]>
Commit | Line | Data |
---|---|---|
b0d623f7 A |
1 | /* |
2 | * Copyright (c) 2008 Apple Computer, Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * This file contains Original Code and/or Modifications of Original Code | |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
14 | * | |
15 | * Please obtain a copy of the License at | |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
25 | * | |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ | |
27 | */ | |
28 | ||
29 | #include <mach/kern_return.h> | |
30 | #include <mach/memory_object_control.h> | |
31 | #include <mach/upl.h> | |
32 | ||
33 | #include <kern/ipc_kobject.h> | |
34 | #include <kern/kalloc.h> | |
35 | #include <kern/queue.h> | |
36 | ||
37 | #include <vm/vm_kern.h> | |
38 | #include <vm/vm_map.h> | |
39 | #include <vm/vm_pageout.h> | |
40 | #include <vm/vm_protos.h> | |
41 | ||
42 | ||
43 | /* | |
44 | * APPLE SWAPFILE MEMORY PAGER | |
45 | * | |
46 | * This external memory manager (EMM) handles mappings of the swap files. | |
47 | * Swap files are not regular files and are used solely to store contents of | |
48 | * anonymous memory mappings while not resident in memory. | |
49 | * There's no valid reason to map a swap file. This just puts extra burden | |
50 | * on the system, is potentially a security issue and is not reliable since | |
51 | * the contents can change at any time with pageout operations. | |
52 | * Here are some of the issues with mapping a swap file. | |
53 | * * PERFORMANCE: | |
54 | * Each page in the swap file belong to an anonymous memory object. Mapping | |
55 | * the swap file makes those pages also accessible via a vnode memory | |
56 | * object and each page can now be resident twice. | |
57 | * * SECURITY: | |
58 | * Mapping a swap file allows access to other processes' memory. Swap files | |
59 | * are only accessible by the "root" super-user, who can already access any | |
60 | * process's memory, so this is not a real issue but if permissions on the | |
61 | * swap file got changed, it could become one. | |
62 | * Swap files are not "zero-filled" on creation, so until their contents are | |
63 | * overwritten with pageout operations, they still contain whatever was on | |
64 | * the disk blocks they were allocated. The "super-user" could see the | |
65 | * contents of free blocks anyway, so this is not a new security issue but | |
66 | * it may be perceive as one. | |
5ba3f43e | 67 | * |
b0d623f7 A |
68 | * We can't legitimately prevent a user process with appropriate privileges |
69 | * from mapping a swap file, but we can prevent it from accessing its actual | |
70 | * contents. | |
71 | * This pager mostly handles page-in request (from memory_object_data_request()) | |
72 | * for swap file mappings and just returns bogus data. | |
73 | * Pageouts are not handled, so mmap() has to make sure it does not allow | |
74 | * writable (i.e. MAP_SHARED and PROT_WRITE) mappings of swap files. | |
75 | */ | |
76 | ||
77 | /* forward declarations */ | |
78 | void swapfile_pager_reference(memory_object_t mem_obj); | |
79 | void swapfile_pager_deallocate(memory_object_t mem_obj); | |
80 | kern_return_t swapfile_pager_init(memory_object_t mem_obj, | |
81 | memory_object_control_t control, | |
82 | memory_object_cluster_size_t pg_size); | |
83 | kern_return_t swapfile_pager_terminate(memory_object_t mem_obj); | |
84 | kern_return_t swapfile_pager_data_request(memory_object_t mem_obj, | |
85 | memory_object_offset_t offset, | |
86 | memory_object_cluster_size_t length, | |
87 | vm_prot_t protection_required, | |
88 | memory_object_fault_info_t fault_info); | |
89 | kern_return_t swapfile_pager_data_return(memory_object_t mem_obj, | |
90 | memory_object_offset_t offset, | |
91 | memory_object_cluster_size_t data_cnt, | |
92 | memory_object_offset_t *resid_offset, | |
