]>
Commit | Line | Data |
---|---|---|
1c79356b | 1 | /* |
b0d623f7 | 2 | * Copyright (c) 2000-2009 Apple Inc. All rights reserved. |
1c79356b | 3 | * |
2d21ac55 | 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
1c79356b | 5 | * |
2d21ac55 A |
6 | * This file contains Original Code and/or Modifications of Original Code |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
8f6c56a5 | 14 | * |
2d21ac55 A |
15 | * Please obtain a copy of the License at |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
8f6c56a5 A |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
2d21ac55 A |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
8f6c56a5 | 25 | * |
2d21ac55 | 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
1c79356b A |
27 | */ |
28 | /* | |
29 | * @OSF_COPYRIGHT@ | |
30 | */ | |
31 | /* | |
32 | * Mach Operating System | |
33 | * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University | |
34 | * All Rights Reserved. | |
35 | * | |
36 | * Permission to use, copy, modify and distribute this software and its | |
37 | * documentation is hereby granted, provided that both the copyright | |
38 | * notice and this permission notice appear in all copies of the | |
39 | * software, derivative works or modified versions, and any portions | |
40 | * thereof, and that both notices appear in supporting documentation. | |
41 | * | |
42 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" | |
43 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR | |
44 | * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. | |
45 | * | |
46 | * Carnegie Mellon requests users of this software to return to | |
47 | * | |
48 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU | |
49 | * School of Computer Science | |
50 | * Carnegie Mellon University | |
51 | * Pittsburgh PA 15213-3890 | |
52 | * | |
53 | * any improvements or extensions that they make and grant Carnegie Mellon | |
54 | * the rights to redistribute these changes. | |
55 | */ | |
56 | /* | |
57 | */ | |
58 | /* | |
59 | * File: vm/vm_page.c | |
60 | * Author: Avadis Tevanian, Jr., Michael Wayne Young | |
61 | * | |
62 | * Resident memory management module. | |
63 | */ | |
64 | ||
91447636 | 65 | #include <debug.h> |
2d21ac55 | 66 | #include <libkern/OSAtomic.h> |
91447636 | 67 | |
9bccf70c | 68 | #include <mach/clock_types.h> |
1c79356b A |
69 | #include <mach/vm_prot.h> |
70 | #include <mach/vm_statistics.h> | |
2d21ac55 | 71 | #include <mach/sdt.h> |
1c79356b A |
72 | #include <kern/counters.h> |
73 | #include <kern/sched_prim.h> | |
74 | #include <kern/task.h> | |
75 | #include <kern/thread.h> | |
b0d623f7 | 76 | #include <kern/kalloc.h> |
1c79356b A |
77 | #include <kern/zalloc.h> |
78 | #include <kern/xpr.h> | |
79 | #include <vm/pmap.h> | |
80 | #include <vm/vm_init.h> | |
81 | #include <vm/vm_map.h> | |
82 | #include <vm/vm_page.h> | |
83 | #include <vm/vm_pageout.h> | |
84 | #include <vm/vm_kern.h> /* kernel_memory_allocate() */ | |
85 | #include <kern/misc_protos.h> | |
86 | #include <zone_debug.h> | |
87 | #include <vm/cpm.h> | |
6d2010ae | 88 | #include <pexpert/pexpert.h> |
55e303ae | 89 | |
91447636 | 90 | #include <vm/vm_protos.h> |
2d21ac55 A |
91 | #include <vm/memory_object.h> |
92 | #include <vm/vm_purgeable_internal.h> | |
93 | ||
b0d623f7 A |
94 | #include <IOKit/IOHibernatePrivate.h> |
95 | ||
96 | ||
2d21ac55 | 97 | #include <sys/kern_memorystatus.h> |
2d21ac55 | 98 | |
b0d623f7 A |
99 | #include <sys/kdebug.h> |
100 | ||
101 | boolean_t vm_page_free_verify = TRUE; | |
102 | ||
6d2010ae A |
103 | uint32_t vm_lopage_free_count = 0; |
104 | uint32_t vm_lopage_free_limit = 0; | |
105 | uint32_t vm_lopage_lowater = 0; | |
0b4c1975 A |
106 | boolean_t vm_lopage_refill = FALSE; |
107 | boolean_t vm_lopage_needed = FALSE; | |
108 | ||
b0d623f7 A |
109 | lck_mtx_ext_t vm_page_queue_lock_ext; |
110 | lck_mtx_ext_t vm_page_queue_free_lock_ext; | |
111 | lck_mtx_ext_t vm_purgeable_queue_lock_ext; | |
2d21ac55 | 112 | |
0b4c1975 A |
113 | int speculative_age_index = 0; |
114 | int speculative_steal_index = 0; | |
2d21ac55 A |
115 | struct vm_speculative_age_q vm_page_queue_speculative[VM_PAGE_MAX_SPECULATIVE_AGE_Q + 1]; |
116 | ||
0b4e3aa0 | 117 | |
b0d623f7 A |
118 | __private_extern__ void vm_page_init_lck_grp(void); |
119 | ||
6d2010ae A |
120 | static void vm_page_free_prepare(vm_page_t page); |
121 | static vm_page_t vm_page_grab_fictitious_common(ppnum_t phys_addr); | |
122 | ||
b0d623f7 A |
123 | |
124 | ||
125 | ||
1c79356b A |
126 | /* |
127 | * Associated with page of user-allocatable memory is a | |
128 | * page structure. | |
129 | */ | |
130 | ||
131 | /* | |
132 | * These variables record the values returned by vm_page_bootstrap, | |
133 | * for debugging purposes. The implementation of pmap_steal_memory | |
134 | * and pmap_startup here also uses them internally. | |
135 | */ | |
136 | ||
137 | vm_offset_t virtual_space_start; | |
138 | vm_offset_t virtual_space_end; | |
139 | int vm_page_pages; | |
140 | ||
141 | /* | |
142 | * The vm_page_lookup() routine, which provides for fast | |
143 | * (virtual memory object, offset) to page lookup, employs | |
144 | * the following hash table. The vm_page_{insert,remove} | |
145 | * routines install and remove associations in the table. | |
146 | * [This table is often called the virtual-to-physical, | |
147 | * or VP, table.] | |
148 | */ | |
149 | typedef struct { | |
150 | vm_page_t pages; | |
151 | #if MACH_PAGE_HASH_STATS | |
152 | int cur_count; /* current count */ | |
153 | int hi_count; /* high water mark */ | |
154 | #endif /* MACH_PAGE_HASH_STATS */ | |
155 | } vm_page_bucket_t; | |
156 | ||
b0d623f7 A |
157 | |
158 | #define BUCKETS_PER_LOCK 16 | |
159 | ||
1c79356b A |
160 | vm_page_bucket_t *vm_page_buckets; /* Array of buckets */ |
161 | unsigned int vm_page_bucket_count = 0; /* How big is array? */ | |
162 | unsigned int vm_page_hash_mask; /* Mask for hash function */ | |
163 | unsigned int vm_page_hash_shift; /* Shift for hash function */ | |
2d21ac55 | 164 | uint32_t vm_page_bucket_hash; /* Basic bucket hash */ |
b0d623f7 A |
165 | unsigned int vm_page_bucket_lock_count = 0; /* How big is array of locks? */ |
166 | ||
167 | lck_spin_t *vm_page_bucket_locks; | |
1c79356b | 168 | |
91447636 | 169 | |
1c79356b A |
170 | #if MACH_PAGE_HASH_STATS |
171 | /* This routine is only for debug. It is intended to be called by | |
172 | * hand by a developer using a kernel debugger. This routine prints | |
173 | * out vm_page_hash table statistics to the kernel debug console. | |
174 | */ | |
175 | void | |
176 | hash_debug(void) | |
177 | { | |
178 | int i; | |
179 | int numbuckets = 0; | |
180 | int highsum = 0; | |
181 | int maxdepth = 0; | |
182 | ||
183 | for (i = 0; i < vm_page_bucket_count; i++) { | |
184 | if (vm_page_buckets[i].hi_count) { | |
185 | numbuckets++; | |
186 | highsum += vm_page_buckets[i].hi_count; | |
187 | if (vm_page_buckets[i].hi_count > maxdepth) | |
188 | maxdepth = vm_page_buckets[i].hi_count; | |
189 | } | |
190 | } | |
191 | printf("Total number of buckets: %d\n", vm_page_bucket_count); | |
192 | printf("Number used buckets: %d = %d%%\n", | |
193 | numbuckets, 100*numbuckets/vm_page_bucket_count); | |
194 | printf("Number unused buckets: %d = %d%%\n", | |
195 | vm_page_bucket_count - numbuckets, | |
196 | 100*(vm_page_bucket_count-numbuckets)/vm_page_bucket_count); | |
197 | printf("Sum of bucket max depth: %d\n", highsum); | |
198 | printf("Average bucket depth: %d.%2d\n", | |
199 | highsum/vm_page_bucket_count, | |
200 | highsum%vm_page_bucket_count); | |
201 | printf("Maximum bucket depth: %d\n", maxdepth); | |
202 | } | |
203 | #endif /* MACH_PAGE_HASH_STATS */ | |
204 | ||
205 | /* | |
206 | * The virtual page size is currently implemented as a runtime | |
207 | * variable, but is constant once initialized using vm_set_page_size. | |
208 | * This initialization must be done in the machine-dependent | |
209 | * bootstrap sequence, before calling other machine-independent | |
210 | * initializations. | |
211 | * | |
212 | * All references to the virtual page size outside this | |
213 | * module must use the PAGE_SIZE, PAGE_MASK and PAGE_SHIFT | |
214 | * constants. | |
215 | */ | |
55e303ae A |
216 | vm_size_t page_size = PAGE_SIZE; |
217 | vm_size_t page_mask = PAGE_MASK; | |
2d21ac55 | 218 | int page_shift = PAGE_SHIFT; |
1c79356b A |
219 | |
220 | /* | |
221 | * Resident page structures are initialized from | |
222 | * a template (see vm_page_alloc). | |
223 | * | |
224 | * When adding a new field to the virtual memory | |
225 | * object structure, be sure to add initialization | |
226 | * (see vm_page_bootstrap). | |
227 | */ | |
228 | struct vm_page vm_page_template; | |
229 | ||
2d21ac55 A |
230 | vm_page_t vm_pages = VM_PAGE_NULL; |
231 | unsigned int vm_pages_count = 0; | |
0b4c1975 | 232 | ppnum_t vm_page_lowest = 0; |
2d21ac55 | 233 | |
1c79356b A |
234 | /* |
235 | * Resident pages that represent real memory | |
2d21ac55 A |
236 | * are allocated from a set of free lists, |
237 | * one per color. | |
1c79356b | 238 | */ |
2d21ac55 A |
239 | unsigned int vm_colors; |
240 | unsigned int vm_color_mask; /* mask is == (vm_colors-1) */ | |
241 | unsigned int vm_cache_geometry_colors = 0; /* set by hw dependent code during startup */ | |
242 | queue_head_t vm_page_queue_free[MAX_COLORS]; | |
1c79356b | 243 | unsigned int vm_page_free_wanted; |
2d21ac55 | 244 | unsigned int vm_page_free_wanted_privileged; |
91447636 A |
245 | unsigned int vm_page_free_count; |
246 | unsigned int vm_page_fictitious_count; | |
1c79356b A |
247 | |
248 | unsigned int vm_page_free_count_minimum; /* debugging */ | |
249 | ||
250 | /* | |
251 | * Occasionally, the virtual memory system uses | |
252 | * resident page structures that do not refer to | |
253 | * real pages, for example to leave a page with | |
254 | * important state information in the VP table. | |
255 | * | |
256 | * These page structures are allocated the way | |
257 | * most other kernel structures are. | |
258 | */ | |
259 | zone_t vm_page_zone; | |
b0d623f7 A |
260 | vm_locks_array_t vm_page_locks; |
261 | decl_lck_mtx_data(,vm_page_alloc_lock) | |
9bccf70c | 262 | unsigned int io_throttle_zero_fill; |
1c79356b | 263 | |
b0d623f7 A |
264 | unsigned int vm_page_local_q_count = 0; |
265 | unsigned int vm_page_local_q_soft_limit = 250; | |
266 | unsigned int vm_page_local_q_hard_limit = 500; | |
267 | struct vplq *vm_page_local_q = NULL; | |
268 | ||
1c79356b A |
269 | /* |
270 | * Fictitious pages don't have a physical address, | |
55e303ae | 271 | * but we must initialize phys_page to something. |
1c79356b A |
272 | * For debugging, this should be a strange value |
273 | * that the pmap module can recognize in assertions. | |
274 | */ | |
b0d623f7 | 275 | ppnum_t vm_page_fictitious_addr = (ppnum_t) -1; |
1c79356b | 276 | |
2d21ac55 A |
277 | /* |
278 | * Guard pages are not accessible so they don't | |
279 | * need a physical address, but we need to enter | |
280 | * one in the pmap. | |
281 | * Let's make it recognizable and make sure that | |
282 | * we don't use a real physical page with that | |
283 | * physical address. | |
284 | */ | |
b0d623f7 | 285 | ppnum_t vm_page_guard_addr = (ppnum_t) -2; |
2d21ac55 | 286 | |
1c79356b A |
287 | /* |
288 | * Resident page structures are also chained on | |
289 | * queues that are used by the page replacement | |
290 | * system (pageout daemon). These queues are | |
291 | * defined here, but are shared by the pageout | |
9bccf70c A |
292 | * module. The inactive queue is broken into |
293 | * inactive and zf for convenience as the | |
294 | * pageout daemon often assignes a higher | |
295 | * affinity to zf pages | |
1c79356b A |
296 | */ |
297 | queue_head_t vm_page_queue_active; | |
298 | queue_head_t vm_page_queue_inactive; | |
2d21ac55 | 299 | queue_head_t vm_page_queue_zf; /* inactive memory queue for zero fill */ |
b0d623f7 | 300 | queue_head_t vm_page_queue_throttled; |
2d21ac55 | 301 | |
91447636 A |
302 | unsigned int vm_page_active_count; |
303 | unsigned int vm_page_inactive_count; | |
2d21ac55 A |
304 | unsigned int vm_page_throttled_count; |
305 | unsigned int vm_page_speculative_count; | |
91447636 | 306 | unsigned int vm_page_wire_count; |
0b4c1975 | 307 | unsigned int vm_page_wire_count_initial; |
91447636 A |
308 | unsigned int vm_page_gobble_count = 0; |
309 | unsigned int vm_page_wire_count_warning = 0; | |
310 | unsigned int vm_page_gobble_count_warning = 0; | |
311 | ||
312 | unsigned int vm_page_purgeable_count = 0; /* # of pages purgeable now */ | |
b0d623f7 | 313 | unsigned int vm_page_purgeable_wired_count = 0; /* # of purgeable pages that are wired now */ |
91447636 | 314 | uint64_t vm_page_purged_count = 0; /* total count of purged pages */ |
1c79356b | 315 | |
b0d623f7 | 316 | #if DEVELOPMENT || DEBUG |
2d21ac55 A |
317 | unsigned int vm_page_speculative_recreated = 0; |
318 | unsigned int vm_page_speculative_created = 0; | |
319 | unsigned int vm_page_speculative_used = 0; | |
b0d623f7 | 320 | #endif |
2d21ac55 | 321 | |
0c530ab8 | 322 | uint64_t max_valid_dma_address = 0xffffffffffffffffULL; |
0b4c1975 | 323 | ppnum_t max_valid_low_ppnum = 0xffffffff; |
0c530ab8 A |
324 | |
325 | ||
1c79356b A |
326 | /* |
327 | * Several page replacement parameters are also | |
328 | * shared with this module, so that page allocation | |
329 | * (done here in vm_page_alloc) can trigger the | |
330 | * pageout daemon. | |
331 | */ | |
91447636 A |
332 | unsigned int vm_page_free_target = 0; |
333 | unsigned int vm_page_free_min = 0; | |
b0d623f7 A |
334 | unsigned int vm_page_throttle_limit = 0; |
335 | uint32_t vm_page_creation_throttle = 0; | |
91447636 | 336 | unsigned int vm_page_inactive_target = 0; |
2d21ac55 | 337 | unsigned int vm_page_inactive_min = 0; |
91447636 | 338 | unsigned int vm_page_free_reserved = 0; |
b0d623f7 | 339 | unsigned int vm_page_throttle_count = 0; |
1c79356b A |
340 | |
341 | /* | |
342 | * The VM system has a couple of heuristics for deciding | |
343 | * that pages are "uninteresting" and should be placed | |
344 | * on the inactive queue as likely candidates for replacement. | |
345 | * These variables let the heuristics be controlled at run-time | |
346 | * to make experimentation easier. | |
347 | */ | |
348 | ||
349 | boolean_t vm_page_deactivate_hint = TRUE; | |
350 | ||
b0d623f7 A |
351 | struct vm_page_stats_reusable vm_page_stats_reusable; |
352 | ||
1c79356b A |
353 | /* |
354 | * vm_set_page_size: | |
355 | * | |
356 | * Sets the page size, perhaps based upon the memory | |
357 | * size. Must be called before any use of page-size | |
358 | * dependent functions. | |
359 | * | |
360 | * Sets page_shift and page_mask from page_size. | |
361 | */ | |
362 | void | |
363 | vm_set_page_size(void) | |
364 | { | |
1c79356b A |
365 | page_mask = page_size - 1; |
366 | ||
367 | if ((page_mask & page_size) != 0) | |
368 | panic("vm_set_page_size: page size not a power of two"); | |
369 | ||
370 | for (page_shift = 0; ; page_shift++) | |
91447636 | 371 | if ((1U << page_shift) == page_size) |
1c79356b | 372 | break; |
1c79356b A |
373 | } |
374 | ||
2d21ac55 A |
375 | |
376 | /* Called once during statup, once the cache geometry is known. | |
377 | */ | |
378 | static void | |
379 | vm_page_set_colors( void ) | |
380 | { | |
381 | unsigned int n, override; | |
382 | ||
593a1d5f | 383 | if ( PE_parse_boot_argn("colors", &override, sizeof (override)) ) /* colors specified as a boot-arg? */ |
2d21ac55 A |
384 | n = override; |
385 | else if ( vm_cache_geometry_colors ) /* do we know what the cache geometry is? */ | |
386 | n = vm_cache_geometry_colors; | |
387 | else n = DEFAULT_COLORS; /* use default if all else fails */ | |
388 | ||
389 | if ( n == 0 ) | |
390 | n = 1; | |
391 | if ( n > MAX_COLORS ) | |
392 | n = MAX_COLORS; | |
393 | ||
394 | /* the count must be a power of 2 */ | |
b0d623f7 | 395 | if ( ( n & (n - 1)) != 0 ) |
2d21ac55 A |
396 | panic("vm_page_set_colors"); |
397 | ||
398 | vm_colors = n; | |
399 | vm_color_mask = n - 1; | |
400 | } | |
401 | ||
402 | ||
b0d623f7 A |
403 | lck_grp_t vm_page_lck_grp_free; |
404 | lck_grp_t vm_page_lck_grp_queue; | |
405 | lck_grp_t vm_page_lck_grp_local; | |
406 | lck_grp_t vm_page_lck_grp_purge; | |
407 | lck_grp_t vm_page_lck_grp_alloc; | |
408 | lck_grp_t vm_page_lck_grp_bucket; | |
409 | lck_grp_attr_t vm_page_lck_grp_attr; | |
410 | lck_attr_t vm_page_lck_attr; | |
411 | ||
412 | ||
413 | __private_extern__ void | |
414 | vm_page_init_lck_grp(void) | |
415 | { | |
416 | /* | |
417 | * initialze the vm_page lock world | |
418 | */ | |
419 | lck_grp_attr_setdefault(&vm_page_lck_grp_attr); | |
420 | lck_grp_init(&vm_page_lck_grp_free, "vm_page_free", &vm_page_lck_grp_attr); | |
421 | lck_grp_init(&vm_page_lck_grp_queue, "vm_page_queue", &vm_page_lck_grp_attr); | |
422 | lck_grp_init(&vm_page_lck_grp_local, "vm_page_queue_local", &vm_page_lck_grp_attr); | |
423 | lck_grp_init(&vm_page_lck_grp_purge, "vm_page_purge", &vm_page_lck_grp_attr); | |
424 | lck_grp_init(&vm_page_lck_grp_alloc, "vm_page_alloc", &vm_page_lck_grp_attr); | |
425 | lck_grp_init(&vm_page_lck_grp_bucket, "vm_page_bucket", &vm_page_lck_grp_attr); | |
426 | lck_attr_setdefault(&vm_page_lck_attr); | |
427 | } | |
428 | ||
429 | void | |
430 | vm_page_init_local_q() | |
431 | { | |
432 | unsigned int num_cpus; | |
433 | unsigned int i; | |
434 | struct vplq *t_local_q; | |
435 | ||
436 | num_cpus = ml_get_max_cpus(); | |
437 | ||
438 | /* | |
439 | * no point in this for a uni-processor system | |
440 | */ | |
441 | if (num_cpus >= 2) { | |
442 | t_local_q = (struct vplq *)kalloc(num_cpus * sizeof(struct vplq)); | |
443 | ||
444 | for (i = 0; i < num_cpus; i++) { | |
445 | struct vpl *lq; | |
446 | ||
447 | lq = &t_local_q[i].vpl_un.vpl; | |
448 | VPL_LOCK_INIT(lq, &vm_page_lck_grp_local, &vm_page_lck_attr); | |
449 | queue_init(&lq->vpl_queue); | |
450 | lq->vpl_count = 0; | |
451 | } | |
452 | vm_page_local_q_count = num_cpus; | |
453 | ||
454 | vm_page_local_q = (struct vplq *)t_local_q; | |
455 | } | |
456 | } | |
457 | ||
458 | ||
1c79356b A |
459 | /* |
460 | * vm_page_bootstrap: | |
461 | * | |
462 | * Initializes the resident memory module. | |
463 | * | |
464 | * Allocates memory for the page cells, and | |
465 | * for the object/offset-to-page hash table headers. | |
466 | * Each page cell is initialized and placed on the free list. | |
467 | * Returns the range of available kernel virtual memory. | |
468 | */ | |
469 | ||
470 | void | |
471 | vm_page_bootstrap( | |
472 | vm_offset_t *startp, | |
473 | vm_offset_t *endp) | |
474 | { | |
475 | register vm_page_t m; | |
91447636 | 476 | unsigned int i; |
1c79356b A |
477 | unsigned int log1; |
478 | unsigned int log2; | |
479 | unsigned int size; | |
480 | ||
481 | /* | |
482 | * Initialize the vm_page template. | |
483 | */ | |
484 | ||
485 | m = &vm_page_template; | |
b0d623f7 | 486 | bzero(m, sizeof (*m)); |
1c79356b | 487 | |
91447636 A |
488 | m->pageq.next = NULL; |
489 | m->pageq.prev = NULL; | |
490 | m->listq.next = NULL; | |
491 | m->listq.prev = NULL; | |
b0d623f7 | 492 | m->next = VM_PAGE_NULL; |
91447636 | 493 | |
b0d623f7 A |
494 | m->object = VM_OBJECT_NULL; /* reset later */ |
495 | m->offset = (vm_object_offset_t) -1; /* reset later */ | |
496 | ||
497 | m->wire_count = 0; | |
498 | m->local = FALSE; | |
1c79356b A |
499 | m->inactive = FALSE; |
500 | m->active = FALSE; | |
b0d623f7 A |
501 | m->pageout_queue = FALSE; |
502 | m->speculative = FALSE; | |
1c79356b A |
503 | m->laundry = FALSE; |
504 | m->free = FALSE; | |
505 | m->reference = FALSE; | |
b0d623f7 A |
506 | m->gobbled = FALSE; |
507 | m->private = FALSE; | |
508 | m->throttled = FALSE; | |
509 | m->__unused_pageq_bits = 0; | |
510 | ||
511 | m->phys_page = 0; /* reset later */ | |
1c79356b A |
512 | |
513 | m->busy = TRUE; | |
514 | m->wanted = FALSE; | |
515 | m->tabled = FALSE; | |
516 | m->fictitious = FALSE; | |
b0d623f7 A |
517 | m->pmapped = FALSE; |
518 | m->wpmapped = FALSE; | |
519 | m->pageout = FALSE; | |
1c79356b A |
520 | m->absent = FALSE; |
521 | m->error = FALSE; | |
522 | m->dirty = FALSE; | |
523 | m->cleaning = FALSE; | |
524 | m->precious = FALSE; | |
525 | m->clustered = FALSE; | |
b0d623f7 | 526 | m->overwriting = FALSE; |
1c79356b | 527 | m->restart = FALSE; |
b0d623f7 | 528 | m->unusual = FALSE; |
91447636 | 529 | m->encrypted = FALSE; |
2d21ac55 | 530 | m->encrypted_cleaning = FALSE; |
b0d623f7 A |
531 | m->list_req_pending = FALSE; |
532 | m->dump_cleaning = FALSE; | |
533 | m->cs_validated = FALSE; | |
534 | m->cs_tainted = FALSE; | |
535 | m->no_cache = FALSE; | |
536 | m->zero_fill = FALSE; | |
537 | m->reusable = FALSE; | |
6d2010ae | 538 | m->slid = FALSE; |
b0d623f7 | 539 | m->__unused_object_bits = 0; |
1c79356b | 540 | |
1c79356b | 541 | |
1c79356b A |
542 | /* |
543 | * Initialize the page queues. | |
544 | */ | |
b0d623f7 A |
545 | vm_page_init_lck_grp(); |
546 | ||
547 | lck_mtx_init_ext(&vm_page_queue_free_lock, &vm_page_queue_free_lock_ext, &vm_page_lck_grp_free, &vm_page_lck_attr); | |
548 | lck_mtx_init_ext(&vm_page_queue_lock, &vm_page_queue_lock_ext, &vm_page_lck_grp_queue, &vm_page_lck_attr); | |
549 | lck_mtx_init_ext(&vm_purgeable_queue_lock, &vm_purgeable_queue_lock_ext, &vm_page_lck_grp_purge, &vm_page_lck_attr); | |
2d21ac55 A |
550 | |
551 | for (i = 0; i < PURGEABLE_Q_TYPE_MAX; i++) { | |
552 | int group; | |
553 | ||
554 | purgeable_queues[i].token_q_head = 0; | |
555 | purgeable_queues[i].token_q_tail = 0; | |
556 | for (group = 0; group < NUM_VOLATILE_GROUPS; group++) | |
557 | queue_init(&purgeable_queues[i].objq[group]); | |
558 | ||
559 | purgeable_queues[i].type = i; | |
560 | purgeable_queues[i].new_pages = 0; | |
561 | #if MACH_ASSERT | |
562 | purgeable_queues[i].debug_count_tokens = 0; | |
563 | purgeable_queues[i].debug_count_objects = 0; | |
564 | #endif | |
565 | }; | |
566 | ||
567 | for (i = 0; i < MAX_COLORS; i++ ) | |
568 | queue_init(&vm_page_queue_free[i]); | |
6d2010ae | 569 | |
2d21ac55 | 570 | queue_init(&vm_lopage_queue_free); |
1c79356b A |
571 | queue_init(&vm_page_queue_active); |
572 | queue_init(&vm_page_queue_inactive); | |
2d21ac55 | 573 | queue_init(&vm_page_queue_throttled); |
9bccf70c | 574 | queue_init(&vm_page_queue_zf); |
1c79356b | 575 | |
2d21ac55 A |
576 | for ( i = 0; i <= VM_PAGE_MAX_SPECULATIVE_AGE_Q; i++ ) { |
577 | queue_init(&vm_page_queue_speculative[i].age_q); | |
578 | ||
579 | vm_page_queue_speculative[i].age_ts.tv_sec = 0; | |
580 | vm_page_queue_speculative[i].age_ts.tv_nsec = 0; | |
581 | } | |
1c79356b | 582 | vm_page_free_wanted = 0; |
2d21ac55 A |
583 | vm_page_free_wanted_privileged = 0; |
584 | ||
585 | vm_page_set_colors(); | |
586 | ||
1c79356b A |
587 | |
588 | /* | |
589 | * Steal memory for the map and zone subsystems. | |
590 | */ | |
591 | ||
592 | vm_map_steal_memory(); | |
593 | zone_steal_memory(); | |
594 | ||
595 | /* | |
596 | * Allocate (and initialize) the virtual-to-physical | |
597 | * table hash buckets. | |
598 | * | |
599 | * The number of buckets should be a power of two to | |
600 | * get a good hash function. The following computation | |
601 | * chooses the first power of two that is greater | |
602 | * than the number of physical pages in the system. | |
603 | */ | |
604 | ||
1c79356b A |
605 | if (vm_page_bucket_count == 0) { |
606 | unsigned int npages = pmap_free_pages(); | |
607 | ||
608 | vm_page_bucket_count = 1; | |
609 | while (vm_page_bucket_count < npages) | |
610 | vm_page_bucket_count <<= 1; | |
611 | } | |
b0d623f7 | 612 | vm_page_bucket_lock_count = (vm_page_bucket_count + BUCKETS_PER_LOCK - 1) / BUCKETS_PER_LOCK; |
1c79356b A |
613 | |
614 | vm_page_hash_mask = vm_page_bucket_count - 1; | |
615 | ||
616 | /* | |
617 | * Calculate object shift value for hashing algorithm: | |
618 | * O = log2(sizeof(struct vm_object)) | |
619 | * B = log2(vm_page_bucket_count) | |
620 | * hash shifts the object left by | |
621 | * B/2 - O | |
622 | */ | |
623 | size = vm_page_bucket_count; | |
624 | for (log1 = 0; size > 1; log1++) | |
625 | size /= 2; | |
626 | size = sizeof(struct vm_object); | |
627 | for (log2 = 0; size > 1; log2++) | |
628 | size /= 2; | |
629 | vm_page_hash_shift = log1/2 - log2 + 1; | |
55e303ae A |
630 | |
631 | vm_page_bucket_hash = 1 << ((log1 + 1) >> 1); /* Get (ceiling of sqrt of table size) */ | |
632 | vm_page_bucket_hash |= 1 << ((log1 + 1) >> 2); /* Get (ceiling of quadroot of table size) */ | |
633 | vm_page_bucket_hash |= 1; /* Set bit and add 1 - always must be 1 to insure unique series */ | |
1c79356b A |
634 | |
635 | if (vm_page_hash_mask & vm_page_bucket_count) | |
636 | printf("vm_page_bootstrap: WARNING -- strange page hash\n"); | |
637 | ||
638 | vm_page_buckets = (vm_page_bucket_t *) | |
639 | pmap_steal_memory(vm_page_bucket_count * | |
640 | sizeof(vm_page_bucket_t)); | |
641 | ||
b0d623f7 A |
642 | vm_page_bucket_locks = (lck_spin_t *) |
