]>
Commit | Line | Data |
---|---|---|
1c79356b A |
1 | /* |
2 | * Copyright (c) 2000 Apple Computer, Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_LICENSE_HEADER_START@ | |
5 | * | |
e5568f75 A |
6 | * The contents of this file constitute Original Code as defined in and |
7 | * are subject to the Apple Public Source License Version 1.1 (the | |
8 | * "License"). You may not use this file except in compliance with the | |
9 | * License. Please obtain a copy of the License at | |
10 | * http://www.apple.com/publicsource and read it before using this file. | |
1c79356b | 11 | * |
e5568f75 A |
12 | * This Original Code and all software distributed under the License are |
13 | * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
1c79356b A |
14 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
15 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
e5568f75 A |
16 | * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the |
17 | * License for the specific language governing rights and limitations | |
18 | * under the License. | |
1c79356b A |
19 | * |
20 | * @APPLE_LICENSE_HEADER_END@ | |
21 | */ | |
22 | /* | |
23 | * @OSF_COPYRIGHT@ | |
24 | */ | |
25 | /* | |
26 | * Mach Operating System | |
27 | * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University | |
28 | * All Rights Reserved. | |
29 | * | |
30 | * Permission to use, copy, modify and distribute this software and its | |
31 | * documentation is hereby granted, provided that both the copyright | |
32 | * notice and this permission notice appear in all copies of the | |
33 | * software, derivative works or modified versions, and any portions | |
34 | * thereof, and that both notices appear in supporting documentation. | |
35 | * | |
36 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" | |
37 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR | |
38 | * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. | |
39 | * | |
40 | * Carnegie Mellon requests users of this software to return to | |
41 | * | |
42 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU | |
43 | * School of Computer Science | |
44 | * Carnegie Mellon University | |
45 | * Pittsburgh PA 15213-3890 | |
46 | * | |
47 | * any improvements or extensions that they make and grant Carnegie Mellon | |
48 | * the rights to redistribute these changes. | |
49 | */ | |
50 | /* | |
51 | */ | |
52 | /* | |
53 | * File: vm/vm_kern.c | |
54 | * Author: Avadis Tevanian, Jr., Michael Wayne Young | |
55 | * Date: 1985 | |
56 | * | |
57 | * Kernel memory management. | |
58 | */ | |
59 | ||
60 | #include <cpus.h> | |
61 | #include <mach/kern_return.h> | |
62 | #include <mach/vm_param.h> | |
63 | #include <kern/assert.h> | |
64 | #include <kern/lock.h> | |
65 | #include <kern/thread.h> | |
66 | #include <vm/vm_kern.h> | |
67 | #include <vm/vm_map.h> | |
68 | #include <vm/vm_object.h> | |
69 | #include <vm/vm_page.h> | |
70 | #include <vm/vm_pageout.h> | |
71 | #include <kern/misc_protos.h> | |
72 | #include <vm/cpm.h> | |
73 | ||
74 | #include <string.h> | |
75 | /* | |
76 | * Variables exported by this module. | |
77 | */ | |
78 | ||
79 | vm_map_t kernel_map; | |
80 | vm_map_t kernel_pageable_map; | |
81 | ||
82 | /* | |
83 | * Forward declarations for internal functions. | |
84 | */ | |
85 | extern kern_return_t kmem_alloc_pages( | |
86 | register vm_object_t object, | |
87 | register vm_object_offset_t offset, | |
b4c24cb9 | 88 | register vm_size_t size); |
1c79356b A |
89 | |
90 | extern void kmem_remap_pages( | |
91 | register vm_object_t object, | |
92 | register vm_object_offset_t offset, | |
93 | register vm_offset_t start, | |
94 | register vm_offset_t end, | |
95 | vm_prot_t protection); | |
96 | ||
97 | kern_return_t | |
98 | kmem_alloc_contig( | |
99 | vm_map_t map, | |
100 | vm_offset_t *addrp, | |
101 | vm_size_t size, | |
102 | vm_offset_t mask, | |
103 | int flags) | |
104 | { | |
105 | vm_object_t object; | |
106 | vm_page_t m, pages; | |
107 | kern_return_t kr; | |
108 | vm_offset_t addr, i; | |
