]>
Commit | Line | Data |
---|---|---|
1c79356b | 1 | /* |
2d21ac55 | 2 | * Copyright (c) 2000-2006 Apple Computer, Inc. All rights reserved. |
1c79356b | 3 | * |
2d21ac55 | 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
1c79356b | 5 | * |
2d21ac55 A |
6 | * This file contains Original Code and/or Modifications of Original Code |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
8f6c56a5 | 14 | * |
2d21ac55 A |
15 | * Please obtain a copy of the License at |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
8f6c56a5 A |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
2d21ac55 A |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
8f6c56a5 | 25 | * |
2d21ac55 | 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
1c79356b A |
27 | */ |
28 | /* | |
29 | * @OSF_COPYRIGHT@ | |
30 | */ | |
31 | /* | |
32 | * Mach Operating System | |
33 | * Copyright (c) 1991,1990,1989 Carnegie Mellon University | |
34 | * All Rights Reserved. | |
35 | * | |
36 | * Permission to use, copy, modify and distribute this software and its | |
37 | * documentation is hereby granted, provided that both the copyright | |
38 | * notice and this permission notice appear in all copies of the | |
39 | * software, derivative works or modified versions, and any portions | |
40 | * thereof, and that both notices appear in supporting documentation. | |
41 | * | |
42 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" | |
43 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR | |
44 | * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. | |
45 | * | |
46 | * Carnegie Mellon requests users of this software to return to | |
47 | * | |
48 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU | |
49 | * School of Computer Science | |
50 | * Carnegie Mellon University | |
51 | * Pittsburgh PA 15213-3890 | |
52 | * | |
53 | * any improvements or extensions that they make and grant Carnegie Mellon | |
54 | * the rights to redistribute these changes. | |
55 | */ | |
56 | ||
57 | /* | |
58 | * Default Pager. | |
59 | * Paging File Management. | |
60 | */ | |
61 | ||
91447636 | 62 | #include <mach/host_priv.h> |
0b4e3aa0 | 63 | #include <mach/memory_object_control.h> |
1c79356b | 64 | #include <mach/memory_object_server.h> |
91447636 A |
65 | #include <mach/upl.h> |
66 | #include <default_pager/default_pager_internal.h> | |
1c79356b | 67 | #include <default_pager/default_pager_alerts.h> |
91447636 A |
68 | #include <default_pager/default_pager_object_server.h> |
69 | ||
70 | #include <ipc/ipc_types.h> | |
1c79356b A |
71 | #include <ipc/ipc_port.h> |
72 | #include <ipc/ipc_space.h> | |
91447636 A |
73 | |
74 | #include <kern/kern_types.h> | |
75 | #include <kern/host.h> | |
1c79356b A |
76 | #include <kern/queue.h> |
77 | #include <kern/counters.h> | |
78 | #include <kern/sched_prim.h> | |
91447636 | 79 | |
1c79356b A |
80 | #include <vm/vm_kern.h> |
81 | #include <vm/vm_pageout.h> | |
1c79356b | 82 | #include <vm/vm_map.h> |
91447636 A |
83 | #include <vm/vm_object.h> |
84 | #include <vm/vm_protos.h> | |
85 | ||
2d21ac55 | 86 | |
91447636 | 87 | /* LP64todo - need large internal object support */ |
1c79356b | 88 | |
0b4e3aa0 A |
89 | /* |
90 | * ALLOC_STRIDE... the maximum number of bytes allocated from | |
91 | * a swap file before moving on to the next swap file... if | |
92 | * all swap files reside on a single disk, this value should | |
93 | * be very large (this is the default assumption)... if the | |
94 | * swap files are spread across multiple disks, than this value | |
95 | * should be small (128 * 1024)... | |
96 | * | |
97 | * This should be determined dynamically in the future | |
98 | */ | |
1c79356b | 99 | |
0b4e3aa0 | 100 | #define ALLOC_STRIDE (1024 * 1024 * 1024) |
1c79356b A |
101 | int physical_transfer_cluster_count = 0; |
102 | ||
9bccf70c A |
103 | #define VM_SUPER_CLUSTER 0x40000 |
104 | #define VM_SUPER_PAGES 64 | |
1c79356b A |
105 | |
106 | /* | |
107 | * 0 means no shift to pages, so == 1 page/cluster. 1 would mean | |
108 | * 2 pages/cluster, 2 means 4 pages/cluster, and so on. | |
109 | */ | |
110 | #define VSTRUCT_DEF_CLSHIFT 2 | |
111 | int vstruct_def_clshift = VSTRUCT_DEF_CLSHIFT; | |
112 | int default_pager_clsize = 0; | |
113 | ||
114 | /* statistics */ | |
0b4e3aa0 A |
115 | unsigned int clustered_writes[VM_SUPER_PAGES+1]; |
116 | unsigned int clustered_reads[VM_SUPER_PAGES+1]; | |
1c79356b A |
117 | |
118 | /* | |
119 | * Globals used for asynchronous paging operations: | |
120 | * vs_async_list: head of list of to-be-completed I/O ops | |
121 | * async_num_queued: number of pages completed, but not yet | |
122 | * processed by async thread. | |
123 | * async_requests_out: number of pages of requests not completed. | |
124 | */ | |
125 | ||
126 | #if 0 | |
127 | struct vs_async *vs_async_list; | |
128 | int async_num_queued; | |
129 | int async_requests_out; | |
130 | #endif | |
131 | ||
132 | ||
133 | #define VS_ASYNC_REUSE 1 | |
134 | struct vs_async *vs_async_free_list; | |
135 | ||
136 | mutex_t default_pager_async_lock; /* Protects globals above */ | |
137 | ||
138 | ||
139 | int vs_alloc_async_failed = 0; /* statistics */ | |
140 | int vs_alloc_async_count = 0; /* statistics */ | |
141 | struct vs_async *vs_alloc_async(void); /* forward */ | |
142 | void vs_free_async(struct vs_async *vsa); /* forward */ | |
143 | ||
144 | ||
145 | #define VS_ALLOC_ASYNC() vs_alloc_async() | |
146 | #define VS_FREE_ASYNC(vsa) vs_free_async(vsa) | |
147 | ||
148 | #define VS_ASYNC_LOCK() mutex_lock(&default_pager_async_lock) | |
149 | #define VS_ASYNC_UNLOCK() mutex_unlock(&default_pager_async_lock) | |
91447636 | 150 | #define VS_ASYNC_LOCK_INIT() mutex_init(&default_pager_async_lock, 0) |
1c79356b A |
151 | #define VS_ASYNC_LOCK_ADDR() (&default_pager_async_lock) |
152 | /* | |
153 | * Paging Space Hysteresis triggers and the target notification port | |
154 | * | |
155 | */ | |
156 | ||
157 | unsigned int minimum_pages_remaining = 0; | |
158 | unsigned int maximum_pages_free = 0; | |
159 | ipc_port_t min_pages_trigger_port = NULL; | |
160 | ipc_port_t max_pages_trigger_port = NULL; | |
161 | ||
162 | boolean_t bs_low = FALSE; | |
0b4e3aa0 | 163 | int backing_store_release_trigger_disable = 0; |
91447636 A |
164 | |
165 | ||
166 | /* Have we decided if swap needs to be encrypted yet ? */ | |
167 | boolean_t dp_encryption_inited = FALSE; | |
168 | /* Should we encrypt swap ? */ | |
169 | boolean_t dp_encryption = FALSE; | |
1c79356b A |
170 | |
171 | ||
172 | /* | |
173 | * Object sizes are rounded up to the next power of 2, | |
174 | * unless they are bigger than a given maximum size. | |
175 | */ | |
176 | vm_size_t max_doubled_size = 4 * 1024 * 1024; /* 4 meg */ | |
177 | ||
178 | /* | |
179 | * List of all backing store and segments. | |
180 | */ | |
181 | struct backing_store_list_head backing_store_list; | |
182 | paging_segment_t paging_segments[MAX_NUM_PAGING_SEGMENTS]; | |
183 | mutex_t paging_segments_lock; | |
184 | int paging_segment_max = 0; | |
185 | int paging_segment_count = 0; | |
186 | int ps_select_array[BS_MAXPRI+1] = { -1,-1,-1,-1,-1 }; | |
187 | ||
188 | ||
189 | /* | |
190 | * Total pages free in system | |
191 | * This differs from clusters committed/avail which is a measure of the | |
192 | * over commitment of paging segments to backing store. An idea which is | |
193 | * likely to be deprecated. | |
194 | */ | |
195 | unsigned int dp_pages_free = 0; | |
196 | unsigned int cluster_transfer_minimum = 100; | |
197 | ||
91447636 A |
198 | /* forward declarations */ |
199 | kern_return_t ps_write_file(paging_segment_t, upl_t, upl_offset_t, vm_offset_t, unsigned int, int); /* forward */ | |
200 | kern_return_t ps_read_file (paging_segment_t, upl_t, upl_offset_t, vm_offset_t, unsigned int, unsigned int *, int); /* forward */ | |
201 | default_pager_thread_t *get_read_buffer( void ); | |
202 | kern_return_t ps_vstruct_transfer_from_segment( | |
203 | vstruct_t vs, | |
204 | paging_segment_t segment, | |
205 | upl_t upl); | |
206 | kern_return_t ps_read_device(paging_segment_t, vm_offset_t, vm_offset_t *, unsigned int, unsigned int *, int); /* forward */ | |
207 | kern_return_t ps_write_device(paging_segment_t, vm_offset_t, vm_offset_t, unsigned int, struct vs_async *); /* forward */ | |
208 | kern_return_t vs_cluster_transfer( | |
209 | vstruct_t vs, | |
210 | upl_offset_t offset, | |
211 | upl_size_t cnt, | |
212 | upl_t upl); | |
213 | vs_map_t vs_get_map_entry( | |
214 | vstruct_t vs, | |
215 | vm_offset_t offset); | |
0b4e3aa0 | 216 | |
1c79356b A |
217 | |
218 | default_pager_thread_t * | |
91447636 | 219 | get_read_buffer( void ) |
1c79356b A |
220 | { |
221 | int i; | |
222 | ||
223 | DPT_LOCK(dpt_lock); | |
224 | while(TRUE) { | |
225 | for (i=0; i<default_pager_internal_count; i++) { | |
226 | if(dpt_array[i]->checked_out == FALSE) { | |
227 | dpt_array[i]->checked_out = TRUE; | |
228 | DPT_UNLOCK(dpt_lock); | |
229 | return dpt_array[i]; | |
230 | } | |
231 | } | |
9bccf70c | 232 | DPT_SLEEP(dpt_lock, &dpt_array, THREAD_UNINT); |
1c79356b A |
233 | } |
234 | } | |
235 | ||
236 | void | |
237 | bs_initialize(void) | |
238 | { | |
239 | int i; | |
240 | ||
241 | /* | |
242 | * List of all backing store. | |
243 | */ | |
244 | BSL_LOCK_INIT(); | |
245 | queue_init(&backing_store_list.bsl_queue); | |
246 | PSL_LOCK_INIT(); | |
247 | ||
248 | VS_ASYNC_LOCK_INIT(); | |
249 | #if VS_ASYNC_REUSE | |
250 | vs_async_free_list = NULL; | |
251 | #endif /* VS_ASYNC_REUSE */ | |
252 | ||
0b4e3aa0 | 253 | for (i = 0; i < VM_SUPER_PAGES + 1; i++) { |
1c79356b A |
254 | clustered_writes[i] = 0; |
255 | clustered_reads[i] = 0; | |
256 | } | |
257 | ||
258 | } | |
259 | ||
260 | /* | |
261 | * When things do not quite workout... | |
262 | */ | |
263 | void bs_no_paging_space(boolean_t); /* forward */ | |
264 | ||
265 | void | |
266 | bs_no_paging_space( | |
267 | boolean_t out_of_memory) | |
268 | { | |
1c79356b A |
269 | |
270 | if (out_of_memory) | |
271 | dprintf(("*** OUT OF MEMORY ***\n")); | |
272 | panic("bs_no_paging_space: NOT ENOUGH PAGING SPACE"); | |
273 | } | |
274 | ||
275 | void bs_more_space(int); /* forward */ | |
276 | void bs_commit(int); /* forward */ | |
277 | ||
278 | boolean_t user_warned = FALSE; | |
279 | unsigned int clusters_committed = 0; | |
280 | unsigned int clusters_available = 0; | |
281 | unsigned int clusters_committed_peak = 0; | |
282 | ||
283 | void | |
284 | bs_more_space( | |
285 | int nclusters) | |
286 | { | |
287 | BSL_LOCK(); | |
288 | /* | |
289 | * Account for new paging space. | |
290 | */ | |
291 | clusters_available += nclusters; | |
292 | ||
293 | if (clusters_available >= clusters_committed) { | |
294 | if (verbose && user_warned) { | |
295 | printf("%s%s - %d excess clusters now.\n", | |
296 | my_name, | |
297 | "paging space is OK now", | |
298 | clusters_available - clusters_committed); | |
299 | user_warned = FALSE; | |
300 | clusters_committed_peak = 0; | |
301 | } | |
302 | } else { | |
303 | if (verbose && user_warned) { | |
304 | printf("%s%s - still short of %d clusters.\n", | |
305 | my_name, | |
306 | "WARNING: paging space over-committed", | |
307 | clusters_committed - clusters_available); | |
308 | clusters_committed_peak -= nclusters; | |
309 | } | |
310 | } | |
311 | BSL_UNLOCK(); | |
312 | ||
313 | return; | |
314 | } | |
315 | ||
316 | void | |
317 | bs_commit( | |
318 | int nclusters) | |
319 | { | |
320 | BSL_LOCK(); | |
321 | clusters_committed += nclusters; | |
322 | if (clusters_committed > clusters_available) { | |
323 | if (verbose && !user_warned) { | |
324 | user_warned = TRUE; | |
325 | printf("%s%s - short of %d clusters.\n", | |
326 | my_name, | |
327 | "WARNING: paging space over-committed", | |
328 | clusters_committed - clusters_available); | |
329 | } | |
330 | if (clusters_committed > clusters_committed_peak) { | |
331 | clusters_committed_peak = clusters_committed; | |
332 | } | |
333 | } else { | |
334 | if (verbose && user_warned) { | |
335 | printf("%s%s - was short of up to %d clusters.\n", | |
336 | my_name, | |
337 | "paging space is OK now", | |
338 | clusters_committed_peak - clusters_available); | |
339 | user_warned = FALSE; | |
340 | clusters_committed_peak = 0; | |
341 | } | |
342 | } | |
343 | BSL_UNLOCK(); | |
344 | ||
345 | return; | |
346 | } | |
347 | ||
348 | int default_pager_info_verbose = 1; | |
349 | ||
350 | void | |
351 | bs_global_info( | |
352 | vm_size_t *totalp, | |
353 | vm_size_t *freep) | |
354 | { | |
355 | vm_size_t pages_total, pages_free; | |
356 | paging_segment_t ps; | |
357 | int i; | |
1c79356b A |
358 | |
359 | PSL_LOCK(); | |
360 | pages_total = pages_free = 0; | |
361 | for (i = 0; i <= paging_segment_max; i++) { | |
362 | ps = paging_segments[i]; | |
363 | if (ps == PAGING_SEGMENT_NULL) | |
364 | continue; | |
365 | ||
366 | /* | |
367 | * no need to lock: by the time this data | |
368 | * gets back to any remote requestor it | |
369 | * will be obsolete anyways | |
370 | */ | |
371 | pages_total += ps->ps_pgnum; | |
372 | pages_free += ps->ps_clcount << ps->ps_clshift; | |
91447636 A |
373 | DP_DEBUG(DEBUG_BS_INTERNAL, |
374 | ("segment #%d: %d total, %d free\n", | |
375 | i, ps->ps_pgnum, ps->ps_clcount << ps->ps_clshift)); | |
1c79356b A |
376 | } |
377 | *totalp = pages_total; | |
378 | *freep = pages_free; | |
379 | if (verbose && user_warned && default_pager_info_verbose) { | |
380 | if (clusters_available < clusters_committed) { | |
381 | printf("%s %d clusters committed, %d available.\n", | |
382 | my_name, | |
383 | clusters_committed, | |
384 | clusters_available); | |
385 | } | |
386 | } | |
387 | PSL_UNLOCK(); | |
388 | } | |
389 | ||
390 | backing_store_t backing_store_alloc(void); /* forward */ | |
391 | ||
392 | backing_store_t | |
393 | backing_store_alloc(void) | |
394 | { | |
395 | backing_store_t bs; | |
1c79356b A |
396 | |
397 | bs = (backing_store_t) kalloc(sizeof (struct backing_store)); | |
398 | if (bs == BACKING_STORE_NULL) | |
399 | panic("backing_store_alloc: no memory"); | |
400 | ||
401 | BS_LOCK_INIT(bs); | |
402 | bs->bs_port = MACH_PORT_NULL; | |
403 | bs->bs_priority = 0; | |
404 | bs->bs_clsize = 0; | |
405 | bs->bs_pages_total = 0; | |
406 | bs->bs_pages_in = 0; | |
407 | bs->bs_pages_in_fail = 0; | |
408 | bs->bs_pages_out = 0; | |
409 | bs->bs_pages_out_fail = 0; | |
410 | ||
411 | return bs; | |
412 | } | |
413 | ||
414 | backing_store_t backing_store_lookup(MACH_PORT_FACE); /* forward */ | |
415 | ||
416 | /* Even in both the component space and external versions of this pager, */ | |
417 | /* backing_store_lookup will be called from tasks in the application space */ | |
418 | backing_store_t | |
419 | backing_store_lookup( | |
420 | MACH_PORT_FACE port) | |
421 | { | |
422 | backing_store_t bs; | |
423 | ||
424 | /* | |
425 | port is currently backed with a vs structure in the alias field | |
426 | we could create an ISBS alias and a port_is_bs call but frankly | |
427 | I see no reason for the test, the bs->port == port check below | |
428 | will work properly on junk entries. | |
429 | ||
430 | if ((port == MACH_PORT_NULL) || port_is_vs(port)) | |
431 | */ | |
432 | if ((port == MACH_PORT_NULL)) | |
433 | return BACKING_STORE_NULL; | |
434 | ||
435 | BSL_LOCK(); | |
436 | queue_iterate(&backing_store_list.bsl_queue, bs, backing_store_t, | |
437 | bs_links) { | |
438 | BS_LOCK(bs); | |
439 | if (bs->bs_port == port) { | |
440 | BSL_UNLOCK(); | |
441 | /* Success, return it locked. */ | |
442 | return bs; | |
443 | } | |
444 | BS_UNLOCK(bs); | |
445 | } | |
446 | BSL_UNLOCK(); | |
447 | return BACKING_STORE_NULL; | |
448 | } | |
449 | ||
450 | void backing_store_add(backing_store_t); /* forward */ | |
451 | ||
452 | void | |
453 | backing_store_add( | |
91447636 | 454 | __unused backing_store_t bs) |
1c79356b | 455 | { |
91447636 A |
456 | // MACH_PORT_FACE port = bs->bs_port; |
457 | // MACH_PORT_FACE pset = default_pager_default_set; | |
1c79356b | 458 | kern_return_t kr = KERN_SUCCESS; |
1c79356b A |
459 | |
460 | if (kr != KERN_SUCCESS) | |
461 | panic("backing_store_add: add to set"); | |
462 | ||
463 | } | |
464 | ||
465 | /* | |
466 | * Set up default page shift, but only if not already | |
467 | * set and argument is within range. | |
468 | */ | |
469 | boolean_t | |
470 | bs_set_default_clsize(unsigned int npages) | |
471 | { | |
472 | switch(npages){ | |
473 | case 1: | |
474 | case 2: | |
475 | case 4: | |
476 | case 8: | |
477 | if (default_pager_clsize == 0) /* if not yet set */ | |
478 | vstruct_def_clshift = local_log2(npages); | |
479 | return(TRUE); | |
480 | } | |
481 | return(FALSE); | |
482 | } | |
483 | ||
484 | int bs_get_global_clsize(int clsize); /* forward */ | |
485 | ||
486 | int | |
487 | bs_get_global_clsize( | |
488 | int clsize) | |
489 | { | |
490 | int i; | |
0b4e3aa0 | 491 | memory_object_default_t dmm; |
1c79356b | 492 | kern_return_t kr; |
1c79356b A |
493 | |
494 | /* | |
495 | * Only allow setting of cluster size once. If called | |
496 | * with no cluster size (default), we use the compiled-in default | |
497 | * for the duration. The same cluster size is used for all | |
498 | * paging segments. | |
499 | */ | |
500 | if (default_pager_clsize == 0) { | |
1c79356b A |
501 | /* |
502 | * Keep cluster size in bit shift because it's quicker | |
503 | * arithmetic, and easier to keep at a power of 2. | |
504 | */ | |
505 | if (clsize != NO_CLSIZE) { | |
506 | for (i = 0; (1 << i) < clsize; i++); | |
507 | if (i > MAX_CLUSTER_SHIFT) | |
508 | i = MAX_CLUSTER_SHIFT; | |
509 | vstruct_def_clshift = i; | |
510 | } | |
511 | default_pager_clsize = (1 << vstruct_def_clshift); | |
512 | ||
513 | /* | |
514 | * Let the user know the new (and definitive) cluster size. | |
