]>
Commit | Line | Data |
---|---|---|
1c79356b | 1 | /* |
b0d623f7 | 2 | * Copyright (c) 2000-2009 Apple Inc. All rights reserved. |
1c79356b | 3 | * |
2d21ac55 | 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
1c79356b | 5 | * |
2d21ac55 A |
6 | * This file contains Original Code and/or Modifications of Original Code |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
8f6c56a5 | 14 | * |
2d21ac55 A |
15 | * Please obtain a copy of the License at |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
8f6c56a5 A |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
2d21ac55 A |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
8f6c56a5 | 25 | * |
2d21ac55 | 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
1c79356b | 27 | */ |
1c79356b | 28 | |
b0d623f7 A |
29 | #include <vm/pmap.h> |
30 | #include <sys/kdebug.h> | |
1c79356b | 31 | |
b0d623f7 | 32 | #ifdef MACH_KERNEL_PRIVATE |
1c79356b | 33 | |
b0d623f7 A |
34 | /* |
35 | * pmap locking | |
2d21ac55 | 36 | */ |
0b4e3aa0 | 37 | |
b0d623f7 A |
38 | #define PMAP_LOCK(pmap) { \ |
39 | simple_lock(&(pmap)->lock); \ | |
40 | } | |
0b4e3aa0 | 41 | |
b0d623f7 A |
42 | #define PMAP_UNLOCK(pmap) { \ |
43 | simple_unlock(&(pmap)->lock); \ | |
44 | } | |
1c79356b | 45 | |
b0d623f7 | 46 | #define PMAP_UPDATE_TLBS(pmap, s, e) \ |
6d2010ae | 47 | pmap_flush_tlbs(pmap, s, e) |
1c79356b | 48 | |
b0d623f7 | 49 | #define iswired(pte) ((pte) & INTEL_PTE_WIRED) |
1c79356b | 50 | |
b0d623f7 A |
51 | #ifdef PMAP_TRACES |
52 | extern boolean_t pmap_trace; | |
53 | #define PMAP_TRACE(x,a,b,c,d,e) \ | |
54 | if (pmap_trace) { \ | |
55 | KERNEL_DEBUG_CONSTANT(x,a,b,c,d,e); \ | |
56 | } | |
57 | #else | |
58 | #define PMAP_TRACE(x,a,b,c,d,e) KERNEL_DEBUG(x,a,b,c,d,e) | |
59 | #endif /* PMAP_TRACES */ | |
1c79356b | 60 | |
6d2010ae A |
61 | #define PMAP_TRACE_CONSTANT(x,a,b,c,d,e) \ |
62 | KERNEL_DEBUG_CONSTANT(x,a,b,c,d,e); \ | |
63 | ||
b0d623f7 A |
64 | void pmap_expand_pml4( |
65 | pmap_t map, | |
66 | vm_map_offset_t v); | |
67 | ||
68 | void pmap_expand_pdpt( | |
69 | pmap_t map, | |
70 | vm_map_offset_t v); | |
b7266188 | 71 | |
6d2010ae A |
72 | void phys_attribute_set( |
73 | ppnum_t phys, | |
74 | int bits); | |
75 | ||
76 | void pmap_set_reference( | |
77 | ppnum_t pn); | |
78 | ||
79 | boolean_t phys_page_exists( | |
80 | ppnum_t pn); | |
81 | ||
82 | void pmap_flush_tlbs(pmap_t, vm_map_offset_t, vm_map_offset_t); | |
83 | ||
84 | void | |
85 | pmap_update_cache_attributes_locked(ppnum_t, unsigned); | |
86 | ||
87 | #if CONFIG_YONAH | |
b0d623f7 | 88 | extern boolean_t cpu_64bit; |
6d2010ae A |
89 | #else |
90 | extern const boolean_t cpu_64bit; | |
2d21ac55 | 91 | #endif |
b0d623f7 | 92 | |
b7266188 A |
93 | /* |
94 | * Private data structures. | |
95 | */ | |
96 | ||
97 | /* | |
98 | * For each vm_page_t, there is a list of all currently | |
99 | * valid virtual mappings of that page. An entry is | |
100 | * a pv_rooted_entry_t; the list is the pv_table. | |
101 | * | |
102 | * N.B. with the new combo rooted/hashed scheme it is | |
103 | * only possibly to remove individual non-rooted entries | |
104 | * if they are found via the hashed chains as there is no | |
105 | * way to unlink the singly linked hashed entries if navigated to | |
106 | * via the queue list off the rooted entries. Think of it as | |
107 | * hash/walk/pull, keeping track of the prev pointer while walking | |
108 | * the singly linked hash list. All of this is to save memory and | |
109 | * keep both types of pv_entries as small as possible. | |
110 | */ | |
111 | ||
112 | /* | |
113 | ||
114 | PV HASHING Changes - JK 1/2007 | |
115 | ||
116 | Pve's establish physical to virtual mappings. These are used for aliasing of a | |
6d2010ae A |
117 | physical page to (potentially many) virtual addresses within pmaps. In the |
118 | previous implementation the structure of the pv_entries (each 16 bytes in size) was | |
b7266188 A |
119 | |
120 | typedef struct pv_entry { | |
121 | struct pv_entry_t next; | |
122 | pmap_t pmap; | |
123 | vm_map_offset_t va; | |
124 | } *pv_entry_t; | |
125 | ||
6d2010ae A |
126 | An initial array of these is created at boot time, one per physical page of |
127 | memory, indexed by the physical page number. Additionally, a pool of entries | |
128 | is created from a pv_zone to be used as needed by pmap_enter() when it is | |
129 | creating new mappings. Originally, we kept this pool around because the code | |
130 | in pmap_enter() was unable to block if it needed an entry and none were | |
131 | available - we'd panic. Some time ago I restructured the pmap_enter() code | |
132 | so that for user pmaps it can block while zalloc'ing a pv structure and restart, | |
133 | removing a panic from the code (in the case of the kernel pmap we cannot block | |
134 | and still panic, so, we keep a separate hot pool for use only on kernel pmaps). | |
135 | The pool has not been removed since there is a large performance gain keeping | |