109 | vm_object_offset_t offset; | |
110 | vm_map_entry_t entry; | |
111 | ||
112 | if (map == VM_MAP_NULL || (flags && (flags ^ KMA_KOBJECT))) | |
113 | return KERN_INVALID_ARGUMENT; | |
114 | ||
115 | if (size == 0) { | |
116 | *addrp = 0; | |
117 | return KERN_INVALID_ARGUMENT; | |
118 | } | |
119 | ||
55e303ae | 120 | size = round_page_32(size); |
1c79356b A |
121 | if ((flags & KMA_KOBJECT) == 0) { |
122 | object = vm_object_allocate(size); | |
123 | kr = vm_map_find_space(map, &addr, size, mask, &entry); | |
124 | } | |
125 | else { | |
126 | object = kernel_object; | |
127 | kr = vm_map_find_space(map, &addr, size, mask, &entry); | |
128 | } | |
129 | ||
130 | if ((flags & KMA_KOBJECT) == 0) { | |
131 | entry->object.vm_object = object; | |
132 | entry->offset = offset = 0; | |
133 | } else { | |
134 | offset = addr - VM_MIN_KERNEL_ADDRESS; | |
135 | ||
136 | if (entry->object.vm_object == VM_OBJECT_NULL) { | |
137 | vm_object_reference(object); | |
138 | entry->object.vm_object = object; | |
139 | entry->offset = offset; | |
140 | } | |
141 | } | |
142 | ||
143 | if (kr != KERN_SUCCESS) { | |
144 | if ((flags & KMA_KOBJECT) == 0) | |
145 | vm_object_deallocate(object); | |
146 | return kr; | |
147 | } | |
148 | ||
149 | vm_map_unlock(map); | |
150 | ||
151 | kr = cpm_allocate(size, &pages, FALSE); | |
152 | ||
153 | if (kr != KERN_SUCCESS) { | |
154 | vm_map_remove(map, addr, addr + size, 0); | |
155 | *addrp = 0; | |
156 | return kr; | |
157 | } | |
158 | ||
159 | vm_object_lock(object); | |
160 | for (i = 0; i < size; i += PAGE_SIZE) { | |
161 | m = pages; | |
162 | pages = NEXT_PAGE(m); | |
163 | m->busy = FALSE; | |
164 | vm_page_insert(m, object, offset + i); | |
165 | } | |
166 | vm_object_unlock(object); | |
167 | ||
168 | if ((kr = vm_map_wire(map, addr, addr + size, VM_PROT_DEFAULT, FALSE)) | |
169 | != KERN_SUCCESS) { | |
170 | if (object == kernel_object) { | |
171 | vm_object_lock(object); | |
172 | vm_object_page_remove(object, offset, offset + size); | |
173 | vm_object_unlock(object); | |
174 | } | |
175 | vm_map_remove(map, addr, addr + size, 0); | |
176 | return kr; | |
177 | } | |
178 | if (object == kernel_object) | |
179 | vm_map_simplify(map, addr); | |
180 | ||
181 | *addrp = addr; | |
182 | return KERN_SUCCESS; | |
183 | } | |
184 | ||
185 | /* | |
186 | * Master entry point for allocating kernel memory. | |
187 | * NOTE: this routine is _never_ interrupt safe. | |
188 | * | |
189 | * map : map to allocate into | |
190 | * addrp : pointer to start address of new memory | |
191 | * size : size of memory requested | |
192 | * flags : options | |
193 | * KMA_HERE *addrp is base address, else "anywhere" | |
194 | * KMA_NOPAGEWAIT don't wait for pages if unavailable | |
195 | * KMA_KOBJECT use kernel_object | |
196 | */ | |
197 | ||
198 | kern_return_t | |
199 | kernel_memory_allocate( | |
200 | register vm_map_t map, | |
201 | register vm_offset_t *addrp, | |
202 | register vm_size_t size, | |
203 | register vm_offset_t mask, | |
204 | int flags) | |
205 | { | |
206 | vm_object_t object = VM_OBJECT_NULL; | |
207 | vm_map_entry_t entry; | |
208 | vm_object_offset_t offset; | |
209 | vm_offset_t addr; | |
210 | vm_offset_t i; | |
211 | kern_return_t kr; | |
212 | ||
55e303ae | 213 | size = round_page_32(size); |
1c79356b A |
214 | if ((flags & KMA_KOBJECT) == 0) { |
215 | /* | |
216 | * Allocate a new object. We must do this before locking | |
217 | * the map, or risk deadlock with the default pager: | |
218 | * device_read_alloc uses kmem_alloc, | |
219 | * which tries to allocate an object, | |
220 | * which uses kmem_alloc_wired to get memory, | |
221 | * which blocks for pages. | |
222 | * then the default pager needs to read a block | |
223 | * to process a memory_object_data_write, | |
224 | * and device_read_alloc calls kmem_alloc | |
225 | * and deadlocks on the map lock. | |
226 | */ | |
227 | object = vm_object_allocate(size); | |
228 | kr = vm_map_find_space(map, &addr, size, mask, &entry); | |
