]>
Commit | Line | Data |
---|---|---|
1c79356b A |
1 | /* |
2 | * Copyright (c) 2000 Apple Computer, Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_LICENSE_HEADER_START@ | |
5 | * | |
de355530 A |
6 | * The contents of this file constitute Original Code as defined in and |
7 | * are subject to the Apple Public Source License Version 1.1 (the | |
8 | * "License"). You may not use this file except in compliance with the | |
9 | * License. Please obtain a copy of the License at | |
10 | * http://www.apple.com/publicsource and read it before using this file. | |
1c79356b | 11 | * |
de355530 A |
12 | * This Original Code and all software distributed under the License are |
13 | * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
1c79356b A |
14 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
15 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
de355530 A |
16 | * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the |
17 | * License for the specific language governing rights and limitations | |
18 | * under the License. | |
1c79356b A |
19 | * |
20 | * @APPLE_LICENSE_HEADER_END@ | |
21 | */ | |
22 | /* | |
23 | * Copyright 1998 Massachusetts Institute of Technology | |
24 | * | |
25 | * Permission to use, copy, modify, and distribute this software and | |
26 | * its documentation for any purpose and without fee is hereby | |
27 | * granted, provided that both the above copyright notice and this | |
28 | * permission notice appear in all copies, that both the above | |
29 | * copyright notice and this permission notice appear in all | |
30 | * supporting documentation, and that the name of M.I.T. not be used | |
31 | * in advertising or publicity pertaining to distribution of the | |
32 | * software without specific, written prior permission. M.I.T. makes | |
33 | * no representations about the suitability of this software for any | |
34 | * purpose. It is provided "as is" without express or implied | |
35 | * warranty. | |
36 | * | |
37 | * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''. M.I.T. DISCLAIMS | |
38 | * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE, | |
39 | * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF | |
40 | * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT | |
41 | * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | |
42 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | |
43 | * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF | |
44 | * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND | |
45 | * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, | |
46 | * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT | |
47 | * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | |
48 | * SUCH DAMAGE. | |
49 | * | |
50 | */ | |
51 | ||
52 | /* | |
53 | * if_vlan.c - pseudo-device driver for IEEE 802.1Q virtual LANs. | |
54 | * Might be extended some day to also handle IEEE 802.1p priority | |
55 | * tagging. This is sort of sneaky in the implementation, since | |