93 | int *io_error, | |
94 | boolean_t dirty, | |
95 | boolean_t kernel_copy, | |
96 | int upl_flags); | |
97 | kern_return_t swapfile_pager_data_initialize(memory_object_t mem_obj, | |
98 | memory_object_offset_t offset, | |
99 | memory_object_cluster_size_t data_cnt); | |
100 | kern_return_t swapfile_pager_data_unlock(memory_object_t mem_obj, | |
101 | memory_object_offset_t offset, | |
102 | memory_object_size_t size, | |
103 | vm_prot_t desired_access); | |
104 | kern_return_t swapfile_pager_synchronize(memory_object_t mem_obj, | |
105 | memory_object_offset_t offset, | |
106 | memory_object_size_t length, | |
107 | vm_sync_t sync_flags); | |
108 | kern_return_t swapfile_pager_map(memory_object_t mem_obj, | |
109 | vm_prot_t prot); | |
110 | kern_return_t swapfile_pager_last_unmap(memory_object_t mem_obj); | |
111 | ||
112 | /* | |
113 | * Vector of VM operations for this EMM. | |
114 | * These routines are invoked by VM via the memory_object_*() interfaces. | |
115 | */ | |
116 | const struct memory_object_pager_ops swapfile_pager_ops = { | |
117 | swapfile_pager_reference, | |
118 | swapfile_pager_deallocate, | |
119 | swapfile_pager_init, | |
120 | swapfile_pager_terminate, | |
121 | swapfile_pager_data_request, | |
122 | swapfile_pager_data_return, | |
123 | swapfile_pager_data_initialize, | |
124 | swapfile_pager_data_unlock, | |
125 | swapfile_pager_synchronize, | |
126 | swapfile_pager_map, | |
127 | swapfile_pager_last_unmap, | |
6d2010ae | 128 | NULL, /* data_reclaim */ |
b0d623f7 A |
129 | "swapfile pager" |
130 | }; | |
131 | ||
132 | /* | |
133 | * The "swapfile_pager" describes a memory object backed by | |
134 | * the "swapfile" EMM. | |
135 | */ | |
136 | typedef struct swapfile_pager { | |
5ba3f43e A |
137 | /* mandatory generic header */ |
138 | struct memory_object swp_pgr_hdr; | |
139 | ||
140 | /* pager-specific data */ | |
b0d623f7 A |
141 | queue_chain_t pager_queue; /* next & prev pagers */ |
142 | unsigned int ref_count; /* reference count */ | |
143 | boolean_t is_ready; /* is this pager ready ? */ | |
144 | boolean_t is_mapped; /* is this pager mapped ? */ | |
b0d623f7 A |
145 | struct vnode *swapfile_vnode;/* the swapfile's vnode */ |
146 | } *swapfile_pager_t; | |
147 | #define SWAPFILE_PAGER_NULL ((swapfile_pager_t) NULL) | |
b0d623f7 A |
148 | |
149 | /* | |
150 | * List of memory objects managed by this EMM. | |
151 | * The list is protected by the "swapfile_pager_lock" lock. | |
152 | */ | |
153 | int swapfile_pager_count = 0; /* number of pagers */ | |
154 | queue_head_t swapfile_pager_queue; | |
155 | decl_lck_mtx_data(,swapfile_pager_lock) | |
156 | ||
157 | /* | |
158 | * Statistics & counters. | |
159 | */ | |
160 | int swapfile_pager_count_max = 0; | |
161 | ||
162 | ||
163 | lck_grp_t swapfile_pager_lck_grp; | |
164 | lck_grp_attr_t swapfile_pager_lck_grp_attr; | |
165 | lck_attr_t swapfile_pager_lck_attr; | |
166 | ||
167 | ||
168 | /* internal prototypes */ | |
169 | swapfile_pager_t swapfile_pager_create(struct vnode *vp); | |
170 | swapfile_pager_t swapfile_pager_lookup(memory_object_t mem_obj); | |
171 | void swapfile_pager_dequeue(swapfile_pager_t pager); | |
172 | void swapfile_pager_deallocate_internal(swapfile_pager_t pager, | |
173 | boolean_t locked); | |
174 | void swapfile_pager_terminate_internal(swapfile_pager_t pager); | |
175 | ||
176 | ||
177 | #if DEBUG | |
178 | int swapfile_pagerdebug = 0; | |
179 | #define PAGER_ALL 0xffffffff | |
180 | #define PAGER_INIT 0x00000001 | |
181 | #define PAGER_PAGEIN 0x00000002 | |
182 | ||
183 | #define PAGER_DEBUG(LEVEL, A) \ | |
184 | MACRO_BEGIN \ | |
185 | if ((swapfile_pagerdebug & LEVEL)==LEVEL) { \ | |
186 | printf A; \ | |
187 | } \ | |
188 | MACRO_END | |
189 | #else | |
190 | #define PAGER_DEBUG(LEVEL, A) | |
191 | #endif | |
192 | ||
193 | ||
194 | void | |