229 | } | |
230 | else { | |
231 | object = kernel_object; | |
232 | kr = vm_map_find_space(map, &addr, size, mask, &entry); | |
233 | } | |
234 | if (kr != KERN_SUCCESS) { | |
235 | if ((flags & KMA_KOBJECT) == 0) | |
236 | vm_object_deallocate(object); | |
237 | return kr; | |
238 | } | |
239 | ||
240 | if ((flags & KMA_KOBJECT) == 0) { | |
241 | entry->object.vm_object = object; | |
242 | entry->offset = offset = 0; | |
243 | } else { | |
244 | offset = addr - VM_MIN_KERNEL_ADDRESS; | |
245 | ||
246 | if (entry->object.vm_object == VM_OBJECT_NULL) { | |
247 | vm_object_reference(object); | |
248 | entry->object.vm_object = object; | |
249 | entry->offset = offset; | |
250 | } | |
251 | } | |
252 | ||
253 | /* | |
254 | * Since we have not given out this address yet, | |
b4c24cb9 A |
255 | * it is safe to unlock the map. Except of course |
256 | * we must make certain no one coalesces our address | |
257 | * or does a blind vm_deallocate and removes the object | |
258 | * an extra object reference will suffice to protect | |
259 | * against both contingencies. | |
1c79356b | 260 | */ |
b4c24cb9 | 261 | vm_object_reference(object); |
1c79356b A |
262 | vm_map_unlock(map); |
263 | ||
264 | vm_object_lock(object); | |
265 | for (i = 0; i < size; i += PAGE_SIZE) { | |
266 | vm_page_t mem; | |
267 | ||
268 | while ((mem = vm_page_alloc(object, | |
269 | offset + (vm_object_offset_t)i)) | |
270 | == VM_PAGE_NULL) { | |
271 | if (flags & KMA_NOPAGEWAIT) { | |
272 | if (object == kernel_object) | |
273 | vm_object_page_remove(object, offset, | |
274 | offset + (vm_object_offset_t)i); | |
275 | vm_object_unlock(object); | |
276 | vm_map_remove(map, addr, addr + size, 0); | |
b4c24cb9 | 277 | vm_object_deallocate(object); |
1c79356b A |
278 | return KERN_RESOURCE_SHORTAGE; |
279 | } | |
280 | vm_object_unlock(object); | |
281 | VM_PAGE_WAIT(); | |
282 | vm_object_lock(object); | |
283 | } | |
284 | mem->busy = FALSE; | |
285 | } | |
286 | vm_object_unlock(object); | |
287 | ||
288 | if ((kr = vm_map_wire(map, addr, addr + size, VM_PROT_DEFAULT, FALSE)) | |
289 | != KERN_SUCCESS) { | |
290 | if (object == kernel_object) { | |
291 | vm_object_lock(object); | |
292 | vm_object_page_remove(object, offset, offset + size); | |
293 | vm_object_unlock(object); | |
294 | } | |
295 | vm_map_remove(map, addr, addr + size, 0); | |
b4c24cb9 | 296 | vm_object_deallocate(object); |
1c79356b A |
297 | return (kr); |
298 | } | |
b4c24cb9 A |
299 | /* now that the page is wired, we no longer have to fear coalesce */ |
300 | vm_object_deallocate(object); | |
1c79356b A |
301 | if (object == kernel_object) |
302 | vm_map_simplify(map, addr); | |
303 | ||
304 | /* | |
305 | * Return the memory, not zeroed. | |
306 | */ | |
307 | #if (NCPUS > 1) && i860 | |
308 | bzero( addr, size ); | |
309 | #endif /* #if (NCPUS > 1) && i860 */ | |
310 | *addrp = addr; | |
311 | return KERN_SUCCESS; | |
312 | } | |
313 | ||
314 | /* | |
315 | * kmem_alloc: | |
316 | * | |
317 | * Allocate wired-down memory in the kernel's address map | |
318 | * or a submap. The memory is not zero-filled. | |
319 | */ | |
320 | ||
321 | kern_return_t | |
322 | kmem_alloc( | |
323 | vm_map_t map, | |
324 | vm_offset_t *addrp, | |
325 | vm_size_t size) | |
326 | { | |
327 | return kernel_memory_allocate(map, addrp, size, 0, 0); | |
328 | } | |
329 | ||
330 | /* | |
331 | * kmem_realloc: | |
332 | * | |
333 | * Reallocate wired-down memory in the kernel's address map | |
334 | * or a submap. Newly allocated pages are not zeroed. | |
335 | * This can only be used on regions allocated with kmem_alloc. | |
336 | * | |
337 | * If successful, the pages in the old region are mapped twice. | |
338 | * The old region is unchanged. Use kmem_free to get rid of it. | |
339 | */ | |
340 | kern_return_t | |
341 | kmem_realloc( | |
342 | vm_map_t map, | |
343 | vm_offset_t oldaddr, | |
344 | vm_size_t oldsize, | |
345 | vm_offset_t *newaddrp, | |
346 | vm_size_t newsize) | |
347 | { | |
b4c24cb9 A |