643 | pmap_steal_memory(vm_page_bucket_lock_count * | |
644 | sizeof(lck_spin_t)); | |
645 | ||
1c79356b A |
646 | for (i = 0; i < vm_page_bucket_count; i++) { |
647 | register vm_page_bucket_t *bucket = &vm_page_buckets[i]; | |
648 | ||
649 | bucket->pages = VM_PAGE_NULL; | |
650 | #if MACH_PAGE_HASH_STATS | |
651 | bucket->cur_count = 0; | |
652 | bucket->hi_count = 0; | |
653 | #endif /* MACH_PAGE_HASH_STATS */ | |
654 | } | |
655 | ||
b0d623f7 A |
656 | for (i = 0; i < vm_page_bucket_lock_count; i++) |
657 | lck_spin_init(&vm_page_bucket_locks[i], &vm_page_lck_grp_bucket, &vm_page_lck_attr); | |
658 | ||
1c79356b A |
659 | /* |
660 | * Machine-dependent code allocates the resident page table. | |
661 | * It uses vm_page_init to initialize the page frames. | |
662 | * The code also returns to us the virtual space available | |
663 | * to the kernel. We don't trust the pmap module | |
664 | * to get the alignment right. | |
665 | */ | |
666 | ||
667 | pmap_startup(&virtual_space_start, &virtual_space_end); | |
91447636 A |
668 | virtual_space_start = round_page(virtual_space_start); |
669 | virtual_space_end = trunc_page(virtual_space_end); | |
1c79356b A |
670 | |
671 | *startp = virtual_space_start; | |
672 | *endp = virtual_space_end; | |
673 | ||
674 | /* | |
675 | * Compute the initial "wire" count. | |
676 | * Up until now, the pages which have been set aside are not under | |
677 | * the VM system's control, so although they aren't explicitly | |
678 | * wired, they nonetheless can't be moved. At this moment, | |
679 | * all VM managed pages are "free", courtesy of pmap_startup. | |
680 | */ | |
b0d623f7 | 681 | assert((unsigned int) atop_64(max_mem) == atop_64(max_mem)); |
0b4c1975 A |
682 | vm_page_wire_count = ((unsigned int) atop_64(max_mem)) - vm_page_free_count - vm_lopage_free_count; /* initial value */ |
683 | vm_page_wire_count_initial = vm_page_wire_count; | |
1c79356b | 684 | vm_page_free_count_minimum = vm_page_free_count; |
91447636 | 685 | |
2d21ac55 A |
686 | printf("vm_page_bootstrap: %d free pages and %d wired pages\n", |
687 | vm_page_free_count, vm_page_wire_count); | |
688 | ||
91447636 | 689 | simple_lock_init(&vm_paging_lock, 0); |
1c79356b A |
690 | } |
691 | ||
692 | #ifndef MACHINE_PAGES | |
693 | /* | |
694 | * We implement pmap_steal_memory and pmap_startup with the help | |
695 | * of two simpler functions, pmap_virtual_space and pmap_next_page. | |
696 | */ | |
697 | ||
91447636 | 698 | void * |
1c79356b A |
699 | pmap_steal_memory( |
700 | vm_size_t size) | |
701 | { | |
55e303ae A |
702 | vm_offset_t addr, vaddr; |
703 | ppnum_t phys_page; | |
1c79356b A |
704 | |
705 | /* | |
706 | * We round the size to a round multiple. | |
707 | */ | |
708 | ||
709 | size = (size + sizeof (void *) - 1) &~ (sizeof (void *) - 1); | |
710 | ||
711 | /* | |
712 | * If this is the first call to pmap_steal_memory, | |
713 | * we have to initialize ourself. | |
714 | */ | |
715 | ||
716 | if (virtual_space_start == virtual_space_end) { | |
717 | pmap_virtual_space(&virtual_space_start, &virtual_space_end); | |
718 | ||
719 | /* | |
720 | * The initial values must be aligned properly, and | |
721 | * we don't trust the pmap module to do it right. | |
722 | */ | |
723 | ||
91447636 A |
724 | virtual_space_start = round_page(virtual_space_start); |
725 | virtual_space_end = trunc_page(virtual_space_end); | |
1c79356b A |
726 | } |
727 | ||
728 | /* | |
729 | * Allocate virtual memory for this request. | |
730 | */ | |
731 | ||
732 | addr = virtual_space_start; | |
733 | virtual_space_start += size; | |
734 | ||
6d2010ae | 735 | //kprintf("pmap_steal_memory: %08lX - %08lX; size=%08lX\n", (long)addr, (long)virtual_space_start, (long)size); /* (TEST/DEBUG) */ |
1c79356b A |
736 | |
737 | /* | |
738 | * Allocate and map physical pages to back new virtual pages. | |
739 | */ | |
740 | ||
91447636 | 741 | for (vaddr = round_page(addr); |
1c79356b A |
742 | vaddr < addr + size; |
743 | vaddr += PAGE_SIZE) { | |
b0d623f7 | 744 | |
0b4c1975 | 745 | if (!pmap_next_page_hi(&phys_page)) |
1c79356b A |
746 | panic("pmap_steal_memory"); |
747 | ||
748 | /* | |
749 | * XXX Logically, these mappings should be wired, | |
750 | * but some pmap modules barf if they are. | |
751 | */ | |
b0d623f7 A |
752 | #if defined(__LP64__) |
753 | pmap_pre_expand(kernel_pmap, vaddr); | |
754 | #endif | |
1c79356b | 755 | |
55e303ae | 756 | pmap_enter(kernel_pmap, vaddr, phys_page, |
9bccf70c A |
757 | VM_PROT_READ|VM_PROT_WRITE, |
758 | VM_WIMG_USE_DEFAULT, FALSE); | |
1c79356b A |
759 | /* |
760 | * Account for newly stolen memory | |
761 | */ | |
762 | vm_page_wire_count++; | |
763 | ||
764 | } | |
765 | ||
91447636 | 766 | return (void *) addr; |
1c79356b A |
767 | } |
768 | ||
769 | void | |
770 | pmap_startup( | |
771 | vm_offset_t *startp, | |
772 | vm_offset_t *endp) | |
773 | { | |
55e303ae | 774 | unsigned int i, npages, pages_initialized, fill, fillval; |
55e303ae A |
775 | ppnum_t phys_page; |
776 | addr64_t tmpaddr; | |
1c79356b A |
777 | |
778 | /* | |
779 | * We calculate how many page frames we will have | |
780 | * and then allocate the page structures in one chunk. | |
781 | */ | |
782 | ||
55e303ae | 783 | tmpaddr = (addr64_t)pmap_free_pages() * (addr64_t)PAGE_SIZE; /* Get the amount of memory left */ |
b0d623f7 | 784 | tmpaddr = tmpaddr + (addr64_t)(round_page(virtual_space_start) - virtual_space_start); /* Account for any slop */ |
2d21ac55 | 785 | npages = (unsigned int)(tmpaddr / (addr64_t)(PAGE_SIZE + sizeof(*vm_pages))); /* Figure size of all vm_page_ts, including enough to hold the vm_page_ts */ |
1c79356b | 786 | |
2d21ac55 | 787 | vm_pages = (vm_page_t) pmap_steal_memory(npages * sizeof *vm_pages); |
1c79356b A |
788 | |
789 | /* | |
790 | * Initialize the page frames. | |
791 | */ | |
1c79356b | 792 | for (i = 0, pages_initialized = 0; i < npages; i++) { |
55e303ae | 793 | if (!pmap_next_page(&phys_page)) |
1c79356b | 794 | break; |
0b4c1975 A |
795 | if (pages_initialized == 0 || phys_page < vm_page_lowest) |
796 | vm_page_lowest = phys_page; | |
1c79356b | 797 | |
0b4c1975 | 798 | vm_page_init(&vm_pages[i], phys_page, FALSE); |
1c79356b A |
799 | vm_page_pages++; |
800 | pages_initialized++; | |
801 | } | |
2d21ac55 | 802 | vm_pages_count = pages_initialized; |
1c79356b | 803 | |
0c530ab8 A |
804 | /* |
805 | * Check if we want to initialize pages to a known value | |
806 | */ | |
807 | fill = 0; /* Assume no fill */ | |
593a1d5f | 808 | if (PE_parse_boot_argn("fill", &fillval, sizeof (fillval))) fill = 1; /* Set fill */ |
2d21ac55 | 809 | |
0c530ab8 A |
810 | // -debug code remove |
811 | if (2 == vm_himemory_mode) { | |
812 | // free low -> high so high is preferred | |
0b4c1975 | 813 | for (i = 1; i <= pages_initialized; i++) { |
2d21ac55 A |
814 | if(fill) fillPage(vm_pages[i - 1].phys_page, fillval); /* Fill the page with a know value if requested at boot */ |
815 | vm_page_release(&vm_pages[i - 1]); | |
0c530ab8 A |
816 | } |
817 | } | |
818 | else | |
819 | // debug code remove- | |
820 | ||
1c79356b A |
821 | /* |
822 | * Release pages in reverse order so that physical pages | |
823 | * initially get allocated in ascending addresses. This keeps | |
824 | * the devices (which must address physical memory) happy if | |
825 | * they require several consecutive pages. | |
826 | */ | |
0b4c1975 | 827 | for (i = pages_initialized; i > 0; i--) { |
2d21ac55 A |
828 | if(fill) fillPage(vm_pages[i - 1].phys_page, fillval); /* Fill the page with a know value if requested at boot */ |
829 | vm_page_release(&vm_pages[i - 1]); | |
1c79356b A |
830 | } |
831 | ||
55e303ae A |
832 | #if 0 |
833 | { | |
834 | vm_page_t xx, xxo, xxl; | |
2d21ac55 | 835 | int i, j, k, l; |
55e303ae A |
836 | |
837 | j = 0; /* (BRINGUP) */ | |
838 | xxl = 0; | |
839 | ||
2d21ac55 A |
840 | for( i = 0; i < vm_colors; i++ ) { |
841 | queue_iterate(&vm_page_queue_free[i], | |
842 | xx, | |
843 | vm_page_t, | |
844 | pageq) { /* BRINGUP */ | |
845 | j++; /* (BRINGUP) */ | |
846 | if(j > vm_page_free_count) { /* (BRINGUP) */ | |
847 | panic("pmap_startup: too many pages, xx = %08X, xxl = %08X\n", xx, xxl); | |
55e303ae | 848 | } |
2d21ac55 A |
849 | |
850 | l = vm_page_free_count - j; /* (BRINGUP) */ | |
851 | k = 0; /* (BRINGUP) */ | |
852 | ||
853 | if(((j - 1) & 0xFFFF) == 0) kprintf("checking number %d of %d\n", j, vm_page_free_count); | |
854 | ||
855 | for(xxo = xx->pageq.next; xxo != &vm_page_queue_free[i]; xxo = xxo->pageq.next) { /* (BRINGUP) */ | |
856 | k++; | |
857 | if(k > l) panic("pmap_startup: too many in secondary check %d %d\n", k, l); | |
858 | if((xx->phys_page & 0xFFFFFFFF) == (xxo->phys_page & 0xFFFFFFFF)) { /* (BRINGUP) */ | |
859 | panic("pmap_startup: duplicate physaddr, xx = %08X, xxo = %08X\n", xx, xxo); | |
860 | } | |
861 | } | |
862 | ||
863 | xxl = xx; | |
55e303ae A |
864 | } |
865 | } | |
866 | ||
867 | if(j != vm_page_free_count) { /* (BRINGUP) */ | |
868 | panic("pmap_startup: vm_page_free_count does not match, calc = %d, vm_page_free_count = %08X\n", j, vm_page_free_count); | |
869 | } | |
870 | } | |
871 | #endif | |
872 | ||
873 | ||
1c79356b A |
874 | /* |
875 | * We have to re-align virtual_space_start, | |
876 | * because pmap_steal_memory has been using it. | |
877 | */ | |
878 | ||
b0d623f7 | 879 | virtual_space_start = round_page(virtual_space_start); |
1c79356b A |
880 | |
881 | *startp = virtual_space_start; | |
882 | *endp = virtual_space_end; | |
883 | } | |
884 | #endif /* MACHINE_PAGES */ | |
885 | ||
886 | /* | |
887 | * Routine: vm_page_module_init | |
888 | * Purpose: | |
889 | * Second initialization pass, to be done after | |
890 | * the basic VM system is ready. | |
891 | */ | |
892 | void | |
893 | vm_page_module_init(void) | |
894 | { | |
895 | vm_page_zone = zinit((vm_size_t) sizeof(struct vm_page), | |
896 | 0, PAGE_SIZE, "vm pages"); | |
897 | ||
898 | #if ZONE_DEBUG | |
899 | zone_debug_disable(vm_page_zone); | |
900 | #endif /* ZONE_DEBUG */ | |
901 | ||
6d2010ae | 902 | zone_change(vm_page_zone, Z_CALLERACCT, FALSE); |
1c79356b A |
903 | zone_change(vm_page_zone, Z_EXPAND, FALSE); |
904 | zone_change(vm_page_zone, Z_EXHAUST, TRUE); | |
905 | zone_change(vm_page_zone, Z_FOREIGN, TRUE); | |
906 | ||
907 | /* | |
908 | * Adjust zone statistics to account for the real pages allocated | |
909 | * in vm_page_create(). [Q: is this really what we want?] | |
910 | */ | |
911 | vm_page_zone->count += vm_page_pages; | |
6d2010ae | 912 | vm_page_zone->sum_count += vm_page_pages; |
1c79356b A |
913 | vm_page_zone->cur_size += vm_page_pages * vm_page_zone->elem_size; |
914 | ||
b0d623f7 | 915 | lck_mtx_init(&vm_page_alloc_lock, &vm_page_lck_grp_alloc, &vm_page_lck_attr); |
1c79356b A |
916 | } |
917 | ||
918 | /* | |
919 | * Routine: vm_page_create | |
920 | * Purpose: | |
921 | * After the VM system is up, machine-dependent code | |
922 | * may stumble across more physical memory. For example, | |
923 | * memory that it was reserving for a frame buffer. | |
924 | * vm_page_create turns this memory into available pages. | |
925 | */ | |
926 | ||
927 | void | |
928 | vm_page_create( | |
55e303ae A |
929 | ppnum_t start, |
930 | ppnum_t end) | |
1c79356b | 931 | { |
55e303ae A |
932 | ppnum_t phys_page; |
933 | vm_page_t m; | |
1c79356b | 934 | |
55e303ae A |
935 | for (phys_page = start; |
936 | phys_page < end; | |
937 | phys_page++) { | |
6d2010ae | 938 | while ((m = (vm_page_t) vm_page_grab_fictitious_common(phys_page)) |
1c79356b A |
939 | == VM_PAGE_NULL) |
940 | vm_page_more_fictitious(); | |
941 | ||
6d2010ae | 942 | m->fictitious = FALSE; |
0b4c1975 | 943 | pmap_clear_noencrypt(phys_page); |
6d2010ae | 944 | |
1c79356b A |
945 | vm_page_pages++; |
946 | vm_page_release(m); | |
947 | } | |
948 | } | |
949 | ||
950 | /* | |
951 | * vm_page_hash: | |
952 | * | |
953 | * Distributes the object/offset key pair among hash buckets. | |
954 | * | |
55e303ae | 955 | * NOTE: The bucket count must be a power of 2 |
1c79356b A |
956 | */ |
957 | #define vm_page_hash(object, offset) (\ | |
b0d623f7 | 958 | ( (natural_t)((uintptr_t)object * vm_page_bucket_hash) + ((uint32_t)atop_64(offset) ^ vm_page_bucket_hash))\ |
1c79356b A |
959 | & vm_page_hash_mask) |
960 | ||
2d21ac55 | 961 | |
1c79356b A |
962 | /* |
963 | * vm_page_insert: [ internal use only ] | |
964 | * | |
965 | * Inserts the given mem entry into the object/object-page | |
966 | * table and object list. | |
967 | * | |
968 | * The object must be locked. | |
969 | */ | |
1c79356b A |
970 | void |
971 | vm_page_insert( | |
2d21ac55 A |
972 | vm_page_t mem, |
973 | vm_object_t object, | |
974 | vm_object_offset_t offset) | |
975 | { | |
b0d623f7 | 976 | vm_page_insert_internal(mem, object, offset, FALSE, TRUE); |
2d21ac55 A |
977 | } |
978 | ||
4a3eedf9 | 979 | void |
2d21ac55 A |
980 | vm_page_insert_internal( |
981 | vm_page_t mem, | |
982 | vm_object_t object, | |
983 | vm_object_offset_t offset, | |
b0d623f7 A |
984 | boolean_t queues_lock_held, |
985 | boolean_t insert_in_hash) | |
1c79356b | 986 | { |
b0d623f7 A |
987 | vm_page_bucket_t *bucket; |
988 | lck_spin_t *bucket_lock; | |
989 | int hash_id; | |
1c79356b A |
990 | |
991 | XPR(XPR_VM_PAGE, | |
992 | "vm_page_insert, object 0x%X offset 0x%X page 0x%X\n", | |
b0d623f7 | 993 | object, offset, mem, 0,0); |
1c79356b A |
994 | |
995 | VM_PAGE_CHECK(mem); | |
996 | ||
2d21ac55 A |
997 | if (object == vm_submap_object) { |
998 | /* the vm_submap_object is only a placeholder for submaps */ | |
999 | panic("vm_page_insert(vm_submap_object,0x%llx)\n", offset); | |
1000 | } | |
1001 | ||
1002 | vm_object_lock_assert_exclusive(object); | |
1003 | #if DEBUG | |
b0d623f7 A |
1004 | lck_mtx_assert(&vm_page_queue_lock, |
1005 | queues_lock_held ? LCK_MTX_ASSERT_OWNED | |
1006 | : LCK_MTX_ASSERT_NOTOWNED); | |
1007 | #endif /* DEBUG */ | |
1008 | ||
1009 | if (insert_in_hash == TRUE) { | |
1010 | #if DEBUG | |
1011 | if (mem->tabled || mem->object != VM_OBJECT_NULL) | |
1012 | panic("vm_page_insert: page %p for (obj=%p,off=0x%llx) " | |
1013 | "already in (obj=%p,off=0x%llx)", | |
1014 | mem, object, offset, mem->object, mem->offset); | |
91447636 | 1015 | #endif |
6d2010ae | 1016 | assert(!object->internal || offset < object->vo_size); |
1c79356b | 1017 | |
b0d623f7 A |
1018 | /* only insert "pageout" pages into "pageout" objects, |
1019 | * and normal pages into normal objects */ | |
1020 | assert(object->pageout == mem->pageout); | |
91447636 | 1021 | |
b0d623f7 A |
1022 | assert(vm_page_lookup(object, offset) == VM_PAGE_NULL); |
1023 | ||
1024 | /* | |
1025 | * Record the object/offset pair in this page | |
1026 | */ | |
1c79356b | 1027 | |
b0d623f7 A |
1028 | mem->object = object; |
1029 | mem->offset = offset; | |
1c79356b | 1030 | |
b0d623f7 A |
1031 | /* |
1032 | * Insert it into the object_object/offset hash table | |
1033 | */ | |
1034 | hash_id = vm_page_hash(object, offset); | |
1035 | bucket = &vm_page_buckets[hash_id]; | |
1036 | bucket_lock = &vm_page_bucket_locks[hash_id / BUCKETS_PER_LOCK]; | |
1037 | ||
1038 | lck_spin_lock(bucket_lock); | |
1c79356b | 1039 | |
b0d623f7 A |
1040 | mem->next = bucket->pages; |
1041 | bucket->pages = mem; | |
1c79356b | 1042 | #if MACH_PAGE_HASH_STATS |
b0d623f7 A |
1043 | if (++bucket->cur_count > bucket->hi_count) |
1044 | bucket->hi_count = bucket->cur_count; | |
1c79356b | 1045 | #endif /* MACH_PAGE_HASH_STATS */ |
1c79356b | 1046 | |
b0d623f7 A |
1047 | lck_spin_unlock(bucket_lock); |
1048 | } | |
6d2010ae A |
1049 | |
1050 | { unsigned int cache_attr; | |
1051 | ||
1052 | cache_attr = object->wimg_bits & VM_WIMG_MASK; | |
1053 | ||
1054 | if (cache_attr != VM_WIMG_USE_DEFAULT) { | |
1055 | pmap_set_cache_attributes(mem->phys_page, cache_attr); | |
1056 | object->set_cache_attr = TRUE; | |
1057 | } | |
1058 | } | |
1c79356b A |
1059 | /* |
1060 | * Now link into the object's list of backed pages. | |
1061 | */ | |
1062 | ||
91447636 | 1063 | VM_PAGE_INSERT(mem, object); |
1c79356b A |
1064 | mem->tabled = TRUE; |
1065 | ||
1066 | /* | |
1067 | * Show that the object has one more resident page. | |
1068 | */ | |
1069 | ||
1070 | object->resident_page_count++; | |
b0d623f7 A |
1071 | if (VM_PAGE_WIRED(mem)) { |
1072 | object->wired_page_count++; | |
1073 | } | |
1074 | assert(object->resident_page_count >= object->wired_page_count); | |
91447636 | 1075 | |
b0d623f7 | 1076 | assert(!mem->reusable); |
2d21ac55 | 1077 | |
b0d623f7 A |
1078 | if (object->purgable == VM_PURGABLE_VOLATILE) { |
1079 | if (VM_PAGE_WIRED(mem)) { | |
1080 | OSAddAtomic(1, &vm_page_purgeable_wired_count); | |
1081 | } else { | |
1082 | OSAddAtomic(1, &vm_page_purgeable_count); | |
1083 | } | |
593a1d5f A |
1084 | } else if (object->purgable == VM_PURGABLE_EMPTY && |
1085 | mem->throttled) { | |
b0d623f7 A |
1086 | /* |
1087 | * This page belongs to a purged VM object but hasn't | |
1088 | * been purged (because it was "busy"). | |
1089 | * It's in the "throttled" queue and hence not | |
1090 | * visible to vm_pageout_scan(). Move it to a pageable | |
1091 | * queue, so that it can eventually be reclaimed, instead | |
1092 | * of lingering in the "empty" object. | |
1093 | */ | |
593a1d5f | 1094 | if (queues_lock_held == FALSE) |
b0d623f7 | 1095 | vm_page_lockspin_queues(); |
593a1d5f | 1096 | vm_page_deactivate(mem); |
2d21ac55 A |
1097 | if (queues_lock_held == FALSE) |
1098 | vm_page_unlock_queues(); | |
91447636 | 1099 | } |
1c79356b A |
1100 | } |
1101 | ||
1102 | /* | |
1103 | * vm_page_replace: | |
1104 | * | |
1105 | * Exactly like vm_page_insert, except that we first | |
1106 | * remove any existing page at the given offset in object. | |
1107 | * | |
b0d623f7 | 1108 | * The object must be locked. |
1c79356b | 1109 | */ |
1c79356b A |
1110 | void |
1111 | vm_page_replace( | |
1112 | register vm_page_t mem, | |
1113 | register vm_object_t object, | |
1114 | register vm_object_offset_t offset) | |
1115 | { | |
0c530ab8 A |
1116 | vm_page_bucket_t *bucket; |
1117 | vm_page_t found_m = VM_PAGE_NULL; | |
b0d623f7 A |
1118 | lck_spin_t *bucket_lock; |
1119 | int hash_id; | |
1c79356b A |
1120 | |
1121 | VM_PAGE_CHECK(mem); | |
2d21ac55 | 1122 | vm_object_lock_assert_exclusive(object); |
91447636 | 1123 | #if DEBUG |
91447636 A |
1124 | if (mem->tabled || mem->object != VM_OBJECT_NULL) |
1125 | panic("vm_page_replace: page %p for (obj=%p,off=0x%llx) " | |
1126 | "already in (obj=%p,off=0x%llx)", | |
1127 | mem, object, offset, mem->object, mem->offset); | |
b0d623f7 | 1128 | lck_mtx_assert(&vm_page_queue_lock, LCK_MTX_ASSERT_NOTOWNED); |
91447636 | 1129 | #endif |
1c79356b A |
1130 | /* |
1131 | * Record the object/offset pair in this page | |
1132 | */ | |
1133 | ||
1134 | mem->object = object; | |
1135 | mem->offset = offset; | |
1136 | ||
1137 | /* | |
1138 | * Insert it into the object_object/offset hash table, | |
1139 | * replacing any page that might have been there. | |
1140 | */ | |
1141 | ||
b0d623f7 A |
1142 | hash_id = vm_page_hash(object, offset); |
1143 | bucket = &vm_page_buckets[hash_id]; | |
1144 | bucket_lock = &vm_page_bucket_locks[hash_id / BUCKETS_PER_LOCK]; | |
1145 | ||
1146 | lck_spin_lock(bucket_lock); | |
0c530ab8 | 1147 | |
1c79356b A |
1148 | if (bucket->pages) { |
1149 | vm_page_t *mp = &bucket->pages; | |
b0d623f7 | 1150 | vm_page_t m = *mp; |
0c530ab8 | 1151 | |
1c79356b A |
1152 | do { |
1153 | if (m->object == object && m->offset == offset) { | |
1154 | /* | |
0c530ab8 | 1155 | * Remove old page from hash list |
1c79356b A |
1156 | */ |
1157 | *mp = m->next; | |
1c79356b | 1158 | |
0c530ab8 | 1159 | found_m = m; |
1c79356b A |
1160 | break; |
1161 | } | |
1162 | mp = &m->next; | |
91447636 | 1163 | } while ((m = *mp)); |
0c530ab8 | 1164 | |
1c79356b A |
1165 | mem->next = bucket->pages; |
1166 | } else { | |
1167 | mem->next = VM_PAGE_NULL; | |
1168 | } | |
0c530ab8 A |
1169 | /* |
1170 | * insert new page at head of hash list | |
1171 | */ | |
1c79356b | 1172 | bucket->pages = mem; |
0c530ab8 | 1173 | |
b0d623f7 | 1174 | lck_spin_unlock(bucket_lock); |
1c79356b | 1175 | |
0c530ab8 A |
1176 | if (found_m) { |
1177 | /* | |
1178 | * there was already a page at the specified | |
1179 | * offset for this object... remove it from | |
1180 | * the object and free it back to the free list | |
1181 | */ | |
b0d623f7 | 1182 | vm_page_free_unlocked(found_m, FALSE); |
91447636 | 1183 | } |
b0d623f7 | 1184 | vm_page_insert_internal(mem, object, offset, FALSE, FALSE); |
1c79356b A |
1185 | } |
1186 | ||
1187 | /* | |
1188 | * vm_page_remove: [ internal use only ] | |
1189 | * | |
1190 | * Removes the given mem entry from the object/offset-page | |
1191 | * table and the object page list. | |
1192 | * | |
b0d623f7 | 1193 | * The object must be locked. |
1c79356b A |
1194 | */ |
1195 | ||
1196 | void | |
1197 | vm_page_remove( | |
b0d623f7 A |
1198 | vm_page_t mem, |
1199 | boolean_t remove_from_hash) | |
1c79356b | 1200 | { |
b0d623f7 A |
1201 | vm_page_bucket_t *bucket; |
1202 | vm_page_t this; | |
1203 | lck_spin_t *bucket_lock; | |
1204 | int hash_id; | |
1c79356b A |
1205 | |
1206 | XPR(XPR_VM_PAGE, | |
1207 | "vm_page_remove, object 0x%X offset 0x%X page 0x%X\n", | |
b0d623f7 A |
1208 | mem->object, mem->offset, |
1209 | mem, 0,0); | |
1210 | ||
2d21ac55 | 1211 | vm_object_lock_assert_exclusive(mem->object); |
1c79356b A |
1212 | assert(mem->tabled); |
1213 | assert(!mem->cleaning); | |
1214 | VM_PAGE_CHECK(mem); | |
1215 | ||
b0d623f7 A |
1216 | if (remove_from_hash == TRUE) { |
1217 | /* | |
1218 | * Remove from the object_object/offset hash table | |
1219 | */ | |
1220 | hash_id = vm_page_hash(mem->object, mem->offset); | |
1221 | bucket = &vm_page_buckets[hash_id]; | |
1222 | bucket_lock = &vm_page_bucket_locks[hash_id / BUCKETS_PER_LOCK]; | |
91447636 | 1223 | |
b0d623f7 | 1224 | lck_spin_lock(bucket_lock); |
1c79356b | 1225 | |
b0d623f7 A |
1226 | if ((this = bucket->pages) == mem) { |
1227 | /* optimize for common case */ | |
1c79356b | 1228 | |
b0d623f7 A |
1229 | bucket->pages = mem->next; |
1230 | } else { | |
1231 | vm_page_t *prev; | |
1c79356b | 1232 | |
b0d623f7 A |
1233 | for (prev = &this->next; |
1234 | (this = *prev) != mem; | |
1235 | prev = &this->next) | |
1236 | continue; | |
1237 | *prev = this->next; | |
1238 | } | |
1c79356b | 1239 | #if MACH_PAGE_HASH_STATS |
b0d623f7 | 1240 | bucket->cur_count--; |
1c79356b | 1241 | #endif /* MACH_PAGE_HASH_STATS */ |
1c79356b | 1242 | |
b0d623f7 A |
1243 | lck_spin_unlock(bucket_lock); |
1244 | } | |
1c79356b A |
1245 | /* |
1246 | * Now remove from the object's list of backed pages. | |
1247 | */ | |
1248 | ||
91447636 | 1249 | VM_PAGE_REMOVE(mem); |
1c79356b A |
1250 | |
1251 | /* | |
1252 | * And show that the object has one fewer resident | |
1253 | * page. | |
1254 | */ | |
1255 | ||
b0d623f7 | 1256 | assert(mem->object->resident_page_count > 0); |
1c79356b | 1257 | mem->object->resident_page_count--; |
6d2010ae A |
1258 | |
1259 | if (!mem->object->internal && (mem->object->objq.next || mem->object->objq.prev)) { | |
1260 | if (mem->object->resident_page_count == 0) | |
1261 | vm_object_cache_remove(mem->object); | |
1262 | } | |
1263 | ||
b0d623f7 A |
1264 | if (VM_PAGE_WIRED(mem)) { |
1265 | assert(mem->object->wired_page_count > 0); | |
1266 | mem->object->wired_page_count--; | |
1267 | } | |
1268 | assert(mem->object->resident_page_count >= | |
1269 | mem->object->wired_page_count); | |
1270 | if (mem->reusable) { | |
1271 | assert(mem->object->reusable_page_count > 0); | |
1272 | mem->object->reusable_page_count--; | |
1273 | assert(mem->object->reusable_page_count <= | |
1274 | mem->object->resident_page_count); | |
1275 | mem->reusable = FALSE; | |
1276 | OSAddAtomic(-1, &vm_page_stats_reusable.reusable_count); | |
1277 | vm_page_stats_reusable.reused_remove++; | |
1278 | } else if (mem->object->all_reusable) { | |
1279 | OSAddAtomic(-1, &vm_page_stats_reusable.reusable_count); | |
1280 | vm_page_stats_reusable.reused_remove++; | |
1281 | } | |
1c79356b | 1282 | |
593a1d5f | 1283 | if (mem->object->purgable == VM_PURGABLE_VOLATILE) { |
b0d623f7 A |
1284 | if (VM_PAGE_WIRED(mem)) { |
1285 | assert(vm_page_purgeable_wired_count > 0); | |
1286 | OSAddAtomic(-1, &vm_page_purgeable_wired_count); | |
1287 | } else { | |
1288 | assert(vm_page_purgeable_count > 0); | |
1289 | OSAddAtomic(-1, &vm_page_purgeable_count); | |
1290 | } | |
91447636 | 1291 | } |
6d2010ae A |
1292 | if (mem->object->set_cache_attr == TRUE) |
1293 | pmap_set_cache_attributes(mem->phys_page, 0); | |
1294 | ||
1c79356b A |
1295 | mem->tabled = FALSE; |
1296 | mem->object = VM_OBJECT_NULL; | |
91447636 | 1297 | mem->offset = (vm_object_offset_t) -1; |
1c79356b A |
1298 | } |
1299 | ||
b0d623f7 | 1300 | |
1c79356b A |
1301 | /* |
1302 | * vm_page_lookup: | |
1303 | * | |
1304 | * Returns the page associated with the object/offset | |
1305 | * pair specified; if none is found, VM_PAGE_NULL is returned. | |
1306 | * | |