195 | swapfile_pager_bootstrap(void) | |
196 | { | |
197 | lck_grp_attr_setdefault(&swapfile_pager_lck_grp_attr); | |
198 | lck_grp_init(&swapfile_pager_lck_grp, "swapfile pager", &swapfile_pager_lck_grp_attr); | |
199 | lck_attr_setdefault(&swapfile_pager_lck_attr); | |
200 | lck_mtx_init(&swapfile_pager_lock, &swapfile_pager_lck_grp, &swapfile_pager_lck_attr); | |
201 | queue_init(&swapfile_pager_queue); | |
202 | } | |
203 | ||
204 | /* | |
205 | * swapfile_pager_init() | |
206 | * | |
207 | * Initialize the memory object and makes it ready to be used and mapped. | |
208 | */ | |
209 | kern_return_t | |
210 | swapfile_pager_init( | |
211 | memory_object_t mem_obj, | |
212 | memory_object_control_t control, | |
213 | #if !DEBUG | |
214 | __unused | |
215 | #endif | |
216 | memory_object_cluster_size_t pg_size) | |
217 | { | |
218 | swapfile_pager_t pager; | |
219 | kern_return_t kr; | |
220 | memory_object_attr_info_data_t attributes; | |
221 | ||
222 | PAGER_DEBUG(PAGER_ALL, | |
223 | ("swapfile_pager_init: %p, %p, %x\n", | |
224 | mem_obj, control, pg_size)); | |
225 | ||
226 | if (control == MEMORY_OBJECT_CONTROL_NULL) | |
227 | return KERN_INVALID_ARGUMENT; | |
228 | ||
229 | pager = swapfile_pager_lookup(mem_obj); | |
230 | ||
231 | memory_object_control_reference(control); | |
232 | ||
5ba3f43e | 233 | pager->swp_pgr_hdr.mo_control = control; |
b0d623f7 A |
234 | |
235 | attributes.copy_strategy = MEMORY_OBJECT_COPY_DELAY; | |
236 | attributes.cluster_size = (1 << (PAGE_SHIFT)); | |
237 | attributes.may_cache_object = FALSE; | |
238 | attributes.temporary = TRUE; | |
239 | ||
240 | kr = memory_object_change_attributes( | |
241 | control, | |
242 | MEMORY_OBJECT_ATTRIBUTE_INFO, | |
243 | (memory_object_info_t) &attributes, | |
244 | MEMORY_OBJECT_ATTR_INFO_COUNT); | |
245 | if (kr != KERN_SUCCESS) | |
246 | panic("swapfile_pager_init: " | |
247 | "memory_object_change_attributes() failed"); | |
248 | ||
249 | return KERN_SUCCESS; | |
250 | } | |
251 | ||
252 | /* | |
253 | * swapfile_data_return() | |
254 | * | |
255 | * Handles page-out requests from VM. This should never happen since | |
256 | * the pages provided by this EMM are not supposed to be dirty or dirtied | |
257 | * and VM should simply discard the contents and reclaim the pages if it | |
258 | * needs to. | |
259 | */ | |
260 | kern_return_t | |
261 | swapfile_pager_data_return( | |
262 | __unused memory_object_t mem_obj, | |
263 | __unused memory_object_offset_t offset, | |
264 | __unused memory_object_cluster_size_t data_cnt, | |
265 | __unused memory_object_offset_t *resid_offset, | |
266 | __unused int *io_error, | |
267 | __unused boolean_t dirty, | |
268 | __unused boolean_t kernel_copy, | |
269 | __unused int upl_flags) | |
270 | { | |
271 | panic("swapfile_pager_data_return: should never get called"); | |
272 | return KERN_FAILURE; | |
273 | } | |
274 | ||
275 | kern_return_t | |
276 | swapfile_pager_data_initialize( | |
277 | __unused memory_object_t mem_obj, | |
278 | __unused memory_object_offset_t offset, | |
279 | __unused memory_object_cluster_size_t data_cnt) | |
280 | { | |
281 | panic("swapfile_pager_data_initialize: should never get called"); | |
282 | return KERN_FAILURE; | |
283 | } | |
284 | ||
285 | kern_return_t | |
286 | swapfile_pager_data_unlock( | |
287 | __unused memory_object_t mem_obj, | |
288 | __unused memory_object_offset_t offset, | |
289 | __unused memory_object_size_t size, | |
290 | __unused vm_prot_t desired_access) | |
291 | { | |
292 | return KERN_FAILURE; | |
293 | } | |
294 | ||
295 | /* | |
296 | * swapfile_pager_data_request() | |
297 | * | |
298 | * Handles page-in requests from VM. | |
299 | */ | |
300 | kern_return_t | |
301 | swapfile_pager_data_request( | |
302 | memory_object_t mem_obj, | |
303 | memory_object_offset_t offset, | |
304 | memory_object_cluster_size_t length, | |