348 | vm_offset_t oldmin, oldmax; |
349 | vm_offset_t newaddr; | |
350 | vm_offset_t offset; | |
351 | vm_object_t object; | |
352 | vm_map_entry_t oldentry, newentry; | |
353 | vm_page_t mem; | |
354 | kern_return_t kr; | |
1c79356b | 355 | |
55e303ae A |
356 | oldmin = trunc_page_32(oldaddr); |
357 | oldmax = round_page_32(oldaddr + oldsize); | |
1c79356b | 358 | oldsize = oldmax - oldmin; |
55e303ae | 359 | newsize = round_page_32(newsize); |
1c79356b | 360 | |
1c79356b A |
361 | |
362 | /* | |
363 | * Find the VM object backing the old region. | |
364 | */ | |
365 | ||
b4c24cb9 A |
366 | vm_map_lock(map); |
367 | ||
1c79356b A |
368 | if (!vm_map_lookup_entry(map, oldmin, &oldentry)) |
369 | panic("kmem_realloc"); | |
370 | object = oldentry->object.vm_object; | |
371 | ||
372 | /* | |
373 | * Increase the size of the object and | |
374 | * fill in the new region. | |
375 | */ | |
376 | ||
377 | vm_object_reference(object); | |
b4c24cb9 A |
378 | /* by grabbing the object lock before unlocking the map */ |
379 | /* we guarantee that we will panic if more than one */ | |
380 | /* attempt is made to realloc a kmem_alloc'd area */ | |
1c79356b | 381 | vm_object_lock(object); |
b4c24cb9 | 382 | vm_map_unlock(map); |
1c79356b A |
383 | if (object->size != oldsize) |
384 | panic("kmem_realloc"); | |
385 | object->size = newsize; | |
386 | vm_object_unlock(object); | |
387 | ||
b4c24cb9 A |
388 | /* allocate the new pages while expanded portion of the */ |
389 | /* object is still not mapped */ | |
390 | kmem_alloc_pages(object, oldsize, newsize-oldsize); | |
391 | ||
1c79356b A |
392 | |
393 | /* | |
b4c24cb9 | 394 | * Find space for the new region. |
1c79356b A |
395 | */ |
396 | ||
b4c24cb9 A |
397 | kr = vm_map_find_space(map, &newaddr, newsize, (vm_offset_t) 0, |
398 | &newentry); | |
399 | if (kr != KERN_SUCCESS) { | |
400 | vm_object_lock(object); | |
401 | for(offset = oldsize; | |
402 | offset<newsize; offset+=PAGE_SIZE) { | |
403 | if ((mem = vm_page_lookup(object, offset)) != VM_PAGE_NULL) { | |
404 | vm_page_lock_queues(); | |
405 | vm_page_free(mem); | |
406 | vm_page_unlock_queues(); | |
407 | } | |
408 | } | |
409 | object->size = oldsize; | |
410 | vm_object_unlock(object); | |
411 | vm_object_deallocate(object); | |
412 | return kr; | |
413 | } | |
414 | newentry->object.vm_object = object; | |
415 | newentry->offset = 0; | |
416 | assert (newentry->wired_count == 0); | |
417 | ||
418 | ||
419 | /* add an extra reference in case we have someone doing an */ | |
420 | /* unexpected deallocate */ | |
421 | vm_object_reference(object); | |
1c79356b A |
422 | vm_map_unlock(map); |
423 | ||
b4c24cb9 A |
424 | if ((kr = vm_map_wire(map, newaddr, newaddr + newsize, |
425 | VM_PROT_DEFAULT, FALSE)) != KERN_SUCCESS) { | |
426 | vm_map_remove(map, newaddr, newaddr + newsize, 0); | |
427 | vm_object_lock(object); | |
428 | for(offset = oldsize; | |
429 | offset<newsize; offset+=PAGE_SIZE) { | |
430 | if ((mem = vm_page_lookup(object, offset)) != VM_PAGE_NULL) { | |
431 | vm_page_lock_queues(); | |
432 | vm_page_free(mem); | |
433 | vm_page_unlock_queues(); | |
434 | } | |
435 | } | |
436 | object->size = oldsize; | |
437 | vm_object_unlock(object); | |
438 | vm_object_deallocate(object); | |
439 | return (kr); | |
440 | } | |
441 | vm_object_deallocate(object); | |
1c79356b | 442 | |
1c79356b A |
443 | |
444 | *newaddrp = newaddr; | |
445 | return KERN_SUCCESS; | |
446 | } | |
447 | ||
448 | /* | |
449 | * kmem_alloc_wired: | |
450 | * | |
451 | * Allocate wired-down memory in the kernel's address map | |
452 | * or a submap. The memory is not zero-filled. | |
453 | * | |
454 | * The memory is allocated in the kernel_object. | |
455 | * It may not be copied with vm_map_copy, and | |
456 | * it may not be reallocated with kmem_realloc. | |
457 | */ | |
458 | ||
459 | kern_return_t | |
460 | kmem_alloc_wired( | |
461 | vm_map_t map, | |
462 | vm_offset_t *addrp, | |
463 | vm_size_t size) | |
464 | { | |