136 | freed pv's around for reuse and not suffering the overhead of zalloc for every | |
137 | new pv we need. | |
138 | ||
139 | As pmap_enter() created new mappings it linked the new pve's for them off the | |
140 | fixed pv array for that ppn (off the next pointer). These pve's are accessed | |
141 | for several operations, one of them being address space teardown. In that case, | |
142 | we basically do this | |
b7266188 A |
143 | |
144 | for (every page/pte in the space) { | |
145 | calc pve_ptr from the ppn in the pte | |
146 | for (every pv in the list for the ppn) { | |
147 | if (this pv is for this pmap/vaddr) { | |
148 | do housekeeping | |
149 | unlink/free the pv | |
150 | } | |
151 | } | |
152 | } | |
153 | ||
6d2010ae A |
154 | The problem arose when we were running, say 8000 (or even 2000) apache or |
155 | other processes and one or all terminate. The list hanging off each pv array | |
156 | entry could have thousands of entries. We were continuously linearly searching | |
157 | each of these lists as we stepped through the address space we were tearing | |
158 | down. Because of the locks we hold, likely taking a cache miss for each node, | |
159 | and interrupt disabling for MP issues the system became completely unresponsive | |
160 | for many seconds while we did this. | |
161 | ||
162 | Realizing that pve's are accessed in two distinct ways (linearly running the | |
163 | list by ppn for operations like pmap_page_protect and finding and | |
164 | modifying/removing a single pve as part of pmap_enter processing) has led to | |
165 | modifying the pve structures and databases. | |
166 | ||
167 | There are now two types of pve structures. A "rooted" structure which is | |
168 | basically the original structure accessed in an array by ppn, and a ''hashed'' | |
169 | structure accessed on a hash list via a hash of [pmap, vaddr]. These have been | |
170 | designed with the two goals of minimizing wired memory and making the lookup of | |
171 | a ppn faster. Since a vast majority of pages in the system are not aliased | |
172 | and hence represented by a single pv entry I've kept the rooted entry size as | |
173 | small as possible because there is one of these dedicated for every physical | |
174 | page of memory. The hashed pve's are larger due to the addition of the hash | |
175 | link and the ppn entry needed for matching while running the hash list to find | |
176 | the entry we are looking for. This way, only systems that have lots of | |
177 | aliasing (like 2000+ httpd procs) will pay the extra memory price. Both | |
178 | structures have the same first three fields allowing some simplification in | |
179 | the code. | |
b7266188 A |
180 | |
181 | They have these shapes | |
182 | ||
183 | typedef struct pv_rooted_entry { | |
6d2010ae A |
184 | queue_head_t qlink; |
185 | vm_map_offset_t va; | |
186 | pmap_t pmap; | |
b7266188 A |
187 | } *pv_rooted_entry_t; |
188 | ||
189 | ||
190 | typedef struct pv_hashed_entry { | |
6d2010ae A |
191 | queue_head_t qlink; |
192 | vm_map_offset_t va; | |
193 | pmap_t pmap; | |
194 | ppnum_t ppn; | |
195 | struct pv_hashed_entry *nexth; | |
b7266188 A |
196 | } *pv_hashed_entry_t; |
197 | ||
6d2010ae A |
198 | The main flow difference is that the code is now aware of the rooted entry and |
199 | the hashed entries. Code that runs the pv list still starts with the rooted | |
200 | entry and then continues down the qlink onto the hashed entries. Code that is | |
201 | looking up a specific pv entry first checks the rooted entry and then hashes | |
202 | and runs the hash list for the match. The hash list lengths are much smaller | |
203 | than the original pv lists that contained all aliases for the specific ppn. | |
b7266188 A |
204 | |
205 | */ | |
206 | ||
6d2010ae A |
207 | typedef struct pv_rooted_entry { |
208 | /* first three entries must match pv_hashed_entry_t */ | |
209 | queue_head_t qlink; | |
210 | vm_map_offset_t va; /* virtual address for mapping */ | |
211 | pmap_t pmap; /* pmap where mapping lies */ | |
b7266188 A |
212 | } *pv_rooted_entry_t; |
213 | ||
214 | #define PV_ROOTED_ENTRY_NULL ((pv_rooted_entry_t) 0) | |
215 | ||
6d2010ae A |
216 | typedef struct pv_hashed_entry { |
217 | /* first three entries must match pv_rooted_entry_t */ | |
218 | queue_head_t qlink; | |
219 | vm_map_offset_t va; | |
220 | pmap_t pmap; | |
221 | ppnum_t ppn; | |
222 | struct pv_hashed_entry *nexth; | |
b7266188 A |
223 | } *pv_hashed_entry_t; |
224 | ||
225 | #define PV_HASHED_ENTRY_NULL ((pv_hashed_entry_t)0) | |
226 | ||
6d2010ae | 227 | //#define PV_DEBUG 1 /* uncomment to enable some PV debugging code */ |
b7266188 A |
228 | #ifdef PV_DEBUG |
229 | #define CHK_NPVHASH() if(0 == npvhash) panic("npvhash uninitialized"); | |
230 | #else | |
6d2010ae | 231 | #define CHK_NPVHASH(x) |
b7266188 A |
232 | #endif |
233 | ||
234 | #define NPVHASH 4095 /* MUST BE 2^N - 1 */ | |
6d2010ae A |
235 | #define PV_HASHED_LOW_WATER_MARK_DEFAULT 5000 |
236 | #define PV_HASHED_KERN_LOW_WATER_MARK_DEFAULT 2000 | |