305 | #if !DEBUG | |
306 | __unused | |
307 | #endif | |
308 | vm_prot_t protection_required, | |
309 | __unused memory_object_fault_info_t mo_fault_info) | |
310 | { | |
311 | swapfile_pager_t pager; | |
312 | memory_object_control_t mo_control; | |
313 | upl_t upl; | |
314 | int upl_flags; | |
315 | upl_size_t upl_size; | |
316 | upl_page_info_t *upl_pl = NULL; | |
317 | unsigned int pl_count; | |
318 | vm_object_t dst_object; | |
319 | kern_return_t kr, retval; | |
320 | vm_map_offset_t kernel_mapping; | |
321 | vm_offset_t dst_vaddr; | |
322 | char *dst_ptr; | |
323 | vm_offset_t cur_offset; | |
324 | vm_map_entry_t map_entry; | |
325 | ||
326 | PAGER_DEBUG(PAGER_ALL, ("swapfile_pager_data_request: %p, %llx, %x, %x\n", mem_obj, offset, length, protection_required)); | |
327 | ||
328 | kernel_mapping = 0; | |
329 | upl = NULL; | |
330 | upl_pl = NULL; | |
331 | ||
332 | pager = swapfile_pager_lookup(mem_obj); | |
333 | assert(pager->is_ready); | |
334 | assert(pager->ref_count > 1); /* pager is alive and mapped */ | |
335 | ||
336 | PAGER_DEBUG(PAGER_PAGEIN, ("swapfile_pager_data_request: %p, %llx, %x, %x, pager %p\n", mem_obj, offset, length, protection_required, pager)); | |
337 | ||
338 | /* | |
339 | * Gather in a UPL all the VM pages requested by VM. | |
340 | */ | |
5ba3f43e | 341 | mo_control = pager->swp_pgr_hdr.mo_control; |
b0d623f7 A |
342 | |
343 | upl_size = length; | |
344 | upl_flags = | |
345 | UPL_RET_ONLY_ABSENT | | |
346 | UPL_SET_LITE | | |
347 | UPL_NO_SYNC | | |
348 | UPL_CLEAN_IN_PLACE | /* triggers UPL_CLEAR_DIRTY */ | |
349 | UPL_SET_INTERNAL; | |
350 | pl_count = 0; | |
351 | kr = memory_object_upl_request(mo_control, | |
352 | offset, upl_size, | |
5ba3f43e | 353 | &upl, NULL, NULL, upl_flags, VM_KERN_MEMORY_OSFMK); |
b0d623f7 A |
354 | if (kr != KERN_SUCCESS) { |
355 | retval = kr; | |
356 | goto done; | |
357 | } | |
358 | dst_object = mo_control->moc_object; | |
359 | assert(dst_object != VM_OBJECT_NULL); | |
360 | ||
361 | ||
362 | /* | |
363 | * Reserve a virtual page in the kernel address space to map each | |
364 | * destination physical page when it's its turn to be processed. | |
365 | */ | |
366 | vm_object_reference(kernel_object); /* ref. for mapping */ | |
367 | kr = vm_map_find_space(kernel_map, | |
368 | &kernel_mapping, | |
369 | PAGE_SIZE_64, | |
370 | 0, | |
371 | 0, | |
5ba3f43e A |
372 | VM_MAP_KERNEL_FLAGS_NONE, |
373 | VM_KERN_MEMORY_NONE, | |
b0d623f7 A |
374 | &map_entry); |
375 | if (kr != KERN_SUCCESS) { | |
376 | vm_object_deallocate(kernel_object); | |
377 | retval = kr; | |
378 | goto done; | |
379 | } | |
3e170ce0 A |
380 | VME_OBJECT_SET(map_entry, kernel_object); |
381 | VME_OFFSET_SET(map_entry, kernel_mapping - VM_MIN_KERNEL_ADDRESS); | |
b0d623f7 A |
382 | vm_map_unlock(kernel_map); |
383 | dst_vaddr = CAST_DOWN(vm_offset_t, kernel_mapping); | |
384 | dst_ptr = (char *) dst_vaddr; | |
385 | ||
386 | /* | |
387 | * Fill in the contents of the pages requested by VM. | |
388 | */ | |
389 | upl_pl = UPL_GET_INTERNAL_PAGE_LIST(upl); | |
390 | pl_count = length / PAGE_SIZE; | |
391 | for (cur_offset = 0; cur_offset < length; cur_offset += PAGE_SIZE) { | |
392 | ppnum_t dst_pnum; | |
393 | ||
394 | if (!upl_page_present(upl_pl, (int)(cur_offset / PAGE_SIZE))) { | |
395 | /* this page is not in the UPL: skip it */ | |
396 | continue; | |
397 | } | |
398 | ||
399 | /* | |
400 | * Establish an explicit pmap mapping of the destination | |
401 | * physical page. | |
402 | * We can't do a regular VM mapping because the VM page | |
403 | * is "busy". | |
404 | */ | |
405 | dst_pnum = (ppnum_t) | |
406 | upl_phys_page(upl_pl, (int)(cur_offset / PAGE_SIZE)); | |
407 | assert(dst_pnum != 0); | |
5ba3f43e A |
408 | retval = pmap_enter(kernel_pmap, |
409 | kernel_mapping, | |
410 | dst_pnum, | |