465 | return kernel_memory_allocate(map, addrp, size, 0, KMA_KOBJECT); | |
466 | } | |
467 | ||
468 | /* | |
469 | * kmem_alloc_aligned: | |
470 | * | |
471 | * Like kmem_alloc_wired, except that the memory is aligned. | |
472 | * The size should be a power-of-2. | |
473 | */ | |
474 | ||
475 | kern_return_t | |
476 | kmem_alloc_aligned( | |
477 | vm_map_t map, | |
478 | vm_offset_t *addrp, | |
479 | vm_size_t size) | |
480 | { | |
481 | if ((size & (size - 1)) != 0) | |
482 | panic("kmem_alloc_aligned: size not aligned"); | |
483 | return kernel_memory_allocate(map, addrp, size, size - 1, KMA_KOBJECT); | |
484 | } | |
485 | ||
486 | /* | |
487 | * kmem_alloc_pageable: | |
488 | * | |
489 | * Allocate pageable memory in the kernel's address map. | |
490 | */ | |
491 | ||
492 | kern_return_t | |
493 | kmem_alloc_pageable( | |
494 | vm_map_t map, | |
495 | vm_offset_t *addrp, | |
496 | vm_size_t size) | |
497 | { | |
498 | vm_offset_t addr; | |
499 | kern_return_t kr; | |
500 | ||
501 | #ifndef normal | |
502 | addr = (vm_map_min(map)) + 0x1000; | |
503 | #else | |
504 | addr = vm_map_min(map); | |
505 | #endif | |
55e303ae | 506 | kr = vm_map_enter(map, &addr, round_page_32(size), |
1c79356b A |
507 | (vm_offset_t) 0, TRUE, |
508 | VM_OBJECT_NULL, (vm_object_offset_t) 0, FALSE, | |
509 | VM_PROT_DEFAULT, VM_PROT_ALL, VM_INHERIT_DEFAULT); | |
510 | if (kr != KERN_SUCCESS) | |
511 | return kr; | |
512 | ||
513 | *addrp = addr; | |
514 | return KERN_SUCCESS; | |
515 | } | |
516 | ||
517 | /* | |
518 | * kmem_free: | |
519 | * | |
520 | * Release a region of kernel virtual memory allocated | |
521 | * with kmem_alloc, kmem_alloc_wired, or kmem_alloc_pageable, | |
522 | * and return the physical pages associated with that region. | |
523 | */ | |
524 | ||
525 | void | |
526 | kmem_free( | |
527 | vm_map_t map, | |
528 | vm_offset_t addr, | |
529 | vm_size_t size) | |
530 | { | |
531 | kern_return_t kr; | |
532 | ||
55e303ae A |
533 | kr = vm_map_remove(map, trunc_page_32(addr), |
534 | round_page_32(addr + size), | |
535 | VM_MAP_REMOVE_KUNWIRE); | |
1c79356b A |
536 | if (kr != KERN_SUCCESS) |
537 | panic("kmem_free"); | |
538 | } | |
539 | ||
540 | /* | |
b4c24cb9 | 541 | * Allocate new pages in an object. |
1c79356b A |
542 | */ |
543 | ||
544 | kern_return_t | |
545 | kmem_alloc_pages( | |
546 | register vm_object_t object, | |
547 | register vm_object_offset_t offset, | |
b4c24cb9 | 548 | register vm_size_t size) |
1c79356b | 549 | { |
1c79356b | 550 | |
55e303ae | 551 | size = round_page_32(size); |
b4c24cb9 A |
552 | vm_object_lock(object); |
553 | while (size) { | |
1c79356b A |
554 | register vm_page_t mem; |
555 | ||
1c79356b A |
556 | |
557 | /* | |
558 | * Allocate a page | |
559 | */ | |
560 | while ((mem = vm_page_alloc(object, offset)) | |
561 | == VM_PAGE_NULL) { | |
562 | vm_object_unlock(object); | |
563 | VM_PAGE_WAIT(); | |
564 | vm_object_lock(object); | |
565 | } | |
566 | ||
1c79356b | 567 | |
b4c24cb9 A |
568 | offset += PAGE_SIZE; |
569 | size -= PAGE_SIZE; | |
570 | mem->busy = FALSE; | |
1c79356b | 571 | } |
b4c24cb9 | 572 | vm_object_unlock(object); |
1c79356b A |
573 | return KERN_SUCCESS; |
574 | } | |
575 | ||
576 | /* | |
577 | * Remap wired pages in an object into a new region. | |
578 | * The object is assumed to be mapped into the kernel map or | |
579 | * a submap. | |
580 | */ | |
581 | void | |
582 | kmem_remap_pages( | |
583 | register vm_object_t object, | |
584 | register vm_object_offset_t offset, | |
585 | register vm_offset_t start, | |
586 | register vm_offset_t end, | |
587 | vm_prot_t protection) | |
588 | { | |
589 | /* | |
590 | * Mark the pmap region as not pageable. | |
591 | */ | |
592 | pmap_pageable(kernel_pmap, start, end, FALSE); | |
593 | ||
594 | while (start < end) { | |
595 | register vm_page_t mem; | |
596 | ||
597 | vm_object_lock(object); | |
598 | ||
599 | /* | |
600 | * Find a page | |
601 | */ | |
602 | if ((mem = vm_page_lookup(object, offset)) == VM_PAGE_NULL) | |
603 | panic("kmem_remap_pages"); | |