237 | #define PV_HASHED_ALLOC_CHUNK_INITIAL 2000 | |
238 | #define PV_HASHED_KERN_ALLOC_CHUNK_INITIAL 200 | |
239 | ||
240 | extern volatile uint32_t mappingrecurse; | |
241 | extern uint32_t pv_hashed_low_water_mark, pv_hashed_kern_low_water_mark; | |
242 | ||
243 | /* | |
244 | * PV hash locking | |
245 | */ | |
246 | ||
247 | #define LOCK_PV_HASH(hash) lock_hash_hash(hash) | |
248 | #define UNLOCK_PV_HASH(hash) unlock_hash_hash(hash) | |
249 | extern uint32_t npvhash; | |
250 | extern pv_hashed_entry_t *pv_hash_table; /* hash lists */ | |
251 | extern pv_hashed_entry_t pv_hashed_free_list; | |
252 | extern pv_hashed_entry_t pv_hashed_kern_free_list; | |
253 | decl_simple_lock_data(extern, pv_hashed_free_list_lock) | |
254 | decl_simple_lock_data(extern, pv_hashed_kern_free_list_lock) | |
255 | decl_simple_lock_data(extern, pv_hash_table_lock) | |
256 | ||
257 | extern zone_t pv_hashed_list_zone; /* zone of pv_hashed_entry | |
258 | * structures */ | |
259 | ||
260 | extern uint32_t pv_hashed_free_count; | |
261 | extern uint32_t pv_hashed_kern_free_count; | |
262 | /* | |
263 | * Each entry in the pv_head_table is locked by a bit in the | |
264 | * pv_lock_table. The lock bits are accessed by the address of | |
265 | * the frame they lock. | |
266 | */ | |
267 | #define pv_lock_table_size(n) (((n)+BYTE_SIZE-1)/BYTE_SIZE) | |
268 | #define pv_hash_lock_table_size(n) (((n)+BYTE_SIZE-1)/BYTE_SIZE) | |
269 | extern char *pv_lock_table; /* pointer to array of bits */ | |
270 | extern char *pv_hash_lock_table; | |
271 | extern pv_rooted_entry_t pv_head_table; /* array of entries, one per page */ | |
272 | ||
273 | extern event_t mapping_replenish_event; | |
274 | ||
275 | static inline void PV_HASHED_ALLOC(pv_hashed_entry_t *pvh_ep) { | |
276 | ||
277 | simple_lock(&pv_hashed_free_list_lock); | |
278 | /* If the kernel reserved pool is low, let non-kernel mappings allocate | |
279 | * synchronously, possibly subject to a throttle. | |
280 | */ | |
281 | if ((pv_hashed_kern_free_count >= pv_hashed_kern_low_water_mark) && | |
282 | (*pvh_ep = pv_hashed_free_list) != 0) { | |
283 | pv_hashed_free_list = (pv_hashed_entry_t)(*pvh_ep)->qlink.next; | |
284 | pv_hashed_free_count--; | |
285 | } | |
286 | ||
287 | simple_unlock(&pv_hashed_free_list_lock); | |
288 | ||
289 | if (pv_hashed_free_count < pv_hashed_low_water_mark) { | |
290 | if (!mappingrecurse && hw_compare_and_store(0,1, &mappingrecurse)) | |
291 | thread_wakeup(&mapping_replenish_event); | |
292 | } | |
b7266188 A |
293 | } |
294 | ||
6d2010ae A |
295 | static inline void PV_HASHED_FREE_LIST(pv_hashed_entry_t pvh_eh, pv_hashed_entry_t pvh_et, int pv_cnt) { |
296 | simple_lock(&pv_hashed_free_list_lock); | |
297 | pvh_et->qlink.next = (queue_entry_t)pv_hashed_free_list; | |
298 | pv_hashed_free_list = pvh_eh; | |
299 | pv_hashed_free_count += pv_cnt; | |
300 | simple_unlock(&pv_hashed_free_list_lock); | |
b7266188 A |
301 | } |
302 | ||
6d2010ae A |
303 | extern unsigned pmap_kern_reserve_alloc_stat; |
304 | ||
305 | static inline void PV_HASHED_KERN_ALLOC(pv_hashed_entry_t *pvh_e) { | |
306 | simple_lock(&pv_hashed_kern_free_list_lock); | |
307 | ||
308 | if ((*pvh_e = pv_hashed_kern_free_list) != 0) { | |
309 | pv_hashed_kern_free_list = (pv_hashed_entry_t)(*pvh_e)->qlink.next; | |
310 | pv_hashed_kern_free_count--; | |
311 | pmap_kern_reserve_alloc_stat++; | |
312 | } | |
313 | ||
314 | simple_unlock(&pv_hashed_kern_free_list_lock); | |
315 | ||
316 | if (pv_hashed_kern_free_count < pv_hashed_kern_low_water_mark) { | |
317 | if (!mappingrecurse && hw_compare_and_store(0,1, &mappingrecurse)) | |
318 | thread_wakeup(&mapping_replenish_event); | |
319 | } | |
b7266188 A |
320 | } |
321 | ||
6d2010ae A |
322 | static inline void PV_HASHED_KERN_FREE_LIST(pv_hashed_entry_t pvh_eh, pv_hashed_entry_t pvh_et, int pv_cnt) { |
323 | simple_lock(&pv_hashed_kern_free_list_lock); | |
324 | pvh_et->qlink.next = (queue_entry_t)pv_hashed_kern_free_list; | |
325 | pv_hashed_kern_free_list = pvh_eh; | |
326 | pv_hashed_kern_free_count += pv_cnt; | |
327 | simple_unlock(&pv_hashed_kern_free_list_lock); | |
328 | } | |
329 | ||
330 | extern uint64_t pmap_pv_throttle_stat, pmap_pv_throttled_waiters; | |
331 | extern event_t pmap_user_pv_throttle_event; | |
332 | ||
333 | static inline void pmap_pv_throttle(__unused pmap_t p) { | |
334 | pmap_assert(p != kernel_pmap); | |
335 | /* Apply throttle on non-kernel mappings */ | |
336 | if (pv_hashed_kern_free_count < (pv_hashed_kern_low_water_mark / 2)) { | |
337 | pmap_pv_throttle_stat++; | |
338 | /* This doesn't need to be strictly accurate, merely a hint | |
339 | * to eliminate the timeout when the reserve is replenished. | |
340 | */ | |
341 | pmap_pv_throttled_waiters++; | |
342 | assert_wait_timeout(&pmap_user_pv_throttle_event, THREAD_UNINT, 1, 1000 * NSEC_PER_USEC); | |
343 | thread_block(THREAD_CONTINUE_NULL); | |
344 | } | |
b7266188 A |
345 | } |
346 | ||
347 | /* | |
348 | * Index into pv_head table, its lock bits, and the modify/reference and managed bits | |