56 | * we need to pretend to be enough of an Ethernet implementation | |
57 | * to make arp work. The way we do this is by telling everyone | |
58 | * that we are an Ethernet, and then catch the packets that | |
59 | * ether_output() left on our output queue queue when it calls | |
60 | * if_start(), rewrite them for use by the real outgoing interface, | |
61 | * and ask it to send them. | |
62 | * | |
63 | * | |
64 | * XXX It's incorrect to assume that we must always kludge up | |
65 | * headers on the physical device's behalf: some devices support | |
66 | * VLAN tag insersion and extraction in firmware. For these cases, | |
67 | * one can change the behavior of the vlan interface by setting | |
68 | * the LINK0 flag on it (that is setting the vlan interface's LINK0 | |
69 | * flag, _not_ the parent's LINK0 flag; we try to leave the parent | |
70 | * alone). If the interface as the LINK0 flag set, then it will | |
71 | * not modify the ethernet header on output because the parent | |
72 | * can do that for itself. On input, the parent can call vlan_input_tag() | |
73 | * directly in order to supply us with an incoming mbuf and the vlan | |
74 | * tag value that goes with it. | |
75 | */ | |
76 | ||
77 | #include "vlan.h" | |
78 | #if NVLAN > 0 | |
79 | #include "opt_inet.h" | |
80 | #include "bpfilter.h" | |
81 | ||
82 | #include <sys/param.h> | |
83 | #include <sys/kernel.h> | |
84 | #include <sys/mbuf.h> | |
85 | #include <sys/socket.h> | |
86 | #include <sys/sockio.h> | |
87 | #include <sys/sysctl.h> | |
88 | #include <sys/systm.h> | |
89 | ||
90 | #if NBPFILTER > 0 | |
91 | #include <net/bpf.h> | |
92 | #endif | |
93 | #include <net/ethernet.h> | |
94 | #include <net/if.h> | |
95 | #include <net/if_arp.h> | |
96 | #include <net/if_dl.h> | |
97 | #include <net/if_types.h> | |
98 | #include <net/if_vlan_var.h> | |
99 | ||
100 | #if INET | |
101 | #include <netinet/in.h> | |
102 | #include <netinet/if_ether.h> | |
103 | #endif | |
104 | ||
105 | SYSCTL_DECL(_net_link); | |
106 | SYSCTL_NODE(_net_link, IFT_8021_VLAN, vlan, CTLFLAG_RW, 0, "IEEE 802.1Q VLAN"); | |
107 | SYSCTL_NODE(_net_link_vlan, PF_LINK, link, CTLFLAG_RW, 0, "for consistency"); | |
108 | ||
109 | u_int vlan_proto = ETHERTYPE_VLAN; | |
110 | SYSCTL_INT(_net_link_vlan_link, VLANCTL_PROTO, proto, CTLFLAG_RW, &vlan_proto, | |
111 | 0, "Ethernet protocol used for VLAN encapsulation"); | |
112 | ||
113 | static struct ifvlan ifv_softc[NVLAN]; | |
114 | ||
115 | static void vlan_start(struct ifnet *ifp); | |
116 | static void vlan_ifinit(void *foo); | |
117 | static int vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t addr); | |
118 | static int vlan_setmulti(struct ifnet *ifp); | |
119 | static int vlan_unconfig(struct ifnet *ifp); | |
120 | static int vlan_config(struct ifvlan *ifv, struct ifnet *p); | |
121 | ||
122 | /* | |
123 | * Program our multicast filter. What we're actually doing is | |
124 | * programming the multicast filter of the parent. This has the | |