1307 | * The object must be locked. No side effects. | |
1308 | */ | |
1309 | ||
91447636 A |
1310 | unsigned long vm_page_lookup_hint = 0; |
1311 | unsigned long vm_page_lookup_hint_next = 0; | |
1312 | unsigned long vm_page_lookup_hint_prev = 0; | |
1313 | unsigned long vm_page_lookup_hint_miss = 0; | |
2d21ac55 A |
1314 | unsigned long vm_page_lookup_bucket_NULL = 0; |
1315 | unsigned long vm_page_lookup_miss = 0; | |
1316 | ||
91447636 | 1317 | |
1c79356b A |
1318 | vm_page_t |
1319 | vm_page_lookup( | |
b0d623f7 A |
1320 | vm_object_t object, |
1321 | vm_object_offset_t offset) | |
1c79356b | 1322 | { |
b0d623f7 A |
1323 | vm_page_t mem; |
1324 | vm_page_bucket_t *bucket; | |
1325 | queue_entry_t qe; | |
1326 | lck_spin_t *bucket_lock; | |
1327 | int hash_id; | |
91447636 | 1328 | |
2d21ac55 | 1329 | vm_object_lock_assert_held(object); |
91447636 | 1330 | mem = object->memq_hint; |
2d21ac55 | 1331 | |
91447636 A |
1332 | if (mem != VM_PAGE_NULL) { |
1333 | assert(mem->object == object); | |
2d21ac55 | 1334 | |
91447636 A |
1335 | if (mem->offset == offset) { |
1336 | vm_page_lookup_hint++; | |
1337 | return mem; | |
1338 | } | |
1339 | qe = queue_next(&mem->listq); | |
2d21ac55 | 1340 | |
91447636 A |
1341 | if (! queue_end(&object->memq, qe)) { |
1342 | vm_page_t next_page; | |
1343 | ||
1344 | next_page = (vm_page_t) qe; | |
1345 | assert(next_page->object == object); | |
2d21ac55 | 1346 | |
91447636 A |
1347 | if (next_page->offset == offset) { |
1348 | vm_page_lookup_hint_next++; | |
1349 | object->memq_hint = next_page; /* new hint */ | |
1350 | return next_page; | |
1351 | } | |
1352 | } | |
1353 | qe = queue_prev(&mem->listq); | |
2d21ac55 | 1354 | |
91447636 A |
1355 | if (! queue_end(&object->memq, qe)) { |
1356 | vm_page_t prev_page; | |
1357 | ||
1358 | prev_page = (vm_page_t) qe; | |
1359 | assert(prev_page->object == object); | |
2d21ac55 | 1360 | |
91447636 A |
1361 | if (prev_page->offset == offset) { |
1362 | vm_page_lookup_hint_prev++; | |
1363 | object->memq_hint = prev_page; /* new hint */ | |
1364 | return prev_page; | |
1365 | } | |
1366 | } | |
1367 | } | |
1c79356b | 1368 | /* |
2d21ac55 | 1369 | * Search the hash table for this object/offset pair |
1c79356b | 1370 | */ |
b0d623f7 A |
1371 | hash_id = vm_page_hash(object, offset); |
1372 | bucket = &vm_page_buckets[hash_id]; | |
1c79356b | 1373 | |
2d21ac55 A |
1374 | /* |
1375 | * since we hold the object lock, we are guaranteed that no | |
1376 | * new pages can be inserted into this object... this in turn | |
1377 | * guarantess that the page we're looking for can't exist | |
1378 | * if the bucket it hashes to is currently NULL even when looked | |
1379 | * at outside the scope of the hash bucket lock... this is a | |
1380 | * really cheap optimiztion to avoid taking the lock | |
1381 | */ | |
1382 | if (bucket->pages == VM_PAGE_NULL) { | |
1383 | vm_page_lookup_bucket_NULL++; | |
1384 | ||
1385 | return (VM_PAGE_NULL); | |
1386 | } | |
b0d623f7 A |
1387 | bucket_lock = &vm_page_bucket_locks[hash_id / BUCKETS_PER_LOCK]; |
1388 | ||
1389 | lck_spin_lock(bucket_lock); | |
0c530ab8 | 1390 | |
1c79356b A |
1391 | for (mem = bucket->pages; mem != VM_PAGE_NULL; mem = mem->next) { |
1392 | VM_PAGE_CHECK(mem); | |
1393 | if ((mem->object == object) && (mem->offset == offset)) | |
1394 | break; | |
1395 | } | |
b0d623f7 | 1396 | lck_spin_unlock(bucket_lock); |
55e303ae | 1397 | |
91447636 A |
1398 | if (mem != VM_PAGE_NULL) { |
1399 | if (object->memq_hint != VM_PAGE_NULL) { | |
1400 | vm_page_lookup_hint_miss++; | |
1401 | } | |
1402 | assert(mem->object == object); | |
1403 | object->memq_hint = mem; | |
2d21ac55 A |
1404 | } else |
1405 | vm_page_lookup_miss++; | |
91447636 A |
1406 | |
1407 | return(mem); | |
1408 | } | |
1409 | ||
1410 | ||
1c79356b A |
1411 | /* |
1412 | * vm_page_rename: | |
1413 | * | |
1414 | * Move the given memory entry from its | |
1415 | * current object to the specified target object/offset. | |
1416 | * | |
1417 | * The object must be locked. | |
1418 | */ | |
1419 | void | |
1420 | vm_page_rename( | |
1421 | register vm_page_t mem, | |
1422 | register vm_object_t new_object, | |
2d21ac55 A |
1423 | vm_object_offset_t new_offset, |
1424 | boolean_t encrypted_ok) | |
1c79356b A |
1425 | { |
1426 | assert(mem->object != new_object); | |
2d21ac55 | 1427 | |
91447636 A |
1428 | /* |
1429 | * ENCRYPTED SWAP: | |
1430 | * The encryption key is based on the page's memory object | |
1431 | * (aka "pager") and paging offset. Moving the page to | |
1432 | * another VM object changes its "pager" and "paging_offset" | |
2d21ac55 A |
1433 | * so it has to be decrypted first, or we would lose the key. |
1434 | * | |
1435 | * One exception is VM object collapsing, where we transfer pages | |
1436 | * from one backing object to its parent object. This operation also | |
1437 | * transfers the paging information, so the <pager,paging_offset> info | |
1438 | * should remain consistent. The caller (vm_object_do_collapse()) | |
1439 | * sets "encrypted_ok" in this case. | |
91447636 | 1440 | */ |
2d21ac55 | 1441 | if (!encrypted_ok && mem->encrypted) { |
91447636 A |
1442 | panic("vm_page_rename: page %p is encrypted\n", mem); |
1443 | } | |
2d21ac55 | 1444 | |
b0d623f7 A |
1445 | XPR(XPR_VM_PAGE, |
1446 | "vm_page_rename, new object 0x%X, offset 0x%X page 0x%X\n", | |
1447 | new_object, new_offset, | |
1448 | mem, 0,0); | |
1449 | ||
1c79356b A |
1450 | /* |
1451 | * Changes to mem->object require the page lock because | |
1452 | * the pageout daemon uses that lock to get the object. | |
1453 | */ | |
b0d623f7 | 1454 | vm_page_lockspin_queues(); |
1c79356b | 1455 | |
b0d623f7 A |
1456 | vm_page_remove(mem, TRUE); |
1457 | vm_page_insert_internal(mem, new_object, new_offset, TRUE, TRUE); | |
1c79356b | 1458 | |
1c79356b A |
1459 | vm_page_unlock_queues(); |
1460 | } | |
1461 | ||
1462 | /* | |
1463 | * vm_page_init: | |
1464 | * | |
1465 | * Initialize the fields in a new page. | |
1466 | * This takes a structure with random values and initializes it | |
1467 | * so that it can be given to vm_page_release or vm_page_insert. | |
1468 | */ | |
1469 | void | |
1470 | vm_page_init( | |
1471 | vm_page_t mem, | |
0b4c1975 A |
1472 | ppnum_t phys_page, |
1473 | boolean_t lopage) | |
1c79356b | 1474 | { |
91447636 | 1475 | assert(phys_page); |
1c79356b | 1476 | *mem = vm_page_template; |
55e303ae | 1477 | mem->phys_page = phys_page; |
6d2010ae A |
1478 | #if 0 |
1479 | /* | |
1480 | * we're leaving this turned off for now... currently pages | |
1481 | * come off the free list and are either immediately dirtied/referenced | |
1482 | * due to zero-fill or COW faults, or are used to read or write files... | |
1483 | * in the file I/O case, the UPL mechanism takes care of clearing | |
1484 | * the state of the HW ref/mod bits in a somewhat fragile way. | |
1485 | * Since we may change the way this works in the future (to toughen it up), | |
1486 | * I'm leaving this as a reminder of where these bits could get cleared | |
1487 | */ | |
1488 | ||
1489 | /* | |
1490 | * make sure both the h/w referenced and modified bits are | |
1491 | * clear at this point... we are especially dependent on | |
1492 | * not finding a 'stale' h/w modified in a number of spots | |
1493 | * once this page goes back into use | |
1494 | */ | |
1495 | pmap_clear_refmod(phys_page, VM_MEM_MODIFIED | VM_MEM_REFERENCED); | |
1496 | #endif | |
0b4c1975 | 1497 | mem->lopage = lopage; |
1c79356b A |
1498 | } |
1499 | ||
1500 | /* | |
1501 | * vm_page_grab_fictitious: | |
1502 | * | |
1503 | * Remove a fictitious page from the free list. | |
1504 | * Returns VM_PAGE_NULL if there are no free pages. | |
1505 | */ | |
1506 | int c_vm_page_grab_fictitious = 0; | |
6d2010ae | 1507 | int c_vm_page_grab_fictitious_failed = 0; |
1c79356b A |
1508 | int c_vm_page_release_fictitious = 0; |
1509 | int c_vm_page_more_fictitious = 0; | |
1510 | ||
1511 | vm_page_t | |
2d21ac55 | 1512 | vm_page_grab_fictitious_common( |
b0d623f7 | 1513 | ppnum_t phys_addr) |
1c79356b | 1514 | { |
6d2010ae A |
1515 | vm_page_t m; |
1516 | ||
1517 | if ((m = (vm_page_t)zget(vm_page_zone))) { | |
1c79356b | 1518 | |
0b4c1975 | 1519 | vm_page_init(m, phys_addr, FALSE); |
1c79356b | 1520 | m->fictitious = TRUE; |
1c79356b | 1521 | |
6d2010ae A |
1522 | c_vm_page_grab_fictitious++; |
1523 | } else | |
1524 | c_vm_page_grab_fictitious_failed++; | |
1525 | ||
1c79356b A |
1526 | return m; |
1527 | } | |
1528 | ||
2d21ac55 A |
1529 | vm_page_t |
1530 | vm_page_grab_fictitious(void) | |
1531 | { | |
1532 | return vm_page_grab_fictitious_common(vm_page_fictitious_addr); | |
1533 | } | |
1534 | ||
1535 | vm_page_t | |
1536 | vm_page_grab_guard(void) | |
1537 | { | |
1538 | return vm_page_grab_fictitious_common(vm_page_guard_addr); | |
1539 | } | |
1540 | ||
6d2010ae | 1541 | |
1c79356b A |
1542 | /* |
1543 | * vm_page_release_fictitious: | |
1544 | * | |
6d2010ae | 1545 | * Release a fictitious page to the zone pool |
1c79356b | 1546 | */ |
1c79356b A |
1547 | void |
1548 | vm_page_release_fictitious( | |
6d2010ae | 1549 | vm_page_t m) |
1c79356b A |
1550 | { |
1551 | assert(!m->free); | |
1c79356b | 1552 | assert(m->fictitious); |
2d21ac55 A |
1553 | assert(m->phys_page == vm_page_fictitious_addr || |
1554 | m->phys_page == vm_page_guard_addr); | |
1c79356b A |
1555 | |
1556 | c_vm_page_release_fictitious++; | |
6d2010ae | 1557 | |
91447636 | 1558 | zfree(vm_page_zone, m); |
1c79356b A |
1559 | } |
1560 | ||
1561 | /* | |
1562 | * vm_page_more_fictitious: | |
1563 | * | |
6d2010ae | 1564 | * Add more fictitious pages to the zone. |
1c79356b A |
1565 | * Allowed to block. This routine is way intimate |
1566 | * with the zones code, for several reasons: | |
1567 | * 1. we need to carve some page structures out of physical | |
1568 | * memory before zones work, so they _cannot_ come from | |
1569 | * the zone_map. | |
1570 | * 2. the zone needs to be collectable in order to prevent | |
1571 | * growth without bound. These structures are used by | |
1572 | * the device pager (by the hundreds and thousands), as | |
1573 | * private pages for pageout, and as blocking pages for | |
1574 | * pagein. Temporary bursts in demand should not result in | |
1575 | * permanent allocation of a resource. | |
1576 | * 3. To smooth allocation humps, we allocate single pages | |
1577 | * with kernel_memory_allocate(), and cram them into the | |
6d2010ae | 1578 | * zone. |
1c79356b A |
1579 | */ |
1580 | ||
1581 | void vm_page_more_fictitious(void) | |
1582 | { | |
6d2010ae A |
1583 | vm_offset_t addr; |
1584 | kern_return_t retval; | |
1c79356b A |
1585 | |
1586 | c_vm_page_more_fictitious++; | |
1587 | ||
1c79356b A |
1588 | /* |
1589 | * Allocate a single page from the zone_map. Do not wait if no physical | |
1590 | * pages are immediately available, and do not zero the space. We need | |
1591 | * our own blocking lock here to prevent having multiple, | |
1592 | * simultaneous requests from piling up on the zone_map lock. Exactly | |
1593 | * one (of our) threads should be potentially waiting on the map lock. | |
1594 | * If winner is not vm-privileged, then the page allocation will fail, | |
1595 | * and it will temporarily block here in the vm_page_wait(). | |
1596 | */ | |
b0d623f7 | 1597 | lck_mtx_lock(&vm_page_alloc_lock); |
1c79356b A |
1598 | /* |
1599 | * If another thread allocated space, just bail out now. | |
1600 | */ | |
1601 | if (zone_free_count(vm_page_zone) > 5) { | |
1602 | /* | |
1603 | * The number "5" is a small number that is larger than the | |
1604 | * number of fictitious pages that any single caller will | |
1605 | * attempt to allocate. Otherwise, a thread will attempt to | |
1606 | * acquire a fictitious page (vm_page_grab_fictitious), fail, | |
1607 | * release all of the resources and locks already acquired, | |
1608 | * and then call this routine. This routine finds the pages | |
1609 | * that the caller released, so fails to allocate new space. | |
1610 | * The process repeats infinitely. The largest known number | |
1611 | * of fictitious pages required in this manner is 2. 5 is | |
1612 | * simply a somewhat larger number. | |
1613 | */ | |
b0d623f7 | 1614 | lck_mtx_unlock(&vm_page_alloc_lock); |
1c79356b A |
1615 | return; |
1616 | } | |
1617 | ||
91447636 A |
1618 | retval = kernel_memory_allocate(zone_map, |
1619 | &addr, PAGE_SIZE, VM_PROT_ALL, | |
1620 | KMA_KOBJECT|KMA_NOPAGEWAIT); | |
1621 | if (retval != KERN_SUCCESS) { | |
1c79356b | 1622 | /* |
6d2010ae | 1623 | * No page was available. Drop the |
1c79356b A |
1624 | * lock to give another thread a chance at it, and |
1625 | * wait for the pageout daemon to make progress. | |
1626 | */ | |
b0d623f7 | 1627 | lck_mtx_unlock(&vm_page_alloc_lock); |
1c79356b A |
1628 | vm_page_wait(THREAD_UNINT); |
1629 | return; | |
1630 | } | |
91447636 | 1631 | zcram(vm_page_zone, (void *) addr, PAGE_SIZE); |
6d2010ae | 1632 | |
b0d623f7 | 1633 | lck_mtx_unlock(&vm_page_alloc_lock); |
1c79356b A |
1634 | } |
1635 | ||
1c79356b A |
1636 | |
1637 | /* | |
1638 | * vm_pool_low(): | |
1639 | * | |
1640 | * Return true if it is not likely that a non-vm_privileged thread | |
1641 | * can get memory without blocking. Advisory only, since the | |
1642 | * situation may change under us. | |
1643 | */ | |
1644 | int | |
1645 | vm_pool_low(void) | |
1646 | { | |
1647 | /* No locking, at worst we will fib. */ | |
b0d623f7 | 1648 | return( vm_page_free_count <= vm_page_free_reserved ); |
1c79356b A |
1649 | } |
1650 | ||
0c530ab8 A |
1651 | |
1652 | ||
1653 | /* | |
1654 | * this is an interface to support bring-up of drivers | |
1655 | * on platforms with physical memory > 4G... | |
1656 | */ | |
1657 | int vm_himemory_mode = 0; | |
1658 | ||
1659 | ||
1660 | /* | |
1661 | * this interface exists to support hardware controllers | |
1662 | * incapable of generating DMAs with more than 32 bits | |
1663 | * of address on platforms with physical memory > 4G... | |
1664 | */ | |
0b4c1975 A |
1665 | unsigned int vm_lopages_allocated_q = 0; |
1666 | unsigned int vm_lopages_allocated_cpm_success = 0; | |
1667 | unsigned int vm_lopages_allocated_cpm_failed = 0; | |
2d21ac55 | 1668 | queue_head_t vm_lopage_queue_free; |
0c530ab8 A |
1669 | |
1670 | vm_page_t | |
1671 | vm_page_grablo(void) | |
1672 | { | |
0b4c1975 | 1673 | vm_page_t mem; |
0c530ab8 | 1674 | |
0b4c1975 | 1675 | if (vm_lopage_needed == FALSE) |
0c530ab8 A |
1676 | return (vm_page_grab()); |
1677 | ||
b0d623f7 | 1678 | lck_mtx_lock_spin(&vm_page_queue_free_lock); |
0c530ab8 | 1679 | |
0b4c1975 A |
1680 | if ( !queue_empty(&vm_lopage_queue_free)) { |
1681 | queue_remove_first(&vm_lopage_queue_free, | |
1682 | mem, | |
1683 | vm_page_t, | |
1684 | pageq); | |
1685 | assert(vm_lopage_free_count); | |
0c530ab8 | 1686 | |
0b4c1975 A |
1687 | vm_lopage_free_count--; |
1688 | vm_lopages_allocated_q++; | |
1689 | ||
1690 | if (vm_lopage_free_count < vm_lopage_lowater) | |
1691 | vm_lopage_refill = TRUE; | |
0c530ab8 | 1692 | |
0b4c1975 | 1693 | lck_mtx_unlock(&vm_page_queue_free_lock); |
2d21ac55 | 1694 | } else { |
0b4c1975 A |
1695 | lck_mtx_unlock(&vm_page_queue_free_lock); |
1696 | ||
1697 | if (cpm_allocate(PAGE_SIZE, &mem, atop(0xffffffff), 0, FALSE, KMA_LOMEM) != KERN_SUCCESS) { | |
1698 | ||
1699 | lck_mtx_lock_spin(&vm_page_queue_free_lock); | |
1700 | vm_lopages_allocated_cpm_failed++; | |
1701 | lck_mtx_unlock(&vm_page_queue_free_lock); | |
1702 | ||
1703 | return (VM_PAGE_NULL); | |
1704 | } | |
1705 | mem->busy = TRUE; | |
1706 | ||
1707 | vm_page_lockspin_queues(); | |
1708 | ||
1709 | mem->gobbled = FALSE; | |
1710 | vm_page_gobble_count--; | |
1711 | vm_page_wire_count--; | |
1712 | ||
1713 | vm_lopages_allocated_cpm_success++; | |
1714 | vm_page_unlock_queues(); | |
0c530ab8 | 1715 | } |
0b4c1975 A |
1716 | assert(mem->busy); |
1717 | assert(!mem->free); | |
1718 | assert(!mem->pmapped); | |
1719 | assert(!mem->wpmapped); | |
1720 | ||
1721 | mem->pageq.next = NULL; | |
1722 | mem->pageq.prev = NULL; | |
0c530ab8 A |
1723 | |
1724 | return (mem); | |
1725 | } | |
1726 | ||
6d2010ae | 1727 | |
1c79356b A |
1728 | /* |
1729 | * vm_page_grab: | |
1730 | * | |
2d21ac55 A |
1731 | * first try to grab a page from the per-cpu free list... |
1732 | * this must be done while pre-emption is disabled... if | |
1733 | * a page is available, we're done... | |
1734 | * if no page is available, grab the vm_page_queue_free_lock | |
1735 | * and see if current number of free pages would allow us | |
1736 | * to grab at least 1... if not, return VM_PAGE_NULL as before... | |
1737 | * if there are pages available, disable preemption and | |
1738 | * recheck the state of the per-cpu free list... we could | |
1739 | * have been preempted and moved to a different cpu, or | |
1740 | * some other thread could have re-filled it... if still | |
1741 | * empty, figure out how many pages we can steal from the | |
1742 | * global free queue and move to the per-cpu queue... | |
1743 | * return 1 of these pages when done... only wakeup the | |
1744 | * pageout_scan thread if we moved pages from the global | |
1745 | * list... no need for the wakeup if we've satisfied the | |
1746 | * request from the per-cpu queue. | |
1c79356b A |
1747 | */ |
1748 | ||
2d21ac55 A |
1749 | #define COLOR_GROUPS_TO_STEAL 4 |
1750 | ||
1c79356b A |
1751 | |
1752 | vm_page_t | |
2d21ac55 | 1753 | vm_page_grab( void ) |
1c79356b | 1754 | { |
2d21ac55 A |
1755 | vm_page_t mem; |
1756 | ||
1757 | ||
1758 | disable_preemption(); | |
1759 | ||
1760 | if ((mem = PROCESSOR_DATA(current_processor(), free_pages))) { | |
1761 | return_page_from_cpu_list: | |
1762 | PROCESSOR_DATA(current_processor(), page_grab_count) += 1; | |
1763 | PROCESSOR_DATA(current_processor(), free_pages) = mem->pageq.next; | |
1764 | mem->pageq.next = NULL; | |
1765 | ||
1766 | enable_preemption(); | |
1767 | ||
1768 | assert(mem->listq.next == NULL && mem->listq.prev == NULL); | |
1769 | assert(mem->tabled == FALSE); | |
1770 | assert(mem->object == VM_OBJECT_NULL); | |
1771 | assert(!mem->laundry); | |
1772 | assert(!mem->free); | |
1773 | assert(pmap_verify_free(mem->phys_page)); | |
1774 | assert(mem->busy); | |
1775 | assert(!mem->encrypted); | |
1776 | assert(!mem->pmapped); | |
4a3eedf9 | 1777 | assert(!mem->wpmapped); |
6d2010ae A |
1778 | assert(!mem->active); |
1779 | assert(!mem->inactive); | |
1780 | assert(!mem->throttled); | |
1781 | assert(!mem->speculative); | |
2d21ac55 A |
1782 | |
1783 | return mem; | |
1784 | } | |
1785 | enable_preemption(); | |
1786 | ||
1c79356b | 1787 | |
1c79356b A |
1788 | /* |
1789 | * Optionally produce warnings if the wire or gobble | |
1790 | * counts exceed some threshold. | |
1791 | */ | |
1792 | if (vm_page_wire_count_warning > 0 | |
1793 | && vm_page_wire_count >= vm_page_wire_count_warning) { | |
1794 | printf("mk: vm_page_grab(): high wired page count of %d\n", | |
1795 | vm_page_wire_count); | |
1796 | assert(vm_page_wire_count < vm_page_wire_count_warning); | |
1797 | } | |
1798 | if (vm_page_gobble_count_warning > 0 | |
1799 | && vm_page_gobble_count >= vm_page_gobble_count_warning) { | |
1800 | printf("mk: vm_page_grab(): high gobbled page count of %d\n", | |
1801 | vm_page_gobble_count); | |
1802 | assert(vm_page_gobble_count < vm_page_gobble_count_warning); | |
1803 | } | |
1804 | ||
b0d623f7 A |
1805 | lck_mtx_lock_spin(&vm_page_queue_free_lock); |
1806 | ||
1c79356b A |
1807 | /* |
1808 | * Only let privileged threads (involved in pageout) | |
1809 | * dip into the reserved pool. | |
1810 | */ | |
1c79356b | 1811 | if ((vm_page_free_count < vm_page_free_reserved) && |
91447636 | 1812 | !(current_thread()->options & TH_OPT_VMPRIV)) { |
b0d623f7 | 1813 | lck_mtx_unlock(&vm_page_queue_free_lock); |
1c79356b | 1814 | mem = VM_PAGE_NULL; |
1c79356b | 1815 | } |
2d21ac55 A |
1816 | else { |
1817 | vm_page_t head; | |
1818 | vm_page_t tail; | |
1819 | unsigned int pages_to_steal; | |
1820 | unsigned int color; | |
1c79356b | 1821 | |
2d21ac55 | 1822 | while ( vm_page_free_count == 0 ) { |
1c79356b | 1823 | |
b0d623f7 | 1824 | lck_mtx_unlock(&vm_page_queue_free_lock); |
2d21ac55 A |
1825 | /* |
1826 | * must be a privileged thread to be | |
1827 | * in this state since a non-privileged | |
1828 | * thread would have bailed if we were | |
1829 | * under the vm_page_free_reserved mark | |
1830 | */ | |
1831 | VM_PAGE_WAIT(); | |
b0d623f7 | 1832 | lck_mtx_lock_spin(&vm_page_queue_free_lock); |
2d21ac55 A |
1833 | } |
1834 | ||
1835 | disable_preemption(); | |
1836 | ||
1837 | if ((mem = PROCESSOR_DATA(current_processor(), free_pages))) { | |
b0d623f7 | 1838 | lck_mtx_unlock(&vm_page_queue_free_lock); |
2d21ac55 A |
1839 | |
1840 | /* | |
1841 | * we got preempted and moved to another processor | |
1842 | * or we got preempted and someone else ran and filled the cache | |
1843 | */ | |
1844 | goto return_page_from_cpu_list; | |
1845 | } | |
1846 | if (vm_page_free_count <= vm_page_free_reserved) | |
1847 | pages_to_steal = 1; | |
1848 | else { | |
1849 | pages_to_steal = COLOR_GROUPS_TO_STEAL * vm_colors; | |
1850 | ||
1851 | if (pages_to_steal > (vm_page_free_count - vm_page_free_reserved)) | |
1852 | pages_to_steal = (vm_page_free_count - vm_page_free_reserved); | |
1853 | } | |
1854 | color = PROCESSOR_DATA(current_processor(), start_color); | |
1855 | head = tail = NULL; | |
1856 | ||
1857 | while (pages_to_steal--) { | |
1858 | if (--vm_page_free_count < vm_page_free_count_minimum) | |
1859 | vm_page_free_count_minimum = vm_page_free_count; | |
1860 | ||
1861 | while (queue_empty(&vm_page_queue_free[color])) | |
1862 | color = (color + 1) & vm_color_mask; | |
1863 | ||
1864 | queue_remove_first(&vm_page_queue_free[color], | |
1865 | mem, | |
1866 | vm_page_t, | |
1867 | pageq); | |
1868 | mem->pageq.next = NULL; | |
1869 | mem->pageq.prev = NULL; | |
1870 | ||
6d2010ae A |
1871 | assert(!mem->active); |
1872 | assert(!mem->inactive); | |
1873 | assert(!mem->throttled); | |
1874 | assert(!mem->speculative); | |
1875 | ||
2d21ac55 A |
1876 | color = (color + 1) & vm_color_mask; |
1877 | ||
1878 | if (head == NULL) | |
1879 | head = mem; | |
1880 | else | |
1881 | tail->pageq.next = (queue_t)mem; | |
1882 | tail = mem; | |
1883 | ||
1884 | mem->pageq.prev = NULL; | |
1885 | assert(mem->listq.next == NULL && mem->listq.prev == NULL); | |
1886 | assert(mem->tabled == FALSE); | |
1887 | assert(mem->object == VM_OBJECT_NULL); | |
1888 | assert(!mem->laundry); | |
1889 | assert(mem->free); | |
1890 | mem->free = FALSE; | |
1891 | ||
1892 | assert(pmap_verify_free(mem->phys_page)); | |
1893 | assert(mem->busy); | |
1894 | assert(!mem->free); | |
1895 | assert(!mem->encrypted); | |
1896 | assert(!mem->pmapped); | |
4a3eedf9 | 1897 | assert(!mem->wpmapped); |
2d21ac55 A |
1898 | } |
1899 | PROCESSOR_DATA(current_processor(), free_pages) = head->pageq.next; | |
1900 | PROCESSOR_DATA(current_processor(), start_color) = color; | |
1901 | ||
1902 | /* | |
1903 | * satisfy this request | |
1904 | */ | |
1905 | PROCESSOR_DATA(current_processor(), page_grab_count) += 1; | |
1906 | mem = head; | |
1907 | mem->pageq.next = NULL; | |
91447636 | 1908 | |
b0d623f7 | 1909 | lck_mtx_unlock(&vm_page_queue_free_lock); |
2d21ac55 A |
1910 | |
1911 | enable_preemption(); | |
1912 | } | |
1c79356b A |
1913 | /* |
1914 | * Decide if we should poke the pageout daemon. | |
1915 | * We do this if the free count is less than the low | |
1916 | * water mark, or if the free count is less than the high | |
1917 | * water mark (but above the low water mark) and the inactive | |
1918 | * count is less than its target. | |
1919 | * | |
1920 | * We don't have the counts locked ... if they change a little, | |
1921 | * it doesn't really matter. | |
1922 | */ | |
1c79356b A |
1923 | if ((vm_page_free_count < vm_page_free_min) || |
1924 | ((vm_page_free_count < vm_page_free_target) && | |
2d21ac55 A |
1925 | ((vm_page_inactive_count + vm_page_speculative_count) < vm_page_inactive_min))) |
1926 | thread_wakeup((event_t) &vm_page_free_wanted); | |
1927 | ||
6d2010ae A |
1928 | VM_CHECK_MEMORYSTATUS; |
1929 | ||
55e303ae | 1930 | // dbgLog(mem->phys_page, vm_page_free_count, vm_page_wire_count, 4); /* (TEST/DEBUG) */ |
1c79356b A |
1931 | |
1932 | return mem; | |
1933 | } | |
1934 | ||
1935 | /* | |
1936 | * vm_page_release: | |
1937 | * | |
1938 | * Return a page to the free list. | |
1939 | */ | |
1940 | ||
1941 | void | |
1942 | vm_page_release( | |
1943 | register vm_page_t mem) | |
1944 | { | |
2d21ac55 | 1945 | unsigned int color; |
b0d623f7 A |
1946 | int need_wakeup = 0; |
1947 | int need_priv_wakeup = 0; | |
55e303ae | 1948 | |
6d2010ae | 1949 | |
1c79356b | 1950 | assert(!mem->private && !mem->fictitious); |
b0d623f7 A |
1951 | if (vm_page_free_verify) { |
1952 | assert(pmap_verify_free(mem->phys_page)); | |
1953 | } | |
55e303ae | 1954 | // dbgLog(mem->phys_page, vm_page_free_count, vm_page_wire_count, 5); /* (TEST/DEBUG) */ |