515 | */ | |
516 | if (verbose) | |
517 | printf("%scluster size = %d page%s\n", | |
518 | my_name, default_pager_clsize, | |
519 | (default_pager_clsize == 1) ? "" : "s"); | |
0b4e3aa0 | 520 | |
1c79356b A |
521 | /* |
522 | * Let the kernel know too, in case it hasn't used the | |
523 | * default value provided in main() yet. | |
524 | */ | |
0b4e3aa0 | 525 | dmm = default_pager_object; |
1c79356b A |
526 | clsize = default_pager_clsize * vm_page_size; /* in bytes */ |
527 | kr = host_default_memory_manager(host_priv_self(), | |
0b4e3aa0 | 528 | &dmm, |
1c79356b | 529 | clsize); |
0b4e3aa0 A |
530 | memory_object_default_deallocate(dmm); |
531 | ||
1c79356b A |
532 | if (kr != KERN_SUCCESS) { |
533 | panic("bs_get_global_cl_size:host_default_memory_manager"); | |
534 | } | |
0b4e3aa0 | 535 | if (dmm != default_pager_object) { |
1c79356b A |
536 | panic("bs_get_global_cl_size:there is another default pager"); |
537 | } | |
538 | } | |
539 | ASSERT(default_pager_clsize > 0 && | |
540 | (default_pager_clsize & (default_pager_clsize - 1)) == 0); | |
541 | ||
542 | return default_pager_clsize; | |
543 | } | |
544 | ||
545 | kern_return_t | |
546 | default_pager_backing_store_create( | |
0b4e3aa0 A |
547 | memory_object_default_t pager, |
548 | int priority, | |
549 | int clsize, /* in bytes */ | |
550 | MACH_PORT_FACE *backing_store) | |
1c79356b A |
551 | { |
552 | backing_store_t bs; | |
553 | MACH_PORT_FACE port; | |
91447636 | 554 | // kern_return_t kr; |
1c79356b | 555 | struct vstruct_alias *alias_struct; |
1c79356b | 556 | |
0b4e3aa0 | 557 | if (pager != default_pager_object) |
1c79356b A |
558 | return KERN_INVALID_ARGUMENT; |
559 | ||
560 | bs = backing_store_alloc(); | |
561 | port = ipc_port_alloc_kernel(); | |
562 | ipc_port_make_send(port); | |
563 | assert (port != IP_NULL); | |
564 | ||
91447636 A |
565 | DP_DEBUG(DEBUG_BS_EXTERNAL, |
566 | ("priority=%d clsize=%d bs_port=0x%x\n", | |
567 | priority, clsize, (int) backing_store)); | |
1c79356b A |
568 | |
569 | alias_struct = (struct vstruct_alias *) | |
570 | kalloc(sizeof (struct vstruct_alias)); | |
571 | if(alias_struct != NULL) { | |
572 | alias_struct->vs = (struct vstruct *)bs; | |
0c530ab8 | 573 | alias_struct->name = &default_pager_ops; |
1c79356b A |
574 | port->alias = (int) alias_struct; |
575 | } | |
576 | else { | |
577 | ipc_port_dealloc_kernel((MACH_PORT_FACE)(port)); | |
91447636 | 578 | kfree(bs, sizeof (struct backing_store)); |
1c79356b A |
579 | return KERN_RESOURCE_SHORTAGE; |
580 | } | |
581 | ||
582 | bs->bs_port = port; | |
583 | if (priority == DEFAULT_PAGER_BACKING_STORE_MAXPRI) | |
584 | priority = BS_MAXPRI; | |
585 | else if (priority == BS_NOPRI) | |
586 | priority = BS_MAXPRI; | |
587 | else | |
588 | priority = BS_MINPRI; | |
589 | bs->bs_priority = priority; | |
590 | ||
55e303ae | 591 | bs->bs_clsize = bs_get_global_clsize(atop_32(clsize)); |
1c79356b A |
592 | |
593 | BSL_LOCK(); | |
594 | queue_enter(&backing_store_list.bsl_queue, bs, backing_store_t, | |
595 | bs_links); | |
596 | BSL_UNLOCK(); | |
597 | ||
598 | backing_store_add(bs); | |
599 | ||
600 | *backing_store = port; | |
601 | return KERN_SUCCESS; | |
602 | } | |
603 | ||
604 | kern_return_t | |
605 | default_pager_backing_store_info( | |
606 | MACH_PORT_FACE backing_store, | |
607 | backing_store_flavor_t flavour, | |
608 | backing_store_info_t info, | |
609 | mach_msg_type_number_t *size) | |
610 | { | |
611 | backing_store_t bs; | |
612 | backing_store_basic_info_t basic; | |
613 | int i; | |
614 | paging_segment_t ps; | |
615 | ||
616 | if (flavour != BACKING_STORE_BASIC_INFO || | |
617 | *size < BACKING_STORE_BASIC_INFO_COUNT) | |
618 | return KERN_INVALID_ARGUMENT; | |
619 | ||
620 | basic = (backing_store_basic_info_t)info; | |
621 | *size = BACKING_STORE_BASIC_INFO_COUNT; | |
622 | ||
623 | VSTATS_LOCK(&global_stats.gs_lock); | |
624 | basic->pageout_calls = global_stats.gs_pageout_calls; | |
625 | basic->pagein_calls = global_stats.gs_pagein_calls; | |
626 | basic->pages_in = global_stats.gs_pages_in; | |
627 | basic->pages_out = global_stats.gs_pages_out; | |
628 | basic->pages_unavail = global_stats.gs_pages_unavail; | |
629 | basic->pages_init = global_stats.gs_pages_init; | |
630 | basic->pages_init_writes= global_stats.gs_pages_init_writes; | |
631 | VSTATS_UNLOCK(&global_stats.gs_lock); | |
632 | ||
633 | if ((bs = backing_store_lookup(backing_store)) == BACKING_STORE_NULL) | |
634 | return KERN_INVALID_ARGUMENT; | |
635 | ||
636 | basic->bs_pages_total = bs->bs_pages_total; | |
637 | PSL_LOCK(); | |
638 | bs->bs_pages_free = 0; | |
639 | for (i = 0; i <= paging_segment_max; i++) { | |
640 | ps = paging_segments[i]; | |
641 | if (ps != PAGING_SEGMENT_NULL && ps->ps_bs == bs) { | |
642 | PS_LOCK(ps); | |
643 | bs->bs_pages_free += ps->ps_clcount << ps->ps_clshift; | |
644 | PS_UNLOCK(ps); | |
645 | } | |
646 | } | |
647 | PSL_UNLOCK(); | |
648 | basic->bs_pages_free = bs->bs_pages_free; | |
649 | basic->bs_pages_in = bs->bs_pages_in; | |
650 | basic->bs_pages_in_fail = bs->bs_pages_in_fail; | |
651 | basic->bs_pages_out = bs->bs_pages_out; | |
652 | basic->bs_pages_out_fail= bs->bs_pages_out_fail; | |
653 | ||
654 | basic->bs_priority = bs->bs_priority; | |
55e303ae | 655 | basic->bs_clsize = ptoa_32(bs->bs_clsize); /* in bytes */ |
1c79356b A |
656 | |
657 | BS_UNLOCK(bs); | |
658 | ||
659 | return KERN_SUCCESS; | |
660 | } | |
661 | ||
662 | int ps_delete(paging_segment_t); /* forward */ | |
663 | ||
664 | int | |
665 | ps_delete( | |
666 | paging_segment_t ps) | |
667 | { | |
668 | vstruct_t vs; | |
669 | kern_return_t error = KERN_SUCCESS; | |
670 | int vs_count; | |
671 | ||
672 | VSL_LOCK(); /* get the lock on the list of vs's */ | |
673 | ||
674 | /* The lock relationship and sequence is farily complicated */ | |
675 | /* this code looks at a live list, locking and unlocking the list */ | |
676 | /* as it traverses it. It depends on the locking behavior of */ | |
677 | /* default_pager_no_senders. no_senders always locks the vstruct */ | |
678 | /* targeted for removal before locking the vstruct list. However */ | |
679 | /* it will remove that member of the list without locking its */ | |
680 | /* neighbors. We can be sure when we hold a lock on a vstruct */ | |
681 | /* it cannot be removed from the list but we must hold the list */ | |
682 | /* lock to be sure that its pointers to its neighbors are valid. */ | |
683 | /* Also, we can hold off destruction of a vstruct when the list */ | |
684 | /* lock and the vs locks are not being held by bumping the */ | |
685 | /* vs_async_pending count. */ | |
686 | ||
0b4e3aa0 A |
687 | |
688 | while(backing_store_release_trigger_disable != 0) { | |
9bccf70c | 689 | VSL_SLEEP(&backing_store_release_trigger_disable, THREAD_UNINT); |
0b4e3aa0 A |
690 | } |
691 | ||
1c79356b A |
692 | /* we will choose instead to hold a send right */ |
693 | vs_count = vstruct_list.vsl_count; | |
694 | vs = (vstruct_t) queue_first((queue_entry_t)&(vstruct_list.vsl_queue)); | |
695 | if(vs == (vstruct_t)&vstruct_list) { | |
696 | VSL_UNLOCK(); | |
697 | return KERN_SUCCESS; | |
698 | } | |
699 | VS_LOCK(vs); | |
700 | vs_async_wait(vs); /* wait for any pending async writes */ | |
701 | if ((vs_count != 0) && (vs != NULL)) | |
702 | vs->vs_async_pending += 1; /* hold parties calling */ | |
703 | /* vs_async_wait */ | |
704 | VS_UNLOCK(vs); | |
705 | VSL_UNLOCK(); | |
706 | while((vs_count != 0) && (vs != NULL)) { | |
707 | /* We take the count of AMO's before beginning the */ | |
708 | /* transfer of of the target segment. */ | |
709 | /* We are guaranteed that the target segment cannot get */ | |
710 | /* more users. We also know that queue entries are */ | |
711 | /* made at the back of the list. If some of the entries */ | |
712 | /* we would check disappear while we are traversing the */ | |
713 | /* list then we will either check new entries which */ | |
714 | /* do not have any backing store in the target segment */ | |
715 | /* or re-check old entries. This might not be optimal */ | |
716 | /* but it will always be correct. The alternative is to */ | |
717 | /* take a snapshot of the list. */ | |
718 | vstruct_t next_vs; | |
719 | ||
720 | if(dp_pages_free < cluster_transfer_minimum) | |
721 | error = KERN_FAILURE; | |
722 | else { | |
723 | vm_object_t transfer_object; | |
0c530ab8 | 724 | unsigned int count; |
1c79356b A |
725 | upl_t upl; |
726 | ||
91447636 | 727 | transfer_object = vm_object_allocate((vm_object_size_t)VM_SUPER_CLUSTER); |
0b4e3aa0 A |
728 | count = 0; |
729 | error = vm_object_upl_request(transfer_object, | |
730 | (vm_object_offset_t)0, VM_SUPER_CLUSTER, | |
731 | &upl, NULL, &count, | |
2d21ac55 A |
732 | UPL_NO_SYNC | UPL_CLEAN_IN_PLACE | UPL_SET_LITE | UPL_SET_INTERNAL); |
733 | ||
1c79356b | 734 | if(error == KERN_SUCCESS) { |
1c79356b A |
735 | error = ps_vstruct_transfer_from_segment( |
736 | vs, ps, upl); | |
91447636 | 737 | upl_commit(upl, NULL, 0); |
0b4e3aa0 | 738 | upl_deallocate(upl); |
1c79356b | 739 | } else { |
1c79356b A |
740 | error = KERN_FAILURE; |
741 | } | |
9bccf70c | 742 | vm_object_deallocate(transfer_object); |
1c79356b A |
743 | } |
744 | if(error) { | |
745 | VS_LOCK(vs); | |
746 | vs->vs_async_pending -= 1; /* release vs_async_wait */ | |
0b4e3aa0 A |
747 | if (vs->vs_async_pending == 0 && vs->vs_waiting_async) { |
748 | vs->vs_waiting_async = FALSE; | |
1c79356b | 749 | VS_UNLOCK(vs); |
0b4e3aa0 | 750 | thread_wakeup(&vs->vs_async_pending); |
1c79356b A |
751 | } else { |
752 | VS_UNLOCK(vs); | |
753 | } | |
754 | return KERN_FAILURE; | |
755 | } | |
756 | ||
757 | VSL_LOCK(); | |
0b4e3aa0 A |
758 | |
759 | while(backing_store_release_trigger_disable != 0) { | |
9bccf70c A |
760 | VSL_SLEEP(&backing_store_release_trigger_disable, |
761 | THREAD_UNINT); | |
0b4e3aa0 A |
762 | } |
763 | ||
1c79356b A |
764 | next_vs = (vstruct_t) queue_next(&(vs->vs_links)); |
765 | if((next_vs != (vstruct_t)&vstruct_list) && | |
766 | (vs != next_vs) && (vs_count != 1)) { | |
767 | VS_LOCK(next_vs); | |
768 | vs_async_wait(next_vs); /* wait for any */ | |
769 | /* pending async writes */ | |
770 | next_vs->vs_async_pending += 1; /* hold parties */ | |
771 | /* calling vs_async_wait */ | |
772 | VS_UNLOCK(next_vs); | |
773 | } | |
774 | VSL_UNLOCK(); | |
775 | VS_LOCK(vs); | |
776 | vs->vs_async_pending -= 1; | |
0b4e3aa0 A |
777 | if (vs->vs_async_pending == 0 && vs->vs_waiting_async) { |
778 | vs->vs_waiting_async = FALSE; | |
1c79356b | 779 | VS_UNLOCK(vs); |
0b4e3aa0 | 780 | thread_wakeup(&vs->vs_async_pending); |
1c79356b A |
781 | } else { |
782 | VS_UNLOCK(vs); | |
783 | } | |
784 | if((vs == next_vs) || (next_vs == (vstruct_t)&vstruct_list)) | |
785 | vs = NULL; | |
786 | else | |
787 | vs = next_vs; | |
788 | vs_count--; | |
789 | } | |
790 | return KERN_SUCCESS; | |
791 | } | |
792 | ||
793 | ||
794 | kern_return_t | |
795 | default_pager_backing_store_delete( | |
796 | MACH_PORT_FACE backing_store) | |
797 | { | |
798 | backing_store_t bs; | |
799 | int i; | |
800 | paging_segment_t ps; | |
801 | int error; | |
802 | int interim_pages_removed = 0; | |
91447636 | 803 | // kern_return_t kr; |
1c79356b A |
804 | |
805 | if ((bs = backing_store_lookup(backing_store)) == BACKING_STORE_NULL) | |
806 | return KERN_INVALID_ARGUMENT; | |
807 | ||
808 | #if 0 | |
809 | /* not implemented */ | |
810 | BS_UNLOCK(bs); | |
811 | return KERN_FAILURE; | |
812 | #endif | |
813 | ||
814 | restart: | |
815 | PSL_LOCK(); | |
816 | error = KERN_SUCCESS; | |
817 | for (i = 0; i <= paging_segment_max; i++) { | |
818 | ps = paging_segments[i]; | |
819 | if (ps != PAGING_SEGMENT_NULL && | |
820 | ps->ps_bs == bs && | |
821 | ! ps->ps_going_away) { | |
822 | PS_LOCK(ps); | |
823 | /* disable access to this segment */ | |
824 | ps->ps_going_away = TRUE; | |
825 | PS_UNLOCK(ps); | |
826 | /* | |
827 | * The "ps" segment is "off-line" now, | |
828 | * we can try and delete it... | |
829 | */ | |
830 | if(dp_pages_free < (cluster_transfer_minimum | |
831 | + ps->ps_pgcount)) { | |
832 | error = KERN_FAILURE; | |
833 | PSL_UNLOCK(); | |
834 | } | |
835 | else { | |
836 | /* remove all pages associated with the */ | |
837 | /* segment from the list of free pages */ | |
838 | /* when transfer is through, all target */ | |
839 | /* segment pages will appear to be free */ | |
840 | ||
841 | dp_pages_free -= ps->ps_pgcount; | |
842 | interim_pages_removed += ps->ps_pgcount; | |
843 | PSL_UNLOCK(); | |
844 | error = ps_delete(ps); | |
845 | } | |
846 | if (error != KERN_SUCCESS) { | |
847 | /* | |
848 | * We couldn't delete the segment, | |
849 | * probably because there's not enough | |
850 | * virtual memory left. | |
851 | * Re-enable all the segments. | |
852 | */ | |
853 | PSL_LOCK(); | |
854 | break; | |
855 | } | |
856 | goto restart; | |
857 | } | |
858 | } | |
859 | ||
860 | if (error != KERN_SUCCESS) { | |
861 | for (i = 0; i <= paging_segment_max; i++) { | |
862 | ps = paging_segments[i]; | |
863 | if (ps != PAGING_SEGMENT_NULL && | |
864 | ps->ps_bs == bs && | |
865 | ps->ps_going_away) { | |
866 | PS_LOCK(ps); | |
867 | /* re-enable access to this segment */ | |
868 | ps->ps_going_away = FALSE; | |
869 | PS_UNLOCK(ps); | |
870 | } | |
871 | } | |
872 | dp_pages_free += interim_pages_removed; | |
873 | PSL_UNLOCK(); | |
874 | BS_UNLOCK(bs); | |
875 | return error; | |
876 | } | |
877 | ||
878 | for (i = 0; i <= paging_segment_max; i++) { | |
879 | ps = paging_segments[i]; | |
880 | if (ps != PAGING_SEGMENT_NULL && | |
881 | ps->ps_bs == bs) { | |
882 | if(ps->ps_going_away) { | |
883 | paging_segments[i] = PAGING_SEGMENT_NULL; | |
884 | paging_segment_count--; | |
885 | PS_LOCK(ps); | |
91447636 A |
886 | kfree(ps->ps_bmap, RMAPSIZE(ps->ps_ncls)); |
887 | kfree(ps, sizeof *ps); | |
1c79356b A |
888 | } |
889 | } | |
890 | } | |
891 | ||
892 | /* Scan the entire ps array separately to make certain we find the */ | |
893 | /* proper paging_segment_max */ | |
894 | for (i = 0; i < MAX_NUM_PAGING_SEGMENTS; i++) { | |
895 | if(paging_segments[i] != PAGING_SEGMENT_NULL) | |
896 | paging_segment_max = i; | |
897 | } | |
898 | ||
899 | PSL_UNLOCK(); | |
900 | ||
901 | /* | |
902 | * All the segments have been deleted. | |
903 | * We can remove the backing store. | |
904 | */ | |
905 | ||
906 | /* | |
907 | * Disable lookups of this backing store. | |
908 | */ | |
909 | if((void *)bs->bs_port->alias != NULL) | |
91447636 A |
910 | kfree((void *) bs->bs_port->alias, |
911 | sizeof (struct vstruct_alias)); | |
1c79356b A |
912 | ipc_port_dealloc_kernel((ipc_port_t) (bs->bs_port)); |
913 | bs->bs_port = MACH_PORT_NULL; | |
914 | BS_UNLOCK(bs); | |
915 | ||
916 | /* | |
917 | * Remove backing store from backing_store list. | |
918 | */ | |
919 | BSL_LOCK(); | |
920 | queue_remove(&backing_store_list.bsl_queue, bs, backing_store_t, | |
921 | bs_links); | |
922 | BSL_UNLOCK(); | |
923 | ||
924 | /* | |
925 | * Free the backing store structure. | |
926 | */ | |
91447636 | 927 | kfree(bs, sizeof *bs); |
1c79356b A |
928 | |
929 | return KERN_SUCCESS; | |
930 | } | |
931 | ||
932 | int ps_enter(paging_segment_t); /* forward */ | |
933 | ||
934 | int | |
935 | ps_enter( | |
936 | paging_segment_t ps) | |
937 | { | |
938 | int i; | |
939 | ||
940 | PSL_LOCK(); | |
941 | ||
942 | for (i = 0; i < MAX_NUM_PAGING_SEGMENTS; i++) { | |
943 | if (paging_segments[i] == PAGING_SEGMENT_NULL) | |
944 | break; | |
945 | } | |
946 | ||
947 | if (i < MAX_NUM_PAGING_SEGMENTS) { | |
948 | paging_segments[i] = ps; | |
949 | if (i > paging_segment_max) | |
950 | paging_segment_max = i; | |
951 | paging_segment_count++; | |
952 | if ((ps_select_array[ps->ps_bs->bs_priority] == BS_NOPRI) || | |
953 | (ps_select_array[ps->ps_bs->bs_priority] == BS_FULLPRI)) | |
954 | ps_select_array[ps->ps_bs->bs_priority] = 0; | |
955 | i = 0; | |
956 | } else { | |
957 | PSL_UNLOCK(); | |
958 | return KERN_RESOURCE_SHORTAGE; | |
959 | } | |
960 | ||
961 | PSL_UNLOCK(); | |
962 | return i; | |
963 | } | |
964 | ||
965 | #ifdef DEVICE_PAGING | |
966 | kern_return_t | |
967 | default_pager_add_segment( | |
968 | MACH_PORT_FACE backing_store, | |
969 | MACH_PORT_FACE device, | |
970 | recnum_t offset, | |
971 | recnum_t count, | |
972 | int record_size) | |
973 | { | |
974 | backing_store_t bs; | |
975 | paging_segment_t ps; | |
976 | int i; | |
977 | int error; | |
1c79356b A |
978 | |
979 | if ((bs = backing_store_lookup(backing_store)) | |
980 | == BACKING_STORE_NULL) | |
981 | return KERN_INVALID_ARGUMENT; | |
982 | ||
983 | PSL_LOCK(); | |
984 | for (i = 0; i <= paging_segment_max; i++) { | |
985 | ps = paging_segments[i]; | |
986 | if (ps == PAGING_SEGMENT_NULL) | |
987 | continue; | |
988 | ||
989 | /* | |
990 | * Check for overlap on same device. | |
991 | */ | |
992 | if (!(ps->ps_device != device | |
993 | || offset >= ps->ps_offset + ps->ps_recnum | |
994 | || offset + count <= ps->ps_offset)) { | |
995 | PSL_UNLOCK(); | |
996 | BS_UNLOCK(bs); | |
997 | return KERN_INVALID_ARGUMENT; | |
998 | } | |
999 | } | |
1000 | PSL_UNLOCK(); | |
1001 | ||
1002 | /* | |
1003 | * Set up the paging segment | |
1004 | */ | |
1005 | ps = (paging_segment_t) kalloc(sizeof (struct paging_segment)); | |
1006 | if (ps == PAGING_SEGMENT_NULL) { | |
1007 | BS_UNLOCK(bs); | |
1008 | return KERN_RESOURCE_SHORTAGE; | |
1009 | } | |
1010 | ||
1011 | ps->ps_segtype = PS_PARTITION; | |
1012 | ps->ps_device = device; | |
1013 | ps->ps_offset = offset; | |
1014 | ps->ps_record_shift = local_log2(vm_page_size / record_size); | |
1015 | ps->ps_recnum = count; | |
1016 | ps->ps_pgnum = count >> ps->ps_record_shift; | |
1017 | ||
1018 | ps->ps_pgcount = ps->ps_pgnum; | |
1019 | ps->ps_clshift = local_log2(bs->bs_clsize); | |