125 | * side effect of causing the parent interface to receive multicast | |
126 | * traffic that it doesn't really want, which ends up being discarded | |
127 | * later by the upper protocol layers. Unfortunately, there's no way | |
128 | * to avoid this: there really is only one physical interface. | |
129 | */ | |
130 | static int vlan_setmulti(struct ifnet *ifp) | |
131 | { | |
132 | struct ifnet *ifp_p; | |
133 | struct ifmultiaddr *ifma, *rifma = NULL; | |
134 | struct ifvlan *sc; | |
135 | struct vlan_mc_entry *mc = NULL; | |
136 | struct sockaddr_dl sdl; | |
137 | int error; | |
138 | ||
139 | /* Find the parent. */ | |
140 | sc = ifp->if_softc; | |
141 | ifp_p = sc->ifv_p; | |
142 | ||
143 | sdl.sdl_len = ETHER_ADDR_LEN; | |
144 | sdl.sdl_family = AF_LINK; | |
145 | ||
146 | /* First, remove any existing filter entries. */ | |
147 | while(sc->vlan_mc_listhead.slh_first != NULL) { | |
148 | mc = sc->vlan_mc_listhead.slh_first; | |
149 | bcopy((char *)&mc->mc_addr, LLADDR(&sdl), ETHER_ADDR_LEN); | |
150 | error = if_delmulti(ifp_p, (struct sockaddr *)&sdl); | |
151 | if (error) | |
152 | return(error); | |
153 | SLIST_REMOVE_HEAD(&sc->vlan_mc_listhead, mc_entries); | |
154 | FREE(mc, M_DEVBUF); | |
155 | } | |
156 | ||
157 | /* Now program new ones. */ | |
158 | for (ifma = ifp->if_multiaddrs.lh_first; | |
159 | ifma != NULL;ifma = ifma->ifma_link.le_next) { | |
160 | if (ifma->ifma_addr->sa_family != AF_LINK) | |
161 | continue; | |
0b4e3aa0 A |
162 | mc = _MALLOC(sizeof(struct vlan_mc_entry), M_DEVBUF, M_WAITOK); |
163 | if (mc == NULL) | |
164 | return (ENOMEM); | |
1c79356b A |
165 | bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr), |
166 | (char *)&mc->mc_addr, ETHER_ADDR_LEN); | |
167 | SLIST_INSERT_HEAD(&sc->vlan_mc_listhead, mc, mc_entries); | |
168 | error = if_addmulti(ifp_p, (struct sockaddr *)&sdl, &rifma); | |
169 | if (error) | |
170 | return(error); | |
171 | } | |
172 | ||
173 | return(0); | |
174 | } | |
175 | ||
176 | static void | |
177 | vlaninit(void *dummy) | |
178 | { | |
179 | int i; | |
180 | ||
181 | for (i = 0; i < NVLAN; i++) { | |
182 | struct ifnet *ifp = &ifv_softc[i].ifv_if; | |
183 | ||
184 | ifp->if_softc = &ifv_softc[i]; | |
185 | ifp->if_name = "vlan"; | |
186 | ifp->if_family = APPLE_IF_FAM_VLAN; | |
187 | ifp->if_unit = i; | |
188 | /* NB: flags are not set here */ | |
189 | ifp->if_linkmib = &ifv_softc[i].ifv_mib; | |
190 | ifp->if_linkmiblen = sizeof ifv_softc[i].ifv_mib; | |
191 | /* NB: mtu is not set here */ | |
192 | ||
193 | ifp->if_init = vlan_ifinit; | |
194 | ifp->if_start = vlan_start; | |
195 | ifp->if_ioctl = vlan_ioctl; | |
196 | ifp->if_output = ether_output; | |
197 | ifp->if_snd.ifq_maxlen = ifqmaxlen; | |
198 | if_attach(ifp); | |
199 | ether_ifattach(ifp); | |
200 | #if NBPFILTER > 0 | |
201 | bpfattach(ifp, DLT_EN10MB, sizeof(struct ether_header)); | |
202 | #endif | |
203 | /* Now undo some of the damage... */ | |
204 | ifp->if_data.ifi_type = IFT_8021_VLAN; | |
205 | ifp->if_data.ifi_hdrlen = EVL_ENCAPLEN; | |