604 | ||
605 | /* | |
606 | * Wire it down (again) | |
607 | */ | |
608 | vm_page_lock_queues(); | |
609 | vm_page_wire(mem); | |
610 | vm_page_unlock_queues(); | |
611 | vm_object_unlock(object); | |
612 | ||
613 | /* | |
614 | * Enter it in the kernel pmap. The page isn't busy, | |
615 | * but this shouldn't be a problem because it is wired. | |
616 | */ | |
9bccf70c | 617 | PMAP_ENTER(kernel_pmap, start, mem, protection, |
55e303ae A |
618 | ((unsigned int)(mem->object->wimg_bits)) |
619 | & VM_WIMG_MASK, | |
620 | TRUE); | |
1c79356b A |
621 | |
622 | start += PAGE_SIZE; | |
623 | offset += PAGE_SIZE; | |
624 | } | |
625 | } | |
626 | ||
627 | /* | |
628 | * kmem_suballoc: | |
629 | * | |
630 | * Allocates a map to manage a subrange | |
631 | * of the kernel virtual address space. | |
632 | * | |
633 | * Arguments are as follows: | |
634 | * | |
635 | * parent Map to take range from | |
636 | * addr Address of start of range (IN/OUT) | |
637 | * size Size of range to find | |
638 | * pageable Can region be paged | |
639 | * anywhere Can region be located anywhere in map | |
640 | * new_map Pointer to new submap | |
641 | */ | |
642 | kern_return_t | |
643 | kmem_suballoc( | |
644 | vm_map_t parent, | |
645 | vm_offset_t *addr, | |
646 | vm_size_t size, | |
647 | boolean_t pageable, | |
648 | boolean_t anywhere, | |
649 | vm_map_t *new_map) | |
650 | { | |
651 | vm_map_t map; | |
652 | kern_return_t kr; | |
653 | ||
55e303ae | 654 | size = round_page_32(size); |
1c79356b A |
655 | |
656 | /* | |
657 | * Need reference on submap object because it is internal | |
658 | * to the vm_system. vm_object_enter will never be called | |
659 | * on it (usual source of reference for vm_map_enter). | |
660 | */ | |
661 | vm_object_reference(vm_submap_object); | |
662 | ||
663 | if (anywhere == TRUE) | |
664 | *addr = (vm_offset_t)vm_map_min(parent); | |
665 | kr = vm_map_enter(parent, addr, size, | |
666 | (vm_offset_t) 0, anywhere, | |
667 | vm_submap_object, (vm_object_offset_t) 0, FALSE, | |
668 | VM_PROT_DEFAULT, VM_PROT_ALL, VM_INHERIT_DEFAULT); | |
669 | if (kr != KERN_SUCCESS) { | |
670 | vm_object_deallocate(vm_submap_object); | |
671 | return (kr); | |
672 | } | |
673 | ||
674 | pmap_reference(vm_map_pmap(parent)); | |
675 | map = vm_map_create(vm_map_pmap(parent), *addr, *addr + size, pageable); | |
676 | if (map == VM_MAP_NULL) | |
677 | panic("kmem_suballoc: vm_map_create failed"); /* "can't happen" */ | |
678 | ||
679 | kr = vm_map_submap(parent, *addr, *addr + size, map, *addr, FALSE); | |
680 | if (kr != KERN_SUCCESS) { | |
681 | /* | |
682 | * See comment preceding vm_map_submap(). | |
683 | */ | |
684 | vm_map_remove(parent, *addr, *addr + size, VM_MAP_NO_FLAGS); | |
685 | vm_map_deallocate(map); /* also removes ref to pmap */ | |
686 | vm_object_deallocate(vm_submap_object); | |
687 | return (kr); | |
688 | } | |
1c79356b A |
689 | *new_map = map; |
690 | return (KERN_SUCCESS); | |
691 | } | |
692 | ||
693 | /* | |
694 | * kmem_init: | |
695 | * | |
696 | * Initialize the kernel's virtual memory map, taking | |
697 | * into account all memory allocated up to this time. | |
698 | */ | |
699 | void | |
700 | kmem_init( | |
701 | vm_offset_t start, | |
702 | vm_offset_t end) | |
703 | { | |
704 | kernel_map = vm_map_create(pmap_kernel(), | |
705 | VM_MIN_KERNEL_ADDRESS, end, | |
706 | FALSE); | |
707 | ||
708 | /* | |
709 | * Reserve virtual memory allocated up to this time. | |
710 | */ | |
711 | ||
712 | if (start != VM_MIN_KERNEL_ADDRESS) { | |
713 | vm_offset_t addr = VM_MIN_KERNEL_ADDRESS; | |
714 | (void) vm_map_enter(kernel_map, | |
715 | &addr, start - VM_MIN_KERNEL_ADDRESS, | |
716 | (vm_offset_t) 0, TRUE, | |
717 | VM_OBJECT_NULL, | |
718 | (vm_object_offset_t) 0, FALSE, | |
719 | VM_PROT_DEFAULT, VM_PROT_ALL, | |
720 | VM_INHERIT_DEFAULT); | |
721 | } | |
722 | ||
723 | /* | |
724 | * Account for kernel memory (text, data, bss, vm shenanigans). | |
725 | * This may include inaccessible "holes" as determined by what | |