1c79356b | 1955 | |
b0d623f7 A |
1956 | |
1957 | lck_mtx_lock_spin(&vm_page_queue_free_lock); | |
91447636 | 1958 | #if DEBUG |
1c79356b A |
1959 | if (mem->free) |
1960 | panic("vm_page_release"); | |
91447636 | 1961 | #endif |
6d2010ae | 1962 | |
2d21ac55 | 1963 | assert(mem->busy); |
91447636 A |
1964 | assert(!mem->laundry); |
1965 | assert(mem->object == VM_OBJECT_NULL); | |
1966 | assert(mem->pageq.next == NULL && | |
1967 | mem->pageq.prev == NULL); | |
2d21ac55 A |
1968 | assert(mem->listq.next == NULL && |
1969 | mem->listq.prev == NULL); | |
1970 | ||
6d2010ae | 1971 | if ((mem->lopage == TRUE || vm_lopage_refill == TRUE) && |
0b4c1975 A |
1972 | vm_lopage_free_count < vm_lopage_free_limit && |
1973 | mem->phys_page < max_valid_low_ppnum) { | |
0c530ab8 A |
1974 | /* |
1975 | * this exists to support hardware controllers | |
1976 | * incapable of generating DMAs with more than 32 bits | |
1977 | * of address on platforms with physical memory > 4G... | |
1978 | */ | |
2d21ac55 A |
1979 | queue_enter_first(&vm_lopage_queue_free, |
1980 | mem, | |
1981 | vm_page_t, | |
1982 | pageq); | |
0c530ab8 | 1983 | vm_lopage_free_count++; |
0b4c1975 A |
1984 | |
1985 | if (vm_lopage_free_count >= vm_lopage_free_limit) | |
1986 | vm_lopage_refill = FALSE; | |
1987 | ||
1988 | mem->lopage = TRUE; | |
0c530ab8 | 1989 | } else { |
6d2010ae | 1990 | mem->lopage = FALSE; |
0b4c1975 A |
1991 | mem->free = TRUE; |
1992 | ||
2d21ac55 A |
1993 | color = mem->phys_page & vm_color_mask; |
1994 | queue_enter_first(&vm_page_queue_free[color], | |
1995 | mem, | |
1996 | vm_page_t, | |
1997 | pageq); | |
0c530ab8 A |
1998 | vm_page_free_count++; |
1999 | /* | |
2000 | * Check if we should wake up someone waiting for page. | |
2001 | * But don't bother waking them unless they can allocate. | |
2002 | * | |
2003 | * We wakeup only one thread, to prevent starvation. | |
2004 | * Because the scheduling system handles wait queues FIFO, | |
2005 | * if we wakeup all waiting threads, one greedy thread | |
2006 | * can starve multiple niceguy threads. When the threads | |
2007 | * all wakeup, the greedy threads runs first, grabs the page, | |
2008 | * and waits for another page. It will be the first to run | |
2009 | * when the next page is freed. | |
2010 | * | |
2011 | * However, there is a slight danger here. | |
2012 | * The thread we wake might not use the free page. | |
2013 | * Then the other threads could wait indefinitely | |
2014 | * while the page goes unused. To forestall this, | |
2015 | * the pageout daemon will keep making free pages | |
2016 | * as long as vm_page_free_wanted is non-zero. | |
2017 | */ | |
1c79356b | 2018 | |
b0d623f7 A |
2019 | assert(vm_page_free_count > 0); |
2020 | if (vm_page_free_wanted_privileged > 0) { | |
2d21ac55 | 2021 | vm_page_free_wanted_privileged--; |
b0d623f7 A |
2022 | need_priv_wakeup = 1; |
2023 | } else if (vm_page_free_wanted > 0 && | |
2024 | vm_page_free_count > vm_page_free_reserved) { | |
0c530ab8 | 2025 | vm_page_free_wanted--; |
b0d623f7 | 2026 | need_wakeup = 1; |
0c530ab8 | 2027 | } |
1c79356b | 2028 | } |
b0d623f7 A |
2029 | lck_mtx_unlock(&vm_page_queue_free_lock); |
2030 | ||
2031 | if (need_priv_wakeup) | |
2032 | thread_wakeup_one((event_t) &vm_page_free_wanted_privileged); | |
2033 | else if (need_wakeup) | |
2034 | thread_wakeup_one((event_t) &vm_page_free_count); | |
2d21ac55 | 2035 | |
6d2010ae | 2036 | VM_CHECK_MEMORYSTATUS; |
1c79356b A |
2037 | } |
2038 | ||
1c79356b A |
2039 | /* |
2040 | * vm_page_wait: | |
2041 | * | |
2042 | * Wait for a page to become available. | |
2043 | * If there are plenty of free pages, then we don't sleep. | |
2044 | * | |
2045 | * Returns: | |
2046 | * TRUE: There may be another page, try again | |
2047 | * FALSE: We were interrupted out of our wait, don't try again | |
2048 | */ | |
2049 | ||
2050 | boolean_t | |
2051 | vm_page_wait( | |
2052 | int interruptible ) | |
2053 | { | |
2054 | /* | |
2055 | * We can't use vm_page_free_reserved to make this | |
2056 | * determination. Consider: some thread might | |
2057 | * need to allocate two pages. The first allocation | |
2058 | * succeeds, the second fails. After the first page is freed, | |
2059 | * a call to vm_page_wait must really block. | |
2060 | */ | |
9bccf70c | 2061 | kern_return_t wait_result; |
9bccf70c | 2062 | int need_wakeup = 0; |
2d21ac55 | 2063 | int is_privileged = current_thread()->options & TH_OPT_VMPRIV; |
1c79356b | 2064 | |
b0d623f7 | 2065 | lck_mtx_lock_spin(&vm_page_queue_free_lock); |
2d21ac55 A |
2066 | |
2067 | if (is_privileged && vm_page_free_count) { | |
b0d623f7 | 2068 | lck_mtx_unlock(&vm_page_queue_free_lock); |
2d21ac55 A |
2069 | return TRUE; |
2070 | } | |
1c79356b | 2071 | if (vm_page_free_count < vm_page_free_target) { |
2d21ac55 A |
2072 | |
2073 | if (is_privileged) { | |
2074 | if (vm_page_free_wanted_privileged++ == 0) | |
2075 | need_wakeup = 1; | |
2076 | wait_result = assert_wait((event_t)&vm_page_free_wanted_privileged, interruptible); | |
2077 | } else { | |
2078 | if (vm_page_free_wanted++ == 0) | |
2079 | need_wakeup = 1; | |
2080 | wait_result = assert_wait((event_t)&vm_page_free_count, interruptible); | |
2081 | } | |
b0d623f7 | 2082 | lck_mtx_unlock(&vm_page_queue_free_lock); |
1c79356b | 2083 | counter(c_vm_page_wait_block++); |
0b4e3aa0 A |
2084 | |
2085 | if (need_wakeup) | |
2086 | thread_wakeup((event_t)&vm_page_free_wanted); | |
9bccf70c | 2087 | |
91447636 | 2088 | if (wait_result == THREAD_WAITING) |
9bccf70c A |
2089 | wait_result = thread_block(THREAD_CONTINUE_NULL); |
2090 | ||
1c79356b A |
2091 | return(wait_result == THREAD_AWAKENED); |
2092 | } else { | |
b0d623f7 | 2093 | lck_mtx_unlock(&vm_page_queue_free_lock); |
1c79356b A |
2094 | return TRUE; |
2095 | } | |
2096 | } | |
2097 | ||
2098 | /* | |
2099 | * vm_page_alloc: | |
2100 | * | |
2101 | * Allocate and return a memory cell associated | |
2102 | * with this VM object/offset pair. | |
2103 | * | |
2104 | * Object must be locked. | |
2105 | */ | |
2106 | ||
2107 | vm_page_t | |
2108 | vm_page_alloc( | |
2109 | vm_object_t object, | |
2110 | vm_object_offset_t offset) | |
2111 | { | |
2112 | register vm_page_t mem; | |
2113 | ||
2d21ac55 | 2114 | vm_object_lock_assert_exclusive(object); |
1c79356b A |
2115 | mem = vm_page_grab(); |
2116 | if (mem == VM_PAGE_NULL) | |
2117 | return VM_PAGE_NULL; | |
2118 | ||
2119 | vm_page_insert(mem, object, offset); | |
2120 | ||
2121 | return(mem); | |
2122 | } | |
2123 | ||
0c530ab8 A |
2124 | vm_page_t |
2125 | vm_page_alloclo( | |
2126 | vm_object_t object, | |
2127 | vm_object_offset_t offset) | |
2128 | { | |
2129 | register vm_page_t mem; | |
2130 | ||
2d21ac55 | 2131 | vm_object_lock_assert_exclusive(object); |
0c530ab8 A |
2132 | mem = vm_page_grablo(); |
2133 | if (mem == VM_PAGE_NULL) | |
2134 | return VM_PAGE_NULL; | |
2135 | ||
2136 | vm_page_insert(mem, object, offset); | |
2137 | ||
2138 | return(mem); | |
2139 | } | |
2140 | ||
2141 | ||
2d21ac55 A |
2142 | /* |
2143 | * vm_page_alloc_guard: | |
2144 | * | |
b0d623f7 | 2145 | * Allocate a fictitious page which will be used |
2d21ac55 A |
2146 | * as a guard page. The page will be inserted into |
2147 | * the object and returned to the caller. | |
2148 | */ | |
2149 | ||
2150 | vm_page_t | |
2151 | vm_page_alloc_guard( | |
2152 | vm_object_t object, | |
2153 | vm_object_offset_t offset) | |
2154 | { | |
2155 | register vm_page_t mem; | |
2156 | ||
2157 | vm_object_lock_assert_exclusive(object); | |
2158 | mem = vm_page_grab_guard(); | |
2159 | if (mem == VM_PAGE_NULL) | |
2160 | return VM_PAGE_NULL; | |
2161 | ||
2162 | vm_page_insert(mem, object, offset); | |
2163 | ||
2164 | return(mem); | |
2165 | } | |
2166 | ||
2167 | ||
1c79356b A |
2168 | counter(unsigned int c_laundry_pages_freed = 0;) |
2169 | ||
1c79356b | 2170 | /* |
6d2010ae | 2171 | * vm_page_free_prepare: |
1c79356b | 2172 | * |
6d2010ae A |
2173 | * Removes page from any queue it may be on |
2174 | * and disassociates it from its VM object. | |
1c79356b A |
2175 | * |
2176 | * Object and page queues must be locked prior to entry. | |
2177 | */ | |
b0d623f7 | 2178 | static void |
2d21ac55 | 2179 | vm_page_free_prepare( |
6d2010ae | 2180 | vm_page_t mem) |
b0d623f7 A |
2181 | { |
2182 | vm_page_free_prepare_queues(mem); | |
2183 | vm_page_free_prepare_object(mem, TRUE); | |
2184 | } | |
2185 | ||
2186 | ||
2187 | void | |
2188 | vm_page_free_prepare_queues( | |
2189 | vm_page_t mem) | |
1c79356b | 2190 | { |
2d21ac55 | 2191 | VM_PAGE_CHECK(mem); |
1c79356b A |
2192 | assert(!mem->free); |
2193 | assert(!mem->cleaning); | |
2194 | assert(!mem->pageout); | |
2d21ac55 | 2195 | #if DEBUG |
b0d623f7 | 2196 | lck_mtx_assert(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED); |
91447636 | 2197 | if (mem->free) |
b0d623f7 | 2198 | panic("vm_page_free: freeing page on free list\n"); |
91447636 | 2199 | #endif |
b0d623f7 A |
2200 | if (mem->object) { |
2201 | vm_object_lock_assert_exclusive(mem->object); | |
2202 | } | |
2d21ac55 A |
2203 | |
2204 | if (mem->laundry) { | |
2205 | /* | |
2206 | * We may have to free a page while it's being laundered | |
2207 | * if we lost its pager (due to a forced unmount, for example). | |
2208 | * We need to call vm_pageout_throttle_up() before removing | |
2209 | * the page from its VM object, so that we can find out on | |
b0d623f7 | 2210 | * which pageout queue the page is on. |
2d21ac55 A |
2211 | */ |
2212 | vm_pageout_throttle_up(mem); | |
2213 | counter(++c_laundry_pages_freed); | |
2214 | } | |
b0d623f7 A |
2215 | VM_PAGE_QUEUES_REMOVE(mem); /* clears local/active/inactive/throttled/speculative */ |
2216 | ||
2217 | if (VM_PAGE_WIRED(mem)) { | |
2218 | if (mem->object) { | |
2219 | assert(mem->object->wired_page_count > 0); | |
2220 | mem->object->wired_page_count--; | |
2221 | assert(mem->object->resident_page_count >= | |
2222 | mem->object->wired_page_count); | |
6d2010ae A |
2223 | |
2224 | if (mem->object->purgable == VM_PURGABLE_VOLATILE) { | |
2225 | OSAddAtomic(+1, &vm_page_purgeable_count); | |
2226 | assert(vm_page_purgeable_wired_count > 0); | |
2227 | OSAddAtomic(-1, &vm_page_purgeable_wired_count); | |
2228 | } | |
b0d623f7 | 2229 | } |
1c79356b A |
2230 | if (!mem->private && !mem->fictitious) |
2231 | vm_page_wire_count--; | |
2232 | mem->wire_count = 0; | |
2233 | assert(!mem->gobbled); | |
2234 | } else if (mem->gobbled) { | |
2235 | if (!mem->private && !mem->fictitious) | |
2236 | vm_page_wire_count--; | |
2237 | vm_page_gobble_count--; | |
2238 | } | |
b0d623f7 A |
2239 | } |
2240 | ||
2241 | ||
2242 | void | |
2243 | vm_page_free_prepare_object( | |
2244 | vm_page_t mem, | |
2245 | boolean_t remove_from_hash) | |
2246 | { | |
b0d623f7 A |
2247 | if (mem->tabled) |
2248 | vm_page_remove(mem, remove_from_hash); /* clears tabled, object, offset */ | |
1c79356b | 2249 | |
b0d623f7 | 2250 | PAGE_WAKEUP(mem); /* clears wanted */ |
1c79356b A |
2251 | |
2252 | if (mem->private) { | |
2253 | mem->private = FALSE; | |
2254 | mem->fictitious = TRUE; | |
55e303ae | 2255 | mem->phys_page = vm_page_fictitious_addr; |
1c79356b | 2256 | } |
6d2010ae | 2257 | if ( !mem->fictitious) { |
b0d623f7 A |
2258 | if (mem->zero_fill == TRUE) |
2259 | VM_ZF_COUNT_DECR(); | |
0b4c1975 | 2260 | vm_page_init(mem, mem->phys_page, mem->lopage); |
1c79356b A |
2261 | } |
2262 | } | |
2263 | ||
b0d623f7 | 2264 | |
6d2010ae A |
2265 | /* |
2266 | * vm_page_free: | |
2267 | * | |
2268 | * Returns the given page to the free list, | |
2269 | * disassociating it with any VM object. | |
2270 | * | |
2271 | * Object and page queues must be locked prior to entry. | |
2272 | */ | |
2d21ac55 A |
2273 | void |
2274 | vm_page_free( | |
2275 | vm_page_t mem) | |
2276 | { | |
b0d623f7 | 2277 | vm_page_free_prepare(mem); |
6d2010ae | 2278 | |
b0d623f7 A |
2279 | if (mem->fictitious) { |
2280 | vm_page_release_fictitious(mem); | |
2281 | } else { | |
2282 | vm_page_release(mem); | |
2283 | } | |
2284 | } | |
2285 | ||
2286 | ||
2287 | void | |
2288 | vm_page_free_unlocked( | |
2289 | vm_page_t mem, | |
2290 | boolean_t remove_from_hash) | |
2291 | { | |
2292 | vm_page_lockspin_queues(); | |
2293 | vm_page_free_prepare_queues(mem); | |
2294 | vm_page_unlock_queues(); | |
2295 | ||
2296 | vm_page_free_prepare_object(mem, remove_from_hash); | |
2297 | ||
2d21ac55 A |
2298 | if (mem->fictitious) { |
2299 | vm_page_release_fictitious(mem); | |
2300 | } else { | |
2301 | vm_page_release(mem); | |
2302 | } | |
2303 | } | |
55e303ae | 2304 | |
2d21ac55 A |
2305 | /* |
2306 | * Free a list of pages. The list can be up to several hundred pages, | |
2307 | * as blocked up by vm_pageout_scan(). | |
b0d623f7 | 2308 | * The big win is not having to take the free list lock once |
2d21ac55 A |
2309 | * per page. We sort the incoming pages into n lists, one for |
2310 | * each color. | |
2d21ac55 | 2311 | */ |
55e303ae A |
2312 | void |
2313 | vm_page_free_list( | |
b0d623f7 A |
2314 | vm_page_t mem, |
2315 | boolean_t prepare_object) | |
55e303ae | 2316 | { |
2d21ac55 A |
2317 | vm_page_t nxt; |
2318 | int pg_count = 0; | |
2319 | int color; | |
2320 | int inuse_list_head = -1; | |
2321 | ||
2322 | queue_head_t free_list[MAX_COLORS]; | |
2323 | int inuse[MAX_COLORS]; | |
55e303ae | 2324 | |
2d21ac55 A |
2325 | for (color = 0; color < (signed) vm_colors; color++) { |
2326 | queue_init(&free_list[color]); | |
2327 | } | |
2328 | ||
55e303ae | 2329 | while (mem) { |
b0d623f7 A |
2330 | assert(!mem->inactive); |
2331 | assert(!mem->active); | |
2332 | assert(!mem->throttled); | |
2333 | assert(!mem->free); | |
2334 | assert(!mem->speculative); | |
0b4c1975 | 2335 | assert(!VM_PAGE_WIRED(mem)); |
b0d623f7 A |
2336 | assert(mem->pageq.prev == NULL); |
2337 | ||
2338 | nxt = (vm_page_t)(mem->pageq.next); | |
2339 | ||
2340 | if (prepare_object == TRUE) | |
2341 | vm_page_free_prepare_object(mem, TRUE); | |
2342 | ||
2d21ac55 A |
2343 | if (vm_page_free_verify && !mem->fictitious && !mem->private) { |
2344 | assert(pmap_verify_free(mem->phys_page)); | |
2345 | } | |
55e303ae | 2346 | |
55e303ae | 2347 | if (!mem->fictitious) { |
6d2010ae | 2348 | assert(mem->busy); |
0b4c1975 A |
2349 | if ((mem->lopage == TRUE || vm_lopage_refill == TRUE) && |
2350 | vm_lopage_free_count < vm_lopage_free_limit && | |
2351 | mem->phys_page < max_valid_low_ppnum) { | |
935ed37a A |
2352 | mem->pageq.next = NULL; |
2353 | vm_page_release(mem); | |
2354 | } else { | |
935ed37a | 2355 | |
b0d623f7 A |
2356 | /* |
2357 | * IMPORTANT: we can't set the page "free" here | |
2358 | * because that would make the page eligible for | |
2359 | * a physically-contiguous allocation (see | |
2360 | * vm_page_find_contiguous()) right away (we don't | |
2361 | * hold the vm_page_queue_free lock). That would | |
2362 | * cause trouble because the page is not actually | |
2363 | * in the free queue yet... | |
2364 | */ | |
935ed37a A |
2365 | color = mem->phys_page & vm_color_mask; |
2366 | if (queue_empty(&free_list[color])) { | |
2367 | inuse[color] = inuse_list_head; | |
2368 | inuse_list_head = color; | |
2369 | } | |
2370 | queue_enter_first(&free_list[color], | |
2371 | mem, | |
2372 | vm_page_t, | |
2373 | pageq); | |
2374 | pg_count++; | |
2d21ac55 | 2375 | } |
55e303ae | 2376 | } else { |
2d21ac55 A |
2377 | assert(mem->phys_page == vm_page_fictitious_addr || |
2378 | mem->phys_page == vm_page_guard_addr); | |
55e303ae A |
2379 | vm_page_release_fictitious(mem); |
2380 | } | |
2381 | mem = nxt; | |
2382 | } | |
2d21ac55 A |
2383 | if (pg_count) { |
2384 | unsigned int avail_free_count; | |
b0d623f7 A |
2385 | unsigned int need_wakeup = 0; |
2386 | unsigned int need_priv_wakeup = 0; | |
2d21ac55 | 2387 | |
b0d623f7 | 2388 | lck_mtx_lock_spin(&vm_page_queue_free_lock); |
55e303ae | 2389 | |
2d21ac55 A |
2390 | color = inuse_list_head; |
2391 | ||
2392 | while( color != -1 ) { | |
2393 | vm_page_t first, last; | |
2394 | vm_page_t first_free; | |
2395 | ||
b0d623f7 A |
2396 | /* |
2397 | * Now that we hold the vm_page_queue_free lock, | |
2398 | * it's safe to mark all pages in our local queue | |
2399 | * as "free"... | |
2400 | */ | |
2401 | queue_iterate(&free_list[color], | |
2402 | mem, | |
2403 | vm_page_t, | |
2404 | pageq) { | |
2405 | assert(!mem->free); | |
2406 | assert(mem->busy); | |
2407 | mem->free = TRUE; | |
2408 | } | |
2409 | ||
2410 | /* | |
2411 | * ... and insert our local queue at the head of | |
2412 | * the global free queue. | |
2413 | */ | |
2d21ac55 A |
2414 | first = (vm_page_t) queue_first(&free_list[color]); |
2415 | last = (vm_page_t) queue_last(&free_list[color]); | |
2416 | first_free = (vm_page_t) queue_first(&vm_page_queue_free[color]); | |
2d21ac55 A |
2417 | if (queue_empty(&vm_page_queue_free[color])) { |
2418 | queue_last(&vm_page_queue_free[color]) = | |
2419 | (queue_entry_t) last; | |
2420 | } else { | |
2421 | queue_prev(&first_free->pageq) = | |
2422 | (queue_entry_t) last; | |
2423 | } | |
2424 | queue_first(&vm_page_queue_free[color]) = | |
2425 | (queue_entry_t) first; | |
2426 | queue_prev(&first->pageq) = | |
2427 | (queue_entry_t) &vm_page_queue_free[color]; | |
2428 | queue_next(&last->pageq) = | |
2429 | (queue_entry_t) first_free; | |
b0d623f7 A |
2430 | |
2431 | /* next color */ | |
2d21ac55 A |
2432 | color = inuse[color]; |
2433 | } | |
2434 | ||
55e303ae | 2435 | vm_page_free_count += pg_count; |
2d21ac55 A |
2436 | avail_free_count = vm_page_free_count; |
2437 | ||
b0d623f7 A |
2438 | if (vm_page_free_wanted_privileged > 0 && |
2439 | avail_free_count > 0) { | |
2440 | if (avail_free_count < vm_page_free_wanted_privileged) { | |
2441 | need_priv_wakeup = avail_free_count; | |
2442 | vm_page_free_wanted_privileged -= | |
2443 | avail_free_count; | |
2444 | avail_free_count = 0; | |
2445 | } else { | |
2446 | need_priv_wakeup = vm_page_free_wanted_privileged; | |
2447 | vm_page_free_wanted_privileged = 0; | |
2448 | avail_free_count -= | |
2449 | vm_page_free_wanted_privileged; | |
2450 | } | |
2d21ac55 | 2451 | } |
55e303ae | 2452 | |
b0d623f7 A |
2453 | if (vm_page_free_wanted > 0 && |
2454 | avail_free_count > vm_page_free_reserved) { | |
91447636 | 2455 | unsigned int available_pages; |
55e303ae | 2456 | |
b0d623f7 A |
2457 | available_pages = (avail_free_count - |
2458 | vm_page_free_reserved); | |
55e303ae A |
2459 | |
2460 | if (available_pages >= vm_page_free_wanted) { | |
b0d623f7 | 2461 | need_wakeup = vm_page_free_wanted; |
55e303ae | 2462 | vm_page_free_wanted = 0; |
55e303ae | 2463 | } else { |
b0d623f7 A |
2464 | need_wakeup = available_pages; |
2465 | vm_page_free_wanted -= available_pages; | |
55e303ae A |
2466 | } |
2467 | } | |
b0d623f7 | 2468 | lck_mtx_unlock(&vm_page_queue_free_lock); |
2d21ac55 | 2469 | |
b0d623f7 A |
2470 | if (need_priv_wakeup != 0) { |
2471 | /* | |
2472 | * There shouldn't be that many VM-privileged threads, | |
2473 | * so let's wake them all up, even if we don't quite | |
2474 | * have enough pages to satisfy them all. | |
2475 | */ | |
2476 | thread_wakeup((event_t)&vm_page_free_wanted_privileged); | |
2477 | } | |
2478 | if (need_wakeup != 0 && vm_page_free_wanted == 0) { | |
2479 | /* | |
2480 | * We don't expect to have any more waiters | |
2481 | * after this, so let's wake them all up at | |
2482 | * once. | |
2483 | */ | |
2484 | thread_wakeup((event_t) &vm_page_free_count); | |
2485 | } else for (; need_wakeup != 0; need_wakeup--) { | |
2486 | /* | |
2487 | * Wake up one waiter per page we just released. | |
2488 | */ | |
2489 | thread_wakeup_one((event_t) &vm_page_free_count); | |
2490 | } | |
2d21ac55 | 2491 | |
6d2010ae | 2492 | VM_CHECK_MEMORYSTATUS; |
55e303ae A |
2493 | } |
2494 | } | |
2495 | ||
2496 | ||
1c79356b A |
2497 | /* |
2498 | * vm_page_wire: | |
2499 | * | |
2500 | * Mark this page as wired down by yet | |
2501 | * another map, removing it from paging queues | |
2502 | * as necessary. | |
2503 | * | |
2504 | * The page's object and the page queues must be locked. | |
2505 | */ | |
2506 | void | |
2507 | vm_page_wire( | |
2508 | register vm_page_t mem) | |
2509 | { | |
2510 | ||
91447636 | 2511 | // dbgLog(current_thread(), mem->offset, mem->object, 1); /* (TEST/DEBUG) */ |
1c79356b A |
2512 | |
2513 | VM_PAGE_CHECK(mem); | |
b0d623f7 A |
2514 | if (mem->object) { |
2515 | vm_object_lock_assert_exclusive(mem->object); | |
2516 | } else { | |
2517 | /* | |
2518 | * In theory, the page should be in an object before it | |
2519 | * gets wired, since we need to hold the object lock | |
2520 | * to update some fields in the page structure. | |
2521 | * However, some code (i386 pmap, for example) might want | |
2522 | * to wire a page before it gets inserted into an object. | |
2523 | * That's somewhat OK, as long as nobody else can get to | |
2524 | * that page and update it at the same time. | |
2525 | */ | |
2526 | } | |
91447636 | 2527 | #if DEBUG |
b0d623f7 | 2528 | lck_mtx_assert(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED); |
91447636 | 2529 | #endif |
b0d623f7 | 2530 | if ( !VM_PAGE_WIRED(mem)) { |
1c79356b | 2531 | VM_PAGE_QUEUES_REMOVE(mem); |
b0d623f7 A |
2532 | |
2533 | if (mem->object) { | |
2534 | mem->object->wired_page_count++; | |
2535 | assert(mem->object->resident_page_count >= | |
2536 | mem->object->wired_page_count); | |
2537 | if (mem->object->purgable == VM_PURGABLE_VOLATILE) { | |
2538 | assert(vm_page_purgeable_count > 0); | |
2539 | OSAddAtomic(-1, &vm_page_purgeable_count); | |
2540 | OSAddAtomic(1, &vm_page_purgeable_wired_count); | |
2541 | } | |
2542 | if (mem->object->all_reusable) { | |
2543 | /* | |
2544 | * Wired pages are not counted as "re-usable" | |
2545 | * in "all_reusable" VM objects, so nothing | |
2546 | * to do here. | |
2547 | */ | |
2548 | } else if (mem->reusable) { | |
2549 | /* | |
2550 | * This page is not "re-usable" when it's | |
2551 | * wired, so adjust its state and the | |
2552 | * accounting. | |
2553 | */ | |
2554 | vm_object_reuse_pages(mem->object, | |
2555 | mem->offset, | |
2556 | mem->offset+PAGE_SIZE_64, | |
2557 | FALSE); | |
2558 | } | |
2559 | } | |
2560 | assert(!mem->reusable); | |
2561 | ||
1c79356b A |
2562 | if (!mem->private && !mem->fictitious && !mem->gobbled) |
2563 | vm_page_wire_count++; | |
2564 | if (mem->gobbled) | |
2565 | vm_page_gobble_count--; | |
2566 | mem->gobbled = FALSE; | |
2d21ac55 | 2567 | if (mem->zero_fill == TRUE) { |
9bccf70c | 2568 | mem->zero_fill = FALSE; |
b0d623f7 | 2569 | VM_ZF_COUNT_DECR(); |
9bccf70c | 2570 | } |
593a1d5f | 2571 | |
6d2010ae A |
2572 | VM_CHECK_MEMORYSTATUS; |
2573 | ||
91447636 A |
2574 | /* |
2575 | * ENCRYPTED SWAP: | |
2576 | * The page could be encrypted, but | |
2577 | * We don't have to decrypt it here | |
2578 | * because we don't guarantee that the | |
2579 | * data is actually valid at this point. | |
2580 | * The page will get decrypted in | |
2581 | * vm_fault_wire() if needed. | |
2582 | */ | |
1c79356b A |
2583 | } |
2584 | assert(!mem->gobbled); | |
2585 | mem->wire_count++; | |
b0d623f7 | 2586 | VM_PAGE_CHECK(mem); |
1c79356b A |
2587 | } |
2588 | ||
2589 | /* | |
2590 | * vm_page_gobble: | |
2591 | * | |
2592 | * Mark this page as consumed by the vm/ipc/xmm subsystems. | |
2593 | * | |
2594 | * Called only for freshly vm_page_grab()ed pages - w/ nothing locked. | |
2595 | */ | |
2596 | void | |
2597 | vm_page_gobble( | |
2598 | register vm_page_t mem) | |
2599 | { | |
2d21ac55 | 2600 | vm_page_lockspin_queues(); |
1c79356b A |
2601 | VM_PAGE_CHECK(mem); |
2602 | ||
2603 | assert(!mem->gobbled); | |
b0d623f7 | 2604 | assert( !VM_PAGE_WIRED(mem)); |
1c79356b | 2605 | |
b0d623f7 | 2606 | if (!mem->gobbled && !VM_PAGE_WIRED(mem)) { |
1c79356b A |
2607 | if (!mem->private && !mem->fictitious) |
2608 | vm_page_wire_count++; | |
2609 | } | |
2610 | vm_page_gobble_count++; | |
2611 | mem->gobbled = TRUE; | |
2612 | vm_page_unlock_queues(); | |
2613 | } | |
2614 | ||
2615 | /* | |
2616 | * vm_page_unwire: | |
2617 | * | |
2618 | * Release one wiring of this page, potentially | |
2619 | * enabling it to be paged again. | |
2620 | * | |
2621 | * The page's object and the page queues must be locked. | |
2622 | */ | |
2623 | void | |
2624 | vm_page_unwire( | |
0b4c1975 A |
2625 | vm_page_t mem, |
2626 | boolean_t queueit) | |
1c79356b A |
2627 | { |
2628 | ||
91447636 | 2629 | // dbgLog(current_thread(), mem->offset, mem->object, 0); /* (TEST/DEBUG) */ |
1c79356b A |
2630 | |
2631 | VM_PAGE_CHECK(mem); | |
b0d623f7 A |
2632 | assert(VM_PAGE_WIRED(mem)); |
2633 | assert(mem->object != VM_OBJECT_NULL); | |
91447636 | 2634 | #if DEBUG |
b0d623f7 A |
2635 | vm_object_lock_assert_exclusive(mem->object); |
2636 | lck_mtx_assert(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED); | |
91447636 | 2637 | #endif |
1c79356b A |
2638 | if (--mem->wire_count == 0) { |
2639 | assert(!mem->private && !mem->fictitious); | |
2640 | vm_page_wire_count--; | |
b0d623f7 A |
2641 | assert(mem->object->wired_page_count > 0); |