206 | ifp->if_resolvemulti = 0; | |
207 | } | |
208 | } | |
209 | PSEUDO_SET(vlaninit, if_vlan); | |
210 | ||
211 | static void | |
212 | vlan_ifinit(void *foo) | |
213 | { | |
214 | return; | |
215 | } | |
216 | ||
217 | static void | |
218 | vlan_start(struct ifnet *ifp) | |
219 | { | |
220 | struct ifvlan *ifv; | |
221 | struct ifnet *p; | |
222 | struct ether_vlan_header *evl; | |
223 | struct mbuf *m; | |
224 | ||
225 | ifv = ifp->if_softc; | |
226 | p = ifv->ifv_p; | |
227 | ||
228 | ifp->if_flags |= IFF_OACTIVE; | |
229 | for (;;) { | |
230 | IF_DEQUEUE(&ifp->if_snd, m); | |
231 | if (m == 0) | |
232 | break; | |
233 | #if NBPFILTER > 0 | |
234 | if (ifp->if_bpf) | |
235 | bpf_mtap(ifp, m); | |
236 | #endif /* NBPFILTER > 0 */ | |
237 | ||
238 | /* | |
239 | * If the LINK0 flag is set, it means the underlying interface | |
240 | * can do VLAN tag insertion itself and doesn't require us to | |
241 | * create a special header for it. In this case, we just pass | |
242 | * the packet along. However, we need some way to tell the | |
243 | * interface where the packet came from so that it knows how | |
244 | * to find the VLAN tag to use, so we set the rcvif in the | |
245 | * mbuf header to our ifnet. | |
246 | * | |
247 | * Note: we also set the M_PROTO1 flag in the mbuf to let | |
248 | * the parent driver know that the rcvif pointer is really | |
249 | * valid. We need to do this because sometimes mbufs will | |
250 | * be allocated by other parts of the system that contain | |
251 | * garbage in the rcvif pointer. Using the M_PROTO1 flag | |
252 | * lets the driver perform a proper sanity check and avoid | |
253 | * following potentially bogus rcvif pointers off into | |
254 | * never-never land. | |
255 | */ | |
256 | if (ifp->if_flags & IFF_LINK0) { | |
257 | m->m_pkthdr.rcvif = ifp; | |
258 | m->m_flags |= M_PROTO1; | |
259 | } else { | |
260 | M_PREPEND(m, EVL_ENCAPLEN, M_DONTWAIT); | |
261 | if (m == 0) | |
262 | continue; | |
263 | /* M_PREPEND takes care of m_len, m_pkthdr.len for us */ | |
264 | ||
265 | /* | |
266 | * Transform the Ethernet header into an Ethernet header | |
267 | * with 802.1Q encapsulation. | |
268 | */ | |
269 | bcopy(mtod(m, char *) + EVL_ENCAPLEN, mtod(m, char *), | |
270 | sizeof(struct ether_header)); | |
271 | evl = mtod(m, struct ether_vlan_header *); | |
272 | evl->evl_proto = evl->evl_encap_proto; | |
273 | evl->evl_encap_proto = htons(vlan_proto); | |
274 | evl->evl_tag = htons(ifv->ifv_tag); | |
275 | #ifdef DEBUG | |
276 | printf("vlan_start: %*D\n", sizeof *evl, | |
277 | (char *)evl, ":"); | |
278 | #endif | |
279 | } | |
280 | ||
281 | /* | |
282 | * Send it, precisely as ether_output() would have. | |
283 | * We are already running at splimp. | |
284 | */ | |
285 | if (IF_QFULL(&p->if_snd)) { | |
286 | IF_DROP(&p->if_snd); | |
287 | /* XXX stats */ | |
288 | ifp->if_oerrors++; | |
289 | m_freem(m); | |
290 | continue; | |
291 | } | |
292 | IF_ENQUEUE(&p->if_snd, m); | |
293 | if ((p->if_flags & IFF_OACTIVE) == 0) { | |