349 | */ | |
350 | ||
351 | #define pa_index(pa) (i386_btop(pa)) | |
352 | #define ppn_to_pai(ppn) ((int)ppn) | |
353 | ||
354 | #define pai_to_pvh(pai) (&pv_head_table[pai]) | |
355 | #define lock_pvh_pai(pai) bit_lock(pai, (void *)pv_lock_table) | |
356 | #define unlock_pvh_pai(pai) bit_unlock(pai, (void *)pv_lock_table) | |
357 | #define pvhash(idx) (&pv_hash_table[idx]) | |
b7266188 A |
358 | #define lock_hash_hash(hash) bit_lock(hash, (void *)pv_hash_lock_table) |
359 | #define unlock_hash_hash(hash) bit_unlock(hash, (void *)pv_hash_lock_table) | |
360 | ||
361 | #define IS_MANAGED_PAGE(x) \ | |
362 | ((unsigned int)(x) <= last_managed_page && \ | |
363 | (pmap_phys_attributes[x] & PHYS_MANAGED)) | |
364 | ||
365 | /* | |
366 | * Physical page attributes. Copy bits from PTE definition. | |
367 | */ | |
368 | #define PHYS_MODIFIED INTEL_PTE_MOD /* page modified */ | |
369 | #define PHYS_REFERENCED INTEL_PTE_REF /* page referenced */ | |
370 | #define PHYS_MANAGED INTEL_PTE_VALID /* page is managed */ | |
0b4c1975 | 371 | #define PHYS_NOENCRYPT INTEL_PTE_USER /* no need to encrypt this page in the hibernation image */ |
6d2010ae A |
372 | #define PHYS_NCACHE INTEL_PTE_NCACHE |
373 | #define PHYS_PTA INTEL_PTE_PTA | |
374 | #define PHYS_CACHEABILITY_MASK (INTEL_PTE_PTA | INTEL_PTE_NCACHE) | |
b7266188 A |
375 | |
376 | /* | |
377 | * Amount of virtual memory mapped by one | |
378 | * page-directory entry. | |
379 | */ | |
380 | #define PDE_MAPPED_SIZE (pdetova(1)) | |
381 | ||
382 | ||
383 | /* | |
384 | * Locking and TLB invalidation | |
385 | */ | |
386 | ||
387 | /* | |
388 | * Locking Protocols: (changed 2/2007 JK) | |
389 | * | |
390 | * There are two structures in the pmap module that need locking: | |
391 | * the pmaps themselves, and the per-page pv_lists (which are locked | |
392 | * by locking the pv_lock_table entry that corresponds to the pv_head | |
393 | * for the list in question.) Most routines want to lock a pmap and | |
394 | * then do operations in it that require pv_list locking -- however | |
395 | * pmap_remove_all and pmap_copy_on_write operate on a physical page | |
396 | * basis and want to do the locking in the reverse order, i.e. lock | |
397 | * a pv_list and then go through all the pmaps referenced by that list. | |
398 | * | |
399 | * The system wide pmap lock has been removed. Now, paths take a lock | |
400 | * on the pmap before changing its 'shape' and the reverse order lockers | |
401 | * (coming in by phys ppn) take a lock on the corresponding pv and then | |
402 | * retest to be sure nothing changed during the window before they locked | |
403 | * and can then run up/down the pv lists holding the list lock. This also | |
404 | * lets the pmap layer run (nearly completely) interrupt enabled, unlike | |
405 | * previously. | |
406 | */ | |
407 | ||
408 | /* | |
409 | * PV locking | |
410 | */ | |
411 | ||
412 | #define LOCK_PVH(index) { \ | |
413 | mp_disable_preemption(); \ | |
414 | lock_pvh_pai(index); \ | |
415 | } | |
416 | ||
417 | #define UNLOCK_PVH(index) { \ | |
418 | unlock_pvh_pai(index); \ | |
419 | mp_enable_preemption(); \ | |
420 | } | |
b7266188 | 421 | |
b7266188 A |
422 | extern uint64_t pde_mapped_size; |
423 | ||
424 | extern char *pmap_phys_attributes; | |
425 | extern unsigned int last_managed_page; | |
426 | ||
060df5ea A |
427 | extern ppnum_t lowest_lo; |
428 | extern ppnum_t lowest_hi; | |
429 | extern ppnum_t highest_hi; | |
430 | ||
b7266188 A |
431 | /* |
432 | * when spinning through pmap_remove | |
433 | * ensure that we don't spend too much | |
434 | * time with preemption disabled. | |
435 | * I'm setting the current threshold | |
436 | * to 20us | |
437 | */ | |
438 | #define MAX_PREEMPTION_LATENCY_NS 20000 | |
439 | extern uint64_t max_preemption_latency_tsc; | |
440 | ||
441 | /* #define DEBUGINTERRUPTS 1 uncomment to ensure pmap callers have interrupts enabled */ | |
442 | #ifdef DEBUGINTERRUPTS | |
443 | #define pmap_intr_assert() { \ | |
444 | if (processor_avail_count > 1 && !ml_get_interrupts_enabled()) \ | |
445 | panic("pmap interrupt assert %s, %d",__FILE__, __LINE__); \ | |
446 | } | |
447 | #else | |
448 | #define pmap_intr_assert() | |
449 | #endif | |
450 | ||
6d2010ae A |
451 | extern int nx_enabled; |
452 | extern unsigned int inuse_ptepages_count; | |
b7266188 A |
453 | |
454 | static inline uint32_t | |
455 | pvhashidx(pmap_t pmap, vm_map_offset_t va) | |
456 | { | |
457 | return ((uint32_t)(uintptr_t)pmap ^ | |
6d2010ae | 458 | ((uint32_t)(va >> PAGE_SHIFT) & 0xFFFFFFFF)) & |
b7266188 A |
459 | npvhash; |
460 | } | |
461 | ||
6d2010ae | 462 | |
b7266188 A |
463 | /* |
464 | * unlinks the pv_hashed_entry_t pvh from the singly linked hash chain. | |
465 | * properly deals with the anchor. | |
466 | * must be called with the hash locked, does not unlock it | |
467 | */ | |
b7266188 A |
468 | static inline void |
469 | pmap_pvh_unlink(pv_hashed_entry_t pvh) | |
470 | { | |
471 | pv_hashed_entry_t curh; | |