411 | VM_PROT_READ | VM_PROT_WRITE, | |
412 | VM_PROT_NONE, | |
413 | 0, | |
414 | TRUE); | |
415 | ||
416 | assert(retval == KERN_SUCCESS); | |
417 | ||
418 | if (retval != KERN_SUCCESS) { | |
419 | goto done; | |
420 | } | |
b0d623f7 A |
421 | |
422 | memset(dst_ptr, '\0', PAGE_SIZE); | |
423 | /* add an end-of-line to keep line counters happy */ | |
424 | dst_ptr[PAGE_SIZE-1] = '\n'; | |
425 | ||
426 | /* | |
427 | * Remove the pmap mapping of the destination page | |
428 | * in the kernel. | |
429 | */ | |
430 | pmap_remove(kernel_pmap, | |
431 | (addr64_t) kernel_mapping, | |
432 | (addr64_t) (kernel_mapping + PAGE_SIZE_64)); | |
433 | ||
434 | } | |
435 | ||
436 | retval = KERN_SUCCESS; | |
437 | done: | |
438 | if (upl != NULL) { | |
439 | /* clean up the UPL */ | |
440 | ||
441 | /* | |
442 | * The pages are currently dirty because we've just been | |
443 | * writing on them, but as far as we're concerned, they're | |
444 | * clean since they contain their "original" contents as | |
445 | * provided by us, the pager. | |
446 | * Tell the UPL to mark them "clean". | |
447 | */ | |
448 | upl_clear_dirty(upl, TRUE); | |
449 | ||
450 | /* abort or commit the UPL */ | |
451 | if (retval != KERN_SUCCESS) { | |
452 | upl_abort(upl, 0); | |
453 | } else { | |
454 | boolean_t empty; | |
455 | upl_commit_range(upl, 0, upl->size, | |
456 | UPL_COMMIT_CS_VALIDATED, | |
457 | upl_pl, pl_count, &empty); | |
458 | } | |
459 | ||
460 | /* and deallocate the UPL */ | |
461 | upl_deallocate(upl); | |
462 | upl = NULL; | |
463 | } | |
464 | if (kernel_mapping != 0) { | |
465 | /* clean up the mapping of the source and destination pages */ | |
466 | kr = vm_map_remove(kernel_map, | |
467 | kernel_mapping, | |
468 | kernel_mapping + PAGE_SIZE_64, | |
d9a64523 | 469 | VM_MAP_REMOVE_NO_FLAGS); |
b0d623f7 A |
470 | assert(kr == KERN_SUCCESS); |
471 | kernel_mapping = 0; | |
472 | dst_vaddr = 0; | |
473 | } | |
474 | ||
475 | return retval; | |
476 | } | |
477 | ||
478 | /* | |
479 | * swapfile_pager_reference() | |
480 | * | |
481 | * Get a reference on this memory object. | |
482 | * For external usage only. Assumes that the initial reference count is not 0, | |
483 | * i.e one should not "revive" a dead pager this way. | |
484 | */ | |
485 | void | |
486 | swapfile_pager_reference( | |
487 | memory_object_t mem_obj) | |
488 | { | |
489 | swapfile_pager_t pager; | |
490 | ||
491 | pager = swapfile_pager_lookup(mem_obj); | |
492 | ||
493 | lck_mtx_lock(&swapfile_pager_lock); | |
494 | assert(pager->ref_count > 0); | |
495 | pager->ref_count++; | |
496 | lck_mtx_unlock(&swapfile_pager_lock); | |
497 | } | |
498 | ||
499 | ||
500 | /* | |
501 | * swapfile_pager_dequeue: | |
502 | * | |
503 | * Removes a pager from the list of pagers. | |
504 | * | |
505 | * The caller must hold "swapfile_pager_lock". | |
506 | */ | |
507 | void | |
508 | swapfile_pager_dequeue( | |
509 | swapfile_pager_t pager) | |
510 | { | |
511 | assert(!pager->is_mapped); | |
512 | ||
513 | queue_remove(&swapfile_pager_queue, | |
514 | pager, | |
515 | swapfile_pager_t, | |
516 | pager_queue); | |
517 | pager->pager_queue.next = NULL; | |
518 | pager->pager_queue.prev = NULL; | |
519 | ||
520 | swapfile_pager_count--; | |
521 | } | |
522 | ||
523 | /* | |
524 | * swapfile_pager_terminate_internal: | |
525 | * | |
526 | * Trigger the asynchronous termination of the memory object associated | |
527 | * with this pager. | |
528 | * When the memory object is terminated, there will be one more call | |
529 | * to memory_object_deallocate() (i.e. swapfile_pager_deallocate()) | |
530 | * to finish the clean up. | |
531 | * | |
532 | * "swapfile_pager_lock" should not be held by the caller. | |
533 | * We don't need the lock because the pager has already been removed from | |
534 | * the pagers' list and is now ours exclusively. | |