294 | p->if_start(p); | |
295 | ifp->if_opackets++; | |
296 | } | |
297 | } | |
298 | ifp->if_flags &= ~IFF_OACTIVE; | |
299 | ||
300 | return; | |
301 | } | |
302 | ||
303 | void | |
304 | vlan_input_tag(struct ether_header *eh, struct mbuf *m, u_int16_t t) | |
305 | { | |
306 | int i; | |
307 | struct ifvlan *ifv; | |
308 | ||
309 | for (i = 0; i < NVLAN; i++) { | |
310 | ifv = &ifv_softc[i]; | |
311 | if (ifv->ifv_tag == t) | |
312 | break; | |
313 | } | |
314 | ||
315 | if (i >= NVLAN || (ifv->ifv_if.if_flags & IFF_UP) == 0) { | |
316 | m_freem(m); | |
317 | ifv->ifv_p->if_data.ifi_noproto++; | |
318 | return; | |
319 | } | |
320 | ||
321 | /* | |
322 | * Having found a valid vlan interface corresponding to | |
323 | * the given source interface and vlan tag, run the | |
324 | * the real packet through ethert_input(). | |
325 | */ | |
326 | m->m_pkthdr.rcvif = &ifv->ifv_if; | |
327 | ||
328 | #if NBPFILTER > 0 | |
329 | if (ifv->ifv_if.if_bpf) { | |
330 | /* | |
331 | * Do the usual BPF fakery. Note that we don't support | |
332 | * promiscuous mode here, since it would require the | |
333 | * drivers to know about VLANs and we're not ready for | |
334 | * that yet. | |
335 | */ | |
336 | struct mbuf m0; | |
337 | m0.m_next = m; | |
338 | m0.m_len = sizeof(struct ether_header); | |
339 | m0.m_data = (char *)eh; | |
340 | bpf_mtap(&ifv->ifv_if, &m0); | |
341 | } | |
342 | #endif | |
343 | ifv->ifv_if.if_ipackets++; | |
344 | ether_input(&ifv->ifv_if, eh, m); | |
345 | return; | |
346 | } | |
347 | ||
348 | int | |
349 | vlan_input(struct ether_header *eh, struct mbuf *m) | |
350 | { | |
351 | int i; | |
352 | struct ifvlan *ifv; | |
353 | ||
354 | for (i = 0; i < NVLAN; i++) { | |
355 | ifv = &ifv_softc[i]; | |
356 | if (m->m_pkthdr.rcvif == ifv->ifv_p | |
357 | && (EVL_VLANOFTAG(ntohs(*mtod(m, u_int16_t *))) | |
358 | == ifv->ifv_tag)) | |
359 | break; | |
360 | } | |
361 | ||
362 | if (i >= NVLAN || (ifv->ifv_if.if_flags & IFF_UP) == 0) { | |
363 | m_freem(m); | |
364 | return -1; /* so ether_input can take note */ | |
365 | } | |
366 | ||
367 | /* | |
368 | * Having found a valid vlan interface corresponding to | |
369 | * the given source interface and vlan tag, remove the | |
370 | * encapsulation, and run the real packet through | |
371 | * ether_input() a second time (it had better be | |
372 | * reentrant!). | |
373 | */ | |
374 | m->m_pkthdr.rcvif = &ifv->ifv_if; | |
375 | eh->ether_type = mtod(m, u_int16_t *)[1]; | |
376 | m->m_data += EVL_ENCAPLEN; | |
377 | m->m_len -= EVL_ENCAPLEN; | |
378 | m->m_pkthdr.len -= EVL_ENCAPLEN; | |
379 | ||
380 | #if NBPFILTER > 0 | |
381 | if (ifv->ifv_if.if_bpf) { | |
382 | /* | |
383 | * Do the usual BPF fakery. Note that we don't support | |
384 | * promiscuous mode here, since it would require the | |
385 | * drivers to know about VLANs and we're not ready for | |
386 | * that yet. | |
387 | */ | |
388 | struct mbuf m0; | |
389 | m0.m_next = m; | |
390 | m0.m_len = sizeof(struct ether_header); | |