472 | pv_hashed_entry_t *pprevh; | |
473 | int pvhash_idx; | |
474 | ||
475 | CHK_NPVHASH(); | |
476 | pvhash_idx = pvhashidx(pvh->pmap, pvh->va); | |
477 | ||
478 | pprevh = pvhash(pvhash_idx); | |
479 | ||
480 | #if PV_DEBUG | |
481 | if (NULL == *pprevh) | |
482 | panic("pvh_unlink null anchor"); /* JK DEBUG */ | |
483 | #endif | |
484 | curh = *pprevh; | |
485 | ||
486 | while (PV_HASHED_ENTRY_NULL != curh) { | |
487 | if (pvh == curh) | |
488 | break; | |
489 | pprevh = &curh->nexth; | |
490 | curh = curh->nexth; | |
491 | } | |
492 | if (PV_HASHED_ENTRY_NULL == curh) panic("pmap_pvh_unlink no pvh"); | |
493 | *pprevh = pvh->nexth; | |
494 | return; | |
495 | } | |
496 | ||
497 | static inline void | |
498 | pv_hash_add(pv_hashed_entry_t pvh_e, | |
499 | pv_rooted_entry_t pv_h) | |
500 | { | |
501 | pv_hashed_entry_t *hashp; | |
502 | int pvhash_idx; | |
503 | ||
504 | CHK_NPVHASH(); | |
505 | pvhash_idx = pvhashidx(pvh_e->pmap, pvh_e->va); | |
506 | LOCK_PV_HASH(pvhash_idx); | |
507 | insque(&pvh_e->qlink, &pv_h->qlink); | |
508 | hashp = pvhash(pvhash_idx); | |
509 | #if PV_DEBUG | |
510 | if (NULL==hashp) | |
511 | panic("pv_hash_add(%p) null hash bucket", pvh_e); | |
512 | #endif | |
513 | pvh_e->nexth = *hashp; | |
514 | *hashp = pvh_e; | |
515 | UNLOCK_PV_HASH(pvhash_idx); | |
516 | } | |
517 | ||
518 | static inline void | |
519 | pv_hash_remove(pv_hashed_entry_t pvh_e) | |
520 | { | |
521 | int pvhash_idx; | |
522 | ||
523 | CHK_NPVHASH(); | |
524 | pvhash_idx = pvhashidx(pvh_e->pmap,pvh_e->va); | |
525 | LOCK_PV_HASH(pvhash_idx); | |
526 | remque(&pvh_e->qlink); | |
527 | pmap_pvh_unlink(pvh_e); | |
528 | UNLOCK_PV_HASH(pvhash_idx); | |
6d2010ae | 529 | } |
b7266188 A |
530 | |
531 | static inline boolean_t popcnt1(uint64_t distance) { | |
532 | return ((distance & (distance - 1)) == 0); | |
533 | } | |
534 | ||
535 | /* | |
536 | * Routines to handle suppression of/recovery from some forms of pagetable corruption | |
537 | * incidents observed in the field. These can be either software induced (wild | |
538 | * stores to the mapwindows where applicable, use after free errors | |
539 | * (typically of pages addressed physically), mis-directed DMAs etc., or due | |
540 | * to DRAM/memory hierarchy/interconnect errors. Given the theoretical rarity of these errors, | |
541 | * the recording mechanism is deliberately not MP-safe. The overarching goal is to | |
542 | * still assert on potential software races, but attempt recovery from incidents | |
543 | * identifiable as occurring due to issues beyond the control of the pmap module. | |
544 | * The latter includes single-bit errors and malformed pagetable entries. | |
545 | * We currently limit ourselves to recovery/suppression of one incident per | |
546 | * PMAP_PAGETABLE_CORRUPTION_INTERVAL seconds, and details of the incident | |
547 | * are logged. | |
548 | * Assertions are not suppressed if kernel debugging is enabled. (DRK 09) | |
549 | */ | |
550 | ||
551 | typedef enum { | |
552 | PTE_VALID = 0x0, | |
553 | PTE_INVALID = 0x1, | |
554 | PTE_RSVD = 0x2, | |
555 | PTE_SUPERVISOR = 0x4, | |
556 | PTE_BITFLIP = 0x8, | |
557 | PV_BITFLIP = 0x10, | |
558 | PTE_INVALID_CACHEABILITY = 0x20 | |
559 | } pmap_pagetable_corruption_t; | |
560 | ||
561 | typedef enum { | |
562 | ROOT_PRESENT = 0, | |
563 | ROOT_ABSENT = 1 | |
564 | } pmap_pv_assertion_t; | |
565 | ||
566 | typedef enum { | |
567 | PMAP_ACTION_IGNORE = 0x0, | |
568 | PMAP_ACTION_ASSERT = 0x1, | |
569 | PMAP_ACTION_RETRY = 0x2, | |
570 | PMAP_ACTION_RETRY_RELOCK = 0x4 | |
571 | } pmap_pagetable_corruption_action_t; | |
572 | ||
573 | #define PMAP_PAGETABLE_CORRUPTION_INTERVAL (6ULL * 3600ULL) | |
574 | extern uint64_t pmap_pagetable_corruption_interval_abstime; | |
575 | ||
576 | extern uint32_t pmap_pagetable_corruption_incidents; | |
577 | #define PMAP_PAGETABLE_CORRUPTION_MAX_LOG (8) | |
578 | typedef struct { | |
579 | pmap_pv_assertion_t incident; | |
580 | pmap_pagetable_corruption_t reason; | |
581 | pmap_pagetable_corruption_action_t action; | |
582 | pmap_t pmap; | |
583 | vm_map_offset_t vaddr; | |
584 | pt_entry_t pte; | |
585 | ppnum_t ppn; | |
586 | pmap_t pvpmap; | |
587 | vm_map_offset_t pvva; | |
588 | uint64_t abstime; | |
589 | } pmap_pagetable_corruption_record_t; | |
590 | ||
591 | extern pmap_pagetable_corruption_record_t pmap_pagetable_corruption_records[]; | |
592 | extern uint64_t pmap_pagetable_corruption_last_abstime; | |
593 | extern thread_call_t pmap_pagetable_corruption_log_call; | |
594 | extern boolean_t pmap_pagetable_corruption_timeout; | |
595 | ||
596 | static inline void | |
597 | pmap_pagetable_corruption_log(pmap_pv_assertion_t incident, pmap_pagetable_corruption_t suppress_reason, pmap_pagetable_corruption_action_t action, pmap_t pmap, vm_map_offset_t vaddr, pt_entry_t *ptep, ppnum_t ppn, pmap_t pvpmap, vm_map_offset_t pvva) { | |
598 | uint32_t pmap_pagetable_corruption_log_index; | |