2642 | mem->object->wired_page_count--; | |
2643 | assert(mem->object->resident_page_count >= | |
2644 | mem->object->wired_page_count); | |
2645 | if (mem->object->purgable == VM_PURGABLE_VOLATILE) { | |
2646 | OSAddAtomic(+1, &vm_page_purgeable_count); | |
2647 | assert(vm_page_purgeable_wired_count > 0); | |
2648 | OSAddAtomic(-1, &vm_page_purgeable_wired_count); | |
2649 | } | |
91447636 A |
2650 | assert(!mem->laundry); |
2651 | assert(mem->object != kernel_object); | |
2652 | assert(mem->pageq.next == NULL && mem->pageq.prev == NULL); | |
0b4c1975 A |
2653 | |
2654 | if (queueit == TRUE) { | |
2655 | if (mem->object->purgable == VM_PURGABLE_EMPTY) { | |
2656 | vm_page_deactivate(mem); | |
2657 | } else { | |
2658 | vm_page_activate(mem); | |
2659 | } | |
2d21ac55 | 2660 | } |
593a1d5f | 2661 | |
6d2010ae A |
2662 | VM_CHECK_MEMORYSTATUS; |
2663 | ||
1c79356b | 2664 | } |
b0d623f7 | 2665 | VM_PAGE_CHECK(mem); |
1c79356b A |
2666 | } |
2667 | ||
2668 | /* | |
2669 | * vm_page_deactivate: | |
2670 | * | |
2671 | * Returns the given page to the inactive list, | |
2672 | * indicating that no physical maps have access | |
2673 | * to this page. [Used by the physical mapping system.] | |
2674 | * | |
2675 | * The page queues must be locked. | |
2676 | */ | |
2677 | void | |
2678 | vm_page_deactivate( | |
b0d623f7 A |
2679 | vm_page_t m) |
2680 | { | |
2681 | vm_page_deactivate_internal(m, TRUE); | |
2682 | } | |
2683 | ||
2684 | ||
2685 | void | |
2686 | vm_page_deactivate_internal( | |
2687 | vm_page_t m, | |
2688 | boolean_t clear_hw_reference) | |
1c79356b | 2689 | { |
2d21ac55 | 2690 | |
1c79356b | 2691 | VM_PAGE_CHECK(m); |
91447636 | 2692 | assert(m->object != kernel_object); |
2d21ac55 | 2693 | assert(m->phys_page != vm_page_guard_addr); |
1c79356b | 2694 | |
55e303ae | 2695 | // dbgLog(m->phys_page, vm_page_free_count, vm_page_wire_count, 6); /* (TEST/DEBUG) */ |
91447636 | 2696 | #if DEBUG |
b0d623f7 | 2697 | lck_mtx_assert(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED); |
91447636 | 2698 | #endif |
1c79356b A |
2699 | /* |
2700 | * This page is no longer very interesting. If it was | |
2701 | * interesting (active or inactive/referenced), then we | |
2702 | * clear the reference bit and (re)enter it in the | |
2703 | * inactive queue. Note wired pages should not have | |
2704 | * their reference bit cleared. | |
2705 | */ | |
6d2010ae | 2706 | assert ( !(m->absent && !m->unusual)); |
0b4c1975 | 2707 | |
1c79356b | 2708 | if (m->gobbled) { /* can this happen? */ |
b0d623f7 | 2709 | assert( !VM_PAGE_WIRED(m)); |
2d21ac55 | 2710 | |
1c79356b A |
2711 | if (!m->private && !m->fictitious) |
2712 | vm_page_wire_count--; | |
2713 | vm_page_gobble_count--; | |
2714 | m->gobbled = FALSE; | |
2715 | } | |
6d2010ae | 2716 | if (m->private || m->fictitious || (VM_PAGE_WIRED(m))) |
1c79356b | 2717 | return; |
2d21ac55 | 2718 | |
6d2010ae | 2719 | if (!m->absent && clear_hw_reference == TRUE) |
2d21ac55 A |
2720 | pmap_clear_reference(m->phys_page); |
2721 | ||
2722 | m->reference = FALSE; | |
2d21ac55 A |
2723 | m->no_cache = FALSE; |
2724 | ||
2725 | if (!m->inactive) { | |
2726 | VM_PAGE_QUEUES_REMOVE(m); | |
0b4e3aa0 | 2727 | |
91447636 A |
2728 | assert(!m->laundry); |
2729 | assert(m->pageq.next == NULL && m->pageq.prev == NULL); | |
2d21ac55 | 2730 | |
6d2010ae | 2731 | if (!VM_DYNAMIC_PAGING_ENABLED(memory_manager_default) && |
d1ecb069 A |
2732 | m->dirty && m->object->internal && |
2733 | (m->object->purgable == VM_PURGABLE_DENY || | |
2734 | m->object->purgable == VM_PURGABLE_NONVOLATILE || | |
2735 | m->object->purgable == VM_PURGABLE_VOLATILE)) { | |
2d21ac55 A |
2736 | queue_enter(&vm_page_queue_throttled, m, vm_page_t, pageq); |
2737 | m->throttled = TRUE; | |
2738 | vm_page_throttled_count++; | |
9bccf70c | 2739 | } else { |
6d2010ae | 2740 | if (m->object->named && m->object->ref_count == 1) { |
2d21ac55 | 2741 | vm_page_speculate(m, FALSE); |
b0d623f7 | 2742 | #if DEVELOPMENT || DEBUG |
2d21ac55 | 2743 | vm_page_speculative_recreated++; |
b0d623f7 | 2744 | #endif |
2d21ac55 | 2745 | } else { |
6d2010ae | 2746 | VM_PAGE_ENQUEUE_INACTIVE(m, FALSE); |
2d21ac55 | 2747 | } |
9bccf70c | 2748 | } |
1c79356b A |
2749 | } |
2750 | } | |
2751 | ||
2752 | /* | |
2753 | * vm_page_activate: | |
2754 | * | |
2755 | * Put the specified page on the active list (if appropriate). | |
2756 | * | |
2757 | * The page queues must be locked. | |
2758 | */ | |
2759 | ||
2760 | void | |
2761 | vm_page_activate( | |
2762 | register vm_page_t m) | |
2763 | { | |
2764 | VM_PAGE_CHECK(m); | |
2d21ac55 | 2765 | #ifdef FIXME_4778297 |
91447636 | 2766 | assert(m->object != kernel_object); |
2d21ac55 A |
2767 | #endif |
2768 | assert(m->phys_page != vm_page_guard_addr); | |
91447636 | 2769 | #if DEBUG |
b0d623f7 | 2770 | lck_mtx_assert(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED); |
91447636 | 2771 | #endif |
6d2010ae | 2772 | assert( !(m->absent && !m->unusual)); |
0b4c1975 | 2773 | |
1c79356b | 2774 | if (m->gobbled) { |
b0d623f7 | 2775 | assert( !VM_PAGE_WIRED(m)); |
1c79356b A |
2776 | if (!m->private && !m->fictitious) |
2777 | vm_page_wire_count--; | |
2778 | vm_page_gobble_count--; | |
2779 | m->gobbled = FALSE; | |
2780 | } | |
6d2010ae | 2781 | if (m->private || m->fictitious) |
1c79356b A |
2782 | return; |
2783 | ||
2d21ac55 A |
2784 | #if DEBUG |
2785 | if (m->active) | |
2786 | panic("vm_page_activate: already active"); | |
2787 | #endif | |
2788 | ||
2789 | if (m->speculative) { | |
2790 | DTRACE_VM2(pgrec, int, 1, (uint64_t *), NULL); | |
2791 | DTRACE_VM2(pgfrec, int, 1, (uint64_t *), NULL); | |
2792 | } | |
2793 | ||
2794 | VM_PAGE_QUEUES_REMOVE(m); | |
2795 | ||
b0d623f7 | 2796 | if ( !VM_PAGE_WIRED(m)) { |
91447636 | 2797 | assert(!m->laundry); |
2d21ac55 | 2798 | assert(m->pageq.next == NULL && m->pageq.prev == NULL); |
6d2010ae A |
2799 | if (!VM_DYNAMIC_PAGING_ENABLED(memory_manager_default) && |
2800 | m->dirty && m->object->internal && | |
d1ecb069 A |
2801 | (m->object->purgable == VM_PURGABLE_DENY || |
2802 | m->object->purgable == VM_PURGABLE_NONVOLATILE || | |
2803 | m->object->purgable == VM_PURGABLE_VOLATILE)) { | |
2d21ac55 A |
2804 | queue_enter(&vm_page_queue_throttled, m, vm_page_t, pageq); |
2805 | m->throttled = TRUE; | |
2806 | vm_page_throttled_count++; | |
9bccf70c | 2807 | } else { |
2d21ac55 A |
2808 | queue_enter(&vm_page_queue_active, m, vm_page_t, pageq); |
2809 | m->active = TRUE; | |
6d2010ae | 2810 | vm_page_active_count++; |
9bccf70c | 2811 | } |
2d21ac55 A |
2812 | m->reference = TRUE; |
2813 | m->no_cache = FALSE; | |
1c79356b | 2814 | } |
b0d623f7 | 2815 | VM_PAGE_CHECK(m); |
2d21ac55 A |
2816 | } |
2817 | ||
2818 | ||
2819 | /* | |
2820 | * vm_page_speculate: | |
2821 | * | |
2822 | * Put the specified page on the speculative list (if appropriate). | |
2823 | * | |
2824 | * The page queues must be locked. | |
2825 | */ | |
2826 | void | |
2827 | vm_page_speculate( | |
2828 | vm_page_t m, | |
2829 | boolean_t new) | |
2830 | { | |
2831 | struct vm_speculative_age_q *aq; | |
2832 | ||
2833 | VM_PAGE_CHECK(m); | |
2834 | assert(m->object != kernel_object); | |
2d21ac55 | 2835 | assert(m->phys_page != vm_page_guard_addr); |
91447636 | 2836 | #if DEBUG |
b0d623f7 | 2837 | lck_mtx_assert(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED); |
91447636 | 2838 | #endif |
6d2010ae | 2839 | assert( !(m->absent && !m->unusual)); |
b0d623f7 | 2840 | |
6d2010ae A |
2841 | if (m->private || m->fictitious) |
2842 | return; | |
0b4c1975 | 2843 | |
b0d623f7 A |
2844 | VM_PAGE_QUEUES_REMOVE(m); |
2845 | ||
2846 | if ( !VM_PAGE_WIRED(m)) { | |
2d21ac55 | 2847 | mach_timespec_t ts; |
b0d623f7 A |
2848 | clock_sec_t sec; |
2849 | clock_nsec_t nsec; | |
2d21ac55 | 2850 | |
b0d623f7 A |
2851 | clock_get_system_nanotime(&sec, &nsec); |
2852 | ts.tv_sec = (unsigned int) sec; | |
2853 | ts.tv_nsec = nsec; | |
2d21ac55 A |
2854 | |
2855 | if (vm_page_speculative_count == 0) { | |
2856 | ||
2857 | speculative_age_index = VM_PAGE_MIN_SPECULATIVE_AGE_Q; | |
2858 | speculative_steal_index = VM_PAGE_MIN_SPECULATIVE_AGE_Q; | |
2859 | ||
2860 | aq = &vm_page_queue_speculative[speculative_age_index]; | |
2861 | ||
2862 | /* | |
2863 | * set the timer to begin a new group | |
2864 | */ | |
6d2010ae A |
2865 | aq->age_ts.tv_sec = vm_page_speculative_q_age_ms / 1000; |
2866 | aq->age_ts.tv_nsec = (vm_page_speculative_q_age_ms % 1000) * 1000 * NSEC_PER_USEC; | |
2d21ac55 A |
2867 | |
2868 | ADD_MACH_TIMESPEC(&aq->age_ts, &ts); | |
2869 | } else { | |
2870 | aq = &vm_page_queue_speculative[speculative_age_index]; | |
2871 | ||
2872 | if (CMP_MACH_TIMESPEC(&ts, &aq->age_ts) >= 0) { | |
2873 | ||
2874 | speculative_age_index++; | |
2875 | ||
2876 | if (speculative_age_index > VM_PAGE_MAX_SPECULATIVE_AGE_Q) | |
2877 | speculative_age_index = VM_PAGE_MIN_SPECULATIVE_AGE_Q; | |
2878 | if (speculative_age_index == speculative_steal_index) { | |
2879 | speculative_steal_index = speculative_age_index + 1; | |
2880 | ||
2881 | if (speculative_steal_index > VM_PAGE_MAX_SPECULATIVE_AGE_Q) | |
2882 | speculative_steal_index = VM_PAGE_MIN_SPECULATIVE_AGE_Q; | |
2883 | } | |
2884 | aq = &vm_page_queue_speculative[speculative_age_index]; | |
2885 | ||
2886 | if (!queue_empty(&aq->age_q)) | |
2887 | vm_page_speculate_ageit(aq); | |
2888 | ||
6d2010ae A |
2889 | aq->age_ts.tv_sec = vm_page_speculative_q_age_ms / 1000; |
2890 | aq->age_ts.tv_nsec = (vm_page_speculative_q_age_ms % 1000) * 1000 * NSEC_PER_USEC; | |
2d21ac55 A |
2891 | |
2892 | ADD_MACH_TIMESPEC(&aq->age_ts, &ts); | |
2893 | } | |
2894 | } | |
2895 | enqueue_tail(&aq->age_q, &m->pageq); | |
2896 | m->speculative = TRUE; | |
2897 | vm_page_speculative_count++; | |
2898 | ||
2899 | if (new == TRUE) { | |
6d2010ae A |
2900 | vm_object_lock_assert_exclusive(m->object); |
2901 | ||
2d21ac55 | 2902 | m->object->pages_created++; |
b0d623f7 | 2903 | #if DEVELOPMENT || DEBUG |
2d21ac55 | 2904 | vm_page_speculative_created++; |
b0d623f7 | 2905 | #endif |
2d21ac55 A |
2906 | } |
2907 | } | |
b0d623f7 | 2908 | VM_PAGE_CHECK(m); |
2d21ac55 A |
2909 | } |
2910 | ||
2911 | ||
2912 | /* | |
2913 | * move pages from the specified aging bin to | |
2914 | * the speculative bin that pageout_scan claims from | |
2915 | * | |
2916 | * The page queues must be locked. | |
2917 | */ | |
2918 | void | |
2919 | vm_page_speculate_ageit(struct vm_speculative_age_q *aq) | |
2920 | { | |
2921 | struct vm_speculative_age_q *sq; | |
2922 | vm_page_t t; | |
2923 | ||
2924 | sq = &vm_page_queue_speculative[VM_PAGE_SPECULATIVE_AGED_Q]; | |
2925 | ||
2926 | if (queue_empty(&sq->age_q)) { | |
2927 | sq->age_q.next = aq->age_q.next; | |
2928 | sq->age_q.prev = aq->age_q.prev; | |
2929 | ||
2930 | t = (vm_page_t)sq->age_q.next; | |
2931 | t->pageq.prev = &sq->age_q; | |
2932 | ||
2933 | t = (vm_page_t)sq->age_q.prev; | |
2934 | t->pageq.next = &sq->age_q; | |
2935 | } else { | |
2936 | t = (vm_page_t)sq->age_q.prev; | |
2937 | t->pageq.next = aq->age_q.next; | |
2938 | ||
2939 | t = (vm_page_t)aq->age_q.next; | |
2940 | t->pageq.prev = sq->age_q.prev; | |
2941 | ||
2942 | t = (vm_page_t)aq->age_q.prev; | |
2943 | t->pageq.next = &sq->age_q; | |
2944 | ||
2945 | sq->age_q.prev = aq->age_q.prev; | |
1c79356b | 2946 | } |
2d21ac55 A |
2947 | queue_init(&aq->age_q); |
2948 | } | |
2949 | ||
2950 | ||
2951 | void | |
2952 | vm_page_lru( | |
2953 | vm_page_t m) | |
2954 | { | |
2955 | VM_PAGE_CHECK(m); | |
2956 | assert(m->object != kernel_object); | |
2957 | assert(m->phys_page != vm_page_guard_addr); | |
2958 | ||
2959 | #if DEBUG | |
b0d623f7 | 2960 | lck_mtx_assert(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED); |
2d21ac55 A |
2961 | #endif |
2962 | if (m->active || m->reference) | |
2963 | return; | |
2964 | ||
b0d623f7 | 2965 | if (m->private || (VM_PAGE_WIRED(m))) |
2d21ac55 A |
2966 | return; |
2967 | ||
2968 | m->no_cache = FALSE; | |
2969 | ||
2970 | VM_PAGE_QUEUES_REMOVE(m); | |
2971 | ||
2972 | assert(!m->laundry); | |
2973 | assert(m->pageq.next == NULL && m->pageq.prev == NULL); | |
2974 | ||
6d2010ae | 2975 | VM_PAGE_ENQUEUE_INACTIVE(m, FALSE); |
1c79356b A |
2976 | } |
2977 | ||
2d21ac55 | 2978 | |
b0d623f7 A |
2979 | void |
2980 | vm_page_reactivate_all_throttled(void) | |
2981 | { | |
2982 | vm_page_t first_throttled, last_throttled; | |
2983 | vm_page_t first_active; | |
2984 | vm_page_t m; | |
2985 | int extra_active_count; | |
2986 | ||
6d2010ae A |
2987 | if (!VM_DYNAMIC_PAGING_ENABLED(memory_manager_default)) |
2988 | return; | |
2989 | ||
b0d623f7 A |
2990 | extra_active_count = 0; |
2991 | vm_page_lock_queues(); | |
2992 | if (! queue_empty(&vm_page_queue_throttled)) { | |
2993 | /* | |
2994 | * Switch "throttled" pages to "active". | |
2995 | */ | |
2996 | queue_iterate(&vm_page_queue_throttled, m, vm_page_t, pageq) { | |
2997 | VM_PAGE_CHECK(m); | |
2998 | assert(m->throttled); | |
2999 | assert(!m->active); | |
3000 | assert(!m->inactive); | |
3001 | assert(!m->speculative); | |
3002 | assert(!VM_PAGE_WIRED(m)); | |
6d2010ae A |
3003 | |
3004 | extra_active_count++; | |
3005 | ||
b0d623f7 A |
3006 | m->throttled = FALSE; |
3007 | m->active = TRUE; | |
3008 | VM_PAGE_CHECK(m); | |
3009 | } | |
3010 | ||
3011 | /* | |
3012 | * Transfer the entire throttled queue to a regular LRU page queues. | |
3013 | * We insert it at the head of the active queue, so that these pages | |
3014 | * get re-evaluated by the LRU algorithm first, since they've been | |
3015 | * completely out of it until now. | |
3016 | */ | |
3017 | first_throttled = (vm_page_t) queue_first(&vm_page_queue_throttled); | |
3018 | last_throttled = (vm_page_t) queue_last(&vm_page_queue_throttled); | |
3019 | first_active = (vm_page_t) queue_first(&vm_page_queue_active); | |
3020 | if (queue_empty(&vm_page_queue_active)) { | |
3021 | queue_last(&vm_page_queue_active) = (queue_entry_t) last_throttled; | |
3022 | } else { | |
3023 | queue_prev(&first_active->pageq) = (queue_entry_t) last_throttled; | |
3024 | } | |
3025 | queue_first(&vm_page_queue_active) = (queue_entry_t) first_throttled; | |
3026 | queue_prev(&first_throttled->pageq) = (queue_entry_t) &vm_page_queue_active; | |
3027 | queue_next(&last_throttled->pageq) = (queue_entry_t) first_active; | |
3028 | ||
3029 | #if DEBUG | |
3030 | printf("reactivated %d throttled pages\n", vm_page_throttled_count); | |
3031 | #endif | |
3032 | queue_init(&vm_page_queue_throttled); | |
3033 | /* | |
3034 | * Adjust the global page counts. | |
3035 | */ | |
3036 | vm_page_active_count += extra_active_count; | |
3037 | vm_page_throttled_count = 0; | |
3038 | } | |
3039 | assert(vm_page_throttled_count == 0); | |
3040 | assert(queue_empty(&vm_page_queue_throttled)); | |
3041 | vm_page_unlock_queues(); | |
3042 | } | |
3043 | ||
3044 | ||
3045 | /* | |
3046 | * move pages from the indicated local queue to the global active queue | |
3047 | * its ok to fail if we're below the hard limit and force == FALSE | |
3048 | * the nolocks == TRUE case is to allow this function to be run on | |
3049 | * the hibernate path | |
3050 | */ | |
3051 | ||
3052 | void | |
3053 | vm_page_reactivate_local(uint32_t lid, boolean_t force, boolean_t nolocks) | |
3054 | { | |
3055 | struct vpl *lq; | |
3056 | vm_page_t first_local, last_local; | |
3057 | vm_page_t first_active; | |
3058 | vm_page_t m; | |
3059 | uint32_t count = 0; | |
3060 | ||
3061 | if (vm_page_local_q == NULL) | |
3062 | return; | |
3063 | ||
3064 | lq = &vm_page_local_q[lid].vpl_un.vpl; | |
3065 | ||
3066 | if (nolocks == FALSE) { | |
3067 | if (lq->vpl_count < vm_page_local_q_hard_limit && force == FALSE) { | |
3068 | if ( !vm_page_trylockspin_queues()) | |
3069 | return; | |
3070 | } else | |
3071 | vm_page_lockspin_queues(); | |
3072 | ||
3073 | VPL_LOCK(&lq->vpl_lock); | |
3074 | } | |
3075 | if (lq->vpl_count) { | |
3076 | /* | |
3077 | * Switch "local" pages to "active". | |
3078 | */ | |
3079 | assert(!queue_empty(&lq->vpl_queue)); | |
3080 | ||
3081 | queue_iterate(&lq->vpl_queue, m, vm_page_t, pageq) { | |
3082 | VM_PAGE_CHECK(m); | |
3083 | assert(m->local); | |
3084 | assert(!m->active); | |
3085 | assert(!m->inactive); | |
3086 | assert(!m->speculative); | |
3087 | assert(!VM_PAGE_WIRED(m)); | |
3088 | assert(!m->throttled); | |
3089 | assert(!m->fictitious); | |
3090 | ||
3091 | if (m->local_id != lid) | |
3092 | panic("vm_page_reactivate_local: found vm_page_t(%p) with wrong cpuid", m); | |
3093 | ||
3094 | m->local_id = 0; | |
3095 | m->local = FALSE; | |
3096 | m->active = TRUE; | |
3097 | VM_PAGE_CHECK(m); | |
3098 | ||
3099 | count++; | |
3100 | } | |
3101 | if (count != lq->vpl_count) | |
3102 | panic("vm_page_reactivate_local: count = %d, vm_page_local_count = %d\n", count, lq->vpl_count); | |
3103 | ||
3104 | /* | |
3105 | * Transfer the entire local queue to a regular LRU page queues. | |
3106 | */ | |
3107 | first_local = (vm_page_t) queue_first(&lq->vpl_queue); | |
3108 | last_local = (vm_page_t) queue_last(&lq->vpl_queue); | |
3109 | first_active = (vm_page_t) queue_first(&vm_page_queue_active); | |
3110 | ||
3111 | if (queue_empty(&vm_page_queue_active)) { | |
3112 | queue_last(&vm_page_queue_active) = (queue_entry_t) last_local; | |
3113 | } else { | |
3114 | queue_prev(&first_active->pageq) = (queue_entry_t) last_local; | |
3115 | } | |
3116 | queue_first(&vm_page_queue_active) = (queue_entry_t) first_local; | |
3117 | queue_prev(&first_local->pageq) = (queue_entry_t) &vm_page_queue_active; | |
3118 | queue_next(&last_local->pageq) = (queue_entry_t) first_active; | |
3119 | ||
3120 | queue_init(&lq->vpl_queue); | |
3121 | /* | |
3122 | * Adjust the global page counts. | |
3123 | */ | |
3124 | vm_page_active_count += lq->vpl_count; | |
3125 | lq->vpl_count = 0; | |
3126 | } | |
3127 | assert(queue_empty(&lq->vpl_queue)); | |
3128 | ||
3129 | if (nolocks == FALSE) { | |
3130 | VPL_UNLOCK(&lq->vpl_lock); | |
3131 | vm_page_unlock_queues(); | |
3132 | } | |
3133 | } | |
3134 | ||
1c79356b A |
3135 | /* |
3136 | * vm_page_part_zero_fill: | |
3137 | * | |
3138 | * Zero-fill a part of the page. | |
3139 | */ | |
3140 | void | |
3141 | vm_page_part_zero_fill( | |
3142 | vm_page_t m, | |
3143 | vm_offset_t m_pa, | |
3144 | vm_size_t len) | |
3145 | { | |
3146 | vm_page_t tmp; | |
3147 | ||
3148 | VM_PAGE_CHECK(m); | |
3149 | #ifdef PMAP_ZERO_PART_PAGE_IMPLEMENTED | |
55e303ae | 3150 | pmap_zero_part_page(m->phys_page, m_pa, len); |
1c79356b A |
3151 | #else |
3152 | while (1) { | |
3153 | tmp = vm_page_grab(); | |
3154 | if (tmp == VM_PAGE_NULL) { | |
3155 | vm_page_wait(THREAD_UNINT); | |
3156 | continue; | |
3157 | } | |
3158 | break; | |
3159 | } | |
3160 | vm_page_zero_fill(tmp); | |
3161 | if(m_pa != 0) { | |
3162 | vm_page_part_copy(m, 0, tmp, 0, m_pa); | |
3163 | } | |
3164 | if((m_pa + len) < PAGE_SIZE) { | |
3165 | vm_page_part_copy(m, m_pa + len, tmp, | |
3166 | m_pa + len, PAGE_SIZE - (m_pa + len)); | |
3167 | } | |
3168 | vm_page_copy(tmp,m); | |
b0d623f7 | 3169 | VM_PAGE_FREE(tmp); |
1c79356b A |
3170 | #endif |
3171 | ||
3172 | } | |
3173 | ||
3174 | /* | |
3175 | * vm_page_zero_fill: | |
3176 | * | |
3177 | * Zero-fill the specified page. | |
3178 | */ | |
3179 | void | |
3180 | vm_page_zero_fill( | |
3181 | vm_page_t m) | |
3182 | { | |
3183 | XPR(XPR_VM_PAGE, | |
3184 | "vm_page_zero_fill, object 0x%X offset 0x%X page 0x%X\n", | |
b0d623f7 | 3185 | m->object, m->offset, m, 0,0); |
1c79356b A |
3186 | |
3187 | VM_PAGE_CHECK(m); | |
3188 | ||
55e303ae A |
3189 | // dbgTrace(0xAEAEAEAE, m->phys_page, 0); /* (BRINGUP) */ |
3190 | pmap_zero_page(m->phys_page); | |
1c79356b A |
3191 | } |
3192 | ||
3193 | /* | |
3194 | * vm_page_part_copy: | |
3195 | * | |
3196 | * copy part of one page to another | |
3197 | */ | |
3198 | ||
3199 | void | |
3200 | vm_page_part_copy( | |
3201 | vm_page_t src_m, | |
3202 | vm_offset_t src_pa, | |
3203 | vm_page_t dst_m, | |
3204 | vm_offset_t dst_pa, | |
3205 | vm_size_t len) | |
3206 | { | |
3207 | VM_PAGE_CHECK(src_m); | |
3208 | VM_PAGE_CHECK(dst_m); | |
3209 | ||
55e303ae A |
3210 | pmap_copy_part_page(src_m->phys_page, src_pa, |
3211 | dst_m->phys_page, dst_pa, len); | |
1c79356b A |
3212 | } |
3213 | ||
3214 | /* | |
3215 | * vm_page_copy: | |
3216 | * | |
3217 | * Copy one page to another | |
91447636 A |
3218 | * |
3219 | * ENCRYPTED SWAP: | |
3220 | * The source page should not be encrypted. The caller should | |
3221 | * make sure the page is decrypted first, if necessary. | |
1c79356b A |
3222 | */ |
3223 | ||
2d21ac55 A |
3224 | int vm_page_copy_cs_validations = 0; |
3225 | int vm_page_copy_cs_tainted = 0; | |
3226 | ||
1c79356b A |
3227 | void |
3228 | vm_page_copy( | |
3229 | vm_page_t src_m, | |
3230 | vm_page_t dest_m) | |
3231 | { | |
3232 | XPR(XPR_VM_PAGE, | |
3233 | "vm_page_copy, object 0x%X offset 0x%X to object 0x%X offset 0x%X\n", | |
b0d623f7 A |
3234 | src_m->object, src_m->offset, |
3235 | dest_m->object, dest_m->offset, | |
1c79356b A |
3236 | 0); |
3237 | ||
3238 | VM_PAGE_CHECK(src_m); | |
3239 | VM_PAGE_CHECK(dest_m); | |
3240 | ||
91447636 A |
3241 | /* |
3242 | * ENCRYPTED SWAP: | |
3243 | * The source page should not be encrypted at this point. | |
3244 | * The destination page will therefore not contain encrypted | |
3245 | * data after the copy. | |
3246 | */ | |
3247 | if (src_m->encrypted) { | |
3248 | panic("vm_page_copy: source page %p is encrypted\n", src_m); | |
3249 | } | |
3250 | dest_m->encrypted = FALSE; | |
3251 | ||
2d21ac55 | 3252 | if (src_m->object != VM_OBJECT_NULL && |
4a3eedf9 | 3253 | src_m->object->code_signed) { |
2d21ac55 | 3254 | /* |
4a3eedf9 | 3255 | * We're copying a page from a code-signed object. |
2d21ac55 A |
3256 | * Whoever ends up mapping the copy page might care about |
3257 | * the original page's integrity, so let's validate the | |
3258 | * source page now. | |
3259 | */ | |
3260 | vm_page_copy_cs_validations++; | |
3261 | vm_page_validate_cs(src_m); | |
3262 | } | |
6d2010ae A |
3263 | |
3264 | if (vm_page_is_slideable(src_m)) { | |
3265 | boolean_t was_busy = src_m->busy; | |
3266 | src_m->busy = TRUE; | |
3267 | (void) vm_page_slide(src_m, 0); | |
3268 | assert(src_m->busy); | |
3269 | if(!was_busy) { | |
3270 | PAGE_WAKEUP_DONE(src_m); | |
3271 | } | |
3272 | } | |
3273 | ||
2d21ac55 | 3274 | /* |
b0d623f7 A |
3275 | * Propagate the cs_tainted bit to the copy page. Do not propagate |
3276 | * the cs_validated bit. | |
2d21ac55 | 3277 | */ |
2d21ac55 A |
3278 | dest_m->cs_tainted = src_m->cs_tainted; |
3279 | if (dest_m->cs_tainted) { | |
2d21ac55 A |
3280 | vm_page_copy_cs_tainted++; |
3281 | } | |
6d2010ae A |
3282 | dest_m->slid = src_m->slid; |
3283 | dest_m->error = src_m->error; /* sliding src_m might have failed... */ | |
55e303ae | 3284 | pmap_copy_page(src_m->phys_page, dest_m->phys_page); |
1c79356b A |
3285 | } |
3286 | ||
2d21ac55 | 3287 | #if MACH_ASSERT |
b0d623f7 A |
3288 | static void |
3289 | _vm_page_print( | |
3290 | vm_page_t p) | |
3291 | { | |
3292 | printf("vm_page %p: \n", p); | |
3293 | printf(" pageq: next=%p prev=%p\n", p->pageq.next, p->pageq.prev); | |
3294 | printf(" listq: next=%p prev=%p\n", p->listq.next, p->listq.prev); | |
3295 | printf(" next=%p\n", p->next); | |
3296 | printf(" object=%p offset=0x%llx\n", p->object, p->offset); | |
3297 | printf(" wire_count=%u\n", p->wire_count); | |
3298 | ||
3299 | printf(" %slocal, %sinactive, %sactive, %spageout_queue, %sspeculative, %slaundry\n", | |
3300 | (p->local ? "" : "!"), | |
3301 | (p->inactive ? "" : "!"), | |
3302 | (p->active ? "" : "!"), | |
3303 | (p->pageout_queue ? "" : "!"), | |
3304 | (p->speculative ? "" : "!"), | |
3305 | (p->laundry ? "" : "!")); | |
3306 | printf(" %sfree, %sref, %sgobbled, %sprivate, %sthrottled\n", | |
3307 | (p->free ? "" : "!"), | |
3308 | (p->reference ? "" : "!"), | |
3309 | (p->gobbled ? "" : "!"), | |
3310 | (p->private ? "" : "!"), | |
3311 | (p->throttled ? "" : "!")); | |
3312 | printf(" %sbusy, %swanted, %stabled, %sfictitious, %spmapped, %swpmapped\n", | |
3313 | (p->busy ? "" : "!"), | |
3314 | (p->wanted ? "" : "!"), | |
3315 | (p->tabled ? "" : "!"), | |
3316 | (p->fictitious ? "" : "!"), | |
3317 | (p->pmapped ? "" : "!"), | |
3318 | (p->wpmapped ? "" : "!")); | |
3319 | printf(" %spageout, %sabsent, %serror, %sdirty, %scleaning, %sprecious, %sclustered\n", | |
3320 | (p->pageout ? "" : "!"), | |
3321 | (p->absent ? "" : "!"), | |
3322 | (p->error ? "" : "!"), | |
3323 | (p->dirty ? "" : "!"), | |
3324 | (p->cleaning ? "" : "!"), | |
3325 | (p->precious ? "" : "!"), | |
3326 | (p->clustered ? "" : "!")); | |
3327 | printf(" %soverwriting, %srestart, %sunusual, %sencrypted, %sencrypted_cleaning\n", | |
3328 | (p->overwriting ? "" : "!"), | |
3329 | (p->restart ? "" : "!"), | |
3330 | (p->unusual ? "" : "!"), | |
3331 | (p->encrypted ? "" : "!"), | |
3332 | (p->encrypted_cleaning ? "" : "!")); | |
3333 | printf(" %slist_req_pending, %sdump_cleaning, %scs_validated, %scs_tainted, %sno_cache\n", | |