535 | */ | |
536 | void | |
537 | swapfile_pager_terminate_internal( | |
538 | swapfile_pager_t pager) | |
539 | { | |
540 | assert(pager->is_ready); | |
541 | assert(!pager->is_mapped); | |
542 | ||
543 | if (pager->swapfile_vnode != NULL) { | |
544 | pager->swapfile_vnode = NULL; | |
545 | } | |
546 | ||
547 | /* trigger the destruction of the memory object */ | |
5ba3f43e | 548 | memory_object_destroy(pager->swp_pgr_hdr.mo_control, 0); |
b0d623f7 A |
549 | } |
550 | ||
551 | /* | |
552 | * swapfile_pager_deallocate_internal() | |
553 | * | |
554 | * Release a reference on this pager and free it when the last | |
555 | * reference goes away. | |
556 | * Can be called with swapfile_pager_lock held or not but always returns | |
557 | * with it unlocked. | |
558 | */ | |
559 | void | |
560 | swapfile_pager_deallocate_internal( | |
561 | swapfile_pager_t pager, | |
562 | boolean_t locked) | |
563 | { | |
564 | if (! locked) { | |
565 | lck_mtx_lock(&swapfile_pager_lock); | |
566 | } | |
567 | ||
568 | /* drop a reference on this pager */ | |
569 | pager->ref_count--; | |
570 | ||
571 | if (pager->ref_count == 1) { | |
572 | /* | |
573 | * Only the "named" reference is left, which means that | |
574 | * no one is really holding on to this pager anymore. | |
575 | * Terminate it. | |
576 | */ | |
577 | swapfile_pager_dequeue(pager); | |
578 | /* the pager is all ours: no need for the lock now */ | |
579 | lck_mtx_unlock(&swapfile_pager_lock); | |
580 | swapfile_pager_terminate_internal(pager); | |
581 | } else if (pager->ref_count == 0) { | |
582 | /* | |
583 | * Dropped the existence reference; the memory object has | |
584 | * been terminated. Do some final cleanup and release the | |
585 | * pager structure. | |
586 | */ | |
587 | lck_mtx_unlock(&swapfile_pager_lock); | |
5ba3f43e A |
588 | if (pager->swp_pgr_hdr.mo_control != MEMORY_OBJECT_CONTROL_NULL) { |
589 | memory_object_control_deallocate(pager->swp_pgr_hdr.mo_control); | |
590 | pager->swp_pgr_hdr.mo_control = MEMORY_OBJECT_CONTROL_NULL; | |
b0d623f7 A |
591 | } |
592 | kfree(pager, sizeof (*pager)); | |
593 | pager = SWAPFILE_PAGER_NULL; | |
594 | } else { | |
595 | /* there are still plenty of references: keep going... */ | |
596 | lck_mtx_unlock(&swapfile_pager_lock); | |
597 | } | |
598 | ||
599 | /* caution: lock is not held on return... */ | |
600 | } | |
601 | ||
602 | /* | |
603 | * swapfile_pager_deallocate() | |
604 | * | |
605 | * Release a reference on this pager and free it when the last | |
606 | * reference goes away. | |
607 | */ | |
608 | void | |
609 | swapfile_pager_deallocate( | |
610 | memory_object_t mem_obj) | |
611 | { | |
612 | swapfile_pager_t pager; | |
613 | ||
614 | PAGER_DEBUG(PAGER_ALL, ("swapfile_pager_deallocate: %p\n", mem_obj)); | |
615 | pager = swapfile_pager_lookup(mem_obj); | |
616 | swapfile_pager_deallocate_internal(pager, FALSE); | |
617 | } | |
618 | ||
619 | /* | |
620 | * | |
621 | */ | |
622 | kern_return_t | |
623 | swapfile_pager_terminate( | |
624 | #if !DEBUG | |
625 | __unused | |
626 | #endif | |
627 | memory_object_t mem_obj) | |
628 | { | |
629 | PAGER_DEBUG(PAGER_ALL, ("swapfile_pager_terminate: %p\n", mem_obj)); | |
630 | ||
631 | return KERN_SUCCESS; | |
632 | } | |
633 | ||
634 | /* | |
635 | * | |
636 | */ | |
637 | kern_return_t | |
638 | swapfile_pager_synchronize( | |
5ba3f43e A |
639 | __unused memory_object_t mem_obbj, |
640 | __unused memory_object_offset_t offset, | |
641 | __unused memory_object_size_t length, | |
b0d623f7 A |
642 | __unused vm_sync_t sync_flags) |
643 | { | |
5ba3f43e A |
644 | panic("swapfile_pager_synchronize: memory_object_synchronize no longer supported\n"); |
645 | return (KERN_FAILURE); | |
b0d623f7 A |
646 | } |
647 | ||
648 | /* | |
649 | * swapfile_pager_map() | |
650 | * | |
651 | * This allows VM to let us, the EMM, know that this memory object | |