1020 | ps->ps_clcount = ps->ps_ncls = ps->ps_pgcount >> ps->ps_clshift; | |
1021 | ps->ps_hint = 0; | |
1022 | ||
1023 | PS_LOCK_INIT(ps); | |
1024 | ps->ps_bmap = (unsigned char *) kalloc(RMAPSIZE(ps->ps_ncls)); | |
1025 | if (!ps->ps_bmap) { | |
91447636 | 1026 | kfree(ps, sizeof *ps); |
1c79356b A |
1027 | BS_UNLOCK(bs); |
1028 | return KERN_RESOURCE_SHORTAGE; | |
1029 | } | |
1030 | for (i = 0; i < ps->ps_ncls; i++) { | |
1031 | clrbit(ps->ps_bmap, i); | |
1032 | } | |
1033 | ||
1034 | ps->ps_going_away = FALSE; | |
1035 | ps->ps_bs = bs; | |
1036 | ||
1037 | if ((error = ps_enter(ps)) != 0) { | |
91447636 A |
1038 | kfree(ps->ps_bmap, RMAPSIZE(ps->ps_ncls)); |
1039 | kfree(ps, sizeof *ps); | |
1c79356b A |
1040 | BS_UNLOCK(bs); |
1041 | return KERN_RESOURCE_SHORTAGE; | |
1042 | } | |
1043 | ||
1044 | bs->bs_pages_free += ps->ps_clcount << ps->ps_clshift; | |
1045 | bs->bs_pages_total += ps->ps_clcount << ps->ps_clshift; | |
1046 | BS_UNLOCK(bs); | |
1047 | ||
1048 | PSL_LOCK(); | |
1049 | dp_pages_free += ps->ps_pgcount; | |
1050 | PSL_UNLOCK(); | |
1051 | ||
1052 | bs_more_space(ps->ps_clcount); | |
1053 | ||
91447636 A |
1054 | DP_DEBUG(DEBUG_BS_INTERNAL, |
1055 | ("device=0x%x,offset=0x%x,count=0x%x,record_size=0x%x,shift=%d,total_size=0x%x\n", | |
1056 | device, offset, count, record_size, | |
1057 | ps->ps_record_shift, ps->ps_pgnum)); | |
1c79356b A |
1058 | |
1059 | return KERN_SUCCESS; | |
1060 | } | |
1061 | ||
1062 | boolean_t | |
1063 | bs_add_device( | |
1064 | char *dev_name, | |
1065 | MACH_PORT_FACE master) | |
1066 | { | |
1067 | security_token_t null_security_token = { | |
1068 | { 0, 0 } | |
1069 | }; | |
1070 | MACH_PORT_FACE device; | |
1071 | int info[DEV_GET_SIZE_COUNT]; | |
1072 | mach_msg_type_number_t info_count; | |
1073 | MACH_PORT_FACE bs = MACH_PORT_NULL; | |
1074 | unsigned int rec_size; | |
1075 | recnum_t count; | |
1076 | int clsize; | |
1077 | MACH_PORT_FACE reply_port; | |
1078 | ||
1079 | if (ds_device_open_sync(master, MACH_PORT_NULL, D_READ | D_WRITE, | |
1080 | null_security_token, dev_name, &device)) | |
1081 | return FALSE; | |
1082 | ||
1083 | info_count = DEV_GET_SIZE_COUNT; | |
1084 | if (!ds_device_get_status(device, DEV_GET_SIZE, info, &info_count)) { | |
1085 | rec_size = info[DEV_GET_SIZE_RECORD_SIZE]; | |
1086 | count = info[DEV_GET_SIZE_DEVICE_SIZE] / rec_size; | |
1087 | clsize = bs_get_global_clsize(0); | |
1088 | if (!default_pager_backing_store_create( | |
0b4e3aa0 | 1089 | default_pager_object, |
1c79356b A |
1090 | DEFAULT_PAGER_BACKING_STORE_MAXPRI, |
1091 | (clsize * vm_page_size), | |
1092 | &bs)) { | |
1093 | if (!default_pager_add_segment(bs, device, | |
1094 | 0, count, rec_size)) { | |
1095 | return TRUE; | |
1096 | } | |
1097 | ipc_port_release_receive(bs); | |
1098 | } | |
1099 | } | |
1100 | ||
1101 | ipc_port_release_send(device); | |
1102 | return FALSE; | |
1103 | } | |
1104 | #endif /* DEVICE_PAGING */ | |
1105 | ||
1106 | #if VS_ASYNC_REUSE | |
1107 | ||
1108 | struct vs_async * | |
1109 | vs_alloc_async(void) | |
1110 | { | |
1111 | struct vs_async *vsa; | |
1112 | MACH_PORT_FACE reply_port; | |
91447636 | 1113 | // kern_return_t kr; |
1c79356b A |
1114 | |
1115 | VS_ASYNC_LOCK(); | |
1116 | if (vs_async_free_list == NULL) { | |
1117 | VS_ASYNC_UNLOCK(); | |
1118 | vsa = (struct vs_async *) kalloc(sizeof (struct vs_async)); | |
1119 | if (vsa != NULL) { | |
1120 | /* | |
1121 | * Try allocating a reply port named after the | |
1122 | * address of the vs_async structure. | |
1123 | */ | |
1124 | struct vstruct_alias *alias_struct; | |
1125 | ||
1126 | reply_port = ipc_port_alloc_kernel(); | |
1127 | alias_struct = (struct vstruct_alias *) | |
1128 | kalloc(sizeof (struct vstruct_alias)); | |
1129 | if(alias_struct != NULL) { | |
1130 | alias_struct->vs = (struct vstruct *)vsa; | |
0c530ab8 | 1131 | alias_struct->name = &default_pager_ops; |
1c79356b A |
1132 | reply_port->alias = (int) alias_struct; |
1133 | vsa->reply_port = reply_port; | |
1134 | vs_alloc_async_count++; | |
1135 | } | |
1136 | else { | |
1137 | vs_alloc_async_failed++; | |
1138 | ipc_port_dealloc_kernel((MACH_PORT_FACE) | |
1139 | (reply_port)); | |
91447636 | 1140 | kfree(vsa, sizeof (struct vs_async)); |
1c79356b A |
1141 | vsa = NULL; |
1142 | } | |
1143 | } | |
1144 | } else { | |
1145 | vsa = vs_async_free_list; | |
1146 | vs_async_free_list = vs_async_free_list->vsa_next; | |
1147 | VS_ASYNC_UNLOCK(); | |
1148 | } | |
1149 | ||
1150 | return vsa; | |
1151 | } | |
1152 | ||
1153 | void | |
1154 | vs_free_async( | |
1155 | struct vs_async *vsa) | |
1156 | { | |
1157 | VS_ASYNC_LOCK(); | |
1158 | vsa->vsa_next = vs_async_free_list; | |
1159 | vs_async_free_list = vsa; | |
1160 | VS_ASYNC_UNLOCK(); | |
1161 | } | |
1162 | ||
1163 | #else /* VS_ASYNC_REUSE */ | |
1164 | ||
1165 | struct vs_async * | |
1166 | vs_alloc_async(void) | |
1167 | { | |
1168 | struct vs_async *vsa; | |
1169 | MACH_PORT_FACE reply_port; | |
1170 | kern_return_t kr; | |
1171 | ||
1172 | vsa = (struct vs_async *) kalloc(sizeof (struct vs_async)); | |
1173 | if (vsa != NULL) { | |
1174 | /* | |
1175 | * Try allocating a reply port named after the | |
1176 | * address of the vs_async structure. | |
1177 | */ | |
1178 | reply_port = ipc_port_alloc_kernel(); | |
1179 | alias_struct = (vstruct_alias *) | |
1180 | kalloc(sizeof (struct vstruct_alias)); | |
1181 | if(alias_struct != NULL) { | |
1182 | alias_struct->vs = reply_port; | |
0c530ab8 | 1183 | alias_struct->name = &default_pager_ops; |
1c79356b A |
1184 | reply_port->alias = (int) vsa; |
1185 | vsa->reply_port = reply_port; | |
1186 | vs_alloc_async_count++; | |
1187 | } | |
1188 | else { | |
1189 | vs_alloc_async_failed++; | |
1190 | ipc_port_dealloc_kernel((MACH_PORT_FACE) | |
1191 | (reply_port)); | |
91447636 | 1192 | kfree(vsa, sizeof (struct vs_async)); |
1c79356b A |
1193 | vsa = NULL; |
1194 | } | |
1195 | } | |
1196 | ||
1197 | return vsa; | |
1198 | } | |
1199 | ||
1200 | void | |
1201 | vs_free_async( | |
1202 | struct vs_async *vsa) | |
1203 | { | |
1c79356b A |
1204 | MACH_PORT_FACE reply_port; |
1205 | kern_return_t kr; | |
1206 | ||
1207 | reply_port = vsa->reply_port; | |
91447636 A |
1208 | kfree(reply_port->alias, sizeof (struct vstuct_alias)); |
1209 | kfree(vsa, sizeof (struct vs_async)); | |
1c79356b A |
1210 | ipc_port_dealloc_kernel((MACH_PORT_FACE) (reply_port)); |
1211 | #if 0 | |
1212 | VS_ASYNC_LOCK(); | |
1213 | vs_alloc_async_count--; | |
1214 | VS_ASYNC_UNLOCK(); | |
1215 | #endif | |
1216 | } | |
1217 | ||
1218 | #endif /* VS_ASYNC_REUSE */ | |
1219 | ||
0b4e3aa0 A |
1220 | zone_t vstruct_zone; |
1221 | ||
1c79356b A |
1222 | vstruct_t |
1223 | ps_vstruct_create( | |
1224 | vm_size_t size) | |
1225 | { | |
1226 | vstruct_t vs; | |
91447636 | 1227 | unsigned int i; |
1c79356b | 1228 | |
0b4e3aa0 | 1229 | vs = (vstruct_t) zalloc(vstruct_zone); |
1c79356b A |
1230 | if (vs == VSTRUCT_NULL) { |
1231 | return VSTRUCT_NULL; | |
1232 | } | |
1233 | ||
1234 | VS_LOCK_INIT(vs); | |
1235 | ||
1236 | /* | |
1237 | * The following fields will be provided later. | |
1238 | */ | |
0c530ab8 | 1239 | vs->vs_pager_ops = NULL; |
0b4e3aa0 A |
1240 | vs->vs_control = MEMORY_OBJECT_CONTROL_NULL; |
1241 | vs->vs_references = 1; | |
1c79356b | 1242 | vs->vs_seqno = 0; |
1c79356b A |
1243 | |
1244 | #ifdef MACH_KERNEL | |
1245 | vs->vs_waiting_seqno = FALSE; | |
1246 | vs->vs_waiting_read = FALSE; | |
1247 | vs->vs_waiting_write = FALSE; | |
1c79356b A |
1248 | vs->vs_waiting_async = FALSE; |
1249 | #else | |
91447636 A |
1250 | mutex_init(&vs->vs_waiting_seqno, 0); |
1251 | mutex_init(&vs->vs_waiting_read, 0); | |
1252 | mutex_init(&vs->vs_waiting_write, 0); | |
1253 | mutex_init(&vs->vs_waiting_refs, 0); | |
1254 | mutex_init(&vs->vs_waiting_async, 0); | |
1c79356b A |
1255 | #endif |
1256 | ||
1257 | vs->vs_readers = 0; | |
1258 | vs->vs_writers = 0; | |
1259 | ||
1260 | vs->vs_errors = 0; | |
1261 | ||
1262 | vs->vs_clshift = local_log2(bs_get_global_clsize(0)); | |
55e303ae | 1263 | vs->vs_size = ((atop_32(round_page_32(size)) - 1) >> vs->vs_clshift) + 1; |
1c79356b A |
1264 | vs->vs_async_pending = 0; |
1265 | ||
1266 | /* | |
1267 | * Allocate the pmap, either CLMAP_SIZE or INDIRECT_CLMAP_SIZE | |
1268 | * depending on the size of the memory object. | |
1269 | */ | |
1270 | if (INDIRECT_CLMAP(vs->vs_size)) { | |
1271 | vs->vs_imap = (struct vs_map **) | |
1272 | kalloc(INDIRECT_CLMAP_SIZE(vs->vs_size)); | |
1273 | vs->vs_indirect = TRUE; | |
1274 | } else { | |
1275 | vs->vs_dmap = (struct vs_map *) | |
1276 | kalloc(CLMAP_SIZE(vs->vs_size)); | |
1277 | vs->vs_indirect = FALSE; | |
1278 | } | |
1279 | vs->vs_xfer_pending = FALSE; | |
91447636 A |
1280 | DP_DEBUG(DEBUG_VS_INTERNAL, |
1281 | ("map=0x%x, indirect=%d\n", (int) vs->vs_dmap, vs->vs_indirect)); | |
1c79356b A |
1282 | |
1283 | /* | |
1284 | * Check to see that we got the space. | |
1285 | */ | |
1286 | if (!vs->vs_dmap) { | |
91447636 | 1287 | kfree(vs, sizeof *vs); |
1c79356b A |
1288 | return VSTRUCT_NULL; |
1289 | } | |
1290 | ||
1291 | /* | |
1292 | * Zero the indirect pointers, or clear the direct pointers. | |
1293 | */ | |
1294 | if (vs->vs_indirect) | |
1295 | memset(vs->vs_imap, 0, | |
1296 | INDIRECT_CLMAP_SIZE(vs->vs_size)); | |
1297 | else | |
1298 | for (i = 0; i < vs->vs_size; i++) | |
1299 | VSM_CLR(vs->vs_dmap[i]); | |
1300 | ||
1301 | VS_MAP_LOCK_INIT(vs); | |
1302 | ||
1303 | bs_commit(vs->vs_size); | |
1304 | ||
1305 | return vs; | |
1306 | } | |
1307 | ||
91447636 | 1308 | paging_segment_t ps_select_segment(unsigned int, int *); /* forward */ |
1c79356b A |
1309 | |
1310 | paging_segment_t | |
1311 | ps_select_segment( | |
91447636 A |
1312 | unsigned int shift, |
1313 | int *psindex) | |
1c79356b A |
1314 | { |
1315 | paging_segment_t ps; | |
1316 | int i; | |
1317 | int j; | |
1c79356b A |
1318 | |
1319 | /* | |
1320 | * Optimize case where there's only one segment. | |
1321 | * paging_segment_max will index the one and only segment. | |
1322 | */ | |
1323 | ||
1324 | PSL_LOCK(); | |
1325 | if (paging_segment_count == 1) { | |
1326 | paging_segment_t lps; /* used to avoid extra PS_UNLOCK */ | |
0b4e3aa0 | 1327 | ipc_port_t trigger = IP_NULL; |
1c79356b A |
1328 | |
1329 | ps = paging_segments[paging_segment_max]; | |
1330 | *psindex = paging_segment_max; | |
1331 | PS_LOCK(ps); | |
1332 | if (ps->ps_going_away) { | |
1333 | /* this segment is being turned off */ | |
1334 | lps = PAGING_SEGMENT_NULL; | |
1335 | } else { | |
1336 | ASSERT(ps->ps_clshift >= shift); | |
1337 | if (ps->ps_clcount) { | |
1338 | ps->ps_clcount--; | |
1339 | dp_pages_free -= 1 << ps->ps_clshift; | |
1340 | if(min_pages_trigger_port && | |
1341 | (dp_pages_free < minimum_pages_remaining)) { | |
0b4e3aa0 | 1342 | trigger = min_pages_trigger_port; |
1c79356b A |
1343 | min_pages_trigger_port = NULL; |
1344 | bs_low = TRUE; | |
1345 | } | |
1346 | lps = ps; | |
1347 | } else | |
1348 | lps = PAGING_SEGMENT_NULL; | |
1349 | } | |
1350 | PS_UNLOCK(ps); | |
1351 | PSL_UNLOCK(); | |
0b4e3aa0 A |
1352 | |
1353 | if (trigger != IP_NULL) { | |
1354 | default_pager_space_alert(trigger, HI_WAT_ALERT); | |
1355 | ipc_port_release_send(trigger); | |
1356 | } | |
1c79356b A |
1357 | return lps; |
1358 | } | |
1359 | ||
1360 | if (paging_segment_count == 0) { | |
1361 | PSL_UNLOCK(); | |
1362 | return PAGING_SEGMENT_NULL; | |
1363 | } | |
1364 | ||
1365 | for (i = BS_MAXPRI; | |
1366 | i >= BS_MINPRI; i--) { | |
1367 | int start_index; | |
1368 | ||
1369 | if ((ps_select_array[i] == BS_NOPRI) || | |
1370 | (ps_select_array[i] == BS_FULLPRI)) | |
1371 | continue; | |
1372 | start_index = ps_select_array[i]; | |
1373 | ||
1374 | if(!(paging_segments[start_index])) { | |
1375 | j = start_index+1; | |
1376 | physical_transfer_cluster_count = 0; | |
1377 | } | |
0b4e3aa0 | 1378 | else if ((physical_transfer_cluster_count+1) == (ALLOC_STRIDE >> |
1c79356b | 1379 | (((paging_segments[start_index])->ps_clshift) |
0b4e3aa0 | 1380 | + vm_page_shift))) { |
1c79356b A |
1381 | physical_transfer_cluster_count = 0; |
1382 | j = start_index + 1; | |
1383 | } else { | |
1384 | physical_transfer_cluster_count+=1; | |
1385 | j = start_index; | |
1386 | if(start_index == 0) | |
1387 | start_index = paging_segment_max; | |
1388 | else | |
1389 | start_index = start_index - 1; | |
1390 | } | |
1391 | ||
1392 | while (1) { | |
1393 | if (j > paging_segment_max) | |
1394 | j = 0; | |
1395 | if ((ps = paging_segments[j]) && | |
1396 | (ps->ps_bs->bs_priority == i)) { | |
1397 | /* | |
1398 | * Force the ps cluster size to be | |
1399 | * >= that of the vstruct. | |
1400 | */ | |
1401 | PS_LOCK(ps); | |
1402 | if (ps->ps_going_away) { | |
1403 | /* this segment is being turned off */ | |
1404 | } else if ((ps->ps_clcount) && | |
1405 | (ps->ps_clshift >= shift)) { | |
0b4e3aa0 A |
1406 | ipc_port_t trigger = IP_NULL; |
1407 | ||
1c79356b A |
1408 | ps->ps_clcount--; |
1409 | dp_pages_free -= 1 << ps->ps_clshift; | |
1410 | if(min_pages_trigger_port && | |
1411 | (dp_pages_free < | |
1412 | minimum_pages_remaining)) { | |
0b4e3aa0 | 1413 | trigger = min_pages_trigger_port; |
1c79356b A |
1414 | min_pages_trigger_port = NULL; |
1415 | } | |
1416 | PS_UNLOCK(ps); | |
1417 | /* | |
1418 | * found one, quit looking. | |
1419 | */ | |
1420 | ps_select_array[i] = j; | |
1421 | PSL_UNLOCK(); | |
0b4e3aa0 A |
1422 | |
1423 | if (trigger != IP_NULL) { | |
1424 | default_pager_space_alert( | |
1425 | trigger, | |
1426 | HI_WAT_ALERT); | |
1427 | ipc_port_release_send(trigger); | |
1428 | } | |
1c79356b A |
1429 | *psindex = j; |
1430 | return ps; | |
1431 | } | |
1432 | PS_UNLOCK(ps); | |
1433 | } | |
1434 | if (j == start_index) { | |
1435 | /* | |
1436 | * none at this priority -- mark it full | |
1437 | */ | |
1438 | ps_select_array[i] = BS_FULLPRI; | |
1439 | break; | |
1440 | } | |
1441 | j++; | |
1442 | } | |
1443 | } | |
1444 | PSL_UNLOCK(); | |
1445 | return PAGING_SEGMENT_NULL; | |
1446 | } | |
1447 | ||
1448 | vm_offset_t ps_allocate_cluster(vstruct_t, int *, paging_segment_t); /*forward*/ | |
1449 | ||
1450 | vm_offset_t | |
1451 | ps_allocate_cluster( | |
1452 | vstruct_t vs, | |
1453 | int *psindex, | |
1454 | paging_segment_t use_ps) | |
1455 | { | |
91447636 | 1456 | unsigned int byte_num; |
1c79356b A |
1457 | int bit_num = 0; |
1458 | paging_segment_t ps; | |
1459 | vm_offset_t cluster; | |
0b4e3aa0 | 1460 | ipc_port_t trigger = IP_NULL; |
1c79356b A |
1461 | |
1462 | /* | |
1463 | * Find best paging segment. | |
1464 | * ps_select_segment will decrement cluster count on ps. | |
1465 | * Must pass cluster shift to find the most appropriate segment. | |
1466 | */ | |
1467 | /* NOTE: The addition of paging segment delete capability threatened | |
1468 | * to seriously complicate the treatment of paging segments in this | |
1469 | * module and the ones that call it (notably ps_clmap), because of the | |
1470 | * difficulty in assuring that the paging segment would continue to | |
1471 | * exist between being unlocked and locked. This was | |
1472 | * avoided because all calls to this module are based in either | |
1473 | * dp_memory_object calls which rely on the vs lock, or by | |
1474 | * the transfer function which is part of the segment delete path. | |
1475 | * The transfer function which is part of paging segment delete is | |
1476 | * protected from multiple callers by the backing store lock. | |
1477 | * The paging segment delete function treats mappings to a paging | |
1478 | * segment on a vstruct by vstruct basis, locking the vstruct targeted | |
1479 | * while data is transferred to the remaining segments. This is in | |
1480 | * line with the view that incomplete or in-transition mappings between | |
1481 | * data, a vstruct, and backing store are protected by the vs lock. | |
1482 | * This and the ordering of the paging segment "going_away" bit setting | |
1483 | * protects us. | |
1484 | */ | |
1485 | if (use_ps != PAGING_SEGMENT_NULL) { | |
1486 | ps = use_ps; | |
1487 | PSL_LOCK(); | |
1488 | PS_LOCK(ps); | |
55e303ae A |
1489 | |
1490 | ASSERT(ps->ps_clcount != 0); | |
1491 | ||
1c79356b A |
1492 | ps->ps_clcount--; |
1493 | dp_pages_free -= 1 << ps->ps_clshift; | |
1c79356b A |
1494 | if(min_pages_trigger_port && |
1495 | (dp_pages_free < minimum_pages_remaining)) { | |
0b4e3aa0 | 1496 | trigger = min_pages_trigger_port; |
1c79356b A |
1497 | min_pages_trigger_port = NULL; |
1498 | } | |
0b4e3aa0 | 1499 | PSL_UNLOCK(); |
1c79356b | 1500 | PS_UNLOCK(ps); |
0b4e3aa0 A |
1501 | if (trigger != IP_NULL) { |
1502 | default_pager_space_alert(trigger, HI_WAT_ALERT); | |
1503 | ipc_port_release_send(trigger); | |
1504 | } | |
1505 | ||
1c79356b A |
1506 | } else if ((ps = ps_select_segment(vs->vs_clshift, psindex)) == |
1507 | PAGING_SEGMENT_NULL) { | |
91447636 A |
1508 | static uint32_t lastnotify = 0; |
1509 | uint32_t now, nanoseconds_dummy; | |
1510 | ||
1511 | /* | |
1512 | * Emit a notification of the low-paging resource condition | |
1513 | * but don't issue it more than once every five seconds. This | |
1514 | * prevents us from overflowing logs with thousands of | |
1515 | * repetitions of the message. | |
1516 | */ | |
1517 | clock_get_system_nanotime(&now, &nanoseconds_dummy); | |
1518 | if (now > lastnotify + 5) { | |
1519 | dprintf(("no space in available paging segments\n")); | |
1520 | lastnotify = now; | |
1521 | } | |
1522 | ||
1c79356b | 1523 | /* the count got off maybe, reset to zero */ |
0b4e3aa0 | 1524 | PSL_LOCK(); |
1c79356b A |
1525 | dp_pages_free = 0; |
1526 | if(min_pages_trigger_port) { | |
0b4e3aa0 | 1527 | trigger = min_pages_trigger_port; |
1c79356b A |
1528 | min_pages_trigger_port = NULL; |
1529 | bs_low = TRUE; | |