599 | pmap_pagetable_corruption_log_index = pmap_pagetable_corruption_incidents++ % PMAP_PAGETABLE_CORRUPTION_MAX_LOG; | |
600 | pmap_pagetable_corruption_records[pmap_pagetable_corruption_log_index].incident = incident; | |
601 | pmap_pagetable_corruption_records[pmap_pagetable_corruption_log_index].reason = suppress_reason; | |
602 | pmap_pagetable_corruption_records[pmap_pagetable_corruption_log_index].action = action; | |
603 | pmap_pagetable_corruption_records[pmap_pagetable_corruption_log_index].pmap = pmap; | |
604 | pmap_pagetable_corruption_records[pmap_pagetable_corruption_log_index].vaddr = vaddr; | |
605 | pmap_pagetable_corruption_records[pmap_pagetable_corruption_log_index].pte = *ptep; | |
606 | pmap_pagetable_corruption_records[pmap_pagetable_corruption_log_index].ppn = ppn; | |
607 | pmap_pagetable_corruption_records[pmap_pagetable_corruption_log_index].pvpmap = pvpmap; | |
608 | pmap_pagetable_corruption_records[pmap_pagetable_corruption_log_index].pvva = pvva; | |
609 | pmap_pagetable_corruption_records[pmap_pagetable_corruption_log_index].abstime = mach_absolute_time(); | |
610 | /* Asynchronously log */ | |
611 | thread_call_enter(pmap_pagetable_corruption_log_call); | |
612 | } | |
613 | ||
614 | static inline pmap_pagetable_corruption_action_t | |
615 | pmap_classify_pagetable_corruption(pmap_t pmap, vm_map_offset_t vaddr, ppnum_t *ppnp, pt_entry_t *ptep, pmap_pv_assertion_t incident) { | |
616 | pmap_pv_assertion_t action = PMAP_ACTION_ASSERT; | |
617 | pmap_pagetable_corruption_t suppress_reason = PTE_VALID; | |
618 | ppnum_t suppress_ppn = 0; | |
619 | pt_entry_t cpte = *ptep; | |
620 | ppnum_t cpn = pa_index(pte_to_pa(cpte)); | |
621 | ppnum_t ppn = *ppnp; | |
622 | pv_rooted_entry_t pv_h = pai_to_pvh(ppn_to_pai(ppn)); | |
623 | pv_rooted_entry_t pv_e = pv_h; | |
624 | uint32_t bitdex; | |
625 | pmap_t pvpmap = pv_h->pmap; | |
626 | vm_map_offset_t pvva = pv_h->va; | |
627 | boolean_t ppcd = FALSE; | |
628 | ||
629 | /* Ideally, we'd consult the Mach VM here to definitively determine | |
630 | * the nature of the mapping for this address space and address. | |
631 | * As that would be a layering violation in this context, we | |
632 | * use various heuristics to recover from single bit errors, | |
633 | * malformed pagetable entries etc. These are not intended | |
634 | * to be comprehensive. | |
635 | */ | |
636 | ||
637 | /* As a precautionary measure, mark A+D */ | |
638 | pmap_phys_attributes[ppn_to_pai(ppn)] |= (PHYS_MODIFIED | PHYS_REFERENCED); | |
639 | ||
640 | /* | |
641 | * Correct potential single bit errors in either (but not both) element | |
642 | * of the PV | |
643 | */ | |
644 | do { | |
645 | if ((popcnt1((uintptr_t)pv_e->pmap ^ (uintptr_t)pmap) && pv_e->va == vaddr) || | |
646 | (pv_e->pmap == pmap && popcnt1(pv_e->va ^ vaddr))) { | |
647 | pv_e->pmap = pmap; | |
648 | pv_e->va = vaddr; | |
649 | suppress_reason = PV_BITFLIP; | |
650 | action = PMAP_ACTION_RETRY; | |
651 | goto pmap_cpc_exit; | |
652 | } | |
653 | } while((pv_e = (pv_rooted_entry_t) queue_next(&pv_e->qlink)) != pv_h); | |
654 | ||
655 | /* Discover root entries with a Hamming | |
656 | * distance of 1 from the supplied | |
657 | * physical page frame. | |
658 | */ | |
659 | for (bitdex = 0; bitdex < (sizeof(ppnum_t) << 3); bitdex++) { | |
660 | ppnum_t npn = cpn ^ (ppnum_t) (1ULL << bitdex); | |
661 | if (IS_MANAGED_PAGE(npn)) { | |
662 | pv_rooted_entry_t npv_h = pai_to_pvh(ppn_to_pai(npn)); | |
663 | if (npv_h->va == vaddr && npv_h->pmap == pmap) { | |
664 | suppress_reason = PTE_BITFLIP; | |
665 | suppress_ppn = npn; | |
666 | action = PMAP_ACTION_RETRY_RELOCK; | |
667 | UNLOCK_PVH(ppn_to_pai(ppn)); | |
668 | *ppnp = npn; | |
669 | goto pmap_cpc_exit; | |
670 | } | |
671 | } | |
672 | } | |
673 | ||
674 | if (pmap == kernel_pmap) { | |
675 | action = PMAP_ACTION_ASSERT; | |
676 | goto pmap_cpc_exit; | |
677 | } | |
678 | ||
679 | /* Check for malformed/inconsistent entries */ | |
680 | ||
681 | if ((cpte & (INTEL_PTE_NCACHE | INTEL_PTE_WTHRU | INTEL_PTE_PTA)) == (INTEL_PTE_NCACHE | INTEL_PTE_WTHRU)) { | |
682 | action = PMAP_ACTION_IGNORE; | |
683 | suppress_reason = PTE_INVALID_CACHEABILITY; | |
684 | } | |
685 | else if (cpte & INTEL_PTE_RSVD) { | |
686 | action = PMAP_ACTION_IGNORE; | |
687 | suppress_reason = PTE_RSVD; | |
688 | } | |
689 | else if ((pmap != kernel_pmap) && ((cpte & INTEL_PTE_USER) == 0)) { | |
690 | action = PMAP_ACTION_IGNORE; | |
691 | suppress_reason = PTE_SUPERVISOR; | |
692 | } | |
693 | pmap_cpc_exit: | |
694 | PE_parse_boot_argn("-pmap_pagetable_corruption_deassert", &ppcd, sizeof(ppcd)); | |
695 | ||
696 | if (debug_boot_arg && !ppcd) { | |
697 | action = PMAP_ACTION_ASSERT; | |
698 | } | |
699 | ||
700 | if ((mach_absolute_time() - pmap_pagetable_corruption_last_abstime) < pmap_pagetable_corruption_interval_abstime) { | |
701 | action = PMAP_ACTION_ASSERT; | |
702 | pmap_pagetable_corruption_timeout = TRUE; | |
703 | } | |
704 | else | |
705 | { | |
706 | pmap_pagetable_corruption_last_abstime = mach_absolute_time(); | |