652 | * is currently mapped one or more times. This is called by VM each time | |
653 | * the memory object gets mapped and we take one extra reference on the | |
654 | * memory object to account for all its mappings. | |
655 | */ | |
656 | kern_return_t | |
657 | swapfile_pager_map( | |
658 | memory_object_t mem_obj, | |
659 | __unused vm_prot_t prot) | |
660 | { | |
661 | swapfile_pager_t pager; | |
662 | ||
663 | PAGER_DEBUG(PAGER_ALL, ("swapfile_pager_map: %p\n", mem_obj)); | |
664 | ||
665 | pager = swapfile_pager_lookup(mem_obj); | |
666 | ||
667 | lck_mtx_lock(&swapfile_pager_lock); | |
668 | assert(pager->is_ready); | |
669 | assert(pager->ref_count > 0); /* pager is alive */ | |
670 | if (pager->is_mapped == FALSE) { | |
671 | /* | |
672 | * First mapping of this pager: take an extra reference | |
673 | * that will remain until all the mappings of this pager | |
674 | * are removed. | |
675 | */ | |
676 | pager->is_mapped = TRUE; | |
677 | pager->ref_count++; | |
678 | } | |
679 | lck_mtx_unlock(&swapfile_pager_lock); | |
680 | ||
681 | return KERN_SUCCESS; | |
682 | } | |
683 | ||
684 | /* | |
685 | * swapfile_pager_last_unmap() | |
686 | * | |
687 | * This is called by VM when this memory object is no longer mapped anywhere. | |
688 | */ | |
689 | kern_return_t | |
690 | swapfile_pager_last_unmap( | |
691 | memory_object_t mem_obj) | |
692 | { | |
693 | swapfile_pager_t pager; | |
694 | ||
695 | PAGER_DEBUG(PAGER_ALL, | |
696 | ("swapfile_pager_last_unmap: %p\n", mem_obj)); | |
697 | ||
698 | pager = swapfile_pager_lookup(mem_obj); | |
699 | ||
700 | lck_mtx_lock(&swapfile_pager_lock); | |
701 | if (pager->is_mapped) { | |
702 | /* | |
703 | * All the mappings are gone, so let go of the one extra | |
704 | * reference that represents all the mappings of this pager. | |
705 | */ | |
706 | pager->is_mapped = FALSE; | |
707 | swapfile_pager_deallocate_internal(pager, TRUE); | |
708 | /* caution: deallocate_internal() released the lock ! */ | |
709 | } else { | |
710 | lck_mtx_unlock(&swapfile_pager_lock); | |
711 | } | |
712 | ||
713 | return KERN_SUCCESS; | |
714 | } | |
715 | ||
716 | ||
717 | /* | |
718 | * | |
719 | */ | |
720 | swapfile_pager_t | |
721 | swapfile_pager_lookup( | |
722 | memory_object_t mem_obj) | |
723 | { | |
724 | swapfile_pager_t pager; | |
725 | ||
5ba3f43e | 726 | assert(mem_obj->mo_pager_ops == &swapfile_pager_ops); |
3e170ce0 | 727 | __IGNORE_WCASTALIGN(pager = (swapfile_pager_t) mem_obj); |
b0d623f7 A |
728 | assert(pager->ref_count > 0); |
729 | return pager; | |
730 | } | |
731 | ||
732 | swapfile_pager_t | |
733 | swapfile_pager_create( | |
734 | struct vnode *vp) | |
735 | { | |
736 | swapfile_pager_t pager, pager2; | |
737 | memory_object_control_t control; | |
738 | kern_return_t kr; | |
739 | ||
740 | pager = (swapfile_pager_t) kalloc(sizeof (*pager)); | |
741 | if (pager == SWAPFILE_PAGER_NULL) { | |
742 | return SWAPFILE_PAGER_NULL; | |
743 | } | |
744 | ||
745 | /* | |
746 | * The vm_map call takes both named entry ports and raw memory | |
747 | * objects in the same parameter. We need to make sure that | |
748 | * vm_map does not see this object as a named entry port. So, | |
749 | * we reserve the second word in the object for a fake ip_kotype | |
750 | * setting - that will tell vm_map to use it as a memory object. | |
751 | */ | |
5ba3f43e A |
752 | pager->swp_pgr_hdr.mo_ikot = IKOT_MEMORY_OBJECT; |
753 | pager->swp_pgr_hdr.mo_pager_ops = &swapfile_pager_ops; | |
754 | pager->swp_pgr_hdr.mo_control = MEMORY_OBJECT_CONTROL_NULL; | |
755 | ||
b0d623f7 A |
756 | pager->is_ready = FALSE;/* not ready until it has a "name" */ |
757 | pager->ref_count = 1; /* setup reference */ | |
758 | pager->is_mapped = FALSE; | |
b0d623f7 A |
759 | pager->swapfile_vnode = vp; |
760 | ||