1530 | } | |
0b4e3aa0 A |
1531 | PSL_UNLOCK(); |
1532 | if (trigger != IP_NULL) { | |
1533 | default_pager_space_alert(trigger, HI_WAT_ALERT); | |
1534 | ipc_port_release_send(trigger); | |
1535 | } | |
1c79356b A |
1536 | return (vm_offset_t) -1; |
1537 | } | |
1c79356b A |
1538 | |
1539 | /* | |
1540 | * Look for an available cluster. At the end of the loop, | |
1541 | * byte_num is the byte offset and bit_num is the bit offset of the | |
1542 | * first zero bit in the paging segment bitmap. | |
1543 | */ | |
1544 | PS_LOCK(ps); | |
1545 | byte_num = ps->ps_hint; | |
1546 | for (; byte_num < howmany(ps->ps_ncls, NBBY); byte_num++) { | |
1547 | if (*(ps->ps_bmap + byte_num) != BYTEMASK) { | |
1548 | for (bit_num = 0; bit_num < NBBY; bit_num++) { | |
1549 | if (isclr((ps->ps_bmap + byte_num), bit_num)) | |
1550 | break; | |
1551 | } | |
1552 | ASSERT(bit_num != NBBY); | |
1553 | break; | |
1554 | } | |
1555 | } | |
1556 | ps->ps_hint = byte_num; | |
1557 | cluster = (byte_num*NBBY) + bit_num; | |
1558 | ||
1559 | /* Space was reserved, so this must be true */ | |
1560 | ASSERT(cluster < ps->ps_ncls); | |
1561 | ||
1562 | setbit(ps->ps_bmap, cluster); | |
1563 | PS_UNLOCK(ps); | |
1564 | ||
1565 | return cluster; | |
1566 | } | |
1567 | ||
1568 | void ps_deallocate_cluster(paging_segment_t, vm_offset_t); /* forward */ | |
1569 | ||
1570 | void | |
1571 | ps_deallocate_cluster( | |
1572 | paging_segment_t ps, | |
1573 | vm_offset_t cluster) | |
1574 | { | |
1575 | ||
1576 | if (cluster >= (vm_offset_t) ps->ps_ncls) | |
1577 | panic("ps_deallocate_cluster: Invalid cluster number"); | |
1578 | ||
1579 | /* | |
1580 | * Lock the paging segment, clear the cluster's bitmap and increment the | |
1581 | * number of free cluster. | |
1582 | */ | |
1583 | PSL_LOCK(); | |
1584 | PS_LOCK(ps); | |
1585 | clrbit(ps->ps_bmap, cluster); | |
1586 | ++ps->ps_clcount; | |
1587 | dp_pages_free += 1 << ps->ps_clshift; | |
0b4e3aa0 | 1588 | PSL_UNLOCK(); |
1c79356b A |
1589 | |
1590 | /* | |
1591 | * Move the hint down to the freed cluster if it is | |
1592 | * less than the current hint. | |
1593 | */ | |
1594 | if ((cluster/NBBY) < ps->ps_hint) { | |
1595 | ps->ps_hint = (cluster/NBBY); | |
1596 | } | |
1597 | ||
1598 | PS_UNLOCK(ps); | |
1599 | ||
1600 | /* | |
1601 | * If we're freeing space on a full priority, reset the array. | |
1602 | */ | |
1603 | PSL_LOCK(); | |
1604 | if (ps_select_array[ps->ps_bs->bs_priority] == BS_FULLPRI) | |
1605 | ps_select_array[ps->ps_bs->bs_priority] = 0; | |
1606 | PSL_UNLOCK(); | |
1607 | ||
1608 | return; | |
1609 | } | |
1610 | ||
1611 | void ps_dealloc_vsmap(struct vs_map *, vm_size_t); /* forward */ | |
1612 | ||
1613 | void | |
1614 | ps_dealloc_vsmap( | |
1615 | struct vs_map *vsmap, | |
1616 | vm_size_t size) | |
1617 | { | |
91447636 | 1618 | unsigned int i; |
1c79356b A |
1619 | for (i = 0; i < size; i++) |
1620 | if (!VSM_ISCLR(vsmap[i]) && !VSM_ISERR(vsmap[i])) | |
1621 | ps_deallocate_cluster(VSM_PS(vsmap[i]), | |
1622 | VSM_CLOFF(vsmap[i])); | |
1623 | } | |
1624 | ||
1625 | void | |
1626 | ps_vstruct_dealloc( | |
1627 | vstruct_t vs) | |
1628 | { | |
91447636 A |
1629 | unsigned int i; |
1630 | // spl_t s; | |
1c79356b A |
1631 | |
1632 | VS_MAP_LOCK(vs); | |
1633 | ||
1634 | /* | |
1635 | * If this is an indirect structure, then we walk through the valid | |
1636 | * (non-zero) indirect pointers and deallocate the clusters | |
1637 | * associated with each used map entry (via ps_dealloc_vsmap). | |
1638 | * When all of the clusters in an indirect block have been | |
1639 | * freed, we deallocate the block. When all of the indirect | |
1640 | * blocks have been deallocated we deallocate the memory | |
1641 | * holding the indirect pointers. | |
1642 | */ | |
1643 | if (vs->vs_indirect) { | |
1644 | for (i = 0; i < INDIRECT_CLMAP_ENTRIES(vs->vs_size); i++) { | |
1645 | if (vs->vs_imap[i] != NULL) { | |
1646 | ps_dealloc_vsmap(vs->vs_imap[i], CLMAP_ENTRIES); | |
91447636 | 1647 | kfree(vs->vs_imap[i], CLMAP_THRESHOLD); |
1c79356b A |
1648 | } |
1649 | } | |
91447636 | 1650 | kfree(vs->vs_imap, INDIRECT_CLMAP_SIZE(vs->vs_size)); |
1c79356b A |
1651 | } else { |
1652 | /* | |
1653 | * Direct map. Free used clusters, then memory. | |
1654 | */ | |
1655 | ps_dealloc_vsmap(vs->vs_dmap, vs->vs_size); | |
91447636 | 1656 | kfree(vs->vs_dmap, CLMAP_SIZE(vs->vs_size)); |
1c79356b A |
1657 | } |
1658 | VS_MAP_UNLOCK(vs); | |
1659 | ||
1660 | bs_commit(- vs->vs_size); | |
1661 | ||
91447636 | 1662 | zfree(vstruct_zone, vs); |
1c79356b A |
1663 | } |
1664 | ||
91447636 | 1665 | int ps_map_extend(vstruct_t, unsigned int); /* forward */ |
1c79356b A |
1666 | |
1667 | int ps_map_extend( | |
1668 | vstruct_t vs, | |
91447636 | 1669 | unsigned int new_size) |
1c79356b A |
1670 | { |
1671 | struct vs_map **new_imap; | |
1672 | struct vs_map *new_dmap = NULL; | |
1673 | int newdsize; | |
1674 | int i; | |
1675 | void *old_map = NULL; | |
1676 | int old_map_size = 0; | |
1677 | ||
1678 | if (vs->vs_size >= new_size) { | |
1679 | /* | |
1680 | * Someone has already done the work. | |
1681 | */ | |
1682 | return 0; | |
1683 | } | |
1684 | ||
1685 | /* | |
1686 | * If the new size extends into the indirect range, then we have one | |
1687 | * of two cases: we are going from indirect to indirect, or we are | |
1688 | * going from direct to indirect. If we are going from indirect to | |
1689 | * indirect, then it is possible that the new size will fit in the old | |
1690 | * indirect map. If this is the case, then just reset the size of the | |
1691 | * vstruct map and we are done. If the new size will not | |
1692 | * fit into the old indirect map, then we have to allocate a new | |
1693 | * indirect map and copy the old map pointers into this new map. | |
1694 | * | |
1695 | * If we are going from direct to indirect, then we have to allocate a | |
1696 | * new indirect map and copy the old direct pages into the first | |
1697 | * indirect page of the new map. | |
1698 | * NOTE: allocating memory here is dangerous, as we're in the | |
1699 | * pageout path. | |
1700 | */ | |
1701 | if (INDIRECT_CLMAP(new_size)) { | |
1702 | int new_map_size = INDIRECT_CLMAP_SIZE(new_size); | |
1703 | ||
1704 | /* | |
1705 | * Get a new indirect map and zero it. | |
1706 | */ | |
1707 | old_map_size = INDIRECT_CLMAP_SIZE(vs->vs_size); | |
1708 | if (vs->vs_indirect && | |
1709 | (new_map_size == old_map_size)) { | |
1710 | bs_commit(new_size - vs->vs_size); | |
1711 | vs->vs_size = new_size; | |
1712 | return 0; | |
1713 | } | |
1714 | ||
1715 | new_imap = (struct vs_map **)kalloc(new_map_size); | |
1716 | if (new_imap == NULL) { | |
1717 | return -1; | |
1718 | } | |
1719 | memset(new_imap, 0, new_map_size); | |
1720 | ||
1721 | if (vs->vs_indirect) { | |
1722 | /* Copy old entries into new map */ | |
1723 | memcpy(new_imap, vs->vs_imap, old_map_size); | |
1724 | /* Arrange to free the old map */ | |
1725 | old_map = (void *) vs->vs_imap; | |
1726 | newdsize = 0; | |
1727 | } else { /* Old map was a direct map */ | |
1728 | /* Allocate an indirect page */ | |
1729 | if ((new_imap[0] = (struct vs_map *) | |
1730 | kalloc(CLMAP_THRESHOLD)) == NULL) { | |
91447636 | 1731 | kfree(new_imap, new_map_size); |
1c79356b A |
1732 | return -1; |
1733 | } | |
1734 | new_dmap = new_imap[0]; | |
1735 | newdsize = CLMAP_ENTRIES; | |
1736 | } | |
1737 | } else { | |
1738 | new_imap = NULL; | |
1739 | newdsize = new_size; | |
1740 | /* | |
1741 | * If the new map is a direct map, then the old map must | |
1742 | * also have been a direct map. All we have to do is | |
1743 | * to allocate a new direct map, copy the old entries | |
1744 | * into it and free the old map. | |
1745 | */ | |
1746 | if ((new_dmap = (struct vs_map *) | |
1747 | kalloc(CLMAP_SIZE(new_size))) == NULL) { | |
1748 | return -1; | |
1749 | } | |
1750 | } | |
1751 | if (newdsize) { | |
1752 | ||
1753 | /* Free the old map */ | |
1754 | old_map = (void *) vs->vs_dmap; | |
1755 | old_map_size = CLMAP_SIZE(vs->vs_size); | |
1756 | ||
1757 | /* Copy info from the old map into the new map */ | |
1758 | memcpy(new_dmap, vs->vs_dmap, old_map_size); | |
1759 | ||
1760 | /* Initialize the rest of the new map */ | |
1761 | for (i = vs->vs_size; i < newdsize; i++) | |
1762 | VSM_CLR(new_dmap[i]); | |
1763 | } | |
1764 | if (new_imap) { | |
1765 | vs->vs_imap = new_imap; | |
1766 | vs->vs_indirect = TRUE; | |
1767 | } else | |
1768 | vs->vs_dmap = new_dmap; | |
1769 | bs_commit(new_size - vs->vs_size); | |
1770 | vs->vs_size = new_size; | |
1771 | if (old_map) | |
91447636 | 1772 | kfree(old_map, old_map_size); |
1c79356b A |
1773 | return 0; |
1774 | } | |
1775 | ||
1776 | vm_offset_t | |
1777 | ps_clmap( | |
1778 | vstruct_t vs, | |
1779 | vm_offset_t offset, | |
1780 | struct clmap *clmap, | |
1781 | int flag, | |
1782 | vm_size_t size, | |
1783 | int error) | |
1784 | { | |
1785 | vm_offset_t cluster; /* The cluster of offset. */ | |
1786 | vm_offset_t newcl; /* The new cluster allocated. */ | |
1787 | vm_offset_t newoff; | |
91447636 | 1788 | unsigned int i; |
1c79356b | 1789 | struct vs_map *vsmap; |
1c79356b A |
1790 | |
1791 | VS_MAP_LOCK(vs); | |
1792 | ||
1793 | ASSERT(vs->vs_dmap); | |
55e303ae | 1794 | cluster = atop_32(offset) >> vs->vs_clshift; |
1c79356b A |
1795 | |
1796 | /* | |
1797 | * Initialize cluster error value | |
1798 | */ | |
1799 | clmap->cl_error = 0; | |
1800 | ||
1801 | /* | |
1802 | * If the object has grown, extend the page map. | |
1803 | */ | |
1804 | if (cluster >= vs->vs_size) { | |
1805 | if (flag == CL_FIND) { | |
1806 | /* Do not allocate if just doing a lookup */ | |
1807 | VS_MAP_UNLOCK(vs); | |
1808 | return (vm_offset_t) -1; | |
1809 | } | |
1810 | if (ps_map_extend(vs, cluster + 1)) { | |
1811 | VS_MAP_UNLOCK(vs); | |
1812 | return (vm_offset_t) -1; | |
1813 | } | |
1814 | } | |
1815 | ||
1816 | /* | |
1817 | * Look for the desired cluster. If the map is indirect, then we | |
1818 | * have a two level lookup. First find the indirect block, then | |
1819 | * find the actual cluster. If the indirect block has not yet | |
1820 | * been allocated, then do so. If the cluster has not yet been | |
1821 | * allocated, then do so. | |
1822 | * | |
1823 | * If any of the allocations fail, then return an error. | |
1824 | * Don't allocate if just doing a lookup. | |
1825 | */ | |
1826 | if (vs->vs_indirect) { | |
1827 | long ind_block = cluster/CLMAP_ENTRIES; | |
1828 | ||
1829 | /* Is the indirect block allocated? */ | |
1830 | vsmap = vs->vs_imap[ind_block]; | |
1831 | if (vsmap == NULL) { | |
1832 | if (flag == CL_FIND) { | |
1833 | VS_MAP_UNLOCK(vs); | |
1834 | return (vm_offset_t) -1; | |
1835 | } | |
1836 | ||
1837 | /* Allocate the indirect block */ | |
1838 | vsmap = (struct vs_map *) kalloc(CLMAP_THRESHOLD); | |
1839 | if (vsmap == NULL) { | |
1840 | VS_MAP_UNLOCK(vs); | |
1841 | return (vm_offset_t) -1; | |
1842 | } | |
1843 | /* Initialize the cluster offsets */ | |
1844 | for (i = 0; i < CLMAP_ENTRIES; i++) | |
1845 | VSM_CLR(vsmap[i]); | |
1846 | vs->vs_imap[ind_block] = vsmap; | |
1847 | } | |
1848 | } else | |
1849 | vsmap = vs->vs_dmap; | |
1850 | ||
1851 | ASSERT(vsmap); | |
1852 | vsmap += cluster%CLMAP_ENTRIES; | |
1853 | ||
1854 | /* | |
1855 | * At this point, vsmap points to the struct vs_map desired. | |
1856 | * | |
1857 | * Look in the map for the cluster, if there was an error on a | |
1858 | * previous write, flag it and return. If it is not yet | |
1859 | * allocated, then allocate it, if we're writing; if we're | |
1860 | * doing a lookup and the cluster's not allocated, return error. | |
1861 | */ | |
1862 | if (VSM_ISERR(*vsmap)) { | |
1863 | clmap->cl_error = VSM_GETERR(*vsmap); | |
1864 | VS_MAP_UNLOCK(vs); | |
1865 | return (vm_offset_t) -1; | |
1866 | } else if (VSM_ISCLR(*vsmap)) { | |
1867 | int psindex; | |
1868 | ||
1869 | if (flag == CL_FIND) { | |
1870 | /* | |
1871 | * If there's an error and the entry is clear, then | |
1872 | * we've run out of swap space. Record the error | |
1873 | * here and return. | |
1874 | */ | |
1875 | if (error) { | |
1876 | VSM_SETERR(*vsmap, error); | |
1877 | } | |
1878 | VS_MAP_UNLOCK(vs); | |
1879 | return (vm_offset_t) -1; | |
1880 | } else { | |
1881 | /* | |
1882 | * Attempt to allocate a cluster from the paging segment | |
1883 | */ | |
1884 | newcl = ps_allocate_cluster(vs, &psindex, | |
1885 | PAGING_SEGMENT_NULL); | |
91447636 | 1886 | if (newcl == (vm_offset_t) -1) { |
1c79356b A |
1887 | VS_MAP_UNLOCK(vs); |
1888 | return (vm_offset_t) -1; | |
1889 | } | |
1890 | VSM_CLR(*vsmap); | |
1891 | VSM_SETCLOFF(*vsmap, newcl); | |
1892 | VSM_SETPS(*vsmap, psindex); | |
1893 | } | |
1894 | } else | |
1895 | newcl = VSM_CLOFF(*vsmap); | |
1896 | ||
1897 | /* | |
1898 | * Fill in pertinent fields of the clmap | |
1899 | */ | |
1900 | clmap->cl_ps = VSM_PS(*vsmap); | |
1901 | clmap->cl_numpages = VSCLSIZE(vs); | |
1902 | clmap->cl_bmap.clb_map = (unsigned int) VSM_BMAP(*vsmap); | |
1903 | ||
1904 | /* | |
1905 | * Byte offset in paging segment is byte offset to cluster plus | |
1906 | * byte offset within cluster. It looks ugly, but should be | |
1907 | * relatively quick. | |
1908 | */ | |
1909 | ASSERT(trunc_page(offset) == offset); | |
55e303ae | 1910 | newcl = ptoa_32(newcl) << vs->vs_clshift; |
1c79356b A |
1911 | newoff = offset & ((1<<(vm_page_shift + vs->vs_clshift)) - 1); |
1912 | if (flag == CL_ALLOC) { | |
1913 | /* | |
1914 | * set bits in the allocation bitmap according to which | |
1915 | * pages were requested. size is in bytes. | |
1916 | */ | |
55e303ae | 1917 | i = atop_32(newoff); |
1c79356b A |
1918 | while ((size > 0) && (i < VSCLSIZE(vs))) { |
1919 | VSM_SETALLOC(*vsmap, i); | |
1920 | i++; | |
1921 | size -= vm_page_size; | |
1922 | } | |
1923 | } | |
1924 | clmap->cl_alloc.clb_map = (unsigned int) VSM_ALLOC(*vsmap); | |
1925 | if (newoff) { | |
1926 | /* | |
1927 | * Offset is not cluster aligned, so number of pages | |
1928 | * and bitmaps must be adjusted | |
1929 | */ | |
55e303ae | 1930 | clmap->cl_numpages -= atop_32(newoff); |
1c79356b A |
1931 | CLMAP_SHIFT(clmap, vs); |
1932 | CLMAP_SHIFTALLOC(clmap, vs); | |
1933 | } | |
1934 | ||
1935 | /* | |
1936 | * | |
1937 | * The setting of valid bits and handling of write errors | |
1938 | * must be done here, while we hold the lock on the map. | |
1939 | * It logically should be done in ps_vs_write_complete(). | |
1940 | * The size and error information has been passed from | |
1941 | * ps_vs_write_complete(). If the size parameter is non-zero, | |
1942 | * then there is work to be done. If error is also non-zero, | |
1943 | * then the error number is recorded in the cluster and the | |
1944 | * entire cluster is in error. | |
1945 | */ | |
1946 | if (size && flag == CL_FIND) { | |
1947 | vm_offset_t off = (vm_offset_t) 0; | |
1948 | ||
1949 | if (!error) { | |
1950 | for (i = VSCLSIZE(vs) - clmap->cl_numpages; size > 0; | |
1951 | i++) { | |
1952 | VSM_SETPG(*vsmap, i); | |
1953 | size -= vm_page_size; | |
1954 | } | |
1955 | ASSERT(i <= VSCLSIZE(vs)); | |
1956 | } else { | |
1957 | BS_STAT(clmap->cl_ps->ps_bs, | |
1958 | clmap->cl_ps->ps_bs->bs_pages_out_fail += | |
55e303ae | 1959 | atop_32(size)); |
1c79356b A |
1960 | off = VSM_CLOFF(*vsmap); |
1961 | VSM_SETERR(*vsmap, error); | |
1962 | } | |
1963 | /* | |
1964 | * Deallocate cluster if error, and no valid pages | |
1965 | * already present. | |
1966 | */ | |
1967 | if (off != (vm_offset_t) 0) | |
1968 | ps_deallocate_cluster(clmap->cl_ps, off); | |
1969 | VS_MAP_UNLOCK(vs); | |
1970 | return (vm_offset_t) 0; | |
1971 | } else | |
1972 | VS_MAP_UNLOCK(vs); | |
1973 | ||
91447636 A |
1974 | DP_DEBUG(DEBUG_VS_INTERNAL, |
1975 | ("returning 0x%X,vs=0x%X,vsmap=0x%X,flag=%d\n", | |
1976 | newcl+newoff, (int) vs, (int) vsmap, flag)); | |
1977 | DP_DEBUG(DEBUG_VS_INTERNAL, | |
1978 | (" clmap->cl_ps=0x%X,cl_numpages=%d,clbmap=0x%x,cl_alloc=%x\n", | |
1979 | (int) clmap->cl_ps, clmap->cl_numpages, | |
1980 | (int) clmap->cl_bmap.clb_map, (int) clmap->cl_alloc.clb_map)); | |
1c79356b A |
1981 | |
1982 | return (newcl + newoff); | |
1983 | } | |
1984 | ||
1985 | void ps_clunmap(vstruct_t, vm_offset_t, vm_size_t); /* forward */ | |
1986 | ||
1987 | void | |
1988 | ps_clunmap( | |
1989 | vstruct_t vs, | |
1990 | vm_offset_t offset, | |
1991 | vm_size_t length) | |
1992 | { | |
1993 | vm_offset_t cluster; /* The cluster number of offset */ | |
1994 | struct vs_map *vsmap; | |
1c79356b A |
1995 | |
1996 | VS_MAP_LOCK(vs); | |
1997 | ||
1998 | /* | |
1999 | * Loop through all clusters in this range, freeing paging segment | |
2000 | * clusters and map entries as encountered. | |
2001 | */ | |
2002 | while (length > 0) { | |
2003 | vm_offset_t newoff; | |
91447636 | 2004 | unsigned int i; |
1c79356b | 2005 | |
55e303ae | 2006 | cluster = atop_32(offset) >> vs->vs_clshift; |
1c79356b A |
2007 | if (vs->vs_indirect) /* indirect map */ |
2008 | vsmap = vs->vs_imap[cluster/CLMAP_ENTRIES]; | |
2009 | else | |
2010 | vsmap = vs->vs_dmap; | |
2011 | if (vsmap == NULL) { | |
2012 | VS_MAP_UNLOCK(vs); | |
2013 | return; | |
2014 | } | |
2015 | vsmap += cluster%CLMAP_ENTRIES; | |
2016 | if (VSM_ISCLR(*vsmap)) { | |
2017 | length -= vm_page_size; | |
2018 | offset += vm_page_size; | |
2019 | continue; | |
2020 | } | |
2021 | /* | |
2022 | * We've got a valid mapping. Clear it and deallocate | |
2023 | * paging segment cluster pages. | |
2024 | * Optimize for entire cluster cleraing. | |
2025 | */ | |
91447636 | 2026 | if ( (newoff = (offset&((1<<(vm_page_shift+vs->vs_clshift))-1))) ) { |
1c79356b A |
2027 | /* |
2028 | * Not cluster aligned. | |
2029 | */ | |
2030 | ASSERT(trunc_page(newoff) == newoff); | |
55e303ae | 2031 | i = atop_32(newoff); |