3334 | (p->list_req_pending ? "" : "!"), | |
3335 | (p->dump_cleaning ? "" : "!"), | |
3336 | (p->cs_validated ? "" : "!"), | |
3337 | (p->cs_tainted ? "" : "!"), | |
3338 | (p->no_cache ? "" : "!")); | |
3339 | printf(" %szero_fill\n", | |
3340 | (p->zero_fill ? "" : "!")); | |
3341 | ||
3342 | printf("phys_page=0x%x\n", p->phys_page); | |
3343 | } | |
3344 | ||
1c79356b A |
3345 | /* |
3346 | * Check that the list of pages is ordered by | |
3347 | * ascending physical address and has no holes. | |
3348 | */ | |
2d21ac55 | 3349 | static int |
1c79356b A |
3350 | vm_page_verify_contiguous( |
3351 | vm_page_t pages, | |
3352 | unsigned int npages) | |
3353 | { | |
3354 | register vm_page_t m; | |
3355 | unsigned int page_count; | |
91447636 | 3356 | vm_offset_t prev_addr; |
1c79356b | 3357 | |
55e303ae | 3358 | prev_addr = pages->phys_page; |
1c79356b A |
3359 | page_count = 1; |
3360 | for (m = NEXT_PAGE(pages); m != VM_PAGE_NULL; m = NEXT_PAGE(m)) { | |
55e303ae | 3361 | if (m->phys_page != prev_addr + 1) { |
b0d623f7 A |
3362 | printf("m %p prev_addr 0x%lx, current addr 0x%x\n", |
3363 | m, (long)prev_addr, m->phys_page); | |
6d2010ae | 3364 | printf("pages %p page_count %d npages %d\n", pages, page_count, npages); |
1c79356b A |
3365 | panic("vm_page_verify_contiguous: not contiguous!"); |
3366 | } | |
55e303ae | 3367 | prev_addr = m->phys_page; |
1c79356b A |
3368 | ++page_count; |
3369 | } | |
3370 | if (page_count != npages) { | |
2d21ac55 | 3371 | printf("pages %p actual count 0x%x but requested 0x%x\n", |
1c79356b A |
3372 | pages, page_count, npages); |
3373 | panic("vm_page_verify_contiguous: count error"); | |
3374 | } | |
3375 | return 1; | |
3376 | } | |
1c79356b A |
3377 | |
3378 | ||
2d21ac55 A |
3379 | /* |
3380 | * Check the free lists for proper length etc. | |
3381 | */ | |
b0d623f7 A |
3382 | static unsigned int |
3383 | vm_page_verify_free_list( | |
d1ecb069 | 3384 | queue_head_t *vm_page_queue, |
b0d623f7 A |
3385 | unsigned int color, |
3386 | vm_page_t look_for_page, | |
3387 | boolean_t expect_page) | |
3388 | { | |
3389 | unsigned int npages; | |
3390 | vm_page_t m; | |
3391 | vm_page_t prev_m; | |
3392 | boolean_t found_page; | |
3393 | ||
3394 | found_page = FALSE; | |
3395 | npages = 0; | |
d1ecb069 A |
3396 | prev_m = (vm_page_t) vm_page_queue; |
3397 | queue_iterate(vm_page_queue, | |
b0d623f7 A |
3398 | m, |
3399 | vm_page_t, | |
3400 | pageq) { | |
6d2010ae | 3401 | |
b0d623f7 A |
3402 | if (m == look_for_page) { |
3403 | found_page = TRUE; | |
3404 | } | |
3405 | if ((vm_page_t) m->pageq.prev != prev_m) | |
3406 | panic("vm_page_verify_free_list(color=%u, npages=%u): page %p corrupted prev ptr %p instead of %p\n", | |
3407 | color, npages, m, m->pageq.prev, prev_m); | |
b0d623f7 A |
3408 | if ( ! m->busy ) |
3409 | panic("vm_page_verify_free_list(color=%u, npages=%u): page %p not busy\n", | |
3410 | color, npages, m); | |
6d2010ae A |
3411 | if (color != (unsigned int) -1) { |
3412 | if ((m->phys_page & vm_color_mask) != color) | |
3413 | panic("vm_page_verify_free_list(color=%u, npages=%u): page %p wrong color %u instead of %u\n", | |
3414 | color, npages, m, m->phys_page & vm_color_mask, color); | |
3415 | if ( ! m->free ) | |
3416 | panic("vm_page_verify_free_list(color=%u, npages=%u): page %p not free\n", | |
3417 | color, npages, m); | |
3418 | } | |
b0d623f7 A |
3419 | ++npages; |
3420 | prev_m = m; | |
3421 | } | |
3422 | if (look_for_page != VM_PAGE_NULL) { | |
3423 | unsigned int other_color; | |
3424 | ||
3425 | if (expect_page && !found_page) { | |
3426 | printf("vm_page_verify_free_list(color=%u, npages=%u): page %p not found phys=%u\n", | |
3427 | color, npages, look_for_page, look_for_page->phys_page); | |
3428 | _vm_page_print(look_for_page); | |
3429 | for (other_color = 0; | |
3430 | other_color < vm_colors; | |
3431 | other_color++) { | |
3432 | if (other_color == color) | |
3433 | continue; | |
d1ecb069 | 3434 | vm_page_verify_free_list(&vm_page_queue_free[other_color], |
6d2010ae | 3435 | other_color, look_for_page, FALSE); |
b0d623f7 | 3436 | } |
6d2010ae | 3437 | if (color == (unsigned int) -1) { |
d1ecb069 A |
3438 | vm_page_verify_free_list(&vm_lopage_queue_free, |
3439 | (unsigned int) -1, look_for_page, FALSE); | |
3440 | } | |
b0d623f7 A |
3441 | panic("vm_page_verify_free_list(color=%u)\n", color); |
3442 | } | |
3443 | if (!expect_page && found_page) { | |
3444 | printf("vm_page_verify_free_list(color=%u, npages=%u): page %p found phys=%u\n", | |
3445 | color, npages, look_for_page, look_for_page->phys_page); | |
3446 | } | |
3447 | } | |
3448 | return npages; | |
3449 | } | |
3450 | ||
3451 | static boolean_t vm_page_verify_free_lists_enabled = FALSE; | |
2d21ac55 A |
3452 | static void |
3453 | vm_page_verify_free_lists( void ) | |
3454 | { | |
d1ecb069 | 3455 | unsigned int color, npages, nlopages; |
b0d623f7 A |
3456 | |
3457 | if (! vm_page_verify_free_lists_enabled) | |
3458 | return; | |
3459 | ||
2d21ac55 | 3460 | npages = 0; |
b0d623f7 A |
3461 | |
3462 | lck_mtx_lock(&vm_page_queue_free_lock); | |
2d21ac55 A |
3463 | |
3464 | for( color = 0; color < vm_colors; color++ ) { | |
d1ecb069 | 3465 | npages += vm_page_verify_free_list(&vm_page_queue_free[color], |
6d2010ae | 3466 | color, VM_PAGE_NULL, FALSE); |
2d21ac55 | 3467 | } |
d1ecb069 A |
3468 | nlopages = vm_page_verify_free_list(&vm_lopage_queue_free, |
3469 | (unsigned int) -1, | |
3470 | VM_PAGE_NULL, FALSE); | |
3471 | if (npages != vm_page_free_count || nlopages != vm_lopage_free_count) | |
3472 | panic("vm_page_verify_free_lists: " | |
3473 | "npages %u free_count %d nlopages %u lo_free_count %u", | |
3474 | npages, vm_page_free_count, nlopages, vm_lopage_free_count); | |
6d2010ae | 3475 | |
b0d623f7 | 3476 | lck_mtx_unlock(&vm_page_queue_free_lock); |
2d21ac55 | 3477 | } |
2d21ac55 | 3478 | |
b0d623f7 A |
3479 | void |
3480 | vm_page_queues_assert( | |
3481 | vm_page_t mem, | |
3482 | int val) | |
3483 | { | |
3484 | if (mem->free + mem->active + mem->inactive + mem->speculative + | |
3485 | mem->throttled + mem->pageout_queue > (val)) { | |
3486 | _vm_page_print(mem); | |
3487 | panic("vm_page_queues_assert(%p, %d)\n", mem, val); | |
3488 | } | |
3489 | if (VM_PAGE_WIRED(mem)) { | |
3490 | assert(!mem->active); | |
3491 | assert(!mem->inactive); | |
3492 | assert(!mem->speculative); | |
3493 | assert(!mem->throttled); | |
3494 | } | |
3495 | } | |
3496 | #endif /* MACH_ASSERT */ | |
2d21ac55 | 3497 | |
91447636 | 3498 | |
1c79356b | 3499 | /* |
2d21ac55 | 3500 | * CONTIGUOUS PAGE ALLOCATION |
2d21ac55 A |
3501 | * |
3502 | * Find a region large enough to contain at least n pages | |
1c79356b A |
3503 | * of contiguous physical memory. |
3504 | * | |
2d21ac55 A |
3505 | * This is done by traversing the vm_page_t array in a linear fashion |
3506 | * we assume that the vm_page_t array has the avaiable physical pages in an | |
3507 | * ordered, ascending list... this is currently true of all our implementations | |
3508 | * and must remain so... there can be 'holes' in the array... we also can | |
3509 | * no longer tolerate the vm_page_t's in the list being 'freed' and reclaimed | |
3510 | * which use to happen via 'vm_page_convert'... that function was no longer | |
3511 | * being called and was removed... | |
3512 | * | |
3513 | * The basic flow consists of stabilizing some of the interesting state of | |
3514 | * a vm_page_t behind the vm_page_queue and vm_page_free locks... we start our | |
3515 | * sweep at the beginning of the array looking for pages that meet our criterea | |
3516 | * for a 'stealable' page... currently we are pretty conservative... if the page | |
3517 | * meets this criterea and is physically contiguous to the previous page in the 'run' | |
3518 | * we keep developing it. If we hit a page that doesn't fit, we reset our state | |
3519 | * and start to develop a new run... if at this point we've already considered | |
3520 | * at least MAX_CONSIDERED_BEFORE_YIELD pages, we'll drop the 2 locks we hold, | |
3521 | * and mutex_pause (which will yield the processor), to keep the latency low w/r | |
3522 | * to other threads trying to acquire free pages (or move pages from q to q), | |
3523 | * and then continue from the spot we left off... we only make 1 pass through the | |
3524 | * array. Once we have a 'run' that is long enough, we'll go into the loop which | |
3525 | * which steals the pages from the queues they're currently on... pages on the free | |
3526 | * queue can be stolen directly... pages that are on any of the other queues | |
3527 | * must be removed from the object they are tabled on... this requires taking the | |
3528 | * object lock... we do this as a 'try' to prevent deadlocks... if the 'try' fails | |
3529 | * or if the state of the page behind the vm_object lock is no longer viable, we'll | |
3530 | * dump the pages we've currently stolen back to the free list, and pick up our | |
3531 | * scan from the point where we aborted the 'current' run. | |
3532 | * | |
3533 | * | |
1c79356b | 3534 | * Requirements: |
2d21ac55 | 3535 | * - neither vm_page_queue nor vm_free_list lock can be held on entry |
1c79356b | 3536 | * |
2d21ac55 | 3537 | * Returns a pointer to a list of gobbled/wired pages or VM_PAGE_NULL. |
1c79356b | 3538 | * |
e5568f75 | 3539 | * Algorithm: |
1c79356b | 3540 | */ |
2d21ac55 A |
3541 | |
3542 | #define MAX_CONSIDERED_BEFORE_YIELD 1000 | |
3543 | ||
3544 | ||
3545 | #define RESET_STATE_OF_RUN() \ | |
3546 | MACRO_BEGIN \ | |
3547 | prevcontaddr = -2; \ | |
b0d623f7 | 3548 | start_pnum = -1; \ |
2d21ac55 A |
3549 | free_considered = 0; \ |
3550 | substitute_needed = 0; \ | |
3551 | npages = 0; \ | |
3552 | MACRO_END | |
3553 | ||
b0d623f7 A |
3554 | /* |
3555 | * Can we steal in-use (i.e. not free) pages when searching for | |
3556 | * physically-contiguous pages ? | |
3557 | */ | |
3558 | #define VM_PAGE_FIND_CONTIGUOUS_CAN_STEAL 1 | |
3559 | ||
3560 | static unsigned int vm_page_find_contiguous_last_idx = 0, vm_page_lomem_find_contiguous_last_idx = 0; | |
3561 | #if DEBUG | |
3562 | int vm_page_find_contig_debug = 0; | |
3563 | #endif | |
2d21ac55 | 3564 | |
1c79356b A |
3565 | static vm_page_t |
3566 | vm_page_find_contiguous( | |
2d21ac55 A |
3567 | unsigned int contig_pages, |
3568 | ppnum_t max_pnum, | |
b0d623f7 A |
3569 | ppnum_t pnum_mask, |
3570 | boolean_t wire, | |
3571 | int flags) | |
1c79356b | 3572 | { |
2d21ac55 | 3573 | vm_page_t m = NULL; |
e5568f75 | 3574 | ppnum_t prevcontaddr; |
b0d623f7 A |
3575 | ppnum_t start_pnum; |
3576 | unsigned int npages, considered, scanned; | |
3577 | unsigned int page_idx, start_idx, last_idx, orig_last_idx; | |
3578 | unsigned int idx_last_contig_page_found = 0; | |
2d21ac55 A |
3579 | int free_considered, free_available; |
3580 | int substitute_needed; | |
b0d623f7 | 3581 | boolean_t wrapped; |
593a1d5f | 3582 | #if DEBUG |
b0d623f7 A |
3583 | clock_sec_t tv_start_sec, tv_end_sec; |
3584 | clock_usec_t tv_start_usec, tv_end_usec; | |
593a1d5f A |
3585 | #endif |
3586 | #if MACH_ASSERT | |
2d21ac55 A |
3587 | int yielded = 0; |
3588 | int dumped_run = 0; | |
3589 | int stolen_pages = 0; | |
91447636 | 3590 | #endif |
1c79356b | 3591 | |
2d21ac55 | 3592 | if (contig_pages == 0) |
1c79356b A |
3593 | return VM_PAGE_NULL; |
3594 | ||
2d21ac55 A |
3595 | #if MACH_ASSERT |
3596 | vm_page_verify_free_lists(); | |
593a1d5f A |
3597 | #endif |
3598 | #if DEBUG | |
2d21ac55 A |
3599 | clock_get_system_microtime(&tv_start_sec, &tv_start_usec); |
3600 | #endif | |
3601 | vm_page_lock_queues(); | |
b0d623f7 | 3602 | lck_mtx_lock(&vm_page_queue_free_lock); |
2d21ac55 A |
3603 | |
3604 | RESET_STATE_OF_RUN(); | |
1c79356b | 3605 | |
b0d623f7 | 3606 | scanned = 0; |
2d21ac55 A |
3607 | considered = 0; |
3608 | free_available = vm_page_free_count - vm_page_free_reserved; | |
e5568f75 | 3609 | |
b0d623f7 A |
3610 | wrapped = FALSE; |
3611 | ||
3612 | if(flags & KMA_LOMEM) | |
3613 | idx_last_contig_page_found = vm_page_lomem_find_contiguous_last_idx; | |
3614 | else | |
3615 | idx_last_contig_page_found = vm_page_find_contiguous_last_idx; | |
3616 | ||
3617 | orig_last_idx = idx_last_contig_page_found; | |
3618 | last_idx = orig_last_idx; | |
3619 | ||
3620 | for (page_idx = last_idx, start_idx = last_idx; | |
2d21ac55 A |
3621 | npages < contig_pages && page_idx < vm_pages_count; |
3622 | page_idx++) { | |
b0d623f7 A |
3623 | retry: |
3624 | if (wrapped && | |
3625 | npages == 0 && | |
3626 | page_idx >= orig_last_idx) { | |
3627 | /* | |
3628 | * We're back where we started and we haven't | |
3629 | * found any suitable contiguous range. Let's | |
3630 | * give up. | |
3631 | */ | |
3632 | break; | |
3633 | } | |
3634 | scanned++; | |
2d21ac55 | 3635 | m = &vm_pages[page_idx]; |
e5568f75 | 3636 | |
b0d623f7 A |
3637 | assert(!m->fictitious); |
3638 | assert(!m->private); | |
3639 | ||
2d21ac55 A |
3640 | if (max_pnum && m->phys_page > max_pnum) { |
3641 | /* no more low pages... */ | |
3642 | break; | |
e5568f75 | 3643 | } |
6d2010ae | 3644 | if (!npages & ((m->phys_page & pnum_mask) != 0)) { |
b0d623f7 A |
3645 | /* |
3646 | * not aligned | |
3647 | */ | |
3648 | RESET_STATE_OF_RUN(); | |
3649 | ||
3650 | } else if (VM_PAGE_WIRED(m) || m->gobbled || | |
2d21ac55 A |
3651 | m->encrypted || m->encrypted_cleaning || m->cs_validated || m->cs_tainted || |
3652 | m->error || m->absent || m->pageout_queue || m->laundry || m->wanted || m->precious || | |
b0d623f7 A |
3653 | m->cleaning || m->overwriting || m->restart || m->unusual || m->list_req_pending || |
3654 | m->pageout) { | |
2d21ac55 A |
3655 | /* |
3656 | * page is in a transient state | |
3657 | * or a state we don't want to deal | |
3658 | * with, so don't consider it which | |
3659 | * means starting a new run | |
3660 | */ | |
3661 | RESET_STATE_OF_RUN(); | |
1c79356b | 3662 | |
2d21ac55 A |
3663 | } else if (!m->free && !m->active && !m->inactive && !m->speculative && !m->throttled) { |
3664 | /* | |
3665 | * page needs to be on one of our queues | |
3666 | * in order for it to be stable behind the | |
3667 | * locks we hold at this point... | |
3668 | * if not, don't consider it which | |
3669 | * means starting a new run | |
3670 | */ | |
3671 | RESET_STATE_OF_RUN(); | |
3672 | ||
3673 | } else if (!m->free && (!m->tabled || m->busy)) { | |
3674 | /* | |
3675 | * pages on the free list are always 'busy' | |
3676 | * so we couldn't test for 'busy' in the check | |
3677 | * for the transient states... pages that are | |
3678 | * 'free' are never 'tabled', so we also couldn't | |
3679 | * test for 'tabled'. So we check here to make | |
3680 | * sure that a non-free page is not busy and is | |
3681 | * tabled on an object... | |
3682 | * if not, don't consider it which | |
3683 | * means starting a new run | |
3684 | */ | |
3685 | RESET_STATE_OF_RUN(); | |
3686 | ||
3687 | } else { | |
3688 | if (m->phys_page != prevcontaddr + 1) { | |
b0d623f7 A |
3689 | if ((m->phys_page & pnum_mask) != 0) { |
3690 | RESET_STATE_OF_RUN(); | |
3691 | goto did_consider; | |
3692 | } else { | |
3693 | npages = 1; | |
3694 | start_idx = page_idx; | |
3695 | start_pnum = m->phys_page; | |
3696 | } | |
2d21ac55 A |
3697 | } else { |
3698 | npages++; | |
e5568f75 | 3699 | } |
2d21ac55 | 3700 | prevcontaddr = m->phys_page; |
b0d623f7 A |
3701 | |
3702 | VM_PAGE_CHECK(m); | |
2d21ac55 A |
3703 | if (m->free) { |
3704 | free_considered++; | |
b0d623f7 A |
3705 | } else { |
3706 | /* | |
3707 | * This page is not free. | |
3708 | * If we can't steal used pages, | |
3709 | * we have to give up this run | |
3710 | * and keep looking. | |
3711 | * Otherwise, we might need to | |
3712 | * move the contents of this page | |
3713 | * into a substitute page. | |
3714 | */ | |
3715 | #if VM_PAGE_FIND_CONTIGUOUS_CAN_STEAL | |
3716 | if (m->pmapped || m->dirty) { | |
3717 | substitute_needed++; | |
3718 | } | |
3719 | #else | |
3720 | RESET_STATE_OF_RUN(); | |
3721 | #endif | |
2d21ac55 | 3722 | } |
b0d623f7 | 3723 | |
2d21ac55 A |
3724 | if ((free_considered + substitute_needed) > free_available) { |
3725 | /* | |
3726 | * if we let this run continue | |
3727 | * we will end up dropping the vm_page_free_count | |
3728 | * below the reserve limit... we need to abort | |
3729 | * this run, but we can at least re-consider this | |
3730 | * page... thus the jump back to 'retry' | |
3731 | */ | |
3732 | RESET_STATE_OF_RUN(); | |
3733 | ||
3734 | if (free_available && considered <= MAX_CONSIDERED_BEFORE_YIELD) { | |
3735 | considered++; | |
3736 | goto retry; | |
e5568f75 | 3737 | } |
2d21ac55 A |
3738 | /* |
3739 | * free_available == 0 | |
3740 | * so can't consider any free pages... if | |
3741 | * we went to retry in this case, we'd | |
3742 | * get stuck looking at the same page | |
3743 | * w/o making any forward progress | |
3744 | * we also want to take this path if we've already | |
3745 | * reached our limit that controls the lock latency | |
3746 | */ | |
e5568f75 | 3747 | } |
2d21ac55 | 3748 | } |
b0d623f7 | 3749 | did_consider: |
2d21ac55 A |
3750 | if (considered > MAX_CONSIDERED_BEFORE_YIELD && npages <= 1) { |
3751 | ||
b0d623f7 | 3752 | lck_mtx_unlock(&vm_page_queue_free_lock); |
2d21ac55 | 3753 | vm_page_unlock_queues(); |
e5568f75 | 3754 | |
2d21ac55 A |
3755 | mutex_pause(0); |
3756 | ||
3757 | vm_page_lock_queues(); | |
b0d623f7 | 3758 | lck_mtx_lock(&vm_page_queue_free_lock); |
2d21ac55 A |
3759 | |
3760 | RESET_STATE_OF_RUN(); | |
1c79356b | 3761 | /* |
2d21ac55 A |
3762 | * reset our free page limit since we |
3763 | * dropped the lock protecting the vm_page_free_queue | |
1c79356b | 3764 | */ |
2d21ac55 A |
3765 | free_available = vm_page_free_count - vm_page_free_reserved; |
3766 | considered = 0; | |
3767 | #if MACH_ASSERT | |
3768 | yielded++; | |
3769 | #endif | |
3770 | goto retry; | |
3771 | } | |
3772 | considered++; | |
3773 | } | |
3774 | m = VM_PAGE_NULL; | |
3775 | ||
b0d623f7 A |
3776 | if (npages != contig_pages) { |
3777 | if (!wrapped) { | |
3778 | /* | |
3779 | * We didn't find a contiguous range but we didn't | |
3780 | * start from the very first page. | |
3781 | * Start again from the very first page. | |
3782 | */ | |
3783 | RESET_STATE_OF_RUN(); | |
3784 | if( flags & KMA_LOMEM) | |
3785 | idx_last_contig_page_found = vm_page_lomem_find_contiguous_last_idx = 0; | |
3786 | else | |
3787 | idx_last_contig_page_found = vm_page_find_contiguous_last_idx = 0; | |
3788 | last_idx = 0; | |
3789 | page_idx = last_idx; | |
3790 | wrapped = TRUE; | |
3791 | goto retry; | |
3792 | } | |
3793 | lck_mtx_unlock(&vm_page_queue_free_lock); | |
3794 | } else { | |
2d21ac55 A |
3795 | vm_page_t m1; |
3796 | vm_page_t m2; | |
3797 | unsigned int cur_idx; | |
3798 | unsigned int tmp_start_idx; | |
3799 | vm_object_t locked_object = VM_OBJECT_NULL; | |
3800 | boolean_t abort_run = FALSE; | |
3801 | ||
b0d623f7 A |
3802 | assert(page_idx - start_idx == contig_pages); |
3803 | ||
2d21ac55 A |
3804 | tmp_start_idx = start_idx; |
3805 | ||
3806 | /* | |
3807 | * first pass through to pull the free pages | |
3808 | * off of the free queue so that in case we | |
3809 | * need substitute pages, we won't grab any | |
3810 | * of the free pages in the run... we'll clear | |
3811 | * the 'free' bit in the 2nd pass, and even in | |
3812 | * an abort_run case, we'll collect all of the | |
3813 | * free pages in this run and return them to the free list | |
3814 | */ | |
3815 | while (start_idx < page_idx) { | |
3816 | ||
3817 | m1 = &vm_pages[start_idx++]; | |
3818 | ||
b0d623f7 A |
3819 | #if !VM_PAGE_FIND_CONTIGUOUS_CAN_STEAL |
3820 | assert(m1->free); | |
3821 | #endif | |
3822 | ||
2d21ac55 | 3823 | if (m1->free) { |
0b4c1975 | 3824 | unsigned int color; |
2d21ac55 | 3825 | |
0b4c1975 | 3826 | color = m1->phys_page & vm_color_mask; |
b0d623f7 | 3827 | #if MACH_ASSERT |
6d2010ae | 3828 | vm_page_verify_free_list(&vm_page_queue_free[color], color, m1, TRUE); |
b0d623f7 | 3829 | #endif |
0b4c1975 A |
3830 | queue_remove(&vm_page_queue_free[color], |
3831 | m1, | |
3832 | vm_page_t, | |
3833 | pageq); | |
d1ecb069 A |
3834 | m1->pageq.next = NULL; |
3835 | m1->pageq.prev = NULL; | |
0b4c1975 | 3836 | #if MACH_ASSERT |
6d2010ae | 3837 | vm_page_verify_free_list(&vm_page_queue_free[color], color, VM_PAGE_NULL, FALSE); |
0b4c1975 | 3838 | #endif |
b0d623f7 A |
3839 | /* |
3840 | * Clear the "free" bit so that this page | |
3841 | * does not get considered for another | |
3842 | * concurrent physically-contiguous allocation. | |
3843 | */ | |
3844 | m1->free = FALSE; | |
3845 | assert(m1->busy); | |
0b4c1975 A |
3846 | |
3847 | vm_page_free_count--; | |
2d21ac55 A |
3848 | } |
3849 | } | |
3850 | /* | |
3851 | * adjust global freelist counts | |
3852 | */ | |
3853 | if (vm_page_free_count < vm_page_free_count_minimum) | |
3854 | vm_page_free_count_minimum = vm_page_free_count; | |
3855 | ||
b0d623f7 A |
3856 | if( flags & KMA_LOMEM) |
3857 | vm_page_lomem_find_contiguous_last_idx = page_idx; | |
3858 | else | |
3859 | vm_page_find_contiguous_last_idx = page_idx; | |
3860 | ||
2d21ac55 A |
3861 | /* |
3862 | * we can drop the free queue lock at this point since | |
3863 | * we've pulled any 'free' candidates off of the list | |
3864 | * we need it dropped so that we can do a vm_page_grab | |
3865 | * when substituing for pmapped/dirty pages | |
3866 | */ | |
b0d623f7 | 3867 | lck_mtx_unlock(&vm_page_queue_free_lock); |
2d21ac55 A |
3868 | |
3869 | start_idx = tmp_start_idx; | |
3870 | cur_idx = page_idx - 1; | |
3871 | ||
3872 | while (start_idx++ < page_idx) { | |
3873 | /* | |
3874 | * must go through the list from back to front | |
3875 | * so that the page list is created in the | |
3876 | * correct order - low -> high phys addresses | |
3877 | */ | |
3878 | m1 = &vm_pages[cur_idx--]; | |
3879 | ||
b0d623f7 A |
3880 | assert(!m1->free); |
3881 | if (m1->object == VM_OBJECT_NULL) { | |
2d21ac55 | 3882 | /* |
b0d623f7 | 3883 | * page has already been removed from |
2d21ac55 A |
3884 | * the free list in the 1st pass |
3885 | */ | |
b0d623f7 | 3886 | assert(m1->offset == (vm_object_offset_t) -1); |
2d21ac55 A |
3887 | assert(m1->busy); |
3888 | assert(!m1->wanted); | |
3889 | assert(!m1->laundry); | |
e5568f75 | 3890 | } else { |
2d21ac55 A |
3891 | vm_object_t object; |
3892 | ||
3893 | if (abort_run == TRUE) | |
3894 | continue; | |
3895 | ||
3896 | object = m1->object; | |
3897 | ||
3898 | if (object != locked_object) { | |
3899 | if (locked_object) { | |
3900 | vm_object_unlock(locked_object); | |
3901 | locked_object = VM_OBJECT_NULL; | |
3902 | } | |
3903 | if (vm_object_lock_try(object)) | |
3904 | locked_object = object; | |
3905 | } | |
3906 | if (locked_object == VM_OBJECT_NULL || | |
b0d623f7 | 3907 | (VM_PAGE_WIRED(m1) || m1->gobbled || |
2d21ac55 A |
3908 | m1->encrypted || m1->encrypted_cleaning || m1->cs_validated || m1->cs_tainted || |
3909 | m1->error || m1->absent || m1->pageout_queue || m1->laundry || m1->wanted || m1->precious || | |
3910 | m1->cleaning || m1->overwriting || m1->restart || m1->unusual || m1->list_req_pending || m1->busy)) { | |
3911 | ||
3912 | if (locked_object) { | |
3913 | vm_object_unlock(locked_object); | |
3914 | locked_object = VM_OBJECT_NULL; | |
3915 | } | |
3916 | tmp_start_idx = cur_idx; | |
3917 | abort_run = TRUE; | |
3918 | continue; | |
3919 | } | |
3920 | if (m1->pmapped || m1->dirty) { | |
3921 | int refmod; | |
3922 | vm_object_offset_t offset; | |
3923 | ||
3924 | m2 = vm_page_grab(); | |
3925 | ||
3926 | if (m2 == VM_PAGE_NULL) { | |
3927 | if (locked_object) { | |
3928 | vm_object_unlock(locked_object); | |
3929 | locked_object = VM_OBJECT_NULL; | |
3930 | } | |
3931 | tmp_start_idx = cur_idx; | |
3932 | abort_run = TRUE; | |
3933 | continue; | |
3934 | } | |
3935 | if (m1->pmapped) | |
3936 | refmod = pmap_disconnect(m1->phys_page); | |
3937 | else | |
3938 | refmod = 0; | |
3939 | vm_page_copy(m1, m2); | |
3940 | ||
3941 | m2->reference = m1->reference; | |
3942 | m2->dirty = m1->dirty; | |
3943 | ||
3944 | if (refmod & VM_MEM_REFERENCED) | |
3945 | m2->reference = TRUE; | |
3946 | if (refmod & VM_MEM_MODIFIED) | |
3947 | m2->dirty = TRUE; | |
3948 | offset = m1->offset; | |
3949 | ||
3950 | /* | |
3951 | * completely cleans up the state | |
3952 | * of the page so that it is ready | |
3953 | * to be put onto the free list, or | |
3954 | * for this purpose it looks like it | |
3955 | * just came off of the free list | |
3956 | */ | |
3957 | vm_page_free_prepare(m1); | |
3958 | ||
3959 | /* | |
3960 | * make sure we clear the ref/mod state | |
3961 | * from the pmap layer... else we risk | |
3962 | * inheriting state from the last time | |
3963 | * this page was used... | |
3964 | */ | |
3965 | pmap_clear_refmod(m2->phys_page, VM_MEM_MODIFIED | VM_MEM_REFERENCED); | |
3966 | /* | |
3967 | * now put the substitute page on the object | |
3968 | */ | |
b0d623f7 | 3969 | vm_page_insert_internal(m2, locked_object, offset, TRUE, TRUE); |
2d21ac55 A |
3970 | |