707 | } | |
708 | pmap_pagetable_corruption_log(incident, suppress_reason, action, pmap, vaddr, &cpte, *ppnp, pvpmap, pvva); | |
709 | return action; | |
710 | } | |
6d2010ae | 711 | |
b7266188 A |
712 | /* |
713 | * Remove pv list entry. | |
714 | * Called with pv_head_table entry locked. | |
715 | * Returns pv entry to be freed (or NULL). | |
716 | */ | |
b7266188 | 717 | static inline __attribute__((always_inline)) pv_hashed_entry_t |
6d2010ae A |
718 | pmap_pv_remove(pmap_t pmap, |
719 | vm_map_offset_t vaddr, | |
720 | ppnum_t *ppnp, | |
b7266188 A |
721 | pt_entry_t *pte) |
722 | { | |
723 | pv_hashed_entry_t pvh_e; | |
724 | pv_rooted_entry_t pv_h; | |
725 | pv_hashed_entry_t *pprevh; | |
726 | int pvhash_idx; | |
727 | uint32_t pv_cnt; | |
728 | ppnum_t ppn; | |
729 | ||
730 | pmap_pv_remove_retry: | |
731 | ppn = *ppnp; | |
732 | pvh_e = PV_HASHED_ENTRY_NULL; | |
733 | pv_h = pai_to_pvh(ppn_to_pai(ppn)); | |
734 | ||
735 | if (pv_h->pmap == PMAP_NULL) { | |
736 | pmap_pagetable_corruption_action_t pac = pmap_classify_pagetable_corruption(pmap, vaddr, ppnp, pte, ROOT_ABSENT); | |
737 | if (pac == PMAP_ACTION_IGNORE) | |
738 | goto pmap_pv_remove_exit; | |
739 | else if (pac == PMAP_ACTION_ASSERT) | |
740 | panic("pmap_pv_remove(%p,0x%llx,0x%x, 0x%llx): null pv_list!", pmap, vaddr, ppn, *pte); | |
741 | else if (pac == PMAP_ACTION_RETRY_RELOCK) { | |
742 | LOCK_PVH(ppn_to_pai(*ppnp)); | |
743 | pmap_phys_attributes[ppn_to_pai(*ppnp)] |= (PHYS_MODIFIED | PHYS_REFERENCED); | |
744 | goto pmap_pv_remove_retry; | |
745 | } | |
746 | else if (pac == PMAP_ACTION_RETRY) | |
747 | goto pmap_pv_remove_retry; | |
748 | } | |
749 | ||
750 | if (pv_h->va == vaddr && pv_h->pmap == pmap) { | |
751 | /* | |
752 | * Header is the pv_rooted_entry. | |
753 | * We can't free that. If there is a queued | |
754 | * entry after this one we remove that | |
755 | * from the ppn queue, we remove it from the hash chain | |
756 | * and copy it to the rooted entry. Then free it instead. | |
757 | */ | |
758 | pvh_e = (pv_hashed_entry_t) queue_next(&pv_h->qlink); | |
759 | if (pv_h != (pv_rooted_entry_t) pvh_e) { | |
760 | /* | |
761 | * Entry queued to root, remove this from hash | |
762 | * and install as new root. | |
763 | */ | |
764 | CHK_NPVHASH(); | |
765 | pvhash_idx = pvhashidx(pvh_e->pmap, pvh_e->va); | |
766 | LOCK_PV_HASH(pvhash_idx); | |
767 | remque(&pvh_e->qlink); | |
768 | pprevh = pvhash(pvhash_idx); | |
769 | if (PV_HASHED_ENTRY_NULL == *pprevh) { | |
770 | panic("pmap_pv_remove(%p,0x%llx,0x%x): " | |
771 | "empty hash, removing rooted", | |
772 | pmap, vaddr, ppn); | |
773 | } | |
774 | pmap_pvh_unlink(pvh_e); | |
775 | UNLOCK_PV_HASH(pvhash_idx); | |
776 | pv_h->pmap = pvh_e->pmap; | |
777 | pv_h->va = pvh_e->va; /* dispose of pvh_e */ | |
778 | } else { | |
779 | /* none queued after rooted */ | |
780 | pv_h->pmap = PMAP_NULL; | |
781 | pvh_e = PV_HASHED_ENTRY_NULL; | |
782 | } | |
783 | } else { | |
784 | /* | |
785 | * not removing rooted pv. find it on hash chain, remove from | |
786 | * ppn queue and hash chain and free it | |
787 | */ | |
788 | CHK_NPVHASH(); | |
789 | pvhash_idx = pvhashidx(pmap, vaddr); | |
790 | LOCK_PV_HASH(pvhash_idx); | |
791 | pprevh = pvhash(pvhash_idx); | |
792 | if (PV_HASHED_ENTRY_NULL == *pprevh) { | |
6d2010ae A |
793 | panic("pmap_pv_remove(%p,0x%llx,0x%x): empty hash", |
794 | pmap, vaddr, ppn); | |
b7266188 A |
795 | } |
796 | pvh_e = *pprevh; | |
797 | pmap_pv_hashlist_walks++; | |
798 | pv_cnt = 0; | |
799 | while (PV_HASHED_ENTRY_NULL != pvh_e) { | |
800 | pv_cnt++; | |
801 | if (pvh_e->pmap == pmap && | |
802 | pvh_e->va == vaddr && | |
803 | pvh_e->ppn == ppn) | |
804 | break; | |
805 | pprevh = &pvh_e->nexth; | |
806 | pvh_e = pvh_e->nexth; | |
807 | } | |
6d2010ae | 808 | |
b7266188 A |
809 | if (PV_HASHED_ENTRY_NULL == pvh_e) { |
810 | pmap_pagetable_corruption_action_t pac = pmap_classify_pagetable_corruption(pmap, vaddr, ppnp, pte, ROOT_PRESENT); | |
811 | ||
812 | if (pac == PMAP_ACTION_ASSERT) | |
813 | panic("pmap_pv_remove(%p,0x%llx,0x%x, 0x%llx): pv not on hash, head: %p, 0x%llx", pmap, vaddr, ppn, *pte, pv_h->pmap, pv_h->va); | |
814 | else { | |
815 | UNLOCK_PV_HASH(pvhash_idx); | |
816 | if (pac == PMAP_ACTION_RETRY_RELOCK) { | |
817 | LOCK_PVH(ppn_to_pai(*ppnp)); | |
818 | pmap_phys_attributes[ppn_to_pai(*ppnp)] |= (PHYS_MODIFIED | PHYS_REFERENCED); | |
819 | goto pmap_pv_remove_retry; | |
820 | } | |
821 | else if (pac == PMAP_ACTION_RETRY) { | |
822 | goto pmap_pv_remove_retry; | |
823 | } | |
824 | else if (pac == PMAP_ACTION_IGNORE) { | |
825 | goto pmap_pv_remove_exit; | |
826 | } | |
827 | } | |
828 | } | |
6d2010ae | 829 | |
b7266188 A |
830 | pmap_pv_hashlist_cnts += pv_cnt; |
831 | if (pmap_pv_hashlist_max < pv_cnt) | |
832 | pmap_pv_hashlist_max = pv_cnt; | |
833 | *pprevh = pvh_e->nexth; | |
834 | remque(&pvh_e->qlink); | |
835 | UNLOCK_PV_HASH(pvhash_idx); | |
836 | } | |
837 | pmap_pv_remove_exit: | |
838 | return pvh_e; | |
839 | } | |