1c79356b A |
2032 | } else |
2033 | i = 0; | |
2034 | while ((i < VSCLSIZE(vs)) && (length > 0)) { | |
2035 | VSM_CLRPG(*vsmap, i); | |
2036 | VSM_CLRALLOC(*vsmap, i); | |
2037 | length -= vm_page_size; | |
2038 | offset += vm_page_size; | |
2039 | i++; | |
2040 | } | |
2041 | ||
2042 | /* | |
2043 | * If map entry is empty, clear and deallocate cluster. | |
2044 | */ | |
2045 | if (!VSM_ALLOC(*vsmap)) { | |
2046 | ps_deallocate_cluster(VSM_PS(*vsmap), | |
2047 | VSM_CLOFF(*vsmap)); | |
2048 | VSM_CLR(*vsmap); | |
2049 | } | |
2050 | } | |
2051 | ||
2052 | VS_MAP_UNLOCK(vs); | |
2053 | } | |
2054 | ||
2055 | void ps_vs_write_complete(vstruct_t, vm_offset_t, vm_size_t, int); /* forward */ | |
2056 | ||
2057 | void | |
2058 | ps_vs_write_complete( | |
2059 | vstruct_t vs, | |
2060 | vm_offset_t offset, | |
2061 | vm_size_t size, | |
2062 | int error) | |
2063 | { | |
2064 | struct clmap clmap; | |
2065 | ||
2066 | /* | |
2067 | * Get the struct vsmap for this cluster. | |
2068 | * Use READ, even though it was written, because the | |
2069 | * cluster MUST be present, unless there was an error | |
2070 | * in the original ps_clmap (e.g. no space), in which | |
2071 | * case, nothing happens. | |
2072 | * | |
2073 | * Must pass enough information to ps_clmap to allow it | |
2074 | * to set the vs_map structure bitmap under lock. | |
2075 | */ | |
2076 | (void) ps_clmap(vs, offset, &clmap, CL_FIND, size, error); | |
2077 | } | |
2078 | ||
2079 | void vs_cl_write_complete(vstruct_t, paging_segment_t, vm_offset_t, vm_offset_t, vm_size_t, boolean_t, int); /* forward */ | |
2080 | ||
2081 | void | |
2082 | vs_cl_write_complete( | |
91447636 A |
2083 | vstruct_t vs, |
2084 | __unused paging_segment_t ps, | |
2085 | vm_offset_t offset, | |
2086 | __unused vm_offset_t addr, | |
2087 | vm_size_t size, | |
2088 | boolean_t async, | |
2089 | int error) | |
1c79356b | 2090 | { |
91447636 | 2091 | // kern_return_t kr; |
1c79356b A |
2092 | |
2093 | if (error) { | |
2094 | /* | |
2095 | * For internal objects, the error is recorded on a | |
2096 | * per-cluster basis by ps_clmap() which is called | |
2097 | * by ps_vs_write_complete() below. | |
2098 | */ | |
2099 | dprintf(("write failed error = 0x%x\n", error)); | |
2100 | /* add upl_abort code here */ | |
2101 | } else | |
55e303ae | 2102 | GSTAT(global_stats.gs_pages_out += atop_32(size)); |
1c79356b A |
2103 | /* |
2104 | * Notify the vstruct mapping code, so it can do its accounting. | |
2105 | */ | |
2106 | ps_vs_write_complete(vs, offset, size, error); | |
2107 | ||
2108 | if (async) { | |
2109 | VS_LOCK(vs); | |
2110 | ASSERT(vs->vs_async_pending > 0); | |
2111 | vs->vs_async_pending -= size; | |
0b4e3aa0 A |
2112 | if (vs->vs_async_pending == 0 && vs->vs_waiting_async) { |
2113 | vs->vs_waiting_async = FALSE; | |
1c79356b A |
2114 | VS_UNLOCK(vs); |
2115 | /* mutex_unlock(&vs->vs_waiting_async); */ | |
0b4e3aa0 | 2116 | thread_wakeup(&vs->vs_async_pending); |
1c79356b A |
2117 | } else { |
2118 | VS_UNLOCK(vs); | |
2119 | } | |
2120 | } | |
2121 | } | |
2122 | ||
2123 | #ifdef DEVICE_PAGING | |
2124 | kern_return_t device_write_reply(MACH_PORT_FACE, kern_return_t, io_buf_len_t); | |
2125 | ||
2126 | kern_return_t | |
2127 | device_write_reply( | |
2128 | MACH_PORT_FACE reply_port, | |
2129 | kern_return_t device_code, | |
2130 | io_buf_len_t bytes_written) | |
2131 | { | |
2132 | struct vs_async *vsa; | |
1c79356b A |
2133 | |
2134 | vsa = (struct vs_async *) | |
2135 | ((struct vstruct_alias *)(reply_port->alias))->vs; | |
2136 | ||
2137 | if (device_code == KERN_SUCCESS && bytes_written != vsa->vsa_size) { | |
2138 | device_code = KERN_FAILURE; | |
2139 | } | |
2140 | ||
2141 | vsa->vsa_error = device_code; | |
2142 | ||
2143 | ||
2144 | ASSERT(vsa->vsa_vs != VSTRUCT_NULL); | |
2145 | if(vsa->vsa_flags & VSA_TRANSFER) { | |
2146 | /* revisit when async disk segments redone */ | |
2147 | if(vsa->vsa_error) { | |
2148 | /* need to consider error condition. re-write data or */ | |
2149 | /* throw it away here. */ | |
91447636 | 2150 | vm_map_copy_discard((vm_map_copy_t)vsa->vsa_addr); |
1c79356b A |
2151 | } |
2152 | ps_vs_write_complete(vsa->vsa_vs, vsa->vsa_offset, | |
2153 | vsa->vsa_size, vsa->vsa_error); | |
2154 | } else { | |
2155 | vs_cl_write_complete(vsa->vsa_vs, vsa->vsa_ps, vsa->vsa_offset, | |
2156 | vsa->vsa_addr, vsa->vsa_size, TRUE, | |
2157 | vsa->vsa_error); | |
2158 | } | |
2159 | VS_FREE_ASYNC(vsa); | |
2160 | ||
2161 | return KERN_SUCCESS; | |
2162 | } | |
2163 | ||
2164 | kern_return_t device_write_reply_inband(MACH_PORT_FACE, kern_return_t, io_buf_len_t); | |
2165 | kern_return_t | |
2166 | device_write_reply_inband( | |
2167 | MACH_PORT_FACE reply_port, | |
2168 | kern_return_t return_code, | |
2169 | io_buf_len_t bytes_written) | |
2170 | { | |
2171 | panic("device_write_reply_inband: illegal"); | |
2172 | return KERN_SUCCESS; | |
2173 | } | |
2174 | ||
2175 | kern_return_t device_read_reply(MACH_PORT_FACE, kern_return_t, io_buf_ptr_t, mach_msg_type_number_t); | |
2176 | kern_return_t | |
2177 | device_read_reply( | |
2178 | MACH_PORT_FACE reply_port, | |
2179 | kern_return_t return_code, | |
2180 | io_buf_ptr_t data, | |
2181 | mach_msg_type_number_t dataCnt) | |
2182 | { | |
2183 | struct vs_async *vsa; | |
2184 | vsa = (struct vs_async *) | |
2185 | ((struct vstruct_alias *)(reply_port->alias))->vs; | |
2186 | vsa->vsa_addr = (vm_offset_t)data; | |
2187 | vsa->vsa_size = (vm_size_t)dataCnt; | |
2188 | vsa->vsa_error = return_code; | |
2189 | thread_wakeup(&vsa->vsa_lock); | |
2190 | return KERN_SUCCESS; | |
2191 | } | |
2192 | ||
2193 | kern_return_t device_read_reply_inband(MACH_PORT_FACE, kern_return_t, io_buf_ptr_inband_t, mach_msg_type_number_t); | |
2194 | kern_return_t | |
2195 | device_read_reply_inband( | |
2196 | MACH_PORT_FACE reply_port, | |
2197 | kern_return_t return_code, | |
2198 | io_buf_ptr_inband_t data, | |
2199 | mach_msg_type_number_t dataCnt) | |
2200 | { | |
2201 | panic("device_read_reply_inband: illegal"); | |
2202 | return KERN_SUCCESS; | |
2203 | } | |
2204 | ||
2205 | kern_return_t device_read_reply_overwrite(MACH_PORT_FACE, kern_return_t, io_buf_len_t); | |
2206 | kern_return_t | |
2207 | device_read_reply_overwrite( | |
2208 | MACH_PORT_FACE reply_port, | |
2209 | kern_return_t return_code, | |
2210 | io_buf_len_t bytes_read) | |
2211 | { | |
2212 | panic("device_read_reply_overwrite: illegal\n"); | |
2213 | return KERN_SUCCESS; | |
2214 | } | |
2215 | ||
2216 | kern_return_t device_open_reply(MACH_PORT_FACE, kern_return_t, MACH_PORT_FACE); | |
2217 | kern_return_t | |
2218 | device_open_reply( | |
2219 | MACH_PORT_FACE reply_port, | |
2220 | kern_return_t return_code, | |
2221 | MACH_PORT_FACE device_port) | |
2222 | { | |
2223 | panic("device_open_reply: illegal\n"); | |
2224 | return KERN_SUCCESS; | |
2225 | } | |
2226 | ||
1c79356b A |
2227 | kern_return_t |
2228 | ps_read_device( | |
2229 | paging_segment_t ps, | |
2230 | vm_offset_t offset, | |
2231 | vm_offset_t *bufferp, | |
2232 | unsigned int size, | |
2233 | unsigned int *residualp, | |
2234 | int flags) | |
2235 | { | |
2236 | kern_return_t kr; | |
2237 | recnum_t dev_offset; | |
2238 | unsigned int bytes_wanted; | |
2239 | unsigned int bytes_read; | |
2240 | unsigned int total_read; | |
2241 | vm_offset_t dev_buffer; | |
2242 | vm_offset_t buf_ptr; | |
2243 | unsigned int records_read; | |
1c79356b A |
2244 | struct vs_async *vsa; |
2245 | mutex_t vs_waiting_read_reply; | |
2246 | ||
2247 | device_t device; | |
2248 | vm_map_copy_t device_data = NULL; | |
2249 | default_pager_thread_t *dpt = NULL; | |
2250 | ||
2251 | device = dev_port_lookup(ps->ps_device); | |
55e303ae | 2252 | clustered_reads[atop_32(size)]++; |
1c79356b A |
2253 | |
2254 | dev_offset = (ps->ps_offset + | |
2255 | (offset >> (vm_page_shift - ps->ps_record_shift))); | |
2256 | bytes_wanted = size; | |
2257 | total_read = 0; | |
2258 | *bufferp = (vm_offset_t)NULL; | |
2259 | ||
2260 | do { | |
2261 | vsa = VS_ALLOC_ASYNC(); | |
2262 | if (vsa) { | |
2263 | vsa->vsa_vs = NULL; | |
2264 | vsa->vsa_addr = 0; | |
2265 | vsa->vsa_offset = 0; | |
2266 | vsa->vsa_size = 0; | |
2267 | vsa->vsa_ps = NULL; | |
2268 | } | |
91447636 | 2269 | mutex_init(&vsa->vsa_lock, 0); |
1c79356b A |
2270 | ip_lock(vsa->reply_port); |
2271 | vsa->reply_port->ip_sorights++; | |
2272 | ip_reference(vsa->reply_port); | |
2273 | ip_unlock(vsa->reply_port); | |
2274 | kr = ds_device_read_common(device, | |
2275 | vsa->reply_port, | |
2276 | (mach_msg_type_name_t) | |
2277 | MACH_MSG_TYPE_MOVE_SEND_ONCE, | |
2278 | (dev_mode_t) 0, | |
2279 | dev_offset, | |
2280 | bytes_wanted, | |
2281 | (IO_READ | IO_CALL), | |
2282 | (io_buf_ptr_t *) &dev_buffer, | |
2283 | (mach_msg_type_number_t *) &bytes_read); | |
2284 | if(kr == MIG_NO_REPLY) { | |
2285 | assert_wait(&vsa->vsa_lock, THREAD_UNINT); | |
9bccf70c | 2286 | thread_block(THREAD_CONTINUE_NULL); |
1c79356b A |
2287 | |
2288 | dev_buffer = vsa->vsa_addr; | |
2289 | bytes_read = (unsigned int)vsa->vsa_size; | |
2290 | kr = vsa->vsa_error; | |
2291 | } | |
2292 | VS_FREE_ASYNC(vsa); | |
2293 | if (kr != KERN_SUCCESS || bytes_read == 0) { | |
2294 | break; | |
2295 | } | |
2296 | total_read += bytes_read; | |
2297 | ||
2298 | /* | |
2299 | * If we got the entire range, use the returned dev_buffer. | |
2300 | */ | |
2301 | if (bytes_read == size) { | |
2302 | *bufferp = (vm_offset_t)dev_buffer; | |
2303 | break; | |
2304 | } | |
2305 | ||
2306 | #if 1 | |
2307 | dprintf(("read only %d bytes out of %d\n", | |
2308 | bytes_read, bytes_wanted)); | |
2309 | #endif | |
2310 | if(dpt == NULL) { | |
2311 | dpt = get_read_buffer(); | |
2312 | buf_ptr = dpt->dpt_buffer; | |
2313 | *bufferp = (vm_offset_t)buf_ptr; | |
2314 | } | |
2315 | /* | |
2316 | * Otherwise, copy the data into the provided buffer (*bufferp) | |
2317 | * and append the rest of the range as it comes in. | |
2318 | */ | |
2319 | memcpy((void *) buf_ptr, (void *) dev_buffer, bytes_read); | |
2320 | buf_ptr += bytes_read; | |
2321 | bytes_wanted -= bytes_read; | |
2322 | records_read = (bytes_read >> | |
2323 | (vm_page_shift - ps->ps_record_shift)); | |
2324 | dev_offset += records_read; | |
91447636 A |
2325 | DP_DEBUG(DEBUG_VS_INTERNAL, |
2326 | ("calling vm_deallocate(addr=0x%X,size=0x%X)\n", | |
2327 | dev_buffer, bytes_read)); | |
1c79356b A |
2328 | if (vm_deallocate(kernel_map, dev_buffer, bytes_read) |
2329 | != KERN_SUCCESS) | |
2330 | Panic("dealloc buf"); | |
2331 | } while (bytes_wanted); | |
2332 | ||
2333 | *residualp = size - total_read; | |
2334 | if((dev_buffer != *bufferp) && (total_read != 0)) { | |
2335 | vm_offset_t temp_buffer; | |
91447636 | 2336 | vm_allocate(kernel_map, &temp_buffer, total_read, VM_FLAGS_ANYWHERE); |
1c79356b A |
2337 | memcpy((void *) temp_buffer, (void *) *bufferp, total_read); |
2338 | if(vm_map_copyin_page_list(kernel_map, temp_buffer, total_read, | |
2339 | VM_MAP_COPYIN_OPT_SRC_DESTROY | | |
2340 | VM_MAP_COPYIN_OPT_STEAL_PAGES | | |
2341 | VM_MAP_COPYIN_OPT_PMAP_ENTER, | |
2342 | (vm_map_copy_t *)&device_data, FALSE)) | |
2343 | panic("ps_read_device: cannot copyin locally provided buffer\n"); | |
2344 | } | |
2345 | else if((kr == KERN_SUCCESS) && (total_read != 0) && (dev_buffer != 0)){ | |
2346 | if(vm_map_copyin_page_list(kernel_map, dev_buffer, bytes_read, | |
2347 | VM_MAP_COPYIN_OPT_SRC_DESTROY | | |
2348 | VM_MAP_COPYIN_OPT_STEAL_PAGES | | |
2349 | VM_MAP_COPYIN_OPT_PMAP_ENTER, | |
2350 | (vm_map_copy_t *)&device_data, FALSE)) | |
2351 | panic("ps_read_device: cannot copyin backing store provided buffer\n"); | |
2352 | } | |
2353 | else { | |
2354 | device_data = NULL; | |
2355 | } | |
2356 | *bufferp = (vm_offset_t)device_data; | |
2357 | ||
2358 | if(dpt != NULL) { | |
2359 | /* Free the receive buffer */ | |
2360 | dpt->checked_out = 0; | |
2361 | thread_wakeup(&dpt_array); | |
2362 | } | |
2363 | return KERN_SUCCESS; | |
2364 | } | |
2365 | ||
1c79356b A |
2366 | kern_return_t |
2367 | ps_write_device( | |
2368 | paging_segment_t ps, | |
2369 | vm_offset_t offset, | |
2370 | vm_offset_t addr, | |
2371 | unsigned int size, | |
2372 | struct vs_async *vsa) | |
2373 | { | |
2374 | recnum_t dev_offset; | |
2375 | io_buf_len_t bytes_to_write, bytes_written; | |
2376 | recnum_t records_written; | |
2377 | kern_return_t kr; | |
2378 | MACH_PORT_FACE reply_port; | |
1c79356b A |
2379 | |
2380 | ||
2381 | ||
55e303ae | 2382 | clustered_writes[atop_32(size)]++; |
1c79356b A |
2383 | |
2384 | dev_offset = (ps->ps_offset + | |
2385 | (offset >> (vm_page_shift - ps->ps_record_shift))); | |
2386 | bytes_to_write = size; | |
2387 | ||
2388 | if (vsa) { | |
2389 | /* | |
2390 | * Asynchronous write. | |
2391 | */ | |
2392 | reply_port = vsa->reply_port; | |
2393 | ip_lock(reply_port); | |
2394 | reply_port->ip_sorights++; | |
2395 | ip_reference(reply_port); | |
2396 | ip_unlock(reply_port); | |
2397 | { | |
2398 | device_t device; | |
2399 | device = dev_port_lookup(ps->ps_device); | |
2400 | ||
2401 | vsa->vsa_addr = addr; | |
2402 | kr=ds_device_write_common(device, | |
2403 | reply_port, | |
2404 | (mach_msg_type_name_t) MACH_MSG_TYPE_MOVE_SEND_ONCE, | |
2405 | (dev_mode_t) 0, | |
2406 | dev_offset, | |
2407 | (io_buf_ptr_t) addr, | |
2408 | size, | |
2409 | (IO_WRITE | IO_CALL), | |
2410 | &bytes_written); | |
2411 | } | |
2412 | if ((kr != KERN_SUCCESS) && (kr != MIG_NO_REPLY)) { | |
2413 | if (verbose) | |
2414 | dprintf(("%s0x%x, addr=0x%x," | |
2415 | "size=0x%x,offset=0x%x\n", | |
2416 | "device_write_request returned ", | |
2417 | kr, addr, size, offset)); | |
2418 | BS_STAT(ps->ps_bs, | |
55e303ae | 2419 | ps->ps_bs->bs_pages_out_fail += atop_32(size)); |
1c79356b A |
2420 | /* do the completion notification to free resources */ |
2421 | device_write_reply(reply_port, kr, 0); | |
2422 | return PAGER_ERROR; | |
2423 | } | |
2424 | } else do { | |
2425 | /* | |
2426 | * Synchronous write. | |
2427 | */ | |
2428 | { | |
2429 | device_t device; | |
2430 | device = dev_port_lookup(ps->ps_device); | |
2431 | kr=ds_device_write_common(device, | |
2432 | IP_NULL, 0, | |
2433 | (dev_mode_t) 0, | |
2434 | dev_offset, | |
2435 | (io_buf_ptr_t) addr, | |
2436 | size, | |
2437 | (IO_WRITE | IO_SYNC | IO_KERNEL_BUF), | |
2438 | &bytes_written); | |
2439 | } | |
2440 | if (kr != KERN_SUCCESS) { | |
2441 | dprintf(("%s0x%x, addr=0x%x,size=0x%x,offset=0x%x\n", | |
2442 | "device_write returned ", | |
2443 | kr, addr, size, offset)); | |
2444 | BS_STAT(ps->ps_bs, | |
55e303ae | 2445 | ps->ps_bs->bs_pages_out_fail += atop_32(size)); |
1c79356b A |
2446 | return PAGER_ERROR; |
2447 | } | |
2448 | if (bytes_written & ((vm_page_size >> ps->ps_record_shift) - 1)) | |
2449 | Panic("fragmented write"); | |
2450 | records_written = (bytes_written >> | |
2451 | (vm_page_shift - ps->ps_record_shift)); | |
2452 | dev_offset += records_written; | |
2453 | #if 1 | |
2454 | if (bytes_written != bytes_to_write) { | |
2455 | dprintf(("wrote only %d bytes out of %d\n", | |
2456 | bytes_written, bytes_to_write)); | |
2457 | } | |
2458 | #endif | |
2459 | bytes_to_write -= bytes_written; | |
2460 | addr += bytes_written; | |
2461 | } while (bytes_to_write > 0); | |
2462 | ||
2463 | return PAGER_SUCCESS; | |
2464 | } | |
2465 | ||
2466 | ||
2467 | #else /* !DEVICE_PAGING */ | |
2468 | ||
2469 | kern_return_t | |
2470 | ps_read_device( | |
91447636 A |
2471 | __unused paging_segment_t ps, |
2472 | __unused vm_offset_t offset, | |
2473 | __unused vm_offset_t *bufferp, | |
2474 | __unused unsigned int size, | |
2475 | __unused unsigned int *residualp, | |
2476 | __unused int flags) | |
1c79356b A |
2477 | { |
2478 | panic("ps_read_device not supported"); | |
0c530ab8 | 2479 | return KERN_FAILURE; |
1c79356b A |
2480 | } |
2481 | ||
91447636 | 2482 | kern_return_t |
1c79356b | 2483 | ps_write_device( |
91447636 A |
2484 | __unused paging_segment_t ps, |
2485 | __unused vm_offset_t offset, | |
2486 | __unused vm_offset_t addr, | |
2487 | __unused unsigned int size, | |
2488 | __unused struct vs_async *vsa) | |
1c79356b A |
2489 | { |
2490 | panic("ps_write_device not supported"); | |
0c530ab8 | 2491 | return KERN_FAILURE; |
1c79356b A |
2492 | } |
2493 | ||
2494 | #endif /* DEVICE_PAGING */ | |
91447636 | 2495 | void pvs_object_data_provided(vstruct_t, upl_t, upl_offset_t, upl_size_t); /* forward */ |
1c79356b A |
2496 | |
2497 | void | |
2498 | pvs_object_data_provided( | |
91447636 A |
2499 | __unused vstruct_t vs, |
2500 | __unused upl_t upl, | |
2501 | __unused upl_offset_t offset, | |
2502 | upl_size_t size) | |
1c79356b | 2503 | { |
1c79356b | 2504 | |
91447636 A |
2505 | DP_DEBUG(DEBUG_VS_INTERNAL, |
2506 | ("buffer=0x%x,offset=0x%x,size=0x%x\n", | |
2507 | upl, offset, size)); | |
1c79356b A |
2508 | |
2509 | ASSERT(size > 0); | |
55e303ae | 2510 | GSTAT(global_stats.gs_pages_in += atop_32(size)); |
1c79356b A |
2511 | |
2512 | ||
2513 | #if USE_PRECIOUS | |
2514 | ps_clunmap(vs, offset, size); | |
2515 | #endif /* USE_PRECIOUS */ | |
2516 | ||
2517 | } | |
2518 | ||
2d21ac55 A |
2519 | static memory_object_offset_t last_start; |
2520 | static vm_size_t last_length; | |
2521 | ||
1c79356b A |
2522 | kern_return_t |
2523 | pvs_cluster_read( | |
2524 | vstruct_t vs, | |
0b4e3aa0 | 2525 | vm_offset_t vs_offset, |
2d21ac55 A |
2526 | vm_size_t cnt, |
2527 | void *fault_info) | |
1c79356b | 2528 | { |
1c79356b | 2529 | kern_return_t error = KERN_SUCCESS; |
2d21ac55 | 2530 | unsigned int size; |
0c530ab8 | 2531 | unsigned int residual; |
1c79356b | 2532 | unsigned int request_flags; |
2d21ac55 A |
2533 | int seg_index; |
2534 | int pages_in_cl; | |
0b4e3aa0 A |
2535 | int cl_size; |
2536 | int cl_mask; | |
2d21ac55 A |
2537 | int cl_index; |