55e303ae | 726 | * the machine-dependent init code includes in max_mem. |
1c79356b | 727 | */ |
55e303ae | 728 | vm_page_wire_count = (atop_64(max_mem) - (vm_page_free_count |
1c79356b A |
729 | + vm_page_active_count |
730 | + vm_page_inactive_count)); | |
731 | } | |
732 | ||
1c79356b A |
733 | |
734 | /* | |
735 | * kmem_io_object_trunc: | |
736 | * | |
737 | * Truncate an object vm_map_copy_t. | |
738 | * Called by the scatter/gather list network code to remove pages from | |
739 | * the tail end of a packet. Also unwires the objects pages. | |
740 | */ | |
741 | ||
742 | kern_return_t | |
743 | kmem_io_object_trunc(copy, new_size) | |
744 | vm_map_copy_t copy; /* IN/OUT copy object */ | |
745 | register vm_size_t new_size; /* IN new object size */ | |
746 | { | |
747 | register vm_size_t offset, old_size; | |
748 | ||
749 | assert(copy->type == VM_MAP_COPY_OBJECT); | |
750 | ||
751 | old_size = (vm_size_t)round_page_64(copy->size); | |
752 | copy->size = new_size; | |
55e303ae | 753 | new_size = round_page_32(new_size); |
1c79356b A |
754 | |
755 | vm_object_lock(copy->cpy_object); | |
756 | vm_object_page_remove(copy->cpy_object, | |
757 | (vm_object_offset_t)new_size, (vm_object_offset_t)old_size); | |
758 | for (offset = 0; offset < new_size; offset += PAGE_SIZE) { | |
759 | register vm_page_t mem; | |
760 | ||
761 | if ((mem = vm_page_lookup(copy->cpy_object, | |
762 | (vm_object_offset_t)offset)) == VM_PAGE_NULL) | |
763 | panic("kmem_io_object_trunc: unable to find object page"); | |
764 | ||
765 | /* | |
766 | * Make sure these pages are marked dirty | |
767 | */ | |
768 | mem->dirty = TRUE; | |
769 | vm_page_lock_queues(); | |
770 | vm_page_unwire(mem); | |
771 | vm_page_unlock_queues(); | |
772 | } | |
773 | copy->cpy_object->size = new_size; /* adjust size of object */ | |
774 | vm_object_unlock(copy->cpy_object); | |
775 | return(KERN_SUCCESS); | |
776 | } | |
777 | ||
778 | /* | |
779 | * kmem_io_object_deallocate: | |
780 | * | |
781 | * Free an vm_map_copy_t. | |
782 | * Called by the scatter/gather list network code to free a packet. | |
783 | */ | |
784 | ||
785 | void | |
786 | kmem_io_object_deallocate( | |
787 | vm_map_copy_t copy) /* IN/OUT copy object */ | |
788 | { | |
789 | kern_return_t ret; | |
790 | ||
791 | /* | |
792 | * Clear out all the object pages (this will leave an empty object). | |
793 | */ | |
794 | ret = kmem_io_object_trunc(copy, 0); | |
795 | if (ret != KERN_SUCCESS) | |
796 | panic("kmem_io_object_deallocate: unable to truncate object"); | |
797 | /* | |
798 | * ...and discard the copy object. | |
799 | */ | |
800 | vm_map_copy_discard(copy); | |
801 | } | |
802 | ||
803 | /* | |
804 | * Routine: copyinmap | |
805 | * Purpose: | |
806 | * Like copyin, except that fromaddr is an address | |
807 | * in the specified VM map. This implementation | |
808 | * is incomplete; it handles the current user map | |
809 | * and the kernel map/submaps. | |
810 | */ | |
811 | boolean_t | |
812 | copyinmap( | |
813 | vm_map_t map, | |
814 | vm_offset_t fromaddr, | |
815 | vm_offset_t toaddr, | |
816 | vm_size_t length) | |
817 | { | |
818 | if (vm_map_pmap(map) == pmap_kernel()) { | |
819 | /* assume a correct copy */ | |
820 | memcpy((void *)toaddr, (void *)fromaddr, length); | |
821 | return FALSE; | |
822 | } | |
823 | ||
824 | if (current_map() == map) | |
825 | return copyin((char *)fromaddr, (char *)toaddr, length); | |
826 | ||
827 | return TRUE; | |
828 | } | |
829 | ||
830 | /* | |
831 | * Routine: copyoutmap | |
832 | * Purpose: | |
833 | * Like copyout, except that toaddr is an address | |
834 | * in the specified VM map. This implementation | |
835 | * is incomplete; it handles the current user map | |
836 | * and the kernel map/submaps. | |
837 | */ | |
838 | boolean_t | |
839 | copyoutmap( | |
840 | vm_map_t map, | |
841 | vm_offset_t fromaddr, | |
842 | vm_offset_t toaddr, | |
843 | vm_size_t length) | |
844 | { | |
845 | if (vm_map_pmap(map) == pmap_kernel()) { | |
