | |
4630 | * | |
4631 | * This is also needed as number of vnodes can be dynamically scaled. | |
4632 | */ | |
4633 | kern_return_t | |
4634 | adjust_vm_object_cache(vm_size_t oval, vm_size_t nval) | |
4635 | { | |
4636 | vm_object_cached_max = nval; | |
4637 | vm_object_cache_trim(FALSE); | |
4638 | return (KERN_SUCCESS); | |
4639 | } | |
4640 | #endif /* MACH_BSD */ | |
4641 |