840 | ||
6d2010ae A |
841 | |
842 | extern int pt_fake_zone_index; | |
843 | static inline void | |
844 | PMAP_ZINFO_PALLOC(vm_size_t bytes) | |
845 | { | |
846 | thread_t thr = current_thread(); | |
847 | task_t task; | |
848 | zinfo_usage_t zinfo; | |
849 | ||
850 | thr->tkm_private.alloc += bytes; | |
851 | if (pt_fake_zone_index != -1 && | |
852 | (task = thr->task) != NULL && (zinfo = task->tkm_zinfo) != NULL) | |
853 | OSAddAtomic64(bytes, (int64_t *)&zinfo[pt_fake_zone_index].alloc); | |
854 | } | |
855 | ||
856 | static inline void | |
857 | PMAP_ZINFO_PFREE(vm_size_t bytes) | |
858 | { | |
859 | thread_t thr = current_thread(); | |
860 | task_t task; | |
861 | zinfo_usage_t zinfo; | |
862 | ||
863 | thr->tkm_private.free += bytes; | |
864 | if (pt_fake_zone_index != -1 && | |
865 | (task = thr->task) != NULL && (zinfo = task->tkm_zinfo) != NULL) | |
866 | OSAddAtomic64(bytes, (int64_t *)&zinfo[pt_fake_zone_index].free); | |
867 | } | |
868 | ||
869 | extern boolean_t pmap_initialized;/* Has pmap_init completed? */ | |
870 | #define valid_page(x) (pmap_initialized && pmap_valid_page(x)) | |
871 | ||
872 | // XXX | |
873 | #define HIGH_MEM_BASE ((uint32_t)( -NBPDE) ) /* shared gdt etc seg addr */ /* XXX64 ?? */ | |
874 | // XXX | |
875 | ||
876 | ||
877 | int phys_attribute_test( | |
878 | ppnum_t phys, | |
879 | int bits); | |
880 | void phys_attribute_clear( | |
881 | ppnum_t phys, | |
882 | int bits); | |
883 | ||
884 | //#define PCID_DEBUG 1 | |
885 | #if PCID_DEBUG | |
886 | #define pmap_pcid_log(fmt, args...) \ | |
887 | do { \ | |
888 | kprintf(fmt, ##args); \ | |
889 | printf(fmt, ##args); \ | |
890 | } while(0) | |
891 | #else | |
892 | #define pmap_pcid_log(fmt, args...) | |
893 | #endif | |
894 | void pmap_pcid_configure(void); | |
895 | ||
896 | #if defined(__x86_64__) | |
897 | /* | |
898 | * The single pml4 page per pmap is allocated at pmap create time and exists | |
899 | * for the duration of the pmap. we allocate this page in kernel vm. | |
900 | * this returns the address of the requested pml4 entry in the top level page. | |
901 | */ | |
902 | static inline | |
903 | pml4_entry_t * | |
904 | pmap64_pml4(pmap_t pmap, vm_map_offset_t vaddr) | |
905 | { | |
906 | #if PMAP_ASSERT | |
907 | return PHYSMAP_PTOV(&((pml4_entry_t *)pmap->pm_cr3)[(vaddr >> PML4SHIFT) & (NPML4PG-1)]); | |
908 | #else | |
909 | return &pmap->pm_pml4[(vaddr >> PML4SHIFT) & (NPML4PG-1)]; | |
910 | #endif | |
911 | } | |
912 | ||
913 | /* | |
914 | * Returns address of requested PDPT entry in the physmap. | |
915 | */ | |
916 | static inline pdpt_entry_t * | |
917 | pmap64_pdpt(pmap_t pmap, vm_map_offset_t vaddr) | |
918 | { | |
919 | pml4_entry_t newpf; | |
920 | pml4_entry_t *pml4; | |
921 | ||
922 | assert(pmap); | |
923 | if ((vaddr > 0x00007FFFFFFFFFFFULL) && | |
924 | (vaddr < 0xFFFF800000000000ULL)) { | |
925 | return (0); | |
926 | } | |
927 | ||
928 | pml4 = pmap64_pml4(pmap, vaddr); | |
929 | if (pml4 && ((*pml4 & INTEL_PTE_VALID))) { | |
930 | newpf = *pml4 & PG_FRAME; | |
931 | return &((pdpt_entry_t *) PHYSMAP_PTOV(newpf)) | |
932 | [(vaddr >> PDPTSHIFT) & (NPDPTPG-1)]; | |
933 | } | |
934 | return (NULL); | |
935 | } | |
936 | /* | |
937 | * Returns the address of the requested PDE entry in the physmap. | |
938 | */ | |
939 | static inline pd_entry_t * | |
940 | pmap64_pde(pmap_t pmap, vm_map_offset_t vaddr) | |
941 | { | |
942 | pdpt_entry_t newpf; | |
943 | pdpt_entry_t *pdpt; | |
944 | ||
945 | assert(pmap); | |
946 | if ((vaddr > 0x00007FFFFFFFFFFFULL) && | |
947 | (vaddr < 0xFFFF800000000000ULL)) { | |
948 | return (0); | |
949 | } | |
950 | ||
951 | pdpt = pmap64_pdpt(pmap, vaddr); | |
952 | ||
953 | if (pdpt && ((*pdpt & INTEL_PTE_VALID))) { | |
954 | newpf = *pdpt & PG_FRAME; | |
955 | return &((pd_entry_t *) PHYSMAP_PTOV(newpf)) | |
956 | [(vaddr >> PDSHIFT) & (NPDPG-1)]; | |
957 | } | |
958 | return (NULL); | |
959 | } | |
960 | ||
961 | static inline pd_entry_t * | |
962 | pmap_pde(pmap_t m, vm_map_offset_t v) | |
963 | { | |
964 | pd_entry_t *pde; | |
965 | ||
966 | assert(m); | |
967 | pde = pmap64_pde(m, v); | |
968 | ||
969 | return pde; | |
970 | } | |
971 | ||
972 | ||
973 | /* | |
974 | * return address of mapped pte for vaddr va in pmap pmap. | |
975 | * | |
976 | * In case the pde maps a superpage, return the pde, which, in this case | |
977 | * is the actual page table entry. | |
978 | */ | |
979 | static inline pt_entry_t * | |
980 | pmap_pte(pmap_t pmap, vm_map_offset_t vaddr) | |
981 | { | |
982 | pd_entry_t *pde; | |
983 | pd_entry_t newpf; | |
984 | ||
985 | assert(pmap); | |
986 | pde = pmap_pde(pmap, vaddr); | |
987 | ||
988 | if (pde && ((*pde & INTEL_PTE_VALID))) { | |
989 | if (*pde & INTEL_PTE_PS) | |
990 | return pde; | |
991 | newpf = *pde & PG_FRAME; | |
992 | return &((pt_entry_t *)PHYSMAP_PTOV(newpf)) | |
993 | [i386_btop(vaddr) & (ppnum_t)(NPTEPG-1)]; | |
994 | } | |
995 | return (NULL); | |
996 | } | |
997 | #endif | |
b0d623f7 | 998 | #endif /* MACH_KERNEL_PRIVATE */ |