2538 | unsigned int xfer_size; | |
2539 | vm_offset_t orig_vs_offset; | |
0b4e3aa0 A |
2540 | vm_offset_t ps_offset[(VM_SUPER_CLUSTER / PAGE_SIZE) >> VSTRUCT_DEF_CLSHIFT]; |
2541 | paging_segment_t psp[(VM_SUPER_CLUSTER / PAGE_SIZE) >> VSTRUCT_DEF_CLSHIFT]; | |
2542 | struct clmap clmap; | |
2d21ac55 A |
2543 | upl_t upl; |
2544 | unsigned int page_list_count; | |
2545 | memory_object_offset_t start; | |
0b4e3aa0 A |
2546 | |
2547 | pages_in_cl = 1 << vs->vs_clshift; | |
2548 | cl_size = pages_in_cl * vm_page_size; | |
2549 | cl_mask = cl_size - 1; | |
1c79356b | 2550 | |
1c79356b | 2551 | #if USE_PRECIOUS |
2d21ac55 | 2552 | request_flags = UPL_NO_SYNC | UPL_CLEAN_IN_PLACE | UPL_PRECIOUS | UPL_RET_ONLY_ABSENT | UPL_SET_LITE; |
1c79356b | 2553 | #else |
2d21ac55 | 2554 | request_flags = UPL_NO_SYNC | UPL_CLEAN_IN_PLACE | UPL_RET_ONLY_ABSENT | UPL_SET_LITE; |
1c79356b | 2555 | #endif |
2d21ac55 A |
2556 | cl_index = (vs_offset & cl_mask) / vm_page_size; |
2557 | ||
2558 | if ((ps_clmap(vs, vs_offset & ~cl_mask, &clmap, CL_FIND, 0, 0) == (vm_offset_t)-1) || | |
2559 | !CLMAP_ISSET(clmap, cl_index)) { | |
2560 | /* | |
2561 | * the needed page doesn't exist in the backing store... | |
2562 | * we don't want to try to do any I/O, just abort the | |
2563 | * page and let the fault handler provide a zero-fill | |
2564 | */ | |
2565 | if (cnt == 0) { | |
2566 | /* | |
2567 | * The caller was just poking at us to see if | |
2568 | * the page has been paged out. No need to | |
2569 | * mess with the page at all. | |
2570 | * Just let the caller know we don't have that page. | |
2571 | */ | |
2572 | return KERN_FAILURE; | |
2573 | } | |
2574 | ||
2575 | page_list_count = 0; | |
2576 | ||
2577 | memory_object_super_upl_request(vs->vs_control, (memory_object_offset_t)vs_offset, | |
2578 | PAGE_SIZE, PAGE_SIZE, | |
2579 | &upl, NULL, &page_list_count, | |
2580 | request_flags); | |
2581 | ||
2582 | if (clmap.cl_error) | |
2583 | upl_abort(upl, UPL_ABORT_ERROR); | |
2584 | else | |
2585 | upl_abort(upl, UPL_ABORT_UNAVAILABLE); | |
2586 | upl_deallocate(upl); | |
91447636 | 2587 | |
2d21ac55 A |
2588 | return KERN_SUCCESS; |
2589 | } | |
2590 | ||
2591 | if (cnt == 0) { | |
2592 | /* | |
2593 | * The caller was just poking at us to see if | |
2594 | * the page has been paged out. No need to | |
2595 | * mess with the page at all. | |
2596 | * Just let the caller know we do have that page. | |
2597 | */ | |
2598 | return KERN_SUCCESS; | |
2599 | } | |
2600 | ||
91447636 A |
2601 | assert(dp_encryption_inited); |
2602 | if (dp_encryption) { | |
2603 | /* | |
2604 | * ENCRYPTED SWAP: | |
2605 | * request that the UPL be prepared for | |
2606 | * decryption. | |
2607 | */ | |
2608 | request_flags |= UPL_ENCRYPT; | |
2609 | } | |
2d21ac55 | 2610 | orig_vs_offset = vs_offset; |
91447636 | 2611 | |
2d21ac55 A |
2612 | start = (memory_object_offset_t)vs_offset; |
2613 | assert(cnt != 0); | |
2614 | cnt = VM_SUPER_CLUSTER; | |
1c79356b | 2615 | |
2d21ac55 A |
2616 | /* |
2617 | * determine how big a speculative I/O we should try for... | |
2618 | */ | |
2619 | if (memory_object_cluster_size(vs->vs_control, &start, &cnt, (memory_object_fault_info_t)fault_info) == KERN_SUCCESS) { | |
2620 | assert(vs_offset >= (vm_offset_t) start && | |
2621 | vs_offset < (vm_offset_t) (start + cnt)); | |
2622 | vs_offset = (vm_offset_t)start; | |
2623 | } else | |
2624 | cnt = PAGE_SIZE; | |
2625 | ||
2626 | last_start = start; | |
2627 | last_length = cnt; | |
2628 | ||
2629 | /* | |
2630 | * This loop will be executed multiple times until the entire | |
2631 | * range has been looked at or we issue an I/O... if the request spans cluster | |
2632 | * boundaries, the clusters will be checked for logical continunity, | |
2633 | * if contiguous the I/O request will span multiple clusters... | |
2634 | * at most only 1 I/O will be issued... it will encompass the original offset | |
2635 | */ | |
2636 | while (cnt && error == KERN_SUCCESS) { | |
2637 | int ps_info_valid; | |
2638 | ||
2639 | if ((vs_offset & cl_mask) && (cnt > (VM_SUPER_CLUSTER - (vs_offset & cl_mask)))) { | |
d12e1678 A |
2640 | size = VM_SUPER_CLUSTER; |
2641 | size -= vs_offset & cl_mask; | |
2d21ac55 | 2642 | } else if (cnt > VM_SUPER_CLUSTER) |
0b4e3aa0 | 2643 | size = VM_SUPER_CLUSTER; |
2d21ac55 | 2644 | else |
0b4e3aa0 | 2645 | size = cnt; |
2d21ac55 | 2646 | |
0b4e3aa0 | 2647 | cnt -= size; |
1c79356b | 2648 | |
0b4e3aa0 A |
2649 | ps_info_valid = 0; |
2650 | seg_index = 0; | |
1c79356b | 2651 | |
0b4e3aa0 | 2652 | while (size > 0 && error == KERN_SUCCESS) { |
2d21ac55 | 2653 | unsigned int abort_size; |
0b4e3aa0 A |
2654 | int failed_size; |
2655 | int beg_pseg; | |
2656 | int beg_indx; | |
2657 | vm_offset_t cur_offset; | |
1c79356b | 2658 | |
0b4e3aa0 A |
2659 | if ( !ps_info_valid) { |
2660 | ps_offset[seg_index] = ps_clmap(vs, vs_offset & ~cl_mask, &clmap, CL_FIND, 0, 0); | |
2661 | psp[seg_index] = CLMAP_PS(clmap); | |
2662 | ps_info_valid = 1; | |
1c79356b | 2663 | } |
0b4e3aa0 A |
2664 | /* |
2665 | * skip over unallocated physical segments | |
2666 | */ | |
2667 | if (ps_offset[seg_index] == (vm_offset_t) -1) { | |
2668 | abort_size = cl_size - (vs_offset & cl_mask); | |
2669 | abort_size = MIN(abort_size, size); | |
2670 | ||
2d21ac55 A |
2671 | size -= abort_size; |
2672 | vs_offset += abort_size; | |
1c79356b | 2673 | |
0b4e3aa0 A |
2674 | seg_index++; |
2675 | ps_info_valid = 0; | |
2d21ac55 | 2676 | |
0b4e3aa0 | 2677 | continue; |
1c79356b | 2678 | } |
0b4e3aa0 A |
2679 | cl_index = (vs_offset & cl_mask) / vm_page_size; |
2680 | ||
2681 | for (abort_size = 0; cl_index < pages_in_cl && abort_size < size; cl_index++) { | |
2682 | /* | |
2683 | * skip over unallocated pages | |
2684 | */ | |
2685 | if (CLMAP_ISSET(clmap, cl_index)) | |
2686 | break; | |
2687 | abort_size += vm_page_size; | |
2688 | } | |
2689 | if (abort_size) { | |
2d21ac55 A |
2690 | size -= abort_size; |
2691 | vs_offset += abort_size; | |
0b4e3aa0 A |
2692 | |
2693 | if (cl_index == pages_in_cl) { | |
2694 | /* | |
2695 | * if we're at the end of this physical cluster | |
2696 | * then bump to the next one and continue looking | |
2697 | */ | |
2698 | seg_index++; | |
2699 | ps_info_valid = 0; | |
2d21ac55 | 2700 | |
0b4e3aa0 A |
2701 | continue; |
2702 | } | |
2703 | if (size == 0) | |
2704 | break; | |
2705 | } | |
1c79356b | 2706 | /* |
0b4e3aa0 A |
2707 | * remember the starting point of the first allocated page |
2708 | * for the I/O we're about to issue | |
1c79356b | 2709 | */ |
0b4e3aa0 A |
2710 | beg_pseg = seg_index; |
2711 | beg_indx = cl_index; | |
2712 | cur_offset = vs_offset; | |
2713 | ||
2714 | /* | |
2715 | * calculate the size of the I/O that we can do... | |
2716 | * this may span multiple physical segments if | |
2717 | * they are contiguous | |
2718 | */ | |
2719 | for (xfer_size = 0; xfer_size < size; ) { | |
2720 | ||
2d21ac55 | 2721 | while (cl_index < pages_in_cl && xfer_size < size) { |
0b4e3aa0 | 2722 | /* |
55e303ae | 2723 | * accumulate allocated pages within |
d12e1678 | 2724 | * a physical segment |
1c79356b | 2725 | */ |
0b4e3aa0 A |
2726 | if (CLMAP_ISSET(clmap, cl_index)) { |
2727 | xfer_size += vm_page_size; | |
2728 | cur_offset += vm_page_size; | |
2729 | cl_index++; | |
2730 | ||
2731 | BS_STAT(psp[seg_index]->ps_bs, | |
2732 | psp[seg_index]->ps_bs->bs_pages_in++); | |
2733 | } else | |
2734 | break; | |
2735 | } | |
2d21ac55 | 2736 | if (cl_index < pages_in_cl || xfer_size >= size) { |
0b4e3aa0 | 2737 | /* |
55e303ae | 2738 | * we've hit an unallocated page or |
2d21ac55 A |
2739 | * the end of this request... see if |
2740 | * it's time to fire the I/O | |
1c79356b | 2741 | */ |
0b4e3aa0 A |
2742 | break; |
2743 | } | |
2744 | /* | |
d12e1678 | 2745 | * we've hit the end of the current physical |
55e303ae | 2746 | * segment and there's more to do, so try |
d12e1678 | 2747 | * moving to the next one |
0b4e3aa0 A |
2748 | */ |
2749 | seg_index++; | |
2750 | ||
2d21ac55 | 2751 | ps_offset[seg_index] = ps_clmap(vs, cur_offset & ~cl_mask, &clmap, CL_FIND, 0, 0); |
d12e1678 | 2752 | psp[seg_index] = CLMAP_PS(clmap); |
0b4e3aa0 A |
2753 | ps_info_valid = 1; |
2754 | ||
2755 | if ((ps_offset[seg_index - 1] != (ps_offset[seg_index] - cl_size)) || (psp[seg_index - 1] != psp[seg_index])) { | |
2756 | /* | |
55e303ae A |
2757 | * if the physical segment we're about |
2758 | * to step into is not contiguous to | |
2759 | * the one we're currently in, or it's | |
d12e1678 | 2760 | * in a different paging file, or |
0b4e3aa0 | 2761 | * it hasn't been allocated.... |
2d21ac55 A |
2762 | * we stop this run and go check |
2763 | * to see if it's time to fire the I/O | |
0b4e3aa0 A |
2764 | */ |
2765 | break; | |
1c79356b | 2766 | } |
0b4e3aa0 | 2767 | /* |
d12e1678 | 2768 | * start with first page of the next physical |
2d21ac55 | 2769 | * segment |
0b4e3aa0 A |
2770 | */ |
2771 | cl_index = 0; | |
1c79356b | 2772 | } |
2d21ac55 | 2773 | if (xfer_size == 0) { |
0b4e3aa0 | 2774 | /* |
2d21ac55 | 2775 | * no I/O to generate for this segment |
0b4e3aa0 | 2776 | */ |
0b4e3aa0 | 2777 | continue; |
2d21ac55 A |
2778 | } |
2779 | if (cur_offset <= orig_vs_offset) { | |
2780 | /* | |
2781 | * we've hit a hole in our speculative cluster | |
2782 | * before the offset that we're really after... | |
2783 | * don't issue the I/O since it doesn't encompass | |
2784 | * the original offset and we're looking to only | |
2785 | * pull in the speculative pages if they can be | |
2786 | * made part of a single I/O | |
2787 | */ | |
2788 | size -= xfer_size; | |
2789 | vs_offset += xfer_size; | |
1c79356b | 2790 | |
2d21ac55 A |
2791 | continue; |
2792 | } | |
2793 | /* | |
2794 | * we have a contiguous range of allocated pages | |
2795 | * to read from that encompasses the original offset | |
2796 | */ | |
2797 | page_list_count = 0; | |
2798 | memory_object_super_upl_request(vs->vs_control, (memory_object_offset_t)vs_offset, | |
2799 | xfer_size, xfer_size, | |
2800 | &upl, NULL, &page_list_count, | |
2801 | request_flags | UPL_SET_INTERNAL | UPL_NOBLOCK); | |
2802 | ||
2803 | error = ps_read_file(psp[beg_pseg], | |
2804 | upl, (upl_offset_t) 0, | |
2805 | ps_offset[beg_pseg] + (beg_indx * vm_page_size), | |
2806 | xfer_size, &residual, 0); | |
2807 | ||
0b4e3aa0 A |
2808 | failed_size = 0; |
2809 | ||
2810 | /* | |
55e303ae | 2811 | * Adjust counts and send response to VM. Optimize |
d12e1678 | 2812 | * for the common case, i.e. no error and/or partial |
55e303ae | 2813 | * data. If there was an error, then we need to error |
d12e1678 | 2814 | * the entire range, even if some data was successfully |
55e303ae | 2815 | * read. If there was a partial read we may supply some |
0b4e3aa0 | 2816 | * data and may error some as well. In all cases the |
55e303ae A |
2817 | * VM must receive some notification for every page |
2818 | * in the range. | |
0b4e3aa0 A |
2819 | */ |
2820 | if ((error == KERN_SUCCESS) && (residual == 0)) { | |
2821 | /* | |
d12e1678 | 2822 | * Got everything we asked for, supply the data |
55e303ae A |
2823 | * to the VM. Note that as a side effect of |
2824 | * supplying the data, the buffer holding the | |
2825 | * supplied data is deallocated from the pager's | |
2826 | * address space. | |
0b4e3aa0 | 2827 | */ |
2d21ac55 | 2828 | pvs_object_data_provided(vs, upl, vs_offset, xfer_size); |
0b4e3aa0 A |
2829 | } else { |
2830 | failed_size = xfer_size; | |
2831 | ||
2832 | if (error == KERN_SUCCESS) { | |
2d21ac55 A |
2833 | if (residual == xfer_size) { |
2834 | /* | |
2835 | * If a read operation returns no error | |
2836 | * and no data moved, we turn it into | |
2837 | * an error, assuming we're reading at | |
2838 | * or beyong EOF. | |
2839 | * Fall through and error the entire range. | |
2840 | */ | |
0b4e3aa0 A |
2841 | error = KERN_FAILURE; |
2842 | } else { | |
2d21ac55 A |
2843 | /* |
2844 | * Otherwise, we have partial read. If | |
2845 | * the part read is a integral number | |
2846 | * of pages supply it. Otherwise round | |
2847 | * it up to a page boundary, zero fill | |
2848 | * the unread part, and supply it. | |
2849 | * Fall through and error the remainder | |
2850 | * of the range, if any. | |
2851 | */ | |
2852 | int fill; | |
2853 | unsigned int lsize; | |
2854 | ||
2855 | fill = residual & ~vm_page_size; | |
2856 | lsize = (xfer_size - residual) + fill; | |
0b4e3aa0 | 2857 | |
2d21ac55 | 2858 | pvs_object_data_provided(vs, upl, vs_offset, lsize); |
0b4e3aa0 A |
2859 | |
2860 | if (lsize < xfer_size) { | |
2d21ac55 | 2861 | failed_size = xfer_size - lsize; |
0b4e3aa0 A |
2862 | error = KERN_FAILURE; |
2863 | } | |
2864 | } | |
2865 | } | |
2866 | } | |
1c79356b | 2867 | if (error != KERN_SUCCESS) { |
2d21ac55 A |
2868 | /* |
2869 | * There was an error in some part of the range, tell | |
2870 | * the VM. Note that error is explicitly checked again | |
2871 | * since it can be modified above. | |
2872 | */ | |
0b4e3aa0 | 2873 | BS_STAT(psp[beg_pseg]->ps_bs, |
2d21ac55 | 2874 | psp[beg_pseg]->ps_bs->bs_pages_in_fail += atop_32(failed_size)); |
1c79356b | 2875 | } |
2d21ac55 A |
2876 | /* |
2877 | * we've issued a single I/O that encompassed the original offset | |
2878 | * at this point we either met our speculative request length or | |
2879 | * we ran into a 'hole' (i.e. page not present in the cluster, cluster | |
2880 | * not present or not physically contiguous to the previous one), so | |
2881 | * we're done issuing I/O at this point | |
2882 | */ | |
2883 | return (error); | |
1c79356b | 2884 | } |
2d21ac55 | 2885 | } |
1c79356b A |
2886 | return error; |
2887 | } | |
2888 | ||
2889 | int vs_do_async_write = 1; | |
2890 | ||
2891 | kern_return_t | |
2892 | vs_cluster_write( | |
2893 | vstruct_t vs, | |
2894 | upl_t internal_upl, | |
91447636 A |
2895 | upl_offset_t offset, |
2896 | upl_size_t cnt, | |
1c79356b A |
2897 | boolean_t dp_internal, |
2898 | int flags) | |
2899 | { | |
91447636 | 2900 | upl_size_t transfer_size; |
1c79356b A |
2901 | int error = 0; |
2902 | struct clmap clmap; | |
0b4e3aa0 A |
2903 | |
2904 | vm_offset_t actual_offset; /* Offset within paging segment */ | |
1c79356b | 2905 | paging_segment_t ps; |
0b4e3aa0 A |
2906 | vm_offset_t mobj_base_addr; |
2907 | vm_offset_t mobj_target_addr; | |
1c79356b A |
2908 | |
2909 | upl_t upl; | |
0b4e3aa0 | 2910 | upl_page_info_t *pl; |
1c79356b A |
2911 | int page_index; |
2912 | int list_size; | |
55e303ae | 2913 | int pages_in_cl; |
91447636 | 2914 | unsigned int cl_size; |
55e303ae | 2915 | int base_index; |
91447636 | 2916 | unsigned int seg_size; |
55e303ae A |
2917 | |
2918 | pages_in_cl = 1 << vs->vs_clshift; | |
2919 | cl_size = pages_in_cl * vm_page_size; | |
1c79356b | 2920 | |
1c79356b | 2921 | if (!dp_internal) { |
0c530ab8 | 2922 | unsigned int page_list_count; |
1c79356b | 2923 | int request_flags; |
91447636 | 2924 | unsigned int super_size; |
0b4e3aa0 A |
2925 | int first_dirty; |
2926 | int num_dirty; | |
2927 | int num_of_pages; | |
2928 | int seg_index; | |
91447636 | 2929 | upl_offset_t upl_offset; |
0b4e3aa0 | 2930 | vm_offset_t seg_offset; |
55e303ae A |
2931 | vm_offset_t ps_offset[((VM_SUPER_CLUSTER / PAGE_SIZE) >> VSTRUCT_DEF_CLSHIFT) + 1]; |
2932 | paging_segment_t psp[((VM_SUPER_CLUSTER / PAGE_SIZE) >> VSTRUCT_DEF_CLSHIFT) + 1]; | |
0b4e3aa0 | 2933 | |
1c79356b | 2934 | |
1c79356b A |
2935 | if (bs_low) { |
2936 | super_size = cl_size; | |
0b4e3aa0 | 2937 | |
1c79356b A |
2938 | request_flags = UPL_NOBLOCK | |
2939 | UPL_RET_ONLY_DIRTY | UPL_COPYOUT_FROM | | |
2d21ac55 | 2940 | UPL_NO_SYNC | UPL_SET_INTERNAL | UPL_SET_LITE; |
1c79356b A |
2941 | } else { |
2942 | super_size = VM_SUPER_CLUSTER; | |
0b4e3aa0 | 2943 | |
1c79356b A |
2944 | request_flags = UPL_NOBLOCK | UPL_CLEAN_IN_PLACE | |
2945 | UPL_RET_ONLY_DIRTY | UPL_COPYOUT_FROM | | |
2d21ac55 | 2946 | UPL_NO_SYNC | UPL_SET_INTERNAL | UPL_SET_LITE; |
1c79356b A |
2947 | } |
2948 | ||
91447636 A |
2949 | if (!dp_encryption_inited) { |
2950 | /* | |
2951 | * ENCRYPTED SWAP: | |
2952 | * Once we've started using swap, we | |
2953 | * can't change our mind on whether | |
2954 | * it needs to be encrypted or | |
2955 | * not. | |
2956 | */ | |
2957 | dp_encryption_inited = TRUE; | |
2958 | } | |
2959 | if (dp_encryption) { | |
2960 | /* | |
2961 | * ENCRYPTED SWAP: | |
2962 | * request that the UPL be prepared for | |
2963 | * encryption. | |
2964 | */ | |
2965 | request_flags |= UPL_ENCRYPT; | |
2966 | flags |= UPL_PAGING_ENCRYPTED; | |
2967 | } | |
2968 | ||
0b4e3aa0 A |
2969 | page_list_count = 0; |
2970 | memory_object_super_upl_request(vs->vs_control, | |
2971 | (memory_object_offset_t)offset, | |
2972 | cnt, super_size, | |
2973 | &upl, NULL, &page_list_count, | |
55e303ae | 2974 | request_flags | UPL_FOR_PAGEOUT); |
1c79356b | 2975 | |
0b4e3aa0 | 2976 | pl = UPL_GET_INTERNAL_PAGE_LIST(upl); |
1c79356b | 2977 | |
55e303ae A |
2978 | seg_size = cl_size - (upl->offset % cl_size); |
2979 | upl_offset = upl->offset & ~(cl_size - 1); | |
2980 | ||
d12e1678 A |
2981 | for (seg_index = 0, transfer_size = upl->size; |
2982 | transfer_size > 0; ) { | |
d12e1678 | 2983 | ps_offset[seg_index] = |
55e303ae A |
2984 | ps_clmap(vs, |
2985 | upl_offset, | |
2986 | &clmap, CL_ALLOC, | |
2987 | cl_size, 0); | |
1c79356b | 2988 | |
0b4e3aa0 A |
2989 | if (ps_offset[seg_index] == (vm_offset_t) -1) { |
2990 | upl_abort(upl, 0); | |
2991 | upl_deallocate(upl); | |
2992 | ||
2993 | return KERN_FAILURE; | |
1c79356b | 2994 | |
0b4e3aa0 A |
2995 | } |
2996 | psp[seg_index] = CLMAP_PS(clmap); | |
1c79356b | 2997 | |
55e303ae A |
2998 | if (transfer_size > seg_size) { |
2999 | transfer_size -= seg_size; | |
3000 | upl_offset += cl_size; | |
3001 | seg_size = cl_size; | |
0b4e3aa0 A |
3002 | seg_index++; |