391 | m0.m_data = (char *)eh; | |
392 | bpf_mtap(&ifv->ifv_if, &m0); | |
393 | } | |
394 | #endif | |
395 | ifv->ifv_if.if_ipackets++; | |
396 | ether_input(&ifv->ifv_if, eh, m); | |
397 | return 0; | |
398 | } | |
399 | ||
400 | static int | |
401 | vlan_config(struct ifvlan *ifv, struct ifnet *p) | |
402 | { | |
403 | struct ifaddr *ifa1, *ifa2; | |
404 | struct sockaddr_dl *sdl1, *sdl2; | |
405 | ||
406 | if (p->if_data.ifi_type != IFT_ETHER) | |
407 | return EPROTONOSUPPORT; | |
408 | if (ifv->ifv_p) | |
409 | return EBUSY; | |
410 | ifv->ifv_p = p; | |
411 | if (p->if_data.ifi_hdrlen == sizeof(struct ether_vlan_header)) | |
412 | ifv->ifv_if.if_mtu = p->if_mtu; | |
413 | else | |
414 | ifv->ifv_if.if_mtu = p->if_data.ifi_mtu - EVL_ENCAPLEN; | |
415 | ||
416 | /* | |
417 | * Preserve the state of the LINK0 flag for ourselves. | |
418 | */ | |
419 | ifv->ifv_if.if_flags = (p->if_flags & ~(IFF_LINK0)); | |
420 | ||
421 | /* | |
422 | * Set up our ``Ethernet address'' to reflect the underlying | |
423 | * physical interface's. | |
424 | */ | |
425 | ifa1 = ifnet_addrs[ifv->ifv_if.if_index - 1]; | |
426 | ifa2 = ifnet_addrs[p->if_index - 1]; | |
427 | sdl1 = (struct sockaddr_dl *)ifa1->ifa_addr; | |
428 | sdl2 = (struct sockaddr_dl *)ifa2->ifa_addr; | |
429 | sdl1->sdl_type = IFT_ETHER; | |
430 | sdl1->sdl_alen = ETHER_ADDR_LEN; | |
431 | bcopy(LLADDR(sdl2), LLADDR(sdl1), ETHER_ADDR_LEN); | |
432 | bcopy(LLADDR(sdl2), ifv->ifv_ac.ac_enaddr, ETHER_ADDR_LEN); | |
433 | return 0; | |
434 | } | |
435 | ||
436 | static int | |
437 | vlan_unconfig(struct ifnet *ifp) | |
438 | { | |
439 | struct ifaddr *ifa; | |
440 | struct sockaddr_dl *sdl; | |
441 | struct vlan_mc_entry *mc; | |
442 | struct ifvlan *ifv; | |
443 | struct ifnet *p; | |
444 | int error; | |
445 | ||
446 | ifv = ifp->if_softc; | |
447 | p = ifv->ifv_p; | |
448 | ||
449 | /* | |
450 | * Since the interface is being unconfigured, we need to | |
451 | * empty the list of multicast groups that we may have joined | |
452 | * while we were alive and remove them from the parent's list | |
453 | * as well. | |
454 | */ | |
455 | while(ifv->vlan_mc_listhead.slh_first != NULL) { | |
456 | struct sockaddr_dl sdl; | |
457 | ||
458 | sdl.sdl_len = ETHER_ADDR_LEN; | |
459 | sdl.sdl_family = AF_LINK; | |
460 | mc = ifv->vlan_mc_listhead.slh_first; | |
461 | bcopy((char *)&mc->mc_addr, LLADDR(&sdl), ETHER_ADDR_LEN); | |
462 | error = if_delmulti(p, (struct sockaddr *)&sdl); | |
463 | error = if_delmulti(ifp, (struct sockaddr *)&sdl); | |
464 | if (error) | |
465 | return(error); | |
466 | SLIST_REMOVE_HEAD(&ifv->vlan_mc_listhead, mc_entries); | |
467 | FREE(mc, M_DEVBUF); | |
468 | } | |
469 | ||
470 | /* Disconnect from parent. */ | |
471 | ifv->ifv_p = NULL; | |
472 | ifv->ifv_if.if_mtu = ETHERMTU; | |
473 | ||
474 | /* Clear our MAC address. */ | |
475 | ifa = ifnet_addrs[ifv->ifv_if.if_index - 1]; | |
476 | sdl = (struct sockaddr_dl *)ifa->ifa_addr; | |
477 | sdl->sdl_type = IFT_ETHER; | |
478 | sdl->sdl_alen = ETHER_ADDR_LEN; | |