846 | /* assume a correct copy */ | |
847 | memcpy((void *)toaddr, (void *)fromaddr, length); | |
848 | return FALSE; | |
849 | } | |
850 | ||
851 | if (current_map() == map) | |
852 | return copyout((char *)fromaddr, (char *)toaddr, length); | |
853 | ||
854 | return TRUE; | |
855 | } | |
9bccf70c A |
856 | |
857 | ||
858 | kern_return_t | |
859 | vm_conflict_check( | |
860 | vm_map_t map, | |
861 | vm_offset_t off, | |
862 | vm_size_t len, | |
863 | memory_object_t pager, | |
864 | vm_object_offset_t file_off) | |
865 | { | |
866 | vm_map_entry_t entry; | |
867 | vm_object_t obj; | |
868 | vm_object_offset_t obj_off; | |
869 | vm_map_t base_map; | |
870 | vm_offset_t base_offset; | |
871 | vm_offset_t original_offset; | |
872 | kern_return_t kr; | |
873 | vm_size_t local_len; | |
874 | ||
875 | base_map = map; | |
876 | base_offset = off; | |
877 | original_offset = off; | |
878 | kr = KERN_SUCCESS; | |
879 | vm_map_lock(map); | |
880 | while(vm_map_lookup_entry(map, off, &entry)) { | |
881 | local_len = len; | |
882 | ||
883 | if (entry->object.vm_object == VM_OBJECT_NULL) { | |
884 | vm_map_unlock(map); | |
885 | return KERN_SUCCESS; | |
886 | } | |
887 | if (entry->is_sub_map) { | |
888 | vm_map_t old_map; | |
55e303ae | 889 | |
9bccf70c A |
890 | old_map = map; |
891 | vm_map_lock(entry->object.sub_map); | |
892 | map = entry->object.sub_map; | |
893 | off = entry->offset + (off - entry->vme_start); | |
894 | vm_map_unlock(old_map); | |
895 | continue; | |
896 | } | |
897 | obj = entry->object.vm_object; | |
898 | obj_off = (off - entry->vme_start) + entry->offset; | |
899 | while(obj->shadow) { | |
900 | obj_off += obj->shadow_offset; | |
901 | obj = obj->shadow; | |
902 | } | |
903 | if((obj->pager_created) && (obj->pager == pager)) { | |
904 | if(((obj->paging_offset) + obj_off) == file_off) { | |
905 | if(off != base_offset) { | |
906 | vm_map_unlock(map); | |
907 | return KERN_FAILURE; | |
908 | } | |
909 | kr = KERN_ALREADY_WAITING; | |
55e303ae A |
910 | } else { |
911 | vm_object_offset_t obj_off_aligned; | |
912 | vm_object_offset_t file_off_aligned; | |
913 | ||
914 | obj_off_aligned = obj_off & ~PAGE_MASK; | |
915 | file_off_aligned = file_off & ~PAGE_MASK; | |
916 | ||
917 | if (file_off_aligned == (obj->paging_offset + obj_off_aligned)) { | |
918 | /* | |
919 | * the target map and the file offset start in the same page | |
920 | * but are not identical... | |
921 | */ | |
922 | vm_map_unlock(map); | |
923 | return KERN_FAILURE; | |
924 | } | |
925 | if ((file_off < (obj->paging_offset + obj_off_aligned)) && | |
926 | ((file_off + len) > (obj->paging_offset + obj_off_aligned))) { | |
927 | /* | |
928 | * some portion of the tail of the I/O will fall | |
929 | * within the encompass of the target map | |
930 | */ | |
931 | vm_map_unlock(map); | |
932 | return KERN_FAILURE; | |
933 | } | |
934 | if ((file_off_aligned > (obj->paging_offset + obj_off)) && | |
935 | (file_off_aligned < (obj->paging_offset + obj_off) + len)) { | |
936 | /* | |
937 | * the beginning page of the file offset falls within | |
938 | * the target map's encompass | |
939 | */ | |
940 | vm_map_unlock(map); | |
941 | return KERN_FAILURE; | |
942 | } | |
9bccf70c A |
943 | } |
944 | } else if(kr != KERN_SUCCESS) { | |
55e303ae | 945 | vm_map_unlock(map); |
9bccf70c A |
946 | return KERN_FAILURE; |
947 | } | |
948 | ||
55e303ae | 949 | if(len <= ((entry->vme_end - entry->vme_start) - |
9bccf70c A |
950 | (off - entry->vme_start))) { |
951 | vm_map_unlock(map); | |
952 | return kr; | |
953 | } else { | |
954 | len -= (entry->vme_end - entry->vme_start) - | |
955 | (off - entry->vme_start); | |
956 | } | |
957 | base_offset = base_offset + (local_len - len); | |
958 | file_off = file_off + (local_len - len); | |
959 | off = base_offset; | |
960 | if(map != base_map) { | |
961 | vm_map_unlock(map); | |
962 | vm_map_lock(base_map); | |
963 | map = base_map; | |
964 | } | |
965 | } | |
966 | ||
967 | vm_map_unlock(map); | |
968 | return kr; | |
9bccf70c | 969 | } |