3003 | } else | |
3004 | transfer_size = 0; | |
3005 | } | |
55e303ae A |
3006 | /* |
3007 | * Ignore any non-present pages at the end of the | |
3008 | * UPL. | |
3009 | */ | |
3010 | for (page_index = upl->size / vm_page_size; page_index > 0;) | |
3011 | if (UPL_PAGE_PRESENT(pl, --page_index)) | |
3012 | break; | |
3013 | num_of_pages = page_index + 1; | |
3014 | ||
3015 | base_index = (upl->offset % cl_size) / PAGE_SIZE; | |
3016 | ||
3017 | for (page_index = 0; page_index < num_of_pages; ) { | |
0b4e3aa0 A |
3018 | /* |
3019 | * skip over non-dirty pages | |
3020 | */ | |
3021 | for ( ; page_index < num_of_pages; page_index++) { | |
55e303ae | 3022 | if (UPL_DIRTY_PAGE(pl, page_index) |
d12e1678 | 3023 | || UPL_PRECIOUS_PAGE(pl, page_index)) |
0b4e3aa0 A |
3024 | /* |
3025 | * this is a page we need to write | |
55e303ae | 3026 | * go see if we can buddy it up with |
d12e1678 | 3027 | * others that are contiguous to it |
0b4e3aa0 A |
3028 | */ |
3029 | break; | |
3030 | /* | |
d12e1678 | 3031 | * if the page is not-dirty, but present we |
55e303ae | 3032 | * need to commit it... This is an unusual |
d12e1678 | 3033 | * case since we only asked for dirty pages |
0b4e3aa0 A |
3034 | */ |
3035 | if (UPL_PAGE_PRESENT(pl, page_index)) { | |
3036 | boolean_t empty = FALSE; | |
3037 | upl_commit_range(upl, | |
3038 | page_index * vm_page_size, | |
3039 | vm_page_size, | |
3040 | UPL_COMMIT_NOTIFY_EMPTY, | |
3041 | pl, | |
d52fe63f | 3042 | page_list_count, |
0b4e3aa0 | 3043 | &empty); |
55e303ae A |
3044 | if (empty) { |
3045 | assert(page_index == | |
3046 | num_of_pages - 1); | |
0b4e3aa0 | 3047 | upl_deallocate(upl); |
55e303ae | 3048 | } |
1c79356b | 3049 | } |
1c79356b | 3050 | } |
0b4e3aa0 A |
3051 | if (page_index == num_of_pages) |
3052 | /* | |
3053 | * no more pages to look at, we're out of here | |
3054 | */ | |
3055 | break; | |
1c79356b | 3056 | |
0b4e3aa0 | 3057 | /* |
55e303ae A |
3058 | * gather up contiguous dirty pages... we have at |
3059 | * least 1 * otherwise we would have bailed above | |
0b4e3aa0 A |
3060 | * make sure that each physical segment that we step |
3061 | * into is contiguous to the one we're currently in | |
3062 | * if it's not, we have to stop and write what we have | |
3063 | */ | |
55e303ae | 3064 | for (first_dirty = page_index; |
d12e1678 | 3065 | page_index < num_of_pages; ) { |
55e303ae | 3066 | if ( !UPL_DIRTY_PAGE(pl, page_index) |
d12e1678 | 3067 | && !UPL_PRECIOUS_PAGE(pl, page_index)) |
0b4e3aa0 A |
3068 | break; |
3069 | page_index++; | |
3070 | /* | |
3071 | * if we just looked at the last page in the UPL | |
3072 | * we don't need to check for physical segment | |
3073 | * continuity | |
3074 | */ | |
3075 | if (page_index < num_of_pages) { | |
3076 | int cur_seg; | |
3077 | int nxt_seg; | |
3078 | ||
55e303ae A |
3079 | cur_seg = (base_index + (page_index - 1))/pages_in_cl; |
3080 | nxt_seg = (base_index + page_index)/pages_in_cl; | |
0b4e3aa0 A |
3081 | |
3082 | if (cur_seg != nxt_seg) { | |
3083 | if ((ps_offset[cur_seg] != (ps_offset[nxt_seg] - cl_size)) || (psp[cur_seg] != psp[nxt_seg])) | |
55e303ae A |
3084 | /* |
3085 | * if the segment we're about | |
3086 | * to step into is not | |
3087 | * contiguous to the one we're | |
3088 | * currently in, or it's in a | |
d12e1678 | 3089 | * different paging file.... |
55e303ae | 3090 | * we stop here and generate |
d12e1678 A |
3091 | * the I/O |
3092 | */ | |
0b4e3aa0 | 3093 | break; |
1c79356b | 3094 | } |
1c79356b | 3095 | } |
0b4e3aa0 A |
3096 | } |
3097 | num_dirty = page_index - first_dirty; | |
1c79356b | 3098 | |
0b4e3aa0 A |
3099 | if (num_dirty) { |
3100 | upl_offset = first_dirty * vm_page_size; | |
0b4e3aa0 A |
3101 | transfer_size = num_dirty * vm_page_size; |
3102 | ||
d12e1678 | 3103 | while (transfer_size) { |
1c79356b | 3104 | |
d12e1678 | 3105 | if ((seg_size = cl_size - |
55e303ae | 3106 | ((upl->offset + upl_offset) % cl_size)) |
d12e1678 A |
3107 | > transfer_size) |
3108 | seg_size = transfer_size; | |
0b4e3aa0 | 3109 | |
d12e1678 A |
3110 | ps_vs_write_complete(vs, |
3111 | upl->offset + upl_offset, | |
3112 | seg_size, error); | |
0b4e3aa0 | 3113 | |
d12e1678 A |
3114 | transfer_size -= seg_size; |
3115 | upl_offset += seg_size; | |
0b4e3aa0 | 3116 | } |
d12e1678 A |
3117 | upl_offset = first_dirty * vm_page_size; |
3118 | transfer_size = num_dirty * vm_page_size; | |
55e303ae A |
3119 | |
3120 | seg_index = (base_index + first_dirty) / pages_in_cl; | |
3121 | seg_offset = (upl->offset + upl_offset) % cl_size; | |
3122 | ||
d12e1678 A |
3123 | error = ps_write_file(psp[seg_index], |
3124 | upl, upl_offset, | |
3125 | ps_offset[seg_index] | |
3126 | + seg_offset, | |
3127 | transfer_size, flags); | |
55e303ae | 3128 | } else { |
0b4e3aa0 A |
3129 | boolean_t empty = FALSE; |
3130 | upl_abort_range(upl, | |
3131 | first_dirty * vm_page_size, | |
3132 | num_dirty * vm_page_size, | |
3133 | UPL_ABORT_NOTIFY_EMPTY, | |
3134 | &empty); | |
55e303ae A |
3135 | if (empty) { |
3136 | assert(page_index == num_of_pages); | |
0b4e3aa0 | 3137 | upl_deallocate(upl); |
55e303ae | 3138 | } |
1c79356b | 3139 | } |
1c79356b | 3140 | } |
0b4e3aa0 | 3141 | |
1c79356b A |
3142 | } else { |
3143 | assert(cnt <= (vm_page_size << vs->vs_clshift)); | |
3144 | list_size = cnt; | |
3145 | ||
3146 | page_index = 0; | |
3147 | /* The caller provides a mapped_data which is derived */ | |
3148 | /* from a temporary object. The targeted pages are */ | |
3149 | /* guaranteed to be set at offset 0 in the mapped_data */ | |
3150 | /* The actual offset however must still be derived */ | |
3151 | /* from the offset in the vs in question */ | |
3152 | mobj_base_addr = offset; | |
3153 | mobj_target_addr = mobj_base_addr; | |
3154 | ||
3155 | for (transfer_size = list_size; transfer_size != 0;) { | |
3156 | actual_offset = ps_clmap(vs, mobj_target_addr, | |
3157 | &clmap, CL_ALLOC, | |
3158 | transfer_size < cl_size ? | |
3159 | transfer_size : cl_size, 0); | |
3160 | if(actual_offset == (vm_offset_t) -1) { | |
3161 | error = 1; | |
3162 | break; | |
3163 | } | |
3164 | cnt = MIN(transfer_size, | |
3165 | CLMAP_NPGS(clmap) * vm_page_size); | |
3166 | ps = CLMAP_PS(clmap); | |
3167 | /* Assume that the caller has given us contiguous */ | |
3168 | /* pages */ | |
3169 | if(cnt) { | |
d12e1678 A |
3170 | ps_vs_write_complete(vs, mobj_target_addr, |
3171 | cnt, error); | |
1c79356b A |
3172 | error = ps_write_file(ps, internal_upl, |
3173 | 0, actual_offset, | |
3174 | cnt, flags); | |
3175 | if (error) | |
3176 | break; | |
55e303ae | 3177 | } |
1c79356b A |
3178 | if (error) |
3179 | break; | |
3180 | actual_offset += cnt; | |
3181 | mobj_target_addr += cnt; | |
3182 | transfer_size -= cnt; | |
3183 | cnt = 0; | |
3184 | ||
3185 | if (error) | |
3186 | break; | |
3187 | } | |
3188 | } | |
3189 | if(error) | |
3190 | return KERN_FAILURE; | |
3191 | else | |
3192 | return KERN_SUCCESS; | |
3193 | } | |
3194 | ||
3195 | vm_size_t | |
3196 | ps_vstruct_allocated_size( | |
3197 | vstruct_t vs) | |
3198 | { | |
3199 | int num_pages; | |
3200 | struct vs_map *vsmap; | |
91447636 | 3201 | unsigned int i, j, k; |
1c79356b A |
3202 | |
3203 | num_pages = 0; | |
3204 | if (vs->vs_indirect) { | |
3205 | /* loop on indirect maps */ | |
3206 | for (i = 0; i < INDIRECT_CLMAP_ENTRIES(vs->vs_size); i++) { | |
3207 | vsmap = vs->vs_imap[i]; | |
3208 | if (vsmap == NULL) | |
3209 | continue; | |
3210 | /* loop on clusters in this indirect map */ | |
3211 | for (j = 0; j < CLMAP_ENTRIES; j++) { | |
3212 | if (VSM_ISCLR(vsmap[j]) || | |
3213 | VSM_ISERR(vsmap[j])) | |
3214 | continue; | |
3215 | /* loop on pages in this cluster */ | |
3216 | for (k = 0; k < VSCLSIZE(vs); k++) { | |
3217 | if ((VSM_BMAP(vsmap[j])) & (1 << k)) | |
3218 | num_pages++; | |
3219 | } | |
3220 | } | |
3221 | } | |
3222 | } else { | |
3223 | vsmap = vs->vs_dmap; | |
3224 | if (vsmap == NULL) | |
3225 | return 0; | |
3226 | /* loop on clusters in the direct map */ | |
3227 | for (j = 0; j < CLMAP_ENTRIES; j++) { | |
3228 | if (VSM_ISCLR(vsmap[j]) || | |
3229 | VSM_ISERR(vsmap[j])) | |
3230 | continue; | |
3231 | /* loop on pages in this cluster */ | |
3232 | for (k = 0; k < VSCLSIZE(vs); k++) { | |
3233 | if ((VSM_BMAP(vsmap[j])) & (1 << k)) | |
3234 | num_pages++; | |
3235 | } | |
3236 | } | |
3237 | } | |
3238 | ||
55e303ae | 3239 | return ptoa_32(num_pages); |
1c79356b A |
3240 | } |
3241 | ||
3242 | size_t | |
3243 | ps_vstruct_allocated_pages( | |
3244 | vstruct_t vs, | |
3245 | default_pager_page_t *pages, | |
3246 | size_t pages_size) | |
3247 | { | |
91447636 | 3248 | unsigned int num_pages; |
1c79356b A |
3249 | struct vs_map *vsmap; |
3250 | vm_offset_t offset; | |
91447636 | 3251 | unsigned int i, j, k; |
1c79356b A |
3252 | |
3253 | num_pages = 0; | |
3254 | offset = 0; | |
3255 | if (vs->vs_indirect) { | |
3256 | /* loop on indirect maps */ | |
3257 | for (i = 0; i < INDIRECT_CLMAP_ENTRIES(vs->vs_size); i++) { | |
3258 | vsmap = vs->vs_imap[i]; | |
3259 | if (vsmap == NULL) { | |
3260 | offset += (vm_page_size * CLMAP_ENTRIES * | |
3261 | VSCLSIZE(vs)); | |
3262 | continue; | |
3263 | } | |
3264 | /* loop on clusters in this indirect map */ | |
3265 | for (j = 0; j < CLMAP_ENTRIES; j++) { | |
3266 | if (VSM_ISCLR(vsmap[j]) || | |
3267 | VSM_ISERR(vsmap[j])) { | |
3268 | offset += vm_page_size * VSCLSIZE(vs); | |
3269 | continue; | |
3270 | } | |
3271 | /* loop on pages in this cluster */ | |
3272 | for (k = 0; k < VSCLSIZE(vs); k++) { | |
3273 | if ((VSM_BMAP(vsmap[j])) & (1 << k)) { | |
3274 | num_pages++; | |
3275 | if (num_pages < pages_size) | |
3276 | pages++->dpp_offset = | |
3277 | offset; | |
3278 | } | |
3279 | offset += vm_page_size; | |
3280 | } | |
3281 | } | |
3282 | } | |
3283 | } else { | |
3284 | vsmap = vs->vs_dmap; | |
3285 | if (vsmap == NULL) | |
3286 | return 0; | |
3287 | /* loop on clusters in the direct map */ | |
3288 | for (j = 0; j < CLMAP_ENTRIES; j++) { | |
3289 | if (VSM_ISCLR(vsmap[j]) || | |
3290 | VSM_ISERR(vsmap[j])) { | |
3291 | offset += vm_page_size * VSCLSIZE(vs); | |
3292 | continue; | |
3293 | } | |
3294 | /* loop on pages in this cluster */ | |
3295 | for (k = 0; k < VSCLSIZE(vs); k++) { | |
3296 | if ((VSM_BMAP(vsmap[j])) & (1 << k)) { | |
3297 | num_pages++; | |
3298 | if (num_pages < pages_size) | |
3299 | pages++->dpp_offset = offset; | |
3300 | } | |
3301 | offset += vm_page_size; | |
3302 | } | |
3303 | } | |
3304 | } | |
3305 | ||
3306 | return num_pages; | |
3307 | } | |
3308 | ||
3309 | ||
3310 | kern_return_t | |
3311 | ps_vstruct_transfer_from_segment( | |
3312 | vstruct_t vs, | |
3313 | paging_segment_t segment, | |
1c79356b | 3314 | upl_t upl) |
1c79356b A |
3315 | { |
3316 | struct vs_map *vsmap; | |
91447636 A |
3317 | // struct vs_map old_vsmap; |
3318 | // struct vs_map new_vsmap; | |
3319 | unsigned int i, j; | |
1c79356b A |
3320 | |
3321 | VS_LOCK(vs); /* block all work on this vstruct */ | |
3322 | /* can't allow the normal multiple write */ | |
3323 | /* semantic because writes may conflict */ | |
3324 | vs->vs_xfer_pending = TRUE; | |
3325 | vs_wait_for_sync_writers(vs); | |
3326 | vs_start_write(vs); | |
3327 | vs_wait_for_readers(vs); | |
3328 | /* we will unlock the vs to allow other writes while transferring */ | |
3329 | /* and will be guaranteed of the persistance of the vs struct */ | |
3330 | /* because the caller of ps_vstruct_transfer_from_segment bumped */ | |
3331 | /* vs_async_pending */ | |
3332 | /* OK we now have guaranteed no other parties are accessing this */ | |
3333 | /* vs. Now that we are also supporting simple lock versions of */ | |
3334 | /* vs_lock we cannot hold onto VS_LOCK as we may block below. */ | |
3335 | /* our purpose in holding it before was the multiple write case */ | |
3336 | /* we now use the boolean xfer_pending to do that. We can use */ | |
3337 | /* a boolean instead of a count because we have guaranteed single */ | |
3338 | /* file access to this code in its caller */ | |
3339 | VS_UNLOCK(vs); | |
3340 | vs_changed: | |
3341 | if (vs->vs_indirect) { | |
91447636 A |
3342 | unsigned int vsmap_size; |
3343 | int clmap_off; | |
1c79356b A |
3344 | /* loop on indirect maps */ |
3345 | for (i = 0; i < INDIRECT_CLMAP_ENTRIES(vs->vs_size); i++) { | |
3346 | vsmap = vs->vs_imap[i]; | |
3347 | if (vsmap == NULL) | |
3348 | continue; | |
3349 | /* loop on clusters in this indirect map */ | |
3350 | clmap_off = (vm_page_size * CLMAP_ENTRIES * | |
3351 | VSCLSIZE(vs) * i); | |
3352 | if(i+1 == INDIRECT_CLMAP_ENTRIES(vs->vs_size)) | |
3353 | vsmap_size = vs->vs_size - (CLMAP_ENTRIES * i); | |
3354 | else | |
3355 | vsmap_size = CLMAP_ENTRIES; | |
3356 | for (j = 0; j < vsmap_size; j++) { | |
3357 | if (VSM_ISCLR(vsmap[j]) || | |
3358 | VSM_ISERR(vsmap[j]) || | |
3359 | (VSM_PS(vsmap[j]) != segment)) | |
3360 | continue; | |
3361 | if(vs_cluster_transfer(vs, | |
3362 | (vm_page_size * (j << vs->vs_clshift)) | |
3363 | + clmap_off, | |
3364 | vm_page_size << vs->vs_clshift, | |
1c79356b | 3365 | upl) |
1c79356b A |
3366 | != KERN_SUCCESS) { |
3367 | VS_LOCK(vs); | |
3368 | vs->vs_xfer_pending = FALSE; | |
3369 | VS_UNLOCK(vs); | |
3370 | vs_finish_write(vs); | |
3371 | return KERN_FAILURE; | |
3372 | } | |
3373 | /* allow other readers/writers during transfer*/ | |
3374 | VS_LOCK(vs); | |
3375 | vs->vs_xfer_pending = FALSE; | |
3376 | VS_UNLOCK(vs); | |
3377 | vs_finish_write(vs); | |
3378 | VS_LOCK(vs); | |
3379 | vs->vs_xfer_pending = TRUE; | |
1c79356b A |
3380 | vs_wait_for_sync_writers(vs); |
3381 | vs_start_write(vs); | |
3382 | vs_wait_for_readers(vs); | |
0b4e3aa0 | 3383 | VS_UNLOCK(vs); |
1c79356b A |
3384 | if (!(vs->vs_indirect)) { |
3385 | goto vs_changed; | |
3386 | } | |
3387 | } | |
3388 | } | |
3389 | } else { | |
3390 | vsmap = vs->vs_dmap; | |
3391 | if (vsmap == NULL) { | |
3392 | VS_LOCK(vs); | |
3393 | vs->vs_xfer_pending = FALSE; | |
3394 | VS_UNLOCK(vs); | |
3395 | vs_finish_write(vs); | |
3396 | return KERN_SUCCESS; | |
3397 | } | |
3398 | /* loop on clusters in the direct map */ | |
3399 | for (j = 0; j < vs->vs_size; j++) { | |
3400 | if (VSM_ISCLR(vsmap[j]) || | |
3401 | VSM_ISERR(vsmap[j]) || | |
3402 | (VSM_PS(vsmap[j]) != segment)) | |
3403 | continue; | |
3404 | if(vs_cluster_transfer(vs, | |
3405 | vm_page_size * (j << vs->vs_clshift), | |
3406 | vm_page_size << vs->vs_clshift, | |
1c79356b | 3407 | upl) != KERN_SUCCESS) { |
1c79356b A |
3408 | VS_LOCK(vs); |
3409 | vs->vs_xfer_pending = FALSE; | |
3410 | VS_UNLOCK(vs); | |
3411 | vs_finish_write(vs); | |
3412 | return KERN_FAILURE; | |
3413 | } | |
3414 | /* allow other readers/writers during transfer*/ | |
3415 | VS_LOCK(vs); | |
3416 | vs->vs_xfer_pending = FALSE; | |
3417 | VS_UNLOCK(vs); | |
3418 | vs_finish_write(vs); | |
3419 | VS_LOCK(vs); | |
3420 | vs->vs_xfer_pending = TRUE; | |
3421 | VS_UNLOCK(vs); | |
3422 | vs_wait_for_sync_writers(vs); | |
3423 | vs_start_write(vs); | |
3424 | vs_wait_for_readers(vs); | |
3425 | if (vs->vs_indirect) { | |
3426 | goto vs_changed; | |
3427 | } | |
3428 | } | |
3429 | } | |
3430 | ||
3431 | VS_LOCK(vs); | |
3432 | vs->vs_xfer_pending = FALSE; | |
3433 | VS_UNLOCK(vs); | |
3434 | vs_finish_write(vs); | |
3435 | return KERN_SUCCESS; | |
3436 | } | |
3437 | ||
3438 | ||
3439 | ||
3440 | vs_map_t | |
3441 | vs_get_map_entry( | |
3442 | vstruct_t vs, | |
3443 | vm_offset_t offset) | |
3444 | { | |
3445 | struct vs_map *vsmap; | |
3446 | vm_offset_t cluster; | |
3447 | ||
55e303ae | 3448 | cluster = atop_32(offset) >> vs->vs_clshift; |
1c79356b A |
3449 | if (vs->vs_indirect) { |
3450 | long ind_block = cluster/CLMAP_ENTRIES; | |
3451 | ||
3452 | /* Is the indirect block allocated? */ | |
3453 | vsmap = vs->vs_imap[ind_block]; | |
3454 | if(vsmap == (vs_map_t) NULL) | |
3455 | return vsmap; | |
3456 | } else | |
3457 | vsmap = vs->vs_dmap; | |
3458 | vsmap += cluster%CLMAP_ENTRIES; | |
3459 | return vsmap; | |
3460 | } | |
3461 | ||
3462 | kern_return_t | |
3463 | vs_cluster_transfer( | |
3464 | vstruct_t vs, | |
3465 | vm_offset_t offset, | |
3466 | vm_size_t cnt, | |
1c79356b | 3467 | upl_t upl) |
1c79356b A |
3468 | { |
3469 | vm_offset_t actual_offset; | |
3470 | paging_segment_t ps; | |
3471 | struct clmap clmap; | |
3472 | kern_return_t error = KERN_SUCCESS; | |
91447636 A |
3473 | unsigned int size, size_wanted; |
3474 | int i; | |
0c530ab8 | 3475 | unsigned int residual = 0; |
91447636 A |
3476 | unsigned int unavail_size; |
3477 | // default_pager_thread_t *dpt; | |
3478 | // boolean_t dealloc; | |
3479 | struct vs_map *vsmap_ptr = NULL; | |
1c79356b A |
3480 | struct vs_map read_vsmap; |
3481 | struct vs_map original_read_vsmap; | |
3482 | struct vs_map write_vsmap; | |
91447636 A |
3483 | // upl_t sync_upl; |
3484 | // vm_offset_t ioaddr; | |
1c79356b | 3485 | |
1c79356b A |
3486 | /* vs_cluster_transfer reads in the pages of a cluster and |
3487 | * then writes these pages back to new backing store. The | |
3488 | * segment the pages are being read from is assumed to have | |
3489 | * been taken off-line and is no longer considered for new | |
3490 | * space requests. | |
3491 | */ | |
3492 | ||
3493 | /* | |
3494 | * This loop will be executed once per cluster referenced. | |
3495 | * Typically this means once, since it's unlikely that the | |
3496 | * VM system will ask for anything spanning cluster boundaries. | |
3497 | * | |
3498 | * If there are holes in a cluster (in a paging segment), we stop | |
3499 | * reading at the hole, then loop again, hoping to | |
3500 | * find valid pages later in the cluster. This continues until | |
3501 | * the entire range has been examined, and read, if present. The | |
3502 | * pages are written as they are read. If a failure occurs after | |