3971 | if (m2->reference) | |
3972 | vm_page_activate(m2); | |
3973 | else | |
3974 | vm_page_deactivate(m2); | |
3975 | ||
3976 | PAGE_WAKEUP_DONE(m2); | |
3977 | ||
3978 | } else { | |
3979 | /* | |
3980 | * completely cleans up the state | |
3981 | * of the page so that it is ready | |
3982 | * to be put onto the free list, or | |
3983 | * for this purpose it looks like it | |
3984 | * just came off of the free list | |
3985 | */ | |
3986 | vm_page_free_prepare(m1); | |
3987 | } | |
3988 | #if MACH_ASSERT | |
3989 | stolen_pages++; | |
3990 | #endif | |
1c79356b | 3991 | } |
2d21ac55 A |
3992 | m1->pageq.next = (queue_entry_t) m; |
3993 | m1->pageq.prev = NULL; | |
3994 | m = m1; | |
e5568f75 | 3995 | } |
2d21ac55 A |
3996 | if (locked_object) { |
3997 | vm_object_unlock(locked_object); | |
3998 | locked_object = VM_OBJECT_NULL; | |
1c79356b A |
3999 | } |
4000 | ||
2d21ac55 A |
4001 | if (abort_run == TRUE) { |
4002 | if (m != VM_PAGE_NULL) { | |
b0d623f7 | 4003 | vm_page_free_list(m, FALSE); |
2d21ac55 A |
4004 | } |
4005 | #if MACH_ASSERT | |
4006 | dumped_run++; | |
4007 | #endif | |
4008 | /* | |
4009 | * want the index of the last | |
4010 | * page in this run that was | |
4011 | * successfully 'stolen', so back | |
4012 | * it up 1 for the auto-decrement on use | |
4013 | * and 1 more to bump back over this page | |
4014 | */ | |
4015 | page_idx = tmp_start_idx + 2; | |
b0d623f7 A |
4016 | if (page_idx >= vm_pages_count) { |
4017 | if (wrapped) | |
4018 | goto done_scanning; | |
4019 | page_idx = last_idx = 0; | |
4020 | wrapped = TRUE; | |
4021 | } | |
4022 | abort_run = FALSE; | |
4023 | ||
2d21ac55 | 4024 | /* |
b0d623f7 A |
4025 | * We didn't find a contiguous range but we didn't |
4026 | * start from the very first page. | |
4027 | * Start again from the very first page. | |
2d21ac55 | 4028 | */ |
b0d623f7 A |
4029 | RESET_STATE_OF_RUN(); |
4030 | ||
4031 | if( flags & KMA_LOMEM) | |
4032 | idx_last_contig_page_found = vm_page_lomem_find_contiguous_last_idx = page_idx; | |
4033 | else | |
4034 | idx_last_contig_page_found = vm_page_find_contiguous_last_idx = page_idx; | |
4035 | ||
4036 | last_idx = page_idx; | |
2d21ac55 | 4037 | |
b0d623f7 A |
4038 | lck_mtx_lock(&vm_page_queue_free_lock); |
4039 | /* | |
4040 | * reset our free page limit since we | |
4041 | * dropped the lock protecting the vm_page_free_queue | |
4042 | */ | |
4043 | free_available = vm_page_free_count - vm_page_free_reserved; | |
2d21ac55 A |
4044 | goto retry; |
4045 | } | |
e5568f75 | 4046 | |
e5568f75 | 4047 | for (m1 = m; m1 != VM_PAGE_NULL; m1 = NEXT_PAGE(m1)) { |
2d21ac55 A |
4048 | |
4049 | if (wire == TRUE) | |
4050 | m1->wire_count++; | |
4051 | else | |
4052 | m1->gobbled = TRUE; | |
e5568f75 | 4053 | } |
2d21ac55 A |
4054 | if (wire == FALSE) |
4055 | vm_page_gobble_count += npages; | |
4056 | ||
4057 | /* | |
4058 | * gobbled pages are also counted as wired pages | |
4059 | */ | |
e5568f75 | 4060 | vm_page_wire_count += npages; |
e5568f75 | 4061 | |
2d21ac55 A |
4062 | assert(vm_page_verify_contiguous(m, npages)); |
4063 | } | |
4064 | done_scanning: | |
4065 | vm_page_unlock_queues(); | |
4066 | ||
593a1d5f | 4067 | #if DEBUG |
2d21ac55 A |
4068 | clock_get_system_microtime(&tv_end_sec, &tv_end_usec); |
4069 | ||
4070 | tv_end_sec -= tv_start_sec; | |
4071 | if (tv_end_usec < tv_start_usec) { | |
4072 | tv_end_sec--; | |
4073 | tv_end_usec += 1000000; | |
1c79356b | 4074 | } |
2d21ac55 A |
4075 | tv_end_usec -= tv_start_usec; |
4076 | if (tv_end_usec >= 1000000) { | |
4077 | tv_end_sec++; | |
4078 | tv_end_sec -= 1000000; | |
4079 | } | |
b0d623f7 A |
4080 | if (vm_page_find_contig_debug) { |
4081 | printf("%s(num=%d,low=%d): found %d pages at 0x%llx in %ld.%06ds... started at %d... scanned %d pages... yielded %d times... dumped run %d times... stole %d pages\n", | |
4082 | __func__, contig_pages, max_pnum, npages, (vm_object_offset_t)start_pnum << PAGE_SHIFT, | |
4083 | (long)tv_end_sec, tv_end_usec, orig_last_idx, | |
4084 | scanned, yielded, dumped_run, stolen_pages); | |
4085 | } | |
e5568f75 | 4086 | |
593a1d5f A |
4087 | #endif |
4088 | #if MACH_ASSERT | |
2d21ac55 A |
4089 | vm_page_verify_free_lists(); |
4090 | #endif | |
e5568f75 | 4091 | return m; |
1c79356b A |
4092 | } |
4093 | ||
4094 | /* | |
4095 | * Allocate a list of contiguous, wired pages. | |
4096 | */ | |
4097 | kern_return_t | |
4098 | cpm_allocate( | |
4099 | vm_size_t size, | |
4100 | vm_page_t *list, | |
2d21ac55 | 4101 | ppnum_t max_pnum, |
b0d623f7 A |
4102 | ppnum_t pnum_mask, |
4103 | boolean_t wire, | |
4104 | int flags) | |
1c79356b | 4105 | { |
91447636 A |
4106 | vm_page_t pages; |
4107 | unsigned int npages; | |
1c79356b | 4108 | |
6d2010ae | 4109 | if (size % PAGE_SIZE != 0) |
1c79356b A |
4110 | return KERN_INVALID_ARGUMENT; |
4111 | ||
b0d623f7 A |
4112 | npages = (unsigned int) (size / PAGE_SIZE); |
4113 | if (npages != size / PAGE_SIZE) { | |
4114 | /* 32-bit overflow */ | |
4115 | return KERN_INVALID_ARGUMENT; | |
4116 | } | |
1c79356b | 4117 | |
1c79356b A |
4118 | /* |
4119 | * Obtain a pointer to a subset of the free | |
4120 | * list large enough to satisfy the request; | |
4121 | * the region will be physically contiguous. | |
4122 | */ | |
b0d623f7 | 4123 | pages = vm_page_find_contiguous(npages, max_pnum, pnum_mask, wire, flags); |
e5568f75 | 4124 | |
2d21ac55 | 4125 | if (pages == VM_PAGE_NULL) |
1c79356b | 4126 | return KERN_NO_SPACE; |
1c79356b | 4127 | /* |
2d21ac55 | 4128 | * determine need for wakeups |
1c79356b | 4129 | */ |
2d21ac55 A |
4130 | if ((vm_page_free_count < vm_page_free_min) || |
4131 | ((vm_page_free_count < vm_page_free_target) && | |
4132 | ((vm_page_inactive_count + vm_page_speculative_count) < vm_page_inactive_min))) | |
e5568f75 | 4133 | thread_wakeup((event_t) &vm_page_free_wanted); |
2d21ac55 | 4134 | |
6d2010ae A |
4135 | VM_CHECK_MEMORYSTATUS; |
4136 | ||
1c79356b A |
4137 | /* |
4138 | * The CPM pages should now be available and | |
4139 | * ordered by ascending physical address. | |
4140 | */ | |
4141 | assert(vm_page_verify_contiguous(pages, npages)); | |
4142 | ||
4143 | *list = pages; | |
4144 | return KERN_SUCCESS; | |
4145 | } | |
6d2010ae A |
4146 | |
4147 | ||
4148 | unsigned int vm_max_delayed_work_limit = DEFAULT_DELAYED_WORK_LIMIT; | |
4149 | ||
4150 | /* | |
4151 | * when working on a 'run' of pages, it is necessary to hold | |
4152 | * the vm_page_queue_lock (a hot global lock) for certain operations | |
4153 | * on the page... however, the majority of the work can be done | |
4154 | * while merely holding the object lock... in fact there are certain | |
4155 | * collections of pages that don't require any work brokered by the | |
4156 | * vm_page_queue_lock... to mitigate the time spent behind the global | |
4157 | * lock, go to a 2 pass algorithm... collect pages up to DELAYED_WORK_LIMIT | |
4158 | * while doing all of the work that doesn't require the vm_page_queue_lock... | |
4159 | * then call vm_page_do_delayed_work to acquire the vm_page_queue_lock and do the | |
4160 | * necessary work for each page... we will grab the busy bit on the page | |
4161 | * if it's not already held so that vm_page_do_delayed_work can drop the object lock | |
4162 | * if it can't immediately take the vm_page_queue_lock in order to compete | |
4163 | * for the locks in the same order that vm_pageout_scan takes them. | |
4164 | * the operation names are modeled after the names of the routines that | |
4165 | * need to be called in order to make the changes very obvious in the | |
4166 | * original loop | |
4167 | */ | |
4168 | ||
4169 | void | |
4170 | vm_page_do_delayed_work( | |
4171 | vm_object_t object, | |
4172 | struct vm_page_delayed_work *dwp, | |
4173 | int dw_count) | |
4174 | { | |
4175 | int j; | |
4176 | vm_page_t m; | |
4177 | vm_page_t local_free_q = VM_PAGE_NULL; | |
4178 | boolean_t dropped_obj_lock = FALSE; | |
4179 | ||
4180 | /* | |
4181 | * pageout_scan takes the vm_page_lock_queues first | |
4182 | * then tries for the object lock... to avoid what | |
4183 | * is effectively a lock inversion, we'll go to the | |
4184 | * trouble of taking them in that same order... otherwise | |
4185 | * if this object contains the majority of the pages resident | |
4186 | * in the UBC (or a small set of large objects actively being | |
4187 | * worked on contain the majority of the pages), we could | |
4188 | * cause the pageout_scan thread to 'starve' in its attempt | |
4189 | * to find pages to move to the free queue, since it has to | |
4190 | * successfully acquire the object lock of any candidate page | |
4191 | * before it can steal/clean it. | |
4192 | */ | |
4193 | if (!vm_page_trylockspin_queues()) { | |
4194 | vm_object_unlock(object); | |
4195 | ||
4196 | vm_page_lockspin_queues(); | |
4197 | ||
4198 | for (j = 0; ; j++) { | |
4199 | if (!vm_object_lock_avoid(object) && | |
4200 | _vm_object_lock_try(object)) | |
4201 | break; | |
4202 | vm_page_unlock_queues(); | |
4203 | mutex_pause(j); | |
4204 | vm_page_lockspin_queues(); | |
4205 | } | |
4206 | dropped_obj_lock = TRUE; | |
4207 | } | |
4208 | for (j = 0; j < dw_count; j++, dwp++) { | |
4209 | ||
4210 | m = dwp->dw_m; | |
4211 | ||
4212 | if (dwp->dw_mask & DW_set_list_req_pending) { | |
4213 | m->list_req_pending = TRUE; | |
4214 | ||
4215 | if (dropped_obj_lock == TRUE) { | |
4216 | /* | |
4217 | * need to make sure anyone that might have | |
4218 | * blocked on busy == TRUE when we dropped | |
4219 | * the object lock gets a chance to re-evaluate | |
4220 | * its state since we have several places | |
4221 | * where we avoid potential deadlocks with | |
4222 | * the fileysystem by stealing pages with | |
4223 | * list_req_pending == TRUE and busy == TRUE | |
4224 | */ | |
4225 | dwp->dw_mask |= DW_PAGE_WAKEUP; | |
4226 | } | |
4227 | } | |
4228 | if (dwp->dw_mask & DW_vm_pageout_throttle_up) | |
4229 | vm_pageout_throttle_up(m); | |
4230 | ||
4231 | if (dwp->dw_mask & DW_vm_page_wire) | |
4232 | vm_page_wire(m); | |
4233 | else if (dwp->dw_mask & DW_vm_page_unwire) { | |
4234 | boolean_t queueit; | |
4235 | ||
4236 | queueit = (dwp->dw_mask & DW_vm_page_free) ? FALSE : TRUE; | |
4237 | ||
4238 | vm_page_unwire(m, queueit); | |
4239 | } | |
4240 | if (dwp->dw_mask & DW_vm_page_free) { | |
4241 | vm_page_free_prepare_queues(m); | |
4242 | ||
4243 | assert(m->pageq.next == NULL && m->pageq.prev == NULL); | |
4244 | /* | |
4245 | * Add this page to our list of reclaimed pages, | |
4246 | * to be freed later. | |
4247 | */ | |
4248 | m->pageq.next = (queue_entry_t) local_free_q; | |
4249 | local_free_q = m; | |
4250 | } else { | |
4251 | if (dwp->dw_mask & DW_vm_page_deactivate_internal) | |
4252 | vm_page_deactivate_internal(m, FALSE); | |
4253 | else if (dwp->dw_mask & DW_vm_page_activate) { | |
4254 | if (m->active == FALSE) { | |
4255 | vm_page_activate(m); | |
4256 | } | |
4257 | } | |
4258 | else if (dwp->dw_mask & DW_vm_page_speculate) | |
4259 | vm_page_speculate(m, TRUE); | |
4260 | else if (dwp->dw_mask & DW_vm_page_lru) | |
4261 | vm_page_lru(m); | |
4262 | else if (dwp->dw_mask & DW_VM_PAGE_QUEUES_REMOVE) | |
4263 | VM_PAGE_QUEUES_REMOVE(m); | |
4264 | ||
4265 | if (dwp->dw_mask & DW_set_reference) | |
4266 | m->reference = TRUE; | |
4267 | else if (dwp->dw_mask & DW_clear_reference) | |
4268 | m->reference = FALSE; | |
4269 | ||
4270 | if (dwp->dw_mask & DW_move_page) { | |
4271 | VM_PAGE_QUEUES_REMOVE(m); | |
4272 | ||
4273 | assert(!m->laundry); | |
4274 | assert(m->object != kernel_object); | |
4275 | assert(m->pageq.next == NULL && | |
4276 | m->pageq.prev == NULL); | |
4277 | ||
4278 | VM_PAGE_ENQUEUE_INACTIVE(m, FALSE); | |
4279 | } | |
4280 | if (dwp->dw_mask & DW_clear_busy) | |
4281 | m->busy = FALSE; | |
4282 | ||
4283 | if (dwp->dw_mask & DW_PAGE_WAKEUP) | |
4284 | PAGE_WAKEUP(m); | |
4285 | } | |
4286 | } | |
4287 | vm_page_unlock_queues(); | |
4288 | ||
4289 | if (local_free_q) | |
4290 | vm_page_free_list(local_free_q, TRUE); | |
4291 | ||
4292 | VM_CHECK_MEMORYSTATUS; | |
4293 | ||
4294 | } | |
4295 | ||
4296 | ||
2d21ac55 | 4297 | |
0b4c1975 | 4298 | |
6d2010ae A |
4299 | void vm_check_memorystatus() |
4300 | { | |
4301 | #if CONFIG_EMBEDDED | |
4302 | static boolean_t in_critical = FALSE; | |
4303 | static unsigned int last_memorystatus = 0; | |
4304 | unsigned int pages_avail; | |
4305 | ||
4306 | if (!kern_memorystatus_delta) { | |
4307 | return; | |
4308 | } | |
4309 | ||
4310 | pages_avail = (vm_page_active_count + | |
4311 | vm_page_inactive_count + | |
4312 | vm_page_speculative_count + | |
4313 | vm_page_free_count + | |
4314 | (VM_DYNAMIC_PAGING_ENABLED(memory_manager_default) ? 0 : vm_page_purgeable_count)); | |
4315 | if ( (!in_critical && (pages_avail < kern_memorystatus_delta)) || | |
4316 | (pages_avail >= (last_memorystatus + kern_memorystatus_delta)) || | |
4317 | (last_memorystatus >= (pages_avail + kern_memorystatus_delta)) ) { | |
4318 | kern_memorystatus_level = pages_avail * 100 / atop_64(max_mem); | |
4319 | last_memorystatus = pages_avail; | |
4320 | ||
4321 | thread_wakeup((event_t)&kern_memorystatus_wakeup); | |
4322 | ||
4323 | in_critical = (pages_avail < kern_memorystatus_delta) ? TRUE : FALSE; | |
4324 | } | |
4325 | #endif | |
4326 | } | |
4327 | ||
0b4c1975 A |
4328 | kern_return_t |
4329 | vm_page_alloc_list( | |
4330 | int page_count, | |
4331 | int flags, | |
4332 | vm_page_t *list) | |
4333 | { | |
4334 | vm_page_t lo_page_list = VM_PAGE_NULL; | |
4335 | vm_page_t mem; | |
4336 | int i; | |
4337 | ||
4338 | if ( !(flags & KMA_LOMEM)) | |
4339 | panic("vm_page_alloc_list: called w/o KMA_LOMEM"); | |
4340 | ||
4341 | for (i = 0; i < page_count; i++) { | |
4342 | ||
4343 | mem = vm_page_grablo(); | |
4344 | ||
4345 | if (mem == VM_PAGE_NULL) { | |
4346 | if (lo_page_list) | |
4347 | vm_page_free_list(lo_page_list, FALSE); | |
4348 | ||
4349 | *list = VM_PAGE_NULL; | |
4350 | ||
4351 | return (KERN_RESOURCE_SHORTAGE); | |
4352 | } | |
4353 | mem->pageq.next = (queue_entry_t) lo_page_list; | |
4354 | lo_page_list = mem; | |
4355 | } | |
4356 | *list = lo_page_list; | |
4357 | ||
4358 | return (KERN_SUCCESS); | |
4359 | } | |
4360 | ||
4361 | void | |
4362 | vm_page_set_offset(vm_page_t page, vm_object_offset_t offset) | |
4363 | { | |
4364 | page->offset = offset; | |
4365 | } | |
4366 | ||
4367 | vm_page_t | |
4368 | vm_page_get_next(vm_page_t page) | |
4369 | { | |
4370 | return ((vm_page_t) page->pageq.next); | |
4371 | } | |
4372 | ||
4373 | vm_object_offset_t | |
4374 | vm_page_get_offset(vm_page_t page) | |
4375 | { | |
4376 | return (page->offset); | |
4377 | } | |
4378 | ||
4379 | ppnum_t | |
4380 | vm_page_get_phys_page(vm_page_t page) | |
4381 | { | |
4382 | return (page->phys_page); | |
4383 | } | |
4384 | ||
4385 | ||
b0d623f7 A |
4386 | /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ |
4387 | ||
d1ecb069 A |
4388 | #if HIBERNATION |
4389 | ||
b0d623f7 A |
4390 | static vm_page_t hibernate_gobble_queue; |
4391 | ||
0b4c1975 A |
4392 | extern boolean_t (* volatile consider_buffer_cache_collect)(int); |
4393 | ||
4394 | static int hibernate_drain_pageout_queue(struct vm_pageout_queue *); | |
4395 | static int hibernate_flush_dirty_pages(void); | |
4396 | static int hibernate_flush_queue(queue_head_t *, int); | |
4397 | static void hibernate_dirty_page(vm_page_t); | |
4398 | ||
4399 | void hibernate_flush_wait(void); | |
4400 | void hibernate_mark_in_progress(void); | |
4401 | void hibernate_clear_in_progress(void); | |
4402 | ||
4403 | ||
4404 | struct hibernate_statistics { | |
4405 | int hibernate_considered; | |
4406 | int hibernate_reentered_on_q; | |
4407 | int hibernate_found_dirty; | |
4408 | int hibernate_skipped_cleaning; | |
4409 | int hibernate_skipped_transient; | |
4410 | int hibernate_skipped_precious; | |
4411 | int hibernate_queue_nolock; | |
4412 | int hibernate_queue_paused; | |
4413 | int hibernate_throttled; | |
4414 | int hibernate_throttle_timeout; | |
4415 | int hibernate_drained; | |
4416 | int hibernate_drain_timeout; | |
4417 | int cd_lock_failed; | |
4418 | int cd_found_precious; | |
4419 | int cd_found_wired; | |
4420 | int cd_found_busy; | |
4421 | int cd_found_unusual; | |
4422 | int cd_found_cleaning; | |
4423 | int cd_found_laundry; | |
4424 | int cd_found_dirty; | |
4425 | int cd_local_free; | |
4426 | int cd_total_free; | |
4427 | int cd_vm_page_wire_count; | |
4428 | int cd_pages; | |
4429 | int cd_discarded; | |
4430 | int cd_count_wire; | |
4431 | } hibernate_stats; | |
4432 | ||
4433 | ||
4434 | ||
4435 | static int | |
4436 | hibernate_drain_pageout_queue(struct vm_pageout_queue *q) | |
4437 | { | |
4438 | wait_result_t wait_result; | |
4439 | ||
4440 | vm_page_lock_queues(); | |
4441 | ||
4442 | while (q->pgo_laundry) { | |
4443 | ||
4444 | q->pgo_draining = TRUE; | |
4445 | ||
4446 | assert_wait_timeout((event_t) (&q->pgo_laundry+1), THREAD_INTERRUPTIBLE, 5000, 1000*NSEC_PER_USEC); | |
4447 | ||
4448 | vm_page_unlock_queues(); | |
4449 | ||
4450 | wait_result = thread_block(THREAD_CONTINUE_NULL); | |
4451 | ||
4452 | if (wait_result == THREAD_TIMED_OUT) { | |
4453 | hibernate_stats.hibernate_drain_timeout++; | |
4454 | return (1); | |
4455 | } | |
4456 | vm_page_lock_queues(); | |
4457 | ||
4458 | hibernate_stats.hibernate_drained++; | |
4459 | } | |
4460 | vm_page_unlock_queues(); | |
4461 | ||
4462 | return (0); | |
4463 | } | |
4464 | ||
4465 | static void | |
4466 | hibernate_dirty_page(vm_page_t m) | |
4467 | { | |
4468 | vm_object_t object = m->object; | |
4469 | struct vm_pageout_queue *q; | |
4470 | ||
4471 | #if DEBUG | |
4472 | lck_mtx_assert(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED); | |
4473 | #endif | |
4474 | vm_object_lock_assert_exclusive(object); | |
4475 | ||
4476 | /* | |
4477 | * protect the object from collapse - | |
4478 | * locking in the object's paging_offset. | |
4479 | */ | |
4480 | vm_object_paging_begin(object); | |
4481 | ||
4482 | m->list_req_pending = TRUE; | |
4483 | m->cleaning = TRUE; | |
4484 | m->busy = TRUE; | |
4485 | ||
4486 | if (object->internal == TRUE) | |
4487 | q = &vm_pageout_queue_internal; | |
4488 | else | |
4489 | q = &vm_pageout_queue_external; | |
4490 | ||
4491 | /* | |
4492 | * pgo_laundry count is tied to the laundry bit | |
4493 | */ | |
4494 | m->laundry = TRUE; | |
4495 | q->pgo_laundry++; | |
4496 | ||
4497 | m->pageout_queue = TRUE; | |
4498 | queue_enter(&q->pgo_pending, m, vm_page_t, pageq); | |
4499 | ||
4500 | if (q->pgo_idle == TRUE) { | |
4501 | q->pgo_idle = FALSE; | |
4502 | thread_wakeup((event_t) &q->pgo_pending); | |
4503 | } | |
4504 | } | |
4505 | ||
4506 | static int | |
4507 | hibernate_flush_queue(queue_head_t *q, int qcount) | |
4508 | { | |
4509 | vm_page_t m; | |
4510 | vm_object_t l_object = NULL; | |
4511 | vm_object_t m_object = NULL; | |
4512 | int refmod_state = 0; | |
4513 | int try_failed_count = 0; | |
4514 | int retval = 0; | |
4515 | int current_run = 0; | |
4516 | struct vm_pageout_queue *iq; | |
4517 | struct vm_pageout_queue *eq; | |
4518 | struct vm_pageout_queue *tq; | |
4519 | ||
4520 | ||
4521 | KERNEL_DEBUG_CONSTANT(IOKDBG_CODE(DBG_HIBERNATE, 4) | DBG_FUNC_START, q, qcount, 0, 0, 0); | |
4522 | ||
4523 | iq = &vm_pageout_queue_internal; | |
4524 | eq = &vm_pageout_queue_external; | |
4525 | ||
4526 | vm_page_lock_queues(); | |
4527 | ||
4528 | while (qcount && !queue_empty(q)) { | |
4529 | ||
4530 | if (current_run++ == 1000) { | |
4531 | if (hibernate_should_abort()) { | |
4532 | retval = 1; | |
4533 | break; | |
4534 | } | |
4535 | current_run = 0; | |
4536 | } | |
4537 | ||
4538 | m = (vm_page_t) queue_first(q); | |
4539 | m_object = m->object; | |
4540 | ||
4541 | /* | |
4542 | * check to see if we currently are working | |
4543 | * with the same object... if so, we've | |
4544 | * already got the lock | |
4545 | */ | |
4546 | if (m_object != l_object) { | |
4547 | /* | |
4548 | * the object associated with candidate page is | |
4549 | * different from the one we were just working | |
4550 | * with... dump the lock if we still own it | |
4551 | */ | |
4552 | if (l_object != NULL) { | |
4553 | vm_object_unlock(l_object); | |
4554 | l_object = NULL; | |
4555 | } | |
4556 | /* | |
4557 | * Try to lock object; since we've alread got the | |
4558 | * page queues lock, we can only 'try' for this one. | |
4559 | * if the 'try' fails, we need to do a mutex_pause | |
4560 | * to allow the owner of the object lock a chance to | |
4561 | * run... | |
4562 | */ | |
4563 | if ( !vm_object_lock_try_scan(m_object)) { | |
4564 | ||
4565 | if (try_failed_count > 20) { | |
4566 | hibernate_stats.hibernate_queue_nolock++; | |
4567 | ||
4568 | goto reenter_pg_on_q; | |
4569 | } | |
4570 | vm_pageout_scan_wants_object = m_object; | |
4571 | ||
4572 | vm_page_unlock_queues(); | |
4573 | mutex_pause(try_failed_count++); | |
4574 | vm_page_lock_queues(); | |
4575 | ||
4576 | hibernate_stats.hibernate_queue_paused++; | |
4577 | continue; | |
4578 | } else { | |
4579 | l_object = m_object; | |
4580 | vm_pageout_scan_wants_object = VM_OBJECT_NULL; | |
4581 | } | |
4582 | } | |
4583 | if ( !m_object->alive || m->encrypted_cleaning || m->cleaning || m->busy || m->absent || m->error) { | |
4584 | /* | |
4585 | * page is not to be cleaned | |
4586 | * put it back on the head of its queue | |
4587 | */ | |
4588 | if (m->cleaning) | |
4589 | hibernate_stats.hibernate_skipped_cleaning++; | |
4590 | else | |
4591 | hibernate_stats.hibernate_skipped_transient++; | |
4592 | ||
4593 | goto reenter_pg_on_q; | |
4594 | } | |
4595 | if ( !m_object->pager_initialized && m_object->pager_created) | |
4596 | goto reenter_pg_on_q; | |
4597 | ||
4598 | if (m_object->copy == VM_OBJECT_NULL) { | |
4599 | if (m_object->purgable == VM_PURGABLE_VOLATILE || m_object->purgable == VM_PURGABLE_EMPTY) { | |
4600 | /* | |
4601 | * let the normal hibernate image path | |
4602 | * deal with these | |
4603 | */ | |
4604 | goto reenter_pg_on_q; | |
4605 | } | |
4606 | } | |
4607 | if ( !m->dirty && m->pmapped) { | |
4608 | refmod_state = pmap_get_refmod(m->phys_page); | |
4609 | ||
4610 | if ((refmod_state & VM_MEM_MODIFIED)) | |
4611 | m->dirty = TRUE; | |
4612 | } else | |
4613 | refmod_state = 0; | |
4614 | ||
4615 | if ( !m->dirty) { | |
4616 | /* | |
4617 | * page is not to be cleaned | |
4618 | * put it back on the head of its queue | |
4619 | */ | |
4620 | if (m->precious) | |
4621 | hibernate_stats.hibernate_skipped_precious++; | |
4622 | ||
4623 | goto reenter_pg_on_q; | |
4624 | } | |
4625 | tq = NULL; | |
4626 | ||
4627 | if (m_object->internal) { | |
4628 | if (VM_PAGE_Q_THROTTLED(iq)) | |
4629 | tq = iq; | |
4630 | } else if (VM_PAGE_Q_THROTTLED(eq)) | |
4631 | tq = eq; | |
4632 | ||
4633 | if (tq != NULL) { | |
4634 | wait_result_t wait_result; | |
4635 | int wait_count = 5; | |
4636 | ||
4637 | if (l_object != NULL) { | |
4638 | vm_object_unlock(l_object); | |
4639 | l_object = NULL; | |
4640 | } | |
4641 | vm_pageout_scan_wants_object = VM_OBJECT_NULL; | |
4642 | ||
4643 | tq->pgo_throttled = TRUE; | |
4644 | ||
4645 | while (retval == 0) { | |
4646 | ||
4647 | assert_wait_timeout((event_t) &tq->pgo_laundry, THREAD_INTERRUPTIBLE, 1000, 1000*NSEC_PER_USEC); | |
4648 | ||
4649 | vm_page_unlock_queues(); | |
4650 | ||
4651 | wait_result = thread_block(THREAD_CONTINUE_NULL); | |
4652 | ||
4653 | vm_page_lock_queues(); | |
4654 | ||
4655 | if (hibernate_should_abort()) | |
4656 | retval = 1; | |
4657 | ||
4658 | if (wait_result != THREAD_TIMED_OUT) | |
4659 | break; | |
4660 | ||
4661 | if (--wait_count == 0) { | |
4662 | hibernate_stats.hibernate_throttle_timeout++; | |
4663 | retval = 1; | |
4664 | } | |
4665 | } | |
4666 | if (retval) | |
4667 | break; | |
4668 | ||
4669 | hibernate_stats.hibernate_throttled++; | |
4670 | ||
4671 | continue; | |
4672 | } | |
4673 | VM_PAGE_QUEUES_REMOVE(m); | |
4674 | ||
4675 | hibernate_dirty_page(m); | |
4676 | ||
4677 | hibernate_stats.hibernate_found_dirty++; | |
4678 | ||
4679 | goto next_pg; | |
4680 | ||
4681 | reenter_pg_on_q: | |
4682 | queue_remove(q, m, vm_page_t, pageq); | |
4683 | queue_enter(q, m, vm_page_t, pageq); | |
4684 | ||
4685 | hibernate_stats.hibernate_reentered_on_q++; | |
4686 | next_pg: | |
4687 | hibernate_stats.hibernate_considered++; | |
4688 | ||
4689 | qcount--; | |
4690 | try_failed_count = 0; | |
4691 | } | |
4692 | if (l_object != NULL) { | |
4693 | vm_object_unlock(l_object); | |
4694 | l_object = NULL; | |
4695 | } | |
4696 | vm_pageout_scan_wants_object = VM_OBJECT_NULL; | |
4697 | ||
4698 | vm_page_unlock_queues(); | |
4699 | ||
4700 | KERNEL_DEBUG_CONSTANT(IOKDBG_CODE(DBG_HIBERNATE, 4) | DBG_FUNC_END, hibernate_stats.hibernate_found_dirty, retval, 0, 0, 0); | |
4701 | ||
4702 | return (retval); | |
4703 | } | |
4704 | ||
4705 | ||
4706 | static int | |
4707 | hibernate_flush_dirty_pages() | |
4708 | { | |
4709 | struct vm_speculative_age_q *aq; | |
4710 | uint32_t i; | |
4711 | ||
4712 | bzero(&hibernate_stats, sizeof(struct hibernate_statistics)); | |