479 | bzero(LLADDR(sdl), ETHER_ADDR_LEN); | |
480 | bzero(ifv->ifv_ac.ac_enaddr, ETHER_ADDR_LEN); | |
481 | ||
482 | return 0; | |
483 | } | |
484 | ||
485 | static int | |
486 | vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) | |
487 | { | |
488 | struct ifaddr *ifa; | |
489 | struct ifnet *p; | |
490 | struct ifreq *ifr; | |
491 | struct ifvlan *ifv; | |
492 | struct vlanreq vlr; | |
493 | int error = 0; | |
494 | ||
495 | ifr = (struct ifreq *)data; | |
496 | ifa = (struct ifaddr *)data; | |
497 | ifv = ifp->if_softc; | |
498 | ||
499 | switch (cmd) { | |
500 | case SIOCSIFADDR: | |
501 | ifp->if_flags |= IFF_UP; | |
502 | ||
503 | switch (ifa->ifa_addr->sa_family) { | |
504 | #if INET | |
505 | case AF_INET: | |
506 | arp_ifinit(&ifv->ifv_ac, ifa); | |
507 | break; | |
508 | #endif | |
509 | default: | |
510 | break; | |
511 | } | |
512 | break; | |
513 | ||
514 | case SIOCGIFADDR: | |
515 | { | |
516 | struct sockaddr *sa; | |
517 | ||
518 | sa = (struct sockaddr *) &ifr->ifr_data; | |
519 | bcopy(((struct arpcom *)ifp->if_softc)->ac_enaddr, | |
520 | (caddr_t) sa->sa_data, ETHER_ADDR_LEN); | |
521 | } | |
522 | break; | |
523 | ||
524 | case SIOCSIFMTU: | |
525 | /* | |
526 | * Set the interface MTU. | |
527 | * This is bogus. The underlying interface might support | |
528 | * jumbo frames. | |
529 | */ | |
530 | if (ifr->ifr_mtu > ETHERMTU) { | |
531 | error = EINVAL; | |
532 | } else { | |
533 | ifp->if_mtu = ifr->ifr_mtu; | |
534 | } | |
535 | break; | |
536 | ||
537 | case SIOCSETVLAN: | |
538 | error = copyin(ifr->ifr_data, &vlr, sizeof vlr); | |
539 | if (error) | |
540 | break; | |
541 | if (vlr.vlr_parent[0] == '\0') { | |
542 | vlan_unconfig(ifp); | |
543 | if_down(ifp); | |
544 | ifp->if_flags = 0; | |
545 | break; | |
546 | } | |
547 | p = ifunit(vlr.vlr_parent); | |
548 | if (p == 0) { | |
549 | error = ENOENT; | |
550 | break; | |
551 | } | |
552 | error = vlan_config(ifv, p); | |
553 | if (error) | |
554 | break; | |
555 | ifv->ifv_tag = vlr.vlr_tag; | |
556 | break; | |
557 | ||
558 | case SIOCGETVLAN: | |
559 | bzero(&vlr, sizeof vlr); | |
560 | if (ifv->ifv_p) { | |
561 | snprintf(vlr.vlr_parent, sizeof(vlr.vlr_parent), | |
562 | "%s%d", ifv->ifv_p->if_name, ifv->ifv_p->if_unit); | |
563 | vlr.vlr_tag = ifv->ifv_tag; | |
564 | } | |
565 | error = copyout(&vlr, ifr->ifr_data, sizeof vlr); | |
566 | break; | |
567 | ||
568 | case SIOCSIFFLAGS: | |
569 | /* | |
570 | * We don't support promiscuous mode | |
571 | * right now because it would require help from the | |
572 | * underlying drivers, which hasn't been implemented. | |
573 | */ | |
574 | if (ifr->ifr_flags & (IFF_PROMISC)) { | |
575 | ifp->if_flags &= ~(IFF_PROMISC); | |
576 | error = EINVAL; | |
577 | } | |
578 | break; | |
579 | case SIOCADDMULTI: | |
580 | case SIOCDELMULTI: | |
581 | error = vlan_setmulti(ifp); | |
582 | break; | |
583 | default: | |
584 | error = EINVAL; | |
585 | } | |
586 | return error; | |
587 | } | |
588 | ||
589 | #endif /* NVLAN > 0 */ |