3503 | * some pages are written the unmap call at the bottom of the loop | |
3504 | * recovers the backing store and the old backing store remains | |
3505 | * in effect. | |
3506 | */ | |
3507 | ||
1c79356b A |
3508 | VSM_CLR(write_vsmap); |
3509 | VSM_CLR(original_read_vsmap); | |
3510 | /* grab the actual object's pages to sync with I/O */ | |
3511 | while (cnt && (error == KERN_SUCCESS)) { | |
3512 | vsmap_ptr = vs_get_map_entry(vs, offset); | |
3513 | actual_offset = ps_clmap(vs, offset, &clmap, CL_FIND, 0, 0); | |
3514 | ||
3515 | if (actual_offset == (vm_offset_t) -1) { | |
3516 | ||
3517 | /* | |
3518 | * Nothing left to write in this cluster at least | |
3519 | * set write cluster information for any previous | |
3520 | * write, clear for next cluster, if there is one | |
3521 | */ | |
3522 | unsigned int local_size, clmask, clsize; | |
3523 | ||
3524 | clsize = vm_page_size << vs->vs_clshift; | |
3525 | clmask = clsize - 1; | |
3526 | local_size = clsize - (offset & clmask); | |
3527 | ASSERT(local_size); | |
3528 | local_size = MIN(local_size, cnt); | |
3529 | ||
3530 | /* This cluster has no data in it beyond what may */ | |
3531 | /* have been found on a previous iteration through */ | |
3532 | /* the loop "write_vsmap" */ | |
3533 | *vsmap_ptr = write_vsmap; | |
3534 | VSM_CLR(write_vsmap); | |
3535 | VSM_CLR(original_read_vsmap); | |
3536 | ||
3537 | cnt -= local_size; | |
3538 | offset += local_size; | |
3539 | continue; | |
3540 | } | |
3541 | ||
3542 | /* | |
3543 | * Count up contiguous available or unavailable | |
3544 | * pages. | |
3545 | */ | |
3546 | ps = CLMAP_PS(clmap); | |
3547 | ASSERT(ps); | |
3548 | size = 0; | |
3549 | unavail_size = 0; | |
3550 | for (i = 0; | |
3551 | (size < cnt) && (unavail_size < cnt) && | |
3552 | (i < CLMAP_NPGS(clmap)); i++) { | |
3553 | if (CLMAP_ISSET(clmap, i)) { | |
3554 | if (unavail_size != 0) | |
3555 | break; | |
3556 | size += vm_page_size; | |
3557 | BS_STAT(ps->ps_bs, | |
3558 | ps->ps_bs->bs_pages_in++); | |
3559 | } else { | |
3560 | if (size != 0) | |
3561 | break; | |
3562 | unavail_size += vm_page_size; | |
3563 | } | |
3564 | } | |
3565 | ||
3566 | if (size == 0) { | |
3567 | ASSERT(unavail_size); | |
593a1d5f | 3568 | ps_clunmap(vs, offset, unavail_size); |
1c79356b A |
3569 | cnt -= unavail_size; |
3570 | offset += unavail_size; | |
3571 | if((offset & ((vm_page_size << vs->vs_clshift) - 1)) | |
3572 | == 0) { | |
3573 | /* There is no more to transfer in this | |
3574 | cluster | |
3575 | */ | |
3576 | *vsmap_ptr = write_vsmap; | |
3577 | VSM_CLR(write_vsmap); | |
3578 | VSM_CLR(original_read_vsmap); | |
3579 | } | |
3580 | continue; | |
3581 | } | |
3582 | ||
3583 | if(VSM_ISCLR(original_read_vsmap)) | |
3584 | original_read_vsmap = *vsmap_ptr; | |
3585 | ||
3586 | if(ps->ps_segtype == PS_PARTITION) { | |
0c530ab8 A |
3587 | panic("swap partition not supported\n"); |
3588 | /*NOTREACHED*/ | |
3589 | error = KERN_FAILURE; | |
3590 | residual = size; | |
1c79356b | 3591 | /* |
9bccf70c | 3592 | NEED TO ISSUE WITH SYNC & NO COMMIT |
1c79356b A |
3593 | error = ps_read_device(ps, actual_offset, &buffer, |
3594 | size, &residual, flags); | |
3595 | */ | |
3596 | } else { | |
9bccf70c | 3597 | /* NEED TO ISSUE WITH SYNC & NO COMMIT */ |
91447636 | 3598 | error = ps_read_file(ps, upl, (upl_offset_t) 0, actual_offset, |
1c79356b | 3599 | size, &residual, |
9bccf70c | 3600 | (UPL_IOSYNC | UPL_NOCOMMIT)); |
1c79356b A |
3601 | } |
3602 | ||
3603 | read_vsmap = *vsmap_ptr; | |
3604 | ||
3605 | ||
3606 | /* | |
3607 | * Adjust counts and put data in new BS. Optimize for the | |
3608 | * common case, i.e. no error and/or partial data. | |
3609 | * If there was an error, then we need to error the entire | |
3610 | * range, even if some data was successfully read. | |
3611 | * | |
3612 | */ | |
3613 | if ((error == KERN_SUCCESS) && (residual == 0)) { | |
0b4e3aa0 | 3614 | |
1c79356b A |
3615 | /* |
3616 | * Got everything we asked for, supply the data to | |
3617 | * the new BS. Note that as a side effect of supplying | |
3618 | * the data, the buffer holding the supplied data is | |
3619 | * deallocated from the pager's address space unless | |
3620 | * the write is unsuccessful. | |
3621 | */ | |
3622 | ||
3623 | /* note buffer will be cleaned up in all cases by */ | |
3624 | /* internal_cluster_write or if an error on write */ | |
3625 | /* the vm_map_copy_page_discard call */ | |
3626 | *vsmap_ptr = write_vsmap; | |
3627 | ||
1c79356b A |
3628 | if(vs_cluster_write(vs, upl, offset, |
3629 | size, TRUE, UPL_IOSYNC | UPL_NOCOMMIT ) != KERN_SUCCESS) { | |
1c79356b A |
3630 | error = KERN_FAILURE; |
3631 | if(!(VSM_ISCLR(*vsmap_ptr))) { | |
3632 | /* unmap the new backing store object */ | |
3633 | ps_clunmap(vs, offset, size); | |
3634 | } | |
3635 | /* original vsmap */ | |
3636 | *vsmap_ptr = original_read_vsmap; | |
3637 | VSM_CLR(write_vsmap); | |
3638 | } else { | |
3639 | if((offset + size) & | |
3640 | ((vm_page_size << vs->vs_clshift) | |
3641 | - 1)) { | |
3642 | /* There is more to transfer in this | |
3643 | cluster | |
3644 | */ | |
3645 | write_vsmap = *vsmap_ptr; | |
3646 | *vsmap_ptr = read_vsmap; | |
593a1d5f | 3647 | ps_clunmap(vs, offset, size); |
1c79356b A |
3648 | } else { |
3649 | /* discard the old backing object */ | |
3650 | write_vsmap = *vsmap_ptr; | |
3651 | *vsmap_ptr = read_vsmap; | |
3652 | ps_clunmap(vs, offset, size); | |
3653 | *vsmap_ptr = write_vsmap; | |
3654 | VSM_CLR(write_vsmap); | |
3655 | VSM_CLR(original_read_vsmap); | |
3656 | } | |
3657 | } | |
3658 | } else { | |
3659 | size_wanted = size; | |
3660 | if (error == KERN_SUCCESS) { | |
3661 | if (residual == size) { | |
3662 | /* | |
3663 | * If a read operation returns no error | |
3664 | * and no data moved, we turn it into | |
3665 | * an error, assuming we're reading at | |
3666 | * or beyond EOF. | |
3667 | * Fall through and error the entire | |
3668 | * range. | |
3669 | */ | |
3670 | error = KERN_FAILURE; | |
3671 | *vsmap_ptr = write_vsmap; | |
3672 | if(!(VSM_ISCLR(*vsmap_ptr))) { | |
3673 | /* unmap the new backing store object */ | |
3674 | ps_clunmap(vs, offset, size); | |
3675 | } | |
3676 | *vsmap_ptr = original_read_vsmap; | |
3677 | VSM_CLR(write_vsmap); | |
3678 | continue; | |
3679 | } else { | |
3680 | /* | |
3681 | * Otherwise, we have partial read. | |
3682 | * This is also considered an error | |
3683 | * for the purposes of cluster transfer | |
3684 | */ | |
3685 | error = KERN_FAILURE; | |
3686 | *vsmap_ptr = write_vsmap; | |
3687 | if(!(VSM_ISCLR(*vsmap_ptr))) { | |
3688 | /* unmap the new backing store object */ | |
3689 | ps_clunmap(vs, offset, size); | |
3690 | } | |
3691 | *vsmap_ptr = original_read_vsmap; | |
3692 | VSM_CLR(write_vsmap); | |
3693 | continue; | |
3694 | } | |
3695 | } | |
3696 | ||
3697 | } | |
3698 | cnt -= size; | |
3699 | offset += size; | |
3700 | ||
3701 | } /* END while (cnt && (error == 0)) */ | |
3702 | if(!VSM_ISCLR(write_vsmap)) | |
3703 | *vsmap_ptr = write_vsmap; | |
3704 | ||
1c79356b A |
3705 | return error; |
3706 | } | |
3707 | ||
3708 | kern_return_t | |
91447636 A |
3709 | default_pager_add_file( |
3710 | MACH_PORT_FACE backing_store, | |
3711 | vnode_ptr_t vp, | |
1c79356b | 3712 | int record_size, |
91447636 | 3713 | vm_size_t size) |
1c79356b A |
3714 | { |
3715 | backing_store_t bs; | |
3716 | paging_segment_t ps; | |
3717 | int i; | |
91447636 | 3718 | unsigned int j; |
1c79356b | 3719 | int error; |
1c79356b A |
3720 | |
3721 | if ((bs = backing_store_lookup(backing_store)) | |
3722 | == BACKING_STORE_NULL) | |
3723 | return KERN_INVALID_ARGUMENT; | |
3724 | ||
3725 | PSL_LOCK(); | |
3726 | for (i = 0; i <= paging_segment_max; i++) { | |
3727 | ps = paging_segments[i]; | |
3728 | if (ps == PAGING_SEGMENT_NULL) | |
3729 | continue; | |
3730 | if (ps->ps_segtype != PS_FILE) | |
3731 | continue; | |
3732 | ||
3733 | /* | |
3734 | * Check for overlap on same device. | |
3735 | */ | |
3736 | if (ps->ps_vnode == (struct vnode *)vp) { | |
3737 | PSL_UNLOCK(); | |
3738 | BS_UNLOCK(bs); | |
3739 | return KERN_INVALID_ARGUMENT; | |
3740 | } | |
3741 | } | |
3742 | PSL_UNLOCK(); | |
3743 | ||
3744 | /* | |
3745 | * Set up the paging segment | |
3746 | */ | |
3747 | ps = (paging_segment_t) kalloc(sizeof (struct paging_segment)); | |
3748 | if (ps == PAGING_SEGMENT_NULL) { | |
3749 | BS_UNLOCK(bs); | |
3750 | return KERN_RESOURCE_SHORTAGE; | |
3751 | } | |
3752 | ||
3753 | ps->ps_segtype = PS_FILE; | |
3754 | ps->ps_vnode = (struct vnode *)vp; | |
3755 | ps->ps_offset = 0; | |
3756 | ps->ps_record_shift = local_log2(vm_page_size / record_size); | |
3757 | ps->ps_recnum = size; | |
3758 | ps->ps_pgnum = size >> ps->ps_record_shift; | |
3759 | ||
3760 | ps->ps_pgcount = ps->ps_pgnum; | |
3761 | ps->ps_clshift = local_log2(bs->bs_clsize); | |
3762 | ps->ps_clcount = ps->ps_ncls = ps->ps_pgcount >> ps->ps_clshift; | |
3763 | ps->ps_hint = 0; | |
3764 | ||
3765 | PS_LOCK_INIT(ps); | |
3766 | ps->ps_bmap = (unsigned char *) kalloc(RMAPSIZE(ps->ps_ncls)); | |
3767 | if (!ps->ps_bmap) { | |
91447636 | 3768 | kfree(ps, sizeof *ps); |
1c79356b A |
3769 | BS_UNLOCK(bs); |
3770 | return KERN_RESOURCE_SHORTAGE; | |
3771 | } | |
91447636 A |
3772 | for (j = 0; j < ps->ps_ncls; j++) { |
3773 | clrbit(ps->ps_bmap, j); | |
1c79356b A |
3774 | } |
3775 | ||
3776 | ps->ps_going_away = FALSE; | |
3777 | ps->ps_bs = bs; | |
3778 | ||
3779 | if ((error = ps_enter(ps)) != 0) { | |
91447636 A |
3780 | kfree(ps->ps_bmap, RMAPSIZE(ps->ps_ncls)); |
3781 | kfree(ps, sizeof *ps); | |
1c79356b A |
3782 | BS_UNLOCK(bs); |
3783 | return KERN_RESOURCE_SHORTAGE; | |
3784 | } | |
3785 | ||
3786 | bs->bs_pages_free += ps->ps_clcount << ps->ps_clshift; | |
3787 | bs->bs_pages_total += ps->ps_clcount << ps->ps_clshift; | |
3788 | PSL_LOCK(); | |
3789 | dp_pages_free += ps->ps_pgcount; | |
3790 | PSL_UNLOCK(); | |
3791 | ||
3792 | BS_UNLOCK(bs); | |
3793 | ||
3794 | bs_more_space(ps->ps_clcount); | |
3795 | ||
91447636 A |
3796 | DP_DEBUG(DEBUG_BS_INTERNAL, |
3797 | ("device=0x%x,offset=0x%x,count=0x%x,record_size=0x%x,shift=%d,total_size=0x%x\n", | |
3798 | device, offset, size, record_size, | |
3799 | ps->ps_record_shift, ps->ps_pgnum)); | |
1c79356b A |
3800 | |
3801 | return KERN_SUCCESS; | |
3802 | } | |
3803 | ||
3804 | ||
3805 | ||
1c79356b A |
3806 | kern_return_t |
3807 | ps_read_file( | |
3808 | paging_segment_t ps, | |
3809 | upl_t upl, | |
91447636 | 3810 | upl_offset_t upl_offset, |
1c79356b | 3811 | vm_offset_t offset, |
91447636 | 3812 | upl_size_t size, |
1c79356b A |
3813 | unsigned int *residualp, |
3814 | int flags) | |
3815 | { | |
3816 | vm_object_offset_t f_offset; | |
3817 | int error = 0; | |
3818 | int result; | |
1c79356b | 3819 | |
91447636 | 3820 | assert(dp_encryption_inited); |
1c79356b | 3821 | |
55e303ae | 3822 | clustered_reads[atop_32(size)]++; |
1c79356b A |
3823 | |
3824 | f_offset = (vm_object_offset_t)(ps->ps_offset + offset); | |
3825 | ||
2d21ac55 A |
3826 | /* |
3827 | * for transfer case we need to pass uploffset and flags | |
3828 | */ | |
3829 | error = vnode_pagein(ps->ps_vnode, upl, upl_offset, f_offset, (vm_size_t)size, flags, NULL); | |
1c79356b A |
3830 | |
3831 | /* The vnode_pagein semantic is somewhat at odds with the existing */ | |
3832 | /* device_read semantic. Partial reads are not experienced at this */ | |
3833 | /* level. It is up to the bit map code and cluster read code to */ | |
3834 | /* check that requested data locations are actually backed, and the */ | |
3835 | /* pagein code to either read all of the requested data or return an */ | |
3836 | /* error. */ | |
3837 | ||
3838 | if (error) | |
3839 | result = KERN_FAILURE; | |
3840 | else { | |
3841 | *residualp = 0; | |
3842 | result = KERN_SUCCESS; | |
3843 | } | |
3844 | return result; | |
1c79356b A |
3845 | } |
3846 | ||
3847 | kern_return_t | |
3848 | ps_write_file( | |
3849 | paging_segment_t ps, | |
3850 | upl_t upl, | |
91447636 | 3851 | upl_offset_t upl_offset, |
1c79356b A |
3852 | vm_offset_t offset, |
3853 | unsigned int size, | |
3854 | int flags) | |
3855 | { | |
3856 | vm_object_offset_t f_offset; | |
3857 | kern_return_t result; | |
1c79356b | 3858 | |
91447636 | 3859 | assert(dp_encryption_inited); |
1c79356b | 3860 | |
55e303ae | 3861 | clustered_writes[atop_32(size)]++; |
1c79356b A |
3862 | f_offset = (vm_object_offset_t)(ps->ps_offset + offset); |
3863 | ||
91447636 A |
3864 | if (flags & UPL_PAGING_ENCRYPTED) { |
3865 | /* | |
3866 | * ENCRYPTED SWAP: | |
3867 | * encrypt all the pages that we're going | |
3868 | * to pageout. | |
3869 | */ | |
3870 | upl_encrypt(upl, upl_offset, size); | |
3871 | } | |
2d21ac55 | 3872 | if (vnode_pageout(ps->ps_vnode, upl, upl_offset, f_offset, (vm_size_t)size, flags, NULL)) |
1c79356b A |
3873 | result = KERN_FAILURE; |
3874 | else | |
3875 | result = KERN_SUCCESS; | |
3876 | ||
3877 | return result; | |
3878 | } | |
3879 | ||
3880 | kern_return_t | |
91447636 | 3881 | default_pager_triggers( __unused MACH_PORT_FACE default_pager, |
1c79356b A |
3882 | int hi_wat, |
3883 | int lo_wat, | |
3884 | int flags, | |
3885 | MACH_PORT_FACE trigger_port) | |
3886 | { | |
0b4e3aa0 A |
3887 | MACH_PORT_FACE release; |
3888 | kern_return_t kr; | |
1c79356b | 3889 | |
0b4e3aa0 | 3890 | PSL_LOCK(); |
91447636 A |
3891 | if (flags == SWAP_ENCRYPT_ON) { |
3892 | /* ENCRYPTED SWAP: turn encryption on */ | |
3893 | release = trigger_port; | |
3894 | if (!dp_encryption_inited) { | |
3895 | dp_encryption_inited = TRUE; | |
3896 | dp_encryption = TRUE; | |
3897 | kr = KERN_SUCCESS; | |
3898 | } else { | |
3899 | kr = KERN_FAILURE; | |
3900 | } | |
3901 | } else if (flags == SWAP_ENCRYPT_OFF) { | |
3902 | /* ENCRYPTED SWAP: turn encryption off */ | |
3903 | release = trigger_port; | |
3904 | if (!dp_encryption_inited) { | |
3905 | dp_encryption_inited = TRUE; | |
3906 | dp_encryption = FALSE; | |
3907 | kr = KERN_SUCCESS; | |
3908 | } else { | |
3909 | kr = KERN_FAILURE; | |
3910 | } | |
3911 | } else if (flags == HI_WAT_ALERT) { | |
0b4e3aa0 | 3912 | release = min_pages_trigger_port; |
1c79356b A |
3913 | min_pages_trigger_port = trigger_port; |
3914 | minimum_pages_remaining = hi_wat/vm_page_size; | |
3915 | bs_low = FALSE; | |
0b4e3aa0 A |
3916 | kr = KERN_SUCCESS; |
3917 | } else if (flags == LO_WAT_ALERT) { | |
3918 | release = max_pages_trigger_port; | |
1c79356b A |
3919 | max_pages_trigger_port = trigger_port; |
3920 | maximum_pages_free = lo_wat/vm_page_size; | |
0b4e3aa0 A |
3921 | kr = KERN_SUCCESS; |
3922 | } else { | |
3923 | release = trigger_port; | |
3924 | kr = KERN_INVALID_ARGUMENT; | |
1c79356b | 3925 | } |
0b4e3aa0 A |
3926 | PSL_UNLOCK(); |
3927 | ||
3928 | if (IP_VALID(release)) | |
3929 | ipc_port_release_send(release); | |
3930 | ||
3931 | return kr; | |
1c79356b | 3932 | } |
55e303ae A |
3933 | |
3934 | /* | |
3935 | * Monitor the amount of available backing store vs. the amount of | |
3936 | * required backing store, notify a listener (if present) when | |
3937 | * backing store may safely be removed. | |
3938 | * | |
3939 | * We attempt to avoid the situation where backing store is | |
3940 | * discarded en masse, as this can lead to thrashing as the | |
3941 | * backing store is compacted. | |
3942 | */ | |
3943 | ||
3944 | #define PF_INTERVAL 3 /* time between free level checks */ | |
3945 | #define PF_LATENCY 10 /* number of intervals before release */ | |
3946 | ||
3947 | static int dp_pages_free_low_count = 0; | |
91447636 | 3948 | thread_call_t default_pager_backing_store_monitor_callout; |
55e303ae A |
3949 | |
3950 | void | |
91447636 A |
3951 | default_pager_backing_store_monitor(__unused thread_call_param_t p1, |
3952 | __unused thread_call_param_t p2) | |
55e303ae | 3953 | { |
91447636 | 3954 | // unsigned long long average; |
55e303ae A |
3955 | ipc_port_t trigger; |
3956 | uint64_t deadline; | |
3957 | ||
3958 | /* | |
3959 | * We determine whether it will be safe to release some | |
3960 | * backing store by watching the free page level. If | |
3961 | * it remains below the maximum_pages_free threshold for | |
3962 | * at least PF_LATENCY checks (taken at PF_INTERVAL seconds) | |
3963 | * then we deem it safe. | |
3964 | * | |
3965 | * Note that this establishes a maximum rate at which backing | |
3966 | * store will be released, as each notification (currently) | |
3967 | * only results in a single backing store object being | |
3968 | * released. | |
3969 | */ | |
3970 | if (dp_pages_free > maximum_pages_free) { | |
3971 | dp_pages_free_low_count++; | |
3972 | } else { | |
3973 | dp_pages_free_low_count = 0; | |
3974 | } | |
3975 | ||
3976 | /* decide whether to send notification */ | |
3977 | trigger = IP_NULL; | |
3978 | if (max_pages_trigger_port && | |
3979 | (backing_store_release_trigger_disable == 0) && | |
3980 | (dp_pages_free_low_count > PF_LATENCY)) { | |
3981 | trigger = max_pages_trigger_port; | |
3982 | max_pages_trigger_port = NULL; | |
3983 | } | |
3984 | ||
3985 | /* send notification */ | |
3986 | if (trigger != IP_NULL) { | |
3987 | VSL_LOCK(); | |
3988 | if(backing_store_release_trigger_disable != 0) { | |
3989 | assert_wait((event_t) | |
3990 | &backing_store_release_trigger_disable, | |
3991 | THREAD_UNINT); | |
3992 | VSL_UNLOCK(); | |
3993 | thread_block(THREAD_CONTINUE_NULL); | |
3994 | } else { | |
3995 | VSL_UNLOCK(); | |
3996 | } | |
3997 | default_pager_space_alert(trigger, LO_WAT_ALERT); | |
3998 | ipc_port_release_send(trigger); | |
3999 | dp_pages_free_low_count = 0; | |
4000 | } | |
4001 | ||
4002 | clock_interval_to_deadline(PF_INTERVAL, NSEC_PER_SEC, &deadline); | |
91447636 | 4003 | thread_call_enter_delayed(default_pager_backing_store_monitor_callout, deadline); |
55e303ae | 4004 | } |