761 | lck_mtx_lock(&swapfile_pager_lock); | |
762 | /* see if anyone raced us to create a pager for the same object */ | |
763 | queue_iterate(&swapfile_pager_queue, | |
764 | pager2, | |
765 | swapfile_pager_t, | |
766 | pager_queue) { | |
767 | if (pager2->swapfile_vnode == vp) { | |
768 | break; | |
769 | } | |
770 | } | |
771 | if (! queue_end(&swapfile_pager_queue, | |
772 | (queue_entry_t) pager2)) { | |
773 | /* while we hold the lock, transfer our setup ref to winner */ | |
774 | pager2->ref_count++; | |
775 | /* we lost the race, down with the loser... */ | |
776 | lck_mtx_unlock(&swapfile_pager_lock); | |
777 | pager->swapfile_vnode = NULL; | |
778 | kfree(pager, sizeof (*pager)); | |
779 | /* ... and go with the winner */ | |
780 | pager = pager2; | |
781 | /* let the winner make sure the pager gets ready */ | |
782 | return pager; | |
783 | } | |
784 | ||
785 | /* enter new pager at the head of our list of pagers */ | |
786 | queue_enter_first(&swapfile_pager_queue, | |
787 | pager, | |
788 | swapfile_pager_t, | |
789 | pager_queue); | |
790 | swapfile_pager_count++; | |
791 | if (swapfile_pager_count > swapfile_pager_count_max) { | |
792 | swapfile_pager_count_max = swapfile_pager_count; | |
793 | } | |
794 | lck_mtx_unlock(&swapfile_pager_lock); | |
795 | ||
796 | kr = memory_object_create_named((memory_object_t) pager, | |
797 | 0, | |
798 | &control); | |
799 | assert(kr == KERN_SUCCESS); | |
800 | ||
801 | lck_mtx_lock(&swapfile_pager_lock); | |
802 | /* the new pager is now ready to be used */ | |
803 | pager->is_ready = TRUE; | |
804 | lck_mtx_unlock(&swapfile_pager_lock); | |
805 | ||
806 | /* wakeup anyone waiting for this pager to be ready */ | |
807 | thread_wakeup(&pager->is_ready); | |
808 | ||
809 | return pager; | |
810 | } | |
811 | ||
812 | /* | |
813 | * swapfile_pager_setup() | |
814 | * | |
815 | * Provide the caller with a memory object backed by the provided | |
816 | * "backing_object" VM object. If such a memory object already exists, | |
817 | * re-use it, otherwise create a new memory object. | |
818 | */ | |
819 | memory_object_t | |
820 | swapfile_pager_setup( | |
821 | struct vnode *vp) | |
822 | { | |
823 | swapfile_pager_t pager; | |
824 | ||
825 | lck_mtx_lock(&swapfile_pager_lock); | |
826 | ||
827 | queue_iterate(&swapfile_pager_queue, | |
828 | pager, | |
829 | swapfile_pager_t, | |
830 | pager_queue) { | |
831 | if (pager->swapfile_vnode == vp) { | |
832 | break; | |
833 | } | |
834 | } | |
835 | if (queue_end(&swapfile_pager_queue, | |
836 | (queue_entry_t) pager)) { | |
837 | /* no existing pager for this backing object */ | |
838 | pager = SWAPFILE_PAGER_NULL; | |
839 | } else { | |
840 | /* make sure pager doesn't disappear */ | |
841 | pager->ref_count++; | |
842 | } | |
843 | ||
844 | lck_mtx_unlock(&swapfile_pager_lock); | |
845 | ||
846 | if (pager == SWAPFILE_PAGER_NULL) { | |
847 | pager = swapfile_pager_create(vp); | |
848 | if (pager == SWAPFILE_PAGER_NULL) { | |
849 | return MEMORY_OBJECT_NULL; | |
850 | } | |
851 | } | |
852 | ||
853 | lck_mtx_lock(&swapfile_pager_lock); | |
854 | while (!pager->is_ready) { | |
855 | lck_mtx_sleep(&swapfile_pager_lock, | |
856 | LCK_SLEEP_DEFAULT, | |
857 | &pager->is_ready, | |
858 | THREAD_UNINT); | |
859 | } | |
860 | lck_mtx_unlock(&swapfile_pager_lock); | |
861 | ||
862 | return (memory_object_t) pager; | |
863 | } | |
864 | ||
865 | memory_object_control_t | |
866 | swapfile_pager_control( | |
867 | memory_object_t mem_obj) | |
868 | { | |
869 | swapfile_pager_t pager; | |
870 | ||
5ba3f43e A |
871 | if (mem_obj == MEMORY_OBJECT_NULL || |
872 | mem_obj->mo_pager_ops != &swapfile_pager_ops) { | |
873 | return MEMORY_OBJECT_CONTROL_NULL; | |
874 | } | |
b0d623f7 | 875 | pager = swapfile_pager_lookup(mem_obj); |
5ba3f43e | 876 | return pager->swp_pgr_hdr.mo_control; |
b0d623f7 | 877 | } |