4713 | ||
4714 | if (vm_page_local_q) { | |
4715 | for (i = 0; i < vm_page_local_q_count; i++) | |
4716 | vm_page_reactivate_local(i, TRUE, FALSE); | |
4717 | } | |
4718 | ||
4719 | for (i = 0; i <= VM_PAGE_MAX_SPECULATIVE_AGE_Q; i++) { | |
4720 | int qcount; | |
4721 | vm_page_t m; | |
4722 | ||
4723 | aq = &vm_page_queue_speculative[i]; | |
4724 | ||
4725 | if (queue_empty(&aq->age_q)) | |
4726 | continue; | |
4727 | qcount = 0; | |
4728 | ||
4729 | vm_page_lockspin_queues(); | |
4730 | ||
4731 | queue_iterate(&aq->age_q, | |
4732 | m, | |
4733 | vm_page_t, | |
4734 | pageq) | |
4735 | { | |
4736 | qcount++; | |
4737 | } | |
4738 | vm_page_unlock_queues(); | |
4739 | ||
4740 | if (qcount) { | |
4741 | if (hibernate_flush_queue(&aq->age_q, qcount)) | |
4742 | return (1); | |
4743 | } | |
4744 | } | |
4745 | if (hibernate_flush_queue(&vm_page_queue_active, vm_page_active_count)) | |
4746 | return (1); | |
4747 | if (hibernate_flush_queue(&vm_page_queue_inactive, vm_page_inactive_count - vm_zf_queue_count)) | |
4748 | return (1); | |
4749 | if (hibernate_flush_queue(&vm_page_queue_zf, vm_zf_queue_count)) | |
4750 | return (1); | |
4751 | ||
4752 | if (hibernate_drain_pageout_queue(&vm_pageout_queue_internal)) | |
4753 | return (1); | |
4754 | return (hibernate_drain_pageout_queue(&vm_pageout_queue_external)); | |
4755 | } | |
4756 | ||
4757 | ||
4758 | extern void IOSleep(unsigned int); | |
4759 | extern int sync_internal(void); | |
4760 | ||
4761 | int | |
4762 | hibernate_flush_memory() | |
4763 | { | |
4764 | int retval; | |
4765 | ||
4766 | KERNEL_DEBUG_CONSTANT(IOKDBG_CODE(DBG_HIBERNATE, 3) | DBG_FUNC_START, vm_page_free_count, 0, 0, 0, 0); | |
4767 | ||
4768 | IOSleep(2 * 1000); | |
4769 | ||
4770 | KERNEL_DEBUG_CONSTANT(IOKDBG_CODE(DBG_HIBERNATE, 3) | DBG_FUNC_NONE, vm_page_free_count, 0, 0, 0, 0); | |
4771 | ||
4772 | if ((retval = hibernate_flush_dirty_pages()) == 0) { | |
4773 | if (consider_buffer_cache_collect != NULL) { | |
4774 | ||
4775 | KERNEL_DEBUG_CONSTANT(IOKDBG_CODE(DBG_HIBERNATE, 7) | DBG_FUNC_START, vm_page_wire_count, 0, 0, 0, 0); | |
4776 | ||
4777 | sync_internal(); | |
4778 | (void)(*consider_buffer_cache_collect)(1); | |
4779 | consider_zone_gc(1); | |
4780 | ||
4781 | KERNEL_DEBUG_CONSTANT(IOKDBG_CODE(DBG_HIBERNATE, 7) | DBG_FUNC_END, vm_page_wire_count, 0, 0, 0, 0); | |
4782 | } | |
4783 | } | |
4784 | KERNEL_DEBUG_CONSTANT(IOKDBG_CODE(DBG_HIBERNATE, 3) | DBG_FUNC_END, vm_page_free_count, hibernate_stats.hibernate_found_dirty, retval, 0, 0); | |
4785 | ||
4786 | HIBPRINT("hibernate_flush_memory() considered(%d) reentered_on_q(%d) found_dirty(%d)\n", | |
4787 | hibernate_stats.hibernate_considered, | |
4788 | hibernate_stats.hibernate_reentered_on_q, | |
4789 | hibernate_stats.hibernate_found_dirty); | |
4790 | HIBPRINT(" skipped_cleaning(%d) skipped_transient(%d) skipped_precious(%d) queue_nolock(%d)\n", | |
4791 | hibernate_stats.hibernate_skipped_cleaning, | |
4792 | hibernate_stats.hibernate_skipped_transient, | |
4793 | hibernate_stats.hibernate_skipped_precious, | |
4794 | hibernate_stats.hibernate_queue_nolock); | |
4795 | HIBPRINT(" queue_paused(%d) throttled(%d) throttle_timeout(%d) drained(%d) drain_timeout(%d)\n", | |
4796 | hibernate_stats.hibernate_queue_paused, | |
4797 | hibernate_stats.hibernate_throttled, | |
4798 | hibernate_stats.hibernate_throttle_timeout, | |
4799 | hibernate_stats.hibernate_drained, | |
4800 | hibernate_stats.hibernate_drain_timeout); | |
4801 | ||
4802 | return (retval); | |
4803 | } | |
4804 | ||
6d2010ae | 4805 | |
b0d623f7 A |
4806 | static void |
4807 | hibernate_page_list_zero(hibernate_page_list_t *list) | |
4808 | { | |
4809 | uint32_t bank; | |
4810 | hibernate_bitmap_t * bitmap; | |
4811 | ||
4812 | bitmap = &list->bank_bitmap[0]; | |
4813 | for (bank = 0; bank < list->bank_count; bank++) | |
4814 | { | |
4815 | uint32_t last_bit; | |
4816 | ||
4817 | bzero((void *) &bitmap->bitmap[0], bitmap->bitmapwords << 2); | |
4818 | // set out-of-bound bits at end of bitmap. | |
4819 | last_bit = ((bitmap->last_page - bitmap->first_page + 1) & 31); | |
4820 | if (last_bit) | |
4821 | bitmap->bitmap[bitmap->bitmapwords - 1] = (0xFFFFFFFF >> last_bit); | |
4822 | ||
4823 | bitmap = (hibernate_bitmap_t *) &bitmap->bitmap[bitmap->bitmapwords]; | |
4824 | } | |
4825 | } | |
4826 | ||
4827 | void | |
4828 | hibernate_gobble_pages(uint32_t gobble_count, uint32_t free_page_time) | |
4829 | { | |
4830 | uint32_t i; | |
4831 | vm_page_t m; | |
4832 | uint64_t start, end, timeout, nsec; | |
4833 | clock_interval_to_deadline(free_page_time, 1000 * 1000 /*ms*/, &timeout); | |
4834 | clock_get_uptime(&start); | |
4835 | ||
4836 | for (i = 0; i < gobble_count; i++) | |
4837 | { | |
4838 | while (VM_PAGE_NULL == (m = vm_page_grab())) | |
4839 | { | |
4840 | clock_get_uptime(&end); | |
4841 | if (end >= timeout) | |
4842 | break; | |
4843 | VM_PAGE_WAIT(); | |
4844 | } | |
4845 | if (!m) | |
4846 | break; | |
4847 | m->busy = FALSE; | |
4848 | vm_page_gobble(m); | |
4849 | ||
4850 | m->pageq.next = (queue_entry_t) hibernate_gobble_queue; | |
4851 | hibernate_gobble_queue = m; | |
4852 | } | |
4853 | ||
4854 | clock_get_uptime(&end); | |
4855 | absolutetime_to_nanoseconds(end - start, &nsec); | |
4856 | HIBLOG("Gobbled %d pages, time: %qd ms\n", i, nsec / 1000000ULL); | |
4857 | } | |
4858 | ||
4859 | void | |
4860 | hibernate_free_gobble_pages(void) | |
4861 | { | |
4862 | vm_page_t m, next; | |
4863 | uint32_t count = 0; | |
4864 | ||
4865 | m = (vm_page_t) hibernate_gobble_queue; | |
4866 | while(m) | |
4867 | { | |
4868 | next = (vm_page_t) m->pageq.next; | |
4869 | vm_page_free(m); | |
4870 | count++; | |
4871 | m = next; | |
4872 | } | |
4873 | hibernate_gobble_queue = VM_PAGE_NULL; | |
4874 | ||
4875 | if (count) | |
4876 | HIBLOG("Freed %d pages\n", count); | |
4877 | } | |
4878 | ||
4879 | static boolean_t | |
4880 | hibernate_consider_discard(vm_page_t m) | |
4881 | { | |
4882 | vm_object_t object = NULL; | |
4883 | int refmod_state; | |
4884 | boolean_t discard = FALSE; | |
4885 | ||
4886 | do | |
4887 | { | |
0b4c1975 | 4888 | if (m->private) |
b0d623f7 A |
4889 | panic("hibernate_consider_discard: private"); |
4890 | ||
0b4c1975 A |
4891 | if (!vm_object_lock_try(m->object)) { |
4892 | hibernate_stats.cd_lock_failed++; | |
b0d623f7 | 4893 | break; |
0b4c1975 | 4894 | } |
b0d623f7 A |
4895 | object = m->object; |
4896 | ||
0b4c1975 A |
4897 | if (VM_PAGE_WIRED(m)) { |
4898 | hibernate_stats.cd_found_wired++; | |
b0d623f7 | 4899 | break; |
0b4c1975 A |
4900 | } |
4901 | if (m->precious) { | |
4902 | hibernate_stats.cd_found_precious++; | |
b0d623f7 | 4903 | break; |
0b4c1975 A |
4904 | } |
4905 | if (m->busy || !object->alive) { | |
b0d623f7 A |
4906 | /* |
4907 | * Somebody is playing with this page. | |
4908 | */ | |
6d2010ae A |
4909 | hibernate_stats.cd_found_busy++; |
4910 | break; | |
0b4c1975 A |
4911 | } |
4912 | if (m->absent || m->unusual || m->error) { | |
b0d623f7 A |
4913 | /* |
4914 | * If it's unusual in anyway, ignore it | |
4915 | */ | |
0b4c1975 | 4916 | hibernate_stats.cd_found_unusual++; |
b0d623f7 | 4917 | break; |
0b4c1975 A |
4918 | } |
4919 | if (m->cleaning) { | |
4920 | hibernate_stats.cd_found_cleaning++; | |
b0d623f7 | 4921 | break; |
0b4c1975 A |
4922 | } |
4923 | if (m->laundry || m->list_req_pending) { | |
4924 | hibernate_stats.cd_found_laundry++; | |
b0d623f7 | 4925 | break; |
0b4c1975 | 4926 | } |
b0d623f7 A |
4927 | if (!m->dirty) |
4928 | { | |
4929 | refmod_state = pmap_get_refmod(m->phys_page); | |
4930 | ||
4931 | if (refmod_state & VM_MEM_REFERENCED) | |
4932 | m->reference = TRUE; | |
4933 | if (refmod_state & VM_MEM_MODIFIED) | |
4934 | m->dirty = TRUE; | |
4935 | } | |
4936 | ||
4937 | /* | |
4938 | * If it's clean or purgeable we can discard the page on wakeup. | |
4939 | */ | |
4940 | discard = (!m->dirty) | |
4941 | || (VM_PURGABLE_VOLATILE == object->purgable) | |
0b4c1975 A |
4942 | || (VM_PURGABLE_EMPTY == object->purgable); |
4943 | ||
4944 | if (discard == FALSE) | |
4945 | hibernate_stats.cd_found_dirty++; | |
b0d623f7 A |
4946 | } |
4947 | while (FALSE); | |
4948 | ||
4949 | if (object) | |
4950 | vm_object_unlock(object); | |
4951 | ||
4952 | return (discard); | |
4953 | } | |
4954 | ||
4955 | ||
4956 | static void | |
4957 | hibernate_discard_page(vm_page_t m) | |
4958 | { | |
4959 | if (m->absent || m->unusual || m->error) | |
4960 | /* | |
4961 | * If it's unusual in anyway, ignore | |
4962 | */ | |
4963 | return; | |
4964 | ||
4965 | if (m->pmapped == TRUE) | |
4966 | { | |
4967 | __unused int refmod_state = pmap_disconnect(m->phys_page); | |
4968 | } | |
4969 | ||
4970 | if (m->laundry) | |
4971 | panic("hibernate_discard_page(%p) laundry", m); | |
4972 | if (m->private) | |
4973 | panic("hibernate_discard_page(%p) private", m); | |
4974 | if (m->fictitious) | |
4975 | panic("hibernate_discard_page(%p) fictitious", m); | |
4976 | ||
4977 | if (VM_PURGABLE_VOLATILE == m->object->purgable) | |
4978 | { | |
4979 | /* object should be on a queue */ | |
4980 | assert((m->object->objq.next != NULL) && (m->object->objq.prev != NULL)); | |
4981 | purgeable_q_t old_queue = vm_purgeable_object_remove(m->object); | |
4982 | assert(old_queue); | |
4983 | /* No need to lock page queue for token delete, hibernate_vm_unlock() | |
4984 | makes sure these locks are uncontended before sleep */ | |
4985 | vm_purgeable_token_delete_first(old_queue); | |
4986 | m->object->purgable = VM_PURGABLE_EMPTY; | |
4987 | } | |
4988 | ||
4989 | vm_page_free(m); | |
4990 | } | |
4991 | ||
4992 | /* | |
4993 | Bits zero in the bitmaps => page needs to be saved. All pages default to be saved, | |
4994 | pages known to VM to not need saving are subtracted. | |
4995 | Wired pages to be saved are present in page_list_wired, pageable in page_list. | |
4996 | */ | |
4997 | ||
4998 | void | |
4999 | hibernate_page_list_setall(hibernate_page_list_t * page_list, | |
5000 | hibernate_page_list_t * page_list_wired, | |
6d2010ae | 5001 | hibernate_page_list_t * page_list_pal, |
b0d623f7 A |
5002 | uint32_t * pagesOut) |
5003 | { | |
5004 | uint64_t start, end, nsec; | |
5005 | vm_page_t m; | |
5006 | uint32_t pages = page_list->page_count; | |
5007 | uint32_t count_zf = 0, count_throttled = 0; | |
5008 | uint32_t count_inactive = 0, count_active = 0, count_speculative = 0; | |
5009 | uint32_t count_wire = pages; | |
5010 | uint32_t count_discard_active = 0; | |
5011 | uint32_t count_discard_inactive = 0; | |
5012 | uint32_t count_discard_purgeable = 0; | |
5013 | uint32_t count_discard_speculative = 0; | |
5014 | uint32_t i; | |
5015 | uint32_t bank; | |
5016 | hibernate_bitmap_t * bitmap; | |
5017 | hibernate_bitmap_t * bitmap_wired; | |
5018 | ||
5019 | ||
0b4c1975 A |
5020 | HIBLOG("hibernate_page_list_setall start %p, %p\n", page_list, page_list_wired); |
5021 | ||
5022 | KERNEL_DEBUG_CONSTANT(IOKDBG_CODE(DBG_HIBERNATE, 8) | DBG_FUNC_START, count_wire, 0, 0, 0, 0); | |
b0d623f7 A |
5023 | |
5024 | clock_get_uptime(&start); | |
5025 | ||
5026 | hibernate_page_list_zero(page_list); | |
5027 | hibernate_page_list_zero(page_list_wired); | |
6d2010ae | 5028 | hibernate_page_list_zero(page_list_pal); |
b0d623f7 | 5029 | |
0b4c1975 A |
5030 | hibernate_stats.cd_vm_page_wire_count = vm_page_wire_count; |
5031 | hibernate_stats.cd_pages = pages; | |
5032 | ||
b0d623f7 A |
5033 | if (vm_page_local_q) { |
5034 | for (i = 0; i < vm_page_local_q_count; i++) | |
5035 | vm_page_reactivate_local(i, TRUE, TRUE); | |
5036 | } | |
5037 | ||
5038 | m = (vm_page_t) hibernate_gobble_queue; | |
5039 | while(m) | |
5040 | { | |
5041 | pages--; | |
5042 | count_wire--; | |
5043 | hibernate_page_bitset(page_list, TRUE, m->phys_page); | |
5044 | hibernate_page_bitset(page_list_wired, TRUE, m->phys_page); | |
5045 | m = (vm_page_t) m->pageq.next; | |
5046 | } | |
6d2010ae | 5047 | |
0b4c1975 A |
5048 | for( i = 0; i < real_ncpus; i++ ) |
5049 | { | |
5050 | if (cpu_data_ptr[i] && cpu_data_ptr[i]->cpu_processor) | |
5051 | { | |
5052 | for (m = PROCESSOR_DATA(cpu_data_ptr[i]->cpu_processor, free_pages); m; m = (vm_page_t)m->pageq.next) | |
5053 | { | |
5054 | pages--; | |
5055 | count_wire--; | |
5056 | hibernate_page_bitset(page_list, TRUE, m->phys_page); | |
5057 | hibernate_page_bitset(page_list_wired, TRUE, m->phys_page); | |
5058 | ||
5059 | hibernate_stats.cd_local_free++; | |
5060 | hibernate_stats.cd_total_free++; | |
5061 | } | |
5062 | } | |
5063 | } | |
6d2010ae | 5064 | |
b0d623f7 A |
5065 | for( i = 0; i < vm_colors; i++ ) |
5066 | { | |
5067 | queue_iterate(&vm_page_queue_free[i], | |
5068 | m, | |
5069 | vm_page_t, | |
5070 | pageq) | |
5071 | { | |
5072 | pages--; | |
5073 | count_wire--; | |
5074 | hibernate_page_bitset(page_list, TRUE, m->phys_page); | |
5075 | hibernate_page_bitset(page_list_wired, TRUE, m->phys_page); | |
0b4c1975 A |
5076 | |
5077 | hibernate_stats.cd_total_free++; | |
b0d623f7 A |
5078 | } |
5079 | } | |
5080 | ||
5081 | queue_iterate(&vm_lopage_queue_free, | |
5082 | m, | |
5083 | vm_page_t, | |
5084 | pageq) | |
5085 | { | |
5086 | pages--; | |
5087 | count_wire--; | |
5088 | hibernate_page_bitset(page_list, TRUE, m->phys_page); | |
5089 | hibernate_page_bitset(page_list_wired, TRUE, m->phys_page); | |
0b4c1975 A |
5090 | |
5091 | hibernate_stats.cd_total_free++; | |
b0d623f7 A |
5092 | } |
5093 | ||
5094 | queue_iterate( &vm_page_queue_throttled, | |
5095 | m, | |
5096 | vm_page_t, | |
5097 | pageq ) | |
5098 | { | |
5099 | if ((kIOHibernateModeDiscardCleanInactive & gIOHibernateMode) | |
5100 | && hibernate_consider_discard(m)) | |
5101 | { | |
5102 | hibernate_page_bitset(page_list, TRUE, m->phys_page); | |
5103 | count_discard_inactive++; | |
5104 | } | |
5105 | else | |
5106 | count_throttled++; | |
5107 | count_wire--; | |
5108 | hibernate_page_bitset(page_list_wired, TRUE, m->phys_page); | |
5109 | } | |
5110 | ||
5111 | queue_iterate( &vm_page_queue_zf, | |
5112 | m, | |
5113 | vm_page_t, | |
5114 | pageq ) | |
5115 | { | |
5116 | if ((kIOHibernateModeDiscardCleanInactive & gIOHibernateMode) | |
5117 | && hibernate_consider_discard(m)) | |
5118 | { | |
5119 | hibernate_page_bitset(page_list, TRUE, m->phys_page); | |
5120 | if (m->dirty) | |
5121 | count_discard_purgeable++; | |
5122 | else | |
5123 | count_discard_inactive++; | |
5124 | } | |
5125 | else | |
5126 | count_zf++; | |
5127 | count_wire--; | |
5128 | hibernate_page_bitset(page_list_wired, TRUE, m->phys_page); | |
5129 | } | |
5130 | ||
5131 | queue_iterate( &vm_page_queue_inactive, | |
5132 | m, | |
5133 | vm_page_t, | |
5134 | pageq ) | |
5135 | { | |
5136 | if ((kIOHibernateModeDiscardCleanInactive & gIOHibernateMode) | |
5137 | && hibernate_consider_discard(m)) | |
5138 | { | |
5139 | hibernate_page_bitset(page_list, TRUE, m->phys_page); | |
5140 | if (m->dirty) | |
5141 | count_discard_purgeable++; | |
5142 | else | |
5143 | count_discard_inactive++; | |
5144 | } | |
5145 | else | |
5146 | count_inactive++; | |
5147 | count_wire--; | |
5148 | hibernate_page_bitset(page_list_wired, TRUE, m->phys_page); | |
5149 | } | |
5150 | ||
5151 | for( i = 0; i <= VM_PAGE_MAX_SPECULATIVE_AGE_Q; i++ ) | |
5152 | { | |
5153 | queue_iterate(&vm_page_queue_speculative[i].age_q, | |
5154 | m, | |
5155 | vm_page_t, | |
5156 | pageq) | |
5157 | { | |
5158 | if ((kIOHibernateModeDiscardCleanInactive & gIOHibernateMode) | |
5159 | && hibernate_consider_discard(m)) | |
5160 | { | |
5161 | hibernate_page_bitset(page_list, TRUE, m->phys_page); | |
5162 | count_discard_speculative++; | |
5163 | } | |
5164 | else | |
5165 | count_speculative++; | |
5166 | count_wire--; | |
5167 | hibernate_page_bitset(page_list_wired, TRUE, m->phys_page); | |
5168 | } | |
5169 | } | |
5170 | ||
5171 | queue_iterate( &vm_page_queue_active, | |
5172 | m, | |
5173 | vm_page_t, | |
5174 | pageq ) | |
5175 | { | |
5176 | if ((kIOHibernateModeDiscardCleanActive & gIOHibernateMode) | |
5177 | && hibernate_consider_discard(m)) | |
5178 | { | |
5179 | hibernate_page_bitset(page_list, TRUE, m->phys_page); | |
5180 | if (m->dirty) | |
5181 | count_discard_purgeable++; | |
5182 | else | |
5183 | count_discard_active++; | |
5184 | } | |
5185 | else | |
5186 | count_active++; | |
5187 | count_wire--; | |
5188 | hibernate_page_bitset(page_list_wired, TRUE, m->phys_page); | |
5189 | } | |
5190 | ||
5191 | // pull wired from hibernate_bitmap | |
5192 | ||
5193 | bitmap = &page_list->bank_bitmap[0]; | |
5194 | bitmap_wired = &page_list_wired->bank_bitmap[0]; | |
5195 | for (bank = 0; bank < page_list->bank_count; bank++) | |
5196 | { | |
5197 | for (i = 0; i < bitmap->bitmapwords; i++) | |
5198 | bitmap->bitmap[i] = bitmap->bitmap[i] | ~bitmap_wired->bitmap[i]; | |
5199 | bitmap = (hibernate_bitmap_t *) &bitmap->bitmap [bitmap->bitmapwords]; | |
5200 | bitmap_wired = (hibernate_bitmap_t *) &bitmap_wired->bitmap[bitmap_wired->bitmapwords]; | |
5201 | } | |
5202 | ||
5203 | // machine dependent adjustments | |
5204 | hibernate_page_list_setall_machine(page_list, page_list_wired, &pages); | |
5205 | ||
0b4c1975 A |
5206 | hibernate_stats.cd_count_wire = count_wire; |
5207 | hibernate_stats.cd_discarded = count_discard_active + count_discard_inactive + count_discard_purgeable + count_discard_speculative; | |
5208 | ||
b0d623f7 A |
5209 | clock_get_uptime(&end); |
5210 | absolutetime_to_nanoseconds(end - start, &nsec); | |
5211 | HIBLOG("hibernate_page_list_setall time: %qd ms\n", nsec / 1000000ULL); | |
5212 | ||
5213 | HIBLOG("pages %d, wire %d, act %d, inact %d, spec %d, zf %d, throt %d, could discard act %d inact %d purgeable %d spec %d\n", | |
5214 | pages, count_wire, count_active, count_inactive, count_speculative, count_zf, count_throttled, | |
5215 | count_discard_active, count_discard_inactive, count_discard_purgeable, count_discard_speculative); | |
5216 | ||
5217 | *pagesOut = pages - count_discard_active - count_discard_inactive - count_discard_purgeable - count_discard_speculative; | |
0b4c1975 A |
5218 | |
5219 | KERNEL_DEBUG_CONSTANT(IOKDBG_CODE(DBG_HIBERNATE, 8) | DBG_FUNC_END, count_wire, *pagesOut, 0, 0, 0); | |
b0d623f7 A |
5220 | } |
5221 | ||
5222 | void | |
5223 | hibernate_page_list_discard(hibernate_page_list_t * page_list) | |
5224 | { | |
5225 | uint64_t start, end, nsec; | |
5226 | vm_page_t m; | |
5227 | vm_page_t next; | |
5228 | uint32_t i; | |
5229 | uint32_t count_discard_active = 0; | |
5230 | uint32_t count_discard_inactive = 0; | |
5231 | uint32_t count_discard_purgeable = 0; | |
5232 | uint32_t count_discard_speculative = 0; | |
5233 | ||
5234 | clock_get_uptime(&start); | |
5235 | ||
5236 | m = (vm_page_t) queue_first(&vm_page_queue_zf); | |
5237 | while (m && !queue_end(&vm_page_queue_zf, (queue_entry_t)m)) | |
5238 | { | |
5239 | next = (vm_page_t) m->pageq.next; | |
5240 | if (hibernate_page_bittst(page_list, m->phys_page)) | |
5241 | { | |
5242 | if (m->dirty) | |
5243 | count_discard_purgeable++; | |
5244 | else | |
5245 | count_discard_inactive++; | |
5246 | hibernate_discard_page(m); | |
5247 | } | |
5248 | m = next; | |
5249 | } | |
5250 | ||
5251 | for( i = 0; i <= VM_PAGE_MAX_SPECULATIVE_AGE_Q; i++ ) | |
5252 | { | |
5253 | m = (vm_page_t) queue_first(&vm_page_queue_speculative[i].age_q); | |
5254 | while (m && !queue_end(&vm_page_queue_speculative[i].age_q, (queue_entry_t)m)) | |
5255 | { | |
5256 | next = (vm_page_t) m->pageq.next; | |
5257 | if (hibernate_page_bittst(page_list, m->phys_page)) | |
5258 | { | |
5259 | count_discard_speculative++; | |
5260 | hibernate_discard_page(m); | |
5261 | } | |
5262 | m = next; | |
5263 | } | |
5264 | } | |
5265 | ||
5266 | m = (vm_page_t) queue_first(&vm_page_queue_inactive); | |
5267 | while (m && !queue_end(&vm_page_queue_inactive, (queue_entry_t)m)) | |
5268 | { | |
5269 | next = (vm_page_t) m->pageq.next; | |
5270 | if (hibernate_page_bittst(page_list, m->phys_page)) | |
5271 | { | |
5272 | if (m->dirty) | |
5273 | count_discard_purgeable++; | |
5274 | else | |
5275 | count_discard_inactive++; | |
5276 | hibernate_discard_page(m); | |
5277 | } | |
5278 | m = next; | |
5279 | } | |
5280 | ||
5281 | m = (vm_page_t) queue_first(&vm_page_queue_active); | |
5282 | while (m && !queue_end(&vm_page_queue_active, (queue_entry_t)m)) | |
5283 | { | |
5284 | next = (vm_page_t) m->pageq.next; | |
5285 | if (hibernate_page_bittst(page_list, m->phys_page)) | |
5286 | { | |
5287 | if (m->dirty) | |
5288 | count_discard_purgeable++; | |
5289 | else | |
5290 | count_discard_active++; | |
5291 | hibernate_discard_page(m); | |
5292 | } | |
5293 | m = next; | |
5294 | } | |
5295 | ||
5296 | clock_get_uptime(&end); | |
5297 | absolutetime_to_nanoseconds(end - start, &nsec); | |
5298 | HIBLOG("hibernate_page_list_discard time: %qd ms, discarded act %d inact %d purgeable %d spec %d\n", | |
5299 | nsec / 1000000ULL, | |
5300 | count_discard_active, count_discard_inactive, count_discard_purgeable, count_discard_speculative); | |
5301 | } | |
5302 | ||
d1ecb069 A |
5303 | #endif /* HIBERNATION */ |
5304 | ||
b0d623f7 | 5305 | /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ |
1c79356b A |
5306 | |
5307 | #include <mach_vm_debug.h> | |
5308 | #if MACH_VM_DEBUG | |
5309 | ||
5310 | #include <mach_debug/hash_info.h> | |
5311 | #include <vm/vm_debug.h> | |
5312 | ||
5313 | /* | |
5314 | * Routine: vm_page_info | |
5315 | * Purpose: | |
5316 | * Return information about the global VP table. | |
5317 | * Fills the buffer with as much information as possible | |
5318 | * and returns the desired size of the buffer. | |
5319 | * Conditions: | |
5320 | * Nothing locked. The caller should provide | |
5321 | * possibly-pageable memory. | |
5322 | */ | |
5323 | ||
5324 | unsigned int | |
5325 | vm_page_info( | |
5326 | hash_info_bucket_t *info, | |
5327 | unsigned int count) | |
5328 | { | |
91447636 | 5329 | unsigned int i; |
b0d623f7 | 5330 | lck_spin_t *bucket_lock; |
1c79356b A |
5331 | |
5332 | if (vm_page_bucket_count < count) | |
5333 | count = vm_page_bucket_count; | |
5334 | ||
5335 | for (i = 0; i < count; i++) { | |
5336 | vm_page_bucket_t *bucket = &vm_page_buckets[i]; | |
5337 | unsigned int bucket_count = 0; | |
5338 | vm_page_t m; | |
5339 | ||
b0d623f7 A |
5340 | bucket_lock = &vm_page_bucket_locks[i / BUCKETS_PER_LOCK]; |
5341 | lck_spin_lock(bucket_lock); | |
5342 | ||
1c79356b A |
5343 | for (m = bucket->pages; m != VM_PAGE_NULL; m = m->next) |
5344 | bucket_count++; | |
b0d623f7 A |
5345 | |
5346 | lck_spin_unlock(bucket_lock); | |
1c79356b A |
5347 | |
5348 | /* don't touch pageable memory while holding locks */ | |
5349 | info[i].hib_count = bucket_count; | |
5350 | } | |
5351 | ||
5352 | return vm_page_bucket_count; | |
5353 | } | |
5354 | #endif /* MACH_VM_DEBUG */ | |
5355 | ||
5356 | #include <mach_kdb.h> | |
5357 | #if MACH_KDB | |
5358 | ||
5359 | #include <ddb/db_output.h> | |
5360 | #include <vm/vm_print.h> | |
5361 | #define printf kdbprintf | |
5362 | ||
5363 | /* | |
5364 | * Routine: vm_page_print [exported] | |
5365 | */ | |
5366 | void | |
5367 | vm_page_print( | |
91447636 | 5368 | db_addr_t db_addr) |
1c79356b | 5369 | { |
91447636 A |
5370 | vm_page_t p; |
5371 | ||
5372 | p = (vm_page_t) (long) db_addr; | |
1c79356b A |
5373 | |
5374 | iprintf("page 0x%x\n", p); | |
5375 | ||
5376 | db_indent += 2; | |
5377 | ||
5378 | iprintf("object=0x%x", p->object); | |
5379 | printf(", offset=0x%x", p->offset); | |
5380 | printf(", wire_count=%d", p->wire_count); | |
1c79356b | 5381 | |
b0d623f7 A |
5382 | iprintf("%slocal, %sinactive, %sactive, %sthrottled, %sgobbled, %slaundry, %sfree, %sref, %sencrypted\n", |
5383 | (p->local ? "" : "!"), | |
1c79356b A |
5384 | (p->inactive ? "" : "!"), |
5385 | (p->active ? "" : "!"), | |
2d21ac55 | 5386 | (p->throttled ? "" : "!"), |
1c79356b A |
5387 | (p->gobbled ? "" : "!"), |
5388 | (p->laundry ? "" : "!"), | |
5389 | (p->free ? "" : "!"), | |
5390 | (p->reference ? "" : "!"), | |
91447636 | 5391 | (p->encrypted ? "" : "!")); |
1c79356b A |
5392 | iprintf("%sbusy, %swanted, %stabled, %sfictitious, %sprivate, %sprecious\n", |
5393 | (p->busy ? "" : "!"), | |
5394 | (p->wanted ? "" : "!"), | |
5395 | (p->tabled ? "" : "!"), | |
5396 | (p->fictitious ? "" : "!"), | |
5397 | (p->private ? "" : "!"), | |
5398 | (p->precious ? "" : "!")); | |
5399 | iprintf("%sabsent, %serror, %sdirty, %scleaning, %spageout, %sclustered\n", | |
5400 | (p->absent ? "" : "!"), | |
5401 | (p->error ? "" : "!"), | |
5402 | (p->dirty ? "" : "!"), | |
5403 | (p->cleaning ? "" : "!"), | |
5404 | (p->pageout ? "" : "!"), | |
5405 | (p->clustered ? "" : "!")); | |
2d21ac55 | 5406 | iprintf("%soverwriting, %srestart, %sunusual\n", |
1c79356b A |
5407 | (p->overwriting ? "" : "!"), |
5408 | (p->restart ? "" : "!"), | |
0b4e3aa0 | 5409 | (p->unusual ? "" : "!")); |
1c79356b | 5410 | |
55e303ae | 5411 | iprintf("phys_page=0x%x", p->phys_page); |
1c79356b A |
5412 | |
5413 | db_indent -= 2; | |
5414 | } | |
5415 | #endif /* MACH_KDB */ |